
Issue

48
2022

Winning the NeurIPS Billion-
Scale Approximate Nearest
Neighbor Search Challenge
Optimizing End-to-End Artificial Intelligence Pipelines

Better Artificial Intelligence Performance with
Hyperparameter Tuning

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

2The Parallel UniverseContents
F

E
A

T
U

R
E

Letter from the Editor

Winning the NeurIPS Billion-Scale Approximate Nearest Neighbor
Search Challenge
Unleashing Intel® Xeon® Processors with Intel® Optane™ Technology to Drastically Improve
Search Performance

Optimizing End-to-End Artificial Intelligence Pipelines
Optimization Strategies for AI Pipelines on Intel® Xeon® Processors

Optimizing Artificial Intelligence Applications
Better AI Performance with Hyperparameter Tuning and Optimized Software

Five Outstanding Additions Found in SYCL* 2020
The SYCL Programming Language Is Evolving

Accelerating the 2D Fourier Correlation Algorithm with ArrayFire and
oneAPI
A Side-by-Side Look at the ArrayFire and oneAPI Abstractions for Heterogeneous
Parallelism

The Maxloc Reduction in oneAPI
Implementing This Common Parallel Pattern in SYCL and oneDPL

More Productive and Performant C++ Programming with oneDPL
In a Heterogeneous Computing Landscape, Open Standards and Portability Are Your Allies

3

6

15

26

30

39

50

59

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

3The Parallel Universe

Elephants in the SYCL Room
Once upon a time, I was a committed Perl programmer. Then one day, a colleague suggested that I take
a look at Python, his favorite new language. “Pshaw,” I said. “Why do we need another programming
language?” Twenty years later, I’m committed to Python (though I admit that I’m attracted to Julia). The
SYCL* specification from the Khronos Group brings heterogeneous data parallelism to C++, but it’s facing
the same question: Do we really need another programming language? The oneAPI industry initiative
adopted SYCL as its direct programming approach for heterogeneous parallelism, so James Reinders
(Editor Emeritus, The Parallel Universe) and Michael Wong (Distinguished Engineer, Codeplay Software)
provide an excellent response to this question and several others in Why SYCL: Elephants in the SYCL
Room.

We have several oneAPI and SYCL articles in this issue, but our feature article describes the winning
solution to a recent data science competition: Winning the NeurIPS Billion-Scale Approximate Nearest
Neighbor Search Challenge. This is followed by two more data science articles: Optimizing End-to-
End Artificial Intelligence Pipelines and Optimizing Artificial Intelligence Applications. Artificial
intelligence is the glamorous part of analytics pipelines, but data scientists know that it takes a lot of hard
work and computation to reach this step. These articles describe how to optimize various parts of the
analytics pipeline, up to and including artificial intelligence.

From data science, we turn our attention back to SYCL. James Brodman and John Pennycook, coauthors
of the recent book, Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous Systems
Using C++ and SYCL, describe their top Five Outstanding Additions Found in SYCL 2020.

As I mentioned in the last issue of The Parallel Universe, I’ve been experimenting with the ArrayFire
heterogeneous parallel library. In this issue, Umar Arshad (ArrayFire, Software Engineer) and I do a side-
by-side comparison of the oneAPI and ArrayFire abstractions in Accelerating the 2D Fourier Correlation
Algorithm with ArrayFire and oneAPI. Readers may also be interested in ArrayFire Interoperability with
oneAPI, Libraries, and OpenCL (The Parallel Universe, Issue 47).

3The Parallel Universe

Letter from the Editor
Henry A. Gabb, Senior Principal Engineer at Intel Corporation, is a longtime high-performance and
parallel computing practitioner who has published numerous articles on parallel programming. He
was editor/coauthor of “Developing Multithreaded Applications: A Platform Consistent Approach”
and program manager of the Intel/Microsoft Universal Parallel Computing Research Centers.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://julialang.org/
https://www.khronos.org/sycl/
https://www.oneapi.io/
https://www.hpcwire.com/2022/02/03/why-sycl-elephants-in-the-sycl-room/
https://www.hpcwire.com/2022/02/03/why-sycl-elephants-in-the-sycl-room/
https://link.springer.com/book/10.1007/978-1-4842-5574-2
https://link.springer.com/book/10.1007/978-1-4842-5574-2
https://arrayfire.com/
https://www.intel.com/content/www/us/en/developer/articles/technical/inference-with-arrayfire-and-oneapi.html#gs.qh8gdi
https://www.intel.com/content/www/us/en/developer/articles/technical/inference-with-arrayfire-and-oneapi.html#gs.qh8gdi

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

4The Parallel Universe

We close this issue with two articles on the oneAPI Data Parallel C++ Library (oneDPL): The Maxloc
Reduction in oneAPI and More Productive and Performant C++ Programming with oneDPL. These
articles describe how to use C++ STL functions in oneDPL for better programmer productivity and
heterogeneous parallelism.

As always, don’t forget to check out intel.com/oneapi for more information on Intel solutions for code
modernization, visual computing, data center and cloud computing, data science, systems and IoT
development, and heterogeneous parallel programming with oneAPI.

Henry A. Gabb
April 2022

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://intel.com/oneapi

Code for the Future.
Grow beyond proprietary boundaries.

Expand your code’s reach with a single, open programming model that supports
multiple languages to deliver heterogeneous computing performance.

Rooted in open standards, oneAPI offers cross-architecture libraries, compilers and
tools that open your code to more hardware choices—for unparalleled performance.

Discover oneAPI �

https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

6The Parallel Universe

Similarity search, also known as approximate nearest neighbor (ANN) search, is the backbone of many
AI applications that require search, recommendation, and ranking operations on web-scale databases.
Accuracy, speed, scale, cost, and quality-of-service constraints are critical. In this article, we describe a
solution that advances these dimensions by leveraging the computational capabilities of Intel® Xeon®
processors and Intel® Optane™ memory. To showcase these advances, we participated in the NeurIPS’21
Billion-Scale ANN Search Challenge, winning the Custom Hardware Track. Our results offer an 8x to 19x
reduction in CAPEX and five-year OPEX at iso-performance over the next-best solution. This promises to
drastically lower the entry barrier and democratizes similarity search in the modern, large-scale, high-
accuracy and high-performance scenario.

Mariano Tepper, Cecilia Aguerrebere, and Ted Willke, Intel Labs; Sourabh Dongaonkar
and Jawad B Khan, Intel Foundry Services; and Mark Hildebrand, University of
California, Davis

Unleashing Intel® Xeon® Processors with Intel® Optane™
Technology to Drastically Improve Search Performance

Winning the NeurIPS Billion-
Scale Approximate Nearest
Neighbor Search Challenge

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://en.wikipedia.org/wiki/Nearest_neighbor_search
https://big-ann-benchmarks.com/
https://big-ann-benchmarks.com/
https://github.com/harsha-simhadri/big-ann-benchmarks/blob/main/t3/LEADERBOARDS.md

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

7The Parallel Universe

Approximate Nearest Neighbor Search
Given a database of high-dimensional feature vectors and a query vector of the same dimension, the
objective of similarity search is to retrieve the database vectors that are most similar to the query, based
on some similarity function (Figure 1). In modern applications, these vectors represent the content of
data (images, sounds, text, etc.), extracted and summarized using deep learning systems such that similar
vectors correspond to items that are semantically related.

To be useful in practice, a similarity search solution needs to provide value across different dimensions:

 • Accuracy: The search results need to be of sufficient quality to be actionable (that is, the retrieved items
need to be similar to the query).

 • Performance: The search needs to be fast, often meeting strict quality-of-service constraints.

 • Scalability: Databases continue to get larger in terms of the number of items they contain and the
dimensionality of those items.

 • Cost: Being deployed in production and data center scenarios, the solution needs to minimize the
total cost of ownership (TCO), often measured as a combination of capital expenditures (CAPEX) and
operating expenses (OPEX).

A natural solution is to linearly scan over each vector in the database, compare it with the query, rank
the results in descending order of similarity, and then return the most similar vectors. However, the sheer
volume and richness of data preclude this approach and make large-scale similarity search an extremely
challenging problem that is both compute- and memory-intensive. Better solutions are needed, which
commonly involve two phases:

1. During indexing, each element in the database is converted into a high-dimensional vector, and then an
index is created so that only a fraction of the database is accessed during the search.

2. At search time, given a query vector, an algorithm sifts through the database using the index. Its results
are used to take different informed actions depending on the final application and based on these
semantically relevant results.

Figure 1. Schematic representation of an ANN search pipeline.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

8The Parallel Universe

The NeurIPS’21 Billion-Scale Approximate Nearest Neighbor
Search Challenge
In December 2021, the first billion-scale similarity search competition was organized as part of the
NeurIPS conference. The goal of the competition was to provide a comparative understanding of
astate-of-the-art similarity search across a curated collection of real-world datasets and to promote the
development of new solutions. We participated in the competition’s Custom Hardware Track, where we
could take full advantage of Intel’s hardware offerings. We developed a solution that fully leveraged the
capabilities of Intel Xeon processors and Intel Optane persistent memory (PMem), creating a one-two
approach that eventually won the competition.

The fundamental metric compared across datasets was TCO, defined as CAPEX + five-year OPEX of the
solutions at 90% recall and 100,000 queries-per-second (QPS) throughput. The CAPEX and OPEX are
defined by the competition organizers as follows:

 • CAPEX = (MSRP of all the hardware components) x (minimum number of systems needed to scale to
support 100,000 QPS)

 • OPEX = (maximum QPS at or greater than the baseline recall @10 threshold) x (kilowatt-hour/query)
x (seconds/hour) x (hours/year) x (five years) x (dollars/kilowatt-hour) x (minimum number of systems
needed to scale to support 100,000 QPS)

These metrics balance the energy efficiency (through OPEX) and raw performance (through CAPEX) for
each solution.

Figure 2. TCO difference between the winning Intel solution and the second place NVIDIA
solution, showing up to 20x improvement across five different datasets (x-axis).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://github.com/harsha-simhadri/big-ann-benchmarks/tree/main/t3#cost_leaderboard

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

9The Parallel Universe

Our solution offers a breakthrough improvement in TCO and is between 8.85x and 19.7x better than
the second-best solution, NVIDIA's cuanns_multigpu that uses a DGX A100 GPU system across multiple
datasets (Figure 2). The stark difference in efficiency of our solution is apparent when comparing the
hardware configurations of our first-place entry and NVIDIA’s second-place entry (Table 1). A single
inexpensive 1U 2S Intel Xeon server with Intel Optane PMem can achieve the same performance as two
of NVIDIA’s flagship DGX A100 servers with eight A100 GPUs and two 64-core CPUs for ANN search
workloads.

Intel® Xeon® processor + Intel® Optane™ memory NVIDIA DGX A100
CPU Dual Intel Xeon Gold 6330N processors

56 cores total
Dual AMD Rome 7742
128 cores total

System memory 512GB DDR4
2TB Intel Optane DCPMM 200 Series

2TB DDR4

GPU None 8x NVIDIA A100 80 GB GPUs
GPU memory None 640 GB
Power Up to 1.2 kW Up to 6.5 kW
Total cost $14,664 $150,000+

In addition to the significantly low CAPEX of the Intel solution at iso-performance, the power efficien-
cy is also significantly better, as shown by the energy per query (in Joules), measured by standard
IPMI interface on all machines in the competition. The energy per query of the Intel solution is up to
5x better than the NVIDIA solution (Figure 3). This translates to much better OPEX over a long period,
as well as a much more sustainable solution to the ANN search problem.

Table 1. Comparing Intel and NVIDIA hardware configurations for the BigANN competition.
These configurations achieve similar performance.

Figure 3. Energy efficiency of the Intel® solution is up to 5x better than the NVIDIA
solution across all datasets.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://github.com/harsha-simhadri/big-ann-benchmarks/blob/gw/T3/t3/optanne_graphann/README.md
https://www.anandtech.com/show/15801/nvidia-announces-ampere-architecture-and-a100-products#:~:text=Being%20among%20the,has%20gone%20up

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

10The Parallel Universe

These drastic improvements in TCO are enabled by unique advantages of Intel Xeon processors and
the capacity and throughput of Intel Optane PMem, as well as the algorithmic innovation that enables
optimal utilization of the hardware resources. In the following sections, we provide the details of how
this combined hardware/software approach helped us win this competition by such huge margins.

Algorithmic Approach
We showcase the performance of Intel Xeon processors with Intel Optane PMem for ANN search
algorithm, GraphANN. GraphANN is an extension of the graph-based Vamana algorithm that is highly
optimized for Intel Optane PMem. It builds a directed graph to index the data points and follows a
greedy search to navigate the graph and locate the nearest neighbors of a new query. Throughout the
search, two main data structures are used: the graph and the feature vectors. In our solution, we store
the graph in Intel Optane PMem and keep the feature vectors in DRAM, when possible. This combination
yields impressive throughput and performance per dollar. Moreover, Intel Optane PMem comes in much
higher capacities than traditional DRAM, thus providing the necessary scaling for larger datasets. Finally,
persistence has the bonus of eliminating the need to load the index into memory, which is quite time-
consuming for billion-scale datasets.

Intel® Optane™ Persistent Memory (PMem)
Intel Optane PMem is a storage class memory that can be used in SSDs and persistent memory
applications. Historically, there has always been a gap between the memory and storage performance.
Intel Optane memory technology is designed to bridge this gap (Figure 4). It allows memory cells to be
addressed individually, in a dense, transistor-less, stackable 3D design. These features provide a unique
combination of affordable capacity and support for data persistence. With innovative technology offering
distinctive operating modes, it adapts to different needs across workloads. For example, Intel Optane
technology has been used to accelerate storage of logs and caching tier of large-scale applications with
storage bottlenecks.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

11The Parallel Universe

Intel Optane PMem has some similarities with DRAM: It is packaged in DIMMs, it resides on the same bus/
channels as DRAM, and it can act in the same way as DRAM storing volatile data. It differs from DRAM in
the following ways:

 • Intel Optane PMem comes in much higher capacities than traditional DRAM. Its modules come in 128GB,
256GB, and 512GB capacities, vastly larger than DRAM modules that typically range from 16GB to
64GB, though larger DRAM capacities exist.

 • Intel Optane PMem can also operate in a persistent mode, storing data even without power applied to
the module and comes with built-in hardware encryption to help keep data at rest secure. The TCO is
greatly improved compared to DRAM on a cost-per-GB basis and the ability to increase the capacity to
beyond DRAM’s capabilities.

Intel Optane PMem has two operational modes for additional flexibility: Memory Mode and App Direct
Mode. Memory Mode expands main memory capacity without persistence. It combines an Intel Optane
PMem with a conventional DRAM that serves as a direct-mapped cache for PMem. In App Direct Mode,
Intel Optane PMem appears as a persistent memory device that can be addressed separately from
DRAM.

ANN with Intel® Optane™ Persistent Memory (PMem)
By studying the access patterns of the Vamana algorithm, we found that data reuse across queries is
limited. This discourages the use of Intel Optane Memory Mode, as a cache would provide limited value.
Therefore, we used App Direct Mode for this work.

Figure 4. Memory and storage hierarchy and Intel® Optane™ technology's place in it.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

12The Parallel Universe

To maximize performance, we organize the data by storing the graph in Intel Optane PMem while keeping
the feature vectors in DRAM. The graph accesses follow a highly random and non-local pattern. Here,
Intel Optane PMem has a 64-byte block size, which allows us to surgically access the graph elements
while retaining performance. We limit the maximum out-degree of each node to 127, as this ensures that
exactly four accesses are needed to retrieve the neighbors of any given node. (We use 4B per neighbor
and 4B for the number of neighbors.) Storing the data contiguously allows pipelining of these four
accesses.

Our optimized version of the Vamana algorithm is written in the Julia programming language. The
optimizations can be divided into general (purely software-based) and specific to Intel Optane
technology. The general optimizations relate to optimized graph and data representations, use of
VNNI instructions for distance computation, static sizing of data vectors, and memory alignment,
among others. One such important optimization is “prefetch hoisting,” which decouples the distance-
computation loop from the vector-fetching loop. In this approach, we use x86 intrinsics to prefetch as
much data as possible from memory before beginning the distance computation step. This ensures
that memory latency has minimal impact on the queries. The other important optimization results from
partitioning the vectors between DRAM and PMem. This is because fetching the vectors for distance
computation is the slowest step in the search, and we keep as many vectors as possible in DRAM, which
reduces the PMem traffic and provides a significant performance improvement.

Our multithreaded architecture creates small batches of queries that are dynamically load-balanced
across worker threads. Each thread processes one query at a time in its batch. Furthermore, all
intermediate scratch-space data structures required to process a query are pre-allocated, with each
thread owning its own private scratch space. This eliminates dynamic memory allocation during the
query processing and minimizes the amount of synchronization among threads.

These optimizations allow us to deliver orders of more than10 to100X improvement in ANN search
performance over the previous known best solution (the FAISS algorithm running on GPUs). Figure
5 shows the improvement achieved by our optimized approach across five different datasets. These
datasets encompass different encodings (Int8, UInt8, and Float32), as well as different distance metrics
(Euclidean and Inner Product). We can see that across these datasets, GraphANN running on an Intel
Xeon processor with Intel Optane memory drastically improves the baseline performance.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://julialang.org/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

13The Parallel Universe

Figure 5. Queries per second (throughput) vs recall plots for the five different datasets, showing
the magnitude of improvement of the Intel® Optane™ solution over the previously best software

(FAISS) and hardware (GPUs).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

14The Parallel Universe

Conclusion
In this article, we described the winning algorithm, design choices, and associated hardware setup in
the Billion-Scale Approximate Nearest Neighbor Search Challenge in the NeurIPS 2021 (see the public
leaderboard). We also showed that Intel Optane PMem can significantly improve the performance of
similarity search algorithms across a range of design points, starting from only upgrading the hardware
without any associated code changes to a full-blown custom rewrite of code.

Diverse Workloads Require Diverse Architectures
Develop heterogeneous applications quickly and correctly with Intel oneAPI
toolkits. Explore Toolkits >

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://github.com/harsha-simhadri/big-ann-benchmarks/blob/main/t3/LEADERBOARDS.md
https://github.com/harsha-simhadri/big-ann-benchmarks/blob/main/t3/LEADERBOARDS.md
https://software.intel.com/content/www/us/en/develop/tools/oneapi/all-toolkits.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

15The Parallel Universe

End-to-end (E2E) artificial intelligence (AI) pipelines are made up of one or more machine learning (ML)/
deep learning (DL) models that solve a problem on a specific dataset and modality, accompanied by
multiple preprocessing and postprocessing stages. We apply comprehensive optimization strategies
on a variety of modern AI pipelines for ML, natural language processing (NLP), recommendation
systems, video analytics, anomaly detection, and face recognition, along with DL/ML model training
and inference, optimized data ingestion, feature engineering, media codecs, tokenization, etc. for higher
E2E performance. The results across all our candidate pipelines, mostly inference-based, show that
for optimal E2E throughput performance, all phases must be optimized. Large memory capacities, AI

Meena Arunachalam, Principal Engineer; Vrushabh Sanghavi, Senior Deep Learning
Software Engineer; Yi A Yao, AI Frameworks Engineer; Yi A Zhou, AI Frameworks
Engineer; Lifeng A Wang, AI Frameworks Engineer; Zongru Wen, AI Frameworks Engineer;
Niroop Ammbashankar, Senior Deep Learning Software Engineer; Ning W Wang, AI
Frameworks Engineer; and Fahim Mohammad, Senior Deep Learning Software Engineer,
Artificial Intelligence and Analytics Group, Intel Corporation

Optimization Strategies for AI Pipelines on Intel®
Xeon® Processors

Optimizing End-to-End
Artificial Intelligence
Pipelines

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

16The Parallel Universe

acceleration (e.g., Intel® Deep Learning Boost [Intel® DL Boost]), and the ability to run general-purpose
code make Intel® Xeon® processors well-suited for these pipelines.

Our optimizations fall broadly into application, framework, and library software; model hyperparameters;
model optimization; system-level tuning; and workload partitioning. Tools such as Intel® Neural
Compressor offer quantization, distillation, pruning, and other techniques that benefit from Intel DL Boost
and other AI acceleration built into Intel Xeon processors. As a result, we see a 1.8x to 81.7x improvement
across different E2E pipelines. In addition, we can host multiple parallel streams or instances of these
pipelines with the high number of cores and memory capacity available on Intel Xeon processors
compared to some memory-limited accelerators that can only host one or a very limited number of
parallel streams. In many cases, workload consolidation to CPUs is possible, which also has TCO and
power advantages.

E2E AI Applications
We showcase many E2E AI use cases and workloads, each comprising unique pre- and post-processing
steps and implemented using a variety of different ML/DL approaches on video, image, tabular, text, and
other data types (Table 1).

Workload Application Name Model Pre-/Post-processing Stages Dataset

ML

Census Ridge Regression
Load data to data frame, drop columns,

remove rows, arithmetic ops, type
conversion, train/test split

IPUMs Census Data

PLAsTiCC
Gradient Boosting

Tree

Load data, drop columns, groupby
aggregation, arithmetic ops, type

conversion, train/test split
LSST Simulated Data

Predictive Analytics
in Industrial IoT

Random Forest
Classifier

Load data to data frame, drop inessential
columns, train/test split

Bosch Production Line

NLP
Document Level

Sentiment Analysis
BERT-Large

Load data, initialize tokenizer, data
encoding, load model

IMDb

SST-2

Recommendation
System

E2E Deep Interest
Evolution Network

DIEN
Data ingestion, label encoding, get history
sequence, native sampling, data split, load

model
Amazon Books

Video Analytics Video Streamer SSD Resnet-34
Video decode, image normalization and

resizing, bounding box and labeling, data
uploading

Mall video

Anomaly
Detection

Anomaly Detection ResNet50v1.5
Load data, image resizing, image

transformations, evaluating feature
reconstruction error

MVTec AD

Face Recognition
Face Detection and

Recognition
SSD MobileNet,
Resnet50v1.5

Load video, frame splitting, resizing, output
generation

Soccer celebration

Table 1. E2E AI applications.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/artificial-intelligence/deep-learning-boost.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

17The Parallel Universe

E2E AI applications typically involve two broad categories of operations: pre-/post-processing and AI.
In Figure 1, we see the breakdown range from 4% to 98% pre-/post-processing to 2% to 96% AI as a
fraction of the total E2E run-time.

Census
The Census workload trains a ridge-regression model using the U.S. Census data from the years 1970 to
2010, and predicts the correlation between personal education level and income (Figure 2). Prior to ML,
it ingests the data, performs data frame operations to prepare the input for model training, and creates a
feature set and its subsequent output set1.

Figure 1. Percent time in pre-/post-processing vs AI.

Figure 2. Census application pipeline.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

18The Parallel Universe

PLAsTiCC
PLAsTiCC is an open data challenge that uses simulated astronomical time-series data to classify objects
in the night sky that vary in brightness (Figure 3). The pipeline loads the data; manipulates, transforms,
and processes the data frames; and uses the histogram tree method from the XGBoost library to train a
classifier and perform model inference.

Predictive Analytics in Industrial IoT
This is an E2E unsupervised learning use case in industrial IoT that predicts internal failures during
manufacturing, thereby helping maintain the quality and performance of the production line (Figure 4).
The workflow consists of reading measurements from a CSV file and cleaning them to include only the
necessary features. The highly optimized Intel® Distribution of Modin2 is used for this step. The random
forest classifier from Intel® Extension for Scikit-learn3 is used to generate the model.

Figure 3. PLAsTiCC application pipeline.

Figure 4. Pipeline for predictive analytics in industrial IoT.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://github.com/modin-project/modin
https://www.intel.com/content/www/us/en/developer/tools/oneapi/scikit-learn.html#gs.tlqs2s

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

19The Parallel Universe

Document Level Sentiment Analysis (DLSA)
The DLSA workflow shown in Figure 5 is a reference NLP pipeline built using the Hugging Face
transformer API to perform document-level sentiment analysis. It uses language models such as BERT-
LARGE (uncased), pretrained on a large English text corpus.

E2E Deep Interest Evolution Network (DIEN) Recommendation System
The DIEN workflow shown in Figure 6 is a recommendation inference pipeline that estimates the
probability of user clicks at scale.

Figure 5. Document level sentiment analysis pipeline.

Figure 6. E2E DIEN recommendation system pipeline.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

20The Parallel Universe

Video Streamer
The video streamer pipeline (Figure 7) is designed to mimic real-time video analytics. Real-time data
is provided to an inference endpoint that executes single-shot object detection. The metadata created
during inference is then uploaded to a database for curation. The pipeline is built upon GStreamer,
TensorFlow, and OpenCV. The input video is decoded by GStreamer into images on a frame-by-frame
basis. Then, the GStreamer buffer is converted into a NumPy array. TensorFlow does image normalization
and resizing, followed by object detection with a pretrained SSD-ResNet34 model. Finally, the results of
bounding-box coordinates and class labels are uploaded to a database.

Anomaly Detection

The objective of anomaly detection is to analyze images of parts being manufactured on an industrial
production line, using deep neural network and probabilistic modeling to identify rare defects (Figure
8). As an out-of-distribution solution, a model of normality is learned over feature maps of the final
few layers from normal data in an unsupervised manner. Deviations from the models are flagged as
anomalies. Prior to learning distribution, the dimension of the feature space is reduced by using PCA to
prevent matrix singularities and rank deficiencies from arising while estimating the parameters of the
distribution.

Figure 7. Video streamer application pipeline.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

21The Parallel Universe

Face Recognition
This E2E pipeline performs real-time face recognition by cascading two, out-of-the-box, pretrained
models: SSD MobileNet and ResNet50v1.5 (Figure 9). The input from the camera, as compressed or
uncompressed video, undergoes frame splitting and resizing. Each frame is then fed to the detection
model (SSD MobileNet), which performs object detection. The NMS bounding boxes are then fed to the
recognition model (ResNet50v1.5) to recognize the faces. The output frames with the facial recognitions
can either be displayed or saved in databases.

How To Do “Efficient-AI”: E2E Optimization Strategies
E2E performance-efficient AI requires a coherent optimization strategy consisting of AI software
acceleration, system-level tuning, hyperparameter and runtime parameter optimizations, and workflow
scaling. All phases (data ingestion, data preprocessing, feature engineering, and model building) need to
be holistically addressed to improve user productivity as well as workload performance efficiency
(Figure 10).

Figure 9. Face recognition pipeline.

Figure 8. Anomaly detection pipeline.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

22The Parallel Universe

AI Software Acceleration
Intel Distribution of Modin is a multithreaded, parallel, and performant data frame library compatible with
the pandas API. It performs lightweight, robust data frame and CSV operations, and it scales efficiently
with the number of cores, unlike pandas, providing a significant speedup just by changing a couple of
lines of code. Data frame operations across different phases speed up from 1.12x to 30x.

Intel Extension for Scikit-learn accelerates common estimators, transformers, and clustering algorithms in
classical ML. Ridge regression training and inference in the Census workload is a DGEMM-based memory-
bound algorithm that takes advantage of Intel Extension for Scikit-learn’s vectorization, cache-friendly
blocking, and multithreading to efficiently use multiple CPU cores.

Intel-optimized XGBoost and CatBoost libraries provide efficient parallel tree boosting. The XGBoost
kernels are optimized for cache efficiency, remote memory latency, and memory access patterns on Intel
processors.

Intel® Extension for PyTorch4 improves PyTorch performance on Intel processors. With Intel Extension for
PyTorch, the Anomaly Detection and DLSA pipelines take advantage of Intel DL Boost. Intel® Optimization
for TensorFlow5 is powered by Intel® oneAPI Deep Neural Network Library (oneDNN), which includes
convolution, normalization, activation, inner product, and other primitives vectorized using Intel® AVX-
512 instructions. The DIEN, face recognition, and video streamer applications use Intel Optimization for
TensorFlow to enable scalable performance on Intel processors through vectorization and optimized
graph operations (e.g., ops fusion, batch normalization).

Figure 10. Efficient AI.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/developer/articles/guide/getting-started-with-intel-optimization-of-pytorch.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

23The Parallel Universe

Model Optimizations
Quantization facilitates conversion of high-precision data (32-bit floating point, FP32) to lower precision
(8-bit integer, INT8), which enables critical operations such as convolution and matrix multiplication to
be performed significantly faster with little to no loss in accuracy. Intel Neural Compressor automatically
optimizes low-precision recipes for DL models and calibrates them to achieve optimal performance and
memory usage with expected accuracy criteria. DLSA and video streamer applications achieved up to 4x
speedup from INT8 quantization alone (Table 2).

Parameter Optimizations
The SigOpt model development platform makes it easy to track runs, visualize training, and scale
hyperparameter optimization for any pipeline, while also tuning for objectives like maximum throughput
at threshold accuracy and/or latency levels. With SigOpt’s multi-objective optimization, we can easily
obtain insights on the best configurations of the AI pipeline, showing the optimal performance summary
and analysis. In the case of PLAsTiCC, “accuracy” and “timing” metrics were optimized, while the model
hyperparameters (like the number of parallel threads for XGBoost, number of trees, learning rate, max
depth, L1/L2 normalization, etc.) were computed in order to achieve the objective6. In DLSA, the number
of inference instances and batch size are tuned to achieve high E2E throughput.

Run-time options in TensorFlow also make a big performance impact. It is recommended to control the
parallelism within an operation like matrix multiplication or reduction so as to schedule the tasks within
a threadpool by setting intra_op_parallelism_threads equal to the number of available physical
cores and, in contrast, running operations that are independent in the TensorFlow graph concurrently by
setting inter_op_parallelism_threads equal to the number of sockets. Data layout, OpenMP, and
NUMA controls are also available to tune the performance even further5.

Workload Scaling
Multi-instance execution allows parallel streams of the application to be executed on a single Intel® Xeon®
Scalable server. The advantage is demonstrated during anomaly detection, where several cameras can be
deployed to detect defects at different stages of the manufacturing pipeline; 10 such streams processing
over the standard 30 FPS on a ResNet50 model can be serviced by a single 3rd Gen Intel Xeon Scalable
processor. Similarly, E2E DIEN runs with one core/instance with 40 inference instances per socket, while
DLSA and DL pipelines run four cores/instance to eight cores/instance with 10 inference streams to five
inference streams per socket. This is a unique advantage of CPUs with their large memory capacity.

System-level tuning is available in the BIOS to improve efficiency. Tuning knobs controlling
hyperthreading, CPU power scaling governors, NUMA optimizations, hardware prefetchers, and more can
be explored to obtain best performance.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

24The Parallel Universe

Intel
Distribution for

Modin

Intel Extension
for Scikit-learn XGBoost Intel Extension

for PyTorch
Intel-optimized

TensorFlow
INT8

quantization

Census 6x 59x - - - -

PLAsTiCC 30x 8x 1x - - -

Predictive Analytics for
Industrial IoT

4.8x 113x - - - -

Document Level
Sentiment Analysis

- - - 4.15x - 3.90x

E2E Deep Interest
Evolution Network

23.2x - - - 9.82x -

Video Streamer - - - - 1.36x 3.64x

Anomaly Detection 1.12x 3.4x - 1.8x - -

Face Recognition - - - - 1.7x -

Table 2. Performance improvement from software optimizations and quantization
for E2E AI applications.

Figure 11. E2E AI application performance speedup.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

25The Parallel Universe

Configuration: Performance measured on a single-node, dual-socket 3rd Generation Intel Xeon Scalable 8380 processor (except DIEN and
DLSA), 40 cores per socket. DIEN and DLSA were measured on 3rd Generation Intel Xeon Scalable 6348 processors, turbo mode enabled,
hyperthreading disabled, BIOS: SE5C620.86B.01.01.0003.2104260124, kernel: 5.13.0-28-generic, OS: Ubuntu 21.10, 512GB memory (16
slots/32GB DIMMs/3200MHz), Intel 480GB SSD OS Drive.

Anomaly Detection: Python 3.7.11, torch 1.11.0, torchvision 0.11.3, PyTorch 1.10, numpy 1.22.1, pandas 1.3.5, scikit-learn-intelex 2021.4.0;
Face Recognition: Python 3.7.9, TensorFlow 2.8.0, numpy 1.22.2, opencv-python 4.5.3.56, ffmpy 0.3.0; Video Streamer: Python 3.8.12,
TensorFlow 2.8.0, opencv-python 4.5.2.54, pillow 8.3.1, gstreamer1.0, vdms 0.0.16; DLSA offline Inf: Python 3.7.11, PyTorch 1.10, HuggingFace
Transformer:4.6.1; E2E DIEN: Python 3.8.10, Modin 0.12.0, TensorFlow 2.8.0, numpy 1.22.2; Census: Python 3.9.7, Modin 0.12.0, scikit-learn-
intelex 2021.4.0; PLAsTiCC: Python 3.9.7, Modin 0.12.0, scikit-learn-intelex 2021.4.0, XGBoost 1.5.0; Predictive Analytics for Industrial IoT:

Python 3.9.7, Modin 0.12.0, scikit-learn-intelex 2021.4.0.

In conclusion, as a result of cumulative optimization strategies across software, system, hardware, model-
building, and hyperparameters, we achieve 1.8x to 81.7x speedup in E2E performance on Intel Xeon
processors.

References
1. Census workload oneAPI sample code, Intel® oneAPI AI Analytics Toolkit: https://github.com/oneapi-src/

oneAPI-samples/tree/master/AI-and-Analytics/End-to-end-Workloads/Census

2. Intel Distribution of Modin: https://www.intel.com/content/www/us/en/developer/tools/oneapi/
distribution-of-modin.html

3. Getting Started with Intel Extension for Scikit-learn: https://www.intel.com/content/www/us/en/
developer/articles/guide/intel-extension-for-scikit-learn-getting-started.html

4. Intel Extension for PyTorch: https://www.intel.com/content/www/us/en/developer/articles/guide/getting-
started-with-intel-optimization-of-pytorch.html

5. Maximize TensorFlow Performance on CPU: https://www.intel.com/content/www/us/en/developer/
articles/technical/maximize-tensorflow-performance-on-cpu-considerations-and-recommendations-for-
inference.html

6. Optimizing Artificial Intelligence Applications: Better AI Performance with Hyperparameter Tuning and
Optimized Software: https://medium.com/intel-analytics-software/optimizing-artificial-intelligence-
applications-1bc22b5d707b

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/End-to-end-Workloads/Census
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/End-to-end-Workloads/Census
https://www.intel.com/content/www/us/en/developer/tools/oneapi/distribution-of-modin.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/distribution-of-modin.html
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-extension-for-scikit-learn-getting-started.html
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-extension-for-scikit-learn-getting-started.html
https://www.intel.com/content/www/us/en/developer/articles/guide/getting-started-with-intel-optimization-of-pytorch.html
https://www.intel.com/content/www/us/en/developer/articles/guide/getting-started-with-intel-optimization-of-pytorch.html
https://www.intel.com/content/www/us/en/developer/articles/technical/maximize-tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference.html
https://www.intel.com/content/www/us/en/developer/articles/technical/maximize-tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference.html
https://www.intel.com/content/www/us/en/developer/articles/technical/maximize-tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference.html
https://medium.com/intel-analytics-software/optimizing-artificial-intelligence-applications-1bc22b5d707b
https://medium.com/intel-analytics-software/optimizing-artificial-intelligence-applications-1bc22b5d707b

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

26The Parallel Universe

Data scientists are always looking for ways to boost their AI application performance. Using optimized
machine learning software instead of stock packages is an easy way to do this. Tuning model
hyperparameters using an AutoML-based platform like SigOpt is another. I will demonstrate the
performance possibilities using the PLAsTiCC Classification Challenge from Kaggle.

PLAsTiCC is an open data challenge to classify objects in the sky that vary in brightness. It uses simulated
astronomical time-series data in preparation for observations that will come from the Large Synoptic
Survey Telescope being set up in northern Chile. The challenge is to determine the probability that each
object belongs to one of 14 classes of astronomical filters, scaling from a small training set (1.4 million
rows) to a very large test set (189 million rows).

Vrushabh Sanghavi, Senior Deep Learning Software Engineer, Intel Corporation

Better AI Performance with Hyperparameter Tuning
and Optimized Software

Optimizing Artificial
Intelligence Applications

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://sigopt.com/
https://www.kaggle.com/c/PLAsTiCC-2018/overview

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

27The Parallel Universe

The code can be divided into three distinct phases:

1. Readcsv: Loading the CSV-format training and testing data and their corresponding metadata into
pandas dataframes.

2. ETL: Manipulating, transforming, and processing the dataframes for input to the training algorithm.

3. ML: Using the histogram tree method from the XGBoost library to train the classification model. The
model is cross-validated, and the trained model is used to classify objects in the massive test set.

The chart below shows stock and optimized software that is used for each of these phases plus SigOpt
for hyperparameter tuning:

The Intel® Distribution for Modin* is used to improve Readcsv and ETL performance. This parallel and
distributed dataframe library uses the pandas API. It allows you to significantly improve the performance
of dataframe operations just by changing a single line of code. To improve PLAsTiCC ML performance,
the XGBoost Optimized for Intel® Architecture package is upstreamed to the main branch. This can be
obtained by simply installing the latest version of XGBoost. (See Distributed XGBoost with Modin on Ray.)

The bar chart below shows the speed-ups obtained using the optimized software stack (shown in blue)
over the stock software (shown in orange) in each PLAsTiCC phase. A massive 18x end-to-end speedup
is achieved by using the optimized software. Intel Distribution for Modin performs lightweight, robust
dataframe and Readcsv operations and scales efficiently with the number of cores, unlike pandas. The
XGBoost kernels are optimized for cache efficiency, remote memory latency, memory access patterns
on Intel® architectures, and optimally uses its higher processor frequencies, cache size, and cache
bandwidth.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/developer/tools/oneapi/distribution-of-modin.html#gs.kyhxtr
https://xgboost.readthedocs.io/en/latest/install.html
https://medium.com/intel-analytics-software/distributed-xgboost-with-modin-on-ray-fc17edef7720

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

28The Parallel Universe

We can improve the end-to-end workload performance even further by tuning the hyperparameters in
the machine learning model. SigOpt is a model-development platform that provides an easy way to do
this. It tracks training experiments, provides tools to visualize the training, and scales hyperparameter
optimization for any type of model.

SigOpt finds the best parameter values for the model and provides the global optimum for the defined
metric within the optimization loop. In the case of PLAsTiCC, accuracy and timing are the metrics to be
optimized, while the model hyperparameters (like the number of parallel threads for XGBoost, number of
trees, learning rate, max depth, L1/L2 normalization, etc.) are the parameters that need to be computed
in order to achieve the objective. A minimum number of observations need to be run to find the global
maximum or minimum of the objective function, and convergence mostly occurs when the number of
experiments is set to 10–20 times the number of parameters in the experiment.

This following table shows the default model parameters and the tuned parameters as computed by the
SigOpt autoML experiments:

It’s easy to see that manually tuning and running through all these permutations would be almost
impossible, whereas SigOpt can do it in a few hours. The log loss and validation loss for the model does
not increase, which means that these improvements were achieved without compromising or affecting
model accuracy.

The previous chart is replotted below to show the additional 5.4x ML performance improvement due to
SigOpt hyperparameter tuning, which gives a 1.5x overall improvement.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

29The Parallel Universe

These steps performed over a typical end-to-end pipeline show the significant performance
improvement that can be achieved on an AI workload using a variety of Intel-optimized software
packages, libraries, and optimization tools. (See Performance Optimizations for End-to-End AI Pipelines.)

Hardware and Software Configurations
Hardware: 2 Intel® Xeon® Platinum 8280L processors (28 cores), OS: Ubuntu 20.04.1 LTS Mitigated, 384
GB RAM (384 GB RAM: 12 x 32 GB 2933 MHz), kernel: 5.4.0–65-generic, microcode: 0x4003003, CPU
governor: performance. Software: scikit-learn 0.24.1, pandas 1.2.2, XGBoost 1.3.3, Python 3.9.7, scikit-
learn-intelex 2021.2, modin 0.8.3, omniscidbe v5.4.1.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://medium.com/intel-analytics-software/performance-optimizations-for-end-to-end-ai-pipelines-231e0966505a

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

30The Parallel Universe

SYCL 2020 is an exciting update for C++ programmers looking to take advantage of accelerators. We
have both had the pleasure of contributing to the SYCL specification, a book on SYCL, and the DPC++
open source project to implement SYCL into LLVM. We would like to share our pick for our favorite new
features added to SYCL in the SYCL 2020 specification. We offer these as our opinions as Intel engineers,
not on behalf of Khronos.

SYCL
SYCL is a Khronos standard that brings support for heterogeneous programming to C++. The SYCL 2020
specification was finalized in late 2020, and compiler support has been growing ever since. (See the
Khronos website for information on implementations.)

James Brodman, Principal Engineer, and John Pennycook, Software Enabling and
Optimization Architect, Intel Corporation

The SYCL Programming Language Is Evolving

Five Outstanding Additions
Found in SYCL 2020

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
http://link.springer.com/book/10.1007/978-1-4842-5574-2
https://intel.github.io/llvm-docs/GetStartedGuide.html
https://intel.github.io/llvm-docs/GetStartedGuide.html
http://www.khronos.org/registry/SYCL/
https://www.khronos.org/sycl/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

31The Parallel Universe

The case for SYCL is articulated in many places, including Considering a Heterogeneous Future for
C++ and numerous other resources enumerated on sycl.tech. Put simply, SYCL addresses a key
challenge: How do we enable heterogeneous programming in C++, with portability across vendors and
architectures?

Thanks to strong community input, SYCL 2020 has exciting new features to serve the goal of being
strongly multivendor and multiarchitecture. In this article, we discuss the functionality of and motivation
for these new features.

The Outstanding Five
A key goal of SYCL 2020 is to align SYCL with ISO C++, which has two benefits. First, it ensures that SYCL
feels natural to C++ programmers. Second, it allows SYCL to act as a proving ground for multivendor,
multiarchitecture solutions to heterogeneous programming that may inform other C++ libraries (and
perhaps ISO C++ itself).

Many of the syntactic changes in SYCL 2020 are a result of updating the base language from C++11 to
C++17, enabling developers to take advantage of features such as class template argument deduction
(CTAD) and deduction guides. But there are many new features, too! In this article, we choose to highlight
five features new in SYCL 2020 and talk a little about why they matter.

1. Backends open the door for SYCL implementations built on other languages/frameworks besides
OpenCL, enabling SYCL to target a wider variety of hardware.

2. Unified shared memory (USM) is a pointer-based access model, which serves as an alternative to the
buffer/accessor model from SYCL 1.2.1.

3. Reductions are a common programming pattern, which SYCL 2020 accelerates via a “built-in” library.

4. The group library provides abstractions for cooperative work items, yielding additional application
performance and programmer productivity through alignment with underlying hardware capabilities
(regardless of vendor).

5. Atomic references aligned with the C++20 std::atomic_ref extend the C++ memory model to
heterogeneous devices.

Together, these additions help to establish the SYCL ecosystem as one that is open, multivendor, and
multiarchitecture, enabling C++ programmers to fully utilize the potential of heterogeneous computing
now and into the future.

1. Backends
With the introduction of backends, SYCL 2020 opens the door to implementations built on other
languages/frameworks besides OpenCL. Consequently, the namespace has shortened to just sycl::,
rather than cl::sycl::, and the SYCL header file has moved from <CL/sycl.hpp> to
<sycl/sycl.hpp>.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.hpcwire.com/2021/12/08/solving-heterogeneous-programming-challenges-with-sycl/
https://www.hpcwire.com/2021/12/08/solving-heterogeneous-programming-challenges-with-sycl/
https://sycl.tech/
https://en.cppreference.com/w/cpp/language/class_template_argument_deduction

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

32The Parallel Universe

The changes here are not simply cosmetic and have profound implications for SYCL. Although
implementations are still free to build atop OpenCL (and many do), support for generic backends has
transformed SYCL into a programming model that can target a larger variety of heterogeneous APIs
and hardware. SYCL is now able to act as the “glue” between C++ applications and vendor-specific
libraries, allowing developers to target a range of platforms more easily — and without having to change
their code.

SYCL 2020 delivers on being truly open, cross-architecture, and cross-vendor.

The open source DPC++ compiler project, which is implementing SYCL 2020 in LLVM (clang), takes
advantage of this new flexibility to support NVIDIA, AMD, and Intel® GPUs. SYCL 2020 delivers on being
truly open, cross-architecture, and cross-vendor (Figure 1).

2. Unified Shared Memory
Some devices can support a unified view of memory with the host (CPU). SYCL 2020 calls this unified
shared memory (USM), and it enables a pointer-based access model that serves as an alternative to the
buffer/accessor model from SYCL 1.2.1.

Programming with USM has two key advantages. First, USM supplies a single, unified address space
across host and device; pointers to USM allocations are consistent across devices and can be directly
passed to kernels as arguments. This greatly simplifies the porting of existing pointer-based C++ and

Figure 1. SYCL implementations targeting multiple backends, from https://www.khronos.org/sycl/.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://intel.github.io/llvm-docs/GetStartedGuide.html
https://www.khronos.org/sycl/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

33The Parallel Universe

CUDA code to SYCL. Second, USM enables shared allocations that migrate automatically across devices,
improving programmer productivity and providing compatibility with C++ containers (e.g., std::vector)
and C++ algorithms (via oneDPL, Figure 2).

sycl::usm_allocator<int, sycl::usm::alloc::shared> alloc(q.get_context(),
 q.get_device());
std::vector<int, decltype(alloc)> vec(n, alloc);

auto policy = oneapi::dpl::execution::make_device_policy(q);
std::fill(policy, vec.begin(), vec.end(), 0);

The three different types of USM allocations provide programmers with as much or as little control over
data movement as desired. Device allocations give programmers complete control over data movement
in their applications. Host allocations are useful when data is used so infrequently that moving it is
not worth the cost, or when the size of your data exceeds the memory of a device. Shared allocations
are a happy medium that can automatically migrate to where they are being used, benefitting both
performance and productivity.

3. Reductions
The SYCL 2020 approach to reductions was informed by other C++ reduction solutions, including the
proposal in P0075 and the features implemented by the Kokkos and RAJA libraries.

Using the reducer class and the reduction function greatly simplifies the expression of variables with
reduction semantics in SYCL kernels. It also gives implementations the freedom to employ compile-time
specialization of reduction algorithms, providing high performance on a wide range of devices from many
vendors.

For a real-life example of the improvements offered by SYCL 2020 reductions, we need look no further
than the popular BabelStream benchmark, developed by the University of Bristol. BabelStream includes
a simple dot product kernel that computes a floating-point summation across all work items in a
kernel. The SYCL 1.2.1 version is 43 lines long, uses a specific algorithm (a tree reduction in work-group
local memory), and requires the user to select the best work-group size for the device (Figure 3). Not
only is the SYCL 2020 version shorter (at only 20 lines long), but it also has the potential to be more
performance portable by leaving the selection of algorithm and work-group size to the implementation
(Figure 4).

Figure 2. Using USM with C++ containers and algorithms, from our book examples.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-library-guide/top.html
http://wg21.link/P0075
https://github.com/kokkos
https://github.com/LLNL/RAJA
https://github.com/UoB-HPC/BabelStream
https://github.com/UoB-HPC/BabelStream/blob/main/src/sycl/SYCLStream.cpp#L176-L219
https://github.com/UoB-HPC/BabelStream/blob/main/src/sycl2020/SYCLStream2020.cpp#L157-L181
https://github.com/Apress/data-parallel-CPP/blob/4252dec354b4f8fdf74d837af082c76017bf216f/samples/Ch18_using_libs/fig_18_15_pstl_usm.cpp

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

34The Parallel Universe

template <class T>
T SYCLStream<T>::dot()
{
 queue->submit([&](handler &cgh)
 {
 auto ka = d_a->template get_access<access::mode::read>(cgh);
 auto kb = d_b->template get_access<access::mode::read>(cgh);
 auto ksum = d_sum->template get_access<access::mode::write>(cgh);

 auto wg_sum = accessor<T, 1, access::mode::read_write,
access::target::local>(range<1>(dot_wgsize), cgh);

 size_t N = array_size;
 cgh.parallel_for<dot_kernel>(nd_range<1>(dot_num_groups*dot_wgsize, dot_wgsize),
[=](nd_item<1> item)
 {
 size_t i = item.get_global_id(0);
 size_t li = item.get_local_id(0);
 size_t global_size = item.get_global_range()[0];

 wg_sum[li] = 0.0;
 for (; i < N; i += global_size)
 wg_sum[li] += ka[i] * kb[i];

 size_t local_size = item.get_local_range()[0];
 for (int offset = local_size / 2; offset > 0; offset /= 2)
 {
 item.barrier(cl::sycl::access::fence_space::local_space);
 if (li < offset)
 wg_sum[li] += wg_sum[li + offset];
 }

 if (li == 0)
 ksum[item.get_group(0)] = wg_sum[0];
 });
 });

 T sum = 0.0;
 auto h_sum = d_sum->template get_access<access::mode::read>();
 for (int i = 0; i < dot_num_groups; i++)
 {
 sum += h_sum[i];
 }

 return sum;
}

Figure 3. SYCL 1.2.1 version of BabelStream's dot product kernel.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

35The Parallel Universe

template <class T>
T SYCLStream<T>::dot()
{
 queue->submit([&](sycl::handler &cgh)
 {
 sycl::accessor ka {d_a, cgh, sycl::read_only};
 sycl::accessor kb {d_b, cgh, sycl::read_only};

 cgh.parallel_for(sycl::range<1>{array_size},
 sycl::reduction(d_sum, cgh, std::plus<T>(),
sycl::property::reduction::initialize_to_identity{}),
 [=](sycl::id<1> idx, auto& sum)
 {
 sum += ka[idx] * kb[idx];
 });
 });

 sycl::host_accessor result {d_sum, sycl::read_only};
 return result[0];
}

4. Group Library
SYCL 2020 expands on the work-group abstraction from SYCL 1.2.1 with a new sub-group abstraction
and a library of group-based algorithms.

The sub_group class represents the set of cooperative work items within a kernel that are running
”together,” providing a portable abstraction for the underlying hardware capabilities of different vendors.
In the DPC++ compiler, sub-groups always map to an important hardware concept — SIMD vectorization
on Intel® architectures, “warps” on NVIDIA architectures, and “wavefronts” on AMD architectures — and
enable low-level performance tuning for SYCL applications.

In another example of close alignment with ISO C++, SYCL 2020 introduces a selection of group-based
algorithms based on the C++17 algorithms: all_of, any_of, none_of, reduce, exclusive_scan
and inclusive_scan. Each algorithm is supported at different scopes, enabling SYCL implementations
to provide highly tuned, cooperative versions of these functions using work-group and/or sub-group
parallelism.

The group library in SYCL 2020 lays the groundwork for more group types and a wider range of group-
based algorithms — watch this space!

Figure 4. SYCL 2020 version of BabelStream's dot product kernel.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

36The Parallel Universe

5. Atomic References
C++20 took a big step forward with its atomics, introducing the ability to wrap types in an atomic
reference (std::atomic_ref). SYCL 2020 adopts and extends this design (as sycl::atomic_ref)
with support for address spaces and memory scopes, resulting in an atomic reference implementation
fully prepared for the diverse world of heterogeneous computing.

SYCL does not deviate from ISO C++ lightly, and the concept of memory scopes was considered essential
for enabling portable programming without sacrificing performance. Heterogeneous systems have
complex memory hierarchies that shouldn't be ignored (Figure 5).

Memory models and atomics are complex beasts and so, in order to support as many devices as
possible, SYCL does not require all devices to support the full C++ memory model. Rather, SYCL provides
a rich array of different device capabilities — another great example of being open to devices from any
vendor.

Figure 5. Using memory scopes enables atomic references to specify which memory must be
made consistent, providing fine-grain control over which work-items and devices can "see"

memory updates.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

37The Parallel Universe

Beyond SYCL 2020: Vendor Extensions
SYCL 2020's expanded support for more backends and hardware has encouraged the development of
more vendor extensions. These extensions enable innovation that offers practical solutions today for
devices that need it and informs the direction of future SYCL standards. Extensions are an important
part of the standardization process — several features highlighted in this article were informed in part by
extensions explored by the DPC++ compiler project.

In this section, we’ll briefly describe two new features supported in the DPC++ compiler project as SYCL
2020 vendor extensions.

Group-local Memory at Kernel Scope
SYCL 1.2.1 supports group-local memory via local accessors, which must be declared outside of a kernel
and captured as a kernel argument. For programmers coming from languages like OpenCL or CUDA, this
can feel unnatural, and so we have designed an extension that allows group-local memory to be declared
inside of a kernel function. This change makes kernels more self-contained and can inform compiler
optimizations (when the amount of local memory is known at compile-time).

FPGA-specific Extensions
We’ve enabled Intel® FPGAs in the DPC++ compiler project. We think our extensions, or something close
to them, can prove portable to FPGAs from all vendors as well. FPGAs fill an important segment of the
accelerator spectrum, and we hope our pioneering work will inform future SYCL standards with our
experiences along with other extension projects from other vendors.

We added FPGA selectors that make it easy to specifically acquire an FPGA hardware or FPGA emulation
device. The latter enables fast prototyping, a critical consideration for software developers when
targeting FPGAs. FPGA LSU controls give us tuning controls for FPGA load/store operations — we can
explicitly request that the implementation of a global memory access is configured in a certain way. We
added placement controls for data with external memory banks (e.g., DDR channel) for tuning FPGA
designs via FPGA memory channel. Key tuning controls for FPGA high performance pipelining are
enabled with FPGA register.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/supported/sycl_ext_oneapi_local_memory.asciidoc

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

38The Parallel Universe

Summary
Heterogeneity is here to stay. There is an increasing diversity of hardware options available, with many
specializing in the pursuit of higher performance and performance-per-watt. This is a trend that will only
increase the need for open, multivendor, and multiarchitecture programming models like SYCL.

We highlighted five new features in SYCL 2020 that help to fulfill its mission to enable portability and
performance portability. With SYCL 2020, C++ programmers can fully use the potential of heterogeneous
computing.

We invite you to sycl.tech to learn more. There you will find numerous online tutorials, a link for our SYCL
book (available as a free PDF), and a link to the latest SYCL specification.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://sycl.tech/
https://link.springer.com/book/10.1007/978-1-4842-5574-2
https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

39The Parallel Universe

Implement the Fourier Correlation Algorithm Using oneAPI (The Parallel Universe, Issue 44) showed how
to compute the 1D cross-correlation of two signals using a combination of SYCL and oneMKL functions.
The present article looks at 2D cross-correlation to find the best overlap of two similar images (Figure
1). In addition to illustrating a 2D use case, this article expands on the previous work by comparing two
approaches to write once, run anywhere heterogeneous parallelism: oneAPI and ArrayFire. [Editor’s
note: Readers may be interested in ArrayFire Interoperability with oneAPI, Libraries, and OpenCL (The
Parallel Universe, Issue 47)].

Henry A Gabb, Senior Principal Engineer and Editor-in-Chief of The Parallel Universe,
Intel Corporation
Umar Arshad, Software Engineer, ArrayFire

A Side-by-Side Look at the ArrayFire and oneAPI
Abstractions for Heterogeneous Parallelism

Accelerating the 2D Fourier
Correlation Algorithm with
ArrayFire and oneAPI

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/developer/articles/technical/implement-the-fourier-correlation-algorithm-oneapi.html#gs.k2z0p6
https://www.oneapi.io/
https://arrayfire.com/
https://www.intel.com/content/www/us/en/developer/articles/technical/inference-with-arrayfire-and-oneapi.html#gs.qh8gdi

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

40The Parallel Universe

The brute force summation shown in Figure 1 is inefficient and possibly infeasible for large problems, so
like the previous 1D example, the 2D cross-correlation will also take advantage of the Fourier correlation
algorithm to significantly reduce the computational complexity (Figure 2). The 2D Fourier correlation is
implemented using both approaches, and the codes are shown side-by-side to illustrate their differences
and relative strengths.

Figure 1. Finding the optimal alignment of two images (represented as binary, square matrices),
where (α, β) is the displacement of img2 relative to img1. Note that the second image is circularly

shifted when computing the correlation.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

41The Parallel Universe

The 2D oneAPI implementation also illustrates differences and improvements over the previous 1D
implementation. First, multidimensional Fourier transforms in oneMKL must account for data layout in
the real and complex domains. This is demonstrated in the oneAPI examples below. Second, the 1D
implementation used a MAXLOC reduction operator written in SYCL. The 2D implementation replaces
this code with standard functions from the oneAPI DPC++ Library (oneDPL). This makes the code clearer
and much more succinct.

Implementing the Fourier Correlation Algorithm
Ideally, the entire computation should be performed on the device once the images are loaded into the
device memory. Only the final displacement (two scalars in the 2D correlation) is needed by the host. Any
other host-device data transfer is unnecessary, and will hurt performance, especially if the images are
large.

Figure 2. The Fourier correlation algorithm in four steps. DFT is the discrete Fourier transform, IDFT
is the inverse DFT, CONJG is the complex conjugate, and MAXLOC is the location of the maximum

correlation score.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://spec.oneapi.io/versions/latest/elements/oneDPL/source/index.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

42The Parallel Universe

Accelerator Offload with ArrayFire
It is easy to implement the Fourier correlation algorithm in ArrayFire because each step in Figure 2
practically maps to a single statement (Figure 3). Even without the comments, this code should be
readable by programmers familiar with C++ or MATLAB, Fortran, and NumPy array notation. There are no
explicit loops in this code, and there is no explicit host-device data transfer or device offload. The coding
abstraction is implicitly data parallel, so these details are handled by the ArrayFire runtime library.

#include <iostream>
#include <arrayfire.h>

int main(int argc, char **argv)
{
 // Select a device and display ArrayFire info
 af::setDevice(0);
 af::info();

 // Allocate and initialize 2D image array (Note: ArrayFire is column-major.)
 unsigned int n_rows = 8, n_cols = 8;

 auto img1 = af::constant(0.0, n_rows, n_cols, af::dtype::f32);
 auto img2 = af::constant(0.0, n_rows, n_cols, af::dtype::f32);
 auto corr = af::constant(0.0, n_rows, n_cols, af::dtype::f32);

 img1(af::seq(4, 5), af::seq(5, 6)) = 1.0f; // Set elements in the lower right of the first image
 img2(af::seq(1, 2), af::seq(1, 2)) = 1.0f; // Set elements in the upper left of the second image

 // Step 1: Compute DFT(img1) and DFT(img2)
 img1 = af::fftR2C<2>(img1, 0.0);
 img2 = af::fftR2C<2>(img2, 0.0);

 // Step 2: Compute DFT(img1) * CONJG(DFT(img2))
 corr = img1 * af::conjg(img2);

 // Step 3: Perform inverse DFT
 corr = af::fftC2R<2>(corr, 0.0);

 // Step 4: Find the optimal displacement of img2 relative to img1
 af::array max_score, shift;
 af::max(max_score, shift, af::flat(corr));

 auto max_corr = max_score.scalar<float>();
 auto s = shift.scalar<unsigned>();
 int x_shift = s / n_cols;
 int y_shift = s % n_rows;

 std::cout << std::endl << "Shift the second image (x, y) = (" << x_shift << ", " << y_shift
 << ") elements relative to the first image to get a maximum," << std::endl
 << "normalized correlation score of " << max_corr
 << ". Treat the images as circularly shifted versions of each other." << std::endl;
}

Figure 3. Fourier correlation algorithm implemented using ArrayFire.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.mathworks.com/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

43The Parallel Universe

Most ArrayFire functions are asynchronous, so the caller proceeds without waiting for the function to
return. Function calls are added to an internal, in-order device queue. However, explicit synchronization
can be used to wait until the queue is empty. For example:

The sync statement forces the caller to wait until the two forward transforms are finished.

ArrayFire also does lazy evaluation of some computations. In this case, it stores the order of instructions,
but it does not submit work to the device queue until the result is needed. Only then will a kernel
be generated and added to the queue. The multiply-by-conjugate statement is an example of lazy
evaluation:

The eval statement forces a kernel to be created and added to the queue. The sync statement forces
the caller to wait until the multiply-by-conjugate operation is finished.

Accelerator Offload with oneAPI
Implementing a 1D Fourier correlation using oneAPI has been demonstrated in a previous article and
webinar. The principles are the same for the 2D case, so rather than explain each step of the oneAPI
implementation, this section will compare the oneAPI and ArrayFire code and highlight differences
between these two approaches to heterogeneous parallelism.

Initializing the Images on the Device
Data movement between the host CPU and various accelerator devices is an important consideration
in heterogeneous parallel programming. If some steps of an algorithm are performed on the host and
others on the device, back-and-forth data transfer could limit the performance benefit of accelerator
offload. Fortunately, each step of the Fourier correlation algorithm can be done on the device. Once the
images are transferred to the device memory, they do not need to be transferred back to the host.

The ArrayFire and SYCL code to initialize the data on the device is shown in Figure 4. The same artificial
images from Figure 1 are used for the sake of simplicity. After setting the offload device, the ArrayFire
code initializes the data using convenience functions and array syntax (Figure 4, left). Likewise, the
oneAPI code initializes a SYCL queue for the default device, allocates sufficient space in the unified
shared memory for an in-place, real-to-complex transform, and defines the data layout (Figure 4,
right). (Describing the data layout for multidimensional DFTs is beyond the scope of this article, but

 // Step 1: Compute DFT(img1) and DFT(img2)
 img1 = af::fftR2C<2>(img1, 0.0);
 img2 = af::fftR2C<2>(img2, 0.0);
 af::sync();

 // Step 2: Compute DFT(img1) * CONJG(DFT(img2))
 corr = img1 * af::conjg(img2);
 corr.eval();
 af::sync();

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/developer/articles/technical/implement-the-fourier-correlation-algorithm-oneapi.html#gs.k0dpw1
https://www.intel.com/content/www/us/en/developer/videos/implement-the-fourier-correlation-algorithm.html#gs.k0df52

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

44The Parallel Universe

the FFTW documentation provides a good overview.) The SYCL code performs the initialization on the
device by submitting work to the SYCL queue (that is, the parallel_for and single_task kernels).
SYCL queues are asynchronous, so these kernels are explicitly told to wait for the work to finish before
proceeding.

af::setDevice(0);

auto img1 = af::constant(0.0,
 n_rows,
 n_cols,
 af::dtype::f32);
auto img2 = af::constant(0.0,
 n_rows,
 n_cols,
 af::dtype::f32);
auto corr = af::constant(0.0,
 n_rows,
 n_cols,
 af::dtype::f32);

img1(af::seq(4, 5), af::seq(5, 6)) = 1.0f;
img2(af::seq(1, 2), af::seq(1, 2)) = 1.0f;

// Initialize SYCL queue
sycl::queue Q(sycl::default_selector{});

// Allocate 2D image and correlation arrays
auto img1 = sycl::malloc_shared<float>(n_rows*n_cols*2+2, Q);
auto img2 = sycl::malloc_shared<float>(n_rows*n_cols*2+2, Q);
auto corr = sycl::malloc_shared<float>(n_rows*n_cols*2+2, Q);

// Set generalized strides for row-major addressing
int r_stride = 1;
int c_stride = (n_cols / 2 + 1) * 2;
int c_stride_h = (n_cols / 2 + 1);

// Initialize input images with artificial data.
// Do initialization on the device.
Q.parallel_for<>(sycl::range<2>{n_rows, n_cols},
 [=](sycl::id<2> idx)
{
 unsigned int r = idx[0];
 unsigned int c = idx[1];
 img1[r * c_stride + c * r_stride] = 0.0;
 img2[r * c_stride + c * r_stride] = 0.0;
 corr[r * c_stride + c * r_stride] = 0.0;
}).wait();

Q.single_task<>([=]()
{
 // Set elements in lower right of the first image
 img1[4 * c_stride + 5 * r_stride] = 1.0;
 img1[4 * c_stride + 6 * r_stride] = 1.0;
 img1[5 * c_stride + 5 * r_stride] = 1.0;
 img1[5 * c_stride + 6 * r_stride] = 1.0;

 // Set elements in upper left of the second image
 img2[1 * c_stride + 1 * r_stride] = 1.0;
 img2[1 * c_stride + 2 * r_stride] = 1.0;
 img2[2 * c_stride + 1 * r_stride] = 1.0;
 img2[2 * c_stride + 2 * r_stride] = 1.0;
}).wait();

Figure 4. Initializing the data on the device using ArrayFire (left) and SYCL (right).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.fftw.org/fftw3_doc/Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

45The Parallel Universe

The host should not modify the data once it is in the device memory because this will trigger
unnecessary host-device transfer. Notice that the image elements are set using a single_task kernel.
Without this kernel, the elements would be set on the host, forcing the oneAPI runtime to make the host
and device data consistent. This could hurt performance if the data is large (e.g., volumetric images from
medical imaging applications).

The ArrayFire code is more compact and intuitive. The oneAPI code is more explicit about where data
is allocated and where and when computation is performed. It is also more consistent with FFTW, the
popular open-source fast Fourier transform package.

Step 1: Performing the Forward Transforms
Once again, the ArrayFire code is simple and intuitive (Figure 5, left). The function call specifies a 2D
real-to-complex (R2C), unnormalized FFT with precision defined by the input data. The oneMKL DFT
descriptor approach (Figure 5, right), while not as compact, is familiar to previous MKL DFTI and FFTW
users. The oneMKL code initializes a descriptor for a single-precision, real-to-complex transform of
the required size and dimensionality, commits this descriptor to the SYCL queue, and then computes
the forward transforms. The compute_forward function returns a SYCL event that is used later for
synchronization.

img1 = af::fftR2C<2>(img1, 0.0);
img2 = af::fftR2C<2>(img2, 0.0);

// Initialize FFT descriptor
oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::SINGLE,
 oneapi::mkl::dft::domain::REAL>
 forward_plan({n_rows, n_cols});

// Data layout in real domain
std::int64_t real_layout[4] = {0, c_stride, 1};

// Data layout in conjugate-even domain
std::int64_t complex_layout[4] = {0, c_stride_h, 1};

forward_plan.set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES,
 real_layout);
forward_plan.set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES,
 complex_layout);
forward_plan.commit(Q);

auto evt1 = oneapi::mkl::dft::compute_forward(forward_plan, img1);
auto evt2 = oneapi::mkl::dft::compute_forward(forward_plan, img2);

Figure 5. Performing the forward transforms (real-to-complex) on the device using ArrayFire (left)
and oneMKL (right).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
http://fftw.org/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

46The Parallel Universe

Step 2: Complex Conjugate Multiplication
ArrayFire and oneMKL use different approaches to perform the multiply-by-conjugate operation.
ArrayFire uses a straightforward array notation (Figure 6, left). The programmer does not have to specify
the device or data layout. oneMKL provides a convenient mulbyconj function (Figure 6, right). The
mulbyconj function is more complex, but it gives the programmer explicit control over the data layout
and where and when the computation runs (i.e., the SYCL queue and events).

corr = img1 * af::conjg(img2); oneapi::mkl::vm::mulbyconj(Q, n_rows * c_stride_h,
 reinterpret_cast<std::complex<float>*>(img1),
 reinterpret_cast<std::complex<float>*>(img2),
 reinterpret_cast<std::complex<float>*>(corr),
 {evt1, evt2}).wait();

Step 3: Performing the Backward Transform
The code for steps 1 and 3 is similar except that only a single complex-to-real transform is performed.
The ArrayFire code (Figure 7, left) calls fftC2R instead of the fftR2C function. The oneMKL code
(Figure 7, right) initializes a new DFT descriptor specifying the complex-to-real data layout.

corr = af::fftC2R<2>(corr, 0.0); oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::SINGLE,
 oneapi::mkl::dft::domain::REAL>
 backward_plan({n_rows, n_cols});

// Data layout in conjugate-even domain
backward_plan.set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES,
 complex_layout);

// Data layout in real domain
backward_plan.set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES,
 real_layout);
backward_plan.commit(Q);

auto bwd = oneapi::mkl::dft::compute_backward(backward_plan, corr);
bwd.wait();

Figure 6. Complex conjugate multiplication using ArrayFire (left) and oneMKL (right).

Figure 7. Performing the backward transforms (complex-to-real) on the device using
ArrayFire (left) and oneMKL (right).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

47The Parallel Universe

Step 4: MAXLOC Reduction
The SYCL MAXLOC reduction operator used in previous experiments added complexity to the code (see
fcorr_1d_usm.cpp). oneDPL provides the same functionality in two functions that will be familiar to
C++ programmers: max_element and distance. The MAXLOC reduction shown in Figure 8 (right) uses
the oneDPL implementations of these functions. The SYCL queue tells max_element where to perform
the computation. It is worth noting that unlike SYCL kernels, oneDPL algorithms are synchronous so
there are no explicit wait statements.

The ArrayFire code (Figure 8, left) is not as straightforward as previous steps. The af::flat function
flattens the 2D corr array, and then the af::max function finds the maximum correlation score and
its location in the flattened array. This location is converted to the x- and y-shift that gives the optimal
alignment of the two images, taking into account that ArrayFire is column-major (as noted in Figure 3).
The oneDPL code (Figure 8, right) performs similar operations, but must take the oneMKL data layout
into account.

af::array max_score, shift;
af::max(max_score, shift, af::flat(corr));

auto max_corr = max_score.scalar<float>();
auto s = shift.scalar<unsigned>();
int x_shift = s / n_cols;
int y_shift = s % n_rows;

auto policy = oneapi::dpl::execution::make_device_policy(Q);
auto maxloc = oneapi::dpl::max_element(policy,
 corr,
 corr + (n_rows * n_cols * 2 + 2));

auto s = oneapi::dpl::distance(corr, maxloc);
float max_corr = corr[s];
int x_shift = s % (n_cols + 2);
int y_shift = s / (n_rows + 2);

Conclusions
The oneAPI and ArrayFire approaches both accomplish the goal of write once, run anywhere
heterogeneous parallelism. Performance is not discussed because the entire 2D Fourier correlation
computation is done in oneAPI or ArrayFire libraries. The separation of concerns between applications
developers and compiler/library developers is a recurring theme in The Parallel Universe. The latter
group is primarily concerned with performance and computing efficiency. The former group is primarily
concerned with solving a problem as productively as possible. If you’re in this group, you probably prefer
high-level programming abstractions that still deliver performance. It’s a reasonable expectation that the
libraries will give good performance.

ArrayFire provides a higher level of abstraction, so the ArrayFire Fourier correlation implementation is
more concise. Its array notation will be familiar to Fortran, MATLAB, and Python NumPy programmers.

Figure 8. Performing the MAXLOC reduction in ArrayFire (left) and oneDPL (right).

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://github.com/oneapi-src/oneAPI-samples/blob/master/Libraries/oneMKL/fourier_correlation/fcorr_1d_usm.cpp
https://en.cppreference.com/w/cpp/algorithm/max_element
https://en.cppreference.com/w/cpp/iterator/distance
https://www.intel.com/content/www/us/en/developer/articles/technical/bridging-the-gap-between-domain-experts-and-tuning-experts.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

48The Parallel Universe

ArrayFire also has a Python API. Lazy evaluation means the runtime controls when computations are
launched, but as noted above, programmers can take control if they want to.

The oneAPI implementation is more verbose because it gives the programmer more control over host-
device data transfer and where and when computations are performed. The oneMKL DFT descriptors
and data layout will be familiar to previous MKL DFTI and FFTW users. In fact, Intel® oneAPI Math Kernel
Library supports the FFTW interface. Finally, oneDPL functions will be familiar to C++ programmers.

Ultimately, project requirements and personal preference will guide the choice between oneAPI and
ArrayFire.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
© Intel Corporation

Break Free
of Code

Boundaries
Experience the power of cross-architecture

programming in the Intel® DevCloud for oneAPI.

Demo
Run our Mandelbrot demo on different architectures to

see cross-architecture performance for yourself.

Learn
Get hands-on experience with Data Parallel C++ with 25

Jupyter notebooks loaded with code samples.

Develop
Plan and test future-ready applications on the latest Intel

CPUs, GPUs, and FPGAs.

GET STARTED NOW >

https://software.intel.com/content/www/us/en/develop/tools/devcloud.html
https://software.intel.com/content/www/us/en/develop/tools/devcloud.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

50The Parallel Universe

What Is the Maxloc Operation?
Finding the location of the maximum value (maxloc) is a common search operation performed on arrays.
It’s such a common operation that many programming languages and libraries provide intrinsic maxloc
functions: the NumPy argmax, Fortran maxloc, BLAS amax, and C++ max_element functions. The recent
article, Optimize the Maxloc Operation Using Intel® AVX-512 Instructions (The Parallel Universe, Issue 46),
explained how to vectorize maxloc searches for best performance. Obviously, it’s an important operation
in many algorithms, including cross-correlation (Figure 1).

Henry A Gabb, Senior Principal Engineer and Editor-in-Chief of The Parallel Universe;
Alexey Kukanov, Principal Middleware Engineer; and John Pennycook, Software Enabling
and Optimization Architect, Intel Corporation

Implementing This Common Parallel Pattern in
SYCL and oneDPL

The Maxloc Reduction
in oneAPI

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://numpy.org/doc/stable/reference/generated/numpy.argmax.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/m-to-n/maxloc.html
http://www.netlib.org/blas/
https://en.cppreference.com/w/cpp/algorithm/max_element
https://www.intel.com/content/www/us/en/developer/articles/technical/optimizing-maxloc-operation-using-avx-512-vector-instructions.html#gs.l3zaml

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

51The Parallel Universe

The previous article, Implement the Fourier Correlation Algorithm Using oneAPI (The Parallel Universe,
Issue 44), showed how to compute the 1D cross-correlation of two signals using a combination of
SYCL and oneMKL functions, but the final maxloc step was ommitted (Figure 2). Steps 1 through
3 were offloaded to the accelerator device, but step 4 was computed on the host CPU. This means
that the final correlation array had to be transferred back to the host. Ideally, the entire computation
should be performed on the device once the signals are loaded into the device memory. Only the final
displacement (a single scalar in the 1D correlation) is needed by the host. Any other host-device data
transfer is unnecessary and could hurt performance. Therefore, we've been experimenting with different
ways to perform maxloc on the device, which is the subject of the present article.

Figure 1. Finding the displacement that gives the maximum overlap of two discrete signals
(represented as binary arrays), where α is the number of elements by which sig2 is shifted

relative to sig1. Note that the second signal is circularly shifted when computing the correlation.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/developer/articles/technical/implement-the-fourier-correlation-algorithm-oneapi.html#gs.k2z0p6

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

52The Parallel Universe

Reduction Operators in SYCL*

Reduction is a common parallel pattern that reduces several values to a single value. For example, a
summation reduction adds the values in an array to get a single sum. Finding the minimum or maximum
value in an array, or the locations of those values, are also reduction operations. SYCL* provides a built-in
reduction operator that can be used in parallel kernels (Figure 3).

Figure 2. The maxloc reduction is the last step of the Fourier correlation algorithm. DFT is
the discrete Fourier transform, IDFT is the inverse DFT, CONJG is the complex conjugate, and

MAXLOC is the location of the maximum correlation score.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

53The Parallel Universe

It is possible to implement other operators, like maxloc, using the SYCL reduction class (Figure 4). This
code was adapted from the minloc example in Data Parallel C++: Mastering DPC++ for Programming of
Heterogeneous Systems Using C++ and SYCL (Chapter 14, Common Reduction Patterns, pp. 334–339).
Note that SYCL queues are asynchronous, so the wait statement ensures that the computation is finished
before proceeding.

#include <CL/sycl.hpp>
#include <iostream>

int main() {

 sycl::queue Q;
 std::cout << "Running on: " << Q.get_device().get_info<sycl::info::device::name>() << std::endl;

 int sum;
 std::vector<int> data{1, 1, 1, 1, 1, 1, 1, 1};

 sycl::buffer<int> sum_buf(&sum, 1);
 sycl::buffer<int> data_buf(data);

 Q.submit([&](sycl::handler& h)
 {
 sycl::accessor buf_acc{data_buf, h, read_only};

 h.parallel_for(sycl::range<1>{8},
 sycl::reduction(sum_buf, h, std::plus<>()),
 [=](sycl::id<1> idx, auto& sum)
 {
 sum += buf_acc[idx];
 });
 });
 sycl::host_accessor result{sum_buf, read_only};
 std::cout << "Sum equals " << result[0] << std::endl;

 return 0;
}

Figure 3. Example of summation reduction in SYCL.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://link.springer.com/book/10.1007/978-1-4842-5574-2
https://link.springer.com/book/10.1007/978-1-4842-5574-2
https://link.springer.com/chapter/10.1007/978-1-4842-5574-2_14

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

54The Parallel Universe

This example is a straightforward use of the SYCL reduction class, but there are ways to tune for the
underlying architecture. The previous articles, Reduction Operations in Data Parallel C++ (The Parallel
Universe, Issue 44) and Analyzing the Performance of Reduction Operations in DPC++ (The Parallel
Universe, Issue 45), give examples of different implementations and their performance characteristics.
With the built-in reduction operator, however, compiler and library developers bear the optimization
burden. Application developers can reasonably expect that the built-in implementation will deliver good
performance on the target CPU or accelerator.

#include <iostream>
#include <CL/sycl.hpp>

template <typename T, typename I>
using maxloc = sycl::maximum<std::pair<T, I>>;

constexpr size_t L = 1;

int main(int argc, char **argv)
{
 sycl::queue Q;
 const size_t n = 7;
 float* data = sycl::malloc_shared<float>(n, Q);
 data[0] = 1; data[1] = 1; data[2] = 1; data[3] = 2; data[4] = 1; data[5] = 1; data[6] = 1;

 std::pair<float, int>* max_res = sycl::malloc_shared<std::pair<float, int>>(1, Q);
 std::pair<float, int> max_identity = {
 std::numeric_limits<float>::min(), std::numeric_limits<int>::min()
 };
 *max_res = max_identity;
 auto red_max = sycl::reduction(max_res, max_identity, maxloc<float, int>());

 Q.parallel_for(sycl::nd_range<1>{n, L}, red_max, [=](sycl::nd_item<1> item, auto& max_res) {
 int i = item.get_global_id(0);
 std::pair<float, int> partial = {data[i], i};
 max_res.combine(partial);
 }).wait();

 std::cout << "Maximum value = " << max_res->first << " at element " << max_res->second << std::endl;

 sycl::free(data, Q.get_context());
 sycl::free(max_res, Q.get_context());

 return 0;
}

Figure 4. Implementing maxloc as a SYCL reduction operator.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/developer/articles/technical/reduction-operations-in-data-parallel-cpp.html#gs.l4h9v1
https://www.intel.com/content/www/us/en/developer/articles/technical/analyzing-performance-reduction-operations-dpc.html#gs.l4hi3m

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

55The Parallel Universe

Doing the Same Reduction with oneDPL
The Intel® oneAPI Data Parallel C++ Library (oneDPL) provides an alternative for programmers who would
rather call a function than use the SYCL reduction class. From Data Parallel C++ (p. 339):

“The C++ Standard Template Library (STL) contains several algorithms which correspond to the
parallel patterns... The algorithms in the STL typically apply to sequences specified by pairs of
iterators and — starting with C++17 — support an execution policy argument denoting whether they
should be executed sequentially or in parallel. [oneDPL] leverages this execution policy argument
to provide a high-productivity approach to parallel programming that leverages kernels written
in DPC++ under the hood. If an application can be expressed solely using functionality of the STL
algorithms, oneDPL makes it possible to make use of the accelerators in our systems without writing
a single line of DPC++ kernel code!”

There’s a lot to like in this description, but let's highlight two points:

1. C++ STL: The functions will be familiar to C++ programmers.

2. High productivity: The coding and performance burden is on the STL developers, where it belongs. The
application developer can access an accelerator without writing lower-level SYCL kernels.

The advantages become apparent when you compare the kernel-based maxloc code (Figure 4) to the
oneDPL implementation (Figure 5). The latter uses the familiar max_element function to perform the
maxloc reduction. SYCL kernels are leveraged “under the hood,” as noted in the previous quote. The
oneDPL default execution policy places the computation on an accelerator if one is available. Otherwise,
the computation runs on the host CPU.

#include <oneapi/dpl/algorithm>
#include <oneapi/dpl/execution>
#include <oneapi/dpl/iterator>
#include <iostream>

int main()
{
 std::vector<int> data{1, 1, 1, 2, 1, 1, 1};

 auto policy = oneapi::dpl::execution::dpcpp_default;
 auto maxloc = oneapi::dpl::max_element(policy, data.cbegin(), data.cend());

 std::cout << "Run on "
 << policy.queue().get_device().template get_info<sycl::info::device::name>()
 << std::endl;
 std::cout << "Maximum value is at element " << oneapi::dpl::distance(data.cbegin(), maxloc) << std::endl;

 return 0;
}

Figure 5. Basic maxloc reduction using the oneDPL max_element and distance functions and
implicit host-device data transfer.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://link.springer.com/book/10.1007/978-1-4842-5574-2

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

56The Parallel Universe

Notice that host-device data transfer is being handled implicitly in Figure 5. The oneDPL runtime
automatically wraps the data in a temporary buffer if the computation is being offloaded to an
accelerator. In a larger oneAPI program, it’s possible that the data are already in SYCL buffers, so oneDPL
functions accept buffers and can iterate over them (Figure 6). Whether the buffered data are transferred
to the device implicitly or explicitly (i.e., via SYCL buffers), the buffers don’t need to be transferred back to
the host unless they are modified, thus avoiding unnecessary overhead.

The oneDPL functions also accept pointers to unified shared memory (USM) to handle host-device data
transfer (Figure 7). In this example, space is allocated in the appropriate USM, using the SYCL
malloc_shared function and a SYCL queue. The same queue is used to set the oneDPL execution
policy. It is worth noting that oneDPL algorithms are synchronous, so there are no explicit wait
statements in Figures 5–7. SYCL kernels, on the other hand, are asynchronous.

#include <oneapi/dpl/algorithm>
#include <oneapi/dpl/execution>
#include <oneapi/dpl/iterator>
#include <iostream>

int main()
{
 std::vector<int> data{1, 1, 1, 2, 1, 1, 1};
 sycl::buffer<int> data_buf(data);

 auto policy = oneapi::dpl::execution::dpcpp_default;
 auto maxloc = oneapi::dpl::max_element(policy, oneapi::dpl::begin(data_buf), oneapi::dpl::end(data_buf));

 std::cout << "Run on "
 << policy.queue().get_device().template get_info<sycl::info::device::name>()
 << std::endl;
 std::cout << "Maximum value is at element "
 << oneapi::dpl::distance(oneapi::dpl::begin(data_buf), maxloc) << std::endl;

 return 0;
}

Figure 6. Maxloc reduction using oneDPL and SYCL buffering for explicit host-device data transfer.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

57The Parallel Universe

When Should I Use a SYCL Reduction or oneDPL?
Like many programming questions, there’s no definitive answer. There are valid reasons for using one
or the other approach. It depends on your requirements. If oneDPL provides an algorithm that matches
your requirements, calling a standard function is simpler than writing a SYCL kernel. For example, if
there’s already a big array in device memory and only the scalar output from the reduction is required
by the host, calling the oneDPL function is probably best. However, the function call is synchronous, so
the program blocks until the function returns, which is not always desirable. The SYCL reduction is more
complicated, but it is asynchronous, more flexible, and provides more tuning opportunities. For example,
if you’re transforming the data on which the reduction is being performed or performing multiple
reductions simultaneously, writing a SYCL kernel might be preferable.

#include <oneapi/dpl/algorithm>
#include <oneapi/dpl/execution>
#include <oneapi/dpl/iterator>
#include <iostream>

int main()
{
 sycl::queue Q(sycl::default_selector{});
 auto policy = oneapi::dpl::execution::make_device_policy(Q);

 const size_t n = 7;
 auto data = sycl::malloc_shared <int>(n, Q);

 data[0] = 1; data[1] = 1; data[2] = 1; data[3] = 2; data[4] = 1; data[5] = 1; data[6] = 1;

 auto maxloc = oneapi::dpl::max_element(policy, data, data + n);

 std::cout << "Run on "
 << policy.queue().get_device().template get_info<sycl::info::device::name>()
 << std::endl;
 std::cout << "Maximum value is at element " << oneapi::dpl::distance(data, maxloc) << std::endl;

 sycl::free(data, Q);
 return 0;
}

Figure 7. Maxloc reduction using oneDPL and USM for host-device data transfer.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

58The Parallel Universe

The separation of concerns between applications developers and compiler/library developers is a
recurring theme in The Parallel Universe. The latter group is primarily concerned with performance and
computing efficiency. The former group is primarily concerned with solving a problem as productively as
possible. If you’re in this group, you probably prefer high-level programming abstractions that still deliver
performance. The SYCL maxloc reduction operator shown in Figure 4 is complicated, low level, and may
require some architecture-specific tuning (e.g., of work-group sizes) to achieve best performance. The
oneDPL examples shown in Figures 5–7 are simpler, familiar to C++ STL users, and versatile in terms of
host-device data transfer. More importantly, they shift the tuning burden to oneDPL product developers
who are mainly concerned about performance. Consequently, oneDPL functions should deliver good
performance regardless of the underlying architecture. This is the promise of the oneAPI software
abstraction for heterogeneous computing.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/developer/articles/technical/bridging-the-gap-between-domain-experts-and-tuning-experts.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

59The Parallel Universe

We have come a long way since 2005 when Herb Sutter declared that “the free lunch is over,” referring
to challenges that programmers face with emerging multicore processors. Today’s portfolio of
computing architectures and accelerators is even richer and constantly growing: a development driven
by fundamental limitations of semiconductors and the desire for more powerful, energy-efficient
computing. The computing world is becoming more and more heterogeneous, which creates challenges
for programmers.

Pablo Reble, Software Engineer, Intel Corporation

In a Heterogeneous Computing Landscape, Open
Standards and Portability Are Your Allies

More Productive and
Performant C++
Programming with oneDPL

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
http://www.gotw.ca/publications/concurrency-ddj.htm

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

60The Parallel Universe

C++ is still among the five most popular programming languages (TIOBE ranks it #4 as of January 2022).
Attributes like full control over memory management and support for generic programming make it a
great language to tackle heterogeneous programming challenges. Developer productivity and the cost of
code maintenance are common concerns when choosing a programming language. Fortunately, previous
studies show that we can expect a productivity boost by combining parallel building blocks with C++
algorithms. For example, optimized, built-in implementations of common functions and patterns (e.g.,
reduction) for specific architectures improve both performance and developer productivity.1, 2

Our industry-leading implementation of the Intel® oneAPI Data Parallel C++ Library (oneDPL) was
contributed to the open-source LLVM project. As a result, developer effort can be significantly reduced in
a multithreaded world.1, 6

Supercharged Classic STL Algorithms
Boost your code with something old and something new.

The C++ language itself is evolving, and so is its standard template library (STL). For example, five years
ago execution policies were added to the algorithms library so that even existing C++ codes can benefit
from the ubiquitous parallelism of modern processors. You can think of oneDPL as a supercharged C++
STL that allows different vendors to implement accelerated versions of classic algorithms in a portable
way.

oneDPL implements the C++ algorithms library using SYCL*:

“SYCL (pronounced ‘sickle’) is a royalty-free, cross-platform abstraction layer that enables code for
heterogeneous processors to be written using standard ISO C++ with the host and kernel code for
an application contained in the same source file.” 3

There is a learning curve for direct accelerator programming in SYCL. While C++ gives programmers full
control over memory management, it has no concept of separate host and device memories. oneDPL
relies on SYCL’s memory abstraction as a portable way to share data between host and device(s). oneDPL
algorithm functions are ready to use, familiar to C++ programmers, and optimized for a variety of
accelerators. This flattens the learning curve and improves code performance and developer productivity.

1 “The oneDPL library is built on top of SYCL and so it is particularly interesting to see that it outperforms native SYCL code.”
Deakin et al. 2021 (p. 40)2

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.tiobe.com/tiobe-index/
https://github.com/oneapi-src/oneDPL

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

61The Parallel Universe

Here’s a simple example to illustrate the power of oneDPL:

This example offloads the common maxloc reduction (i.e., finding the element in the data set with
the maximum value) to the accelerator specified in the execution policy. The included headers are
conformant with ISO C++, and so is the blocking behavior of max_element. Data movement is handled
implicitly in this example. In other words, the runtime automatically handles host-device data transfer by
wrapping the data in a SYCL buffer if the computation is offloaded to an accelerator. Other modes exist
that allow the programmer to explicitly control host-device data transfer.

In addition to parallel algorithm implementations in SYCL, oneDPL is supporting essential extensions for
device programming such as custom iterators. To ensure interoperability across different platforms such
extensions were added to the oneDPL specification.4

What’s Next?
A Look into the Crystal Ball

Let’s focus on some powerful, experimental oneDPL features that are currently under development but
have not been fully baked into ISO C++, and how to get access to them:

 • C++20 introduces Ranges that can greatly improve expressiveness when using C++ STL algorithms.
They extend the utility of algorithms by supporting more complex data access patterns with Views.
All this with fewer lines of code. As of today, ISO C++ Ranges algorithms are not supporting execution
policies, which means it lacks accelerator support. oneDPL enables Ranges for selected algorithms and
provides extensions, such as custom SYCL views, to enable device programming.7

#include <oneapi/dpl/algorithm>
#include <oneapi/dpl/execution>
#include <oneapi/dpl/iterator>
#include <iostream>

int main()
{
 std::vector<int> data{1, 1, 1, 2, 1, 1, 1};

 auto policy = oneapi::dpl::execution::dpcpp_default;
 auto maxloc = oneapi::dpl::max_element(policy, data.cbegin(), data.cend());

 std::cout << "Run on "
 << policy.queue().get_device().template get_info<sycl::info::device::name>()
 << std::endl;
 std::cout << "Maximum value is at element " << oneapi::dpl::distance(data.cbegin(), maxloc) << std::endl;

 return 0;
}

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://spec.oneapi.io/versions/latest/elements/oneDPL/source/index.html
https://github.com/oneapi-src/oneDPL/blob/main/documentation/library_guide/parallel_api/range_based_api.rst

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

62The Parallel Universe

 • Classic C++ algorithms are well defined, including the blocking behavior of their function calls. However,
blocking the host processor is not always desirable when offloading computation to an accelerator.
To allow interleaving of host-device execution and data transfer, a set of asynchronous algorithms
have been added to oneDPL. Their functionality is similar to C++ algorithms, but without the blocking
behavior. To control nonblocking behavior, a C++ future-like object is returned instead of the result
directly.8

There’s more to come. Other exciting features like automatic device selection4 are planned for future
release, so stay tuned and follow us on GitHub.

Final Thoughts
oneDPL provides C++ building blocks that combine high performance with high productivity across
CPUs, GPUs, FPGAs, and other accelerators. It is based on open standards, and its specification ensures
interoperability across different platforms. Intel’s reference implementation is a permissibly licensed
open-source project.5

References
1. Parallel Research Kernels

2. Analyzing Reduction Abstraction Capabilities

3. SYCL Programming Language

4. oneDPL Specification

5. oneAPI DPC++ Library

6. How to Boost Performance with Intel Parallel STL and C++17 Parallel Algorithms

7. oneDPL Range-based API Algorithms

8. oneDPL Asynchronous API Algorithms

Learn more about programming with oneAPI and oneDPL:
 • Reduce Cross-Platform Programming Efforts and Achieve High-Performance Parallel Code with oneDPL

 • Intel oneAPI Base Training Modules

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://github.com/oneapi-src/oneDPL/blob/main/documentation/library_guide/parallel_api/async_api.rst
https://github.com/oneapi-src/oneDPL
https://github.com/ParRes/Kernels
https://ieeexplore.ieee.org/document/9652857
https://www.khronos.org/sycl/
https://spec.oneapi.io/versions/latest/elements/oneDPL/source/index.html
https://github.com/oneapi-src/oneDPL
https://www.cppstories.com/2018/11/pstl/?m=1
https://github.com/oneapi-src/oneDPL/blob/main/documentation/library_guide/parallel_api/range_based_api.rst
https://github.com/oneapi-src/oneDPL/blob/main/documentation/library_guide/parallel_api/async_api.rst
https://www.intel.com/content/www/us/en/developer/videos/reduce-cross-platform-programming-efforts-onedpl.html#gs.o8sp7y
https://devcloud.intel.com/oneapi/get_started/baseTrainingModules/

 Intel technologies may require enabled hardware, software or service activation. Learn more at intel.com or from the OEM or retailer.
Your costs and results may vary.
Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.
Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific
to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice. Notice Revision #20110804. https://software.intel.com/en-us/
articles/optimization-notice
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations
and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products. See backup for configuration details. For more complete information about performance and benchmark results, visit www.intel.
com/benchmarks.
Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See
configuration disclosure for details. No product or component can be absolutely secure.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.
 © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.
 Printed in USA 707/IH Please Recycle.

