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3The Parallel Universe

Elephants in the SYCL Room
Once upon a time, I was a committed Perl programmer. Then one day, a colleague suggested that I take 
a look at Python, his favorite new language. “Pshaw,” I said. “Why do we need another programming 
language?” Twenty years later, I’m committed to Python (though I admit that I’m attracted to Julia). The 
SYCL* specification from the Khronos Group brings heterogeneous data parallelism to C++, but it’s facing 
the same question: Do we really need another programming language? The oneAPI industry initiative 
adopted SYCL as its direct programming approach for heterogeneous parallelism, so James Reinders 
(Editor Emeritus, The Parallel Universe) and Michael Wong (Distinguished Engineer, Codeplay Software) 
provide an excellent response to this question and several others in Why SYCL: Elephants in the SYCL 
Room.

We have several oneAPI and SYCL articles in this issue, but our feature article describes the winning 
solution to a recent data science competition: Winning the NeurIPS Billion-Scale Approximate Nearest 
Neighbor Search Challenge. This is followed by two more data science articles: Optimizing End-to-
End Artificial Intelligence Pipelines and Optimizing Artificial Intelligence Applications. Artificial 
intelligence is the glamorous part of analytics pipelines, but data scientists know that it takes a lot of hard 
work and computation to reach this step. These articles describe how to optimize various parts of the 
analytics pipeline, up to and including artificial intelligence.

From data science, we turn our attention back to SYCL. James Brodman and John Pennycook, coauthors 
of the recent book, Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous Systems 
Using C++ and SYCL, describe their top Five Outstanding Additions Found in SYCL 2020.

As I mentioned in the last issue of The Parallel Universe, I’ve been experimenting with the ArrayFire 
heterogeneous parallel library. In this issue, Umar Arshad (ArrayFire, Software Engineer) and I do a side-
by-side comparison of the oneAPI and ArrayFire abstractions in Accelerating the 2D Fourier Correlation 
Algorithm with ArrayFire and oneAPI. Readers may also be interested in ArrayFire Interoperability with 
oneAPI, Libraries, and OpenCL (The Parallel Universe, Issue 47).

3The Parallel Universe

Letter from the Editor
Henry A. Gabb, Senior Principal Engineer at Intel Corporation, is a longtime high-performance and 
parallel computing practitioner who has published numerous articles on parallel programming. He 
was editor/coauthor of “Developing Multithreaded Applications: A Platform Consistent Approach” 
and program manager of the Intel/Microsoft Universal Parallel Computing Research Centers.
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We close this issue with two articles on the oneAPI Data Parallel C++ Library (oneDPL): The Maxloc 
Reduction in oneAPI and More Productive and Performant C++ Programming with oneDPL. These 
articles describe how to use C++ STL functions in oneDPL for better programmer productivity and 
heterogeneous parallelism.

As always, don’t forget to check out intel.com/oneapi for more information on Intel solutions for code 
modernization, visual computing, data center and cloud computing, data science, systems and IoT 
development, and heterogeneous parallel programming with oneAPI.

Henry A. Gabb 
April 2022
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Similarity search, also known as approximate nearest neighbor (ANN) search, is the backbone of many 
AI applications that require search, recommendation, and ranking operations on web-scale databases. 
Accuracy, speed, scale, cost, and quality-of-service constraints are critical. In this article, we describe a 
solution that advances these dimensions by leveraging the computational capabilities of Intel® Xeon® 
processors and Intel® Optane™ memory. To showcase these advances, we participated in the NeurIPS’21 
Billion-Scale ANN Search Challenge, winning the Custom Hardware Track. Our results offer an 8x to 19x 
reduction in CAPEX and five-year OPEX at iso-performance over the next-best solution. This promises to 
drastically lower the entry barrier and democratizes similarity search in the modern, large-scale, high-
accuracy and high-performance scenario.

Mariano Tepper, Cecilia Aguerrebere, and Ted Willke, Intel Labs; Sourabh Dongaonkar 
and Jawad B Khan, Intel Foundry Services; and Mark Hildebrand, University of 
California, Davis

Unleashing Intel® Xeon® Processors with Intel® Optane™ 
Technology to Drastically Improve Search Performance

Winning the NeurIPS Billion-
Scale Approximate Nearest 
Neighbor Search Challenge
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Approximate Nearest Neighbor Search
Given a database of high-dimensional feature vectors and a query vector of the same dimension, the 
objective of similarity search is to retrieve the database vectors that are most similar to the query, based 
on some similarity function (Figure 1). In modern applications, these vectors represent the content of 
data (images, sounds, text, etc.), extracted and summarized using deep learning systems such that similar 
vectors correspond to items that are semantically related.

To be useful in practice, a similarity search solution needs to provide value across different dimensions:

 • Accuracy: The search results need to be of sufficient quality to be actionable (that is, the retrieved items 
need to be similar to the query).

 • Performance: The search needs to be fast, often meeting strict quality-of-service constraints.

 • Scalability: Databases continue to get larger in terms of the number of items they contain and the 
dimensionality of those items.

 • Cost: Being deployed in production and data center scenarios, the solution needs to minimize the 
total cost of ownership (TCO), often measured as a combination of capital expenditures (CAPEX) and 
operating expenses (OPEX).

A natural solution is to linearly scan over each vector in the database, compare it with the query, rank 
the results in descending order of similarity, and then return the most similar vectors. However, the sheer 
volume and richness of data preclude this approach and make large-scale similarity search an extremely 
challenging problem that is both compute- and memory-intensive. Better solutions are needed, which 
commonly involve two phases:

1. During indexing, each element in the database is converted into a high-dimensional vector, and then an 
index is created so that only a fraction of the database is accessed during the search.

2. At search time, given a query vector, an algorithm sifts through the database using the index. Its results 
are used to take different informed actions depending on the final application and based on these 
semantically relevant results.

Figure 1. Schematic representation of an ANN search pipeline.

https://software.seek.intel.com/parallel-universe-magazine
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The NeurIPS’21 Billion-Scale Approximate Nearest Neighbor 
Search Challenge
In December 2021, the first billion-scale similarity search competition was organized as part of the 
NeurIPS conference. The goal of the competition was to provide a comparative understanding of 
astate-of-the-art similarity search across a curated collection of real-world datasets and to promote the 
development of new solutions. We participated in the competition’s Custom Hardware Track, where we 
could take full advantage of Intel’s hardware offerings. We developed a solution that fully leveraged the 
capabilities of Intel Xeon processors and Intel Optane persistent memory (PMem), creating a one-two 
approach that eventually won the competition.

The fundamental metric compared across datasets was TCO, defined as CAPEX + five-year OPEX of the 
solutions at 90% recall and 100,000 queries-per-second (QPS) throughput. The CAPEX and OPEX are 
defined by the competition organizers as follows:

 • CAPEX = (MSRP of all the hardware components) x (minimum number of systems needed to scale to 
support 100,000 QPS)

 • OPEX = (maximum QPS at or greater than the baseline recall @10 threshold) x (kilowatt-hour/query) 
x (seconds/hour) x (hours/year) x (five years) x (dollars/kilowatt-hour) x (minimum number of systems 
needed to scale to support 100,000 QPS)

These metrics balance the energy efficiency (through OPEX) and raw performance (through CAPEX) for 
each solution.

Figure 2. TCO difference between the winning Intel solution and the second place NVIDIA 
solution, showing up to 20x improvement across five different datasets (x-axis).
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Our solution offers a breakthrough improvement in TCO and is between 8.85x and 19.7x better than 
the second-best solution, NVIDIA's cuanns_multigpu that uses a DGX A100 GPU system across multiple 
datasets (Figure 2). The stark difference in efficiency of our solution is apparent when comparing the 
hardware configurations of our first-place entry and NVIDIA’s second-place entry (Table 1). A single 
inexpensive 1U 2S Intel Xeon server with Intel Optane PMem can achieve the same performance as two 
of NVIDIA’s flagship DGX A100 servers with eight A100 GPUs and two 64-core CPUs for ANN search 
workloads.

Intel® Xeon® processor + Intel® Optane™ memory NVIDIA DGX A100
CPU Dual Intel Xeon Gold 6330N processors 

56 cores total
Dual AMD Rome 7742 
128 cores total

System memory 512GB DDR4 
2TB Intel Optane DCPMM 200 Series

2TB DDR4

GPU None 8x NVIDIA A100 80 GB GPUs
GPU memory None 640 GB
Power Up to 1.2 kW Up to 6.5 kW
Total cost $14,664 $150,000+

 
In addition to the significantly low CAPEX of the Intel solution at iso-performance, the power efficien-
cy is also significantly better, as shown by the energy per query (in Joules), measured by standard 
IPMI interface on all machines in the competition. The energy per query of the Intel solution is up to 
5x better than the NVIDIA solution (Figure 3). This translates to much better OPEX over a long period, 
as well as a much more sustainable solution to the ANN search problem.

Table 1. Comparing Intel and NVIDIA hardware configurations for the BigANN competition. 
These configurations achieve similar performance.

Figure 3. Energy efficiency of the Intel® solution is up to 5x better than the NVIDIA 
solution across all datasets.
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These drastic improvements in TCO are enabled by unique advantages of Intel Xeon processors and 
the capacity and throughput of Intel Optane PMem, as well as the algorithmic innovation that enables 
optimal utilization of the hardware resources. In the following sections, we provide the details of how 
this combined hardware/software approach helped us win this competition by such huge margins.

Algorithmic Approach
We showcase the performance of Intel Xeon processors with Intel Optane PMem for ANN search 
algorithm, GraphANN. GraphANN is an extension of the graph-based Vamana algorithm that is highly 
optimized for Intel Optane PMem. It builds a directed graph to index the data points and follows a 
greedy search to navigate the graph and locate the nearest neighbors of a new query. Throughout the 
search, two main data structures are used: the graph and the feature vectors. In our solution, we store 
the graph in Intel Optane PMem and keep the feature vectors in DRAM, when possible. This combination 
yields impressive throughput and performance per dollar. Moreover, Intel Optane PMem comes in much 
higher capacities than traditional DRAM, thus providing the necessary scaling for larger datasets. Finally, 
persistence has the bonus of eliminating the need to load the index into memory, which is quite time-
consuming for billion-scale datasets.

Intel® Optane™ Persistent Memory (PMem)
Intel Optane PMem is a storage class memory that can be used in SSDs and persistent memory 
applications. Historically, there has always been a gap between the memory and storage performance. 
Intel Optane memory technology is designed to bridge this gap (Figure 4). It allows memory cells to be 
addressed individually, in a dense, transistor-less, stackable 3D design. These features provide a unique 
combination of affordable capacity and support for data persistence. With innovative technology offering 
distinctive operating modes, it adapts to different needs across workloads. For example, Intel Optane 
technology has been used to accelerate storage of logs and caching tier of large-scale applications with 
storage bottlenecks.

https://software.seek.intel.com/parallel-universe-magazine
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Intel Optane PMem has some similarities with DRAM: It is packaged in DIMMs, it resides on the same bus/
channels as DRAM, and it can act in the same way as DRAM storing volatile data. It differs from DRAM in 
the following ways:

 • Intel Optane PMem comes in much higher capacities than traditional DRAM. Its modules come in 128GB, 
256GB, and 512GB capacities, vastly larger than DRAM modules that typically range from 16GB to 
64GB, though larger DRAM capacities exist.

 • Intel Optane PMem can also operate in a persistent mode, storing data even without power applied to 
the module and comes with built-in hardware encryption to help keep data at rest secure. The TCO is 
greatly improved compared to DRAM on a cost-per-GB basis and the ability to increase the capacity to 
beyond DRAM’s capabilities.

Intel Optane PMem has two operational modes for additional flexibility: Memory Mode and App Direct 
Mode. Memory Mode expands main memory capacity without persistence. It combines an Intel Optane 
PMem with a conventional DRAM that serves as a direct-mapped cache for PMem. In App Direct Mode, 
Intel Optane PMem appears as a persistent memory device that can be addressed separately from 
DRAM.

ANN with Intel® Optane™ Persistent Memory (PMem)
By studying the access patterns of the Vamana algorithm, we found that data reuse across queries is 
limited. This discourages the use of Intel Optane Memory Mode, as a cache would provide limited value. 
Therefore, we used App Direct Mode for this work.

Figure 4. Memory and storage hierarchy and Intel® Optane™ technology's place in it.

https://software.seek.intel.com/parallel-universe-magazine
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To maximize performance, we organize the data by storing the graph in Intel Optane PMem while keeping 
the feature vectors in DRAM. The graph accesses follow a highly random and non-local pattern. Here, 
Intel Optane PMem has a 64-byte block size, which allows us to surgically access the graph elements 
while retaining performance. We limit the maximum out-degree of each node to 127, as this ensures that 
exactly four accesses are needed to retrieve the neighbors of any given node. (We use 4B per neighbor 
and 4B for the number of neighbors.) Storing the data contiguously allows pipelining of these four 
accesses.

Our optimized version of the Vamana algorithm is written in the Julia programming language. The 
optimizations can be divided into general (purely software-based) and specific to Intel Optane 
technology. The general optimizations relate to optimized graph and data representations, use of 
VNNI instructions for distance computation, static sizing of data vectors, and memory alignment, 
among others. One such important optimization is “prefetch hoisting,” which decouples the distance-
computation loop from the vector-fetching loop. In this approach, we use x86 intrinsics to prefetch as 
much data as possible from memory before beginning the distance computation step. This ensures 
that memory latency has minimal impact on the queries. The other important optimization results from 
partitioning the vectors between DRAM and PMem. This is because fetching the vectors for distance 
computation is the slowest step in the search, and we keep as many vectors as possible in DRAM, which 
reduces the PMem traffic and provides a significant performance improvement.

Our multithreaded architecture creates small batches of queries that are dynamically load-balanced 
across worker threads. Each thread processes one query at a time in its batch. Furthermore, all 
intermediate scratch-space data structures required to process a query are pre-allocated, with each 
thread owning its own private scratch space. This eliminates dynamic memory allocation during the 
query processing and minimizes the amount of synchronization among threads.

These optimizations allow us to deliver orders of more than10 to100X improvement in ANN search 
performance over the previous known best solution (the FAISS algorithm running on GPUs). Figure 
5 shows the improvement achieved by our optimized approach across five different datasets. These 
datasets encompass different encodings (Int8, UInt8, and Float32), as well as different distance metrics 
(Euclidean and Inner Product). We can see that across these datasets, GraphANN running on an Intel 
Xeon processor with Intel Optane memory drastically improves the baseline performance.

https://software.seek.intel.com/parallel-universe-magazine
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Figure 5. Queries per second (throughput) vs recall plots for the five different datasets, showing 
the magnitude of improvement of the Intel® Optane™ solution over the previously best software 

(FAISS) and hardware (GPUs).
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Conclusion
In this article, we described the winning algorithm, design choices, and associated hardware setup in 
the Billion-Scale Approximate Nearest Neighbor Search Challenge in the NeurIPS 2021 (see the public 
leaderboard). We also showed that Intel Optane PMem can significantly improve the performance of 
similarity search algorithms across a range of design points, starting from only upgrading the hardware 
without any associated code changes to a full-blown custom rewrite of code.

Diverse Workloads Require Diverse Architectures
Develop heterogeneous applications quickly and correctly with Intel oneAPI 
toolkits. Explore Toolkits >
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End-to-end (E2E) artificial intelligence (AI) pipelines are made up of one or more machine learning (ML)/
deep learning (DL) models that solve a problem on a specific dataset and modality, accompanied by 
multiple preprocessing and postprocessing stages. We apply comprehensive optimization strategies 
on a variety of modern AI pipelines for ML, natural language processing (NLP), recommendation 
systems, video analytics, anomaly detection, and face recognition, along with DL/ML model training 
and inference, optimized data ingestion, feature engineering, media codecs, tokenization, etc. for higher 
E2E performance. The results across all our candidate pipelines, mostly inference-based, show that 
for optimal E2E throughput performance, all phases must be optimized. Large memory capacities, AI 

Meena Arunachalam, Principal Engineer; Vrushabh Sanghavi, Senior Deep Learning 
Software Engineer; Yi A Yao, AI Frameworks Engineer; Yi A Zhou, AI Frameworks 
Engineer; Lifeng A Wang, AI Frameworks Engineer; Zongru Wen, AI Frameworks Engineer; 
Niroop Ammbashankar, Senior Deep Learning Software Engineer; Ning W Wang, AI 
Frameworks Engineer; and Fahim Mohammad, Senior Deep Learning Software Engineer, 
Artificial Intelligence and Analytics Group, Intel Corporation

Optimization Strategies for AI Pipelines on Intel® 
Xeon® Processors

Optimizing End-to-End 
Artificial Intelligence 
Pipelines
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acceleration (e.g., Intel® Deep Learning Boost [Intel® DL Boost]), and the ability to run general-purpose 
code make Intel® Xeon® processors well-suited for these pipelines.

Our optimizations fall broadly into application, framework, and library software; model hyperparameters; 
model optimization; system-level tuning; and workload partitioning. Tools such as Intel® Neural 
Compressor offer quantization, distillation, pruning, and other techniques that benefit from Intel DL Boost 
and other AI acceleration built into Intel Xeon processors. As a result, we see a 1.8x to 81.7x improvement 
across different E2E pipelines. In addition, we can host multiple parallel streams or instances of these 
pipelines with the high number of cores and memory capacity available on Intel Xeon processors 
compared to some memory-limited accelerators that can only host one or a very limited number of 
parallel streams. In many cases, workload consolidation to CPUs is possible, which also has TCO and 
power advantages.

E2E AI Applications
We showcase many E2E AI use cases and workloads, each comprising unique pre- and post-processing 
steps and implemented using a variety of different ML/DL approaches on video, image, tabular, text, and 
other data types (Table 1).

Workload Application Name Model Pre-/Post-processing Stages Dataset

ML

Census Ridge Regression
Load data to data frame, drop columns, 

remove rows, arithmetic ops, type 
conversion, train/test split

IPUMs Census Data

PLAsTiCC
Gradient Boosting 

Tree

Load data, drop columns, groupby 
aggregation, arithmetic ops, type 

conversion, train/test split
LSST Simulated Data

Predictive Analytics 
in Industrial IoT

Random Forest 
Classifier

Load data to data frame, drop inessential 
columns, train/test split

Bosch Production Line

NLP
Document Level 

Sentiment Analysis
BERT-Large

Load data, initialize tokenizer, data 
encoding, load model

IMDb

SST-2

Recommendation 
System

E2E Deep Interest 
Evolution Network

DIEN
Data ingestion, label encoding, get history 
sequence, native sampling, data split, load 

model
Amazon Books

Video Analytics Video Streamer SSD Resnet-34
Video decode, image normalization and 

resizing, bounding box and labeling, data 
uploading

Mall video

Anomaly 
Detection

Anomaly Detection ResNet50v1.5
Load data, image resizing, image 

transformations, evaluating feature 
reconstruction error

MVTec AD

Face Recognition
Face Detection and 

Recognition
SSD MobileNet, 
Resnet50v1.5

Load video, frame splitting, resizing, output 
generation

Soccer celebration

Table 1. E2E AI applications.
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E2E AI applications typically involve two broad categories of operations: pre-/post-processing and AI. 
In Figure 1, we see the breakdown range from 4% to 98% pre-/post-processing to 2% to 96% AI as a 
fraction of the total E2E run-time.

Census
The Census workload trains a ridge-regression model using the U.S. Census data from the years 1970 to 
2010, and predicts the correlation between personal education level and income (Figure 2). Prior to ML, 
it ingests the data, performs data frame operations to prepare the input for model training, and creates a 
feature set and its subsequent output set1.

Figure 1. Percent time in pre-/post-processing vs AI.

Figure 2. Census application pipeline.
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PLAsTiCC
PLAsTiCC is an open data challenge that uses simulated astronomical time-series data to classify objects 
in the night sky that vary in brightness (Figure 3). The pipeline loads the data; manipulates, transforms, 
and processes the data frames; and uses the histogram tree method from the XGBoost library to train a 
classifier and perform model inference.

Predictive Analytics in Industrial IoT
This is an E2E unsupervised learning use case in industrial IoT that predicts internal failures during 
manufacturing, thereby helping maintain the quality and performance of the production line (Figure 4). 
The workflow consists of reading measurements from a CSV file and cleaning them to include only the 
necessary features. The highly optimized Intel® Distribution of Modin2 is used for this step. The random 
forest classifier from Intel® Extension for Scikit-learn3 is used to generate the model.

Figure 3. PLAsTiCC application pipeline.

Figure 4. Pipeline for predictive analytics in industrial IoT.
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Document Level Sentiment Analysis (DLSA)
The DLSA workflow shown in Figure 5 is a reference NLP pipeline built using the Hugging Face 
transformer API to perform document-level sentiment analysis. It uses language models such as BERT-
LARGE (uncased), pretrained on a large English text corpus.

E2E Deep Interest Evolution Network (DIEN) Recommendation System
The DIEN workflow shown in Figure 6 is a recommendation inference pipeline that estimates the 
probability of user clicks at scale.

Figure 5. Document level sentiment analysis pipeline.

Figure 6. E2E DIEN recommendation system pipeline.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en


Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

20The Parallel Universe

Video Streamer
The video streamer pipeline (Figure 7) is designed to mimic real-time video analytics. Real-time data 
is provided to an inference endpoint that executes single-shot object detection. The metadata created 
during inference is then uploaded to a database for curation. The pipeline is built upon GStreamer, 
TensorFlow, and OpenCV. The input video is decoded by GStreamer into images on a frame-by-frame 
basis. Then, the GStreamer buffer is converted into a NumPy array. TensorFlow does image normalization 
and resizing, followed by object detection with a pretrained SSD-ResNet34 model. Finally, the results of 
bounding-box coordinates and class labels are uploaded to a database. 
 

 
Anomaly Detection

The objective of anomaly detection is to analyze images of parts being manufactured on an industrial 
production line, using deep neural network and probabilistic modeling to identify rare defects (Figure 
8). As an out-of-distribution solution, a model of normality is learned over feature maps of the final 
few layers from normal data in an unsupervised manner. Deviations from the models are flagged as 
anomalies. Prior to learning distribution, the dimension of the feature space is reduced by using PCA to 
prevent matrix singularities and rank deficiencies from arising while estimating the parameters of the 
distribution.

Figure 7. Video streamer application pipeline.
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Face Recognition
This E2E pipeline performs real-time face recognition by cascading two, out-of-the-box, pretrained 
models: SSD MobileNet and ResNet50v1.5 (Figure 9). The input from the camera, as compressed or 
uncompressed video, undergoes frame splitting and resizing. Each frame is then fed to the detection 
model (SSD MobileNet), which performs object detection. The NMS bounding boxes are then fed to the 
recognition model (ResNet50v1.5) to recognize the faces. The output frames with the facial recognitions 
can either be displayed or saved in databases.

How To Do “Efficient-AI”: E2E Optimization Strategies
E2E performance-efficient AI requires a coherent optimization strategy consisting of AI software 
acceleration, system-level tuning, hyperparameter and runtime parameter optimizations, and workflow 
scaling. All phases (data ingestion, data preprocessing, feature engineering, and model building) need to 
be holistically addressed to improve user productivity as well as workload performance efficiency  
(Figure 10).

Figure 9. Face recognition pipeline.

Figure 8. Anomaly detection pipeline.
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AI Software Acceleration
Intel Distribution of Modin is a multithreaded, parallel, and performant data frame library compatible with 
the pandas API. It performs lightweight, robust data frame and CSV operations, and it scales efficiently 
with the number of cores, unlike pandas, providing a significant speedup just by changing a couple of 
lines of code. Data frame operations across different phases speed up from 1.12x to 30x.

Intel Extension for Scikit-learn accelerates common estimators, transformers, and clustering algorithms in 
classical ML. Ridge regression training and inference in the Census workload is a DGEMM-based memory-
bound algorithm that takes advantage of Intel Extension for Scikit-learn’s vectorization, cache-friendly 
blocking, and multithreading to efficiently use multiple CPU cores.

Intel-optimized XGBoost and CatBoost libraries provide efficient parallel tree boosting. The XGBoost 
kernels are optimized for cache efficiency, remote memory latency, and memory access patterns on Intel 
processors.

Intel® Extension for PyTorch4 improves PyTorch performance on Intel processors. With Intel Extension for 
PyTorch, the Anomaly Detection and DLSA pipelines take advantage of Intel DL Boost. Intel® Optimization 
for TensorFlow5 is powered by Intel® oneAPI Deep Neural Network Library (oneDNN), which includes 
convolution, normalization, activation, inner product, and other primitives vectorized using Intel® AVX-
512 instructions. The DIEN, face recognition, and video streamer applications use Intel Optimization for 
TensorFlow to enable scalable performance on Intel processors through vectorization and optimized 
graph operations (e.g., ops fusion, batch normalization).

Figure 10. Efficient AI.
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Model Optimizations
Quantization facilitates conversion of high-precision data (32-bit floating point, FP32) to lower precision 
(8-bit integer, INT8), which enables critical operations such as convolution and matrix multiplication to 
be performed significantly faster with little to no loss in accuracy. Intel Neural Compressor automatically 
optimizes low-precision recipes for DL models and calibrates them to achieve optimal performance and 
memory usage with expected accuracy criteria. DLSA and video streamer applications achieved up to 4x 
speedup from INT8 quantization alone (Table 2).

Parameter Optimizations
The SigOpt model development platform makes it easy to track runs, visualize training, and scale 
hyperparameter optimization for any pipeline, while also tuning for objectives like maximum throughput 
at threshold accuracy and/or latency levels. With SigOpt’s multi-objective optimization, we can easily 
obtain insights on the best configurations of the AI pipeline, showing the optimal performance summary 
and analysis. In the case of PLAsTiCC, “accuracy” and “timing” metrics were optimized, while the model 
hyperparameters (like the number of parallel threads for XGBoost, number of trees, learning rate, max 
depth, L1/L2 normalization, etc.) were computed in order to achieve the objective6. In DLSA, the number 
of inference instances and batch size are tuned to achieve high E2E throughput.

Run-time options in TensorFlow also make a big performance impact. It is recommended to control the 
parallelism within an operation like matrix multiplication or reduction so as to schedule the tasks within 
a threadpool by setting intra_op_parallelism_threads equal to the number of available physical 
cores and, in contrast, running operations that are independent in the TensorFlow graph concurrently by 
setting inter_op_parallelism_threads equal to the number of sockets. Data layout, OpenMP, and 
NUMA controls are also available to tune the performance even further5.

Workload Scaling
Multi-instance execution allows parallel streams of the application to be executed on a single Intel® Xeon® 
Scalable server. The advantage is demonstrated during anomaly detection, where several cameras can be 
deployed to detect defects at different stages of the manufacturing pipeline; 10 such streams processing 
over the standard 30 FPS on a ResNet50 model can be serviced by a single 3rd Gen Intel Xeon Scalable 
processor. Similarly, E2E DIEN runs with one core/instance with 40 inference instances per socket, while 
DLSA and DL pipelines run four cores/instance to eight cores/instance with 10 inference streams to five 
inference streams per socket. This is a unique advantage of CPUs with their large memory capacity.

System-level tuning is available in the BIOS to improve efficiency. Tuning knobs controlling 
hyperthreading, CPU power scaling governors, NUMA optimizations, hardware prefetchers, and more can 
be explored to obtain best performance.
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Intel 
Distribution for 

Modin

Intel Extension 
for Scikit-learn XGBoost Intel Extension 

for PyTorch
Intel-optimized 

TensorFlow
INT8 

quantization

Census 6x 59x - - - -

PLAsTiCC 30x 8x 1x - - -

Predictive Analytics for 
Industrial IoT

4.8x 113x - - - -

Document Level 
Sentiment Analysis

- - - 4.15x - 3.90x

E2E Deep Interest 
Evolution Network

23.2x - - - 9.82x -

Video Streamer - - - - 1.36x 3.64x

Anomaly Detection 1.12x 3.4x - 1.8x - -

Face Recognition - - - - 1.7x -

Table 2. Performance improvement from software optimizations and quantization 
for E2E AI applications.

Figure 11. E2E AI application performance speedup.
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Configuration: Performance measured on a single-node, dual-socket 3rd Generation Intel Xeon Scalable 8380 processor (except DIEN and 
DLSA), 40 cores per socket. DIEN and DLSA were measured on 3rd Generation Intel Xeon Scalable 6348 processors, turbo mode enabled, 
hyperthreading disabled, BIOS: SE5C620.86B.01.01.0003.2104260124, kernel: 5.13.0-28-generic, OS: Ubuntu 21.10, 512GB memory (16 
slots/32GB DIMMs/3200MHz), Intel 480GB SSD OS Drive.

Anomaly Detection: Python 3.7.11, torch 1.11.0, torchvision 0.11.3, PyTorch 1.10, numpy 1.22.1, pandas 1.3.5, scikit-learn-intelex 2021.4.0; 
Face Recognition: Python 3.7.9, TensorFlow 2.8.0, numpy 1.22.2, opencv-python 4.5.3.56, ffmpy 0.3.0; Video Streamer: Python 3.8.12, 
TensorFlow 2.8.0, opencv-python 4.5.2.54, pillow 8.3.1, gstreamer1.0, vdms 0.0.16; DLSA offline Inf: Python 3.7.11, PyTorch 1.10, HuggingFace 
Transformer:4.6.1; E2E DIEN: Python 3.8.10, Modin 0.12.0, TensorFlow 2.8.0, numpy 1.22.2; Census: Python 3.9.7, Modin 0.12.0, scikit-learn-
intelex 2021.4.0; PLAsTiCC: Python 3.9.7, Modin 0.12.0, scikit-learn-intelex 2021.4.0, XGBoost 1.5.0; Predictive Analytics for Industrial IoT: 

Python 3.9.7, Modin 0.12.0, scikit-learn-intelex 2021.4.0.

In conclusion, as a result of cumulative optimization strategies across software, system, hardware, model-
building, and hyperparameters, we achieve 1.8x to 81.7x speedup in E2E performance on Intel Xeon 
processors.
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Data scientists are always looking for ways to boost their AI application performance. Using optimized 
machine learning software instead of stock packages is an easy way to do this. Tuning model 
hyperparameters using an AutoML-based platform like SigOpt is another. I will demonstrate the 
performance possibilities using the PLAsTiCC Classification Challenge from Kaggle.

PLAsTiCC is an open data challenge to classify objects in the sky that vary in brightness. It uses simulated 
astronomical time-series data in preparation for observations that will come from the Large Synoptic 
Survey Telescope being set up in northern Chile. The challenge is to determine the probability that each 
object belongs to one of 14 classes of astronomical filters, scaling from a small training set (1.4 million 
rows) to a very large test set (189 million rows).

Vrushabh Sanghavi, Senior Deep Learning Software Engineer, Intel Corporation

Better AI Performance with Hyperparameter Tuning 
and Optimized Software

Optimizing Artificial 
Intelligence Applications
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The code can be divided into three distinct phases:

1. Readcsv: Loading the CSV-format training and testing data and their corresponding metadata into 
pandas dataframes.

2. ETL: Manipulating, transforming, and processing the dataframes for input to the training algorithm.

3. ML: Using the histogram tree method from the XGBoost library to train the classification model. The 
model is cross-validated, and the trained model is used to classify objects in the massive test set.

The chart below shows stock and optimized software that is used for each of these phases plus SigOpt 
for hyperparameter tuning:

The Intel® Distribution for Modin* is used to improve Readcsv and ETL performance. This parallel and 
distributed dataframe library uses the pandas API. It allows you to significantly improve the performance 
of dataframe operations just by changing a single line of code. To improve PLAsTiCC ML performance, 
the XGBoost Optimized for Intel® Architecture package is upstreamed to the main branch. This can be 
obtained by simply installing the latest version of XGBoost. (See Distributed XGBoost with Modin on Ray.)

The bar chart below shows the speed-ups obtained using the optimized software stack (shown in blue) 
over the stock software (shown in orange) in each PLAsTiCC phase. A massive 18x end-to-end speedup 
is achieved by using the optimized software. Intel Distribution for Modin performs lightweight, robust 
dataframe and Readcsv operations and scales efficiently with the number of cores, unlike pandas. The 
XGBoost kernels are optimized for cache efficiency, remote memory latency, memory access patterns 
on Intel® architectures, and optimally uses its higher processor frequencies, cache size, and cache 
bandwidth.
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We can improve the end-to-end workload performance even further by tuning the hyperparameters in 
the machine learning model. SigOpt is a model-development platform that provides an easy way to do 
this. It tracks training experiments, provides tools to visualize the training, and scales hyperparameter 
optimization for any type of model.

SigOpt finds the best parameter values for the model and provides the global optimum for the defined 
metric within the optimization loop. In the case of PLAsTiCC, accuracy and timing are the metrics to be 
optimized, while the model hyperparameters (like the number of parallel threads for XGBoost, number of 
trees, learning rate, max depth, L1/L2 normalization, etc.) are the parameters that need to be computed 
in order to achieve the objective. A minimum number of observations need to be run to find the global 
maximum or minimum of the objective function, and convergence mostly occurs when the number of 
experiments is set to 10–20 times the number of parameters in the experiment.

This following table shows the default model parameters and the tuned parameters as computed by the 
SigOpt autoML experiments:

It’s easy to see that manually tuning and running through all these permutations would be almost 
impossible, whereas SigOpt can do it in a few hours. The log loss and validation loss for the model does 
not increase, which means that these improvements were achieved without compromising or affecting 
model accuracy.

The previous chart is replotted below to show the additional 5.4x ML performance improvement due to 
SigOpt hyperparameter tuning, which gives a 1.5x overall improvement.
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These steps performed over a typical end-to-end pipeline show the significant performance 
improvement that can be achieved on an AI workload using a variety of Intel-optimized software 
packages, libraries, and optimization tools. (See Performance Optimizations for End-to-End AI Pipelines.)

Hardware and Software Configurations
Hardware: 2 Intel® Xeon® Platinum 8280L processors (28 cores), OS: Ubuntu 20.04.1 LTS Mitigated, 384 
GB RAM (384 GB RAM: 12 x 32 GB 2933 MHz), kernel: 5.4.0–65-generic, microcode: 0x4003003, CPU 
governor: performance. Software: scikit-learn 0.24.1, pandas 1.2.2, XGBoost 1.3.3, Python 3.9.7, scikit-
learn-intelex 2021.2, modin 0.8.3, omniscidbe v5.4.1.
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SYCL 2020 is an exciting update for C++ programmers looking to take advantage of accelerators. We 
have both had the pleasure of contributing to the SYCL specification, a book on SYCL, and the DPC++ 
open source project to implement SYCL into LLVM. We would like to share our pick for our favorite new 
features added to SYCL in the SYCL 2020 specification. We offer these as our opinions as Intel engineers, 
not on behalf of Khronos.

SYCL
SYCL is a Khronos standard that brings support for heterogeneous programming to C++. The SYCL 2020 
specification was finalized in late 2020, and compiler support has been growing ever since. (See the 
Khronos website for information on implementations.)

James Brodman, Principal Engineer, and John Pennycook, Software Enabling and 
Optimization Architect, Intel Corporation

The SYCL Programming Language Is Evolving

Five Outstanding Additions 
Found in SYCL 2020
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The case for SYCL is articulated in many places, including Considering a Heterogeneous Future for 
C++ and numerous other resources enumerated on sycl.tech. Put simply, SYCL addresses a key 
challenge: How do we enable heterogeneous programming in C++, with portability across vendors and 
architectures?

Thanks to strong community input, SYCL 2020 has exciting new features to serve the goal of being 
strongly multivendor and multiarchitecture. In this article, we discuss the functionality of and motivation 
for these new features.

The Outstanding Five
A key goal of SYCL 2020 is to align SYCL with ISO C++, which has two benefits. First, it ensures that SYCL 
feels natural to C++ programmers. Second, it allows SYCL to act as a proving ground for multivendor, 
multiarchitecture solutions to heterogeneous programming that may inform other C++ libraries (and 
perhaps ISO C++ itself).

Many of the syntactic changes in SYCL 2020 are a result of updating the base language from C++11 to 
C++17, enabling developers to take advantage of features such as class template argument deduction 
(CTAD) and deduction guides. But there are many new features, too! In this article, we choose to highlight 
five features new in SYCL 2020 and talk a little about why they matter.

1. Backends open the door for SYCL implementations built on other languages/frameworks besides 
OpenCL, enabling SYCL to target a wider variety of hardware.

2. Unified shared memory (USM) is a pointer-based access model, which serves as an alternative to the 
buffer/accessor model from SYCL 1.2.1.

3. Reductions are a common programming pattern, which SYCL 2020 accelerates via a “built-in” library.

4. The group library provides abstractions for cooperative work items, yielding additional application 
performance and programmer productivity through alignment with underlying hardware capabilities 
(regardless of vendor).

5. Atomic references aligned with the C++20 std::atomic_ref extend the C++ memory model to 
heterogeneous devices.

Together, these additions help to establish the SYCL ecosystem as one that is open, multivendor, and 
multiarchitecture, enabling C++ programmers to fully utilize the potential of heterogeneous computing 
now and into the future.

1. Backends
With the introduction of backends, SYCL 2020 opens the door to implementations built on other 
languages/frameworks besides OpenCL. Consequently, the namespace has shortened to just sycl::, 
rather than cl::sycl::, and the SYCL header file has moved from <CL/sycl.hpp> to  
<sycl/sycl.hpp>.
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The changes here are not simply cosmetic and have profound implications for SYCL. Although 
implementations are still free to build atop OpenCL (and many do), support for generic backends has 
transformed SYCL into a programming model that can target a larger variety of heterogeneous APIs  
and hardware. SYCL is now able to act as the “glue” between C++ applications and vendor-specific 
libraries, allowing developers to target a range of platforms more easily — and without having to change 
their code.

SYCL 2020 delivers on being truly open, cross-architecture, and cross-vendor. 

The open source DPC++ compiler project, which is implementing SYCL 2020 in LLVM (clang), takes 
advantage of this new flexibility to support NVIDIA, AMD, and Intel® GPUs. SYCL 2020 delivers on being 
truly open, cross-architecture, and cross-vendor (Figure 1).

2. Unified Shared Memory
Some devices can support a unified view of memory with the host (CPU). SYCL 2020 calls this unified 
shared memory (USM), and it enables a pointer-based access model that serves as an alternative to the 
buffer/accessor model from SYCL 1.2.1.

Programming with USM has two key advantages. First, USM supplies a single, unified address space 
across host and device; pointers to USM allocations are consistent across devices and can be directly 
passed to kernels as arguments. This greatly simplifies the porting of existing pointer-based C++ and 

Figure 1. SYCL implementations targeting multiple backends, from https://www.khronos.org/sycl/.
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CUDA code to SYCL. Second, USM enables shared allocations that migrate automatically across devices, 
improving programmer productivity and providing compatibility with C++ containers (e.g., std::vector) 
and C++ algorithms (via oneDPL, Figure 2). 

sycl::usm_allocator<int, sycl::usm::alloc::shared> alloc(q.get_context(),              
                                                         q.get_device()); 
std::vector<int, decltype(alloc)> vec(n, alloc);

auto policy = oneapi::dpl::execution::make_device_policy(q); 
std::fill(policy, vec.begin(), vec.end(), 0);

 
The three different types of USM allocations provide programmers with as much or as little control over 
data movement as desired. Device allocations give programmers complete control over data movement 
in their applications. Host allocations are useful when data is used so infrequently that moving it is 
not worth the cost, or when the size of your data exceeds the memory of a device. Shared allocations 
are a happy medium that can automatically migrate to where they are being used, benefitting both 
performance and productivity.

3. Reductions
The SYCL 2020 approach to reductions was informed by other C++ reduction solutions, including the 
proposal in P0075 and the features implemented by the Kokkos and RAJA libraries.

Using the reducer class and the reduction function greatly simplifies the expression of variables with 
reduction semantics in SYCL kernels. It also gives implementations the freedom to employ compile-time 
specialization of reduction algorithms, providing high performance on a wide range of devices from many 
vendors.

For a real-life example of the improvements offered by SYCL 2020 reductions, we need look no further 
than the popular BabelStream benchmark, developed by the University of Bristol. BabelStream includes 
a simple dot product kernel that computes a floating-point summation across all work items in a 
kernel. The SYCL 1.2.1 version is 43 lines long, uses a specific algorithm (a tree reduction in work-group 
local memory), and requires the user to select the best work-group size for the device (Figure 3). Not 
only is the SYCL 2020 version shorter (at only 20 lines long), but it also has the potential to be more 
performance portable by leaving the selection of algorithm and work-group size to the implementation 
(Figure 4).

Figure 2. Using USM with C++ containers and algorithms, from our book examples.
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template <class T> 
T SYCLStream<T>::dot() 
{ 
  queue->submit([&](handler &cgh) 
  { 
    auto ka   = d_a->template get_access<access::mode::read>(cgh); 
    auto kb   = d_b->template get_access<access::mode::read>(cgh); 
    auto ksum = d_sum->template get_access<access::mode::write>(cgh);

    auto wg_sum = accessor<T, 1, access::mode::read_write, 
access::target::local>(range<1>(dot_wgsize), cgh);

    size_t N = array_size; 
    cgh.parallel_for<dot_kernel>(nd_range<1>(dot_num_groups*dot_wgsize, dot_wgsize), 
[=](nd_item<1> item) 
    { 
      size_t i = item.get_global_id(0); 
      size_t li = item.get_local_id(0); 
      size_t global_size = item.get_global_range()[0];

      wg_sum[li] = 0.0; 
      for (; i < N; i += global_size) 
        wg_sum[li] += ka[i] * kb[i];

      size_t local_size = item.get_local_range()[0]; 
      for (int offset = local_size / 2; offset > 0; offset /= 2) 
      { 
        item.barrier(cl::sycl::access::fence_space::local_space); 
        if (li < offset) 
          wg_sum[li] += wg_sum[li + offset]; 
      }

      if (li == 0) 
        ksum[item.get_group(0)] = wg_sum[0]; 
    }); 
  });

  T sum = 0.0; 
  auto h_sum = d_sum->template get_access<access::mode::read>(); 
  for (int i = 0; i < dot_num_groups; i++) 
  { 
    sum += h_sum[i]; 
  }

  return sum; 
}

Figure 3. SYCL 1.2.1 version of BabelStream's dot product kernel.
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template <class T> 
T SYCLStream<T>::dot() 
{ 
  queue->submit([&](sycl::handler &cgh) 
  { 
    sycl::accessor ka {d_a, cgh, sycl::read_only}; 
    sycl::accessor kb {d_b, cgh, sycl::read_only};

    cgh.parallel_for(sycl::range<1>{array_size}, 
      sycl::reduction(d_sum, cgh, std::plus<T>(), 
sycl::property::reduction::initialize_to_identity{}), 
      [=](sycl::id<1> idx, auto& sum) 
      { 
        sum += ka[idx] * kb[idx]; 
      }); 
  });

  sycl::host_accessor result {d_sum, sycl::read_only}; 
  return result[0]; 
}

4. Group Library
SYCL 2020 expands on the work-group abstraction from SYCL 1.2.1 with a new sub-group abstraction 
and a library of group-based algorithms.

The sub_group class represents the set of cooperative work items within a kernel that are running 
”together,” providing a portable abstraction for the underlying hardware capabilities of different vendors. 
In the DPC++ compiler, sub-groups always map to an important hardware concept — SIMD vectorization 
on Intel® architectures, “warps” on NVIDIA architectures, and “wavefronts” on AMD architectures — and 
enable low-level performance tuning for SYCL applications.

In another example of close alignment with ISO C++, SYCL 2020 introduces a selection of group-based 
algorithms based on the C++17 algorithms: all_of, any_of, none_of, reduce, exclusive_scan 
and inclusive_scan. Each algorithm is supported at different scopes, enabling SYCL implementations 
to provide highly tuned, cooperative versions of these functions using work-group and/or sub-group 
parallelism.

The group library in SYCL 2020 lays the groundwork for more group types and a wider range of group-
based algorithms — watch this space!

Figure 4. SYCL 2020 version of BabelStream's dot product kernel.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en


Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

36The Parallel Universe

5. Atomic References
C++20 took a big step forward with its atomics, introducing the ability to wrap types in an atomic 
reference (std::atomic_ref). SYCL 2020 adopts and extends this design (as sycl::atomic_ref) 
with support for address spaces and memory scopes, resulting in an atomic reference implementation 
fully prepared for the diverse world of heterogeneous computing.

SYCL does not deviate from ISO C++ lightly, and the concept of memory scopes was considered essential 
for enabling portable programming without sacrificing performance. Heterogeneous systems have 
complex memory hierarchies that shouldn't be ignored (Figure 5).

 
Memory models and atomics are complex beasts and so, in order to support as many devices as 
possible, SYCL does not require all devices to support the full C++ memory model. Rather, SYCL provides 
a rich array of different device capabilities — another great example of being open to devices from any 
vendor.

Figure 5. Using memory scopes enables atomic references to specify which memory must be 
made consistent, providing fine-grain control over which work-items and devices can "see" 

memory updates.
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Beyond SYCL 2020: Vendor Extensions
SYCL 2020's expanded support for more backends and hardware has encouraged the development of 
more vendor extensions. These extensions enable innovation that offers practical solutions today for 
devices that need it and informs the direction of future SYCL standards. Extensions are an important 
part of the standardization process — several features highlighted in this article were informed in part by 
extensions explored by the DPC++ compiler project.

In this section, we’ll briefly describe two new features supported in the DPC++ compiler project as SYCL 
2020 vendor extensions.

Group-local Memory at Kernel Scope
SYCL 1.2.1 supports group-local memory via local accessors, which must be declared outside of a kernel 
and captured as a kernel argument. For programmers coming from languages like OpenCL or CUDA, this 
can feel unnatural, and so we have designed an extension that allows group-local memory to be declared 
inside of a kernel function. This change makes kernels more self-contained and can inform compiler 
optimizations (when the amount of local memory is known at compile-time).

FPGA-specific Extensions
We’ve enabled Intel® FPGAs in the DPC++ compiler project. We think our extensions, or something close 
to them, can prove portable to FPGAs from all vendors as well. FPGAs fill an important segment of the 
accelerator spectrum, and we hope our pioneering work will inform future SYCL standards with our 
experiences along with other extension projects from other vendors.

We added FPGA selectors that make it easy to specifically acquire an FPGA hardware or FPGA emulation 
device. The latter enables fast prototyping, a critical consideration for software developers when 
targeting FPGAs. FPGA LSU controls give us tuning controls for FPGA load/store operations — we can 
explicitly request that the implementation of a global memory access is configured in a certain way. We 
added placement controls for data with external memory banks (e.g., DDR channel) for tuning FPGA 
designs via FPGA memory channel. Key tuning controls for FPGA high performance pipelining are 
enabled with FPGA register.
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Summary
Heterogeneity is here to stay. There is an increasing diversity of hardware options available, with many 
specializing in the pursuit of higher performance and performance-per-watt. This is a trend that will only 
increase the need for open, multivendor, and multiarchitecture programming models like SYCL.

We highlighted five new features in SYCL 2020 that help to fulfill its mission to enable portability and 
performance portability. With SYCL 2020, C++ programmers can fully use the potential of heterogeneous 
computing.

We invite you to sycl.tech to learn more. There you will find numerous online tutorials, a link for our SYCL 
book (available as a free PDF), and a link to the latest SYCL specification.
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Implement the Fourier Correlation Algorithm Using oneAPI (The Parallel Universe, Issue 44) showed how 
to compute the 1D cross-correlation of two signals using a combination of SYCL and oneMKL functions. 
The present article looks at 2D cross-correlation to find the best overlap of two similar images (Figure 
1). In addition to illustrating a 2D use case, this article expands on the previous work by comparing two 
approaches to write once, run anywhere heterogeneous parallelism: oneAPI and ArrayFire. [Editor’s 
note: Readers may be interested in ArrayFire Interoperability with oneAPI, Libraries, and OpenCL (The 
Parallel Universe, Issue 47)].

Henry A Gabb, Senior Principal Engineer and Editor-in-Chief of The Parallel Universe, 
Intel Corporation
Umar Arshad, Software Engineer, ArrayFire

A Side-by-Side Look at the ArrayFire and oneAPI 
Abstractions for Heterogeneous Parallelism

Accelerating the 2D Fourier 
Correlation Algorithm with 
ArrayFire and oneAPI
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The brute force summation shown in Figure 1 is inefficient and possibly infeasible for large problems, so 
like the previous 1D example, the 2D cross-correlation will also take advantage of the Fourier correlation 
algorithm to significantly reduce the computational complexity (Figure 2). The 2D Fourier correlation is 
implemented using both approaches, and the codes are shown side-by-side to illustrate their differences 
and relative strengths.

Figure 1. Finding the optimal alignment of two images (represented as binary, square matrices), 
where (α, β) is the displacement of img2 relative to img1. Note that the second image is circularly 

shifted when computing the correlation.
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The 2D oneAPI implementation also illustrates differences and improvements over the previous 1D 
implementation. First, multidimensional Fourier transforms in oneMKL must account for data layout in 
the real and complex domains. This is demonstrated in the oneAPI examples below. Second, the 1D 
implementation used a MAXLOC reduction operator written in SYCL. The 2D implementation replaces 
this code with standard functions from the oneAPI DPC++ Library (oneDPL). This makes the code clearer 
and much more succinct.

Implementing the Fourier Correlation Algorithm
Ideally, the entire computation should be performed on the device once the images are loaded into the 
device memory. Only the final displacement (two scalars in the 2D correlation) is needed by the host. Any 
other host-device data transfer is unnecessary, and will hurt performance, especially if the images are 
large.

Figure 2. The Fourier correlation algorithm in four steps. DFT is the discrete Fourier transform, IDFT 
is the inverse DFT, CONJG is the complex conjugate, and MAXLOC is the location of the maximum 

correlation score.
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Accelerator Offload with ArrayFire
It is easy to implement the Fourier correlation algorithm in ArrayFire because each step in Figure 2 
practically maps to a single statement (Figure 3). Even without the comments, this code should be 
readable by programmers familiar with C++ or MATLAB, Fortran, and NumPy array notation. There are no 
explicit loops in this code, and there is no explicit host-device data transfer or device offload. The coding 
abstraction is implicitly data parallel, so these details are handled by the ArrayFire runtime library.

#include <iostream> 
#include <arrayfire.h>

int main(int argc, char **argv) 
{ 
    // Select a device and display ArrayFire info 
    af::setDevice(0); 
    af::info();

    // Allocate and initialize 2D image array (Note: ArrayFire is column-major.) 
    unsigned int n_rows = 8, n_cols = 8;

    auto img1 = af::constant(0.0, n_rows, n_cols, af::dtype::f32); 
    auto img2 = af::constant(0.0, n_rows, n_cols, af::dtype::f32); 
    auto corr = af::constant(0.0, n_rows, n_cols, af::dtype::f32);

    img1(af::seq(4, 5), af::seq(5, 6)) = 1.0f;  // Set elements in the lower right of the first image 
    img2(af::seq(1, 2), af::seq(1, 2)) = 1.0f;  // Set elements in the upper left of the second image

    // Step 1: Compute DFT(img1) and DFT(img2) 
    img1 = af::fftR2C<2>(img1, 0.0); 
    img2 = af::fftR2C<2>(img2, 0.0);

    // Step 2: Compute DFT(img1) * CONJG(DFT(img2)) 
    corr = img1 * af::conjg(img2);

    // Step 3: Perform inverse DFT 
    corr = af::fftC2R<2>(corr, 0.0);

    // Step 4: Find the optimal displacement of img2 relative to img1 
    af::array max_score, shift; 
    af::max(max_score, shift, af::flat(corr));

    auto max_corr = max_score.scalar<float>(); 
    auto s = shift.scalar<unsigned>(); 
    int x_shift = s / n_cols; 
    int y_shift = s % n_rows;

    std::cout << std::endl << "Shift the second image (x, y) = (" << x_shift << ", " << y_shift 
              << ") elements relative to the first image to get a maximum," << std::endl 
              << "normalized correlation score of " << max_corr 
              << ". Treat the images as circularly shifted versions of each other." << std::endl; 
}

Figure 3. Fourier correlation algorithm implemented using ArrayFire.
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Most ArrayFire functions are asynchronous, so the caller proceeds without waiting for the function to 
return. Function calls are added to an internal, in-order device queue. However, explicit synchronization 
can be used to wait until the queue is empty. For example:

The sync statement forces the caller to wait until the two forward transforms are finished.

ArrayFire also does lazy evaluation of some computations. In this case, it stores the order of instructions, 
but it does not submit work to the device queue until the result is needed. Only then will a kernel 
be generated and added to the queue. The multiply-by-conjugate statement is an example of lazy 
evaluation:

The eval statement forces a kernel to be created and added to the queue. The sync statement forces 
the caller to wait until the multiply-by-conjugate operation is finished.

Accelerator Offload with oneAPI
Implementing a 1D Fourier correlation using oneAPI has been demonstrated in a previous article and 
webinar. The principles are the same for the 2D case, so rather than explain each step of the oneAPI 
implementation, this section will compare the oneAPI and ArrayFire code and highlight differences 
between these two approaches to heterogeneous parallelism.

Initializing the Images on the Device
Data movement between the host CPU and various accelerator devices is an important consideration 
in heterogeneous parallel programming. If some steps of an algorithm are performed on the host and 
others on the device, back-and-forth data transfer could limit the performance benefit of accelerator 
offload. Fortunately, each step of the Fourier correlation algorithm can be done on the device. Once the 
images are transferred to the device memory, they do not need to be transferred back to the host.

The ArrayFire and SYCL code to initialize the data on the device is shown in Figure 4. The same artificial 
images from Figure 1 are used for the sake of simplicity. After setting the offload device, the ArrayFire 
code initializes the data using convenience functions and array syntax (Figure 4, left). Likewise, the 
oneAPI code initializes a SYCL queue for the default device, allocates sufficient space in the unified 
shared memory for an in-place, real-to-complex transform, and defines the data layout (Figure 4, 
right). (Describing the data layout for multidimensional DFTs is beyond the scope of this article, but 

    // Step 1: Compute DFT(img1) and DFT(img2) 
    img1 = af::fftR2C<2>(img1, 0.0); 
    img2 = af::fftR2C<2>(img2, 0.0); 
    af::sync();

    // Step 2: Compute DFT(img1) * CONJG(DFT(img2)) 
    corr = img1 * af::conjg(img2); 
    corr.eval(); 
    af::sync();
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the FFTW documentation provides a good overview.) The SYCL code performs the initialization on the 
device by submitting work to the SYCL queue (that is, the parallel_for and single_task kernels). 
SYCL queues are asynchronous, so these kernels are explicitly told to wait for the work to finish before 
proceeding. 

af::setDevice(0);

auto img1 = af::constant(0.0, 
                         n_rows, 
                         n_cols, 
                         af::dtype::f32); 
auto img2 = af::constant(0.0, 
                         n_rows, 
                         n_cols, 
                         af::dtype::f32); 
auto corr = af::constant(0.0, 
                         n_rows, 
                         n_cols, 
                         af::dtype::f32);

img1(af::seq(4, 5), af::seq(5, 6)) = 1.0f; 
img2(af::seq(1, 2), af::seq(1, 2)) = 1.0f;

// Initialize SYCL queue 
sycl::queue Q(sycl::default_selector{});

// Allocate 2D image and correlation arrays 
auto img1 = sycl::malloc_shared<float>(n_rows*n_cols*2+2, Q); 
auto img2 = sycl::malloc_shared<float>(n_rows*n_cols*2+2, Q); 
auto corr = sycl::malloc_shared<float>(n_rows*n_cols*2+2, Q);

// Set generalized strides for row-major addressing 
int r_stride = 1; 
int c_stride = (n_cols / 2 + 1) * 2; 
int c_stride_h = (n_cols / 2 + 1);

// Initialize input images with artificial data. 
// Do initialization on the device. 
Q.parallel_for<>(sycl::range<2>{n_rows, n_cols}, 
                 [=](sycl::id<2> idx) 
{ 
   unsigned int r = idx[0]; 
   unsigned int c = idx[1]; 
   img1[r * c_stride + c * r_stride] = 0.0; 
   img2[r * c_stride + c * r_stride] = 0.0; 
   corr[r * c_stride + c * r_stride] = 0.0; 
}).wait();

Q.single_task<>([=]() 
{ 
   // Set elements in lower right of the first image 
   img1[4 * c_stride + 5 * r_stride] = 1.0; 
   img1[4 * c_stride + 6 * r_stride] = 1.0; 
   img1[5 * c_stride + 5 * r_stride] = 1.0; 
   img1[5 * c_stride + 6 * r_stride] = 1.0;

   // Set elements in upper left of the second image 
   img2[1 * c_stride + 1 * r_stride] = 1.0; 
   img2[1 * c_stride + 2 * r_stride] = 1.0; 
   img2[2 * c_stride + 1 * r_stride] = 1.0; 
   img2[2 * c_stride + 2 * r_stride] = 1.0; 
}).wait();

Figure 4. Initializing the data on the device using ArrayFire (left) and SYCL (right).
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The host should not modify the data once it is in the device memory because this will trigger 
unnecessary host-device transfer. Notice that the image elements are set using a single_task kernel. 
Without this kernel, the elements would be set on the host, forcing the oneAPI runtime to make the host 
and device data consistent. This could hurt performance if the data is large (e.g., volumetric images from 
medical imaging applications).

The ArrayFire code is more compact and intuitive. The oneAPI code is more explicit about where data 
is allocated and where and when computation is performed. It is also more consistent with FFTW, the 
popular open-source fast Fourier transform package.

Step 1: Performing the Forward Transforms
Once again, the ArrayFire code is simple and intuitive (Figure 5, left). The function call specifies a 2D 
real-to-complex (R2C), unnormalized FFT with precision defined by the input data. The oneMKL DFT 
descriptor approach (Figure 5, right), while not as compact, is familiar to previous MKL DFTI and FFTW 
users. The oneMKL code initializes a descriptor for a single-precision, real-to-complex transform of 
the required size and dimensionality, commits this descriptor to the SYCL queue, and then computes 
the forward transforms. The compute_forward function returns a SYCL event that is used later for 
synchronization. 

img1 = af::fftR2C<2>(img1, 0.0); 
img2 = af::fftR2C<2>(img2, 0.0);

// Initialize FFT descriptor 
oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::SINGLE, 
                             oneapi::mkl::dft::domain::REAL> 
                                       forward_plan({n_rows, n_cols});

// Data layout in real domain 
std::int64_t real_layout[4] = {0, c_stride, 1};

// Data layout in conjugate-even domain 
std::int64_t complex_layout[4] = {0, c_stride_h, 1};

forward_plan.set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, 
                       real_layout); 
forward_plan.set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, 
                       complex_layout); 
forward_plan.commit(Q);

auto evt1 = oneapi::mkl::dft::compute_forward(forward_plan, img1); 
auto evt2 = oneapi::mkl::dft::compute_forward(forward_plan, img2);

Figure 5. Performing the forward transforms (real-to-complex) on the device using ArrayFire (left) 
and oneMKL (right).
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Step 2: Complex Conjugate Multiplication
ArrayFire and oneMKL use different approaches to perform the multiply-by-conjugate operation. 
ArrayFire uses a straightforward array notation (Figure 6, left). The programmer does not have to specify 
the device or data layout. oneMKL provides a convenient mulbyconj function (Figure 6, right). The 
mulbyconj function is more complex, but it gives the programmer explicit control over the data layout 
and where and when the computation runs (i.e., the SYCL queue and events). 

corr = img1 * af::conjg(img2); oneapi::mkl::vm::mulbyconj(Q, n_rows * c_stride_h, 
                           reinterpret_cast<std::complex<float>*>(img1), 
                           reinterpret_cast<std::complex<float>*>(img2), 
                           reinterpret_cast<std::complex<float>*>(corr), 
                           {evt1, evt2}).wait();

 
Step 3: Performing the Backward Transform
The code for steps 1 and 3 is similar except that only a single complex-to-real transform is performed. 
The ArrayFire code (Figure 7, left) calls fftC2R instead of the fftR2C function. The oneMKL code 
(Figure 7, right) initializes a new DFT descriptor specifying the complex-to-real data layout. 

corr = af::fftC2R<2>(corr, 0.0); oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::SINGLE, 
                             oneapi::mkl::dft::domain::REAL> 
                                       backward_plan({n_rows, n_cols});

// Data layout in conjugate-even domain 
backward_plan.set_value(oneapi::mkl::dft::config_param::INPUT_STRIDES, 
                        complex_layout);

// Data layout in real domain 
backward_plan.set_value(oneapi::mkl::dft::config_param::OUTPUT_STRIDES, 
                        real_layout); 
backward_plan.commit(Q);

auto bwd = oneapi::mkl::dft::compute_backward(backward_plan, corr); 
bwd.wait();

Figure 6. Complex conjugate multiplication using ArrayFire (left) and oneMKL (right).

Figure 7. Performing the backward transforms (complex-to-real) on the device using 
ArrayFire (left) and oneMKL (right).
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Step 4: MAXLOC Reduction
The SYCL MAXLOC reduction operator used in previous experiments added complexity to the code (see 
fcorr_1d_usm.cpp). oneDPL provides the same functionality in two functions that will be familiar to 
C++ programmers: max_element and distance. The MAXLOC reduction shown in Figure 8 (right) uses 
the oneDPL implementations of these functions. The SYCL queue tells max_element where to perform 
the computation. It is worth noting that unlike SYCL kernels, oneDPL algorithms are synchronous so 
there are no explicit wait statements.

The ArrayFire code (Figure 8, left) is not as straightforward as previous steps. The af::flat function 
flattens the 2D corr array, and then the af::max function finds the maximum correlation score and 
its location in the flattened array. This location is converted to the x- and y-shift that gives the optimal 
alignment of the two images, taking into account that ArrayFire is column-major (as noted in Figure 3). 
The oneDPL code (Figure 8, right) performs similar operations, but must take the oneMKL data layout 
into account. 

af::array max_score, shift; 
af::max(max_score, shift, af::flat(corr));

auto max_corr = max_score.scalar<float>(); 
auto s = shift.scalar<unsigned>(); 
int x_shift = s / n_cols; 
int y_shift = s % n_rows;

auto policy = oneapi::dpl::execution::make_device_policy(Q); 
auto maxloc = oneapi::dpl::max_element(policy,  
                            corr, 
                            corr + (n_rows * n_cols * 2 + 2));

auto s = oneapi::dpl::distance(corr, maxloc); 
float max_corr = corr[s]; 
int x_shift = s % (n_cols + 2); 
int y_shift = s / (n_rows + 2); 

Conclusions
The oneAPI and ArrayFire approaches both accomplish the goal of write once, run anywhere 
heterogeneous parallelism. Performance is not discussed because the entire 2D Fourier correlation 
computation is done in oneAPI or ArrayFire libraries. The separation of concerns between applications 
developers and compiler/library developers is a recurring theme in The Parallel Universe. The latter 
group is primarily concerned with performance and computing efficiency. The former group is primarily 
concerned with solving a problem as productively as possible. If you’re in this group, you probably prefer 
high-level programming abstractions that still deliver performance. It’s a reasonable expectation that the 
libraries will give good performance.

ArrayFire provides a higher level of abstraction, so the ArrayFire Fourier correlation implementation is 
more concise. Its array notation will be familiar to Fortran, MATLAB, and Python NumPy programmers. 

Figure 8. Performing the MAXLOC reduction in ArrayFire (left) and oneDPL (right).
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ArrayFire also has a Python API. Lazy evaluation means the runtime controls when computations are 
launched, but as noted above, programmers can take control if they want to.

The oneAPI implementation is more verbose because it gives the programmer more control over host-
device data transfer and where and when computations are performed. The oneMKL DFT descriptors 
and data layout will be familiar to previous MKL DFTI and FFTW users. In fact, Intel® oneAPI Math Kernel 
Library supports the FFTW interface. Finally, oneDPL functions will be familiar to C++ programmers.

Ultimately, project requirements and personal preference will guide the choice between oneAPI and 
ArrayFire.
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What Is the Maxloc Operation?
Finding the location of the maximum value (maxloc) is a common search operation performed on arrays. 
It’s such a common operation that many programming languages and libraries provide intrinsic maxloc 
functions: the NumPy argmax, Fortran maxloc, BLAS amax, and C++ max_element functions. The recent 
article, Optimize the Maxloc Operation Using Intel® AVX-512 Instructions (The Parallel Universe, Issue 46), 
explained how to vectorize maxloc searches for best performance. Obviously, it’s an important operation 
in many algorithms, including cross-correlation (Figure 1).

Henry A Gabb, Senior Principal Engineer and Editor-in-Chief of The Parallel Universe; 
Alexey Kukanov, Principal Middleware Engineer; and John Pennycook, Software Enabling 
and Optimization Architect, Intel Corporation

Implementing This Common Parallel Pattern in 
SYCL and oneDPL

The Maxloc Reduction 
in oneAPI
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The previous article, Implement the Fourier Correlation Algorithm Using oneAPI (The Parallel Universe, 
Issue 44), showed how to compute the 1D cross-correlation of two signals using a combination of 
SYCL and oneMKL functions, but the final maxloc step was ommitted (Figure 2). Steps 1 through 
3 were offloaded to the accelerator device, but step 4 was computed on the host CPU. This means 
that the final correlation array had to be transferred back to the host. Ideally, the entire computation 
should be performed on the device once the signals are loaded into the device memory. Only the final 
displacement (a single scalar in the 1D correlation) is needed by the host. Any other host-device data 
transfer is unnecessary and could hurt performance. Therefore, we've been experimenting with different 
ways to perform maxloc on the device, which is the subject of the present article.

Figure 1. Finding the displacement that gives the maximum overlap of two discrete signals 
(represented as binary arrays), where α is the number of elements by which sig2 is shifted 

relative to sig1. Note that the second signal is circularly shifted when computing the correlation.
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Reduction Operators in SYCL*

Reduction is a common parallel pattern that reduces several values to a single value. For example, a 
summation reduction adds the values in an array to get a single sum. Finding the minimum or maximum 
value in an array, or the locations of those values, are also reduction operations. SYCL* provides a built-in 
reduction operator that can be used in parallel kernels (Figure 3).

Figure 2. The maxloc reduction is the last step of the Fourier correlation algorithm. DFT is 
the discrete Fourier transform, IDFT is the inverse DFT, CONJG is the complex conjugate, and 

MAXLOC is the location of the maximum correlation score.
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It is possible to implement other operators, like maxloc, using the SYCL reduction class (Figure 4). This 
code was adapted from the minloc example in Data Parallel C++: Mastering DPC++ for Programming of 
Heterogeneous Systems Using C++ and SYCL (Chapter 14, Common Reduction Patterns, pp. 334–339). 
Note that SYCL queues are asynchronous, so the wait statement ensures that the computation is finished 
before proceeding.

#include <CL/sycl.hpp> 
#include <iostream>

int main() {

    sycl::queue Q; 
    std::cout << "Running on: " << Q.get_device().get_info<sycl::info::device::name>() << std::endl;

    int sum; 
    std::vector<int> data{1, 1, 1, 1, 1, 1, 1, 1};

    sycl::buffer<int> sum_buf(&sum, 1); 
    sycl::buffer<int> data_buf(data);

    Q.submit([&](sycl::handler& h) 
    { 
        sycl::accessor buf_acc{data_buf, h, read_only};

        h.parallel_for(sycl::range<1>{8}, 
                       sycl::reduction(sum_buf, h, std::plus<>()), 
                       [=](sycl::id<1> idx, auto& sum) 
        { 
            sum += buf_acc[idx]; 
        }); 
    }); 
    sycl::host_accessor result{sum_buf, read_only}; 
    std::cout << "Sum equals " << result[0] << std::endl;

    return 0; 
}

Figure 3. Example of summation reduction in SYCL.
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This example is a straightforward use of the SYCL reduction class, but there are ways to tune for the 
underlying architecture. The previous articles, Reduction Operations in Data Parallel C++ (The Parallel 
Universe, Issue 44) and Analyzing the Performance of Reduction Operations in DPC++ (The Parallel 
Universe, Issue 45), give examples of different implementations and their performance characteristics. 
With the built-in reduction operator, however, compiler and library developers bear the optimization 
burden. Application developers can reasonably expect that the built-in implementation will deliver good 
performance on the target CPU or accelerator.

#include <iostream> 
#include <CL/sycl.hpp>

template <typename T, typename I> 
using maxloc = sycl::maximum<std::pair<T, I>>;

constexpr size_t L = 1;

int main(int argc, char **argv) 
{ 
   sycl::queue Q; 
   const size_t n = 7; 
   float* data = sycl::malloc_shared<float>(n, Q); 
   data[0] = 1; data[1] = 1; data[2] = 1; data[3] = 2; data[4] = 1; data[5] = 1; data[6] = 1;

   std::pair<float, int>* max_res = sycl::malloc_shared<std::pair<float, int>>(1, Q); 
   std::pair<float, int> max_identity = { 
       std::numeric_limits<float>::min(), std::numeric_limits<int>::min() 
   }; 
   *max_res = max_identity; 
   auto red_max = sycl::reduction(max_res, max_identity, maxloc<float, int>());

   Q.parallel_for(sycl::nd_range<1>{n, L}, red_max, [=](sycl::nd_item<1> item, auto& max_res) { 
       int i = item.get_global_id(0); 
       std::pair<float, int> partial = {data[i], i}; 
       max_res.combine(partial); 
   }).wait();

   std::cout << "Maximum value = " << max_res->first << " at element " << max_res->second << std::endl;

   sycl::free(data, Q.get_context()); 
   sycl::free(max_res, Q.get_context());

   return 0; 
}

Figure 4. Implementing maxloc as a SYCL reduction operator.
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Doing the Same Reduction with oneDPL
The Intel® oneAPI Data Parallel C++ Library (oneDPL) provides an alternative for programmers who would 
rather call a function than use the SYCL reduction class. From Data Parallel C++ (p. 339):

“The C++ Standard Template Library (STL) contains several algorithms which correspond to the 
parallel patterns... The algorithms in the STL typically apply to sequences specified by pairs of 
iterators and — starting with C++17 — support an execution policy argument denoting whether they 
should be executed sequentially or in parallel. [oneDPL] leverages this execution policy argument 
to provide a high-productivity approach to parallel programming that leverages kernels written 
in DPC++ under the hood. If an application can be expressed solely using functionality of the STL 
algorithms, oneDPL makes it possible to make use of the accelerators in our systems without writing 
a single line of DPC++ kernel code!”

There’s a lot to like in this description, but let's highlight two points:

1. C++ STL: The functions will be familiar to C++ programmers.

2. High productivity: The coding and performance burden is on the STL developers, where it belongs. The 
application developer can access an accelerator without writing lower-level SYCL kernels.

The advantages become apparent when you compare the kernel-based maxloc code (Figure 4) to the 
oneDPL implementation (Figure 5). The latter uses the familiar max_element function to perform the 
maxloc reduction. SYCL kernels are leveraged “under the hood,” as noted in the previous quote. The 
oneDPL default execution policy places the computation on an accelerator if one is available. Otherwise, 
the computation runs on the host CPU.

#include <oneapi/dpl/algorithm> 
#include <oneapi/dpl/execution> 
#include <oneapi/dpl/iterator> 
#include <iostream>

int main() 
{ 
   std::vector<int> data{1, 1, 1, 2, 1, 1, 1};

   auto policy = oneapi::dpl::execution::dpcpp_default; 
   auto maxloc = oneapi::dpl::max_element(policy, data.cbegin(), data.cend());

   std::cout << "Run on " 
             << policy.queue().get_device().template get_info<sycl::info::device::name>() 
             << std::endl; 
   std::cout << "Maximum value is at element " << oneapi::dpl::distance(data.cbegin(), maxloc) << std::endl;

   return 0; 
}

Figure 5. Basic maxloc reduction using the oneDPL max_element and distance functions and 
implicit host-device data transfer.
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Notice that host-device data transfer is being handled implicitly in Figure 5. The oneDPL runtime 
automatically wraps the data in a temporary buffer if the computation is being offloaded to an 
accelerator. In a larger oneAPI program, it’s possible that the data are already in SYCL buffers, so oneDPL 
functions accept buffers and can iterate over them (Figure 6). Whether the buffered data are transferred 
to the device implicitly or explicitly (i.e., via SYCL buffers), the buffers don’t need to be transferred back to 
the host unless they are modified, thus avoiding unnecessary overhead.

The oneDPL functions also accept pointers to unified shared memory (USM) to handle host-device data 
transfer (Figure 7). In this example, space is allocated in the appropriate USM, using the SYCL  
malloc_shared function and a SYCL queue. The same queue is used to set the oneDPL execution 
policy. It is worth noting that oneDPL algorithms are synchronous, so there are no explicit wait 
statements in Figures 5–7. SYCL kernels, on the other hand, are asynchronous.

#include <oneapi/dpl/algorithm> 
#include <oneapi/dpl/execution> 
#include <oneapi/dpl/iterator> 
#include <iostream>

int main() 
{ 
   std::vector<int> data{1, 1, 1, 2, 1, 1, 1}; 
   sycl::buffer<int> data_buf(data);

   auto policy = oneapi::dpl::execution::dpcpp_default; 
   auto maxloc = oneapi::dpl::max_element(policy, oneapi::dpl::begin(data_buf), oneapi::dpl::end(data_buf));

   std::cout << "Run on " 
             << policy.queue().get_device().template get_info<sycl::info::device::name>() 
             << std::endl; 
   std::cout << "Maximum value is at element "  
         << oneapi::dpl::distance(oneapi::dpl::begin(data_buf), maxloc) << std::endl;

   return 0; 
}

Figure 6. Maxloc reduction using oneDPL and SYCL buffering for explicit host-device data transfer.
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When Should I Use a SYCL Reduction or oneDPL?
Like many programming questions, there’s no definitive answer. There are valid reasons for using one 
or the other approach. It depends on your requirements. If oneDPL provides an algorithm that matches 
your requirements, calling a standard function is simpler than writing a SYCL kernel. For example, if 
there’s already a big array in device memory and only the scalar output from the reduction is required 
by the host, calling the oneDPL function is probably best. However, the function call is synchronous, so 
the program blocks until the function returns, which is not always desirable. The SYCL reduction is more 
complicated, but it is asynchronous, more flexible, and provides more tuning opportunities. For example, 
if you’re transforming the data on which the reduction is being performed or performing multiple 
reductions simultaneously, writing a SYCL kernel might be preferable.

#include <oneapi/dpl/algorithm> 
#include <oneapi/dpl/execution> 
#include <oneapi/dpl/iterator> 
#include <iostream>

int main() 
{ 
   sycl::queue Q(sycl::default_selector{}); 
   auto policy = oneapi::dpl::execution::make_device_policy(Q);

   const size_t n = 7; 
   auto data = sycl::malloc_shared <int>(n, Q);

   data[0] = 1; data[1] = 1; data[2] = 1; data[3] = 2; data[4] = 1; data[5] = 1; data[6] = 1;

   auto maxloc = oneapi::dpl::max_element(policy, data, data + n);

   std::cout << "Run on " 
             << policy.queue().get_device().template get_info<sycl::info::device::name>() 
             << std::endl; 
   std::cout << "Maximum value is at element " << oneapi::dpl::distance(data, maxloc) << std::endl;

   sycl::free(data, Q); 
   return 0; 
}

Figure 7. Maxloc reduction using oneDPL and USM for host-device data transfer.
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The separation of concerns between applications developers and compiler/library developers is a 
recurring theme in The Parallel Universe. The latter group is primarily concerned with performance and 
computing efficiency. The former group is primarily concerned with solving a problem as productively as 
possible. If you’re in this group, you probably prefer high-level programming abstractions that still deliver 
performance. The SYCL maxloc reduction operator shown in Figure 4 is complicated, low level, and may 
require some architecture-specific tuning (e.g., of work-group sizes) to achieve best performance. The 
oneDPL examples shown in Figures 5–7 are simpler, familiar to C++ STL users, and versatile in terms of 
host-device data transfer. More importantly, they shift the tuning burden to oneDPL product developers 
who are mainly concerned about performance. Consequently, oneDPL functions should deliver good 
performance regardless of the underlying architecture. This is the promise of the oneAPI software 
abstraction for heterogeneous computing.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/developer/articles/technical/bridging-the-gap-between-domain-experts-and-tuning-experts.html


Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

59The Parallel Universe

We have come a long way since 2005 when Herb Sutter declared that “the free lunch is over,” referring 
to challenges that programmers face with emerging multicore processors. Today’s portfolio of 
computing architectures and accelerators is even richer and constantly growing: a development driven 
by fundamental limitations of semiconductors and the desire for more powerful, energy-efficient 
computing. The computing world is becoming more and more heterogeneous, which creates challenges 
for programmers.

Pablo Reble, Software Engineer, Intel Corporation

In a Heterogeneous Computing Landscape, Open 
Standards and Portability Are Your Allies

More Productive and  
Performant C++ 
Programming with oneDPL
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C++ is still among the five most popular programming languages (TIOBE ranks it #4 as of January 2022). 
Attributes like full control over memory management and support for generic programming make it a 
great language to tackle heterogeneous programming challenges. Developer productivity and the cost of 
code maintenance are common concerns when choosing a programming language. Fortunately, previous 
studies show that we can expect a productivity boost by combining parallel building blocks with C++ 
algorithms. For example, optimized, built-in implementations of common functions and patterns (e.g., 
reduction) for specific architectures improve both performance and developer productivity.1, 2

Our industry-leading implementation of the Intel® oneAPI Data Parallel C++ Library (oneDPL) was 
contributed to the open-source LLVM project. As a result, developer effort can be significantly reduced in 
a multithreaded world.1, 6

Supercharged Classic STL Algorithms
Boost your code with something old and something new.

The C++ language itself is evolving, and so is its standard template library (STL). For example, five years 
ago execution policies were added to the algorithms library so that even existing C++ codes can benefit 
from the ubiquitous parallelism of modern processors. You can think of oneDPL as a supercharged C++ 
STL that allows different vendors to implement accelerated versions of classic algorithms in a portable 
way.

oneDPL implements the C++ algorithms library using SYCL*:

“SYCL (pronounced ‘sickle’) is a royalty-free, cross-platform abstraction layer that enables code for 
heterogeneous processors to be written using standard ISO C++ with the host and kernel code for 
an application contained in the same source file.” 3

There is a learning curve for direct accelerator programming in SYCL. While C++ gives programmers full 
control over memory management, it has no concept of separate host and device memories. oneDPL 
relies on SYCL’s memory abstraction as a portable way to share data between host and device(s). oneDPL 
algorithm functions are ready to use, familiar to C++ programmers, and optimized for a variety of 
accelerators. This flattens the learning curve and improves code performance and developer productivity.

1 “The oneDPL library is built on top of SYCL and so it is particularly interesting to see that it outperforms native SYCL code.” 
Deakin et al. 2021 (p. 40)2
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Here’s a simple example to illustrate the power of oneDPL: 

This example offloads the common maxloc reduction (i.e., finding the element in the data set with 
the maximum value) to the accelerator specified in the execution policy. The included headers are 
conformant with ISO C++, and so is the blocking behavior of max_element. Data movement is handled 
implicitly in this example. In other words, the runtime automatically handles host-device data transfer by 
wrapping the data in a SYCL buffer if the computation is offloaded to an accelerator. Other modes exist 
that allow the programmer to explicitly control host-device data transfer.

In addition to parallel algorithm implementations in SYCL, oneDPL is supporting essential extensions for 
device programming such as custom iterators. To ensure interoperability across different platforms such 
extensions were added to the oneDPL specification.4

What’s Next?
A Look into the Crystal Ball

Let’s focus on some powerful, experimental oneDPL features that are currently under development but 
have not been fully baked into ISO C++, and how to get access to them:

 • C++20 introduces Ranges that can greatly improve expressiveness when using C++ STL algorithms. 
They extend the utility of algorithms by supporting more complex data access patterns with Views. 
All this with fewer lines of code. As of today, ISO C++ Ranges algorithms are not supporting execution 
policies, which means it lacks accelerator support. oneDPL enables Ranges for selected algorithms and 
provides extensions, such as custom SYCL views, to enable device programming.7

#include <oneapi/dpl/algorithm> 
#include <oneapi/dpl/execution> 
#include <oneapi/dpl/iterator> 
#include <iostream>

int main() 
{ 
   std::vector<int> data{1, 1, 1, 2, 1, 1, 1};

   auto policy = oneapi::dpl::execution::dpcpp_default; 
   auto maxloc = oneapi::dpl::max_element(policy, data.cbegin(), data.cend());

   std::cout << "Run on " 
             << policy.queue().get_device().template get_info<sycl::info::device::name>() 
             << std::endl; 
   std::cout << "Maximum value is at element " << oneapi::dpl::distance(data.cbegin(), maxloc) << std::endl;

   return 0; 
}
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 • Classic C++ algorithms are well defined, including the blocking behavior of their function calls. However, 
blocking the host processor is not always desirable when offloading computation to an accelerator. 
To allow interleaving of host-device execution and data transfer, a set of asynchronous algorithms 
have been added to oneDPL. Their functionality is similar to C++ algorithms, but without the blocking 
behavior. To control nonblocking behavior, a C++ future-like object is returned instead of the result 
directly.8

There’s more to come. Other exciting features like automatic device selection4 are planned for future 
release, so stay tuned and follow us on GitHub.

Final Thoughts
oneDPL provides C++ building blocks that combine high performance with high productivity across 
CPUs, GPUs, FPGAs, and other accelerators. It is based on open standards, and its specification ensures 
interoperability across different platforms. Intel’s reference implementation is a permissibly licensed 
open-source project.5
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