
Issue

47
2022

Vectorization in LLVM and
GCC for Intel CPUs and GPUs
Efficient Heterogeneous Parallel Programming
Using OpenMP

ArrayFire Interoperability with oneAPI, Libraries,
and OpenCL

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

2The Parallel UniverseContents
F

E
A

T
U

R
E

Letter from the Editor

Vectorization in LLVM and GCC for Intel CPUs and GPUs
SIMD Support Is Evolving Rapidly in Modern Compilers

Efficient Heterogeneous Parallel Programming Using OpenMP
Best Practices to Keep the CPU and GPU Working at the Same Time

ArrayFire Interoperability with oneAPI, Libraries, and OpenCL
Taking Advantage of oneAPI to Avoid Code Rewrites

Using the oneAPI Level Zero Interface
A Brief Introduction to the Level Zero API

Hyperparameter Optimization with SigOpt for MLPerf Training on
Habana Gaudi
Achieve Faster Convergence with Higher Accuracy in AI Training

Scale Your Pandas Workflow with Modin
Scalable Data Analytics with No Rewrite Required

From Ray to Chronos
Build End-to-End AI Use-Cases with BigDL on Top of Ray

3

5

17

22

29

38

50

55

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

3The Parallel Universe

oneAPI Continues Gaining Momentum
When I became editor of The Parallel Universe, I
noted in my first letter to readers that I dreaded the
heterogeneous parallel computing future. Five years
later, I’m downright optimistic about it, mainly because
of oneAPI™. Sanjiv Shah (Intel Vice President and
General Manager of Developer Software) is similarly
optimistic in his recent “Giving thanks for oneAPI
progress” blog. The new oneAPI v1.1 specification is
now live, and the provisional v1.2 specification adds
a lot of new features. Eleven new oneAPI Centers
of Excellence were launched around the world last
year. And finally, oneAPI won yet another HPCwire
Reader’s Choice Award, this time for 2021 Best HPC
Programming Tool or Technology. That’s a lot of
momentum going into 2022.

Our feature article in this issue, Vectorization in
LLVM and GCC for Intel CPUs and GPUs, describes how single instruction, multiple data (SIMD)
support is evolving in modern compilers. The authors show examples of automatic vectorization,
programmer-guided vectorization, and a data parallel library approach.

Efficient Heterogeneous Parallel Programming Using OpenMP shows some best practices to keep
both the CPU and GPU working at the same time. The authors provide advice and code examples to
express true asynchronous, heterogeneous parallelism using standard OpenMP directives.

3The Parallel Universe

Letter from the Editor
Henry A. Gabb, Senior Principal Engineer at Intel Corporation, is a longtime high-performance and
parallel computing practitioner who has published numerous articles on parallel programming. He
was editor/coauthor of “Developing Multithreaded Applications: A Platform Consistent Approach”
and program manager of the Intel/Microsoft Universal Parallel Computing Research Centers.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.oneapi.io/
https://www.linkedin.com/pulse/giving-thanks-oneapi-progress-sanjiv-shah?trk=public_post-content_share-article
https://www.linkedin.com/pulse/giving-thanks-oneapi-progress-sanjiv-shah?trk=public_post-content_share-article
https://www.hpcwire.com/off-the-wire/hpcwire-reveals-winners-of-the-2021-readers-and-editors-choice-awards-during-sc21/
https://www.hpcwire.com/off-the-wire/hpcwire-reveals-winners-of-the-2021-readers-and-editors-choice-awards-during-sc21/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

4The Parallel Universe

In the spectrum of separation of concerns, I’m more of a domain scientist than a performance
tuning engineer, so I’m interested in programming abstractions that deliver performance while hiding
hardware details. Lately, I’ve been experimenting with the ArrayFire heterogeneous parallel library.
The results have been good in terms of productivity and performance. I plan to write an article
about my experiments for a future issue, but in the meantime, Stefan Yurkevitch (ArrayFire, Software
Engineer) discusses ArrayFire Interoperability with oneAPI and OpenCL™ in this issue.

From high-level software abstractions for heterogeneous parallelism, we go lower in the stack to
hardware abstractions with Using the oneAPI Level Zero Interface.

We close this issue with three data science articles. The first shows how to do efficient
Hyperparameter Optimization with SigOpt for MLPerf™ Training on Habana® Gaudi® while also
achieving better model accuracy. The next article describes how to Scale Your Pandas Workflow
with Modin – no recoding necessary. The final article, From Ray to Chronos, shows how to build
scalable, end-to-end AI workflows with BigDL on top of Ray.

As always, don’t forget to check out Tech.Decoded for more information on Intel solutions for code
modernization, visual computing, data center and cloud computing, data science, systems and IoT
development, and heterogeneous parallel programming with oneAPI.

Henry A. Gabb
January 2021

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/developer/articles/technical/bridging-the-gap-between-domain-experts-and-tuning-experts.html
https://arrayfire.com/
https://techdecoded.intel.io/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

5The Parallel Universe

Modern CPU and GPU cores use single instruction, multiple data (SIMD) execution units to achieve
higher performance and power efficiency. The underlying SIMD hardware is exposed via instructions
such as SSE, AVX, AVX2, AVX-512, and those in the Intel® Xe Architecture Gen12 ISA. While using these
directly is an option, their low-level nature severely limits portability and proves unattractive for most
projects.

To provide a more portable and easier to use interface for programmers, three avenues are explored in
this article: auto-vectorization, programmer-guided SIMD vectorization through language constructs or
programmer hints, and a SIMD data-parallel library approach. We provide an overview of these methods
and show SIMD vectorization evolution in the LLVM and GCC compilers through code examples. We
also examine a couple of vectorization techniques in the LLVM and GCC compilers to achieve optimal
performance on Intel® Xeon® processors and Intel Xe Architecture GPUs.

Xinmin Tian, Senior Principal Engineer, Hideki Saito, Principal Engineer, Hongtao Liu,
Compiler Engineer, James Reinders, oneAPI Evangelist and Editor Emeritus of The
Parallel Universe, Intel Corporation

SIMD Support Is Evolving Rapidly in
Modern Compilers

Vectorization in LLVM
and GCC for Intel CPUs
and GPUs

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

6The Parallel Universe

Enhancing LLVM and GCC
Our goal is to enhance vectorization of both the LLVM and GCC compilers, so contributing to open source
has been a key design consideration. The VPlan vectorizer, and the related VectorABI, have been designed
so they are applicable for integration into both LLVM and GCC [13] optimizers.

The framework for the VPlan vectorizer may be integrated into the LLVM trunk. Our VectorABI [12] is
published and is being utilized by the LLVM and GCC communities for function vectorization. The VPlan
vectorizer has started to surpass the results previously provided by the proprietary Intel compilers for Intel
Xeon processors.

Utilizing SIMD
Modern CPUs support SIMD execution. SIMD is a hardware feature for a wavefront parallel execution of
a single instruction over multiple data elements. It is useful for operating on multiple pieces of data at
once given that their control flow is similar (minimal vector divergence) and the operation is not memory-
bound. Unfortunately, writing a program that directly uses the SIMD ISA is not straightforward and has
limited portability. We will discuss three approaches to improve this situation for programmers: auto-
vectorization, programmer-guided SIMD vectorization through hints or language constructs, and using the
C++ SIMD data-parallel library.

Auto-Vectorization
Automatically performing data- and control-dependency analysis and converting a scalar program to
a corresponding vector form based on a built-in cost model is called auto-vectorization [4][5]. While
the simplicity of this approach is attractive to programmers for its productivity and portability, auto-
vectorization does not always produce optimal code because of compile-time unknowns like loop bounds
and memory access patterns.

Programmer-Guided SIMD Vectorization
OpenMP (version 4.0 and later) includes SIMD constructs to support vector-level parallelism [7]. These
constructs provide a standardized set of vector constructs so programmers no longer need to use non-
portable, vendor-specific intrinsics or directives [6]. In addition, these constructs provide additional
hints about the code structure to the compiler and allow for better vectorization that blends well with
parallelization [5].

C++ SIMD Data-Parallel Library
There is an ISO C++ proposal for a data-parallel library [3]. Its intent is to support acceleration through
data-parallel execution resources such as SIMD registers and instructions or execution units driven by
a common instruction decoder. If such execution resources are unavailable, the interfaces support a

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

7The Parallel Universe

transparent fallback to sequential execution. A SIMD memcpy example using the C++ SIMD data-parallel
library is shown in Figure 1. This example can be compiled to generate LLVM Vector IR and binary for core-
avx512.

namespace stdsimd = std::experimental;

void simd_memcpy(
 stdsimd::native_simd<float> x,
 stdsimd::native_simd<float> y,
 void *p)
{
 auto cmp = x < y;
 memcpy(p, &cmp, cmp.size()*4);
}

define void @_Z11simd_memcpy_Pv(<16 x float> %x.coerce,
 <16 x float> %y.coerce, i8*
 nocapture %p)
{
entry:
 %0 = fcmp fast olt <16 x float> %x.coerce, %y.coerce
 %cmp.sroa.0.sroa.0.0.p.sroa_cast = bitcast i8* %p to <16 x i1>*
 store <16 x i1> %0, <16 x i1>* %cmp.sroa.0.sroa.0.0.p.sroa_cast
 ret void
}

The SIMD vectorization is critical to delivering optimal performance of compute-intensive workloads on
modern CPUs and GPUs regardless of which vectorization method is used to produce SIMD code. In the
next sections, we present recent LLVM SIMD vectorization advances for CPUs and GPUs with more code
examples.

LLVM VPlan Vectorization

VPlan Vectorizer
Intel LLVM Compiler introduces a newly designed loop vectorizer aimed at matching or exceeding the
capability and performance of the vectorizer in Intel Classic Compiler. The new vectorizer is often referred
to as VPlan Vectorizer after the name of its major internal data structure, VPlan (vectorization plan), to
distinguish it from the LLVM community Loop Vectorizer (a.k.a. LV). LORE and RAJAPerf experiments show
that Intel LLVM Compiler can generate equivalent or better performing code than Intel Classic Compiler for
a variety of computational kernels extracted from HPC applications [9]. At the time of writing, Intel LLVM
Compiler enables VPlan Vectorizer for auto-vectorization at -O2 or higher optimization plus the -x (/Qx for
Windows) target flag. Without the -x flag, the community Loop Vectorizer will be used. VPlan Vectorizer
is enabled at -O0 or higher for OpenMP SIMD when Intel’s OpenMP implementation is enabled with the
-qopenmp (/Qopenmp for Windows) flag. At the time of writing, many of frequently used OpenMP 4.5
SIMD features are functional and performant. We continue our efforts to support the latest OpenMP 5.2
SIMD features.

Figure 2 shows how a simple outer loop (left column) is vectorized by Intel Classic Compiler (icc, center
column) and Intel LLVM Compiler (icx, right column). Overall ASM code generated by Intel Classic Compiler
looks more concise and easier to follow, but Intel LLVM Compiler generates noticeably better ASM code
for the inner while-loop (basic block .LBB0_7 for icx versus ..B1.7 for icc) due to its better handling of the
inner loop execution condition in the %k1 mask register.

Figure 1. An example of the C++ SIMD data-parallel library

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

8The Parallel Universe

void foo(int N, float *a,
 float *b, float *c){
 #pragma omp simd
 for (int i=0;i<N;i++){
 float x = a[i];
 float y = b[i];
 while(x>y){
 x = x*x;
 }
 c[i] = x;
 }
}

icc -O2 -qopenmp-simd -xCORE-
AVX512 -c -S -unroll0

..B1.5:
 vmovups (%rsi,%r8,4), %ymm1
 vmovups (%rdx,%r8,4), %ymm0
 vcmpps $14, %ymm0, %ymm1, %k1
 kortestw %k1, %k1
 je ..B1.9
..B1.6:
 kmovw %k1, %k0
..B1.7:
 kandw %k0, %k1, %k2
 vmulps %ymm1, %ymm1, %ymm1{%k2}
 vcmpps $14, %ymm0, %ymm1, %k3
 kandw %k3, %k2, %k4
 kandw %k0, %k4, %k0
jne ..B1.7
..B1.9:
 addl $8, %r9d
 vmovups %ymm1, (%rcx,%r8,4)
 addq $8, %r8
 cmpl %eax, %r9d
 jb ..B1.5

icx -O2 -qopenmp-simd -xCORE-
AVX512 -c -S -unroll0

 jmp .LBB0_4
.LBB0_5:
 vxorps %xmm2, %xmm2, %xmm2
.LBB0_8:
 vcmpltps %ymm0, %ymm1, %k1
 vmovaps %ymm2, %ymm0 {%k1}
 vmovups %ymm0, (%rcx,%rax,4)
 addq $8, %rax
 cmpq %rdi, %rax
 jae .LBB0_9
.LBB0_4:
 vmovups (%rsi,%rax,4), %ymm0
 vmovups (%rdx,%rax,4), %ymm1
 vcmpltps %ymm0, %ymm1, %k0
 kortestb %k0, %k0
 je .LBB0_5
%bb.6:
 vmovaps %ymm0, %ymm3
 kmovq %k0, %k1
.LBB0_7:
 vmulps %ymm3, %ymm3, %ymm3
 vmovaps %ymm3, %ymm2 {%k1}
 vcmpltps %ymm3, %ymm1, %k1 {%k1}
 ktestb %k0, %k1
 jne .LBB0_7
 jmp .LBB0_8

Kernel and Function Vectorization
Intel LLVM Compiler implements DPC++/OpenCL kernel vectorization and OpenMP function vectorization
through VPlan vectorizer [5][10]. This is accomplished by converting a function vectorization problem
into a loop vectorization problem. Customers can expect that most of the optimizations implemented for
vectorizing loops are also available to vectorizing kernels/functions.

Figure 3 is an equivalent vectorization expressed in OpenMP declare SIMD directive form [7]. An 8-way
non-mask vectorized AVX-512 vector variant function (_ZGVcN8luuu_bar) is shown. Even though the
basic block layout is different, and the outer loop control flow is naturally absent because the compiler
knows it is vectorizing for “8-instances” of the function bar, the rest of the ASM code is strikingly similar to
icx-generated ASM code in the loop vectorization example (Figure 2) because it is vectorized by the same
VPlan Vectorizer by letting the compiler inject an 8-iteration loop around the function body.

Figure 2. Outer loop vectorization using VPlan Vectorizer

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

9The Parallel Universe

#pragma omp declare simd \
 linear(i) uniform(a,b,c)
void bar(int i, float *a, float *b, float *c){
 float x = a[i];
 float y = b[i];
 while(x>y){
 x = x*x;
 }
 c[i] = x;
}

icx -O2 -qopenmp-simd -xCORE-AVX512 -c -S -unroll0

_ZGVcN8luuu_bar:
 movslq %edi, %rax
 vmovups (%rsi,%rax,4), %ymm0
 vmovups (%rdx,%rax,4), %ymm1
 vcmpltps %ymm0, %ymm1, %k1
 kortestb %k1, %k1
 je .LBB3_1
%bb.2:
 vcmpltps %ymm0, %ymm1, %k0
 vmovaps %ymm0, %ymm3
.LBB3_3:
 vmulps %ymm3, %ymm3, %ymm3
 vmovaps %ymm3, %ymm2 {%k1}
 vcmpltps %ymm3, %ymm1, %k1 {%k1}
 ktestb %k0, %k1
 jne .LBB3_3
 jmp .LBB3_4
.LBB3_1:
 vxorps %xmm2, %xmm2, %xmm2
.LBB3_4:
 vcmpltps %ymm0, %ymm1, %k1
 vmovaps %ymm2, %ymm0 {%k1}
 vmovups %ymm0, (%rcx,%rax,4)
 vzeroupper
 retq

New ISA Support
One of the benefits of implementing a vectorizer on the LLVM compiler framework is first-class support of
vector data types. When AVX-512-FP16 [11] was introduced, the vectorizer was able to take advantages
of it as soon as the ASM/OBJ code generation support was added, giving vectorizer developers a pleasant
surprise. Figure 4 is a simple FP16 vectorization example.

void foo(int N, __fp16 *a, __fp16 *b, __fp16 *c)
{
 #pragma omp simd
 for (int i=0;i<N;i++)
 {
 c[i] = a[i]+b[i];
 }
}

icx -qopenmp-simd -O2 -xsapphirerapids -c -S -unroll0

.LBB0_3:
 vmovups (%rdx,%rax,2), %ymm0
 vaddph (%rsi,%rax,2), %ymm0, %ymm0
 vmovups %ymm0, (%rcx,%rax,2)
 addq $16, %rax
 cmpq %rdi, %rax
 jb .LBB0_3

Note that not all optimizers work well out-of-the-box for the newly introduced instruction set. Figure 5
is the same example from Figure 2 but using the FP16 data type. The innermost loop with the vmulph
instruction is currently not as nicely optimized as in Figures 2 and 3. In the upcoming releases, we’ll
continue uncovering and improving these issues.

Figure 3. Function vectorization example using VPlan Vectorizer

Figure 4. FP16 vectorization example (I) using VPlan Vectorizer

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

10The Parallel Universe

void foo(int N, __fp16 *a, __fp16 *b, __fp16 *c)
{
 #pragma omp simd
 for (int i=0;i<N;i++)
 {
 __fp16 x = a[i];
 __fp16 y = b[i];
 while(x>y)
 {
 x = x*x;
 }
 c[i] = x;
 }
}

icx -qopenmp-simd -O2 -xsapphirerapids -c -S -unroll0

 jmp .LBB0_4
.LBB0_5:
 vpxor %xmm2, %xmm2, %xmm2
.LBB0_12:
 vcmpltph %ymm0, %ymm1, %k1
 vmovdqu16 %ymm2, %ymm0 {%k1}
 vmovdqu %ymm0, (%rcx,%rax,2)
 addq $16, %rax
 cmpq %rdi, %rax
 jae .LBB0_13
.LBB0_4:
 vmovups (%rsi,%rax,2), %ymm0
 vmovups (%rdx,%rax,2), %ymm1
 vcmpltph %ymm0, %ymm1, %k0
 kortestw %k0, %k0
 je .LBB0_5
%bb.6:
 vmovaps %ymm0, %ymm3
 kmovq %k0, %k1
 jmp .LBB0_7
.LBB0_11:
 vmovdqu16 %ymm3, %ymm2 {%k1}
 kandw %k1, %k2, %k1
 ktestw %k0, %k1
 je .LBB0_12
.LBB0_7:
 ktestw %k1, %k0
 vmulph %ymm3, %ymm3, %ymm4
 vxorps %xmm3, %xmm3, %xmm3
 je .LBB0_9
%bb.8:
 vmovaps %ymm4, %ymm3
.LBB0_9:
 kxorw %k0, %k0, %k2
 je .LBB0_11
%bb.10:
 vcmpltph %ymm4, %ymm1, %k2
 jmp .LBB0_11

Enhancing Auto-Vectorization in GCC12
In this section, we describe several auto-vectorization enhancements developed recently for AVX-512/
AVX-512-VNNI support in GCC12 compiler based on GCC vectorization framework previously done for
Intel Xeon Phi processors.

 • GCC12 auto-vectorization is enabled by default at -O2 using a “cheap” cost model, which permits loop
vectorization if the trip count of a scalar vectorizable loop is a multiple of the hardware vector length,
and with no observable code size increasing. For example, Figure 6 shows an example of GCC -O2 auto-
vectorization using SSE4.2. Meanwhile, the default cost model for loop vectorization at -O3 employs
a "dynamic" model with more checkpoints to determine whether the vectorized code path will achieve
performance gains.

Figure 5. FP16 vectorization example (II) using VPlan Vectorizer

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

11The Parallel Universe

void ArrayAdd(int* __restrict a, int* b)
{
 for (int i = 0; i != 32; i++)
 a[i] += b[i];
}

ArrayAdd:
 xorl %eax, %eax
.L2:
 movdqu (%rdi,%rax), %xmm0
 movdqu (%rsi,%rax), %xmm1
 paddd %xmm1, %xmm0
 movups %xmm0, (%rdi,%rax)
 addq $16, %rax
 cmpq $128, %rax
 jne .L2
 ret

 • GCC vectorization for the _Float16 type is enabled to generate corresponding AVX512FP16 instructions.
In addition to those SIMD instructions that are similar to their float/double variants, the vectorizer also
supports vectorization for the complex _Float16 type. Figure 7 shows an example that performs a
conjugate complex multiply and accumulate operations on three arrays, and the vectorizable loop can
be optimized to generate a vfcmaddcph instruction.

#include<complex.h>

void fmaconj (_Complex _Float16 a[restrict 16],
 _Complex _Float16 b[restrict 16],
 _Complex _Float16 c[restrict 16])
{
 for (int i = 0; i < 16; i++)
 c[i] += a[i] * ~b[i];
}

fmaconj:
 vmovdqu16 (%rdx), %zmm1
 vmovdqu16 (%rsi), %zmm0
 vfcmaddcph (%rdi), %zmm1, %zmm0
 vmovdqu16 %zmm0, (%rdx)
 vzeroupper
 ret

 • GCC auto-vectorization is enhanced to perform idiom recognition such as the dot-plus idiom, which
triggers the AVX/AVX512VNNI instruction generation. Figure 8 shows that the compiler generates the
vpdpbusd instruction plus a summation reduction.

int usdot_prod_qi (unsigned char * restrict a,
 char *restrict b, int c, int n)
{
 for (int i = 0; i < 32; i++)
 {
 c += ((int) a[i] * (int) b[i]);
 }
 return c;
}

usdot_prod_qi:
 vmovdqu (%rdi), %ymm0
 vpxor %xmm1, %xmm1, %xmm1
 vpdpbusd (%rsi), %ymm0, %ymm1
 vextracti128 $0x1, %ymm1, %xmm0
 vpaddd %xmm1, %xmm0, %xmm0
 vpsrldq $8, %xmm0, %xmm1
 vpaddd %xmm1, %xmm0, %xmm0
 vpsrldq $4, %xmm0, %xmm1
 vpaddd %xmm1, %xmm0, %xmm0
 vmovd %xmm0, %eax
 addl %edx, %eax
 vzeroupper
 ret

Figure 6. GCC (-O2) auto-vectorization example

Figure 7. GCC auto-vectorization of using the AVX512FP16 vfcmaddcph instruction

Figure 8. AV512VNNI idiom recognition in GCC auto-vectorization

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

12The Parallel Universe

In addition to the three aforementioned enhancements in GCC auto-vectorization, we have improved
GCC to utilize vpopcnt[b,w,d,q] instructions when the redundant zero extension and truncation is
recognized by the vectorizer as well. These improvements significantly extend GCC auto-vectorization
capability for Intel Xeon Scalable processors.

SIMD Vectorization for Intel GPUs

Design Rationale
Intel GPUs, using Intel Xe Architecture, are designed to support both OpenCL SIMT (Single Thread Multiple
Data) and SIMD. In this section, we describe how to enable our LLVM VPlan vectorizer for converting
OpenMP SIMD loops to SIMD code by leveraging underlying SIMD ISA in Xe GPUs. The rationale behind the
design and implementation is two-fold:

 • Provide a relatively smooth transition to migrate existing C++ and Fortran OpenMP CPU applications
that uses SIMD constructs to Xe GPUs utilizing OpenMP offloading and SIMD.

 • Exploit SIMD loop vectorization flexibility with different explicit SIMD schemes in the OpenMP offloading
region to fully leverage Xe GPU SIMD ISA.

The oneAPI C++/Fortran OpenMP compiler SIMD vectorization for Intel GPUs is designed to exploit the
underlying hardware features, allowing fine-grained register management, SIMD size control, and cross-
lane data sharing.

High-Level SIMD Vectorization Framework
Figure 9 outlines the SIMD vectorization framework implemented in the device compilation path for
Intel GPUs, which fully leverages the LLVM VPlan Vectorizer we built for CPUs [4][5] in oneAPI compilers.
The VPlan Vectorizer (box IV) takes LLVM scalar IR from the language Front-End (box I) and middle end
optimizations (boxes II and III) performing LLVM Vector IR generation in conjunction with a lowering
transformation to GPU target intrinsics defined for Xe GPU operations (box V). Then, passing GPU-ready
LLVM Vector IR to the GPU Vector Back-End compiler (boxes VI and VII) [8] using SPIR-V as an interface IR.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

13The Parallel Universe

There is a sequence of explicit SIMD-specific optimizations and transformations (box VI) developed around
those GPU-specific intrinsics. Note that programmers are provided with controls on loop vectorization and
vector length selection through OpenMP programming APIs while the compiler Vector Back-End (boxes
VI and VII) strives to achieve a tradeoff among various compiler optimizations based on programmer
annotations. In addition, OpenMP explicit SIMD kernels generated by the compiler middle end are fully
compatible with the Intel GPU OpenCL runtime [1] and oneAPI Level Zero [2] and can be launched directly
as if they are written in OpenCL.

Intel Xe Architecture GPU SIMD Code Generation Example
Figure 10 shows an OpenMP offload example. In the target region, there are two SIMD loops: one operates
on single-precision multiply-and-add (FMA) with simdlen(8) and the other operates on double-precision
multiply-and-add with the simdlen(8) clause. So, the compiler can perform 512-bit SIMD vectorization for
both loops.

Figure 9. SIMD vectorization framework for device compilation

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

14The Parallel Universe

Float a[N][M]; double b[N][M];
... ...
#pragma omp target teams distribute parallel for map(tofrom:a[0:N][0:M]) map(tofrom:b[0:N][0:M])
 for (int k = 0; k < N; ++k) {
 float x = k * 1.0f;
 double y = k * 1.0;
#pragma omp simd simdlen(16)
 for (int j = 0; j < M; ++j) {
 a[k][j] = a[k][j] + x*a[k][j];
 }

#pragma omp simd simdlen(8)
 for (int j = 0; j < M; ++j) {
 b[k][j] = b[k][j] + y*b[k][j];
 }
}
... ...

For SIMD loop vectorization, if a loop trip count is known at compile-time, the compiler can decide to
unroll the loop. In this program example, the first SIMD loop is vectorized with SIMD16 and unrolled by
two, the second SIMD loop is vectorized with SIMD8 and unrolled by four for the given trip count M=32 as
shown in Figure 11. A common issue to compilers is that the loop trip count is unknown at compile-time.
However, if application programmers can reason about and predict the trip count and provide a hint to the
compilers using #pragma loop count, it will enable the compiler to perform the desired loop unrolling for
compute-bound loops (i.e., computation takes more time than memory accesses).

 mad (16|M0) r7.0<1>:f r5.0<1;0>:f r5.0<1;0>:f r1.6<0>:f {Compacted,$8.dst}
(W&f1.0.any16h) send.dc1 (16|M0) null r33 r7 0x80 0x020D43FF {$3}
(W&f1.0.any16h) send.dc1 (16|M0) r9 r34 null 0x0 0x022D0BFF {$9}
 mad (16|M0) r11.0<1>:f r9.0<1;0>:f r9.0<1;0>:f r1.6<0>:f {Compacted,$9.dst}
(W&f1.0.any16h) send.dc1 (16|M0) null r35 r11 0x80 0x020D43FF {A@1,$6}
(W&f1.0.any16h) send.dc1 (16|M0) r13 r36 null 0x0 0x022D0BFF {$10}
 mad (8|M0) r15.0<1>:df r13.0<1;0>:df r13.0<1;0>:df r4.2<0>:df {$10.dst}
(W&f1.0.any16h) send.dc1 (16|M0) null r37 r15 0x80 0x020D43FF
(W&f1.0.any16h) send.dc1 (16|M0) r17 r38 null 0x0 0x022D0BFF
 mad (8|M0) r19.0<1>:df r17.0<1;0>:df r17.0<1;0>:df r4.2<0>:df {$11.dst}
(W&f1.0.any16h) send.dc1 (16|M0) null r39 r19 0x80 0x020D43FF {A@1,$4}
(W&f1.0.any16h) send.dc1 (16|M0) r22 r40 null 0x0 0x022D0BFF {$12}
 mad (8|M0) r24.0<1>:df r22.0<1;0>:df r22.0<1;0>:df r4.2<0>:df {$12.dst}
(W&f1.0.any16h) send.dc1 (16|M0) null r41 r24 0x80 0x020D43FF {A@1,$7}
(W&f1.0.any16h) send.dc1 (16|M0) r26 r42 null 0x0 0x022D0BFF {$13}
 mad (8|M0) r28.0<1>:df r26.0<1;0>:df r26.0<1;0>:df r4.2<0>:df {$13.dst}
(W&f1.0.any16h) send.dc1 (16|M0) null r43 r28 0x80 0x020D43FF {A@1,$5}

Figure 11. Intel GPU SIMD code generated with unrolling based on data types

Figure 10. An example with different SIMD width in OpenMP target region

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

15The Parallel Universe

Summary
We presented the recent evolution of SIMD vectorization technology in the LLVM and GCC compilers for
underlying Intel CPU and Intel GPU ISAs. Several vectorization features are illustrated for how to expose
the underlying hardware capabilities to exploit SIMD parallelism. On Intel GPUs, SIMD vectorization is a
complementary to the existing popular SPMD model. As a continuous effort, more performance tuning
and optimizations will be added into Intel oneAPI LLVM-based compilers and GCC compilers for Intel CPUs
AVX-512 and AVX-512-FP16/VNNI ISA and Intel GPUs Gen12 ISA.

References
[1] Intel, Intel® Graphics Compute Runtime for oneAPI Level Zero and OpenCL Driver,

https://github.com/intel/compute-runtime, 2020.

[2] Intel, oneAPI Level Zero Specification, 2020. https://spec.oneapi.com/level-zero/latest/index.html

[3] C++ Standards Committee, Data-parallel vector library, 2020.
https://en.cppreference.com/w/cpp/experimental/simd

[4] H. Saito, S. Preis, N. Panchenko, and X. Tian. Reducing the Functionality Gap between Auto-
Vectorization and Explicit Vectorization. In Proceedings of the International Workshop on OpenMP
(IWOMP), LNCS9903, pp. 173-186, Springer, 2016.

[5] X. Tian, H. Saito, E. Su, J. Lin, et.al. LLVM Compiler Implementation for Explicit Parallelization and SIMD
Vectorization. LLVM-HPC@SC 2017: 4:1-4:11

[6] X. Tian, R. Geva, B. Valentine. Unleash the Power of AVX-512 through Architecture, Compiler and
Code Modernization, ACM Parallel Architecture and Compiler Technology, September 11-15, 2016,
Haifa, Israel.

[7] X. Tian, Bronis R. de Supinski: Explicit Vector Programming with OpenMP* 4.0 SIMD Extensions, HPC
Today America, Nov 19. 2014. http://www.hpctoday.com/hpc-labs/explicit-vector-programming-with-
openmp-4-0-simd-extensions/

[8] Guei-Yuan Lueh, Kaiyu Chen, Gang Chen, Joel Fuentes, Wei-Yu Chen, Fangwen Fu, Hong Jiang,
Hongzheng Li, and Daniel Rhee, C-for-Metal: High Performance SIMD Programming on Intel GPUs.
CGO 2021, 289-300.

[9] “Intel C/C++ compilers complete adoption of LLVM” https://www.intel.com/content/www/us/en/
developer/articles/technical/adoption-of-llvm-complete-icx.html

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://spec.oneapi.com/level-zero/latest/index.html
https://spec.oneapi.com/level-zero/latest/index.html
https://en.cppreference.com/w/cpp/experimental/simd
https://www.intel.com/content/www/us/en/developer/articles/technical/adoption-of-llvm-complete-icx.h
https://www.intel.com/content/www/us/en/developer/articles/technical/adoption-of-llvm-complete-icx.h

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

16The Parallel Universe

[10] Matt Masten, Evgeniy Tyurin, K. Mitropoulou, Eric N. Garcia, and H. Saito Function/Kernel
Vectorization via Loop Vectorizer, 2018 IEEE/ACM 5th Workshop on the LLVM Compiler
Infrastructure in HPC (LLVM-HPC)

[11] Intel AVX-512-FP16 Architecture Specification https://software.intel.com/content/dam/develop/
external/us/en/documents-tps/intel-avx512-fp16.pdf

[12] Intel Corporation, Vector Function Application Binary Interface https://docplayer.net/197118571-
Vector-function-application-binary-interface.html

[13] GCC patches can be found under https:/gcc.gnu.org/git (look for AVX512/VNNI/FP16 support), see
also https://www.phoronix.com/scan.php?page=news_item&px=AFX-512-FP16-GCC-Patches for
more on FP16 patches.

Diverse Workloads Require Diverse Architectures
Develop heterogeneous applications quickly and correctly with Intel oneAPI toolkits.
Explore Toolkits >

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.semanticscholar.org/author/Matt-Masten/33831549
https://www.semanticscholar.org/author/Evgeniy-Tyurin/2083280307
https://www.semanticscholar.org/author/K.-Mitropoulou/2278283
https://www.semanticscholar.org/author/Eric-N.-Garcia/2111323482
https://www.semanticscholar.org/author/H.-Saito/144810291
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/intel-avx512-fp16.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/intel-avx512-fp16.pdf
https://docplayer.net/197118571-Vector-function-application-binary-interface.html
https://docplayer.net/197118571-Vector-function-application-binary-interface.html
https://www.phoronix.com/scan.php?page=news_item&px=AFX-512-FP16-GCC-Patches
https://software.intel.com/content/www/us/en/develop/tools/oneapi/all-toolkits.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

17The Parallel Universe

In some cases, offloading computations to an accelerator like a GPU means that the host CPU sits idle until
the offloaded computations are finished. However, using the CPU and GPU resources simultaneously can
improve the performance of an application. In OpenMP® programs that take advantage of heterogenous
parallelism, the master clause can be used to exploit simultaneous CPU and GPU execution. In this article,
we will show you how to do CPU+GPU asynchronous calculation using OpenMP.

The SPEC ACCEL 514.pomriq MRI reconstruction benchmark is written in C and parallelized using
OpenMP. It can offload some calculations to accelerators for heterogenous parallel execution. In this
article, we divide the computation between the host CPU and a discrete Intel® GPU such that both
processors are kept busy. We’ll also use Intel VTune™ Profiler to measure CPU and GPU utilization and
analyze performance.

Elmira Volkova, Undergraduate Intern, Alexander Bobyr, Software Enabling and
Optimization Engineer, Igor Ermolaev, Principal Engineer

Best Practices to Keep the CPU and GPU
Working at the Same Time

Efficient Heterogeneous
Parallel Programming
Using OpenMP

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
http://www.spec.org/accel/Docs/514.pomriq.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

18The Parallel Universe

We’ll look at five stages of heterogeneous parallel development and performance tuning:

1. Looking for appropriate code regions to parallelize

2. Parallelizing these regions so that both the CPU and GPU are kept busy

3. Finding the optimal work distribution coefficient

4. Launching the heterogeneous parallel application with this distribution coefficient

5. Measuring the performance improvement.

Initially, the parallel region only runs on the GPU while the CPU sits idle (Figure 1). As you can see, only the
“OMP Primary Thread” is executing on the CPU while the GPU is fully occupied (GPU Execution Units→EU
Array→Active) with the ComputeQ offloaded kernel.

After examining the code, we decided to duplicate each array and each executed region so that the first
copy is executed on the GPU and the second is executed on the CPU. The master thread uses the OpenMP
target directive to offload work to the GPU. This is shown schematically in Figure 2. The nowait directives
avoid unnecessary synchronization between the threads running on the CPU and GPU. They also improve
load balance among the threads.

Figure 1. Profile of the initial code using Intel VTune Profiler

Figure 2. OpenMP parallelization scheme to keep the CPU and GPU busy

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

19The Parallel Universe

Balancing the work distribution between the CPU and GPU is regulated by the part variable that is read
from STDIN (Figure 3). This variable is the percentage of the workload that will be offloaded to the
GPU multiplied by numX. The remaining work will be done on the CPU. An example of the OpenMP
heterogeneous parallel implementation is shown in Figure 4.

Figure 3. The coefficient of distribution work between the CPU and GPU

Figure 4. Example code illustrating the OpenMP implementation that
simultaneously utilizes the CPU and GPU

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

20The Parallel Universe

The Intel® oneAPI DPC++/C++ Compiler was used with following command-line options:
‑O3 ‑Ofast ‑xCORE‑AVX512 ‑mprefer‑vector‑width=512 ‑ffast‑math
‑qopt‑multiple‑gather‑scatter‑by‑shuffles ‑fimf‑precision=low
‑fiopenmp ‑fopenmp‑targets=spir64="‑fp‑model=precise"

Table 1 shows the performance for different CPU to GPU work ratios (i.e., the part variable described
above). For our system and workload, an offload ratio of 0.65 gives the best load balance between the
CPU and GPU, and hence the best utilization of processor resources. The profile from Intel VTune Profiler
shows that work is more evenly distributed between the CPU and GPU, and that both processors are being
effectively utilized (Figure 5). While “OMP Primary Thread” submits the offloaded kernel (main: 237) for
execution on the GPU, other “OMP Worker Threads” are active on the CPU.

Offload part Total time, s GPU time, s
0.00 61.2 0.0
0.20 51.6 8.6
0.40 41.0 16.8
0.60 31.5 24.7
0.65 28.9 26.7
0.80 34.8 32.6
1.00 43.4 40.7

Table 1. Hotspot times corresponding to different amounts of offloaded work (i.e., the part variable)

Figure 5. Profile of code with 65% GPU offload

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

21The Parallel Universe

Figure 6 shows the run times for different values of part. Keep in mind that a part of zero means that no
work is offloaded to the GPU. A part of one means that all work is offloaded. It’s clear that a balanced
distribution of work across the CPU and GPU gives better performance than either extreme.

OpenMP provides true asynchronous, heterogeneous execution on CPU+GPU systems. It’s clear from our
timing results and VTune profiles that keeping the CPU and GPU busy in the OpenMP parallel region gives
the best performance. We encourage you to try this approach.

Table 1. Comparing training and prediction performance (all times in seconds)

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

22The Parallel Universe

oneAPI greatly simplifies development on heterogeneous accelerators. With a code once, run anywhere

approach, the APIs offer a powerful way to develop code. ArrayFire is a GPU library that already offers a vast

collection of useful functions for many computational domains. It shares the philosophy oneAPI brings to

the software development world. In this article, we’ll be exploring how to integrate the oneAPI Deep Neural

Network (oneDNN) library and the SYCL-based Data Parallel C++ (DPC++) programming language into

existing codebases. Our goal is to allow the programmer to take advantage of oneAPI to avoid the code

rewriting often required when migrating to a new programming model.

Stefan Yurkevitch, Software Engineer, ArrayFire

Taking Advantage of oneAPI to Avoid
Code Rewrites

ArrayFire Interoperability
with oneAPI, Libraries,
and OpenCL

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://arrayfire.com/
https://github.com/oneapi-src/oneDNN

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

23The Parallel Universe

Interoperability with SYCL
oneAPI is the combination of DPC++ and libraries to simplify cross-architecture parallel programming.
The libraries are tightly integrated with the DPC++ language. They both provide a variety of methods for
interoperability with the underlying OpenCL implementation. The base language provides three main
methods of interoperability with OpenCL that cover most use-cases (Figure 1). The flow of interoperability
functions can be from existing code to SYCL or vice versa, specifically:

1. Using existing OpenCL kernels within DPC++ code by creating a kernel object from the kernel string

2. Extracting OpenCL objects from existing SYCL objects

3. Creating SYCL objects from existing OpenCL objects

Let’s consider how the existing ArrayFire codebase could be integrated with these interoperability options.
In the first case, we could directly reuse the raw ArrayFire kernels (Figure 1, left):

queue q{gpu_selector()}; // Create command queue targeting GPU
program p(q.get_context()); // Create program from the same context as q

// Compile OpenCL vecAdd kernel, which is expressed as a C++ Raw String as indicated by R”
p.build_with_source(R"(__kernel void existingArrayFireVecAdd(__global int *a,
 __global int *b,
 __global int *c)
 {
 int i = get_global_id(0);
 c[i] = a[i] + b[i];
 })");
 // buffers here ...
 q.submit([&](handler& h) {
 // accessors here...
 // Set buffers as arguments to the kernel
 h.set_args(A, B, C);
 // Launch vecAdd kernel from the p program object across N elements.
 h.parallel_for(range<1> (N), p.get_kernel("vecAdd"));

 });

Figure 1. SYCL interoperability with OpenCL

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

24The Parallel Universe

In reality, ArrayFire kernels rely on more complicated data structures than simple buffers so reusing
kernels in this manner isn’t as trivial as copy-pasting the CL string. We’ll need to handle the data exchange
using one of the other two methods.

The second method (Figure 1, middle) of extracting OpenCL components from SYCL objects is based on
the simple convention of using the .get() method on existing SYCL objects. Each call on a SYCL object
will return the corresponding underlying OpenCL object. For example, cl::sycl::queue::get() will
return an OpenCL cl_command_queue.

The third method (Figure 1, right) takes existing OpenCL objects and uses them to create SYCL objects.
This can be done using the SYCL object’s constructors, such as
sycl::queue::queue(cl_command_queue,…). In these cases, the constructors will also retain the
OpenCL instance to increase the reference count of the OpenCL resource during construction and will
release the instance during the destruction of the SYCL object.

Interoperability with oneAPI Libraries
Similar interoperability conventions exist within the oneAPI libraries. Some of the libraries, like oneMKL,
directly rely on the DPC++ interoperability. Their functions can accept unified shared memory (USM)
pointers. Others, like oneDNN, which we will be using in our example, provide similar .get() and
constructor() mechanisms.

oneDNN has similar, yet slightly different data structures from DPC++. The sycl::device and
sycl::context are combined into a single dnnl::engine object, and the dnnl::stream replaces
the sycl::queue. Despite these differences, the mechanism for OpenCL interoperability remains the
same. OpenCL objects can be obtained with getter functions while new oneDNN objects can be created
from existing OpenCL objects through their constructors. oneDNN also provides an explicit interoperability
header with the same functionality.

oneDNN is flexible in terms of its supported runtime backend. It can use either the OpenCL runtime or
the DPC++ runtime for CPU and GPU engines to interact with the hardware. Developers may need to
use oneDNN with other code that uses either OpenCL or DPC++. For that purpose, the library provides
API extensions to interoperate with the corresponding underlying objects. Depending on the target, the
interoperability API is defined in either the dnnl_ocl.hpp or dnnl_sycl.hpp header. For our use-
case, we’re interested in supplementing the capabilities of oneDNN’s inference engine with the existing
preprocessing capabilities offered by the ArrayFire library. For now, this will be done through the OpenCL
interoperability functions.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://docs.oneapi.io/versions/latest/onednn/dev_guide_opencl_interoperability.html
https://docs.oneapi.io/versions/latest/onednn/dev_guide_opencl_interoperability.html
https://docs.oneapi.io/versions/latest/onednn/dev_guide_dpcpp_interoperability.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

25The Parallel Universe

ArrayFire and oneDNN: The Details
The motivating example we’ll be using to explore the details of OpenCL interop with oneDNN is based
on the cnn_inference_f32.cpp sample. This example sets up an AlexNet network using oneDNN
for inference. Our goal is to use ArrayFire’s many OpenCL image processing functions to preprocess the
user input images before feeding the data to the existing inference engine. The full workflow involves the
following steps:

 • Include the relevant interoperability headers

 • Create a GPU engine while sharing the cl_context with ArrayFire

 • Create a GPU command queue via the OpenCL interoperability interface

 • Perform preprocessing and data preparation with ArrayFire

 • Create a GPU memory descriptor/object

 • Access GPU memory via OpenCL interoperability interface for input

 • Create oneDNN primitives/descriptors/memory to build the network

 • Execute the network as usual with oneDNN

 • Release GPU memory

The first additions we need to make to the file include the interoperability headers for both ArrayFire and
oneDNN. The OpenCL headers are included as well.

 #include "oneapi/dnnl/dnnl.hpp" // oneDNN header
 #include "oneapi/dnnl/dnnl_ocl.hpp" // oneDNN OpenCL interop header

 #include <CL/cl.h> // OpenCL header

 #include <arrayfire.h> // ArrayFire header

 #include <af/opencl.h> // ArrayFire OpenCL interop header

Next, we’ll grab the OpenCL context and queue from ArrayFire to share with oneDNN:

 cl_device_id af_device_id = afcl::getDeviceId();
 cl_context af_context = afcl::getContext();

 cl_command_queue af_queue = afcl::getQueue();

The OpenCL objects will be used to create the corresponding oneDNN objects. This will use the
interoperability functions defined in the interop header. These functions reside in the additional ocl_
interop namespace. Remember that this will retain the objects throughout the lifetime of the oneDNN
scope:

 dnnl::engine eng = dnnl::ocl_interop::make_engine(af_device_id, af_context);

 dnnl::stream s = dnnl::ocl_interop::make_stream(eng, af_queue);

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://github.com/oneapi-src/oneDNN/blob/master/examples/cnn_inference_f32.cpp
https://oneapi-src.github.io/oneDNN/namespace_dnnl_ocl_interop.html#overview

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

26The Parallel Universe

Then we can load and preprocess our images reusing the ArrayFire library’s accelerated GPU functions:
 // create empty array within same context as oneDNN
 af::array images = af::constant(0.f, h, w, 3, batch);
 images = read_images(directory);
 images = af::resize(images, 227, 227) / 255.f; // resize to alexnet input size
 // and normalize [0-1]
 images = af::reorder(images, 3, 2, 0, 1); // hwcn -> nchw

 ... // additional preprocessing

oneDNN finally requires the dnnl::memory object. This isn’t raw memory, but rather some memory
together with additional metadata such as a dnnl::descriptor. oneDNN supports both buffer and
USM memory models. Buffering is the default. To construct a oneDNN memory object with interop
support, we will use the following interop function:

ocl::interop make_memory(
 const memory::desc& memory_desc, // descriptor describing memory shape and layout
 const engine& aengine, // our interop engine
 memory_kind kind, // buffer or USM
 void* handle = DNNL_MEMORY_ALLOCATE // handle to underlying storage

)

Here, the descriptors follow those of the sample where we expect the input to AlexNet to be a 227 x 227
NCHW image. The engine is just our execution engine that we have been sharing between ArrayFire and
oneDNN. The memory kind should specify if we’re using the USM or buffer interface. If we chose to pass
in a handle pointer, it should then proceed to match the type of memory we pass in. If the handle is a USM
pointer or an OpenCL buffer, the oneDNN library doesn’t own the buffer and the user is responsible for
managing the memory. With the special DNNL_MEMORY_ALLOCATE value, the library will allocate a new
buffer on the user’s behalf.

oneDNN supports both buffer and USM memory models, so replacing the engines and queues with
objects shared with ArrayFire will result in incompatible memory creation modes. During the creation of
the dnnl::memory object, the following error can occur:

oneDNN error caught:
 Status: invalid_arguments

 Message: could not create a memory object

Instead of the default method of dnnl::memory creation, the interoperability functions must be used
instead, as follows:

 cl_mem *src_mem = images.device<cl_mem>(); // get cl_mem from arrayfire
 dnnl::memory user_src_memory = ocl_interop::make_memory(// interop mem function
 {{conv1_src_tz}, dt::f32, tag::nchw}, // create descriptor
 eng, // specify engine
 ocl_interop::memory_kind::buffer, // specify memory type
 *src_mem); // pass cl_mem handle

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://oneapi-src.github.io/oneDNN/namespace_dnnl_ocl_interop.html#doxid-namespacednnl-1-1ocl-interop-1acfb8e3d4cdcff9244e9b530b3f4c4a9d

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

27The Parallel Universe

This applies all instances of default dnnl::memory allocation. The interoperability functions to specify
the ocl_interop::memory_kind::buffer must be used:

 ocl_interop::make_memory(descriptor, engine, ocl_interop::memory_kind::buffer);

Finally, after all weights are loaded, the inference primitives can be created and called as usual. After the
network has run, we should free the resources that we are responsible for:

 // additional alexnet network setup
 // loading of weights following cnn_inference_f32.cpp
 ...

 // execute all primitive steps for full inference using our inputs
 for (size_t i = 0; i < net.size(); ++i) {
 net.at(i).execute(s, net_args.at(i));
 }

 s.wait(); // wait until stream finishes writing to memory

 images.unlock(); // return memory ownership to arrayfire to free resources

We want to make sure we’re running oneDNN with the OpenCL runtime rather than the DPC++ runtime.
This can be achieved by specifying the SYCL_DEVICE_FILTER=opencl environment variable. A
modified, working cnn_inference_f32.cpp for reference can be found in this gist.

Conclusion
oneAPI provides all the tools required to integrate existing OpenCL codebases with the new
heterogeneous programming approach. The underlying OpenCL objects can be shared in either direction
with DPC++. oneAPI’s libraries have their own methods to handle the interoperability tasks. With
minor code changes, whole OpenCL libraries can be reused rather than rewritten. oneAPI saves future
development time by avoiding redevelopment efforts of already useful code.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://gist.github.com/syurkevi/88fa18f6dcbe4e17b3d6d466081ef4c6

For more complete information about compiler optimizations, see our Optimization Notice at software.intel.com/articles/optimization-notice#opt-en.
Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
© Intel Corporation

Break Free
of Code

Boundaries
Experience the power of cross-architecture

programming in the Intel ® DevCloud for oneAPI.

Demo
Run our Mandelbrot demo on different architectures to

see cross-architecture performance for yourself.

Learn
Get hands-on experience with Data Parallel C++ with 25

Jupyter notebooks loaded with code samples.

Develop
Plan and test future-ready applications on the latest Intel

CPUs, GPUs, and FPGAs.

GET STARTED NOW >

https://software.intel.com/content/www/us/en/develop/tools/devcloud.html
https://software.intel.com/content/www/us/en/develop/tools/devcloud.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

29The Parallel Universe

The oneAPI specification simplifies software development by providing the same language, API, and

programming model across accelerator architectures. It defines a set of APIs for common data parallel

domains, across a variety of architectures. Both the API and the direct programming approaches are

based on data parallelism (i.e., the same computation is performed on each data element). The oneAPI™

platform consists of a host and a collection of accelerator devices (Figure 1). The API programming model

is implemented using oneMKL, oneDPL, oneDNN, oneCCL, and other libraries. Direct programming is done

using DPC++.

Rama Kishan Malladi, Solution Architect, Amazon Web Services
Nitya Hariharan, Application Engineer, Intel Corporation

A Brief Introduction to the Level Zero API

Using the oneAPI Level
Zero Interface

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.oneapi.io/spec/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

30The Parallel Universe

Level Zero: Introduction
The oneAPI Level Zero provides a low-level, direct-to-metal interface for the devices in a oneAPI
platform. Level Zero provides support for broad language features in addition to fine-grained explicit
controls/APIs for device discovery, memory allocation, inter-process communication, kernel submission,
synchronization, and metrics reporting. It has an API that exposes both the logical and physical
abstractions of the underlying devices. While heavily influenced by other low-level APIs (i.e., OpenCL™),
Level Zero is designed to evolve independently. It has support for GPUs and other compute devices, such
as FPGAs. Most applications should not require the additional control provided by the Level Zero API. It is
intended for the explicit controls needed by higher-level runtime APIs and libraries:

 • Device discovery and partitioning

 • Kernel execution and scheduling

 • Peer-to-peer communication

 • Metrics discovery and profiling

 • Kernel profiling, instrumentation

 • System management, query power, performance

The Level Zero C APIs are provided to applications by a shared import library. So, C/C++ applications must
include “ze_api.h” and link with “ze_api.lib” (or a shared library).

Figure 1. The oneAPI platform execution model. Note that the Intel® implementation of the
oneAPI specification also contains programming tools.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

31The Parallel Universe

Level Zero: APIs
Level Zero APIs are categorized into Core, Tools, and System Programming, but we will only discuss the
Core Programming APIs (Figure 2) in this article. It has support for devices, drivers, contexts, memory,
command queues/lists, synchronization, barriers, modules, and kernels. Tables 1 and 2 list the most
commonly used APIs. Figure 3 shows the execution flow using Level Zero.

Figure 2. Components of the Core Programming APIs

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

32The Parallel Universe

APIs for Device, Context, Queue Short description
zeInit, zeDriverGet Initialize and discover all the drivers.
zeDeviceGet, zeDeviceGetProperties Find a driver instance with a DEVICE_TYPE
zeContextCreate Create a context
zeMemAllocHost, zeMemAllocDevice,

zeMemAllocShared
Allocate memory on Host, Device or shared

zeCommandQueueCreate Create a command queue
zeCommandListCreate Create a command list
zeCommandQueueExecuteCommandLists Execute command list in command queue
zeCommandQueueSynchronize Synchronize host and device

Table 1. Level Zero APIs for Device, Context, and Queue

Figure 3. High-level flow: command lists, queues, module, and kernel execution on a device

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

33The Parallel Universe

APIs for Synchronization, Modules, and Kernels Short description
zeEventPoolCreate Create event pool
zeCommandListAppendLaunchKernel Appends the kernel, its arguments, signals to a

command list.
zeEventHostSynchronize Wait on event to complete
zeModuleCreate Creates a module by compiling IL code or load of

a native binary
zeKernelCreate Reference a kernel within a module
zeKernelSetArgumentValue Setup arguments for kernel launch

Listing 1 shows the main program that has driver and device discovery. Listing 2 shows kernel execution
in function RunTest.

// Driver code (main)
int main(int argc, char *argv[])
{
 zeInit(ZE_INIT_FLAG_GPU_ONLY);

 ze_driver_handle_t driverHandle;
 zeDriverGet(&driverCount, &driverHandle);

 uint32_t deviceCount = 1;
 ze_device_handle_t device;
 zeDeviceGet(driverHandle, &deviceCount, &device);

 ze_device_properties_t deviceProperties = {};
 zeDeviceGetProperties(device, &deviceProperties);

 uint32_t subDeviceCount = 0;
 zeDeviceGetSubDevices(device, &subDeviceCount, nullptr);
 ze_device_handle_t subDevices[2] = {};
 zeDeviceGetSubDevices(device, &subDeviceCount, subDevices);

 for (uint32_t i = 0; i < subDeviceCount; i++) {
 ze_device_properties_t deviceProperties = {};
 zeDeviceGetProperties(subDevices[i], &deviceProperties);
 }

 RunTest(driverHandle, subDevices, device, subDeviceCount, outputValidBool);
}

Table 2. Level Zero APIs for synchronization and kernel-related functions

Listing 1. Level Zero example for driver and device discovery

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

34The Parallel Universe

void RunTest(ze_driver_handle_t &driverHandle, ze_device_handle_t *subDevice,
 ze_device_handle_t rootDevice, uint32_t subDeviceCount,
 bool &validRet)
{
 // variables initialization, host memory allocation
 ...
 // create a context, command queue and list.
 zeContextCreate(driverHandle, &contextDesc, &context);
 ...
 for (uint32_t i=0; i<num_tiles; i++)
 {
 zeCommandQueueCreate(context, subDevice[i], &cmdQueueDesc, &cmdQueue[i]);
 zeCommandListCreate(context, subDevice[i], &cmdListDesc, &cmdList[i]);
 }
 ...
 // load the IL file (SPIRV format) which has the kernels to run on device
 const char *modulePath = "Gpu_Module_Kernel.spv";
 uint32_t spirvSize = 0;
 auto spirvModule = readBinaryFile(modulePath, spirvSize);
 ...
 zeModuleCreate(context, subDevice[i], &moduleDesc, &module[i], nullptr);
 zeKernelCreate(module[i], &kernelDesc, &kernel[i]);
 zeKernelSetGroupSize(kernel[i], groupSizeX, groupSizeY, groupSizeZ);
 ...
 // allocate device memory, append memory Copy instruction to the command list.
 for (uint32_t i=0; i<num_tiles; i++)
 {
 zeMemAllocDevice(context, &deviceDesc, bufferWidth*sizeof(float), 0,
 subDevice[i], &d_input[i]);
 zeCommandListAppendMemoryCopy(cmdList[i], d_input[i], input[i],
 bufferWidth*sizeof(float), nullptr, 0, nullptr);
 ...
 }
 // Copy data from host to device (execute the commands to allocate, copy).
 for (uint32_t i=0; i<num_tiles; i++) {
 zeCommandListClose(cmdList[i]);
 zeCommandQueueExecuteCommandLists(cmdQueue[i], 1, &cmdList[i], nullptr);
 }
 for (uint32_t i=0; i<num_tiles; i++) {
 zeCommandQueueSynchronize(cmdQueue[i], UINT32_MAX);
 }
 for (uint32_t i=0; i<num_tiles; i++) {
 zeCommandListReset(cmdList[i]);
 }
 ...
 // Set the kernel arguments
 for (uint32_t i=0; i<num_tiles; i++)
 {
 arg_indx = 0;
 start_idx = i * segment_size;

 zeKernelSetArgumentValue(kernel[i], arg_indx++, sizeof(d_input[i]),
 &d_input[i]);
 zeKernelSetArgumentValue(kernel[i], arg_indx++, sizeof(d_input[i]),
 &d_input[i + 1 == num_tiles ? 0 : i + 1]);
 ...
 }
 // Create an event pool, append it to the kernel launch command.
 ze_event_pool_handle_t eventPool;
 zeCommandListAppendLaunchKernel(cmdList[i], kernel[i], &group_count,
 kernelTsEvent[i], 0, nullptr);
 ... //continued

Listing 2. Level Zero example for kernel execution

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

35The Parallel Universe

 // Execute the command list, synchronize commands execution in the Queue.
 for (uint32_t i=0; i<num_tiles; i++) {
 zeCommandListClose(cmdList[i]);
 zeCommandQueueExecuteCommandLists(cmdQueue[i], 1, &cmdList[i], nullptr);
 }
 for (uint32_t i=0; i<num_tiles; i++) {
 zeCommandQueueSynchronize(cmdQueue[i], UINT32_MAX);
 }
 for (uint32_t i=0; i<num_tiles; i++) {
 zeCommandListReset(cmdList[i]);
 }
 // Get kernel event stats, compute execution duration.
 for (uint32_t i=0; i<num_tiles; i++)
 {
 zeEventQueryKernelTimestamp(kernelTsEvent[i], &kernelTsResults);
 uint64_t kernelDuration = kernelTsResults.context.kernelEnd –
 kernelTsResults.context.kernelStart;
 }
 // Copy data from device to host.
 for (uint32_t i=0; i<num_tiles; i++)
 {
 zeCommandListAppendMemoryCopy(cmdList[i], output[i], d_output[i],
 bufferWidth*sizeof(float), nullptr, 0, nullptr);
 }
 ...
 // Tear down, destroy the kernel, memory, context, event, and other objects.
 zeEventPoolDestroy(eventPool);
 for (size_t i=0; i<num_tiles; i++) {
 zeMemFree(context, d_input[i]);
 zeKernelDestroy(kernel[i]);
 zeCommandListDestroy(cmdList[i]);
 ...
 }
 zeContextDestroy(context);
 ...
}

OpenMP Example
Level Zero APIs are also generated in the backend when compiling OpenMP offload code. These API
calls are dumped when environment variables LIBOMPTARGET_DEBUG and LIBOMPTARGET_INFO are
set to one or more. We show an example, in Listing 3, of an AoS (array-of-structures) being allocated on
the device, and data initialized on the host copied to the memory allocated on the device, updated, and
transferred back to the host. The logs were generated by setting the two environment variables mentioned
above to 99.

Listing 4 shows some of the Level Zero API calls seen in the logs. The zeMemAllocDevice call
allocates data on the device, followed by the zeCommandListAppendMemoryCopy call that
copies data from the host to the device. Once the kernel computation is finished, the second call to
zeCommandListAppendMemoryCopy copies the updated data from device to host. The AoS is then
deleted with a call to zeMemFree, after which the device memory is returned to the memory pool. These

Listing 2 (continued) Level Zero example for kernel execution

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

36The Parallel Universe

calls are similar to what we saw in Listing 2. We have only focused on the Level Zero calls that correlate
directly to the OpenMP pragmas. The logs will show many more calls that are used to copy the pointers
from host to the device, get memory block properties, map the host to the device pointer and clean up the
device when done. In addition to this, the Level Zero API also provides other calls that give more control
over how the memory is allocated, copied from host to device, or shared between the two.

struct force_data
{
 float Mass;
 int index;
};

#pragma omp declare target
struct force_data *myData;
#pragma omp end declare target

int main()
{
 int a[10], max=10;

 //allocate array of struct on host
 myData = (struct force_data*) malloc(max * sizeof(struct force_data));

 for(int i = 0; i < max; i++)
 {
 myData[i].index = 1; a[i] = 2;
 }

 //1. Allocate data on device
 #pragma omp target enter data map(alloc:myData[0:max])
 {
 //2. Update data on device
 #pragma omp target teams distribute parallel for map(to:a)
 for(int i=0; i < max; i++)
 myData[i].index = myData[i].index + a[i];
 }

//3. Delete data on device
 #pragma omp target exit data map(delete:myData[0:max])
 for(int i=0; i < max; i++)
 printf("%d\n", myData[i].index);
}

Listing 3. OpenMP offload example

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

37The Parallel Universe

Libomptarget (pid:6780) --> Entering OpenMP data region at unknown:31:31 with 1 arguments:
Libomptarget (pid:6780) --> alloc(myData[0:10])[80]
…
Target LEVEL0 RTL (pid:10428) --> ZE_CALLER: zeMemAllocDevice (context, &deviceDesc,
Size, Align, Device, &mem)
…
Libomptarget (pid:10428) --> Copying data from host to device, HstPtr=…., TgtPtr=….,
Size=80, Name=myData[0:10]
…
Target LEVEL0 RTL (pid:10428) --> Copy Engine is used for data transfer
Target LEVEL0 RTL (pid:10428) --> ZE_CALLER: zeCommandListAppendMemoryCopy (cmdList,
Dest, Src, Size, nullptr, 0, nullptr)
…
Libomptarget (pid:6780) --> Entering OpenMP kernel at unknown:41:41 with 6 arguments:
Libomptarget (pid:6780) --> tofrom(myData)[8] (implicit)
…

Libomptarget (pid:6780) --> Updating OpenMP data at unknown:46:46 with 1 arguments:
Libomptarget (pid:6780) --> from(myData[0:10])[80]

Libomptarget (pid:6780) --> Copying data from device to host, TgtPtr=0xffffd556aa640000,
HstPtr=0x0000000000d362b0, Size=80, Name=myData[0:10]

Target LEVEL0 RTL (pid:6780) --> Copy Engine is used for data transfer
Target LEVEL0 RTL (pid:6780) --> ZE_CALLER: zeCommandListAppendMemoryCopy (cmdList, Dest,
Src, Size, nullptr, 0, nullptr)

Libomptarget (pid:6780) --> Deleting tgt data 0xffffd556aa640000 of size 80

Target LEVEL0 RTL (pid:6780) --> Returned device memory 0xffffd556aa640000 to memory pool
Target LEVEL0 RTL (pid:6780) --> ZE_CALLER: zeMemFree (Context, (void *)block->Base)
Target LEVEL0 RTL (pid:6780) --> ZE_CALLEE: zeMemFree (
Target LEVEL0 RTL (pid:6780) --> hContext = 0x0000000000d33500
Target LEVEL0 RTL (pid:6780) --> ptr = 0xffffd556aa640000

Conclusions
Most application developers will not require the additional control provided by the Level Zero API.
It is intended mainly for library and framework developers. The Level Zero API provides more fine-
grained, explicit control over device discovery, memory management, kernel submission, inter-process
communication and more. In this article, we have looked at a basic example to become familiar with
Level Zero programming. The OpenMP offload example also provides some insights into the set of calls
generated in the backend that provide a direct-to-metal interface to the offload accelerator device. The
oneAPI Level Zero specification contains complete API details.

Listing 4. Level Zero API calls generated in the backend for OpenMP offload

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://spec.oneapi.io/level-zero/latest/index.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

38The Parallel Universe

Optimizing the performance of large-scale, deep learning training workloads is expensive. It requires

contributions from a multidisciplinary team, and it requires a large computational infrastructure designed for

deep learning training. Optimization can be broken down into a wide range of methodologies: computation-

and communication-related optimizations of the collective operations for the data parallel training paradigm,

orchestration/scheduling of independent tasks, pipelining of preprocessing and augmentation of the dataset,

lightweight algorithmic optimizations that increase the convergence rate, and numerical optimizations

leveraging mixed precision of fp32 with bfloat16.

Basem Barakat, Senior Engineer, Evelyn Ding, Senior Engineer, and Joshua Mora, Principal
Engineer, Habana Labs an Intel® company

Achieve Faster Convergence with Higher
Accuracy in AI Training

Hyperparameter
Optimization with SigOpt
for MLPerf Training on
Habana Gaudi

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

39The Parallel Universe

And then we have the optimization we will focus on in this article: a methodology based on hyperparameter

optimization (HPO) to reduce the number of training epochs while preserving the desired target accuracy

(the converged epoch). We will apply HPO to an MLPerf™ training workload on the Habana® Gaudi® training

processor. This work is a collaboration between Habana Labs and SigOpt, both AI-focused Intel companies.

The result of this work is improved model training time and reduced computational resources required to

achieve optimal hyperparameters for the ResNet50 (RN50) model, resulting in reduced time-to-train the

MLPerf model on top of grid search benefits, while using fewer Gaudi-hours with respect to the grid search

approach.

MLPerf Training Workloads
Since 2018, the MLPerf benchmark suite has been used by the AI community to assess a wide range of

neural network models running on different types of computing infrastructures. The neural networks are

revisited at each submission to reflect the rapid evolution of AI.

We take advantage of the layer-wise adaptive rate scaling (LARS) algorithm (Figure 1) during RN50 training.

The hyperparameters and their respective MLPerf constraints are listed in Table 1. For this workload, we

must achieve a specific target accuracy (AC) of 75.9%.

Figure 1. Pseudocode for LARS showing the hyperparameters used during HPO

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://arxiv.org/pdf/1910.01500.pdf
https://arxiv.org/abs/1708.03888v3

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

40The Parallel Universe

Hyperparameters for RN50 Symbol Type Constraint

Number of Training Epochs NTE INT Positive INT

Number of Warmup Epochs NWE INT Positive INT

Base Learning Rate BLR FLOAT Positive real

Weight Decay WD FLOAT 0.0001 x 2N, N INT

Momentum MM FLOAT Positive real, depends on global batch size

Integration of Large-Scale Training and HPO Workflow Processes
Figure 2 shows a conceptual representation of the training cluster that could be on-premise or cloud-based.

It is being accessed by an AI user who submits batches of training jobs to the computing infrastructure. The

user gets back the accuracy on the runs (AC) and the number of converged epochs (CE). That information is

fed to SigOpt, which responds back to the user with new hyperparameter suggestions. The user can program

the criteria to continue, refine or stop the hyperparameter search once the optimization objective of finding

the lowest possible convergence epoch while reaching the target accuracy is met.

Table 1. Hyperparameters and MLPerf constraints

Figure 2. Running training jobs in the training clusters with SigOpt and the AI user
controlling the HPO progress

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

41The Parallel Universe

HPO Workflow with SigOpt
Figure 3 illustrates our current HPO implementation of the workflow with SigOpt. SigOpt is started by

defining the following variables:

 • Initial boundaries of hyperparameters

 • Threshold of evaluation metrics (e.g., AC)

 • Experiment budgets (i.e., the number of runs we can afford within a time budget)

 • Computational resources (i.e., the number of compute nodes to use)

 • Parallel run budgets (i.e., the number of concurrent runs to speed-up the hyperparameter search within
the allowed computational resources).

The workflow consists of two nested loops with a set of building blocks with specific functionality: an
inner loop (the dashed-dotted lines) and an outer loop (the dashed lines). After SigOpt is started, a new
experiment is created and configured, and an evaluator algorithm is initialized with the hyperparameter
boundaries. Then, the inner loop starts with suggested hyperparameter values provided by SigOpt,
which uses the metrics from user training deep learning models on the training clusters to give
recommendations. The inner loop completes its process once the predefined budget is reached.

Next, the outer loop starts by using the evaluator building block to validate the SigOpt hyperparameter
suggestions and refines the boundaries based on user criteria. This allows you to bring your own
additional optimizations on top of what SigOpt already provides. The evaluator we implemented leverages

Figure 3. Workflow of HPO with SigOpt to find the HPs that meet target accuracy and
minimize the number of epochs to converge.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

42The Parallel Universe

a K-means unsupervised machine learning clustering method, which will be described in the next section.

Once the hyperparameter boundaries are refined, the outer loop can resume its process for another
iteration or stop when there is no improvement on the convergence epoch. The final suggestions of
hyperparameter values are saved and the evaluation is stopped.

Bringing Your Own Evaluator into the HPO Workflow
Figures 4-7 illustrate the implementation of our evaluator, which is based on K-means clustering. For all
data received from SigOpt, only the data meeting the accuracy requirement are saved, and these data are
further filtered by keeping only 75% of the datapoints with the best converge epochs (Figure 4). Then, the
K-means classification is applied to the suggested part of the datapoints (namely: NTE, BLR, NWE and WD)
to separate them into clusters with each having at least ten datapoints (Figure 5). The cluster with the best
performance is selected based on the minimum mean runtime (the blue dashed box in Figures 5 and 6).

Figure 4. K-means clustering is applied to the parameter space of the measured points
to group them into distinct clusters.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

43The Parallel Universe

Figure 5. For each set of measurement in given cluster, the mean converge epoch is calculated.
The blue square denotes the selected cluster with lowest mean converge epoch.

Figure 6. Measurement results clustered using the k-mean algorithm are plotted above. The
selected cluster in Figure 5 is indicated by the blue square.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

44The Parallel Universe

For a given hyperparameter, the range of values (boundaries) from the best cluster (with the lowest
runtime/converged epochs) is compared with the SigOpt predefined boundaries (Figure 7). If any of
the predefined boundaries (left and right in the range) are too close to any of the best cluster values
found, the evaluator will adjust the corresponding SigOpt boundaries to allow the exploration of new
hyperparameter values. On the other hand, if any of the SigOpt boundaries are far away from the best
cluster values found, the evaluator will adjust the corresponding SigOpt boundaries to be closer to the
best cluster hyperparameter value to allow for exploitation within the vicinity of that value. The 0.1 (10%)
adjustment to the coefficient in Figure 7 is found empirically. We used 10% for RN50. The new adjusted
SigOpt boundaries are then reconfigured for a new experiment. This adjustment speeds up the search of
hyperparameter values. It is depicted graphically in Figure 8 for the learning rate hyperparameter.

Due to the initial condition randomness of the deep learning framework, we executed each run several

Figure 7. Illustration of the evaluator algorithm

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

45The Parallel Universe

Figure 8. Hyperparameter value adjustment based on the best cluster hyperparameters

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

46The Parallel Universe

times with different random seeds for the parameter values. Then, we report the average and standard
deviation for each metric to SigOpt. To speed up the search time and conserve compute resources we
perform three runs for each data point during the search process. However, at end of the experiment
we select the best set of points found by SigOpt and futher validate them with higher run counts (5-10
runs). This process will ensure that the results are stable and reproduceable. Running the optimization
for a given global batch size also conserves compute resources because we are simultaneously covering
a concurrent set of deployment senarios, each with different computing resources that share the same
hyperparameters across different local batch sizes.

SigOpt Dashboard Charts
The charts embedded in the SigOpt dashboard such as parallel coordinates, contribution/sensitivity,
and experiment history provide a set of complementary views that enrich the understanding of
hyperparameters and their effects on convergence during an experiment. For RN50, we did 400 runs.
The parallel coordinate plot (Figure 9) shows the relations between the hyperparameters suggested by
SigOpt and the measured metrics (results) of these runs. The gray lines denote those runs that did not
pass the target evaluation accuracy (SigOpt refers to it as the threshold), while the blue lines denote the
runs that met the threshold. SigOpt highlights the best runs in orange (Figures 9 and 10). The parallel
coordinate plots show correlations among the hyperparameters plus the accuracy and number of epochs
to converge. For example, one can easily see that base_learning_rate and weight_decay are inversely
correlated with the number of converged epochs.

Figure 9. RN50 parallel coordinate plot showing the relation between HPO and measured metric values

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

47The Parallel Universe

Figure 11 shows the strong correlation between train_epochs and con_epochs. The con_epochs is simply
the train_epochs number at which the target evaluation_accuracy is reached. As such, we expect a strong
correlation. We can also see that con_epochs is approximately 1-3 epochs lower than train_epochs.

Figure 12 shows the contribution of each hyperparameter toward each of the metrics values. The orange
and the blue bars show the contributions to eval_accuracy and con_epochs, respectively. The scale for
the ranking is between 0 and 1 (100%). SigOpt uses the decision tree regressor model to measure these
relations. In this figure, and as expected intuitively, we can see that train_epochs has the most impact on
accuracy and con_epochs. Also, we can see that the weight decay parameter only impacts the con_epochs
values, while base_learning_rate only impacts evaluation accuracy.

Figure 10. RN50 parallel coordinates for the best observations

Figure 11. RN50 correlation between train_epochs and con_epochs

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

48The Parallel Universe

Figure 13 is the main tracking plot in the SigOpt dashboard showing a scattered plot between all the
metrics values. This plot updates during the experiment to show how the SigOpt optimizer is reducing
con_epochs while improving evaluation accuracy. The best points are highlighted in orange. The best
result is indicated by the red box.

Figure 12. Relative contribution of the hyperparameter toward the metrics results for RN50. The scale
is based on cumulative contribution of 100%.

Figure 13. Correlation of best metrics

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

49The Parallel Universe

SigOpt HPO Results for MLPerf RN50
We start by providing the values used in HPO for both workloads. These are the hyperparameter values
passed to MLPerf RN50 and the stopping criteria for the HPO workflow:

Hyperparameter Symbol Type Constraint

Number of Training Epochs NTE INT 41 ~ 50

Number of Warmup Epochs NWE INT 2 ~ 15

Base Learning Rate BLR FLOAT 18 ~ 30

Weight Decay WD FLOAT 1.0e-5 ~ 4.0e-4

Metric Symbol Type Objective

Evaluation Accuracy AC FLOAT > 0.759

Converge Epoch CE INT Minimize

We close this section by listing the advantages of SigOpt over grid search found during MLPerf RN50 HPO:

 • Found better hyperparameters with lower converge epochs (CE)

 • Bayesian vs grid search

 • 6% epoch reduction relative to grid search, which translates to ~6% lower training time

 • More efficient resource utilization

The following tables summarize the computational resources consumed during HPO and the runtime
reduction achieved and expressed in terms of reduction of the convergence epochs.

Cluster Runs Grid Search
Compute Resource Utilization (Hours)

SigOpt Search
Compute Resource Utilization (Hours)

K8s runs 53,948 21,333

Baremetal runs 31,464 0

Total runs 85,413 21,333

Grid Search SigOpt Search

Epoch reduction 28% +6% (in addition to grid search)

Notice that the SigOpt search was performed after the grid search effectively starting from an already
optimized search point. It was able to lower the converge epochs values by an additional 6% using less
compute resources: 21,333 hours vs. 85,413 hours for SigOpt and Grid search, respectively.

Given these results, we hope AI developers will take advantage of the cost efficiency of Habana Gaudi and
leverage SigOpt’s HPO to accelerate model development.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

50The Parallel Universe

[This article originally appeared on Anaconda.com and is reprinted with permission.]

AI and data science are rapidly advancing, which brings an ever-increasing amount of data to the table and
enables us to derive ideas and solutions that continue to grow more complex every day. But on the other
hand, we see that these advances are shifting focus from value extraction to systems engineering. Also,
hardware capabilities might be growing at a faster rate than people can learn how to properly utilize them.

This trend either requires adding a new position, a so-called “data engineer,” or requires a data scientist to
deal with infrastructure-related issues instead of focusing on the core part of data science — generating
insights. One of the primary reasons for this is the absence of optimized data science and machine
learning infrastructure for data scientists who are not necessarily software engineers by nature – these can
be considered two separate, sometimes overlapping skill sets.

Vasilij Litvinov, AI Frameworks Engineer, Intel Corporation

Scalable Data Analytics with No Rewrite Required

Scale Your Pandas
Workflow with Modin

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.anaconda.com/blog/scale-your-pandas-workflow-with-modin

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

51The Parallel Universe

We know that data scientists are creatures of habit. They like the tools that they’re familiar with in the
Python data stack, such as pandas, Scikit-learn, NumPy, PyTorch, etc. However, these tools are often
unsuited for parallel processing or terabytes of data.

Anaconda® and Intel® are collaborating to solve data scientists’ most critical and central problem: how to
make their familiar software stack and APIs scalable and faster? This article introduces Intel Distribution
of Modin, part of the Intel oneAPI AI Analytics Toolkit (AI Kit), which is now available from Anaconda’s
“defaults” channel (and from conda-forge, too).

Why Pandas Is Not Enough
Though it is an industry standard, pandas is inherently single-threaded for a lot of cases, which makes
it slow for huge datasets. It may not even work for datasets that don’t fit in memory. There are other
alternatives to solve this issue (e.g., Dask, pySpark, vaex.io, etc.), but none of them provide a fully pandas-
compatible interface – users would have to modify their workloads accordingly.

What does Modin have to offer you as the end-user? It tries to adhere to the idea of “tools should work for
the data scientist, not vice versa.” It offers a simple, drop-in replacement for pandas – you just change your
“import pandas as pd” statement to “import modin.pandas as pd” and gain better scalability
for a lot of use-cases.

What Modin Offers
By removing the requirement to “rewrite pandas workflow to X framework,” it’s possible to speed up the
development cycle for data insights (Figure 1).

Figure 1. Using Modin in a continuous development cycle

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.intel.com/content/www/us/en/developer/tools/oneapi/distribution-of-modin.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/distribution-of-modin.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/ai-analytics-toolkit.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

52The Parallel Universe

Modin better utilizes the hardware by grid-splitting the dataframe, which allows certain operations to run
in a parallel distributed way, be it cell-wise, column-wise, or row-wise (Figure 2). For certain operations,
it’s possible to utilize experimental integration with the OmniSci engine to leverage the power of multiple
cores even better.

By installing Modin through AI Kit or from the Anaconda defaults (or conda-forge) channel, an
experimental, even faster OmniSci backend for Modin is also available. It just takes a few simple code
changes to activate:

Show Me the Numbers!
Enough with the words, let’s have a look at the benchmarks. For detailed comparison of different Modin
engines, please refer to community-measured microbenchmarks: http://modin.org/modin-bench, which
track performance of different data science operations over commits to the Modin repository.

Figure 2. Comparing pandas and Modin DataFrames

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
http://modin.org/modin-bench

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

53The Parallel Universe

To demonstrate the scalability of this approach, let’s use a larger, more end-to-end workload running on
an Intel Xeon® 8368 Platinum-based server (see full hardware info below) using OmniSci through Modin
(Figures 3-5).

Figure 3. Running the NYC Taxi workload: 200M records, 79.2 GB input dataset

Figure 4 Running the Census workload: 21M records, 2.1 GB input dataset

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://github.com/modin-project/modin/tree/master/examples/docker/modin-omnisci
https://github.com/modin-project/modin/blob/master/examples/docker/modin-omnisci/census-omnisci.py

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

54The Parallel Universe

Hardware information: two 3rd Generation Intel Xeon 8368 Platinum on a C620 board with 512GB (16
slots/32GB/3200) total DDR4 memory, microcode 0xd0002a0, Hyper-Threading on, Turbo on, Centos
7.9.2009, 3.10.0-1160.36.2.el7.x86_64, one Intel 960 GB SSD OS Drive, three Intel 1.9 TB SSD data drives.
Software information: Python 3.8.10, Pandas 1.3.2, Modin 0.10.2, OmnisciDB 5.7.0, Docker 20.10.8, tested
by Intel on 10/05/2021.

Wait, There’s More
If running on one node is not enough for your data, Modin supports running distributed on a Ray cluster or
a Dask cluster. You can also use the experimental XGBoost integration, which will automatically utilize the
Ray-based cluster for you without any special set up!

References

 • Intel oneAPI AI Analytics Toolkit installation: conda install intel-aikit -c intel

 • Modin Documentation

 • Modin Source and Issue Tracker

 • Switching Modin to the OmniSci Backend

Figure 5. Running the PlastiCC workload: 460M records, 20 GB input dataset

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://docs.ray.io/en/latest/cluster/cloud.html#manual-ray-cluster-setup
https://docs.dask.org/en/latest/how-to/deploy-dask-clusters.html
https://modin.readthedocs.io/en/latest/index.html
https://github.com/modin-project/modin
https://modin.readthedocs.io/en/latest/UsingOmnisci/index.html
https://github.com/modin-project/modin/blob/master/examples/docker/modin-omnisci/plasticc-omnisci.py

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

55The Parallel Universe

[This article originally appeared on anyscale.com and is reprinted with permission.]

Ray is a framework with simple and universal APIs for building innovative AI applications. BigDL is an
open-source framework for building scalable end-to-end AI on distributed big data. It leverages Ray and
its native libraries to support advanced AI use-cases such as AutoML and Automated Time Series Analysis.
We will introduce some of the core components in BigDL and showcase how it takes advantage of Ray to
build out the underlying infrastructure (i.e., RayOnSpark, AutoML, etc.), and how these will help users build
AI applications using Project Chronos.

Wesley Du, Junwei Deng, Kai Huang, Shan Yu, and Shane Huang, Solution Architects, Intel
AI and Analytics

Build End-to-End AI Use-Cases with BigDL
on Top of Ray

From Ray to Chronos

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.anyscale.com/blog/from-ray-to-chronos-build-end-to-end-ai-use-cases-using-bigdl-on-top-of-ray
https://www.ray.io/
https://github.com/intel-analytics/BigDL
https://bigdl.readthedocs.io/en/latest/doc/Chronos/Overview/chronos.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

56The Parallel Universe

RayOnSpark: Seamlessly Run Ray Applications on Top of Apache
Spark
Ray is an open-source distributed framework for easily running emerging AI applications such as deep
reinforcement learning and automated machine learning (ML). BigDL seamlessly integrates Ray into
big data preprocessing pipelines through RayOnSpark and it has already been used to build several
advanced end-to-end AI applications for specific areas such as AutoML and Chronos. RayOnSpark runs
Ray programs on top of Apache Spark™ on big data clusters (e.g., an Apache Hadoop™* or Kubernetes*
cluster) and as a result, objects like in-memory DataFrames can be directly streamed into Ray applications
for advanced AI applications. With RayOnSpark, users can directly try various emerging AI applications on
their existing big data clusters in a production environment. It also allows Ray applications to seamlessly
integrate into Big Data processing pipelines and directly run on in-memory DataFrames.

Figure 1. RayOnSpark architecture

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://github.com/ray-project/ray
https://docs.ray.io/en/latest/rllib.html
https://docs.ray.io/en/latest/rllib.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

57The Parallel Universe

Figure 1 illustrates the architecture of RayOnSpark. In the Spark implementation, a Spark program runs on
the driver node and creates a SparkSession with a SparkContext object responsible for launching multiple
Spark executors on a cluster to run Spark jobs. In RayOnSpark, the Spark driver program additionally
creates a RayContext object, which will automatically launch Ray processes alongside each Spark
executor across the same cluster. RayContext will also create a RayManager inside each Spark executor to
manage Ray processes (e.g., automatically shutting down the processes when the program exits). Figure
2 demonstrates how users can directly write Ray code inside standard Spark applications after initializing
RayOnSpark:

AutoML (orca.automl): Tune AI Applications Effortlessly Using
Ray Tune
Hyperparameter optimization (HPO) is important for achieving accuracy, performance, etc. of a ML or
deep learning (DL) model. However, manual HPO can be a time-consuming process that may not optimize
thoroughly enough. On the other hand, HPO in a distributed environment can be difficult to implement.
BigDL introduces an AutoML capability (via orca.automl) built on top of Ray Tune to make life easier for
data scientists.

Figure 2. Sample code of RayOnSpark

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://docs.ray.io/en/latest/tune/index.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

58The Parallel Universe

What Is orca.automl?
In many cases, data scientists would prefer to prototype, debug, and tune AI applications on their laptops,
and if the same code can be moved intact to a cluster, it will greatly improve the end-to-end productivity.
BigDL’s Orca project helps users to seamlessly scale their code from a laptop to a cluster. Furthermore,
BigDL’s orca.automl leverages RayOnSpark and Ray Tune, and provides a distributed, hyperparameter
tuning API called AutoEstimator. As Ray Tune is framework agnostic, AutoEstimator is suitable for both
PyTorch and TensorFlow models. Users can tune models in a consistent manner on their laptops, local
servers, Kubernetes clusters, Hadoop/YARN clusters, etc.

With these features, orca.automl in BigDL can be used to automatically explore the search space
(including models, hyperparameters, etc.) for many AI applications. As an example, we have implemented
AutoXGBoost (XGBoost with HPO) using BigDL’s orca.automl to automatically fit and optimize XGBoost
models. Compared to a similar solution on an Nvidia A100, training with AutoXGBoost is ~1.7x faster, and
the final model is more accurate. See Scalable AutoXGBoost Using Analytics Zoo AutoML for more details.
You may also refer to the orca.automl User Guide for design information and the AutoXGBoost Quick Start
or Auto Tuning for arbitrary models for hands-on practice.

Chronos: Build Automated Time Series Analysis Using AutoTS
on Ray
We have also developed a framework for Automatics Time Series Analysis, known as Project Chronos.
orca.automl is leveraged to tune hyperparameters during the automatic analysis.

Why Do We Need Chronos?
Time series (TS) analysis is now widely used in many real-world applications (such as network quality
analysis in telecommunications, log analysis for data center operations, predictive maintenance for high-
value equipment, etc.) and getting more and more important. Accurate forecasting and detection have
become the most sought-after tasks and prove to be huge challenges for traditional approaches. DL
methods often perceive time series forecasting and detection as a sequence modeling problem and have
recently been applied to these problems with much success.

On the other hand, building the ML applications for time series forecasting/detection can be a laborious
and knowledge-intensive process. Hyperparameter setting, preprocessing, and feature engineering may
all become bottlenecks for a dedicated DL model. To provide an efficient, powerful, and easy-to-use time
series analysis toolkit, we launched Project Chronos, a framework for building large-scale time series
analysis applications. This can be used to apply AutoML and distributed training because it is built on top
of Ray Tune, Ray Train, and RayOnSpark.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://bigdl.readthedocs.io/en/latest/doc/Chronos/QuickStart/chronos-autotsest-quickstart.html
https://medium.com/intel-analytics-software/scalable-autoxgboost-using-analytics-zoo-automl-30d576cb138a
https://bigdl.readthedocs.io/en/latest/doc/Orca/Overview/distributed-tuning.html
https://bigdl.readthedocs.io/en/latest/doc/Orca/QuickStart/orca-autoxgboost-quickstart.html
https://bigdl.readthedocs.io/en/latest/doc/Orca/QuickStart/orca-autoestimator-pytorch-quickstart.html
https://bigdl.readthedocs.io/en/latest/doc/Chronos/Overview/chronos.html
https://docs.ray.io/en/master/train/user_guide.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

59The Parallel Universe

Chronos Architecture
Chronos features several (10+) built-in DL and ML models for time series forecasting, detection, and
simulation as well as many (70+) data processing and feature engineering utilities. Users can call
standalone algorithms and models (forecasters, detectors, simulators) themselves to acquire the highest
flexibility or use our highly integrated and scalable and automated workflow for time series (AutoTS). The
inferencing process has also been optimized in a number of ways, including integrating ONNX runtimec.

Figure 3 illustrates Chronos's architecture on the top of BigDL and Ray. This section focuses on the AutoTS
component. The AutoTS framework uses Ray Tune as a hyperparameter search engine (running on top
of RayOnSpark). For automatic data processing, the search engine selects the best lookback value for a
prediction task. For automatic feature engineering, the search engine selects the best subset from a set of
features that are automatically generated by various feature generation tools (e.g., tsfresh). For automatic
modeling, the search engine searches for hyperparameters such as hidden dim, learning rate, etc.

Chronos Hands-On Example for the AutoTS Workflow
The following code illustrates the training and inferencing process of a time series forecasting pipeline
using Chronos's friendly and highly integrated AutoTS workflow:

Figure 3. Project Chronos architecture

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://onnxruntime.ai/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

60The Parallel Universe

This particular workflow utilizes the simple and straightforward API on the TSDataset to do some typical
time series processing (e.g., imputing, scaling, etc.) and feature generation.

Then, users can initialize AutoTSEstimator by stating the model (built-in model name/model
create function for 3rd party model), lookback, and horizon. The AutoTSEstimator runs the search
procedure on top of Ray Tune; each run generates several trials (each with a different combination of
hyperparameters and subset of features) at a time and distributes the trials in the Ray cluster. After all trials
complete, the best set of hyperparameters, optimized model, and data processing procedure are retrieved
according to the target metrics, which are used to compose the resulting TSPipeline.

The TSPipeline can be used for prediction, evaluation, and incremental fitting.

For detailed information, Chronos user guide is a great place to start.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://bigdl.readthedocs.io/en/latest/doc/Chronos/Overview/chronos.html

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

61The Parallel Universe

5G Network Time Series Analysis Using Chronos AutoTS
Chronos has been adopted widely in many areas, such as telecommunication and AI operation. Capgemini
Engineering leverages the Chronos AutoML workflow and inferencing optimization in their 5G Medium
Access Controller (MAC) to realize cognitive capabilities as part of Intelligent to RAN Controller nodes.
In their tasks, Chronos is used to forecast UE’s mobility to assist the MAC scheduler in efficient link
adaptation on two-key KPIs. With Chronos AutoTS, Capgemini engineers changed their model to our
built-in TCN model and enlarged the lookback value, which successfully increased the AI accuracy by 55%.
Please refer to the white paper for more details.

Conclusion
In this article, we showed how BigDL leverages Ray and its libraries to build scalable AI applications for
big data (using RayOnSpark), improve end-to-end AI development productivity (using AutoML on top of
RayTune), and build domain-specific AI use-cases such as Automatic Time Series Analysis with project
Chronos. BigDL also adopts Ray in other aspects, for example Ray Train is being used in the BigDL Orca
project to seamlessly scale-out single-node Python notebooks across large clusters. We are also exploring
other use-cases such as recommendation systems, reinforcement learning, etc. which will leverage the
AutoML capabilities built on top of Ray.

Accelerate Heterogeneous Application Development
Focus on innovation, not rewriting code for the next hardware platform.
Discover oneAPI >

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://networkbuilders.intel.com/solutionslibrary/intelligent-5g-l2-mac-scheduler-powered-by-capgemini-netanticipate-5g-on-intel-architecture
https://docs.ray.io/en/master/train/user_guide.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html

 Intel technologies may require enabled hardware, software or service activation. Learn more at intel.com or from the OEM or retailer.
Your costs and results may vary.
Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.
Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific
to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice. Notice Revision #20110804. https://software.intel.com/en-us/
articles/optimization-notice
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to
assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.
See backup for configuration details. For more complete information about performance and benchmark results, visit www.intel.com/
benchmarks.
Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See
configuration disclosure for details. No product or component can be absolutely secure.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.
 © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.
 Printed in USA 707/IH Please Recycle.

