intel

Intel® Trust Domain Extensions (Intel® TDX) Module
Extension for Pre-Migration
869278-001US (DRAFT)

November 2025

Ref. # 869278-001US (DRAFT)
Copyright © 2025 Intel Corporation. All rights reserved.

10

15

20

Intel® TDX Module Extension for Pre-Migration

Notices and Disclaimers

|Il

Intel Corporation (“Intel”) provides these materials as-is, with no express or implied warranties.

All products, dates, and figures specified are preliminary, based on current expectations, and are subject to change
without notice. Intel does not guarantee the availability of these interfaces in any future product. Contact your Intel
representative to obtain the latest Intel product specifications and roadmaps.

The products described might contain design defects or errors known as errata, which might cause the product to
deviate from published specifications. Current, characterized errata are available on request.

Intel technologies might require enabled hardware, software, or service activation. Some results have been estimated
or simulated. Your costs and results might vary.

No product or component can be absolutely secure.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent
claim thereafter drafted that includes the subject matter disclosed herein.

No license (express, implied, by estoppel, or otherwise) to any intellectual-property rights is granted by this document.

This document contains information on products, services and/or processes in development. All information provided
here is subject to change without notice.

Copies of documents that have an order number and are referenced in this document or other Intel literature may be
obtained by calling 1-800-548-4725 or by visiting http://www.intel.com/design/literature.htm.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands might be claimed as the property of others.

November 2025 Ref. # 869278-001US (DRAFT) Page 2 of 23

Intel® TDX Module Extension for Pre-Migration

http://www.intel.com/design/literature.htm.

Intel® TDX Module Extension for Pre-Migration

Table of Contents

1. Y ¢ T T UL 4 0 T 0 T T o]0 T 4T =T PP 5
1.1, SCOPE Of tHiS DOCUMEBNL.......eeeveeeiieeiie ettt ettt ettt st e e st s e st e st e st esabe e s abaesbeesbaesasessbaasasesssaanseenas 5
B | Lo 1o 1 o T B SPPPPPPPRISPPR 6

1.2.1. Requirement and Definition ComMmMItMENt LEVEISccouviiieciiii et e e e e 6
B R 10 T =] Lot = PP PP 6
2. Overview of the NRX FrameWOorKccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniininiissisninsssns 7
D N 11 (=1 5 o [ol =2 IO TSR 7
2.1.1. HOSE VIMIIME INTEITACES .ttt ettt ettt ettt e e sttt e st e e e st e e e s abae e seabteessabbeeessbaeesaasaeessnbaeesnnnes 7
b R 1129 @ 1117 (o] 742 L1 o ¢ OO PSPPI 7
2.2.1. Intel TDX Module LIfecyCle UPAate......cooiiiiiiiiieeieeiieeite ettt sttt st s st s st e sanee s 7
2.2.2. Host VMM Declaration of Features on Intel TDX Module Initialization........cccccevviieieiiiinnieennieneeeeeienn 8
2.2.3. Adding Pages to the Intel TDX Module’s Memory POOL.........coiii it eeerre e e e ennees 8
2.3. NRX Sessions and CONCUITENt NRX FEQUESESeeeeeuieeeeeiieeeieeeeeieeeeiee e e siee e e st e e sateaessiiesesssteesssaassssssesesas 9
D) 3 QU oo (o (=2 OO U UUP 10
2.4.1. NRX session state management on SVN changes during TD preserving updateccccceeeeeieecciiiieeeeeeenn. 10
2.5. NRXFatal Error HANGING DY VIMIMooeeeeee et eeeee ettt e ettt e ettt e e tttaa e et aeeanstaasaasasaeassesessnssaaesasseean 10
2.6, SECUILY PEISPECLIVE ..ottt e e e e e e 11

3. Intel TDX Module Extension for Migration (MIG NRX).......ccccccerrrrrsssnsans 12
2 B O = 4V - T PEPPP PP 12
3.2, MIG NRX REQUESLES GNA SESSIONSeeeeieeeeiiee ettt e ettt ettt e e ettt e et e e st e e e s tte s e s aasaaesasstaessstessesssnesssnseneas 13
3.3, Migration POliCY BiNQING tO G TDuuueeeeee et e ettt te e e e ettt a e e e e ettt e e e e e e e st atseaaaaeeeassssanaaaeeeassssenees 13
3.4. MIG NRX Initialization and RUNtIME INEEIACLIONeeeeeueieieiiieeeeiee ettt e sttt siae e s saaaeesseee s 13

3.4.1. Initialization of MIG NRX DY VIMIMuiiiiiiiie ettt ettt e ettt e e et e e e st e e s aaa e e sssteeeesnsseeeennaaeesnneeenns 13
3.4.2. Runtime Preparation of the Migration SESSIONccceeeiiiiieeeiiee et e e e e st e e e ae e e s sareeeeas 13
3.4.3. Runtime Preparation of the Migration Session: Internal detailsccccveveeciei e, 14
3.5, MIG NRX UPAALES ..ottt ettt ettt ettt ettt ettt e et e e st e ettt et e e bteests e bteestsebtesseaebaeeseaenses 15
3.5.1. MIG NRX session state management on SVN changes during a TD preserving update.........ccccecvvvveeeeennn. 15
3.6. Fatal Error Handling in MIG NRX DY VIMIM............uuueeeeee et eetetttteaa e e e e ttateaaaaaeessasaaaaaeeeasstsasaaaeeeasnssenens 16

4. Migration related Intel TDX Module Specification Changes...........cccccvvvvvivrrrsinnnnnnnnnnnennsssssnsssssssssssssssssssees 18
4.1. Intel TDX Module Enumeration & CONFIGUITLIONccccuuueeeeeeeeeieeiiieeeeeeeesitteeeaeeeeecttteaaaaeeeestttanaaaeeeesenssenens 18
L D Lo | (o B Y o= S TP PPPPPPPPPRPRPPPPPPPPRt 18

4.2.1. NEW: Data BUFFEE LIS ...veiieiiiiieiieeeiee ettt sttt sttt st e st e s b e e e bt e s ba e e bt e sbaeenbeesbaeenbeesane 18
4.2.2. Update: SERVTD _EXT_STRUCTciiciiiiiieeiieeiieesree sttt e st e st e st e s s e sbeesbeessbaeebeesabaesbeessbaesnseesabaesnseanane 18
4.2.3. NEW: CONSTANTS .ttt ettt ettt e e e e e s e bee et e e e e e s e babteeeeeeseaaanbbeeeeeeseaanbeeeeeeesaaanranaeeeeeanann 19
4.3. HOSt-Side (SEAMUOCALL) FUNCLIONSoeeeeeeeeeeeeee et eeeee ettt e e ettt e e et e e et s e eestseseeaassaeeaataaaentseseessssasesssenaan 20
4.3.1. Update: TDH.MNG.RD/TDH.MNG.WRcviiiitiiiitiieitieeiteeeeteeeeteeeeteeeeteeeeteeeetesesteeensesesteeessesessesensesensesenseeenes 20
4.3.2. UPAAte: TDH.SYS.RD...uiiiiiiiiieiiieiee ettt e e e e ettt e e e e e e e ttaa e e e e e e e e aataeeaaaeseasssaeseaaeseasnsbaneaaesaaanntanseeaesannns 20
4.3.3. UPate: TDH.SYS.RD .. uuiiiiiiiiieiiieeiee st e ettt sbe e st e st e s be e sbe e s beesabee st e e sabeesabaeeseesabaesbeesabaesnseesabaeenseenane 20
4.3.4. UPdate: TDH.SYS.RD/WR ...oouiieiieeieriiesteesieeieetesete st esteeteentesseessaese e teessesneesseesseenseenseessanssesseensesnsesnsesneesnes 20
4.3.5. UPdate: TDH.SYS.RD/WR ...oouiieeiieeieiiesteesieeteetesete st esteeteentesseessaese e seessesneesseesaeenseenseessanssessaenseensesnsesnsesnes 21
4.3.6. Update: TDH.EXT.MEMLADDooiiei ittt ettt e e ettt e e e e e e et a e e e e e e s e e tabbeeeeaeseeansaaseeaeeaannnsaaseeaseannes 21
4.3.7. NEeW: TDH.MIG.SETUP LEATeerieiiieiieeeteee ettt ettt e e e et e e e e e e ettt e e e e e e s eeaataeeeaaeeeenntaaseeaeeennes 21
[a] UL 01T =1 o Vo E3 U UUPPUPRN 21
(@101 410 e o1=] - o[TSR 22
[T U g To a oY T D 1YYl o) o o FP S 22
(O] oY= =T oL F g o1 ' =14 o Yo YRSt 22

November 2025 Ref. # 869278-001US (DRAFT) Page 3 of 23

Intel® TDX Module Extension for Pre-Migration

Intel® TDX Module Extension for Pre-Migration

(00T a] o] [A oY g I = L (U T Oe Yo 1T UUR 22

November 2025 Ref. # 869278-001US (DRAFT) Page 4 of 23

Intel® TDX Module Extension for Pre-Migration

10

15

Intel® TDX Module Extension for Pre-Migration

1. About this Document

1.1. Scope of this Document

The purpose of this document is to demonstrate an alternative design for implementing the migration session
establishment and migration policy enforcement steps of the Intel® Trust Domain Extensions (Intel® TDX) Migration
architecture.

In the previous design of the Intel TDX Module, these steps were made by a specific type of Service TD called the
Migration TD (a.k.a. MigTD). The alternative design presented in this document eliminates the need for MigTD and
instead moves the abovementioned functionality into an Intel TDX module extension, called MIG NRX.

The intention of this document is not to demonstrate the internal details of the MIG NRX architecture, but to provide
enough information on how the functionality provided by this Intel TDX module extension can be used by an Operating
System (OS) or Virtual Machine Manager (VMM).

This document is part of the Intel TDX Module Architecture Specification Set, which includes the following documents:

Table 1.1: Intel TDX Module Architecture Specification Set

Document Name

Reference

Description

Intel TDX Module
Base Architecture Specification

[Intel TDX Module
Base Spec]

Base Intel TDX Module architecture
overview and specification, covering key
management, TD lifecycle management,
memory management, virtualization,
measurement and attestation, service TDs,
debug aspects etc.

Intel TDX Module
TD Migration Architecture Specification

[TD Migration Spec]

Architecture overview and specification for
TD migration

Intel TDX Module
TD Partitioning Architecture
Specification

[TD Partitioning
Spec]

Architecture overview and specification for
TD Partitioning

Intel TDX Module Extension for Pre-
Migration

[Intel TDX Pre-
Migration module
Extension]

Architecture overview and specification for
Pre-Migration TDX Module Extension

Intel TDX Module
TDX Connect Specification

[TDX Connect Spec]

Architecture overview and specification for
Intel TDX Connect

Intel TDX Module
ABI Reference Specification

[Intel TDX Module
ABI Spec]

Detailed Intel TDX Module Application
Binary Interface (ABI) reference
specification, covering the entire Intel TDX
Module architecture

Intel TDX Module
TDX Connect ABI Reference
Specification

[Intel TDX Connect
ABI Spec]

Detailed Intel TDX Module Application
Binary Interface (ABI) reference
specification, covering the TDX connect
architecture

Intel TDX Module ABI Reference Tables

[Intel TDX Module
ABI Tables]

A set of files detailing Intel TDX Module
Application Binary Interface (ABI)

Intel TDX Module ABI Incompatibilities

[Intel TDX Module
ABI
Incompatibilities]

Description of the incompatibilities
between Intel TDX 1.0 and Intel TDX
1.4/1.5 that may impact the host VMM

and/or guest TDs

This document is a work in progress and is subject to change based on customer feedback and internal analysis. This
document does not imply any product commitment from Intel to anything in terms of features and/or behaviors.

November 2025

Ref. # 869278-001US (DRAFT)

Page 5 of 23

Intel® TDX Module Extension for Pre-Migration

10

Intel® TDX Module Extension for Pre-Migration

Note: The contents of this document are accurate to the best of Intel’s knowledge as of the date of publication, though
Intel does not represent that such information will remain as described indefinitely in light of future research
and design implementations. Intel does not commit to updating this document in real time when such changes

occur.

1.2. Notation

This section describes the notation used in this document.

1.2.1. Requirement and Definition Commitment Levels

When specifying requirements or definitions, the level of commitment is specified following the convention of RFC 2119:
Key words for use in RFCs to indicate Requirement Levels, as described in the following table:

Table 1.2: Requirement and Definition Commitment Levels

Keyword Description

Must “Must”, "Required" or "Shall" means that the definition is an absolute requirement of the
specification.

Must Not “Must Not” or "Shall Not" means that the definition is an absolute prohibition of the
specification.

Should “Should”, or the adjective "Recommended", means that there may exist valid reasons in
particular circumstances to ignore a particular item, but the full implications must be
understood and carefully weighed before choosing a different course.

Should Not | “Should Not”, or the phrase "Not Recommended" means that there may exist valid reasons in
particular circumstances when the particular behavior is acceptable or even useful, but the full
implications should be understood, and the case must be carefully weighed before
implementing any behavior described with this label.

May “May”, or the adjective "Optional", means that an item is discretionary. An implementation

may choose to include the item, while another may omit the same item, because of various
reasons.

1.3. References

See the [Intel TDX Module Base Spec].

November 2025 Ref. # 869278-001US (DRAFT) Page 6 of 23

Intel® TDX Module Extension for Pre-Migration

https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt

10

15

20

25

30

Intel® TDX Module Extension for Pre-Migration

2. Overview of the NRX Framework

NRX Framework is a framework for extending the Intel TDX Module’s functionality, using NRXs (Non-Root Mode
Extensions). The main objective of implementing some Intel TDX Module functionality as NRX is the support for long
running stateful flows, including but not limited to cryptographic operations.

Figure 2.1 shows a conceptual view of the NRX Framework with three NRXs which use it, such as the TEE-IO provisioning
agent, TPA (for Intel TDX Connect), Quoting (for Intel TDX Attestation) and MIG (for Intel TDX Pre-Migration). The TPA
Extension is the first Intel TDX Module extension which is used for establishing and managing Security Protocols and Data
Models (SPDM) session for Intel TDX Connect and its design and interfaces are covered elsewhere. This document
introduces a new NRX used for Intel TDX Pre-Migration step.

NRX 3 NRX 2 NRX 1
Guest TD Migration Attestation TDX Connect
MIG Quoting TPA
— SEAMCALL(TDH.VP.ENTER)
SEAMRET
| SEAMCALL(TDH.func3) Host-Side | |
le func3 flow | |
SEAMRET
Host VMM L
SEAMCALL(TDH.func2) Host-Side
l_ SEAMRET func2 flow
[SEAMCALL(TDH.funcl) Host-Side
= SEAMRET funcl flow
TDX Module

Figure 2.1: NRX Framework Concept

The internal design of NRXs, as well as the interaction between Intel TDX Module and NRXs is implementation specific
and subject to change. VMM should not assume or rely on any behavior except the exposed host-side (SEAMCALL)
interface functions.

2.1. Interfaces

A NRX is hidden from the outside world. Neither the host VMM nor guest TDs have direct interface with it.

2.1.1. Host VMM Interfaces

The host VMM is not directly aware of NRX; it only interfaces with the Intel TDX Module. The host-side interface functions
of the Intel TDX Module have been extended to include resource allocation and additional initialization functions. From
the host VMM'’s point of view it allocates resources to the Intel TDX Module.

NRX provides additional services to the Intel TDX Module. From the host VMM perspective, these interface functions
behave just like any other host-side (SEAMCALL) interface function.

2.2. NRX Initialization

2.2.1. Intel TDX Module Lifecycle Update

As part of the Intel TDX Module initialization sequence, the following interface functions are called by the host VMM:

TDH.SYS.CONFIG/UPDATE: If the host VMM intends to use a certain feature, such as Intel TDX Connect or Intel TDX
Pre-Migration Extension, it must declare so using an input parameter.

TDH.SYS.RD: The host VMM reads the missing number of Intel TDX Module’s memory pool pages (see
section 2.2.3 for memory pool definition).

The host VMM reads if NRX Framework initialization is required.

November 2025 Ref. # 869278-001US (DRAFT) Page 7 of 23

Intel® TDX Module Extension for Pre-Migration

Intel® TDX Module Extension for Pre-Migration

TDH.EXT.MEM.ADD: If required, the host VMM calls this interface function multiple times to add pages to the
Intel TDX Module’s memory pool.

TDH.EXT.INIT: If required, the host VMM calls this interface function to initialize the Intel TDX Module
extensions.

To avoid long initialization latency, any Intel TDX Module interface function that does not leverage a NRX service, can run
while the memory pool is being allocated and NRX is being initialized.

Calling interface functions that depend on the NRX Framework before the NRX Framework is initialized, will fail with a
TDX_EXT_NOT_INITIALIZED status code.

The following sections provide more details about the NRX initialization.

New sub-states
of SYS_READY

EXT_MEM_
NOT_READY

TDH.SYS.KEY.CONFIG

[\
TDH.SYS.LP.INIT TDH.SYS.INFO or
TDH.SYS.RD/RDM

[Non-last package]

Memory pool is not

full TDH.EXT.MEM.ADD

10

15

20

25

Intel TDX module Intel TDX module is
has been shut down. ready

[LPinitialized]
(" SYSINIT_DONE | SYSCONFIG_DONE ’
Intel TDX module is Intel TDX module Intel TDX module Vs 4
pending global global initialization TDH.SYS.CONFIG global configuration Vs
initalization TDH.SYS.INIT: done _[AILPs done TDH.EXT.MEM.ADD
initialized] , / [Enough memory in pool]
/
/ EXT_MEM_READY
TDH.SYS.UPDATE / Memory pool is full

TDH.EXT.INIT
[Interrupted]

[All LPs initialized] TDH.SYS.KEY.CONFIG 4
[Last package]

TDH.EXT.INIT

TDH.SYS.TDMR.INIT [Done]

TDH.SYS.SHUTDOWN:

SEAMCALL functions
that require NRX can
~ be called

All other

SEAMCALL ~
O leaf functions

Figure 2.2: Intel TDX Module Lifecycle Update

2.2.2. Host VMM Declaration of Features on Intel TDX Module Initialization

TDH.SYS.CONFIG/UPDATE is extended with an input operand, allowing the host VMM to specify the Intel TDX feature it
intends to use. This is done using a bitmap formatted the same as the TDX_FEATURESO/1 fields which enumerate Intel
TDX features. All required features need to be specified by the host VMM.

For using TPA or MIG TDX Module extensions, the host VMM must set the applicable bit. The Intel TDX Module will use
this information to calculate the following:

e If a memory pool is required
e The required number of memory pool pages
e If the NRX Framework initialization is required

2.2.3. Adding Pages to the Intel TDX Module’s Memory Pool

To support NRX, the Intel TDX Module holds a pool of 4KB physical pages. The host VMM, as part of the Intel TDX Module
initialization flow, allocates memory for the memory pool. The required size of the memory pool is calculated and
provided to the host VMM by the Intel TDX Module.

All pages in the memory pool are considered equal. For example, the Intel TDX Module does not track their package
affinity.

At any time, the host VMM can determine the necessity and the amount of memory that is still missing from the Intel
TDX memory pool by using TDH.SYS.RD to read the MEMORY_POOL_REQUIRED_PAGES fields. The return values depend
on the following:

November 2025 Ref. # 869278-001US (DRAFT) Page 8 of 23

Intel® TDX Module Extension for Pre-Migration

10

15

20

25

Intel® TDX Module Extension for Pre-Migration

e The set of Intel TDX features declared by the host VMM in TDH.SYS. CONFIG/UPDATE .
e The size of memory pool allocated so far.

On a TD-preserving update the memory pool allocated during the previous Intel TDX Module runtime still exists. If there
is a need to allocate more memory, the Intel TDX Module reports this via MEMORY_POOL_REQUIRED_PAGES.

To allocate memory for the pool, the host VMM calls TDH.EXT.MEM.ADD one or more times. With each invocation, the
host VMM can provide up to 512 4K pages.

Additionally, for each Intel TDX Module Feature backed up by NRX, VMM has two parameters that it can read via
TDH.SYS.RD: [NRX_NAME]_EXT_MAX_OVERALL_SESSIONS and [NRX_NAME]_EXT_MAX_CONCURRENT_THREADS.
These define the absolute maximum number of NRX sessions that a given NRX can support, as well as the maximum
number of concurrent queues that can be used to serve NRX requests for this NRX (see section 2.3 for definition of NRX
session and NRX concurrent queue). These variables are calculated according to build time data provided by each NRX.

By default, each NRX will operate with the maximum values of these parameters unless explicitly reconfigured by VMM.
The re-configuration can be done by VMM any time before calling TDH.SYS.CONFIG/UPDATE via TDH.SYS.WR SEAMCALL
to specify the [NRX_NAME]_EXT_OVERALL_SESSIONS and [NRX_NAME]_EXT_CONCURRENT_THREADS variables. Setting
these parameters can change the value of the MEMORY_POOL_REQUIRED_PAGES and therefore the final required value
of MEMORY_POOL_REQUIRED_PAGES must be read after all NRXs has been configured to the desired state.

The overall flow diagram for initialization is outlined in Figure 2.3.

VMM TDX module MIG NRX

| |
[—————————TDH.SYS.RD(MIG_EXT_MAX_OVERALL_SESSIONS)}———————Pp

|< ——————— return(MIG_EXT_MAX_OVERALL_SESSIONS) — — — — — — — T

p—————————TDH.SYS.RD(MIG_EXT_MAX_CONCURRENT_THREADS }————— |

| [

ﬁ ——————— return(MIG_EXT_MAX_CONCURRENT_THREADS)- — — — — — — T

'—TDHASYS.WR(MIG_EXT_OVERALL_SESSIONS)—»‘

:< ——————————— return(Sucess) — — — — — — — — — — — JI.

| TDH.SYS.CONFIG(MIG_EXT = 1) >l

| I

| Calculate MEMORY_POOL_REQUIRED_PAGES

| for TDX module and all configured extensions
|

|

|< ——————————— return(Sucess) — — — — — — — — — — — —

| |

l TDH.SYS.RD(MEMORY_POOL_REQUIRED_PAGES)—b:

g ——————— return(MEMORY_POOL_REQUIRED_PAGES) — — — — — — — —

|

|

loop]

[Until all pages up to

MEMORY_POOL_REQUIREEAGES
have been added - @K———F———————— return(Sucess) — — — — — — — — — — —
sucessfully or Error]

|

|

TDH.EXT.MEM.ADD: p!
|

|

Enter NR

A/

|
L TDH.EXT.INIT: >
|
|

}€———TDG.NRX.COMM(NRX_READY):

I
I
I
I
I
I
I
I
I
I
I
o
g
S
e
g
m
&
I
I
I
I
I
I
|
I
I
I
I
—-L

Figure 2.3 Initialization process for MIG NRX
2.3. NRX Sessions and Concurrent NRX requests

An NRX request is a single host-side (SEAMCALL) interface function served by an NRX. An NRX session is a sequence of
NRX requests that has an associated stored context within the NRX Framework. The association between an NRX session
and the stored context is 1:1. The NRX session is identified by a unique session ID that must be present in each NRX
request associated with this NRX session. The NRX session starts from a first NRX request with the given session ID and
ends when a Complete status is returned (success/error codes) for this NRX request. During this period an NRX session is
considered active. For each NRX, a variable *EXT_MAX_OVERALL_SESSIONS (obtained via TDH.SYS.RD) defines the
maximum amount of NRX sessions that can be active at the same time for a given Intel TDX Module feature backed up
by NRX.

November 2025 Ref. # 869278-001US (DRAFT) Page 9 of 23

Intel® TDX Module Extension for Pre-Migration

Intel® TDX Module Extension for Pre-Migration

NRX requests are served sequentially by each NRX, i.e. only one concurrent NRX request to a given NRX can be served at
a time, if only one concurrent processing thread (VCPU) is allocated for this NRX. The example for such case is shown in
Figure 2.2.

Concurrent
processing
thread (VCPU) 1

Session 1 Session 2
Request 3 Request 2

Session 1 Session 2 Session 1
Request 1 Request 1 Request 2

Interruption Resumption

5 Figure 2.4: NRX requests and sessions in a single concurrent processing thread (VCPU) case
In case more than one concurrent processing thread (VCPU) is used, the NRX requests and sessions are distributed by the
Intel TDX Module to any available VCPU from the VCPU pool at the time of servicing the request. Figure 2.5 shows the
case where 2 concurrent processing threads (VCPUs) are present. The only restriction is that an NRX request that has
been interrupted on a given concurrent processing thread (VCPU) must be always resumed on the same VCPU. Until this
10 resumption happens, the corresponding VCPU has been reserved and cannot be used to process any other NRX requests.
Concurrent] .) . . .
processing Session 1 Session 2 Session 5 Session 4 Session 3 Session 2
thread (VCPU) 1 Request 1 Request 1 Request 2 Request 2 Request 1 Request 2
g?:;:;;i;t Session 4 Session 5 Session 1 i i Session 1 Session 4
thread (VCPU) 2 Request 1 Request 1 Request 2 i i Request 3 Request 3

15

20

25

30

Interruption Resumption

Figure 2.5: NRX requests and sessions in two concurrent processing threads (VCPUs) case
2.4. NRX Updates

In order to update an NRX, an Intel TDX Module TD preserving update is required. Depending on whether the TD
preserving update changes the value of the MEMORY_POOL_REQUIRED_PAGES, the additional pages must be either
added or not into the Intel TDX Module memory pool.

VMM also has an option to calculate the required number of memory pages prior to the start of TD preserving update
using the information provided with each release of Intel TDX Module. In this case VMM can proactively add additional
memory pages to the Intel TDX Module using existing TDH.EXT.MEM.ADD interface function prior to the start of TD
preserving update sequence. This ensures that after TD preserving update is completed, VMM can directly proceed to
initialize required NRX extensions using TDH.EXT.INIT.

It is safe to perform a TD preserving update between each individual invocations of NRX requests since NRX Framework
and NRXs ensure that the relevant state is preserved.

2.4.1. NRX session state management on SVN changes during TD preserving update

Currently the Intel TDX Module and all NRXs share the same Security Version Number (SVN). A TD preserving update
might result in an increase in this SVN. Intel TDX Module will keep the SVN versioning of the NRX session state and this
SVN version is returned to each NRX with each NRX Request. Each NRX can decide what is the appropriate action to take
on such SVN increases. VMM must not make any assumptions about the internal state machine of NRX session
management.

2.5. NRX Fatal Error Handling by VMM

If an NRX experiences a fatal error, the Intel TDX Module returns an TDX_EXT_FATAL_ERROR back to VMM as a status
output of the ongoing host-side (SEAMCALL) interface function indicating that a given NRX must be restarted. The way to
restart an NRX is to perform a TD preserving update or reload of the Intel TDX Module.

November 2025 Ref. # 869278-001US (DRAFT) Page 10 of 23

Intel® TDX Module Extension for Pre-Migration

Intel® TDX Module Extension for Pre-Migration

2.6. Security Perspective

The NRX Framework does not put the NRXs in the TCB of the Intel TDX Module. This means that NRX can’t compromise
the Intel TDX Module’s security.

However, specific functionality implemented by NRX is in the TCB of TDs which consume that functionality. For example,
the TPA NRX which handles Intel TDX Connect’s device protocols is in the TCB of TDs which use Intel TDX Connect.
Similarly, the MIG NRX is in TCB of all migratable TDs.

November 2025 Ref. # 869278-001US (DRAFT) Page 11 of 23

Intel® TDX Module Extension for Pre-Migration

10

15

20

25

Intel® TDX Module Extension for Pre-Migration

3. Intel TDX Module Extension for Migration (MIG NRX)

3.1. Overview

Analogous to legacy VM migration, a cloud-service provider (CSP) may want to relocate/migrate an executing Trust
Domain from a source Intel TDX platform to a destination Intel TDX platform in the cloud environment. For an overview
of Intel TDX Migration, refer to the [TD Migration Spec].

In this specification, the TD being migrated is called the source TD, and the TD created as a result of the migration is called
the destination TD. An extensible TD Migration Policy is associated with a TD that is used to maintain the TD’s security
posture.

In the previous design of the Intel TDX Module, TD Migration policy was enforced in a scalable and extensible manner
using a specific type of Service TD called the Migration TD (a.k.a. MigTD) which was used to provide services for migrating
TDs. This specification introduces a new Intel TDX Module Feature for the Pre-Migration step, implemented using an NRX
Module (MIG NRX), which is an alternative to MigTD design outlined in the [TD Migration Spec]. The components involved
into Intel TDX Migration using MIG NRX are shown in Figure 3.1.

The goals and overall functionality of MIG NRX compared to MigTD remain the same. MIG NRX must exist on the source
and destination platforms. Their main role is to evaluate migration sources and destinations for adherence to the TD
Migration Policy. The migration policy may enumerate Intel TDX platform TCB requirements, platform features and
acceptable destination Migration TD TCB requirements.

Similarly to MigTDs, MIG NRXs securely exchange unique per-session Migration Session Key (MSK) pair. The MSKs are
used to migrate assets of a specific TD. The MIG NRX on each side reads an encryption key generated by the Intel TDX
Module and securely transfers it to the MIG NRX on the other side, where it is written as the decryption key for its side.
To securely exchange the MSK pair in the presence of untrusted VMM providing a communication channel, the source
and destination MIG NRXs must establish an Authenticated Key Exchange (AKE) session. The choice of the AKE protocol
and its implementation is specific to MIG NRX similarly as it is with the current MigTD.

Contrary to MigTD, MIG NRX does not maintain a TD Migration Policy by itself. Instead, it always refers to a TD Migration
Policy associated with a source TD.

Source Platform Destination Platform

Session Control,

TD Non-Memory State,
Host VMM TD Private Memory, _I» Host VMM

Migrated TD Migrated TD
: 1
1 1
v S
1 1
\ 1 1
1 1
1 1
1 1
TDX Module i i TDX Module
1 1
MIG NRX i i MIG NRX
TD Export API . H TD Export API
I i : T
? T Non- | i H * . T ?
AKE Migration \temory Memory ! ' Non. Migration AKAE
Session Session State State H 1 Memory Memory Session Session
Control Control ! ! State State Control Control
1 1
| b : N A i
1 1
1 1
1 1
1,
1]

Non-TDX Information

Control,
Keys Exchange

1)
1 1
1 1
1 1
1 1
! AKE Session !
1 1
1 :
1 1
1 1

Figure 3.1: Components Involved in TD Migration

November 2025 Ref. # 869278-001US (DRAFT) Page 12 of 23

Intel® TDX Module Extension for Pre-Migration

Intel® TDX Module Extension for Pre-Migration

3.2. MIG NRX Requests and Sessions

For MIG NRX, each NRX request is a single TDH.MIG.SETUP host-side (SEAMCALL) interface function. The multiple-
requests NRX session is a sequence of TDH.MIG.SETUP calls until TDX_SUCCESS or any error is returned. The exact
number of the NRX requests within a single NRX session is implementation specific and depends on the internal state
machine of a given NRX. For MIG NRX it among other things depends on the Authenticated Key Exchange (AKE) protocol
being used to establish a secure session between a source and destination platform.

An example of such a state machine for MIG NRX is shown in Figure 3.2.

Request 1. Inputs: MigPolicy Request 2. Inputs: Network pkt
Output: Network pkt to send » from destination MIG NRX
to destination MIG NRX Output: Request for TDX Quote

Request 3. Inputs: TDX Quote Request 4. Inputs: Network pkt
Output: Network pkt to send » from destination MIG NRX
to destination MIG NRX Output: Success/error

v

Figure 3.2 Example state machine for MIG NRX processing of TDH.MIG.SETUP

Depending on the number of the concurrent processing threads (VCPUs) allocated for MIG NRX, the NRX Requests for
ongoing MIG NRX sessions are going to be distributed by the Intel TDX Module to any available VCPU from the VCPU pool
at the time of servicing the request. Figure 3.3 shows an example of how multiple-requests NRX session for

15

20

25

30

TDH.MIG.SETUP call is processed in case two VCPUs are used.
Concurrent TDH.MIG.SETUP TDH.MIG.SETUP TDH.MIG.SETUP TDH.MIG.SETUP TDH.MIG.SETUP TDH.MIG.SETUP
processing (sessionID1, (sessionID2, (sessionID5, (sessionID3, (sessionID3, (sessionID2,
thread (VCPU) 1 MigPolicy) MigPolicy) RecvPckt) RecvPckt) TDXQuote) RecvPckt)

Concurrent
processing
thread (VCPU) 2

TDH.MIG.SETUP
(sessionID3,
MigPolicy)

TDH.MIG.SETUP
(sessionlID5,
MigPolicy)

TDH.MIG.SETUP
(sessionID1,
RecvPckt)

TDH.MIG.SETUP
(sessionID1,
TDXQuote)

TDH.MIG.SETUP
(sessionID3,
RecvPckt)

Interruption Resumption

Figure 3.3 Example for TDH.MIG.SETUP handling in two concurrent processing threads (VCPUs) case
3.3. Migration Policy Binding to a TD

The migration policy is linked to a TD via the setting of a new constant MIG_POLICY_HASH via TDH.MNG.WR (see 4.3.1)
prior to calling TDH.MR.FINALIZE. This field stays the same during the whole lifecycle of a TD, i.e. there is no way to update
the initial migration policy that was bound to a TD during its creation.

For the Intel TDX security it is crucial that this value is included in the TD’s attestation report and that is done by including
it into the INIT_SERVTD_HASH field of the Intel TDX attestation reports as part of the Extended Service TD Info
(SERVTD_EXT_STRUCT) structure. See Table 4.3 for the details of SERVTD_EXT_STRUCT structure in case when MIG NRX
is used.

3.4. MIG NRX Initialization and Runtime Interaction

3.4.1. Initialization of MIG NRX by VMM

The initialization of MIG NRX happens in the same way as any other NRX as outlined in Section 2.2.

3.4.2. Runtime Preparation of the Migration Session

For Intel TDX migration to start, the following steps must be done:

November 2025 Ref. # 869278-001US (DRAFT) Page 13 of 23

Intel® TDX Module Extension for Pre-Migration

10

15

20

25

30

Intel® TDX Module Extension for Pre-Migration

1. The source and destination need to establish a secure session via an AKE protocol of their choice. This includes
exchanging Intel TDX Quotes authenticating the source and destination platforms.
The source and destination need to verify that their respected migration policies allow the migration
The source and destination need to program the migration keys
The source and destination need to end the secure session

VMM TDX module
| |
| |
} TDH.EXT.INIT >
| |
|< ———————————— TOHEXTINIT — — — — — — — — — — — — I
| |

loop I l l
}—————TDH.MIG.SETUP(MIG_SESSION_ID, MIG_SOURCE_FLAG, DATA_REQ_BUF F}————»|
[Until Sucess or Error] | |
K ————=—=—=— TDH.MIG.SETUP(rsp_code, DATA_RSP_BUFF) — — — — — — — -
| |

Figure 3.4 TDH.MIG.SETUP runtime operation: VMM view

All these steps are expected to happen via a single new TDH.MIG.SETUP host-side (SEAMCALL) interface function (see
section 4.3.7 for detailed definition) and the overall process is shown in Figure 3.4Figure 3.4 TDH.MIG.SETUP runtime
operation: VMM view. The VMM at both the source and destination invokes the TDH.MIG.SETUP, designating itself as
the initiator and the remote end as the responder for the AKE protocol.

The initial content of the host input buffer contains the migration policy associated with the TD to be migrated. The
migration policy is passed as it is and the TDH.MIG.SETUP host-side (SEAMCALL) interface function will verify that the
SHA-384 hash of the migration policy matches the CUR_SERVTD_HASH of the TD to be migrated (see Table 4.3 for details
of the field). In case of a mismatch, a TDX_MIG_POLICY_HASH_MISMATCH error code is returned.

At some point during execution of TDH.MIG.SETUP, both source and destination would need to request an Intel TDX
Quote from the VMM. This is done by returning a TDX_MIG_GET_QUOTE completion status code and supplying the
respected Intel TDX Report into the host output buffer identified by DATA_RSP_BUFF_LIST. Upon receiving this exit code,
VMM is expected to extract the Intel TDX report from the response buffer and use existing ABIs to convert this Intel TDX
Report into Intel TDX Quote and resume execution of TDH.MIG.SETUP providing the obtained Intel TDX Quote in the host
input buffer identified by DATA_REQ_BUFF_LIST.

At the end of all above steps, the TDH.MIG.SETUP host-side (SEAMCALL) interface function terminates the secure session
connection with the remote end and returns a TDX_SUCCESS completion status code. The Intel TDX Module also releases
all associated resources for this TDH.MIG.SETUP NRX session.

In case an error happens, the TDH.MIG.SETUP host-side (SEAMCALL) interface function also terminates the secure session
connection with the remote end, and corresponding error code is returned to VMM as indicated by Table 0. The Intel TDX
Module also releases all associated resources for this TDH.MIG.SETUP NRX session.

3.4.3. Runtime Preparation of the Migration Session: Internal details

For informational purpose, Figure 3.5 TDH.MIG.SETUP runtime operation: Internal details shows the same flow as in
Figure 3.4 TDH.MIG.SETUP runtime operation: VMM view, but with additional interactions between the Intel TDX Module
and MIG NRX.

November 2025 Ref. # 869278-001US (DRAFT) Page 14 of 23

Intel® TDX Module Extension for Pre-Migration

10

Intel® TDX Module Extension for Pre-Migration

b ™ mOdUIE
|

|
I T- »l
TDH.EXT.INI
i 'i Enter NR ::
| |[¢——————————————TDG.NRX.COMM(NRX_REA DY)
|< ———————————— TOHEXTINT — — — — — — — — — — — — | |
I I I
loop) [———TDH.MIG.SETUP(MIG_SESSION_ID, MIG_SOURCE_FLAG, DATA_REQ_BUFF)————F»| |
[Until Sucess or Error] | [—TDG.NRX.COMMIMIG.SETUP(MIG_SESSION_ID, MIG_SOURCE_FLAG, CommBuffers)]bl
| | [
| | | Processthe
| | | command
| | HJ
| | |
| I<— — — — TDG.NRX.COMM[MIG.SETUP(rsp_code, CommBuffers)] — — — — _|
K——————= TDH.MIG.SETUP(rsp_code, DATA_RSP_BUFF) — — — — — — — — |

Figure 3.5 TDH.MIG.SETUP runtime operation: Internal details
3.5. MIG NRX Updates

As was described in Section 2.3, in order to update any NRX, an Intel TDX Module TD preserving update is required. The
flow is depicted in Figure 3.6 and it is safe to perform between each individual invocations of TDH.MIG.SETUP host-side
(SEAMCALL) interface function since it is ensured that the relevant session state is preserved over a TD-preserving update.

3.5.1. MIG NRX session state management on SVN changes during a TD preserving update

Internally MIG NRX resets the NRX session state back to the first NRX request, resulting in NRX session to be started from
the first request. This behavior is transparent to VMM, meaning no error indication is returned, it only results in more
NRX requests that VMM has to make in the loop to complete an NRX session.

November 2025 Ref. # 869278-001US (DRAFT) Page 15 of 23

Intel® TDX Module Extension for Pre-Migration

Intel® TDX Module Extension for Pre-Migration

VMM TDX module P-SEAMLDR

| | |

looj ! ! I

N ———TDH.MIG.SETUP(MIG_SESSION_ID, MIG_SOURCE_FLAG, DATA_REQ_BUFF)——p| |

[Until Sucess or Error] <—————— TDH.MIG.SETUP(rsp_code, DATA_RSP_BUFF)— — — — — — - |

| | |

| | |

I I I

T T T

TD-preserving Upda‘e) | TDH.SYS.LP.SHUTDOWN—— 3} |

[Execution of normal | I

TD-preserving update | Prepare Handoff data I

flow. See TDX module | | |

spec for detailed flow] I |
< ——————— -TDH.SYS.LP.SHUTDOWN (Sucess/Error)— — — — — — — —

| | |

I SEAMLDR.INSTALL[UPDATE scenario} l =l

| | |

K—-———————— — — SEAMLDR.INSTALL[UPDATE scenario] (Sucess/Error) — — — — — — — — — — — —

TDH.SYS.UPDATE(MIG_EXT= 1) »l !

Calculate MEMORY_POOL_REQUIRED_PAGES
for TDX module and all configured extensions
I

< ————— return(MEMORY_POOL_REQUIRED_PAGES) — — — — — — |

| |

alt | |

[MEMORY_POOL_REQUIRED_PAGES I I

> # of previously added mem pages] | I

I I

I

oo | TDH.EXT.MEM.ADD- Pt

[Until all pages up to | |

MEMORY_POOL_REQUIRED_PAGES |&€ — — — — — — — — — — return(Sucess) — — — — — — — — — — —

have been added sucessfully or Error] | L
_____________________________________ —_]

[MEMORY_POOL_REQUIRED_PAGES | |

<= # of previously added mem pages] | |

| |

[TDH.EXT.INIT- #I

k —————————— return(Sucess) — — — — — — — — — — —

loop]

[Until Sucess or Error]

|
TDH.MIG.SETUP(MIG_SESSION_ID, MIG_SOURCE_FLAG, DATAiREQfBUFF)—bl
K<—————- TDH.MIG.SETUP(rsp_code, DATA_RSP_BUFF)— — — — — — —

Figure 3.6. Update of MIG NRX or Intel TDX Module via TD Preserving update: VMM view

3.6. Fatal Error Handling in MIG NRX by VMM

If MIG NRX experience a fatal error, the Intel TDX Module returns an TDX_EXT_FATAL_ERROR back to VMM as a result of

ongoing host-side (SEAMCALL) interface function indicating that MIG NRX must be restarted via a TD preserving update.
The TD preserving update flow in case MIG NRX experiences a fatal error is shown in Figure 3.7.

November 2025 Ref. # 869278-001US (DRAFT)

Page 16 of 23

Intel® TDX Module Extension for Pre-Migration

Intel® TDX Module Extension for Pre-Migration

VMM TDX module P-SEAMLDR
| | |
|———TDH.MIG.SETUP(MIG_SESSION_ID, MIG_SOURCE_FLAG, DATA_REQ_BUFF)——»! |
| |
| Detect Fatal error condition in MIG NRX |
| Move MIG NRX into NOT_READY state |

'
ko — — — — — TDH.MIG.SETUP (TDX_EXT_FATAL_ERROR) — — — — — — |
I I |
opt | TDH.MIG.SETUP(*) P |
[For any TDH.MIG.SETUP k- __ TDH.MIG.SETUP(NOT_READY)— — — — — — — — - I
call issued by VMM] | | |
. I I |
TD-preserving Upda‘e) I TDH.SYS.LP.SHUTDOWN——————————— ¢ I
[Execution of normal | | |
TD-preserving update | Prepare Handoff data |
flow. See TDX module I | I
spec for detailed flow]
K ——————— -TDH.SYS.LP.SHUTDOWN (Sucess/Errorj— — — — — — — - |
| | |
| SEAMLDR.INSTALL[UPDATE scenario]—t Pt
| [|
K— ——————————— SEAMLDR.INSTALL[UPDATE scenario] (Sucess/Error)
'
TDH.SYS.UPDATE(MIG_EXT = 1) »|

|
Calculate MEMORY_POOL_REQUIRED_PAGES
for TDX module and all configured extensions

'—TDH.SYS.RD(MEMORY_POOL_REQUIRED_PAGES)—’I

K—————— return(MEMORY_POOL_REQUIRED_PAGES) — — — — — — —

1 1

u u

alt | |

[MEMORY_POOL_REQUIRED_PAGES I |

> # of previously added mem pages] | |

looj I |

P I -TDH.EXT.MEM.ADD- >|

[Until all pages up to | |

MEMORY_POOL_REQUIRED_PAGES '< __________ return(Sucess) — — — — — — — — — — —

have been added sucessfully or Error] I
_____________ = - ===

[MEMORY_POOL_REQUIRED_PAGES | |

<= # of previously added mem pages] | |

L TDH.EXT.INIT: »!

| |

return(Sucess) — — — — — — — — — — —

loop I

[Until Sucess or Error]

Figure 3.7. Recovering of MIG NRX in case of the fatal error: VMM view

November 2025

Ref. # 869278-001US (DRAFT)

Page 17 of 23

Intel® TDX Module Extension for Pre-Migration

5

Intel® TDX Module Extension for Pre-Migration

4. Migration related Intel TDX Module Specification Changes

4.1. Intel TDX Module Enumeration & Configuration

A new bit will be added to TDX_FEATURESO: MIG_EXT (bit TBD), to enumerate Intel TDX Module support for the Intel
TDX Module a Pre-Migration Feature.

Table 4.1: TDX_FEATURESO Definition

Bit(s) | Name Description

TBD MIG_EXT The Intel TDX Module supports a Pre-Migration Feature

10

15

4.2. Data Types

4.2.1. New: Data Buffer List

A data buffer list specifies a list of HPAs of 4KB pages in shared memory, to be used as output or input by TDH.MIG.SETUP.
The list may have up to 512 64-bit entries, each containing a 4KB-aligned HPA (including HKID bits) of a page in shared
memory. The list is contained in a single 4KB page and must be aligned on 4KB. The page list may contain null entries,
indicated by the INVALID bit.

Table 4.2: Data Buffers List Entry

Bits Name Description

11:0 RESERVED Reserved: must be 0 (unless bit 63 indicates an invalid entry)

51:12 | HPA Bits 51:12 of the host physical address (including HKID) of the buffer page,
which must be a shared HPA

62:52 | RESERVED Reserved: must be O (unless bit 63 indicates an invalid entry)

63 INVALID A value of 1 indicates that this entry is invalid

4.2.2. Update: SERVTD_EXT_STRUCT

Table 4.3 SERVTD_EXT_STRUCT Definition in case MIG NRX is used

Name Offset Size (Bytes) Type Description
(Bytes)

INIT_SERVTD_HASH 48 SHA384 If TDX_FEATURESO. MIG_EXT (bit TBD) =1,
readable using TDH.SYS.RD*

MIG_POLICY_HASH of initial migration
0 policy provided via TDH.MG.WR

else

Initial SERVTD_HASH

INIT_SERVTD_ATTR 8 MASK If TDX_FEATURESO. MIG_EXT (bit TBD) =1,
48 readable using TDH.SYS.RD*

0

November 2025 Ref. # 869278-001US (DRAFT) Page 18 of 23

Intel® TDX Module Extension for Pre-Migration

Intel® TDX Module Extension for Pre-Migration

Name Offset Size (Bytes) Type Description
(Bytes)
else
value for INIT_SERVTD_ATTR
RESERVED 56 8 Must Be Zero
INIT_CPUSVN 16 TD’s initial CPUSVN from creation.
INIT_TEE_TCB_SVN 16 TD’s initial TEE_TCB_SVN from creation.
INIT_TEE_MODEL 12 Model information corresponding to the model
that INIT_TEE_TCB_SVN was captured on.
All zeros is reserved to reflect inter-model
migration is not supported, the
INIT_TEE_TCB_SVN was captured on the same
model as the Quote that it’s contained within.
RESERVED 4
CUR_SERVTD_HASH 48 SHA384 If TDX_FEATURESO. MIG_EXT (bit TBD) = 1,
readable using TDH.SYS.RD*
MIG_POLICY_HASH of currently enforced
migration policy. The initial value of this
field must be equal to the value in the
INIT_SERVTD_HASH field
else
Current SERVTD_HASH
CUR_SERVTD_ATTR 8 MASK If TDX_FEATURESO. MIG_EXT (bit TBD) = 1,
readable using TDH.SYS.RD*
0
else
value for CUR_SERVTD_ATTR
RESERVED 8 Must Be Zero
RESERVED 48 SHA384 Reserved for Cascading hash of Audit Log
RESERVED 48 Must be Zero
4.2.3. New: Constants
Constant Name Description

MIG_POLICY_HASH

This is a per TD scope field (see
TDH.MNG.RD/TDH.MNG.WR) VMM can read or set that
reflects the SHA-384 hash of the migration policy
associated with given TD. Can be only set until
TDH.MR.FINALIZE is called.

MIG_EXT_MAX_OVERALL_SESSIONS

This is a Global Field (see TDH.SYS.RD) VMM shall read
in order to determine the maximum number of sessions
that MIG NRX can support

November 2025

Ref. # 869278-001US (DRAFT)

Page 19 of 23

Intel® TDX Module Extension for Pre-Migration

10

15

20

25

Intel® TDX Module Extension for Pre-Migration

Constant Name Description

MIG_EXT_MAX_CONCURRENT_THREADS This is a Global Field (see TDH.SYS.RD) VMM shall read
in order to determine the maximum number of
concurrent threads that MIG NRX can support

MIG_EXT_OVERALL_SESSIONS This is a Global Field (see TDH.SYS.RD) VMM shall read
in order to determine the currently configured number
of sessions that MIG NRX is using. VMM can also write
the selected value into this field using TDH.SYS.WR. The
value must be less or equal to
MIG_EXT_MAX_OVERALL_SESSIONS

MIG_EXT_CONCURRENT_THREADS This is a Global Field (see TDH.SYS.RD) VMM shall read
in order to determine the currently configured number
of concurrent threads that MIG NRX is using. VMM can
also write the selected value into this field using
TDH.SYS.WR. The value must be less or equal to
MIG_EXT_MAX_CONCURRENT_THREADS

4.3. Host-Side (SEAMCALL) Functions

43.1. Update: TDH.MNG.RD/TDH.MNG.WR

A new per TD field MIG_POLICY_HASH is added, which is 48 bytes that can be set by VMM for each TD before calling
TDH.MR.FINALIZE. The field contains SHA-384 hash of migration policy associated with a given TD. The field is initialized
by Intel TDX Module to zero and for non-migratable TDs the value of this field remains zero and invocation of
TDH.MNG.WR is not required. After TDH.MR.FINALIZE has been called, the invocation of TDH.MNG.WR on this field must
return an error as this field is read only.

The field can be read using TDH.MNG.RD at all times.

4.3.2. Update: TDH.SYS.RD
A new global field MIG_EXT_MAX_OVERALL_SESSIONS is added, which returns the maximum number of sessions that a
MIG NRX can support. Calculated according to build time data provided by MIG NRX.

Note: the returned value always has the correct values as soon as Intel TDX Module has been built with MIG NRX TD. The
returned value doesn’t depend on whenever the MIG NRX has been successfully initialized or not.

4.3.3. Update: TDH.SYS.RD
A new global field MIG_EXT_MAX_CONCURRENT_THREADS is added, which returns the maximum number of concurrent
threads that MIG NRX can support. Calculated according to build time data provided by MIG NRX.

Note: the returned value always has the correct values as soon as Intel TDX Module has been built with MIG NRX TD. The
returned value doesn’t depend on whenever the MIG NRX has been successfully initialized or not.

4.3.4. Update: TDH.SYS.RD/WR

A new global field MIG_EXT_OVERALL_SESSIONS is added, which returns currently configured number of sessions that
MIG NRX is using. The initial value for this field equals to MIG_EXT_MAX_OVERALL_SESSIONS. VMM can use TDH.SYS.WR
to change this value to less or equal to MIG_EXT_MAX_OVERALL_SESSIONS.

Note: the returned value always has the correct values as soon as Intel TDX Module has been built with MIG NRX TD. The
returned value doesn’t depend on whenever the MIG NRX has been successfully initialized or not.

November 2025 Ref. # 869278-001US (DRAFT) Page 20 of 23

Intel® TDX Module Extension for Pre-Migration

Intel® TDX Module Extension for Pre-Migration

4.3.5. Update: TDH.SYS.RD/WR
A new global field MIG_EXT_CONCURRENT_THREADS is added, which returns currently configured number of concurrent

threads that MIG NRX is using. The initial value for this field equals to MIG_EXT_MAX_CONCURRENT_THREADS. VMM
can use TDH.SYS.WR to change this value to less or equal to MIG_EXT_MAX_CONCURRENT_THREADS.

Note: the returned value always has the correct values as soon as Intel TDX Module has been built with MIG NRX TD. The
returned value doesn’t depend on whenever the MIG NRX has been successfully initialized or not.

4.3.6. Update: TDH.EXT.MEM.ADD

The leaf internal behavior is changed to allow host VMM to invoke this leaf even after the TDH.EXT.INIT has been called.
This is required to support memory pre-allocation before TD-preserving update. For details see Section 3.5.

4.3.7. New: TDH.MIG.SETUP Leaf

Prepare for the migration session.

Intel® TDX Module Extension for Pre-Migration

Input Operands
Table 5.1: TDH.MIG.SETUP Input Operands Definition
Operand Name Description
RAX Leaf and Number SEAMCALL instruction leaf number and version
Bits Field Description
15:0 Leaf Number Selects the SEAMCALL interface function
23:16 | Version Number Selects the SEAMCALL interface function
version
63:24 | Reserved Must be 0
RCX The physical address of the target TD’s TDR page (HKID bits must be 0)
RDX Control parameters Migration session ID and direction of AKE
Bits Field Description
31:0 MIG_SESSION_ID Session ID for the migration establishment
session
32:32 | MIG_SOURCE_FLAG | Direction of AKE:
REQUESTOR -0
RESPONDER -1
63:33 | Reserved Must be 0
R8 DATA_RSP_BUFF_LIST HPA (including HKID bits) of a buffer list in shared memory, containing host input
buffer. See section 4.2.1 New: Data Buffer List.
R9 DATA_RSP_BUFF_SIZE The size of host input buffer in bytes
R10 DATA_REQ_BUFF_LIST HPA (including HKID bits) of a buffer list in shared memory, containing host output
buffer. See section 4.2.1 New: Data Buffer List.

November 2025 Ref. # 869278-001US (DRAFT) Page 21 of 23

10

15

Intel® TDX Module Extension for Pre-Migration

Output operands

Table 5.2: TDH.MIG.SETUP Output Operands Definition

Operand | Description

RAX SEAMCALL instruction return code

RCX If RAX returns TDX_MIG_AKE_REQUEST — Generated MIG output message length in bytes.

Zero otherwise.

If RAX returns TDX_MIG_GET_QUOTE - The size of provided Intel TDX Report in bytes.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

Overview

TDH.MIG.SETUP prepares for the migration session, including securely programming the migration keys between the

source and destination.

Enumeration

Support of TDH.MIG.SETUP is enumerated by TDX_FEATURESO.MIG_EXT (bit TBD), readable by TDH.SYS.RD*.

Interruptibility

TDH.MIG.SETUP is interruptible. If a pending interrupt is detected during operation, TDH.MIG.SETUP returns with a
TDX_INTERRUPTED_RESUMABLE status in RAX. Rest of details are TBD

Operands Information

TBD

Completion Status Codes

Table 5.4: TDH.MIG.SETUP Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_OPERAND_INVALID

TDX_SUCCESS

Operation is successful

TDX_LIMIT_CPUID_MAXVAL_SET

IA32_MISC_ENABLES MSR bit 22 (Limit CPUID Maxval) is set.

TDX_INCONSISTENT_MSR

IA32_TSC_ADJUST MSR value is different than the value
captured during the TDH.SYS.INIT interface function.

TDX_TSC_ROLLBACK

Time Stamp Counter value is lower than on last TD exit.

TDX_INTERRUPTED_RESUMABLE

Interrupt is pending, the operation can be resumed

TDX_EXT_NOT_READY

TDX_EXT_NOT_INITIALIZED

November 2025

Ref. # 869278-001US (DRAFT)

Page 22 of 23

Intel® TDX Module Extension for Pre-Migration

Intel® TDX Module Extension for Pre-Migration

Completion Status Code

Description

TDX_EXT_FATAL_ERROR

TDX_MIG_POLICY_HASH_MISMATCH

The provided policy SHA-384 hash does not match the
MIG_POLICY_HASH associated with TD to be migrated

TDX_MIG_AKE_REQUEST

Intel TDX Module requires VMM to send the AKE request to the
destination platform in RSP_PA with length

TDX_MIG_GET_QUOTE

Intel TDX Module requires VMM to obtain the Intel TDX Quote
from the Intel TDX report in RSP_PA with length

TDX_MIG_AKE_FAILURE

The AKE exchange failed

TDX_MIG_POLICY_FAILURE

The migration policy check failed, migration is not allowed

TDX_MIG_QUOTE_INVALID

The Intel TDX Quote provided by VMM is invalid

November 2025 Ref. # 869278-001US (DRAFT) Page 23 of 23

Intel® TDX Module Extension for Pre-Migration

	Notices and Disclaimers
	Table of Contents
	1. About this Document
	1.1. Scope of this Document
	1.2. Notation
	1.2.1. Requirement and Definition Commitment Levels

	1.3. References

	2. Overview of the NRX Framework
	2.1. Interfaces
	2.1.1. Host VMM Interfaces

	2.2. NRX Initialization
	2.2.1. Intel TDX Module Lifecycle Update
	2.2.2. Host VMM Declaration of Features on Intel TDX Module Initialization
	2.2.3. Adding Pages to the Intel TDX Module’s Memory Pool

	2.3. NRX Sessions and Concurrent NRX requests
	2.4. NRX Updates
	2.4.1. NRX session state management on SVN changes during TD preserving update

	2.5. NRX Fatal Error Handling by VMM
	2.6. Security Perspective

	3. Intel TDX Module Extension for Migration (MIG NRX)
	3.1. Overview
	3.2. MIG NRX Requests and Sessions
	3.3. Migration Policy Binding to a TD
	3.4. MIG NRX Initialization and Runtime Interaction
	3.4.1. Initialization of MIG NRX by VMM
	3.4.2. Runtime Preparation of the Migration Session
	3.4.3. Runtime Preparation of the Migration Session: Internal details

	3.5. MIG NRX Updates
	3.5.1. MIG NRX session state management on SVN changes during a TD preserving update

	3.6. Fatal Error Handling in MIG NRX by VMM

	4. Migration related Intel TDX Module Specification Changes
	4.1. Intel TDX Module Enumeration & Configuration
	4.2. Data Types
	4.2.1. New: Data Buffer List
	4.2.2. Update: SERVTD_EXT_STRUCT
	4.2.3. New: Constants

	4.3. Host-Side (SEAMCALL) Functions
	4.3.1. Update: TDH.MNG.RD/TDH.MNG.WR
	4.3.2. Update: TDH.SYS.RD
	4.3.3. Update: TDH.SYS.RD
	4.3.4. Update: TDH.SYS.RD/WR
	4.3.5. Update: TDH.SYS.RD/WR
	4.3.6. Update: TDH.EXT.MEM.ADD
	4.3.7. New: TDH.MIG.SETUP Leaf
	Input Operands
	Output operands
	Leaf Function Description
	Overview
	Enumeration
	Interruptibility

	Operands Information
	Completion Status Codes

