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These insights are particularly valuable to developers and architects building
Al-driven applications where efficient vector similarity search is foundational to
scalability and responsiveness.

Background: The Role of Vector Databases in Al

Vector databases serve as the foundation for many Al applications in use

today, ranging from music recommendation systems, chatbots and Al code
assistants, toimage and video search engines. These applications rely on

the ability to efficiently manage and retrieve unstructured data, such as text,
images, audio, and video. Vector databases address this challenge by using
vector embedding models to convert unstructured inputs into high-dimensional
numerical representations known as embeddings. These embeddings are
structured so that semantically similar data points are clustered closer together
in multidimensional space, enabling the similarity search capabilities that power
many Al workflows.

Qdrant, the vector database used in this study, employs the hierarchical
navigable small world (HNSW) algorithm for fast and scalable similarity search.
It supports optional techniques like scalar quantization and oversampling,
which can compress vector data to reduce memory and compute load while
maintaining high accuracy. This efficient similarity search capability and data
optimization is fundamental to demanding Al workflows, including retrieval
augmented generation (RAG).
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Typical RAG workflow (see Figure 1) consists of:

= Query Embedding: a dense vector that captures the semantic meaning of the
input query, enabling the system to retrieve contextually similar documents

* Indexing: Storing the vector embeddings, and metadatain a vector database
for fastretrieval

= Similarity Search: The indexed query embedding is compared to pre-
computed embeddings. The model uses a similarity metric, typically cosine
similarity, dot product or Euclidean distance to find documents that are
semantically similar to the query.

= Document Retrieval: The highest scoring documents (Top-K results) are
retrieved based on similarity scores.

= Post-Processing: Re-order resulting matches to improve the search quality.

= Refined List of Documents: A curated subset of documents selected from a
larger corpus prior to being passed through to a large language model (LLM).
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Figure 1. Typical RAG workflow

Evaluation Methods

The intent of our testing was to use the VectorDB Benchmark tool to measure
the impact of core count and sub NUMA cluster configuration on vector
database throughput and latency.

VectorDB Benchmarkis a tool that enables easy benchmarking of vector
database engines by presenting users with:

1. multiple options of datasets
2.number of concurrent clients
3.target database engines

4.and others.

The tool collects multiple metrics for each test, including throughput (requests
per second [RPS]), latency, and precision. In addition to the impact of core count
in the performance of the Qdrant vector database server, the effect of sub-
NUMA clustering (SNC) is also evaluated in this whitepaper.

We assessed the performance and accuracy of Qdrant on a dual-socket Intel®
Xeon® 6 processor-based server, examining various SNC configurations and
core allocations.
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A scalability analysis test was performed on a single-node server environment,
equipped with two Intel Xeon 6 processors, each with 32 physical cores (64
hardware threads). The vector database was populated with a collection of
around Tmillion vectors of 1536 dimensions. For each test, VectorDB Benchmark'
was used to induce aload that simulates 1024 independent concurrent clients
submitting queries to the vector database. Each test runs until a total of 50,000
requests have been processed.

The Qdrant vector database instance was limited to a certain number of physical
cores. Cores were assigned from a single socket, and the Qdrant vector database
was set to use only the NUMA nodes corresponding to the cores assigned.

Table 1and Table 2 present the main components of the system under test
(SUT). Table 1defines the SUT hardware and software configurations, while
Table 2 outlines the Qdrant database collection parameters used.

In addition to the SUT running the Qdrant vector database server, a client

node was used to submit requests to the server. This node used the VectorDB
benchmark client. In these tests, the hardware and software configuration of the
clientnodeis the same as the SUT.?

To run the tests, the embeddings of the dbpedia-entities-openai-IM3 dataset is
used to populate a collection?in the vector database using the parameters shown
in Table 4. The dbpedia-entities-openai-1M is a dataset composed of around 1
million entries generated from the dbpedia® using OpenAl’s text-embedding-
ada-002°model, resulting in vectors of 1536 dimensions. The collection
parameters were chosen to effectively reach a high average CPU utilization
(approximately 95 percent) and a precision of at least 0.999 in all tests.

Processor 2 x Intel® Xeon® 6745P

L1(D) 9 MiB, L1(D12 MiB

L2:384 MiB

L3: 960 MiB
Memory 512GB (16x32GB DDR5 6400 MT/s [6400 MT/s])
Drive 1x Micron_7450_MTFDKCCIT9TFR1.8TB

1x Samsung NVMe MZ1L2960HCJRA7 960GB
Vector DB Qdrantv1.13.2
0os Rocky Linux (Green Obsidian) release 8.10
Other Dockerv27.5, Pythonv3.10, Emon/SEP v5.51, PAT

Dataset: dbpedia-entities-openai-1M
(Embedding: text-embedding-ada-002)

NIC BCM57416 NetXtreme-E Dual-Media 110G RDMA
Ethernet Controller
BIOS Settings Hyperthreading on, SNC enabled, Virtual NUMA off.

Table 1. SUT hardware and software configuration

m 32
ef_construct 256
ef_search 256

default_segment_number 128
max_segment_size 1000000

Table 2. Qdrant database collection parameters
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Table 3 presents the NUMA node composition of the SUT with SNC enabled/
disabled and Table 4 describes the Core/NUMA node allocation for running the
Qdrant vector database server.

SNCBIOS Socket N:IT:::;Tf HW Thread Memory
Setting Enabled/Disabled Y IDs Capacity
Cores
0 0 16 0-15,64-79 128 GB
1 16 16-31,80-95 128 GB
Enabled
| 2 16 32-47,96-111 128 GB
3 16 48-63,112-127 128 GB
0 0 32 0-31,64-95 256 GB
Disabled
1 1 32 32-63,96-127 256 GB

Table 3. Core/NUMA node allocation used for running the Qdrant vector database server

S.NC S Number of Cores(threads) HW
Setting Enabled/ .
. for execution Thread IDs
Disabled
32(64) 0,1 0-31,64-95
Enabled 16 (32) 0 0-15,64-79
8(16) 0 0-7,64-71
32(64) 0 0-31,64-95
Disabled 16 (32) 0 0-15,64-79
8 (16) 0] 0-7,64-71

Table 4. Qdrant database collection parameters

Once the embedding vectors have beeninserted and indexed into the vector
database, multiple search tests are run subsequently with a different number
of coresand NUMA nodes as specified in Table 3, as well as with SNC enabled
and disabled.
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Figure 2a and Figure 2b present the results obtained for throughput (requests
per second [RPS]) and p95 latency (the time within which 95 percent of all
queries are completed) when processing over 1000 concurrent requestson a
database of approximately 1million vectors.

The results show that disabling SNC can deliver up to 1.26x better throughput
and 1.5x better latency compared to when SNC is enabled when using 16 and 32
cores. The mean precision across all the tests is 0.9999, thus demonstrating that
search accuracy is not sacrificed to achieve a better throughput with a varying
number of cores or SNC settings.

Requests per second and p95 latency values for different number of cores with SNC ENABLED.
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Requests per second and p95 latency values for different number of cores with SNC DISABLED.
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Figure 2. Results of tests with 1024 concurrent clients and 50,000 total requests. a) RPS and p95 latency values
for different number of cores with SNC enabled. b) RPS and p95 latency values for different number of cores with

SNC disabled.

In addition to testing a single socket server, testing was also done on a 2-socket
system, and the results showed that vector DB performance decreased due to
cross-socket NUMA communication. Although our testing does not focus on the
full RAG pipeline, our results lead us to conclude that allocating 1socket to the
vector database and the other to the LLM will eliminate the workload competition
forresources and improve performance.



White Paper | Improve the performance of your Al RAG workflow with Sub-NUMA Clusters

Key Takeaways

= When SNC is enabled, cores get allocated across two
sub-NUMA nodes which requires additional memory
allocation, resulting inincreased latency. The data tells us
that one vector database instance will run better on one
socket with
SNC disabled.

= Disabling SNC delivers up to 1.26x higher throughput and
1.5x better latency in vector search workloads.

=Qdrant maintains exceptional accuracy (0.9999) under all
tested configurations.

= Sub-NUMA clustering is a BIOS setting thatis enabled
ordisabled at the node level. Although LLMs may benefit
from SNC, that is not the case for vector databases.

= Real-world Al applications using vector search—such
as semantic search, recommendation, or RAG pipelines
—stand to benefit significantly from these system
optimizations.
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Thttps://github.com/qdrant/vector-db-benchmark

Summary

Vector databases like Qdrant are at the heart of modern

Al pipelines. This performance study illustrates how
architectural choices, such as disabling SNC, can yield
substantial performance improvements in single-node
deployments, especially on Intel Xeon 6 platforms.

With throughput gains of up to 26 percent and latency
improvements of up to 50 percent, these findings provide
aclear blueprint for deploying vector search infrastructure
thatis both efficientand accurate.

If you're building or scaling Al workloads that rely on
semantic search, recommendation or generative retrieval,
it's time to rethink your system configuration. Qdrant,
combined with Intel Xeon-based infrastructure, offers a
performance-optimized foundation without sacrificing
accuracy. Benchmark your own environment, or consult
with your solution provider to enable faster, smarter, and
more scalable Al deployments.

2The client node had the same hardware configuration solely because of equipment availability and convenience, but not due
toarequirement. There are no specific hardware configuration requirements for the client system.

3https://huggingface.co/datasets/KShivendu/dbpedia-entities-openai-1M

4Inthe Qdrant vector database, a collection is anamed set of points (i.e., vectors with a payload) among which asearch canbe

made.
5https://www.dbpedia.org/
$https://platform.openai.com/docs/models/text-embedding-ada-002
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