
Executive Summary
This whitepaper presents a detailed performance evaluation of the Qdrant vector
database in single-node deployments, examining how system configuration and
sub-NUMA clustering (SNC) settings impact throughput and latency. Results
show that disabling SNC delivers up to 1.26x better throughput and 1.5x lower
latency when running with 16 and 32 logical cores. Crucially, this performance
gain comes without sacrificing search accuracy, with mean precision across all
test cases remaining at 0.9999.

These insights are particularly valuable to developers and architects building
AI-driven applications where efficient vector similarity search is foundational to
scalability and responsiveness.

Background: The Role of Vector Databases in AI
Vector databases serve as the foundation for many AI applications in use
today, ranging from music recommendation systems, chatbots and AI code
assistants, to image and video search engines. These applications rely on
the ability to efficiently manage and retrieve unstructured data, such as text,
images, audio, and video. Vector databases address this challenge by using
vector embedding models to convert unstructured inputs into high-dimensional
numerical representations known as embeddings. These embeddings are
structured so that semantically similar data points are clustered closer together
in multidimensional space, enabling the similarity search capabilities that power
many AI workflows.

Qdrant, the vector database used in this study, employs the hierarchical
navigable small world (HNSW) algorithm for fast and scalable similarity search.
It supports optional techniques like scalar quantization and oversampling,
which can compress vector data to reduce memory and compute load while
maintaining high accuracy. This efficient similarity search capability and data
optimization is fundamental to demanding AI workflows, including retrieval
augmented generation (RAG).

Improve the performance of
your AI RAG workflow with
Sub-NUMA Clusters

Topics Covered in this Paper
Executive Summary. 1

Background: The Role of
Vector Databases in AI. 1

	 �Typical RAG workflow. 2

Evaluation Methods. 2

Key Takeaways . 6

Summary . 6

White Paper

White Paper | Improve the performance of your AI RAG workflow with Sub-NUMA Clusters

Evaluation Methods
The intent of our testing was to use the VectorDB Benchmark tool to measure
the impact of core count and sub NUMA cluster configuration on vector
database throughput and latency.

VectorDB Benchmark is a tool that enables easy benchmarking of vector
database engines by presenting users with:

 1. multiple options of datasets

 2. number of concurrent clients

 3. target database engines

 4. and others.

The tool collects multiple metrics for each test, including throughput (requests
per second [RPS]), latency, and precision. In addition to the impact of core count
in the performance of the Qdrant vector database server, the effect of sub-
NUMA clustering (SNC) is also evaluated in this whitepaper.

We assessed the performance and accuracy of Qdrant on a dual-socket Intel®
Xeon® 6 processor-based server, examining various SNC configurations and
core allocations.

Typical RAG workflow (see Figure 1) consists of:
• �Query Embedding: a dense vector that captures the semantic meaning of the

input query, enabling the system to retrieve contextually similar documents

• �Indexing: Storing the vector embeddings, and metadata in a vector database
for fast retrieval

• �Similarity Search: The indexed query embedding is compared to pre-
computed embeddings. The model uses a similarity metric, typically cosine
similarity, dot product or Euclidean distance to find documents that are
semantically similar to the query.

• � Document Retrieval: The highest scoring documents (Top-K results) are
retrieved based on similarity scores.

• �Post-Processing: Re-order resulting matches to improve the search quality.

• � Refined List of Documents: A curated subset of documents selected from a
larger corpus prior to being passed through to a large language model (LLM).

Figure 1. Typical RAG workflow

?

Query
Embedding

Output

Question + Relevant Documents

Indexing
Similarity Search

Similarity Vector DB
(pre-populated)

Document Retrieval

Text
Generation

Prompt

Refined List
of Documents

LLM

User
Question

Post-Processing

2

White Paper | Improve the performance of your AI RAG workflow with Sub-NUMA Clusters

Table 2. Qdrant database collection parameters

Table 1. SUT hardware and software configuration

Parameter Value

m 32

ef_construct 256

ef_search 256

default_segment_number 128

max_segment_size 1000000

Component Configuration

Processor 2 x Intel® Xeon® 6745P
L1(D) 9 MiB, L1(I) 12 MiB
L2: 384 MiB
L3: 960 MiB

Memory 512GB (16x32GB DDR5 6400 MT/s [6400 MT/s])

Drive 1x Micron_7450_MTFDKCC1T9TFR 1.8TB
1x Samsung NVMe MZ1L2960HCJRA7 960GB

Vector DB Qdrant v1.13.2

OS Rocky Linux (Green Obsidian) release 8.10

Other Docker v27.5, Python v3.10, Emon/SEP v5.51, PAT
Dataset: dbpedia-entities-openai-1M
(Embedding: text-embedding-ada-002)

NIC BCM57416 NetXtreme-E Dual-Media 10G RDMA
Ethernet Controller

BIOS Settings Hyperthreading on, SNC enabled, Virtual NUMA off.

A scalability analysis test was performed on a single-node server environment,
equipped with two Intel Xeon 6 processors, each with 32 physical cores (64
hardware threads). The vector database was populated with a collection of
around 1 million vectors of 1536 dimensions. For each test, VectorDB Benchmark1
was used to induce a load that simulates 1024 independent concurrent clients
submitting queries to the vector database. Each test runs until a total of 50,000
requests have been processed.

The Qdrant vector database instance was limited to a certain number of physical
cores. Cores were assigned from a single socket, and the Qdrant vector database
was set to use only the NUMA nodes corresponding to the cores assigned.

Table 1 and Table 2 present the main components of the system under test
(SUT). Table 1 defines the SUT hardware and software configurations, while
Table 2 outlines the Qdrant database collection parameters used.

In addition to the SUT running the Qdrant vector database server, a client
node was used to submit requests to the server. This node used the VectorDB
benchmark client. In these tests, the hardware and software configuration of the
client node is the same as the SUT.²

To run the tests, the embeddings of the dbpedia-entities-openai-1M3 dataset is
used to populate a collection4 in the vector database using the parameters shown
in Table 4. The dbpedia-entities-openai-1M is a dataset composed of around 1
million entries generated from the dbpedia5 using OpenAI’s text-embedding-
ada-0026 model, resulting in vectors of 1536 dimensions. The collection
parameters were chosen to effectively reach a high average CPU utilization
(approximately 95 percent) and a precision of at least 0.999 in all tests.

3

White Paper | Improve the performance of your AI RAG workflow with Sub-NUMA Clusters

Table 3. Core/NUMA node allocation used for running the Qdrant vector database server

Table 3 presents the NUMA node composition of the SUT with SNC enabled/
disabled and Table 4 describes the Core/NUMA node allocation for running the
Qdrant vector database server.

Table 4. Qdrant database collection parameters

Once the embedding vectors have been inserted and indexed into the vector
database, multiple search tests are run subsequently with a different number
of cores and NUMA nodes as specified in Table 3, as well as with SNC enabled
and disabled.

SNC BIOS
Setting Enabled/Disabled Socket NUMA

Node

Number of
Physical

Cores

HW Thread
IDs

Memory
Capacity

Enabled

0
0 16 0-15,64-79 128 GB

1 16 16-31,80-95 128 GB

1
2 16 32-47,96-111 128 GB

3 16 48-63,112-127 128 GB

Disabled
0 0 32 0-31,64-95 256 GB

1 1 32 32-63,96-127 256 GB

SNC BIOS
Setting Enabled/

Disabled

Number of Cores(threads)
for execution

NUMA
Nodes

HW
Thread IDs

Enabled

32 (64) 0,1 0-31,64-95

16 (32) 0 0-15,64-79

8 (16) 0 0-7,64-71

Disabled

32 (64) 0 0-31,64-95

16 (32) 0 0-15,64-79

8 (16) 0 0-7,64-71

4

White Paper | Improve the performance of your AI RAG workflow with Sub-NUMA Clusters

Figure 2. Results of tests with 1024 concurrent clients and 50,000 total requests. a) RPS and p95 latency values
for different number of cores with SNC enabled. b) RPS and p95 latency values for different number of cores with
SNC disabled.

120

100

80

60

40

20

0

120

100

80

60

40

20

0

Cores (Threads)

Cores (Threads)

27.56

26.99

8 (16)

8 (16)

16 (32)

16 (32)

RPS

RPS

p95_time

p95_time

32 (64)

32 (64)

17.22

13.90

12.90

8.61

40

35

30

25

20

15

10

5

0

40

35

30

25

20

15

10

5

0

La
te

nc
y

(m
s)

La
te

nc
y

(m
s)

T
hr

ou
gh

pu
t

(H
ig

he
r i

s
be

tt
er

)
T

hr
ou

gh
pu

t
(H

ig
he

r i
s

be
tt

er
)

37.15

37.92

59.63

73.83

95.51

119.07

Requests per second and p95 latency values for different number of cores with SNC ENABLED.

Requests per second and p95 latency values for different number of cores with SNC DISABLED.

Figure 2a and Figure 2b present the results obtained for throughput (requests
per second [RPS]) and p95 latency (the time within which 95 percent of all
queries are completed) when processing over 1000 concurrent requests on a
database of approximately 1 million vectors.

The results show that disabling SNC can deliver up to 1.26x better throughput
and 1.5x better latency compared to when SNC is enabled when using 16 and 32
cores. The mean precision across all the tests is 0.9999, thus demonstrating that
search accuracy is not sacrificed to achieve a better throughput with a varying
number of cores or SNC settings.

2a

2b

In addition to testing a single socket server, testing was also done on a 2-socket
system, and the results showed that vector DB performance decreased due to
cross-socket NUMA communication. Although our testing does not focus on the
full RAG pipeline, our results lead us to conclude that allocating 1 socket to the
vector database and the other to the LLM will eliminate the workload competition
for resources and improve performance.

5

White Paper | Improve the performance of your AI RAG workflow with Sub-NUMA Clusters

	 1	https://github.com/qdrant/vector-db-benchmark
	2	The client node had the same hardware configuration solely because of equipment availability and convenience, but not due

to a requirement. There are no specific hardware configuration requirements for the client system.
	3	https://huggingface.co/datasets/KShivendu/dbpedia-entities-openai-1M
	4	In the Qdrant vector database, a collection is a named set of points (i.e., vectors with a payload) among which a search can be

made.
	5	https://www.dbpedia.org/
	6	https://platform.openai.com/docs/models/text-embedding-ada-002
		 Performance varies by use, configuration and other factors. Learn more at https://www.intel.com/PerformanceIndex.
		 Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available

updates. See configuration disclosure for configuration details.
No product or component can be absolutely secure.

		 Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.
		 Your costs and results may vary.
		 Intel technologies may require enabled hardware, software, or service activation.
		 You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning

Intel products described herein.
		 You agree to grant Intel a nonexclusive, royalty-free license to any patent claim thereafter drafted which includes subject

matter disclosed herein.
		 The products described may contain design defects or errors known as errata which may cause the product to deviate from

published specifications.
		 Current characterized errata are available on request.
		 © Intel Corporation. Intel, the Intel logo and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other

names and brands may be claimed as the property of others.
		 0925/AG/HBD/PDF 360855-001US

Key Takeaways
• �When SNC is enabled, cores get allocated across two

sub-NUMA nodes which requires additional memory
allocation, resulting in increased latency. The data tells us
that one vector database instance will run better on one
socket with
SNC disabled.

• �Disabling SNC delivers up to 1.26x higher throughput and
1.5x better latency in vector search workloads.

•�Qdrant maintains exceptional accuracy (0.9999) under all
tested configurations.

• �Sub-NUMA clustering is a BIOS setting that is enabled
or disabled at the node level. Although LLMs may benefit
from SNC, that is not the case for vector databases.

• �Real-world AI applications using vector search—such
as semantic search, recommendation, or RAG pipelines
—stand to benefit significantly from these system
optimizations.

Summary
Vector databases like Qdrant are at the heart of modern
AI pipelines. This performance study illustrates how
architectural choices, such as disabling SNC, can yield
substantial performance improvements in single-node
deployments, especially on Intel Xeon 6 platforms.
With throughput gains of up to 26 percent and latency
improvements of up to 50 percent, these findings provide
a clear blueprint for deploying vector search infrastructure
that is both efficient and accurate.

If you're building or scaling AI workloads that rely on
semantic search, recommendation or generative retrieval,
it's time to rethink your system configuration. Qdrant,
combined with Intel Xeon-based infrastructure, offers a
performance-optimized foundation without sacrificing
accuracy. Benchmark your own environment, or consult
with your solution provider to enable faster, smarter, and
more scalable AI deployments.

Authors

Akassh Deep
Software Enabling and Optimization Engineer

Rodrigo Escobar Palacios
Cloud Systems and Solutions Engineer

Mishali Naik
Sr. Principal Engineer, AI Systems Architecture

Abirami Prabhakaran
Principal Engineer, AI Systems and Solutions

6

