
Executive Summary
This whitepaper presents a detailed performance evaluation of the Qdrant vector 
database in single-node deployments, examining how system configuration and 
sub-NUMA clustering (SNC) settings impact throughput and latency. Results 
show that disabling SNC delivers up to 1.26x better throughput and 1.5x lower 
latency when running with 16 and 32 logical cores. Crucially, this performance 
gain comes without sacrificing search accuracy, with mean precision across all 
test cases remaining at 0.9999.

These insights are particularly valuable to developers and architects building 
AI-driven applications where efficient vector similarity search is foundational to 
scalability and responsiveness.

Background: The Role of Vector Databases in AI
Vector databases serve as the foundation for many AI applications in use 
today, ranging from music recommendation systems, chatbots and AI code 
assistants, to image and video search engines. These applications rely on 
the ability to efficiently manage and retrieve unstructured data, such as text, 
images, audio, and video. Vector databases address this challenge by using 
vector embedding models to convert unstructured inputs into high-dimensional 
numerical representations known as embeddings. These embeddings are 
structured so that semantically similar data points are clustered closer together 
in multidimensional space, enabling the similarity search capabilities that power 
many AI workflows.

Qdrant, the vector database used in this study, employs the hierarchical 
navigable small world (HNSW) algorithm for fast and scalable similarity search. 
It supports optional techniques like scalar quantization and oversampling, 
which can compress vector data to reduce memory and compute load while 
maintaining high accuracy. This efficient similarity search capability and data 
optimization is fundamental to demanding AI workflows, including retrieval 
augmented generation (RAG).
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Evaluation Methods
The intent of our testing was to use the VectorDB Benchmark tool to measure  
the impact of core count and sub NUMA cluster configuration on vector 
database throughput and latency.

VectorDB Benchmark is a tool that enables easy benchmarking of vector 
database engines by presenting users with:

   1. multiple options of datasets

   2. number of concurrent clients

   3. target database engines

   4. and others.

The tool collects multiple metrics for each test, including throughput (requests 
per second [RPS]), latency, and precision. In addition to the impact of core count 
in the performance of the Qdrant vector database server, the effect of sub-
NUMA clustering (SNC) is also evaluated in this whitepaper.

We assessed the performance and accuracy of Qdrant on a dual-socket Intel® 
Xeon® 6 processor-based server, examining various SNC configurations and 
core allocations.

Typical RAG workflow (see Figure 1) consists of:
• �Query Embedding: a dense vector that captures the semantic meaning of the 

input query, enabling the system to retrieve contextually similar documents

• �Indexing: Storing the vector embeddings, and metadata in a vector database 
for fast retrieval

• �Similarity Search: The indexed query embedding is compared to pre-
computed embeddings. The model uses a similarity metric, typically cosine 
similarity, dot product or Euclidean distance to find documents that are 
semantically similar to the query. 

• � Document Retrieval: The highest scoring documents (Top-K results) are 
retrieved based on similarity scores.

• �Post-Processing: Re-order resulting matches to improve the search quality.

• � Refined List of Documents: A curated subset of documents selected from a 
larger corpus prior to being passed through to a large language model (LLM).

Figure 1. Typical RAG workflow
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Table 2. Qdrant database collection parameters

Table 1. SUT hardware and software configuration

Parameter Value

m 32

ef_construct 256

ef_search 256

default_segment_number 128

max_segment_size 1000000

Component Configuration

Processor 2 x Intel® Xeon® 6745P
L1(D) 9 MiB, L1(I) 12 MiB
L2: 384 MiB
L3: 960 MiB

Memory 512GB (16x32GB DDR5 6400 MT/s [6400 MT/s])

Drive 1x Micron_7450_MTFDKCC1T9TFR 1.8TB
1x Samsung NVMe MZ1L2960HCJRA7 960GB 

Vector DB Qdrant v1.13.2

OS Rocky Linux (Green Obsidian) release 8.10

Other Docker v27.5, Python v3.10, Emon/SEP  v5.51, PAT
Dataset: dbpedia-entities-openai-1M  
(Embedding:  text-embedding-ada-002)

NIC BCM57416 NetXtreme-E Dual-Media 10G RDMA  
Ethernet Controller

BIOS Settings Hyperthreading on, SNC enabled, Virtual NUMA off.

A scalability analysis test was performed on a single-node server environment, 
equipped with two Intel Xeon 6 processors, each with 32 physical cores (64 
hardware threads). The vector database was populated with a collection of 
around 1 million vectors of 1536 dimensions. For each test, VectorDB Benchmark1 
was used to induce a load that simulates 1024 independent concurrent clients 
submitting queries to the vector database. Each test runs until a total of 50,000 
requests have been processed. 

The Qdrant vector database instance was limited to a certain number of physical 
cores. Cores were assigned from a single socket, and the Qdrant vector database 
was set to use only the NUMA nodes corresponding to the cores assigned. 

Table 1 and Table 2 present the main components of the system under test 
(SUT). Table 1 defines the SUT hardware and software configurations, while 
Table 2 outlines the Qdrant database collection parameters used. 

In addition to the SUT running the Qdrant vector database server, a client 
node was used to submit requests to the server. This node used the VectorDB 
benchmark client. In these tests, the hardware and software configuration of the 
client node is the same as the SUT.²

To run the tests, the embeddings of the dbpedia-entities-openai-1M3 dataset is 
used to populate a collection4 in the vector database using the parameters shown 
in Table 4. The dbpedia-entities-openai-1M is a dataset composed of around 1 
million entries generated from the dbpedia5 using OpenAI’s text-embedding-
ada-0026 model, resulting in vectors of 1536 dimensions. The collection 
parameters were chosen to effectively reach a high average CPU utilization 
(approximately 95 percent) and a precision of at least 0.999 in all tests.
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Table 3. Core/NUMA node allocation used for running the Qdrant vector database server

Table 3 presents the NUMA node composition of the SUT with SNC enabled/
disabled and Table 4 describes the Core/NUMA node allocation for running the 
Qdrant vector database server. 

Table 4. Qdrant database collection parameters

Once the embedding vectors have been inserted and indexed into the vector 
database, multiple search tests are run subsequently with a different number  
of cores and NUMA nodes as specified in Table 3, as well as with SNC enabled 
and disabled. 

SNC BIOS 
Setting Enabled/Disabled Socket NUMA  

Node 

Number of 
Physical 

Cores

HW Thread 
IDs 

Memory  
Capacity

Enabled

0
0 16 0-15,64-79 128 GB

1 16 16-31,80-95 128 GB

1
2 16 32-47,96-111 128 GB

3 16 48-63,112-127 128 GB

Disabled
0 0 32 0-31,64-95 256 GB

1 1 32 32-63,96-127 256 GB

SNC BIOS  
Setting Enabled/ 

Disabled

Number of Cores(threads) 
for execution

NUMA  
Nodes 

HW 
Thread IDs

Enabled

32 (64) 0,1 0-31,64-95

16 (32) 0 0-15,64-79

8 (16) 0 0-7,64-71

Disabled

32 (64) 0 0-31,64-95

16 (32) 0 0-15,64-79

8 (16) 0 0-7,64-71
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Figure 2. Results of tests with 1024 concurrent clients and 50,000 total requests. a) RPS and p95 latency values 
for different number of cores with SNC enabled. b) RPS and p95 latency values for different number of cores with 
SNC disabled.
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Figure 2a and Figure 2b present the results obtained for throughput (requests 
per second [RPS]) and p95 latency (the time within which 95 percent of all 
queries are completed) when processing over 1000 concurrent requests on a 
database of approximately 1 million vectors.

The results show that disabling SNC can deliver up to 1.26x better throughput 
and 1.5x better latency compared to when SNC is enabled when using 16 and 32 
cores. The mean precision across all the tests is 0.9999, thus demonstrating that 
search accuracy is not sacrificed to achieve a better throughput with a varying 
number of cores or SNC settings.

2a

2b

In addition to testing a single socket server, testing was also done on a 2-socket 
system, and the results showed that vector DB performance decreased due to 
cross-socket NUMA communication.  Although our testing does not focus on the 
full RAG pipeline, our results lead us to conclude that allocating 1 socket to the 
vector database and the other to the LLM will eliminate the workload competition 
for resources and improve performance.
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	 1	https://github.com/qdrant/vector-db-benchmark
	2	The client node had the same hardware configuration solely because of equipment availability and convenience, but not due 

to a requirement. There are no specific hardware configuration requirements for the client system.
	3	https://huggingface.co/datasets/KShivendu/dbpedia-entities-openai-1M
	4	In the Qdrant vector database, a collection is a named set of points (i.e., vectors with a payload) among which a search can be 

made.
	5	https://www.dbpedia.org/
	6	https://platform.openai.com/docs/models/text-embedding-ada-002
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Key Takeaways
• �When SNC is enabled, cores get allocated across two 

sub-NUMA nodes which requires additional memory 
allocation, resulting in increased latency. The data tells us 
that one vector database instance will run better on one 
socket with  
SNC disabled.

• �Disabling SNC delivers up to 1.26x higher throughput and 
1.5x better latency in vector search workloads.

•�Qdrant maintains exceptional accuracy (0.9999) under all 
tested configurations.

• �Sub-NUMA clustering is a BIOS setting that is enabled 
or disabled at the node level. Although LLMs may benefit 
from SNC, that is not the case for vector databases.

• �Real-world AI applications using vector search—such 
as semantic search, recommendation, or RAG pipelines 
—stand to benefit significantly from these system 
optimizations.

Summary
Vector databases like Qdrant are at the heart of modern 
AI pipelines. This performance study illustrates how 
architectural choices, such as disabling SNC, can yield 
substantial performance improvements in single-node 
deployments, especially on Intel Xeon 6 platforms. 
With throughput gains of up to 26 percent and latency 
improvements of up to 50 percent, these findings provide 
a clear blueprint for deploying vector search infrastructure 
that is both efficient and accurate.

If you're building or scaling AI workloads that rely on 
semantic search, recommendation or generative retrieval, 
it's time to rethink your system configuration. Qdrant, 
combined with Intel Xeon-based infrastructure, offers a 
performance-optimized foundation without sacrificing 
accuracy. Benchmark your own environment, or consult 
with your solution provider to enable faster, smarter, and 
more scalable AI deployments.
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