intel.

Enhanced Serial Peripheral
Interface (eSPI)

Interface Base Specification (for Client and Server Platforms)

March 2025

Revision 1.6

Document Number: 841685

intel.

Any use of this Enhanced Serial Peripheral Interface (eSPI) Specification (“Specification”) by you is subject to the
terms of this notice and the LIMITED DISTRIBUTION LICENSE AGREEMENT beginning on the next page
(“Agreement”).

Intel technologies may require enabled hardware, software or service activation.

Intel retains ownership of all of its intellectual property rights in the Specification and retains the right to make
changes to the Specification at any time. No license is granted to use Intel’s name, trademarks, or patents except
as expressly set forth in the Agreement.

The products described may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or
“undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly
available updates. See backup for configuration details. No product or component can be absolutely secure.

Performance varies by use, configuration, and other factors. Learn more on the Performance Index site.
Your costs and results may vary.

“Conflict-free" refers to products, suppliers, supply chains, smelters, and refiners that, based on our due diligence,
do not contain or source tantalum, tin, tungsten or gold (referred to as “conflict minerals" by the U.S. Securities
and Exchange Commission) that directly or indirectly finance or benefit armed groups in the Democratic Republic of
the Congo or adjoining countries.

All product plans and roadmaps are subject to change without notice.

Code names are used by Intel to identify products, technologies, or services that are in development and not
publicly available. These are not "commercial" names and not intended to function as trademarks.

Altering clock frequency or voltage may void any product warranties and reduce stability, security, performance,
and life of the processor and other components. Check with system and component manufacturers for details.

Results have been estimated or simulated.
Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Copies of documents which have an order number and are referenced in this document may be obtained by calling
1-800-548-4725 or visiting the Resource and Documentation Center.

© 2025 Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

2 Document Number: 841685, Revision: 1.6

https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/
https://www.intel.com/content/www/us/en/resources-documentation/developer.html#gs.3ct6whhttps://www.intel.com/content/www/us/en/resources-documentation/developer.html

intel.

This LIMITED DISTRIBUTION LICENSE AGREEMENT (“Agreement”) is a contract between you and Intel Corporation and its affiliates (“'Intel”)
and governs any use of Material. If you use Material on behalf of or in conjunction with your work for your employer, you represent and
warrant that you have the authority to bind your employer to this Agreement. By downloading, installing, implementing, or otherwise using
Material, you accept these terms. If you do not accept these terms, do not use any Material and destroy all copies.

1 DEFINITIONS.

1.1 “Compliant Portion” means only those specific portions of Your Product
that implements and is compliant with the Material.

1.2 “Including”, and its variants, means including but not limited to,
whether or not capitalized.

1.3 “"Intel Component” means a hardware component or product designed,
developed, sold, or distributed by Intel.

1.4 “Material” means this Enhanced Serial Peripheral Interface (eSPI)
Specification.

1.5 “"Necessary Claims” means those patent claims that a party owns or
controls that are necessarily infringed by implementing the Normative
Requirements of the Material; provided, however, that Necessary Claims
excludes patent claims on enabling technologies that may be necessary or
useful to make or use any product or portion thereof that complies with the
Material, but are not themselves expressly set forth in the Material.

1.6 “You” or “Your” means you or you and your employer and its affiliates,
whether or not capitalized.

1.7 “Your Product” means product developed or to be developed by or for
you that implements (or executes) Material.

1.8 “"Normative Requirement(s)” means those portions of the Material
that are described in detail and not merely referenced.

2 LICENSES.

2.1 License. Subject to the terms of this Agreement, Intel grants You, for
the Term, a personal, limited, non-transferable, non- exclusive, worldwide,
revocable, fully paid-up, license, without the right to sublicense: (a) under
Intel’s copyrights in the Material, to view, download, and reproduce the
Material for the purpose of developing Your Product that implements and
complies with the Material; and (b) under Intel’s Necessary Claims in the
Material, to make, have made, use, import, directly and indirectly sell and
offer to sell, and otherwise distribute and dispose of Compliant Portions by
themselves or in (or with) Your Product; provided that such license does not
extend to any part or function of Your Product in which a Compliant Portion
is incorporated but that is not itself part of the Compliant Portion.

2.2 Subcontractor. You may disclose Material to your subcontractor for its
work on Your Product under an agreement preventing the subcontractor from
disclosing Material to others. You will be liable for the acts or omissions of
your subcontractor, including unauthorized disclosure of confidential
information.

2.3 Restrictions. You may not use or facilitate the use of the Material in
connection with any infringement or other legal analysis concerning Intel
products described herein.

2.4 Reciprocal License. You agree to grant Intel a non-exclusive, royalty-
free license to any of Your Necessary Claims for Intel to make, have made,
use, import, directly and indirectly sell and offer to sell, and otherwise
distribute and dispose of Compliant Portions by themselves or in (or with) a
product developed or to be developed by or for Intel that implements (or
executes) Material; provided that such license does not extend to any part
or function of such product in which a Compliant Portion is incorporated but
that is not itself part of the Compliant Portion.

2.5 No Implied License. Except for the express license in Section

2.1 Intel does not grant you (i) any express or implied license under any
legal theory, or (ii) or any license to make, have made, use, sell, offer for
sale, import, or otherwise dispose of any Intel technology or third-party
products, or perform any patented process, even if referenced in the Material.
Any other licenses from Intel require additional consideration. Nothing in this
Agreement requires Intel to grant any additional license.

2.6 Feedback. If you give Intel comments or suggestions related to Intel
Components or Intel confidential information provided in connection with this
Agreement, including Material, Intel can use them in any way and disclose
them to anyone, without payment or other obligations to you. You represent
and warrant that you own, or have sufficient rights from the owner of, the
feedback or suggestions, and the intellectual property rights in them, to grant
the above license.

3 OWNERSHIP. Ownership of the Material and related intellectual property
rights is unchanged. You must maintain all copyright or other proprietary
notices in the Material.

4 NO WARRANTY. The Material is provided “as is,” without any
express or implied warranty of any kind including warranties of
merchantability, non-infringement, title, or fitness for a particular

purpose. The Material may be pre-release and may not be fully
functional. Intel is not required to maintain, update, or support any
Material.

5 LIMITATION ON LIABILITY. Your use of Material is at your own
risk. Intel will not be liable to you under any legal theory for any
losses or damages in connection with the Material or your use of
Material (including through its performance or implementation by
You), including consequential damages, even if the possibility of
damages was foreseeable or known. If any liability is found, Intel’s
total, cumulative liability to you for all claims arising from or related
to this Agreement will not exceed $100.00 U.S. These liability
limitations are a fundamental basis of our bargain and Intel would
not have entered into this Agreement without them.

6 GENERAL.

6.1 Assignment. You may not assign your rights or obligations under this
Agreement without Intel’s prior written consent. No third party will have any
rights under this Agreement.

6.2 Dispute Resolution. If we have a dispute regarding this Agreement
(other than for misappropriation of trade secrets or breaches of
confidentiality obligations), neither party can file a lawsuit or other regulatory
proceeding before the complaining party provides the other party a detailed
notice of the dispute and our senior managers attempt to resolve the dispute.
If our senior managers cannot resolve the dispute in 30 days, either party
may demand mediation in which we will then try to resolve the dispute with
an impartial mediator. If our dispute is not resolved within 60 days after the
mediation demand, either party may begin litigation.

6.3 Governing Law; Jurisdiction. This Agreement is governed by USA and
Delaware law without regard to conflict of laws principles. The United Nations
Convention on Contracts for the International Sale of Goods does not apply.
Except for claims for misappropriation of trade secrets or breach of
confidentiality obligations, all disputes and actions arising out of or related to
this Agreement are subject to the exclusive jurisdiction of the state and
federal courts in Wilmington, Delaware and you consent to personal
jurisdiction in those courts.

6.4 Compliance with Laws. The Material is subject to, and You must
comply with, applicable government laws and regulations, including without
limitation U.S. and worldwide trade regulations prohibiting the export,
import, or transfer Material to any prohibited or sanctioned country, person,
or entity. You must not use Material for the development, design,
manufacture, or production of nuclear, missile, chemical, or biological
weapons.

6.5 Severability. If a court holds a provision of this Agreement
unenforceable, the court will modify that provision to the minimum extent
necessary to make it enforceable or, if necessary, to sever that provision.
The rest of the Agreement remains enforceable.

6.6 Waiver. No waiver of any provision of this Agreement will be valid unless
in a writing specifying the waived provision signed by an authorized
representative of the waiving party. A signed waiver will not constitute waiver
of any other provision. Failure or delay in enforcing any provision will not
operate as a waiver.

6.7 Entire Agreement. Except for any non-disclosure agreement between
you and Intel, this Agreement constitutes the entire agreement, and
supersedes all prior and contemporaneous agreements, between Intel and
you concerning its subject matter.

7 TERM; TERMINATION; SURVIVAL.

7.1 Term. This Agreement begins upon your acceptance of its terms and
continues until terminated under Section 7.2.

7.2 Termination. This Agreement will automatically terminate upon

(a) your breach of the Agreement, (b) a claim that you do not have authority
to bind your employer to these terms, or (c) your assertion that any Intel
Component, Material, or product based on any Intel Component or Material
infringes your patents. You may terminate this Agreement at any time.

7.3 Effect of Termination. Upon termination of the Agreement, the licenses
to you will immediately terminate and you must cease using any Material and
destroy all copies in your possession and direct your subcontractors to do the
same. Termination of this Agreement will not terminate any valid corporate
non-disclosure agreement that you have with Intel.

7.4 Survival. All sections except Section 2.1 survive termination of this
Agreement.

Document Number: 841685, Revision: 1.6

intel.

Contents

1 B 8 o oo T T ot o'oY 5 9
1.1 REQUITEMENES Lot e 12

2 Architecture OvervieW......ciciciiriemiesi i s s s s s s ssassassassnssnnsansannnns 13
2.1 SYSTEM TOPOIOGY cueniiie it 13

2.2 Architecture DesCriptioNSooviie i e eas 16

2.3 I B T=T=T o] o 0] o] 1= 19

3 =TT T S o 1 o T ot o | I 21
3.1 BasiC ProtoCol . .ueiiii i e 21

3.2 (670 0] 0 =] 0 Lo I 2 1 7= 1T P 24

3.3 TUrN=ArOUNA (TAR) ¢ttt s aaes 28

3.4 RESPONSE Phase ... e 29

N 2= o Yo 1= 29

3.4.2 SEAlUS..iiii i e 31

3.5 FAN =T o ol o] o = T 33

3.6 Get Status Commandc.viiiiiiiii i 35

3.7 Get Configuration and Set Configuration Command 37

3.8 Non-Posted Transaction.......ccviiiiiiiii i i 38

3.9 Posted Transactionociiiii i e 42

T O T I IS AN =P 44

4 Transaction Layer...ccciieirmrmrasmsasmsasssasmsasssasssasssasssansssnssnnssnnssnnnnnnnnns 46
4.1 Cycle Types and Packet Formatccooiiiiiiiiiiiic i 46

2 I R O3 ol [Y o1 PP 46

2 R I~ o PP 50

4.1.3 Length oo 50

4.1.4 AdAreSS...ciiiiiiii i i e 51

2 N T I - - P 51

4.2 L6 =1 o T 1= £ P 52

4.2.1 Peripheral Channel.......cccoiiiiiiiiiiii e 52

4.2.2 Virtual Wires Channel......ccooiiiiiiiiiiiiii e 57

4.2.3 0OOB (Tunneled SMBus) Message Channelc.ccoeenee. 72

4.2.4 Run-time Flash Access Channelcooiiiiiiiiiiiiiiiiiic i, 75

4.3 Target Buffer Managementooieiiiiii e 83

4.4 Transaction Ordering RUlecoiiiiii e 85

4.5 Zero Length Read and Write...coo i 85

5 LiNK LAy er wiueieeieeranmansassassassassassssssssssssssssssssssssssssssnssnssnssnssnssnssnssnsnnnnns 86
5.1 Single I/O, Dual I/0O, and Quad I/O Modescovviiiiiiiiiiiiiie e 86

5.2 Cyclic Redundancy Check (CRC) ..iviiiiiiiiiii it i i e niaee s 90

6 Target RegistersS...ciiiciiiiiiiiii i i srs s s s s ssanssanssanssanssanssansnnnsnnns 92
6.1 Status Register .o 92

6.2 Capabilities and Configuration Registersc.cccooeviiiiiiiiiiiiiinnnnne. 92

7 Operating Specificationccccviiiciisiicrisis s e 107
7.1 Electrical Specification......ccooeiiiiiii e 107

7.2 Timing Parameters ..o 108

4 Document Number: 841685, Revision: 1.6

8 System Architecture.......ccviviiiiisissr s v v na 111
8.1 INtEITUPLES v 111
8.2 Error Detection and Handlingccoeiiiiiiii e 111
8.2.1 Target's Detected Errors....ccviiiiiiiiii i i 112
8.2.2 Controller’'s Detected Errorsccuvveviiiiiiiiiiiiii i ieenaeean 119
8.3 T] 122
8.3.1 ESPI RESELH .ottt i e 122
8.3.2 In-band RESET Command.......ccoviviiiiiiiiiiiiiie e rieenneens 122
8.4 Power Management Event (PME) ...coooviiiiiiiiii i 123
8.5 Power Sequencing and Initializationcccooviiiiiiiii i 123
8.5.1 EXIitfrom G3 .ottt 123
Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Co
Figure 5:

Ta
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:

EC/BMC/SIO Communication over LPCccciiiiiiiiiiiiiiiiieeeeeeen 10
EC/BMC/SIO Communication over €SPI.....ccciviiiiiiiiiiiiiiiiniinininnns 10

Example of LPC Bus and Additional eSPI Bus behind the eSPI....... 11
Single Controller-Single Target with eSPI Reset# from Target to

) 0 | =T 13
Single Controller-Single Target with eSPI Reset# from Controller to
0 T 14

Single Controller-Multiple Targets with Two eSPI Reset# 14
Single Controller-Single Target (Multiple Channels)..................... 16
Single Controller-Multiple Targets......c.cvoeiiiiiiiiiicic e 17

EC/BMC/SIO Communication Over eSPI Channels.........cvovvviiinnns 18
Basic @SPI ProtocCol.....ccviviiiii i 21
Target Triggered Transaction (Single Controller-Target)............. 22
Target Triggered Transaction (Multiple Target)coovvvvviiiini 23
Command OpPCOde. ...t e 24
Turn-Around Time (TAR = 2 clock) .vovvieiiiiiiiii e 28
ReSPONSE Field....ciiiiiiii i e 29
Target’s Status Register Definition ... 31

Flow Diagram for a Target to Controller Peripheral Posted Write..34

Figure 18: Flow Diagram for a Back-to-back Target to Controller Peripheral
POStEd W .ot e 34
Figure 19: Flow Diagram for a Target to Controller Peripheral Posted Write
PAsSSES NON-POSEEA .. vt e 35
Figure 20: GET_STATUS Command......ccoiiiiiiiiiiiii i i enee e 35
Figure 21: GET_STATUS Command (with Response Modifier)..................... 36
Figure 22: GET_CONFIGURATION Commandccvvieiiiiiiiiiiniiinninenaneennennes 37
Figure 23: SET_CONFIGURATION Commandccoviiiiiiiiiiiiiiiie e nennenns 37
Figure 24: Connected Controller Initiated Non-Posted Transaction.............. 38
Figure 25: Deferred Controller Initiated Non-Posted Transaction 39
Figure 26: Controller Initiated Short Non-Posted Transaction..................... 40
Figure 27: Target Initiated Non-Posted Transaction............cccoviieiiiiannnn. 41
Figure 28: Controller Initiated Posted Transactionccoviiiiiii e, 42
Figure 29: Controller Initiated Short Posted Transaction...............c.cooeeiee. 42
Figure 30: Target Initiated Posted Transaction...........ccoiiiiviiiiiiiiie i, 43

Figure 31:

Pipelined Back-to-Back Bus Mastering Posted Write Transactions 44

Document Number: 841

685, Revision: 1.6 5

intel.

Figure 32: Controller Initiated Non-Posted Transaction Responded with WAIT

ST AT ittt i e s 45
Figure 33: General eSPI Packet Formatcooiiiiiiiiii i 46
Figure 34: Peripheral Memory Write Packet Formatc.coooviiiiiiiinnnn. 53
Figure 35: Short Peripheral Memory or Short I/O Write Packet Format
(Controller Initiated Only) ..o e 53
Figure 36: Peripheral Memory Read Packet Format...........coovviiiiiiinen, 54
Figure 37: Short Peripheral Memory or Short I/O Read Packet Format
(Controller Initiated only) c.vvvriiii i e 54
Figure 38: Peripheral Message Packet Format........ccoooiiiiiiiiiiiiiiiic i, 54
Figure 39: Peripheral Memory or I/O Completion With and Without Data
Packet FOrmat...oooi i e 55
Figure 40: LTR Message FOrmatc.ocoiiiiiiiiiiiiii i e 56
Figure 41: Virtual Wire Packet Formatccooiiiiiiiii i e 58
Figure 42: Virtual Wires at the Receiver........cooiiiiiiiiiii i 59
Figure 43: Virtual Wires with Sequence Communicated................c.oceevennee. 69
Figure 44: Edge-triggered Interrupt through Virtual Wireooeenie. 72
Figure 45: OOB (Tunneled SMBus) Message Packet Format 73
Figure 46: OOB MCTP Packetciiiiiiiiiiiiic e e 74
Figure 47: OOB Generic SMBus Block Write Format..........cccoveeiiiiiinnnee, 74
Figure 48: Flash Access Request Packet Format..........ccoooiiiiiiiiiin i, 75
Figure 49: Flash Access Completion Packet Format..........ccovveiiiiiiiiinnnnnn. 75
Figure 50: Flash Access RPMC Packet Formatcovevviiiiiiiiiininnnn, 76
Figure 51: Independent Flash SPI and eSPI Interfacecccvviieiiiinnnnnen. 77
Figure 52: Shared SPI and eSPI Interface.......ccvviiiiiiiiiiii i i 77
Figure 53: Target Attached Flash Sharingcccoooiiiiiiiiin i 80
Figure 54: eSPI Target Buffer Design (Conceptual).......c.ccvviviiiiiiiiiinnnnnnnn. 84
Figure 55: Byte Ordering on the eSPI BUS........coviiiiiiiiiiiiii e 87
Figure 56: SiNgle I/O MO ... e e e 88
Figure 57: DUal I/O MOAE v i i e e i e 88
Figure 58: QUad I/O MOde ..ottt i e e 89
Figure 59: CRC Polynomial Representation...........ccovviiiiiiiiiiiii i 90
Figure 60: Input Timing Diagram....c.occiiiiiiiiiiiiiiiiii e e 109
Figure 61: Output Timing Diagram.....ccoouviiiiiiiiiiiiii i e naeas 110
Figure 62: Transaction with FATAL Error RESPONSE.....c.cvvvivviiiiiiiiiiiiiinnnnns 117
Figure 63: Transaction with Non-FATAL Error RESPONSecovvvvvviniviinnnnns 117
Figure 64: Unexpected Chip Select# Deassertioncccovvvieiiiiieiiennnnne. 118
Figure 65: In-band RESET Commandocoiiiiiiiiiiiiiii e 123
Tables
Table 1: @SPI Pin List. ..o e e e s 19
Table 2: Command Opcode ENCOAINGS .eviiviiiiiiii i i i cnee e 25
Table 3: Response Field ENCOAINGS....ovuiriiriieiiiiiiie e eae e 30
Table 4: Status Field ENCOAINGS .. .cviiiiiiiiiie i e ae e 31
Table 5: CyCle Ty PO ittt i e e e 47
Table 6: MESSage COUES ... ittt i e e e e aaes 55
Table 7: LTR Message Field Descriptionoiviiiiii i i e eaaees 57
Table 8: Virtual Wire Index Definition........cooiviiiiiiiiiiici e 60
6 Document Number: 841685, Revision: 1.6

Table 9: System Event Virtual Wires for Index=2.......ccciiiiiiiiiiiiiiiiiiennnnnn. 63
Table 10: System Event Virtual Wires for Index=3cccciiiiiiiiiiiiinnnnnnn. 64
Table 11: System Event Virtual Wires for Index=4ccciiiiiiiiiiiiinnnnnnn. 65
Table 12: System Event Virtual Wires for Index=5..........ccciiiiiiiiiiiinnnnnn. 66
Table 13: System Event Virtual Wires for Index=6...........c.ccccviiiiiinniinnnnn. 67
Table 14: System Event Virtual Wires for Index=7c.cccciiiiiiiiiiiiiinnnnnn. 68
Table 15: Interrupt Event (IRQ) Virtual Wire Generationc.ccoevviiennnnne. 70
Table 16: eSPI Flash Access Channel Packet Format for Controller Attached
and Target Attached Flash Configurationsccocoviiiiiiiiiiinnnnens 81
Table 17: Example eSPI Target Attached Flash Access Command Sequence.82
Table 18: CRC Byte with Input Data D7:D0 (& Denotes Logical XOR) 91
Table 19: Register Attribute Descriptionccovieiiiiiii e 92
Table 20: Register Default Values Encoding Descriptionccvcevviviinnnn. 92
Table 21: Target REGISTEIS..ciiii i i e e aaees 93
Table 22: Electrical Specificationcccoiiiiiiiiii i e 107
Table 23: AC Timing Specificationcccviiiiii i s 108
Table 24: Target's Detected Errors.....cciviviiiiiiiiiic i 112
Table 25: Controller’'s Detected Errors.....ccooviiiiiiiiiii i e 119

Document Number: 841685, Revision: 1.6 7

intel.
Revision History

Revision
Number

Description Date

e Updated legal disclaimers and license agreement.

e Fixed the table of Target Registers to include registers at offset 44h,
1.6 48h and 4Ch. March 2025
e Fixed the table of Controller’s Detected Errors on the Controller’s

Handling for NO_RESPONSE, FATAL_ERROR and NON_FATAL_ERROR
Response Code.

e Merged eSPI Server Addendum Rev0.7 into the eSPI Base
specification. Target Attached Flash sharing is applicable for client and
server platforms.

e Included ECN- Target Attached Flash RPMC.

1.5) May 2022

e Included ECN- Clarify Flash Erase Length (May 2020).

e Included ECN- BMC integrated RTC (7-11-2020).

e Updated the terms “master/slave” to “controller/target” throughout the
specification to align with the use of inclusive language.

e Included ECN- Change Alert# pin behavior (10-1-2014).
1.0 o Included ECN- Clarify OOB packet payload (10-1-2014). January 2016
e Updated with 0.75 spec review feedback.

0.75 o Updated with 0.7 spec review feedback. June 2013
0.7 o Updated with 0.6 spec review feedback. October 2012
0.6 o Updated with review feedback. May 2012
0.45 o Updated legal disclaimer. February 2012
0.4 « Initial release. February 2012

8 Document Number: 841685, Revision: 1.6

intel.

1 Introduction

This base specification describes the architecture details of the Enhanced Serial
Peripheral Interface (eSPI) bus interface for both client and server platforms.

The server platform specific support in addition to the base specification is
described in a separate addendum.

The devices that can be supported over the eSPI interface includes but not
necessarily limited to Embedded Controller (EC), Baseboard Management
Controller (BMC), Super-I1/0 (SIO) and Port-80 debug card.

Prior to this specification, Embedded Controller (EC), Baseboard Management
Controller (BMC) and Super I/O (SIO) are connected to the chipset through the
Low Pin Count (LPC) bus. Low Pin Count (LPC) bus is a legacy bus developed as
the replacement for Industry Standard Architecture (ISA) bus.

The specification generally refers to EC/BMC/SIO as the LPC device for the
purpose of illustrating the eSPI bus capabilities and the comparison to LPC bus.
However, EC/SIO is applicable for client platforms whereas BMC is generally
associated with server platforms.

Here are some LPC bus limitations which led to the development of eSPI:

e LPC consists of 7 required pins and 6 optional pins that makes up to a total
of 13 pins to implement.

e Present implementations of the LPC include a fabrication process cost
burden as it is based on 3.3V I/0 signaling technology.

¢ The frequency of the bus clock is fixed at 33 MHz. The fix LPC bandwidth of
133 Mbps is deemed insufficient to cater for the demands of new devices.
Connecting these devices to high-speed interfaces such as PCI Express and
USB3 is prohibitive from cost perspective.

e There exist a significant number of sideband signals used for
communication between chipset and EC, BMC and SIO that amounts to
significant pin cost.

e The diagram below shows how an EC/BMC/SIO is connected to the LPC
bus.

Document Number: 841685, Revision: 1.6 9

intel.

Figure 1: EC/BMC/SIO Communication over LPC

Host CPU
Host Chipset
Out-of-Band Power GPIO
Processor Management Sources
Controller
SPI Flash LPC SMBus GPIO Control
Controller Bridge Controller Logic

Chip -
Select#0 ' i SPI ¢ LPC lSM Bus lSldF?i::nd

Flash EC/BMC/SIO

The eSPI specification provides a path for migrating LPC devices over to the
new eSPI interface. eSPI reuses the timing and electrical specification of Serial
Peripheral Interface (SPI) but with different protocol to meet a set of different
requirements.

The diagram below shows how an EC/BMC/SIO can be connected to the eSPI
bus.

Figure 2: EC/BMC/SIO Communication over eSPI1

Host CPU
Host Chipset I
Out Of Band Power GPIO
Prc Manag it Sources
Controller

v t 4_' *_4
SPI Flash LPC Tunneled Tunneled
Controller Bridge SMBus GPIO
A 4 é A
‘ Y ;
eSPIFlash | _
Access e B eSPI Protocol Block
Chip SPI eSPI Chip
Select 0# Select n#
y YV
Flash EC/BMC/SIO

10 Document Number: 841685, Revision: 1.6

intel.

Sideband pin communications between chipset and these devices will be
converted to in-band messages through the eSPI interface as part of the effort
to reduce the component pin count and provide a migration path towards
elimination of high-voltage 3.3V I/O pins.

Out-Of-Band (OOB) messaging between Out-Of-Band Processor in the chipset
and Embedded Controller (EC) or Baseboard Management Controller (BMC) is
also tunneled through the new eSPI interface as in-band messages, thus
replacing the SMBus interface for this purpose.

Run-time flash sharing between chipset and target devices will be supported
over this new interface. The target devices would be able to access the
corresponding Flash partition through the Flash Access channel.

Depending on applications, eSPI bus may be active in all the S0-S5 system
states. To lower the system power, the eSPI bus frequency and data pins may
be a function of the system state.

The eSPI specification does not preclude the support of LPC bus behind eSPI
and/or additional eSPI bus behind eSPI although the detail is outside the scope
of the current specification. One of the possible system configurations is as
shown below.

Figure 3: Example of LPC Bus and Additional eSPI Bus behind the eSPI

Host
Chipset LPC
Bridge
A
4
eSPI Protocol
Controller
A
eSPI
EC/BMC/SIO h 4
eSPI Target
A
\ 4
A A A
\ 4 4 \ 4
eSPI Bridge Internal .
Controller Devices LPC Bridge
A A
v eSPI v LPC
eSPI T.arget LPC Device
Device

Document Number: 841685, Revision: 1.6 11

intel.

1.1 Requirements

eSPI is defined to meet the following requirements:

Low Power: The interface may be active in all S0-S5 system states. The
power consumed when the bus is operating in S3-S5 system states must
be very low to meet the power requirements of these low power system
states. When the interface is not transmitting or receiving, it should
consume a negligible amount of power (at system level).

Pin Count Reduction: Moving LPC devices over to the eSPI interface
facilitates the removal of LPC pins in the longer term. On top of that
messaging through sideband pins needed for communication between the
chipset and target devices (such as EC, BMC and SIO) is converted to in-
band messages, resulting in further pin count reduction.

Medium Bandwidth: The bus bandwidth needs to be higher than that of
the Low Pin Count (LPC) bus.

LPC Replacement: Supports all the capabilities needed to replace the
parallel LPC interface. However, 8237 DMA and Firmware Hub (FWH) are
not supported over this interface.

Sideband Pins as In-Band Messaging: Facilitates the removal of
sideband pins for communication between chipset and target devices by
converting this communication into in-band messages sent over the eSPI
bus.

Real Time Flash Sharing: Supports flash sharing based on partition-able
memory mapping. Allows real-time operational access by chipset and
target devices.

Chipset and Target Devices SMBus Replacement: Supports tunneling
of all SMBus communication between chipset and target devices over the
new interface as in-band messages.

Scalable bandwidth: Allows the bandwidth to be scaled based on
application needs to optimize power versus performance. This could be
done through frequency scaling or varying the number of active data pins.

Low Voltage I/0 Buffer: eSPI uses the same I/O buffer as Serial
Peripheral Interface (SPI). The I/O buffer will support only 1.8V mode of
operation for the eSPI bus.

12

Document Number: 841685, Revision: 1.6

intel.
2 Architecture Overview

2.1 System Topology

The Enhanced Serial Peripheral Interface (eSPI) operates in controller/target
mode of operation where the eSPI controller dictates the flow of command and
data between itself and the eSPI targets by controlling the Chip Select# pins
for each of the eSPI targets. At any one time, the eSPI controller must ensure
that only one of the Chip Select# pins is asserted based on source decode, thus
allowing transactions to flow between the eSPI controller and the
corresponding eSPI target associated with the Chip Select# pin. The eSPI
controller is the only component that is allowed to drive Chip Select# when
eSPI Reset# is de-asserted.

For an eSPI bus, there is only one eSPI controller and one or more eSPI
targets.

In Single Controller-Single Target configuration, a single eSPI controller will be
connected to a single eSPI target. In one configuration, the eSPI target could
be the device that generates the eSPI Reset#. In this case, the eSPI Reset# is
driven from eSPI target to eSPI controller. In another configuration, the eSPI
Reset# could be generated by the eSPI controller and thus, it is driven from
eSPI controller to eSPI target.

Figure 4: Single Controller-Single Target with eSPI Reset# from Target to

Controller
eSPI eSPI Target
Controller CLK »lcik
/0 [n:0] [P>1/0 [n:0]
cs# | CSt
Alert# [« Alert#
Reset#|«g Reset#

Document Number: 841685, Revision: 1.6 13

intel.

Figure 5: Single Controller-Single Target with eSPI Reset# from Controller to

Target
eSPI eSPI Target
Controller -
1/0 [n:0] [P>11/0 [n:0]
CS# P CS#
Alert# |- Alert#
Reset# | Reset#

Figure 6: Single Controller-Multiple Targets with Two eSPI Reset#

eSPI Flash 0
Controller (Non-eSPI
cLK P[CLK Target)
1/0 [n:0] | <& M p-{1/0 [n:0]
CS0b 4k M »-1CSb
cs1b M
Flash 1
: (Non-eSPI
cs<n->b ——A— PCLK Target)
CS<n>b ——————p{I/0O [n:0]
—\——————P>(CSh
A A LK EC/BMC/SIO|
> (eSPI Target
— {110 [n:0]
dk P{CSb
Alert<n-1>b [<€— - ™ Alertb
Reset0# |<—]- N Reset#
dk »{c Lk eSPI Target

+—————————————Ppp»11/0 [n:0]

P|CcSb
Alert<n>b | g Alertb
Reset1# | Reset#

14 Document Number: 841685, Revision: 1.6

intel.

Multiple SPI and eSPI targets could be connected to the same eSPI bus
interface in a multi-drop Single Controller-Multiple Targets configuration. The
number of devices that can be supported over a single eSPI bus interface is
limited by bus loading and signals trace length.

In this configuration, the clock and data pins are shared by multiple SPI and
eSPI targets. Each of the targets has its dedicated Chip Select# and Alert#
pins.

In an eSPI bus configuration with multiple targets present, the eSPI controller
may support 2 eSPI Reset# pins, one from eSPI target to eSPI controller and

another one from eSPI controller to eSPI targets. In this case, the controller’s
eSPI interface will only be reset if all the targets’ eSPI interfaces are reset.

SPI targets such as Flash and TPM are allowed to share the same set of clock
and data pins with eSPI targets. These non-eSPI targets are selected using the
dedicated Chip Select# pins and they communicate with the eSPI controller
through SPI specific protocols ran over the eSPI bus.

Document Number: 841685, Revision: 1.6

15

intel.

2.2

Architecture Descriptions

In a Single Controller-Single Target configuration as shown in the diagram
below, there could be multiple eSPI host bridges within a single eSPI controller
and there could be multiple eSPI endpoints within a single eSPI target.

Figure 7: Single Controller-Single Target (Multiple Channels)

Host CPU

A

eSPI Controller

Y Y Y

eSPI Host eSPl Host eSPI Host
Bridge #1 Bridge #2 Bridge #3
Addr. Addr.
Decode Decode Decode
A A
y Y

Multiple channels
over eSPI

A A
y Y

Cho Cht Ch2
Q Q Q

Ch2

Chip Select0#

eSPI Target

A
Y

A
\ A

eSPI eSPI eSPI
Endpoint #1 Endpoint #2 Endpoint #3

When Chip Select# corresponding to the eSPI target is asserted, command and
data transfer happens between the eSPI controller and eSPI target, which could
be a result of the eSPI host bridge and eSPI endpoint communications.

Each of the eSPI host bridges communicates with its corresponding eSPI
endpoint through dedicated channel.

The use of channels allows multiple independent flows of command and data to
be transferred over the same bus between the eSPI controller and eSPI target
with no ordering requirement.

Resources such as flow control, command and data queues are dedicated for
each of the channels to provide independent command and data flows.

16

Document Number: 841685, Revision: 1.6

multiple discrete eSPI targets can be dropped onto the eSPI bus. Each of the
eSPI targets should have a dedicated Chip Select# pin. On the controller side,
there are eSPI host bridges corresponding to each of the discrete targets
respectively, each driving the Chip Select# pin of the corresponding discrete

target.

intel.

In Single Controller-Multiple Targets configuration shown in the diagram below,

At any one time, only one of the Chip Select# pins can be asserted. Command

and data transfer can then happen between the eSPI host bridge and the
corresponding eSPI target.

Figure 8: Single Controller-Multiple Targets

H

ost CPU

:

:

eSPI Endpoint
#1

eSPI Endpoint
#2

eSPITarget 1

eSPI Controller
eSPI Host eSPI Host eSPI Host
Bridge #1 Bridge #2 Bridge #3
Addr. Addr. Addr.
Decode Decode Decode
|
Multiple channels
over eSPI
A A A
Chip Select0# Chip Select1# ' Chip Select2#

t

eSPI Endpoint

#3

eSPI Target 2

!

eSPI Endpoint
#4

eSPI Target 3

The next diagram shows one of the ways the specification can be used to

support EC/BMC/SIO communication over the eSPI interface.

Document Number: 841685, Revision: 1.6

17

intel.

Figure 9: EC/BMC/SIO Communication Over eSPI Channels

OS Discoverable

Host CPU OS Transparent, Firmware Configuration
* OS Transparent
Host Chipset
(eSPI Controller) Out Of Band Power
Processor Management GPIO
Controller
eSPI Host
Bridge Tunneled Tunneled
Addr. SMBus Sideband Pin
Decode

i

eSPIFlash Multiple channels
Access < > over eSPI
2 = [1 19
o O (&
Chip Select0#
EC/BMC/SIO
(eSPI Target) v v
Cho Ch2 || Ch3
Q Q Q
eSPI Virtual Wire Tunneled Flash
Endpoint Controller SMBus Device Controller

In this example, the eSPI host bridge and the corresponding eSPI endpoint
communicate through Channel 0. The Sideband Pins are tunneled as in-band
messages through Channel 1. SMBus OOB messages are tunneled through
Channel 2. Flash access transactions are accomplished through Channel 3. The
transactions for different channels flowing between the eSPI controller and
EC/BMC/SIO share the same Chip Select# pin, and the same set of data and
clock pins.

18 Document Number: 841685, Revision: 1.6

intel.

2.3 Pin Descriptions

eSPI uses the existing SPI I/0O buffer. The electrical specification for this new
interface is the same as SPI.

eSPI Reset# is typically driven from eSPI controller to eSPI targets. The
exception is when eSPI Reset# is generated by eSPI target, which drives the
eSPI Reset# to the eSPI controller. eSPI Reset# is the reset to the eSPI
interface on both sides.

eSPI controller and eSPI targets must tri-state the interface pins when their
respective eSPI Reset# is asserted. The Chip Select# and I/O[n:0] pins require
weak pull-up to be enabled on these pins whereas the Serial Clock requires a
weak pull-down. When functions as a driven output, Alert# pin does not
require a weak pull-up to be enabled on the pin unless for the purpose of
terminating the pin to inactive when it is not used. When functions as an open-
drain output, Alert# pin requires a weak pull-up to be enabled on the pin.

The weak pull-up/pull-down should be implemented either as an integral part
of the eSPI controller buffer or on the board. eSPI targets must not implement
the weak pull-up/pull-down. For Alert# pin configured as open-drain, it is
recommended that the weak pull-up be implemented on the board such that its
impedance value could be adjusted accordingly when needed.

Refer to Section 7.1 for the value of the weak pull-up/pull-down resistor.

After eSPI Reset# is deasserted on the eSPI controller, the eSPI controller
begins driving Chip Select# and Serial Clock pins to their idle state
appropriately. The weak pull-up on the Chip Select# and the weak pull-down
on the Serial Clock are allowed to be disabled after the eSPI Reset#
deassertion. However, I/0[n:0] and Alert# pin (open-drain) continue to have
the weak pull-up enabled for the proper operation of the eSPI bus.

Table 1: eSPI Pin List

Pin Name Direction Clock Description
eSPI Reset# Controller to Asynchronous Reset#: Reset the eSPI interface for both
Target! controller and targets.
or
Target to Note:
Controller? 1. eSPI Reset# is typically driven from
eSPI controller to eSPI targets.
2. eSPI Reset# is generated by eSPI
target, driven from eSPI target to eSPI
controller.
Chip Select# Controller to Asynchronous Chip Select#: Driving Chip Select# low
Target selects a particular eSPI target for the
transaction.
Each of the eSPI targets is connected to a
dedicated Chip Select# pin.

Document Number: 841685, Revision: 1.6

19

intel.

Pin Name

Direction

Clock

Description

Serial Clock

Controller to
Target

Clock: This pin provides the reference
timing for all the serial input and output
operations.

I/0 [n:0]

Bi-directional

Serial Clock

I/0: These are bi-directional input/output
pins used to transfer data between
controller and targets.

The value of 'n” may be 1 or 3 depending
on the I/O mode.

In Single I/O mode (n=1), I/O[0] is the
eSPI controller output/eSPI target input
(COTI, also known as MOSI) whereas
I/O[1] is the eSPI controller input/eSPI
target output (CITO, also known as
MISO).

Alert#

Target to
Controller

Asynchronous

Alert#: This pin is used by eSPI target to
request service from eSPI controller.

Alert# is either a driven, or an open-drain
output from the target with default as a
driven output.

This pin is optional for Single Controller-
Single Target configuration where I/0[1]
can be used to signal the Alert event.

20

Document Number: 841685, Revision: 1.6

intel.
Bus Protocol

3.1

The details of the Enhanced Serial Peripheral Interface (eSPI) protocol are
described in this section. The electrical of eSPI bus is similar to SPI bus with
deviations specifically called out in this specification.

The Serial Clock must be low at the assertion edge of the Chip Select# while
eSPI Reset# has been de-asserted. The first data is launched from controller
while the serial clock is still low and sampled on the first rising edge of the
clock by target. Subsequent data is launched on the falling edge of the clock
from controller and sampled on the rising edge of the clock by target. The data
is launched from target on the falling edge of the clock. The controller could
implement a more flexible sampling scheme since it controls the clock.

All transactions on eSPI must be in multiple of 8-bits (one Byte).

Basic Protocol

Figure 10: Basic eSPI Protocol

Chip Select# _\ /7

Data[n:0] —(COMMAND)-‘/: -(RESPONSE y | U

COMMAND
(CMD X HDR (Optional))(DATA (Optional) X CRC)
RESPONSE
(RSP X HDR (Optional))(DATA (Optional) X STS X CRC)

eSPI transaction consists of a Command phase driven by controller, a Turn-
Around (TAR) phase, and a Response phase driven by the target. The
Command phase consists of a CMD, an optional header (HDR), optional DATA
and a CRC. The Response phase consists of a RSP, an optional header (HDR),
optional data, a Status and a CRC. CRC generation is mandatory for all eSPI
transactions where CRC byte is always transmitted on the bus. However, CRC
checking is default disabled after reset, and it is enabled by SET
CONFIGURATION. When CRC checking is disabled, CRC byte is ignored by the
receiver.

Document Number: 841685, Revision: 1.6 21

intel.

A transaction could be initiated by the controller through the assertion of Chip
Select#, start the clock and drive the command onto the data bus. The clock
remains toggling until the complete response phase has been received from the
targets.

Figure 11: Target Triggered Transaction (Single Controller-Target)

Chip Select#

Data[n:0] COMMAND)—C}-(RESPONSE)’ | S

A transaction could be initiated by the target by first signaling an Alert event to
the controller. The Alert event could be signaled through two ways. In the
Single Controller- Single Target configuration, the I/O[1] pin could be used by
the target to indicate an Alert event. In the Single Controller-Multiple Targets
configuration, a dedicated Alert# pin is required.

The Alert event can only be signaled by the target when the target’s Chip
Select# is high.

When I/O[1] is used to signal the Alert# event, it is toggled from tri-state to
pulled low by the target when the target decides to request for service. The
target then holds the state of the I/O[1] pin until the Chip Select# is asserted
by the controller. Once the Chip Select# is asserted, the eSPI target must
release the ownership of the I/O[1] pin by tri-stating the pin within the tsiaz
timing and the pin will be pulled high by the weak pull-up. The controller then
continues to issue command to figure out the cause of the Alert event from the
device and then service the request. At the last falling edge of the serial clock
after CRC is sent, the eSPI target must drive I/O[n:0] pins to high until Chip
Select# is deasserted. Besides power friendly due to weak pull-up on these
pins, the driving to high ensures no false Alert# event is generated by I/O[1]
when Chip Select# is deasserted. At the deassertion edge of Chip Select#,
these I/0[n:0] pins are tri-stated by the target meeting the tsuqz Output
Disable timing where the weak pull-ups maintain these pins at high, with the
controller continues to tri-state the I/O[n:0]. To signal an alert event after Chip
Select# deassertion, the target is only allowed to re-assert the I/O[1] pin after
the tsuaa timing.

When Alert# pin is used to signal the Alert# event, it is toggled by the target
from high to low (when the pin is a driven output) or tri-state to pulled low
(when the pin is an open-drain output) when the target decides to request for
service. The I/0O[n:0] pins remain tri-stated by the target. The target then
holds the state of the Alert# pin until the Chip Select# is asserted by the
controller. Once the Chip Select# is asserted, the target must drive the Alert#
pin high (when the pin is a driven output), or release the ownership of the pin
by tri-stating the pin (when the pin is an open-drain output). The tsiaz timing is
not applicable to the Alert# pin. The controller then continues to issue
command to figure out the cause of the Alert event from the device and then
service the request. At the last falling edge of the serial clock after CRC is sent,

22

Document Number: 841685, Revision: 1.6

intel.

the eSPI target must drive I/0O[n:0] pins to high until Chip Select# is
deasserted for power friendly reason due to weak pull-up on these pins. After
Chip Select# deassertion, these I/0O[n:0] pins are tri-stated by the target after
meeting the tsiqz Output Disable timing where the weak pull-ups maintain
these pins at high, with the controller continues to tri-state the I/O[n:0]. The
tsnaa timing is not applicable to Alert# pin. However, when Alert# pin is
configured as open-drain and asserted, the weak pull-up on the pin must be
such that the assertion of the CS# for the shortest possible transaction (which
causes the target to tri-state the Alert# pin), is able to pull the Alert# pin high
fast enough to the deasserted value before or by the last failing edge of the
serial clock at the end of the transaction.

In the case of error condition where Chip Select# is deasserted abruptly by the
controller, refer to Section 8.2.1.5 for the detail.

Figure 12: Target Triggered Transaction (Multiple Target)

o NWVL_g. UV
Chip Select# s /

Datafn:0] COMMAND)-/‘}-(RESPONSE)’ | S
Alert# Target drives Alert# high, no weak pull-up needed
(driven)

Chip Select#

Data[n:Q]

Alert#
(open-drain)

,I Target tri-state, Alert# pulled high by weak pull-up

The specification does not prevent the use of a dedicated Alert# pin for the
Single Controller-Single Target configuration.

In the boundary case where the Alert event assertion aligns with Chip Select#
assertion, the target still tri-state the I/O[1] pin or drive the Alert# pin high
(when the pin is a driven output) or tri-state the Alert# pin (when the pin is an
open-drain output) after sampling the corresponding Chip Select# assertion.
The status is returned during the response phase, and the controller is then
aware of the need to service the target’s outstanding requests.

The Alert event signaled on the pin is asynchronous to the Serial Clock.

Document Number: 841685, Revision: 1.6 23

intel.

3.2

eSPI targets must support both types of Alert mechanism. The method to
determine which Alert mechanism to use for each of the eSPI targets is
implementation specific.

eSPI is defined to use packet-based split transaction protocol. On the transmit
side, the packets are formed in the Transaction Layer based on the transaction
to be sent. The Link Layer extends the packet with a CRC byte.

Similarly, on the receive side, the CRC is checked at the receiving Link Layer
when CRC checking is enabled. Once the packet passes the CRC check, the
packet is sent to Transaction Layer where it is decoded and acted upon.

Command Phase

The Command phase is used by the eSPI controller to initiate a transaction to
the target or in response to an Alert event by the target. It consists of a CMD,
an optional header (HDR), optional DATA and a CRC.

The CMD field consists of Command Opcode.

Figure 13: Command Opcode

< Command Opcode[7:0] >
\"'“H—._.__ _._._.-ﬂ"/
B
CMD

The Command Opcode is used to indicate channel specific commands and to
communicate link management events.

Channels specific commands communicated over the bus include Command Put
and Command Get for the respective channels.

Link management events include GET_STATUS, GET_CONFIGURATION and
SET_CONFIGURATION.

The Command Opcode is 8-bits wide.

If the target receives a packet with an invalid Command Opcode which is not
defined by this specification, the target must not respond to the transaction.
The transaction will be terminated with the default response (NO_RESPONSE)
on the bus.

24

Document Number: 841685, Revision: 1.6

intel.

Table 2: Command Opcode Encodings

CMD Opcode Encoding[7:0] Description

eSPI Peripheral Channel

PUT_PC 00000000 Put a posted or completion header and optional
data.

Note: It is illegal to issue a PUT_PC unless the
target has indicated that it is free to take the Posted
or Completion packet.

Refer to Table 5 for the cycle types and the
respective packet format.

PUT_NP 00000010 Put a non-posted header and optional data.

Note: It is illegal to issue a PUT_NP unless the
target has indicated that it is free to take the Non-
Posted packet.

Refer to Table 5 for the cycle types and the
respective packet format.

GET_PC 00000001 Get a posted or completion header and optional
data.

Note: It is illegal to issue a GET_PC unless the
target has indicated that it has a Posted or
Completion packet available

Refer to Table 5 for the cycle types and the
respective packet format.

GET_NP 00000011 Get a non-posted header and optional data.

Note: It is illegal to issue a GET_NP unless the
target has indicated that it has a Non-Posted packet
available.

Refer to Table 5 for the cycle types and the
respective packet format.

PUT_IORD_SHORT 010000C:Co? Put a short (1, 2 or 4 bytes) non-posted I/O Read
packet.

Note: It is illegal to issue a PUT_IORD_SHORT
unless the target has indicated that it is free to take
the Non-Posted packet.

Refer to Figure 37 for the packet format.

PUT_IOWR_SHORT 010001C;Co? Put a short (1, 2 or 4 bytes) non-posted I/O Write
packet.

Note: It is illegal to issue a PUT_IOWR_SHORT
unless the target has indicated that it is free to take
the Non-Posted packet.

Refer to_Figure 37 for the packet format.

PUT_MEMRD32_SHORT 010010C;Co? Put a short (1, 2 or 4 bytes) non-posted Memory
Read 32 packet.

Note: It is illegal to issue a PUT_MEMRD32_SHORT
unless the target has indicated that it is free to take
the Non-Posted packet.

Refer to Figure 37 for the packet format.

Document Number: 841685, Revision: 1.6 25

intel.

CMD Opcode

Encoding[7:0]

Description

PUT_MEMWR32_SHORT

010011C:Co*

Put a short (1, 2 or 4 bytes) posted Memory Write
32 packet.

Note: Itis illegal to issue a PUT_MEMWR32_SHORT
unless the target has indicated that it is free to take
the Posted or Completion packet.

Refer to Figure 37 for the packet format.

Virtual Wire Channel

PUT_VWIRE

00000100

Put a Tunneled virtual wire packet.
Refer to Figure 40 for the packet format.

GET_VWIRE

00000101

Get a Tunneled virtual wire packet.
Refer to Figure 40 for the packet format.

OOB Message Channel

PUT_OOB

00000110

Put an OOB (Tunneled SMBus) message.

Note: It is illegal to issue a PUT_OOB unless the
target has indicated that it is free to take the OOB
message.

Refer to Table 5 for the cycle types and the
respective packet format.

GET_OOB

00000111

Get an OOB (Tunneled SMBus) message.

Note: It is illegal to issue a GET_OOB unless the
target has indicated that it has an OOB message
available to send.

Refer to Table 5 for the cycle types and the
respective packet format.

Flash Access Channel

PUT_FLASH_C

00001000

Put a Flash Access completion.

Used in Controller Attached Flash Sharing mode for
the controller to return a flash access completion to
the target.

Note: It is illegal to issue a PUT_FLASH_C unless the
target has indicated that it is free to take the Flash
Access completion.

Refer to Table 5 for the cycle types and the
respective packet format.

GET_FLASH_NP

00001001

Get a non-posted Flash Access request.

Used in Controller Attached Flash Sharing mode for
the target to issue a flash access request to the
controller.

It is illegal to issue a GET_FLASH_NP unless the
target has indicated that it has a non-posted Flash
Access request available to send.

Refer to Table 5 for the cycle types and the
respective packet format.

26

Document Number: 841685, Revision: 1.6

intel.

CMD Opcode Encoding[7:0] Description
PUT_FLASH_NP 00001010 Put a non-posted Flash Access request.
Used in Target Attached Flash Sharing mode for the
controller to issue a flash access request to the
target.
Note: It is illegal to issue a PUT_FLASH_NP unless
the target has indicated that it is free to take the
non-posted Flash Access request.
Refer to Table 5 for the cycle types and the
respective packet format.
GET_FLASH_C 00001011 Get a Flash Access completion.
Used in Target Attached Flash Sharing mode for the
target to return a flash access completion to the
controller.
Note: It is illegal to issue a GET_FLASH_C unless
the target has indicated that it has a Flash Access
completion available to send.
Refer to Table 5 for the cycle types and the
respective packet format.
Channel Independent?
GET_STATUS 00100101 Command initiated by the controller to read the
status register of the target.
SET_CONFIGURATION 00100010 Command to set the capabilities of the target as
part of the initialization. This is typically done after
the controller discovers the capabilities of the
target.
GET_CONFIGURATION 00100001 Command to discover the capabilities of the target
as part of the initialization.
RESET 11111111 In-band RESET command.

Notes:

1. The opcode encoding Ci1Co indicates the length of the request. The address
together with the length must not cross the DWord boundary.

Encoding[1:0]
Ci1Co

Request Length

00

1 byte

01

2 bytes

10

Reserved

11

4 bytes

2. Channel independent commands are enabled by default upon eSPI Reset#

deassertion.

Document Number: 841685, Revision: 1.6

27

intel.

3.3

Turn-Around (TAR)

After the last bit of the Command Phase has been sent out on the data lines,
the data lines enter the Turn-Around window. The eSPI controller is required to
drive all the data lines to logic ‘1’ for the first clock of the Turn-Around window
and tri-state the data lines thereafter. The number of clocks for the Turn-
Around window is a fixed 2 serial clocks independent of the eSPI I/O Mode
(single, dual or quad I/0O). The target may insert WAIT_STATE response code
after the TAR window for any eSPI transactions if additional time is needed for
the target to sample the command and prepare the response.

The eSPI target must not drive I/O[n:0] until the Response phase in all the
eSPI I/0 mode (single, dual, quad I/0). In single I/O mode particularly, the
target must not drive I/O[1] (CITO, also known as MISO) until the Response
phase. It must drive the Response phase on the bus immediately upon the
expiry of the Turn-Around time as shown in the next diagram.

Optionally, the target is allowed to start turning on its driver on the bus half a
clock earlier at the end of the Turn-Around window (at the rising edge of the
second clock) in preparation for driving the response code at the subsequent
clock falling edge as required by the eSPI protocol.

During the Turn-Around window, the data lines will be pulled high by the weak
pull-up.

Figure 14: Turn-Around Time (TAR = 2 clock)

>

Chip Select# \ an /

o) EEEET OO0000O0O™

28

Document Number: 841685, Revision: 1.6

intel.

3.4 Response Phase
The Response phase is driven by the eSPI target in response to command
initiated by an eSPI controller. It consists of a RSP opcode, an optional header
(HDR), optional data, a STATUS and a CRC.

The RSP opcode is an 8-bit field consists of a Response Code and a Response

Modifier.
Figure 15: Response Field
Bit 7 6 5 4 3 2 1 0
Response
Modifier RSV Response Code
(Response Opcode[7:0] >
RSP

3.4.1 Response

The Response Code indicates whether the request is successful, deferred,
responded with error or wait state.

The Response Modifier is a 2-bit field defined for the GET_STATUS with an
ACCEPT response only. For all other responses, it must always have the value
of 00" except for NO_RESPONSE where it is "11".

The Response Madifier field indicates whether a peripheral (channel 0)
completion, a virtual wire (channel 1) packet or a flash access (channel 3)
completion is appended to the GET_STATUS response phase. The flash access
(channel 3) completion is only applicable when target attached flash sharing is
supported and in operation.

The Response Maodifier is by default disabled. It is enabled through
SET_CONFIGURATION by setting the Response Modifier Enable bit to ‘1’ in the
General Capabilities and Configurations register. Refer to Section 6.2.1.3 for
the register bit description.

The Reserved (RSV) field of the RSP opcode must be driven to all 0’s when the
target drives the response phase. It is reserved for future use by the
specification. For backward compatibility, the Reserved (RSV) field must be
ignored by the controller.

NO_RESPONSE is the default when the response phase is not driven by any
target. The eSPI controller may terminate the transaction by deasserting Chip
Select# at any point when this is detected.

Document Number: 841685, Revision: 1.6 29

intel.

Table 3: Response Field Encodings

Response Encoding Description

[7:6] | [5:4] | [3:0]

ACCEPT R:iRo! RSV 1000 Command was successfully received

If the command was a PUT_NP, a response
of ACCEPT means that the non-posted
transaction is being completed as a
“connected” transaction.

DEFER 00 RSV 0001 Only valid in response to a PUT_NP. A non-
posted command was successfully received,
and completing the non-posted transaction
is deferred to a future split completion.

NON_FATAL_ERROR 00 RSV 0010 The received command had an error with
non-fatal severity. The error does not affect
the ability to process the received command.

FATAL_ERROR 00 RSV 0011 The received command had a fatal error that
prevented the transaction layer packet from
being successfully processed. Fatal errors
include malformed transactions, Put without
Free, Get without Avail and so forth.

WAIT_STATE 00 RSV 1111 Adds one byte-time of delay when
responding to a transaction on the bus.

NO_RESPONSE 11 11 1111 The response encoding of all 1’s is defined as
no response. It is the default response to
the GET_CONFIGURATION when no target is
present as a result of the weak pull-up on
the data lines. It is also the default response
when fatal CRC error is detected on the
command packet, or when command opcode
is not supported, and the target must not
drive the response phase.

Notes:

1. The response encoding R1R0 is always "00” except for the GET_STATUS
with an ACCEPT response which has the following definition:

Encoding[7:6] Description

R1iRo
00 No append.
01 A Peripheral (channel 0) completion is appended.
10 A Virtual Wire (channel 1) packet is appended.
11 A Flash Access (channel 3) completion is appended. This is

only applicable when target attached flash sharing is
supported and in operation.

30 Document Number: 841685, Revision: 1.6

intel.

3.4.2 Status

The 16-bit Status field serves to provide information such as new pending
requests from the target and queue free information. For status bits related to
channels that are not enabled or if channels are enabled but not ready, or
status bits for features that are not supported, these bits are don’t care and
must be ignored by the eSPI controller. The reserved status bits must be
driven to ‘0’ by the target.

The status field reflects the real time status of the target at the point when the
status field is transmitted on the bus. The AVAIL and FREE reflect the queue
status after taken into account the command being received or sent in this
transaction. However, as the command received is only decoded after the
deassertion of CS#, the effect of the command (such as the
SET_CONFIGURATION as an example) to the queue status if any, will not be
reflected in the status field of the current transaction. The change of the queue
status if any, will be signaled by the target through ALERT# and reflected in
the status field of the subsequent transaction.

The order of the Status bytes transmitted on the eSPI bus is described in
Section 5.1.

Refer to Section 4.3 for additional details about setting and clearing of the eSPI
Status register bits.

Figure 16: Target’'s Status Register Definition

111111
5432109876543210
RIRTTIRIRT [+ [T T[] T]
PC_FREE: Peripheral Posted/Completion Rx Queue Free
NP_FREE: Peripheral Non-Posted Rx Queue Free
FLASH_NP_AVAIL: Flash Non-Posted Tx Queue Avail L———VWIRE_FREE: Virtual Wire Rx Queue Free (Always ‘1")
FLASH_C_AVAIL: Flash Completion Tx Queue Avail—— L OOB_FREE: OOB Posted Rx Queue Free
PC_AVAIL: Peripheral Posted/Completion Tx Queue Avail
—————————————NP_AVAIL: Peripheral Non-Posted Tx Queue Avail
FLASH_NP_FREE: Flash Non-Posted Rx Queue F VWIRE_AVAIL: Virtual Wire Tx Queue Avail
FLASH_C_FREE: Flash Completion Rx Queue Free (Always ‘1) OOB_AVAIL: OOB Posted Tx Queue Avail
Table 4: Status Field Encodings
Bits -
Status Position Description
Target’'s Rx queues Free

PC_FREE 0 When *'1’, indicates the target is free to accept
at least one channel 0 peripheral posted or
completion header and data up to maximum
payload size.

NP_FREE 1 When '1’, indicates the target is free to accept
at least one channel 0 peripheral non-posted
header and 1 DW of Data (if applicable).

VWIRE_FREE 2 This bit must be always a ‘1’. Tunneling of
channel 1 virtual wires is not flow controlled.

Document Number: 841685, Revision: 1.6 31

intel.

Bits

Status Position

Description

OOB_FREE 3 When '1’, indicates the target is free to accept
at least one channel 2 OOB (tunneled SMBus)
message with data up to maximum payload
size.

Target's Tx queues Available

PC_AVAIL 4 When '1’, indicates the target has a channel 0
peripheral posted or completion header and
optional data up to maximum payload size
available to send.

NP_AVAIL 5 When '1’, indicates the target has a channel 0
peripheral non-posted header available to
send.

VWIRE_AVAIL 6 When '1’, indicates the target has a channel 1
tunneled virtual wire available to send.

OOB_AVAIL 7 When *'1’, indicates the target has a channel 2
OOB (tunneled SMBus) message with data up
to maximum payload size available to send.

Target's Rx queues Free

FLASH_C_FREE 8 When '1’, indicates the target is free to accept
at least one channel 3 Flash Access completion
header and data up to maximum payload size.

This bit must be always a ‘1’. The target must
be able to accept the completion for the non-
posted request it sends.

This bit is only applicable when controller
attached flash sharing is supported and in
operation. Otherwise, the bit is a don’t care.

FLASH_NP_FREE 9 When '1’, indicates the target is free to accept
at least one channel 3 Flash Access non-posted
header and data up to maximum payload size.

This bit is only applicable when target attached
flash sharing is supported and in operation.
Otherwise, the bit is a don't care.

Reserved 11:10 Reserved.

Target’s Tx queues Available

FLASH_C_AVAIL 12 When '1’, indicates the target has a channel 3
Flash Access completion header and data up to
maximum payload size available to send.

This bit is only applicable when target attached
flash sharing is supported and in operation.
Otherwise, the bit is a don't care.

32 Document Number: 841685, Revision: 1.6

intel.

Bits ..
Status Position Description
FLASH_NP_AVAIL 13 When ‘'1’, indicates the target has a channel 3

Flash Access non-posted header and data up to
maximum payload size available to send.

This bit is only applicable when controller
attached flash sharing is supported and in
operation. Otherwise, the bit is a don’t care.

Reserved 15:14 Reserved.

3.5 Alert Phase

Alert phase is signaled by the target to request for service. In response to an
Alert, the controller can issue a GET_STATUS command to the corresponding
target to query for the cause of the Alert event.

The controller then reacts accordingly to service the target.

A target could generate an Alert event due to any of the following reasons:

e There is a new request from target. This could be a Posted, Non-Posted,
deferred Completion, Virtual Wire messages, OOB messages or Flash
Access requests.

e A target buffer space has become free since the last status update was
returned as not free.

Each of the cause that triggers the Alert event has the corresponding bit in the
STATUS register. When the state of the STATUS register is different from the
STATUS returned during the previous Response phase, the target will generate
a new Alert event. The difference in the STATUS register indicates a new event
has occurred that requires the service from the controller.

Following figures illustrate examples of the flow and the tracking of the target’s
STATUS register on both sides of the bus.

Document Number: 841685, Revision: 1.6 33

intel.

Figure 17: Flow Diagram for a Target to Controller Peripheral Posted Write

Controller Controller Target Target

Tx Queues Rx Queues Rx Queues Tx Queues

F F Controller F F

L w L ow copy of Target L ow L ow

A O A O A O A O

SORNP SOgRNP target STATUS SORNP SORNP

HBEPC HBgPC STATUS Controller Target register HBEPC HBEgPC

1 A [L0x030F | [L0x030F] 1 A
[L0x031F] o e [o s

Target has a posted memory
write to issue

Target PC_AVAIL is asserted as there
is a posted memory write to send

[0x030F | HF+—F =1

e =) [[0x030F]

Target posted memory write buffer
and PC_AVALL status is cleared

Target posted write is transferred
from target Tx to controller Rx queue

Figure 18: Flow Diagram for a Back-to-back Target to Controller Peripheral
Posted Write

Controller Controller Target Target
Tx Queues Rx Queues Rx Queues Tx Queues
F F Controller F F

L w L w copy of Target L w L w

A O | A O | A O | A O |
SORNP sOgnNP target STATUS SORNP sOpnNP
HBEPC HBgpPC STATUS Controller Target register HBEgPC HBgpPC
e e e e e e B W 0 [o0F]) A

[[0x031F | e e |

Target has a posted memory write to issue /

Target PC_AVAIL is asserted as there
is a posted memory write to send

1T 1
N N N A N |
0x031F While waiting to send the first posted
. L memory write, thetargelenqueuesa2"d
Status indicates posted WI.‘ItE is posted memory write
available
[0x031F] o e ——
I B [[0x031F]

Target posted write #1 is transferred
from target Tx to controller Rx queue

[L0x030F | T+ H

One posted write #1 has been
sent, but #2 is still available
I
I
Target posted memory write buffer }/
Target posted write #2 is transferred and PC_AVAIL status are cleared

from target Tx to controller Rx queue

V
e e = [[0x030F |
V

34 Document Number: 841685, Revision: 1.6

passes Non-posted

intel.

Figure 19: Flow Diagram for a Target to Controller Peripheral Posted Write

Controller Controller
Tx Queues Rx Queues
F F Controller
sl sl oot
ESF;ES ESF;EZ STATUS

:
@

Status indicates non-posted packet
is available, but the controller cannot
get it because its own Rx non-posted

queue is full

Target has both posted and non-posted transactions available.
With room in the controller posted Rx queue and no room in the
non-posted queue, the controller issues a get for the posted
transaction as required by transaction ordering rules.

B B [ox0sF]

Target posted posted write is transferred
from target Tx to controller Rx queue

1 = 0x032F

Controller is able to free up non-posted k

queue space and so it issues a get for the
non-posted memory read from the target

B B [ox030F]

Controller Target

e

A STAT

%

Target Target
Rx Queues Tx Queues
F F
Target Low Low
A O A0
STATUS SORNP SOgnNP
register HBEPC HBgPC
[0x030F | I 1
[0x032F | HT+TFH

issue

Target has a non-posted memory read to /

Target NP_AVAIL is asserted as there
is a non-posted memory read to send

[0x033F |

s -

While waiting to send the non-posted memory read,
the target enqueues a posted memory write

4

[0x032F |

S

Posted memory write is transferred, removed from
queue and avail status register

[0x030F] HT+H

Target non-posted and posted memory
write queues and status are cleared

3.6 Get Status Command

Figure 20: GET_STATUS Command

Chip Select#

Data[n:0]

Alert#

—

GET_STATUS cre YA (response Y sts CRC
N) meoronee { e oo |

GET_STATUS is a channel independent command which is used to query the
content of the Status register. The state of the Status register will be returned

in the Response phase.

Document Number: 841685, Revision: 1.6

35

intel.

This command is typically used in response to the Alert event from the eSPI
target, to determine the cause of the Alert event and subsequently service the
target.

The response phase of the GET_STATUS allows a peripheral (channel 0)
completion, a virtual wire (channel 1) packet or a flash access (channel 3)
completion to be appended and sent together with the response. Only one is
allowed to be appended to the GET_STATUS response as indicated by the
Response Modifier field. The peripheral or flash access completion appended
may be a partial or full completion corresponding to a prior non-posted
transaction to the target.

The eSPI controller must always be ready to accept the peripheral (channel 0)
completion, the virtual wire (channel 1) packet or the flash access (channel 3)
completion. For the completion, it requires the eSPI controller to pre-allocate
the completion buffer appropriately when the non-posted transaction is
initiated to the target.

Refer to Section 3.4.2 for additional details of the Status register.

Figure 21: GET_STATUS Command (with Response Modifier)

Chip Select#

Data[n:0]

Ger_ A _[respoNsE \[vy \[vw \[vw
STATUS X CRC)' ‘ /-((V'a';‘:,"e'n“”,’;’:)'s Count J\ Index Data STS A CRC

Alert#

Chip Select#

A RESPONSE
Data[n:0] CRC)= ;= ‘CZ,TP':':S'Z;'S HDR X DATA STS CRC

Alert#

36

Document Number: 841685, Revision: 1.6

3.7

intel.

Get Configuration and Set Configuration
Command

SET_CONFIGURATION and GET_CONFIGURATION commands are channel
independent commands that are used to access the Channel Capability and
Configuration registers on the eSPI target side. Only DWord accesses are
supported. Since there is no byte enables, software is required to perform a
Read-Modify-Write access if modifying less than a full DWord.

SET_CONFIGURATION and GET_CONFIGURATION commands can never be
deferred and must be completed within the same cycle.

Figure 22: GET_CONFIGURATION Command

Chip Select# \

Data[n:0] —(CONFISORATION X Address X CRC)-;:A/—< RESPONSEX Data X sTs X CRC y_\—

GET_CONFIGURATION command is used to read the Channel Capability and
Configuration registers on the eSPI targets. The GET_CONFIGURATION
command phase consists of an 8-bit Command Opcode, a 16-bit address and
an 8-bit CRC. The response phase includes an 8-bit Response, 1 DW of Data, a
16-bit Status and an 8-bit CRC.

Figure 23: SET_CONFIGURATION Command

Chip Select# _\

Data[n:0] —(CONFIGURATION X Address X Data X CRC)V-(RESPONSE X sTs)(CRC

[

SET_CONFIGURATION command is used to write the Channel Capability and
Configuration registers on the eSPI targets. The SET_CONFIGURATION
command phase consists of an 8-bit Command Opcode, a 16-bit address, 1 DW
of Data and an 8-bit CRC. The response phase includes an 8-bit Response, a
16-bit Status and an 8-bit CRC.

eSPI target must only be configured with capabilities that advertised as
supported. Configuring eSPI target through SET_CONFIGURATION with
unsupported capabilities will result in undefined behavior which is
implementation specific and beyond the scope of the specification.

The order of address bytes transmitted on the eSPI bus during
GET_CONFIGURATION and SET_CONFIGURATION is described in Section 5.1.

The eSPI target contains addressable register space up to 4 KB. The access is
addressed at DWord boundary and only the lower 12-bits of the 16-bit address

Document Number: 841685, Revision: 1.6 37

intel.

Note:

3.8

are used with address bit[1:0] hard-wired to always “"00”. The 4 MSB address
bits must be driven to all zeros by eSPI controller. eSPI targets should ignore
the 4 MSB address bits.

Implementation Note: Upon coming out of eSPI Reset#, eSPI controller can
initiate a GET_CONFIGURATION cycle to a particular eSPI target to determine
if the eSPI target is present. If the eSPI target is not present, the eSPI data
lines remain pulled-up after the Turn-Around time. eSPI controller can use
this behavior to deduce that the eSPI target is not present on the bus.

If the eSPI target is present, the eSPI target must drive the response phase
upon the expiry of the Turn-Around time.

Non-Posted Transaction

eSPI controller initiated non-posted transaction can be terminated as connected
or deferred completion.

The eSPI controller initiated non-posted transaction is terminated as a
connected completion when the data and all the information needed to
generate the response are immediately available.

The valid responses for non-posted transactions terminated as connected
include ACCEPT with either a successful or unsuccessful completion, FATAL
ERROR and NON-FATAL ERROR.

Figure 24: Connected Controller Initiated Non-Posted Transaction

Chip Select# _\ /_

Data[n:0] 4(X X);/*(X XX X)’ | I

If the eSPI controller initiated non-posted transaction requires data or
additional information which is not available immediately, the non-posted
request is terminated with a "DEFER"” response. The deferred completion can
be returned some period of time in the future when the data or information is
eventually available. The bus can be used for other transactions prior to the
defer completion being returned, as long as the ordering rule is maintained.

When the deferred completion is returned, the only valid response is ACCEPT
with either a successful or unsuccessful completion. For non-posted transaction
that will be terminated with error, the target is required to respond with FATAL
ERROR or NON-FATAL ERROR as connected without deferring the transaction.

The eSPI target can complete the non-posted command with multiple split
completions either as connected or deferred. Refer to Section 4.1.3 for cases
with split completions. If one of the split completions has an unsuccessful
completion status, the remaining split completions will not be returned.

38

Document Number: 841685, Revision: 1.6

intel.

Figure 25: Deferred Controller Initiated Non-Posted Transaction

Chip Select# —\ /

Data[n:0] 4(PUT_NP X HOR X CRC)c‘/(DEFER)(sTs X CcRC y \
@ Non-Posted Transaction Terminated With DEFER Response

Chip Select#

Data[n:0]

Alert#
@ The Corresponding Completion Comes Back After Some Time, Alerting the eSPI Controller

Chip Select# _\ /

Data[n:o] 4(GETJ’CX CRC)-c‘/(ACCEPTX HDR X DATA X STS X CRC y \—

@ eSPI Controller Gets The Completion

eSPI supports short non-posted transactions from controller to target for
requests of length 1, 2 or 4 bytes that have less overhead and are thus more
efficient. The unique opcode indicates the type of non-posted transaction and
the request length. The header contains the address only and the number of
address bytes for the transaction is implied by the opcode. The short non-
posted transaction does not have the Tag field. The Tag field is implied as all
0’s which will be returned by the target in the completion header.

The short non-posted transactions can be terminated as connected or deferred
completion. However, for optimized performance of short transaction, the
target should complete the transaction as connected where it can.

Document Number: 841685, Revision: 1.6 39

intel.

Figure 26: Controller Initiated Short Non-Posted Transaction

(@ PUT_IORD_SHORT

Chip Select# _\ /

(PUT_IORD_ HDR _ A _ Data \
Data[n:0] SHORT X(1S-bitaddr)X CRC) w— (RESPONSE X1B,2B,4BX STS X CRC y

@ PUT_IOWR_SHORT

Chip Select# _\

HDR A
Data[n:0] _(Pugﬁg)nv?' X(1s.bna.1¢,)X1al,)za:4aX CRC)V—(RESPONSEX STS)(CRC y _

(® PUT_MEMRD32_SHORT

Chip Select# \ /
HDR 7 ‘ D:
Data[n:0] _(PUT’S'\:lEoNlI;DSL X (32-bit addr) X CRC)' V—(RESPONSE X 15,;:,1 X STS X CRC y _

The eSPI target can generate an Alert when there is a pending non-posted
transaction. In response to that, the eSPI controller would issue a GET_STATUS
command to check for the pending request information.

The eSPI controller would then generate a GET_NP command to fetch the non-
posted transaction. Once the completion data and the information needed to
return the response is available, the eSPI controller would return the split
completion back to the eSPI target.

Completions to a non-posted request initiated by the eSPI target are always
split.

40

Document Number: 841685, Revision: 1.6

Figure 27: Target Initiated Non-Posted Transaction

Chip Select#

Data[n:0]

!
/

@ eSPI Target Alerts the eSPI Controller of Pending Request and the eSPI Controller
Checks the Request Information

Chip Select# _\ /7

S e)) 3 O

(@ esPiController Gets the Non-Posted Request

Chip Select# —\ /_

Datan:0] 4(X X X)c‘/(X X y |-

@ eSPI Controller Eventually Returns the Completion

Alert#

Document Number: 841685, Revision: 1.6 41

intel.

3.9

Posted Transaction

The valid responses for posted transactions initiated by eSPI controller are
ACCEPT, FATAL ERROR and NON-FATAL ERROR. DEFER response for posted
transaction is invalid.

Figure 28: Controller Initiated Posted Transaction

Chip Select# _\ j_

Data[n:0] 4(X X X)/‘3(X X)’ |

eSPI supports short posted transactions from controller to target for requests
of length 1, 2 or 4 bytes that have less overhead and are thus more efficient.
The unique opcode indicates the short posted transaction and the request
length. The header contains the address only and the number of address bytes
for the transaction is implied by the opcode.

Figure 29: Controller Initiated Short Posted Transaction

Chip Select _\ /_
| I

PUT_MEMWR32_ HDR Data A
Data[n:0] < SHORT X(az-hitaddr)X1B,ZB,4BX CRC)V_/—(RESPONSEX STS)(CRC y

The eSPI target can generate an Alert when there is a pending posted
transaction. In response to that, the eSPI controller would issue a GET_STATUS
command to check for the pending request information.

The eSPI controller would then generate a GET_PC command to get the posted
transaction.

42

Document Number: 841685, Revision: 1.6

intel.

Figure 30: Target Initiated Posted Transaction

| S

Chip Select#

Data[n:0]

GET_STATUS X CRC) , —(RESPONSE X S§TS X CRC y

!
/

Alert#

@ eSPI Target Alerts the eSPI Controller of Pending Request and the eSPI Controller
Checks the Request Information

Chip Select# _\ /7

Datan:0] 4(X)‘/:(CEX X X X y _

@ eSPI Controller Gets the Posted Request

For illustration, a pipelined back-to-back bus mastering posted write

transactions from eSPI target with corresponding status indication is as shown
below.

Document Number: 841685, Revision: 1.6 43

intel.

Figure 31: Pipelined Back-to-Back Bus Mastering Posted Write Transactions

Chip Select# _\n /_

|
|
|
Status indicates |
PC available |
|
|
|

Data[n:0] ALERT GET_STATIX CRC)’V‘-(ACCEPTX STATUSX CRC y__

Chip Select# J—\ /_)

|
|
|
Status indicates |
another PC available |
|
|
|

Data[n:0] 4(GET_PC X CRC) (ACCEPTX HDR X DATA X STS X CRC y__

Chip Select# !—\ /_

Status indicates no
additional PC available

Data[n:0] 4(GET_PC X CRC);:A/(ACCEPTX HDR X DATA X STS X CRC y_\—

3.10 WAIT STATE

All eSPI transactions support WAIT_STATEs by the eSPI target during the
response phase. After the 2 clocks Turn-Around (TAR) window, the eSPI target
is allowed to respond with WAIT_STATE Response Code before it terminates
the transaction with ACCEPT, DEFER, NON-FATAL ERROR or FATAL ERROR.

One or more WAIT_STATE Response Code may be inserted by the eSPI target
at the start of the Response Phase, up to the Maximum WAIT_STATE value
configured by the eSPI controller. The eSPI controller is not required to check
for Maximum WAIT_STATE violation. It is the eSPI target’s responsibility to
ensure the number of WAIT_STATE Response Code inserted does not exceed
the Maximum WAIT_STATE allowed.

The WAIT_STATE capability provides additional time beyond the Turn-Around
(TAR) window if needed for the target to sample the command and prepare the
response. It allows the controller initiated non-posted transaction which would
otherwise be responded immediately with DEFER, to be completed in the same
transaction when some additional delay is needed by the eSPI target beyond

44 Document Number: 841685, Revision: 1.6

intel.

the Turn-Around (TAR) window. The additional delay provided by a
WAIT_STATE Response Code is one byte time, which corresponds to 8 serial
clocks in the Single I/O mode, 4 serial clocks in the Dual I/O mode or 2 serial
clocks in the Quad I/O mode respectively.

WAIT_STATE Response Code is not included in the CRC calculation. It is
defined with the encoding that has at least 2-bit differences compares to all
other response code encodings. eSPI controller is required to handle the wait
state at the point WAIT_STATE Response Code is received.

Figure 32: Controller Initiated Non-Posted Transaction Responded with WAIT
STATE

Chip Select# \ /
Data[n:0] A,- -..}}..(il XACCEPTX HDR X DATA X sTS X CRC] _

Up to Maximum WAIT-STATE allowed

Chip Selectt _\ /_

Up to Maximum WAIT-STATE allowed

Document Number: 841685, Revision: 1.6 45

intel.
4 Transaction Layer

4.1 Cycle Types and Packet Format

The following diagram shows a general Enhanced Serial Peripheral Interface
(eSPI) packet format. The description of the respective fields within the packet
is described in the subsequent sections.

Figure 33: General eSPI Packet Format

716l5|4l3]2]1]0

Byte 0 Cycle Type \

Byte 1 Tag Length[11:8]

Byte 2 Length[7:0]

Byte 3 Address [31:24] » Header

Byte 4 Address [23:16]

Byte 5 Address [15:8]

Byte 6 Address [7:0] /

Byte 7 Data Byte 0

Data Byte 1
: Data

Byte n+7 Data Byte n

Memory Write 32 Requests

4.1.1 Cycle Types

The summary of cycle types supported over the eSPI interface is shown in the
table below. The Least-Significant-Bit (LSB) of the encodings distinguishes
between a cycle with data and a cycle without data.

The direction of cycle type supported is specified in the table as “"Up” or
“Down”. “Up” refers to the direction from eSPI target to eSPI controller and
“Down” refers to the direction from eSPI controller to eSPI target.

46 Document Number: 841685, Revision: 1.6

Table 5: Cycle Types

intel.

Cycle Type Encodings® Direction Command Channel Description
[7:0] Type Type
eSPI Peripheral Channel
Memory Read 00000000 Up/Down Non-Posted eSPI 32 bit addressing Memory
32 Peripheral Read Request.
Channel LPC Memory Read and LPC
Bus Master Memory Read
requests are mapped to
this cycle type.
Refer to Figure 36 for the
packet format.
Memory Read 00000010 Up/Down Non-Posted eSPI 64 bit addressing Memory
64 Peripheral Read Request.
Channel Support of upstream
Memory Read 64 is
mandatory for eSPI targets
that are bus mastering
capable.
Refer to Figure 36 for the
packet format.
Memory Write 00000001 Up/Down Posted eSPI 32 bit addressing Memory
32 Peripheral Write Request.
Channel LPC Memory Write and LPC
Bus Master Memory Write
requests are mapped to
this cycle type.
Refer to Figure 34 for the
packet format.
Memory Write 00000011 Up/Down Posted eSPI 64 bit addressing Memory
64 Peripheral Write Request.
Channel Support of upstream
Memory Write 64 is
mandatory for eSPI targets
that are bus mastering
capable.
Refer to Figure 34 for the
packet format.
Message 0001r2rire0 Up/Down Posted eSPI Message Request.
Peripheral Refer to Figure 38 for the
Channel packet format.
Message with 0001rzrirol Up/Down Posted eSPI Message Request with data
Data Peripheral payload.
Channel Refer to Figure 38 for the
packet format.
Successful 00000110 Up Completion eSPI Successful Completion
Completion Peripheral Without Data.
Without Data Channel

Corresponds to I/O Write.

Refer to Figure 39 for the
packet format.

Document Number: 841685, Revision: 1.6

47

intel.

Cycle Type Encodings® Direction Command Channel Description
[7:0] Type Type

Successful 00001P1Po'1 Up/Down Completion eSPI Successful Completion With

Completion Peripheral Data.

With Data Channel Corresponds to Memory
Read or I/O Read.

Refer to Figure 39 for the
packet format.
Unsuccessful 00001P1Po*20 Up/Down Completion eSPI Unsuccessful Completion
Completion Peripheral Without Data.
Without Data Channel Corresponds to Memory or
1/0.
Refer to_Figure 39 for the
packet format.
OOB Message Channel
ooB 00100001 Up/Down Posted (0]0]=) SMBus Out-Of-Band
(Tunneled Message Message. SMBus packet
SMBus) Channel tunneling.
Message Refer to Figure 45 for the
packet format.
Flash Access Channel*

Flash Read 00000000 Up/Down Non-Posted Flash Access | Read from Flash.

Channel Refer to_Figure 48 for the
packet format.

Flash Write 00000001 Up/Down Non-Posted Flash Access | Write to Flash.

Channel Refer to Figure 48 for the
packet format.

Flash Erase 00000010 Up/Down Non-Posted Flash Access | Flash Erase instruction.

Channel Erase part or the whole
partition owned by the
corresponding flash
controller.

Refer to Figure 48 for the
packet format.

Successful 00000110 Up/Down Completion Flash Access | Successful Completion

Completion Channel Without Data.

Without Data Corresponds to Flash Write
or Flash Erase.
Refer to Figure 39 for the
packet format.

Successful 00001P;1Po'1 Up/Down Completion Flash Access | Successful Completion With

Completion Channel Data.

With Data Corresponds to Flash Read.
Refer to Figure 39 for the
packet format.

Unsuccessful 00001P;1Po*20 Up/Down Completion Flash Access | Unsuccessful Completion

Completion Channel Without Data.

Without Data

Corresponds to Flash
accesses.

Refer to_Figure 39 for the
packet format.

48

Document Number: 841685, Revision: 1.6

intel.

Cycle Type Encodings® Direction Command Channel Description
[7:0] Type Type
RPMC Op.1 OR:R000011 Down Non-Posted Flash Access | Replay Protected Monotonic
Channel Counter (RPMC) Opcode 1.
Refer to Figure 50 for the
packet format.
RPMC Op.2 O0R1R0®00100 Down Non-Posted Flash Access | Replay Protected Monotonic
Channel Counter (RPMC) Opcode 2.
Refer to Figure 50 for the
packet format.
Notes:

1. The encoding P1Po has the following definition:

Encoding
Description
P1Po
00 Indicates the middle completion of a split completion sequence.
01 Indicates the first completion of a split completion sequence.
10 Indicates the last completion of a split completion sequence.
11 Indicates the only completion for a split transaction.

2. For Unsuccessful Completion without Data, P1 must be always a ‘1’ as this
is always the last or the only completion.

3. The combination of command opcode and cycle type encoding must be
unique. There is no requirement that cycle type encodings must be unique

across command opcodes.

4. Refer to Section 4.2.4 for detail operation of the Flash Access channel.

5. The message routing field rariro has the following definition:

Encoding N
Description
rariko
000 Local - Terminated at receiver.
001 - 111 Reserved.

6. The encoding RiRo has the following definition:

Encoding o
Description
P1Po
00 Indicates the RPMC cycle is targeting to the 1t RPMC flash device.
01 Indicates the RPMC cycle is targeting to the 2" RPMC flash device.
10 Indicates the RPMC cycle is targeting to the 3 RPMC flash device.
11 Indicates the RPMC cycle is targeting to the 4" RPMC flash device.

Document Number: 841685, Revision: 1.6

49

intel.

4.1.2 Tag

4.1.3

The Tag field is allowed to be non-unique for multiple outstanding non-posted
requests on the same Channel that require completion.

Refer to Section 4.4 for more details about Tag and its association with the
ordering of completions.

The 4-bit Tag field allows up to 16 unique non-posted requests to be
outstanding at any one time which have no ordering requirement among each
other. However, the number of outstanding non-posted requests required to be
supported by eSPI controller or target is implementation specific as it is a
function of performance target outside the scope of the specification.

For posted requests which do not require completion, the usage of Tag field is
implementation specific and beyond the scope of the specification.

Length

The length field indicates the request size or data payload specified in Bytes.
The length field is 1-based. A value of all zeros indicates 4 KB of length.

For memory read and Flash Read, the length field specifies the data payload
size requested.

For memory write, Flash write, OOB message with data and Completion with
Data, the length field specifies the actual amount of data returned in the
packet.

For Completion without Data or Un-Successful Completion, the length field
must be driven to zeros by initiator. The receiver must ignore the length field.

For Short I/O and Short Memory, there is no length field defined as the length
of the transaction is embedded in the command opcode itself which supports 1,
2, or 4 bytes access. Short command does not support 3 bytes access.

For Flash Erase length field definition, refer to the Controller Attached Flash
Sharing (4.2.4.1), and Target Attached Flash Sharing (4.2.4.2) section for
detail.

For Memory Write, data payload size must not exceed the naturally aligned
address boundary of the corresponding Maximum Payload Size.

For Flash Write and OOB message with data, data payload size must not
exceed the Maximum Payload Size of the respective channel with no address
alignment requirement. The data payload of the OOB message affected by the
Maximum Payload Size is the actual payload of the protocol embedded in the
message itself. Refer to Section 4.2.3 for the OOB message payload.

Read requests size initiated on the eSPI Peripheral Channel must not exceed
the naturally aligned address boundary of the corresponding Maximum Read
Request Size in its Channel Capability and Configuration register. For Flash
Access Channel, read requests size must not exceed the corresponding
Maximum Read Request Size with no address alignment requirement.

50

Document Number: 841685, Revision: 1.6

intel.

Memory read and Flash read requests may be completed with one or multiple
split completions.

A Memory read or Flash read that does not exceed the Maximum Payload Size
of the respective channel must be completed with a single completion.

If the read request size exceeds the Maximum Payload Size of the respective
channel, the completion must be returned in multiple split completions, with
each completion contains up to the Maximum Payload Size. For eSPI Peripheral
Channel, each completion is aligned to the naturally aligned address boundary
of the Maximum Payload Size except for the first completion which aligns to the
starting address of the request. For Flash Access Channel, each completion
contains up to Maximum Payload Size with no address alignment requirement.

For successful completion with data and unsuccessful completion without data,
the additional cycle type encoding indicates whether the completion is the first,
middle or the last completion for a split completion sequence, or whether it is
the only completion that completes the split transaction.

4.1.4 Address

The eSPI peripheral channel memory transactions support both 32 bits and 64
bits addressing formats. For peripheral channel I/O cycles, only 16-bits address
is used.

For addresses below 4 GB, the memory transactions must use the 32 bits
addressing format. When 64 bits addressing format is used, the upper 32 bits
address [63:32] must not be all 0.

Support of upstream 64-bit addressing memory transaction is mandatory for
eSPI targets that are bus mastering capable. eSPI controller must support both
upstream 32-bit and 64-bit addressing memory transactions.

For Short Memory and Short I/0 transactions, the 1, 2, or 4 bytes accesses
must not cross the Double Word (DW) address boundary.

For other memory transactions, the address may start or end at any byte
boundary. However, the address and payload length combination must not
cross the naturally aligned address boundary of the corresponding Maximum
Payload Size. It must not cross a 4 KB address boundary.

For Flash Access Channel and OOB messages, there is no address alignment
requirement as long as the payload length does not exceed the corresponding
Maximum Payload Size.

4.1.5 Data

The valid data field always starts at Byte 0, regardless of the address
alignment. There is no byte enables associated with data. It is the
responsibility of the requester to break the requests which are targeting non-
contiguous locations into separate requests.

Document Number: 841685, Revision: 1.6 51

intel.

4.2

4.2.1

Channels

A channel provides a means to allow multiple independent flows of traffic to
share the same physical bus.

Each set of the put_*/get_*/*_avail/*_free associates with the command and
response of a corresponding channel.

Each of the channels has its dedicated resources such as queue and flow
control. There is no ordering requirement between traffics from different
channels.

The number and types of channels supported by a particular eSPI target is
discovered through the GET_CONFIGURATION command issued by the eSPI
controller to the eSPI target during initialization.

The assignment of the channel type to the channel number is fixed. The eSPI
target can only advertise which of the channels are supported.

eSPI Peripheral transactions always use Channel 0. The PUT_PC/ PUT_NP/
GET_PC/ GET_NP/ PC_FREE/ NP_FREE/ PC_AVAIL/ NP_AVAIL commands and
status fields are used for Channel 0 access.

Virtual Wires are communicated through Channel 1. The PUT_VWIRE/
GET_VWIRE/ VWIRE_AVAIL commands and status fields are used for Channel 1
access.

OOB Message and Flash Access use channel 2 and channel 3 respectively.

Commands such as GET_STATUS, SET_CONFIGURATION and
GET_CONFIGURATION are not associated with any particular channel.

Peripheral Channel

eSPI Peripheral channel is used for communication between eSPI host bridge
located on the controller side and eSPI endpoints located on the target side.
LPC Host and LPC Peripherals are an example of eSPI host bridge and eSPI
endpoints respectively. Other examples include ACPI devices connected to the
eSPI bus which talk to a host controller residing on the eSPI controller side.
The eSPI Peripherals are not software discoverable.

Peripheral channel is reset when eSPI host bridge is reset by Platform Reset
(PLTRST#). Prior to PLTRST# assertion, eSPI controller and target complete
the HOST_RST_WARN and HOST_RST_ACK Virtual Wires handshake. After
sending the HOST_RST_ACK, eSPI target must not send any Peripheral channel
transaction, nor any host domain Virtual Wires (i.e. Virtual Wires reset by
PLTRST#) such as SMI#, SCI#, RCIN# or IRQ. Until PLTRST# is deasserted,
no transaction shall occur on eSPI peripheral channel and no host domain
Virtual Wires shall be sent from eSPI controller or target. eSPI peripheral
channel is enabled by default after PLTRST# deassertion.

The format of the eSPI Peripheral Memory request packet, I/0O request packet,
Message request packet and completions are shown below.

52

Document Number: 841685, Revision: 1.6

intel.

I/0 transaction is only supported through the Short I/O command opcodes for
request length of 1, 2 or 4 bytes. 3 bytes I/O transaction is not supported. I/O
cycle type is not defined for the eSPI peripheral channel packet.

The Tag and Channel information are used to match the completions with the
corresponding requests.

Figure 34: Peripheral Memory Write Packet Format

7lelslals]2]1]0 7lelslals]2]1]0
Byte 0 Cycle Type Byte 0 Cycle Type
Byte 1 Tag Length[11:8] Byte 1 Tag Length[11:8]
Byte 2 Length[7:0] Byte 2 Length[7:0]
Byte 3 Address [31:24] Header Byte 3 Address [63:56]
Byte 4 Address [23:16] Byte 4 Address [55:48] Header
Byte 5 Address [15:8] Address [47:40]
Byte 6 Address [7:0]
Byte 7 Data Byte 0 Byte 9 Address [15:8]
Data Byte 1 '
; Byte 10 Address [7:0]
: Data 4
Byte 11 Data Byte 0
Byte n+7 Data Byte n Data Byte 1
: Data
Memory Write 32 Requests Byte n+11 Data Byte n
Memory Write 64 Requests

Figure 35: Short Peripheral Memory or Short I/0 Write Packet Format
(Controller Initiated only)

Short Memory Write 32 Requests

(n=0,1,3)

Short I/0 Write Requests
(n=0,1,3)

7lelslal3l2]1]0

Address [31:24
Byte 0 ress (3124 7|6|5|4|3|2|1|0|
Byte 1 Address [23:16] Byte 0 Address [15:8]

Header Header
Byte 2 Address [15:8] Byte 1 Address [7:0]
Byte 3 Address [7:0] Byte 2 Data Byte 0
Byte 4 Data Byte 0 Data Byte 1
: Data
Data Byte 1
: Data
Byte n+2 Data Byte 3
Byte n+4 Data Byte n

Document Number: 841685, Revision: 1.6

53

intel.

Figure 36: Peripheral Memory Read Packet Format

7l6l5]4l3|2]1]0 7lels]al32]1]0
Byte 0 Cycle Type Byte 0 Cycle Type
Byte 1 Tag Length[11:8] Byte 1 Tag Length[11:8]
Byte 2 Length[7:0] Byte 2 Length[7:0]
Byte 3 Address [31:24] Header Byte 3 Address [63:56]
Byte 4 Address [23:16] Byte 4 Address [55:48] Header
Byte 5 Address [15:8] . Address [47:40]
Byte 6 Address [7:0] :
Memory Read 32 Requests Byte 9 hadress 1541
Byte 10 Address [7:0]
Memory Read 64 Requests

Figure 37: Short Peripheral Memory or Short I/0 Read Packet Format
(Controller Initiated only)

7lelslalslo] 10
Add 31:24]
Byte 0 ress 24l 76l slalsl2]1]o
Byte 1 Address [23:16] Byte 0 Address [15:8]
Header Header
Byte 2 Address [15:8] Byte 1 Address [7:0]
Byte 3 Address [7:0]

Short I/O Read Requests
Short Memory Read 32 Requests

Figure 38: Peripheral Message Packet Format

71615l al3l2]1]0
Byte 0 Cycle Type
T: Length[11:8]
7l6lslalsl2]1]0] Byte 1 % eramitTel
Byte 0 Cycle Type Byte 2 Length[7:0]
Byte 1 Tag | Length[11:8] Byte 3 Message Code [7:0]
Header
Byte 2 Length[7:0] Byte 4 Message Specific Byte 0
Byte 3 Message Code [7:0] Byte 5 Message Specific Byte 1
Header
Byte 4 Message Specific Byte 0 Byte 6 Message Specific Byte 2
Byte 5 Message Specific Byte 1 Byte 7 Message Specific Byte 3
Byte 6 Message Specific Byte 2 By[e 8 Data Byte 0
Byte 7 Message Specific Byte 3 : Data Byte 1
: : Data
Message Byte n+8 Data Byte n
Message with Data

54 Document Number: 841685, Revision: 1.6

intel.

Figure 39: Peripheral Memory or I/0 Completion With and Without Data Packet

Format
7|6]5]4]3]2]1]0
Byte 0 Cycle Type
Byte 1 Tag Length{11:8] Header 7]lels]al3]2]1]o
Byte 2 Length{7:0] Byte 0 Cyele Type
Byte 3 Data Byte 0 Byte 1 Tag Lengthl11:8] Headef
Data Byte 1 Byte 2 Length(7:0]
: Data
Byte n+3 Data Byte n Completion Without Data

Completion With Data

Memory Read and Write requests can be initiated by both eSPI controller and
target. Short I/O Read and Write requests, and Short Memory Read and Write
requests can only be initiated by eSPI controller.

The eSPI packet format does not contain Byte Enables. In the case where the
data to be written are non-contiguous, the requester is responsible to break
the request into several contiguous sub-requests.

The Message and Message with Data cycle types are posted transactions using
PUT_PC and GET_PC command opcodes. Both Message and Message with Data
packets use the same header format. The Length field specifies the size of the
payload in the Message with Data. The 4 message specific bytes in the
message header are not included in the message Length. For Message cycle
type, the Length field is Reserved and it must be sent with all Os.

The Message Code in the packet header defines the functionality and usage of
the message.

Table 6: Message Codes

Name Cycle Type c';'g:s[%gg] R:)::ﬂr;g Direction Description
LTR Message 0000_0001 000 Up Latency Tolerance Reporting.
4.2.1.1 Latency Tolerance Reporting (LTR) Message

The Latency Tolerance Reporting (LTR) enables eSPI targets to report their
service latency requirements for peripheral channel upstream Memory Reads
and Writes, so that power management can be implemented with consideration
of eSPI targets’ service requirements.

The eSPI controller is not required to honor the requested service latencies but
is strongly encouraged to provide a worst case service latency that does not
exceed the latencies indicated by the LTR mechanism.

Document Number: 841685, Revision: 1.6

55

intel.

All eSPI controllers must support LTR message. LTR is mandatory for eSPI
targets that support bus mastering using peripheral channel upstream memory
requests.

Setting the Latency Value field to all 0’s indicates that the eSPI target will be
impacted by any delay and that the best possible service is requested.

If an eSPI target has no service requirement, it must have the Requirement bit
clear. When bus mastering is disabled on an eSPI target, if the target had
previously reported latency with the Requirement bit set, it must send a new
LTR Message with Requirement bit clear. If an eSPI target is put into an offline
or equivalent of a PCI non-DO state, the target is required to send an LTR
message with the Requirement bit clear.

An eSPI target that supports LTR must transmit an initial LTR Message before
issuing any upstream memory requests. It is recommended that eSPI target
transmits an LTR Message shortly after the peripheral channel is enabled.

Whenever the service requirement changes, eSPI target should transmit an
updated LTR Message.

If the latency tolerance is being reduced, it is recommended to transmit the
updated LTR Message ahead of first anticipated Request with the new
requirement, allowing the amount of time indicated in the previously issued
LTR Message. If the tolerance is being increased, then the update should
immediately follow the final Request with the preceding latency tolerance
value.

It is strongly recommended that eSPI target sends no more than two LTR
Messages within any 500pus time period. eSPI controller must not generate an
error if more than two LTR Messages are received within a 500pus time period.

LTR uses Message cycle Type with no data payload.

Figure 40: LTR Message Format

7lelslalafel 1|0
Byte 0 Cycle Type = Message
Byte 1 Tag Oh
Byte 2 00h
Byte 3 Message Code = LTR
- N Header
Byte 4 Q RSV Sc:\l:r[?lo] [Ig_;\f/;]
Byte 5 Latency Value [7:0]
Byte 6 Reserved
Byte 7 Reserved }

LTR Message

56

Document Number: 841685, Revision: 1.6

intel.

Table 7: LTR Message Field Description

Message Field Description

RQ Requirement (RQ): A ‘0’ indicates that eSPI target has no service
requirement. When this bit is a '1’, the remaining fields are valid to indicate
latency tolerance requirement for the eSPI target.

LS[2:0] Latency Scale (LS[2:0]): This is the multiplier to the Latency Value
(LV[9:0]) field to yield an absolute time value for the latency tolerance.

LS[2:0] Description
000 Value times 1 ns
001 Value times 32 ns
010 Value times 1,024 ns
011 Value times 32,768 ns
100 Value times 1,048,576 ns
101 Value times 33,554,432 ns

110 - 111 Reserved

LV[9:0] Latency Value (LV[9:0]): Along with the Latency Scale (LS[2:0]) field, this

specifies the service latency that tolerable by the eSPI target.

4.2.2 Virtual Wires Channel

The Virtual Wire channel is used to communicate the state of Sideband pins or
GPIO tunneled through eSPI as in-band messages. Serial IRQ interrupts are
communicated through this channel as in-band messages.

The Command phase consists of a Command Opcode, Virtual Wire Packet and a
CRC.

The Virtual Wire Packet begins with the Virtual Wire Count as the header byte
where the count indicates the number of Virtual Wire groups communicated by
the packet. It is then followed by one or more Virtual Wire groups. Each of the
Virtual Wire group consists of 2 bytes, namely a Virtual Wire Index and a
Virtual Wire Data. Multiple Virtual Wire groups up to 64 groups are allowed to
be sent in the same packet.

The definition of the Virtual Wire Count is as follow:

Bits Description

7:6 Reserved

5:0 Count: The 6-bit count field allows up to 64 Virtual Wire groups to
be communicated in the same packet. This is a 0-based count.

The number of Virtual Wire groups in a single Virtual Wire packet must not
exceed the Operating Maximum Virtual Wire Count configured in the Channel 1
Capability and Configuration register. This applies to any Virtual Wire packet
initiated by eSPI controller or eSPI target. eSPI target must advertise the

Document Number: 841685, Revision: 1.6 57

intel.

support of 8 or more Virtual Wire groups being communicated in a single
Virtual Wire packet.

The Virtual Wire Index points to one of the many pre-defined groups of Virtual
Wires. The format of the Virtual Wire Data is specific to the corresponding
Virtual Wire Index. It contains information specific to the Virtual Wire group
that it is communicating.

The unused virtual wire slots within a particular Virtual Wire Index would be
made Reserved. The initiator must drive the Reserved field to ‘0’ and the
receiver must ignore the Reserved field.

Virtual Wire packets are not subjected to flow control. The receiver must
always be ready to receive the Virtual Wire packets at any time, as long as the
channel is enabled.

The length of the Virtual Wire Packet is (1 + 2*n) bytes where n is the number
of Virtual Wire groups in the packet.

Virtual Wire should be given the highest priority over traffic from other
channels to ensure that the latency is kept to a minimum.

The diagram below shows the Virtual Wire packet format.

Figure 41: Virtual Wire Packet Format

I
1
J
|
!
1
J
T
(e (e i) (=) C o)
T
(Trsp Y sts | cre { | N X X))

Target Initiated Virtual Wire Transfer

The components on both sides of the bus must track the logical state of the
individual Virtual Wires. When the logical state of the Virtual Wire changes, the
new state must be communicated to the other component connected to the
same bus using the appropriate Virtual Wire messages.

Some of the Virtual Wires such as PME and Interrupt can be shared by multiple
eSPI targets. The eSPI controller must track the logical state of the individual
Virtual Wires independently for each of the eSPI targets and is responsible to
aggregate the different sets of Virtual Wires.

58

Document Number: 841685, Revision: 1.6

intel.

The messages from eSPI controller to target are unicast only, meaning they
can only target one particular eSPI target.

When PLTRST# message is received over the link, indicating platform reset,
the individual Virtual Wires reset by Platform Reset should be initialized to the
default value. To avoid behavior ambiguity, it is recommended that Virtual
Wires reset by Platform Reset should not be sent together with PLTRST#
Virtual Wire in a single Virtual Wire packet. In any case, PLTRST# takes priority
and these Virtual Wires are reset regardless of their level sent in the packet.

When virtual wires change state due to reset (either going into reset or exiting
reset), a new message will not be sent to notify the other component of the
state change as both sides would be looking at the same reset.

If an un-supported Virtual Wire message is received, the receiver should drop
the message silently.

The Virtual Wires tunneled through eSPI will only take effect at the receiver
when the Chip Select# is deasserted at the end of the transaction. The initiator
can only assume the Virtual Wires are sent at the deassertion edge of the Chip
Select# for the purpose of synchronizing the physical pin state change with the
Virtual Wires communicated.

Figure 42: Virtual Wires at the Receiver

Dataln:0] e e - e \ o \ s " v-/' \
VW[x]_VALID = "1* VW[y]_VALID = "1'
VW[x] =1 VW] =1
VW[z]_VALID ="1" VWIX]_VALID = 1"
Virtual Wire[x, y, z] represented by Signal[x, y, z] at the Receiver (Target) VW[z] =1 VW[x] = 0’
Signal [x] / A
Signal [y] \4/
Signal [z]

VW([r] VALID =*1* VWIp]_VALID =1’

Virtual Wire[p, q, r] represented by Signal[p, g, r] at the Receiver (Controller) W =1

)
v C;

Signal [r]

Document Number: 841685, Revision: 1.6 59

|
intel.
4.2.2.1 Virtual Wire Index

The following table defines the Virtual Wire Index, the corresponding pre-
defined Virtual Wire groups and the associated Virtual Wire Data formats.

Table 8: Virtual Wire Index Definition

Virtual Wire Index
Virtual Wire Group Virtual Wire Data Format

Start End

‘ L ‘ IRQ Line

Bit Description
7 Interrupt Level:

Ob: Low
1b: High

6:0 | Interrupt Line: Specify the interrupt
0 1 Interrupt event (IRQ) line to be sent to the interrupt
controller.

Index=0h: IRQ 0 - 127
Index=1h: IRQ 128 - 255

Interrupt event virtual wires are defined from
target to controller only.

Interrupt level high (*1’) indicates interrupt
assertion. Interrupt events virtual wires are
active high.

60 Document Number: 841685, Revision: 1.6

intel.

Virtual Wire Index
Virtual Wire Group Virtual Wire Data Format
Start End

7 6 5 4 3 2 1 0
Valid Level

Bit Description

7:4 | Valid: This field indicates the validity
of the 1-to-1 corresponding Level bits.

Ob: Not valid
1b: Valid
This bit functions as a “Mask” bit.
When '0’, the corresponding virtual
wire must retain its previous value and
2 7 System Event it must not be updated for this virtual
wire packet.

3:0 | Level: Each of the bits in this field
indicates the state of a virtual wire
signal to be communicated.

Ob: Low
1b: High
Note: The Valid field is to handle the case where
the Virtual Wire may be located in a shallower
power well compared to another Virtual Wire in
the same group and may not be valid at the time
the Virtual Wire message is sent.
8 63 Reserved Reserved.
64 127 Platform specific Platform specific

Document Number: 841685, Revision: 1.6

61

intel.

Virtual Wire Index

Start

Virtual Wire Group Virtual Wire Data Format
End

128

7 6 5 4 3 2 1 0

Valid Level

Bit Description

7:4 | Valid: This field indicates the validity
of the 1-to-1 corresponding Level bits.
Ob: Not valid

1b: Valid

This bit functions as a “Mask” bit.
When '0’, the corresponding virtual
wire must retain its previous value and
it must not be updated for this virtual
wire packet.

General Purpose I/0

255 Expander

3:0 | Level: Each of the bits in this field
indicates the state of a virtual GPIO to
be communicated.

Ob: Low
1b: High

Note: The Valid field is to handle the case where
the Virtual Wire may be located in a shallower
power well compared to another Virtual Wire in
the same group and may not be valid at the time
the Virtual Wire message is sent.

4.2.2.2 System Event Virtual Wires

The eSPI specification defines the following system event Virtual Wires covering
the platform independent standard sideband signals.

Unless being specifically called out, all system events (Virtual Wire Index 2 to
7) are level by default. These include ERROR FATAL and ERROR NON-FATAL
virtual wires which are level-triggered. Any state change on a system event
result in the new state being communicated with the corresponding Level (*0’
or '1"). The default reset state for the respective virtual wires is as described in
the virtual wire table below.

If supported, these standard virtual wires must be implemented in accordance
to the specification to enable inter-operability and compatibility. However, the
support of these Virtual Wires is platform specific.

Platform specific Virtual Wires are allowed by the specification with Virtual Wire
Index 64 to 127. They are defined in the respective platform specific
documents and outside the scope of the specification.

62

Document Number: 841685, Revision: 1.6

intel.

Table 9: System Event Virtual Wires for Index=2

Notes:

Virtual Wire Index 2
Virtual Wire Group System Event
Reset eSPI Reset# !
Direction Controller to Target

Depending on the usage, the state of these virtual wires may need to be
retained in deeper power well such that they are not reset by eSPI

Reset#.

Bit

Virtual Wire

Description

Reserved

SLP_S5# Valid: This bit indicates the validity of SLP_S5# virtual wire
on bit[2].

‘0’ - Not valid
‘1’ - Valid

SLP_S4# Valid: This bit indicates the validity of SLP_S4# virtual wire
on bit[1].

‘0’ - Not valid
‘1’ - Valid

SLP_S3# Valid: This bit indicates the validity of SLP_S3# virtual wire
on bit[0].

‘0’ - Not valid
‘1’ - Valid

RSV

Reserved

SLP_S5#

S5 Sleep Control: Sent when the power to non-critical systems should
be shut off in S5 (Soft Off).

Polarity: Active low.
Reset: Active.

SLP_S4+#

S4 Sleep Control: Sent when the power to non-critical systems should
be shut off in S4 (Suspend to Disk).

Polarity: Active low.
Reset: Active.

SLP_S3#

S3 Sleep Control: Sent when the power to non-critical systems should
be shut off in S3 (Suspend to RAM).

Polarity: Active low.
Reset: Active.

Document Number: 841685, Revision: 1.6 63

intel.

Table 10: System Event Virtual Wires for Index=3

Virtual Wire Index 3
Virtual Wire Group System Event
Reset eSPI Reset#
Direction Controller to Target
Bit Virtual Wire Description
7 Reserved
OOB_RST_WARN Valid: This bit indicates the validity of
OOB_RST_WARN virtual wire on bit[2].
6 ‘0’ - Not valid
‘1’ - Valid
PLTRST# Valid: This bit indicates the validity of PLTRST# virtual wire
on bit[1].
> ‘0’ - Not valid
‘1’ - Valid
SUS_STAT# Valid: This bit indicates the validity of SUS_STAT#
virtual wire on bit[0].
4 ‘0’ - Not valid
‘1" - Valid
3 RSV Reserved
OOB Reset Warn: Sent by controller just before the OOB processor is
about to enter reset. Upon receiving, the EC or BMC must flush and
quiesce its OOB Channel upstream request queues and assert
OOB_RST_ACK VWire upon completing all the outstanding
transactions. The controller subsequently completes any outstanding
2 OOB_RST_WARN posted transactions or completions and then disables the OOB Channel
via a write to the target's Configuration Register.
Polarity: Active high.
Reset: Inactive.
Platform Reset: Command to indicate Platform Reset assertion and
de-assertion.
1 PLTRST#
Polarity: Active low.
Reset: Active.
Suspend Status: Sent when the system will be entering a low power
state soon.
0 SUS_STAT#
Polarity: Active low.
Reset: Active.

64

Document Number: 841685, Revision: 1.6

intel.

Table 11: System Event Virtual Wires for Index=4

Virtual Wire Index 4
Virtual Wire Group System Event
Reset eSPI Reset#
Direction Target to Controller
Bit Virtual Wire Description
PME# Valid: This bit indicates the validity of PME# virtual wire on
bit[3].
7 ‘0’ - Not valid
‘1’ - Valid
WAKE# Valid: This bit indicates the validity of WAKE# virtual wire on
bit[2].
6 ‘0’ - Not valid
‘1’ - Valid
5 Reserved
OOB_RST_ACK Valid: This bit indicates the validity of OOB_RST_ACK
virtual wire on bit[0].
4 ‘0’ - Not valid
‘1’ - Valid
PCI Power Management Event: eSPI targets generated PCI PME#
event. Used by the target to wake the host from Sx through PCI
defined PME#.
If the event occurs while system is in SO, a SCI is generated instead.
3 PME# Shared by multiple PCI devices on the platform.
Polarity: Active low.
Reset: Inactive.
Wake#: Used by the target to wake the Host from Sx on any event;
also general purpose event to wake on LID switch or AC insertion, etc.
It is used to generate an eSPI device specific non-PME# wake.
If the event occurs while system is in SO, a SCI is generated instead.
Shared by multiple eSPI endpoints.
2 WAKE# Note: The eSPI WAKE# virtual wire is not equivalent to the PCle
WAKE# pin and it does not function as the PCle WAKE#.
Polarity: Active low.
Reset: Inactive.
1 RSV Reserved
OOB Reset Acknowledge: Sent by target in response to
OOB_RST_WARN virtual wire. Refer to the description of
OOB_RST_WARN for details.
0 OOB_RST_ACK
Polarity: Active high.
Reset: Inactive.

Document Number: 841685, Revision: 1.6 65

intel.

Table 12: System Event Virtual Wires for Index=5

Virtual Wire Index 5
Virtual Wire Group System Event
Reset eSPI Reset#
Direction Target to Controller
Bit Virtual Wire Description
TARGET_BOOT_LOAD_STATUS Valid: This bit indicates the validity
of TARGET_BOOT_LOAD_STATUS virtual wire on bit[3].
7 ‘0’ - Not valid
‘1’ - Valid
ERROR_NONFATAL Valid: This bit indicates the validity of
ERROR_NONFATAL virtual wire on bit[2].
6 ‘0’ - Not valid
‘1’ - Valid
ERROR_FATAL Valid: This bit indicates the validity of ERROR_FATAL
virtual wire on bit[1].
> ‘0’ - Not valid
‘1’ - Valid
TARGET_BOOT_LOAD_DONE Valid: This bit indicates the validity
of TARGET_BOOT_LOAD_DONE virtual wire on bit[0].
4 ‘0’ -= Not valid
‘1’ - Valid
Target Boot Load Status: Sent by EC or BMC upon completion of
Target Boot Load from the controller attached flash.
‘0’ - The boot image is corrupted, incomplete or otherwise unusable.
‘1’ - The boot code load was successful and that the integrity of the
TARGET_BOOT_LOAD_ | image is intact, or the boot code load from controller attached flash is
3 STATUS not required.
Note: The Target_Boot_Load_Status must be sent in either the same or
a previous virtual wire message as the Target_Boot_Load_Done.
Polarity: As defined above.
Reset: '0’.
Error Non-Fatal: Sent by target when a non-fatal error is detected.
Note: Refer to Section 8.2 for the error conditions that Non-Fatal Error
2 ERROR_NONFATAL virtual wire is signaled.
Polarity: Active high.
Reset: Inactive.
Error Fatal: Sent by target when a fatal error is detected.
Note: Refer to Section 8.2 for the error conditions that Fatal Error
1 ERROR_FATAL virtual wire is signaled.
Polarity: Active high.
Reset: Inactive.

66

Document Number: 841685, Revision: 1.6

intel.

TARGET_BOOT_LOAD_
DONE

Target Boot Load Done: Sent when EC or BMC has completed its
boot process as indication to eSPI controller to continue with the G3 to
SO0 exit. eSPI controller waits for the assertion of this virtual wire before
proceeding with the SLP_S5# deassertion.

Polarity: Active high.

Reset: Inactive.

Table 13: System Event Virtual Wires for Index=6

Virtual Wire Index 6
Virtual Wire Group System Event
Reset PLTRST#
Direction Target to Controller

Bit

Virtual Wire

Description

HOST_RST_ACK Valid: This bit indicates the validity of
HOST_RST_ACK virtual wire on bit[3].

‘0’ - Not valid
‘1’ - Valid

RCIN# Valid: This bit indicates the validity of RCIN# virtual wire on
bit[2].

‘0’ - Not valid

‘1’ - Valid

SMI# Valid: This bit indicates the validity of SMI# virtual wire on
bit[1].

‘0’ - Not valid
‘1’ - Valid

SCI# Valid: This bit indicates the validity of SCI# virtual wire on
bit[0].

‘0’ - Not valid
‘1’ - Valid

HOST_RST_ACK

Host Reset Acknowledge: Sent by target in response to
HOST_RST_WARN virtual wire. Refer to the description of
HOST_RST_WARN for details.

Polarity: Active high.
Reset: Inactive.

RCIN#

Reset CPU INIT#: Sent to request CPU reset on behalf of the
keyboard controller.

Polarity: Active low.
Reset: Inactive.

SMI#

System Management Interrupt (SMI): Sent as general purpose
alert resulting in SMI code being invoked by the BIOS.

Polarity: Active low.
Reset: Inactive.

Document Number: 841685, Revision: 1.6 67

intel.

Bit Virtual Wire Description
System Controller Interrupt (SCI): Sent as general purpose alert
resulting in ACPI method being invoked by the OS.

0 SCI#

Polarity: Active low.
Reset: Inactive.

Table 14: System Event Virtual Wires for Index=7

Virtual Wire Index 7
Virtual Wire Group System Event
Reset PLTRST#
Direction Controller to Target

Bit Virtual Wire Description

7 Reserved
NMIOUT# Valid: This bit indicates the validity of NMIOUT# virtual
wire on bit[2].

6 ‘0’ - Not valid

‘1’ - Valid

SMIOUT# Valid: This bit indicates the validity of SMIOUT# virtual wire
on bit[1].

> ‘0’ - Not valid
‘1’ - Valid
HOST_RST_WARN Valid: This bit indicates the validity of
HOST_RST_WARN virtual wire on bit[0].

4 ‘0’ - Not valid
‘1" - Valid

3 RSV Reserved
NMI Output: Sent by controller as indication that NMI# event occurs.
The 0" and ‘1’ on this virtual wire correspond to the assertion and
deassertion of the NMI# to CPU respectively.

2 NMIOUT # Note: This virtual wire is typically only used in server platforms.
Polarity: Active low.
Reset: Inactive.
SMI Output: Sent by controller as indication that SMI# event occurs.
The ‘0" and ‘1’ on this virtual wire correspond to the assertion and
deassertion of the SMI# to CPU respectively.

1 SMIOUT# Note: This virtual wire is typically only used in server platforms.
Polarity: Active low.
Reset: Inactive.

68

Document Number: 841685, Revision: 1.6

intel.

Bit

Virtual Wire Description

Host Reset Warn: Sent by controller just before the Host is about to
enter reset. Upon receiving, the EC or BMC must flush and quiesce its
upstream Peripheral Channel request queues and assert
HOST_RST_ACK VWire upon completing all the outstanding
transactions. The controller subsequently completes any outstanding
HOST_RST_WARN posted transactions or completions and then disables the Peripheral
Channel via a write to the target's Configuration Register.

Polarity: Active high.
Reset: Inactive.

4.2.2.3

Communicating Timing Event on Virtual Wires

Some of the events communicated through the Virtual Wire Channel could be
timing events.

For example, the assertion of a particular pin could indicate one event. The
prolonged assertion of the same pin for a certain period of time could indicate a
different event.

One solution is to send two different messages, for each of the events; one
message is sent when the pin asserts and another message is sent when the
pin has been asserted for a certain period of time.

This method requires the source of the message to implement a timer that
times the duration of the pin assertion, which upon time-out, results in a
different message being sent.

Multiple Virtual Wires communicated in the same packet will change state at
the receiver the same time at the deassertion edge of the Chip Select#. If the
sequence of the Virtual Wires is required to be communicated, the Virtual Wire
that happens later must be communicated in the next Chip Select# assertion to
signify the sequence.

Figure 43: Virtual Wires with Sequence Communicated

4.2.2.4

Chip Select# \
Data[n:0] }E’G " i \éﬁ" = CRe -V-/_

VWI[x]_VALID ="1" VW[y]_VALID ="1"
X =1 VW] = 1

Virtual Wire[x, y] represented by Signal[x, y] at the Receiver, with the sequenge Signal [x] occurs followed by Signal [y]

Signal [x]

Signal [y]

Interrupt Event

Interrupt event is supported from eSPI target to controller through the virtual
wire channel. Virtual Wire Index 0 and 1 are defined for communicating

Document Number: 841685, Revision: 1.6 69

intel.

interrupt events and up to 256 IRQ lines can be communicated in-band over
the eSPI bus.

Interrupt level high (*1’) indicates interrupt assertion whereas interrupt level
low (*0") indicates interrupt deassertion. Interrupt events virtual wires are
active high.

For simplicity, eSPI interrupt event virtual wires are default deasserted (level
low) thus eliminating the legacy SERIRQ behavior where SERIRQ line is default
pulled high (1) even though there is no interrupt expected to be generated.

Table 15: Interrupt Event (IRQ) Virtual Wire Generation

IRQ Target to Controller IRQ Virtual
Source Source Level O_D_IRSI E“:B:Ee . Wire
(In Target) (0=Disable, 1=Enable) (Active High)
0 0 Default. No IRQ VW sent
0->1
0 No IRQ VW sent
1->0
0->1 1 Assertion. IRQ VW (Level="1") sent
1-50 1 Deassertion. IRQ VW (Level='0")
Active High sent
1 0->1 Assertion. IRQ VW (Level="1") sent
1 1-50 Deassertion. IRQ VW (Level="'0")
sent
0->1
0 No IRQ VW sent
1->0
1 0 Default. No IRQ VW sent
0->1
1 No IRQ VW sent
1->0
0->1 1 Deassertion. IRQ VW (Level='0")
sent
Active Low 1->0 1 Assertion. IRQ VW (Level="1") sent
0 0->1 Assertion. IRQ VW (Level="1") sent
0 1-50 Deassertion. IRQ VW (Level="0")
sent
0->1
0 No IRQ VW sent
1->0

Both level-triggered and edge-triggered interrupt are supported.

For level-triggered interrupt, the level of the interrupt line is communicated
thru the virtual wire whenever there is a change to the state of the interrupt
line from '0’ to ‘1’ or vice versa. The interrupt line allocated must be configured
to the target during initialization. Multiple interrupt sources on the target are
allowed to be shared on a single level-triggered interrupt line. The shared
interrupt line will not change state until all the pending interrupts are serviced
which will then trigger an interrupt event virtual wire being sent by the target.

70 Document Number: 841685, Revision: 1.6

intel.

The exact method of interrupt line allocation and interrupt sharing is platform
specific and outside the scope of the specification.

To avoid spurious interrupts when using level-triggered interrupts, it is
recommended that the software driver and the eSPI target implement the
following behavior: When the driver has completed the interrupt service
routine, it should issue a posted memory write to the eSPI target device to
clear the interrupt. Then, the driver should issue a memory read to the same
interrupt clear register. At the eSPI target, the interrupt event virtual wire
should be sent as cleared, between the posted memory write that cleared the
interrupt, and returning the subsequent memory read completion.

The interrupt event virtual wire defines a mechanism of sending edge-triggered
interrupt. An edge event interrupt is communicated in the same Virtual Wire
packet by first indicating the new value of the interrupt line, and subsequently
the next value that the interrupt line toggles. This may be interleaved by any
other Virtual Wire groups within the same packet. The mechanism consumes
two of the Virtual Wire count.

Each of the virtual wire including interrupt event virtual wire must not have
more than 2 transitions being communicated within a Virtual Wire packet,
otherwise the corresponding virtual wire behavior is undefined. The initiator
must make sure this is not violated. It is optional for the receiver to check for
this violation. The 2 transitions may be a ‘0’-to-'1’-to-'0" or *1’-to-'0’-to-'1’
transition. The receiver must track the state of the interrupt event virtual wire
while it is being received and translate it to an interrupt event pulse taking
effect at the deassertion edge of the Chip Select#. The pulse width required is
receiver specific such that the edge event interrupt can be recognized correctly
by its internal logic. Edge-triggered interrupts must not be shared on an
interrupt line.

It is possible for eSPI target to communicate edge-triggered interrupt using
two separate Virtual Wire packets, i.e. interrupt assertion in one Virtual Wire
packet followed by interrupt deassertion in a subsequent Virtual Wire packet.
However, it is the responsibility of the target to ensure that interrupt assertion
edge is always communicated without being lost, such as in the boundary
where the next interrupt event happens before the prior interrupt deassertion
virtual wire is able to be sent out.

As interrupt event virtual wire is communicated through an independent
channel from the peripheral accesses, data may not be guaranteed to be in the
main memory before interrupt is delivered to the CPU. This can lead to data
consistency problem with the Producer-Consumer model. Software must
perform a read to any register in the target such that the target’s posted write
buffers are flushed before accessing data written by the target to the main
memory.

Document Number: 841685, Revision: 1.6 71

intel.

Figure 44: Edge-triggered Interrupt through Virtual Wire

Chip Select# \ &
Index w Index w

Data[n:0]

IRQ Line = ‘X’ IRQ Line =’X"
Level = ‘1’ Level = ‘0’

Pulse width is receiver
specific such that the
edge event can be
recognized correctly

Edge-triggered interrupt represented by Interrupt [X] signal at the Receiver
/‘—/;_\\

Interrupt [X]

4.2.2.5 General-Purpose I/0 Expander

4.2.3

The specification allows the eSPI controller to claim the General-Purpose 1/0
(GPIO) pins physically resided on the eSPI target side as part of its own virtual
I/0 pins.

If the Virtual GPIO is configured as an output pin, the eSPI controller tunnels
the state of the Virtual GPIO pin through in-band messaging and the eSPI
target, upon receiving the message, reflects the state on the GPIO pin
physically located on the target side.

If the Virtual GPIO is configured as an input pin, the eSPI target samples the
state of the physical GPIO pin and then tunnels the state of the GPIO pin
through in-band messaging on any pin state transition.

All the GPIO pins sharing the same index number must be configured to the
same direction. They can either be configured as all inputs or all outputs, but
not a combination of inputs and outputs.

Similarly, a group of Virtual GPIOs sharing the same index will share the same
reset. The reset is programmable to be reset by either eSPI Reset# or Platform
Reset.

The GPIO software interface on the eSPI controller and eSPI target is
implementation specific. The software is responsible to set up the configuration
for the GPIO pins on both sides appropriately and in the consistent manner.
The detail of the GPIO Configuration Registers is implementation specific.

The mapping of the Virtual GPIO pin to the physical GPIO pin on the eSPI
target side is implementation specific and outside the scope of the
specification.

OOB (Tunneled SMBus) Message Channel

The SMBus packets can be tunneled through eSPI as Out-Of-Band(OOB)
messages. The whole SMBus packet is embedded inside the eSPI OOB message
as data.

72

Document Number: 841685, Revision: 1.6

intel.

Only SMBus block writes are tunneled through the eSPI OOB message. These
include the SMBus Management Component Transport Protocol (MCTP) packets
which are based on the SMBus block write protocol.

The SMBus Target Address, SMBus Command Opcode, SMBus Byte Count,
SMBus Data fields and the optional PEC byte are sent as data within the eSPI
OOB message packet.

The SMBus Byte Count field does not include the PEC byte. It comprehends the
actual payload of the SMBus block write packet itself excluding the 3 SMBus
header bytes.

The Length field of the OOB message comprehends the count by the SMBus
Byte Count field, in addition to the 3 header bytes (i.e. SMBus Target Address,
SMBus Command Opcode and SMBus Byte Count) and an optional PEC byte.

The presence of SMBus PEC is determined through a simple arithmetic
operation between the eSPI OOB header length field and the SMBus Byte
Count.

The Maximum Payload Size (MPS) for OOB Message channel applies to the
actual payload of the protocol embedded in the packet that tunneled through
the channel, such as but not limited to the MCTP and the generic SMBus block
writes.

Figure 45: OOB (Tunneled SMBus) Message Packet Format

7lels|4lal2]1]o] 7l6|5|a]|3]2]1]0
Byte O Cycle Type Byte O Cycle Type
Byte 1 Tag Length[11:8] > Header Byte 1 Tag Length[11:8] - Header
Byte 2 Length[7:0] | Byte 2 Length[7:0] |
Byte 3 . Byte 3 SMBus Target Address | 0
Byte 4 Byte 4 SMBus Command Opcode
SMBus Packet Format
:;; Data Byte 5 SMBus Byte Count Data
: ‘ SMBus Data Byte 0
Byte N
Byte n+6 SMBus Data Byte n
Byte n+7 PEC |
b e e s i -

MCTP over SMBus is a specific form of the SMBus block write packet with the
SMBus Command Opcode of OFh (i.e. MCTP). The MCTP header and MCTP
payload are embedded as the SMBus block write data bytes. For eSPI OOB
MCTP packet, the Maximum Payload Size (MPS) applies to the MCTP payload
itself excluding the MCTP header and the optional PEC byte. For example, MPS
of 64 bytes allows the transfer of a MCTP packet with up to 64 bytes MCTP
payload over the OOB Message channel. In the case of 64 bytes MCTP payload
with the optional PEC byte, the SMBus byte count field and the OOB header
length field are 69 bytes and 73 bytes respectively.

Document Number: 841685, Revision: 1.6 73

intel.

Figure 46: OOB MCTP Packet

QOB with
Max Payload Size (MPS) = 64 bytes
7]e]5]4]3]2] 1]0 . for a 64 bytes MCTP packet (with PEC byte)
Byte 0 Cycle Type “
Byte 1 Tag Lenath[11:8] , QOB
Header
Byte 2 el e L { Length = (3+5+64+1) = 73 bytes |
Byte 3 Destination Target Address | 0 3 N "
\ | ‘ SMBus
Byted | Copncase- ‘. P p Header
J eagel ‘ (3 bytes)
Byte 5 Bl Pt *-----------/.» -------- | Byte Count = (5+64) = 69 bytes |
Byte 6 Source Target Address | 1 . -.L-"‘. Note: PEC byte Is excluded
MCTP Head |
Byte 7 Reserved Vsiwgnr
MCTP | MCTP
Byte & Degtination Endpoint ID - Header © Header
{5 bytes) {5 hytes)
Byte 9 Source Endpoint ID
d | 0oB SMBus
s e | paket | T | Message [Data Block
pret lilel = Jo] ' L wite
Byte 11 IWessage Payload | Data
Byte 0 Bytes
: MCTP | MCTP
. (Payload (Payload
: (64 bytes) (64 bytes)
b |
Byte n | ..' |
Byte n+11 / J
________ /)) ~ PEC
/ L
Byen+iz | ¢ _! o PEC ,,\L {1byte)

For eSPI OOB generic SMBus block write packet, the Maximum Payload Size
(MPS) applies to the number of SMBus block write data bytes allowed in a
packet excluding the optional PEC byte. For example, MPS of 64 bytes allows
the transfer of a generic SMBus block write packet with up to 64 bytes data
payload over the OOB Message channel. In the case of 64 bytes data payload
with the optional PEC byte, the SMBus byte count field and the OOB header
length field are 64 bytes and 68 bytes respectively.

Figure 47: OOB Generic SMBus Block Write Format

OOB with
Max Payload Size (MPS) = 64 bytes
U | 6 | S | 4 | 3 | 2 | 1 | 0 for a 64 bytes generic SMBuUs Block Write packet
Byte 0 Cycle Type ‘ (with PEC byte)
Byte 1 Tag Length[11:8] ; H(Z(aDdBer
Byte 2 LeRaigl <€- J ----------------------------- Length = (3+64+1) = 68 bytes |
Byte 3 SMBus Target Address | 0 ! A
SMBus
Byte 4 SMBus Command Opcode ; ﬁMBdUS ‘ Header
eader ‘
3 bytes
Byte 5 L ""“"" SoFTTssssss ‘| Byte Count = 64 bytes | (B bytes)
Byte 6 SMBus Data Payload L (ED)OB " SMBus " Note: PEC byte is excluded \
ata
: Byte 0 | \?\I/ﬁ(t:g | Payload | Payload
: : | Data | (64 bytes) | (64 bytes)
Byte n+6 Byte n | Bytes
———————— "~ PEC
PEC [| |
Byte n+7 P _! j PEC J (1byte)

74 Document Number: 841685, Revision: 1.6

intel.

4.2.4 Run-time Flash Access Channel

The Flash Access channel provides a path allowing the flash components to be
shared run-time between chipset and the eSPI targets that require flash

accesses such as EC and BMC.

Once the Flash Controller in the chipset has completed the flash initialization,
the Flash Access channel is enabled on the eSPI target side.

The Flash Access channel uses the same packet format as the eSPI Peripheral
Channel transactions.

The Tag field is used to match the completion with the request. Flash access
requests with the same tag must be completed in order.

Figure 48: Flash Access Request Packet Format

Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6

Byte 7

Byte n+7

7lel5]4]3]2]1]0

Cycle Type

Tag Length[11:8]

Length[7:0]

Address [31:24]

Address [23:16]

Address [15:8]

Address [7:0]

Data Byte 0

Data Byte 1

Data Byte n

Flash Write

Header

Data

7lels]alal2]1]o
Byte 0 Cycle Type
Byte 1 Tag Length[11:8]
Byte 2 Length[7:0]
Byte 3 Address [31:24]
Byte 4 Address [23:16]
Byte 5 Address [15:8]
Byte 6 Address [7:0]

Flash Read/Flash Erase

Header

Figure 49: Flash Access Completion Packet Format

Byte 0
Byte 1
Byte 2
Byte 3

Byte n+3

7lels]4]3]2]1]0

Cycle Type

Tag Length[11:8]

Length[7:0]

Data Byte 0

Data Byte 1

Data Byte n

Flash Read Completion

Header

Data

7]e]5]4]3]2]1]o0

Byte 0 Cycle Type
Byte 1 Tag Length[11:8]
Byte 2 Length[7:0]

Flash Write/Erase Completion

Document Number: 841685, Revision: 1.6

75

intel.

Figure 50: Flash Access RPMC Packet Format

Flash RPMC OP1 Flash RPMC OP2
7‘6‘5‘4‘3‘2‘1‘0 7‘6‘5‘4‘3‘2‘1‘0
Byte 0 Cycle Type (eSPI RPMC OP1) Byte 0 Cycle Type (eSPIRPMC OP2)
Byte 1 Tag ’ Length[11:8] Header Byte 1 Tag Length[11:8] Header
Byte 2 Length[7:0] Byte 2 Length[7:0]
Data Byte 0
Byte 3 (RPMC Opcode: OP1)
Data Byte 1
: Data
Byte n+3 Data Byten
Flash RPMC OP1 Completion (Successful) Flash RPMC OP2 Completion (Successful)
7‘6‘5‘4‘3‘2‘1‘0 7‘6‘5‘4‘3‘2‘1‘0
Cycle Type 7 Cycle Type
Byte 0 (Successful Completion without Data) Byte 0 (Successful Completion with Data)
Byte 1 Tag Length[11:8] Header Byte 1 Tag Length[11:8] Header
Byte 2 Length[7:0] Byte 2 Length[7:0]
Data Byte 0
Byte 3 (Extended Status)
Data Byte 1
: Data
Byten+3 Data Byten
Flash RPMC OP1/0OP2 Completion (Unsuccessful)
7‘6‘5‘4‘3‘2‘1‘0
Cycle Type
Byte 0 (Unsuccessful Completion without Data)
Byte 1 Tag Length[11:8] Header
Byte 2 Length[7:0]

76 Document Number: 841685, Revision: 1.6

4.2.4.1 Controller Attached Flash Sharing

intel.

Controller Attached Flash Sharing refers to the scheme where flash components
are attached to the eSPI controller such as the chipset. eSPI targets are
allowed to access to the shared flash component through the Flash Access
channel. The flash components may be on an independent SPI interface, or on
a shared SPI/eSPI interface depending on the system configuration.

Figure 51: Independent Flash SPI and eSPI Interface

SPI Flash
Controller
{ eSPI Flash
Access eSPI Protocol Block
CS1# ' v SPI eSPI + ' CS2#
Flash EC/BMC/SIO
Figure 52: Shared SPI and eSPI Interface
SPI Flash
Controller
A { eSPI Flash
Access eSPI Protocol Block
CS1# CS2#
Y * SPI eSPI
Flash
EC/BMC/SIO

Document Number: 841685, Revision: 1.6

77

intel.

eSPI targets such as EC and BMC must be able to function appropriately with
codes executed from other storage devices such as its own ROM before Flash
Access channel is enabled for the run-time flash sharing.

The Controller Attached Flash Sharing scheme uses 2 dedicated eSPI command
opcodes: GET_FLASH_NP and PUT_FLASH_C (Table 2).

Any run-time access to the flash component through the eSPI interface will go
through the eSPI controller, which then routes the cycle to the Flash Access
block, before the cycle is forwarded to the SPI Flash Controller. SPI Flash
controller will perform the access to the flash on behalf of the eSPI target.

SPI Flash controller as the flash device owner is responsible to handle the
differences between the different flash vendors, making them transparent to
the flash access channel on the eSPI bus.

The flash access addresses used by the eSPI targets in the Flash Access
transactions are physical Flash Linear Addresses. The physical addresses cover
the entire flash addressing space. However, the SPI Flash controller may
impose access permission control for Flash Access transactions initiated by the
eSPI targets. The detail of the access permission control is outside the scope of
the specification.

Any attempt to access a flash region without the access permission is
considered an error. The SPI Flash controller is required to check this and
would synthesize an unsuccessful completion back to the eSPI target.

The action taken by the eSPI target in response to unsuccessful completion is
implementation specific.

In the Controller Attached Flash Sharing scheme, Flash Read, Flash Write and
Flash Erase commands are supported over eSPI bus. These commands will be
forwarded by the eSPI controller to the flash controller where they will be
mapped to the corresponding flash instructions by the flash controller.

Flash Read and Flash Write transactions are non-posted transactions. Each of
the transactions will have a corresponding completion which indicates the
status of the requested operation, together with data if the cycle is a Flash
Read. The status of the completion will be conveyed back to the eSPI target.

Flash Access Channel Maximum Read Request Size parameter in the Channel
Capability and Configuration register is defined to allow the eSPI controller to
limit the Flash Read request size to the size supported by the eSPI controller.

Similarly, Flash Access Channel Maximum Payload Size parameter in the
Channel Capability and Configuration register is defined to allow the eSPI
controller to limit the Flash Write data payload size.

Flash Erase is a non-posted request with no data. This command instructs the
SPI Flash controller to erase a part of the region allocated to the eSPI target.
The Address field specifies the beginning of the erase block and the least
significant 3 bits of the length field specifies the size of the block to be erased.
The encoding of the least significant 3 bits of the length field matches the value
of the Flash Block Erase Size field of the Channel Capabilities and Configuration
register. The specified address must be aligned to the block erase size. The

78

Document Number: 841685, Revision: 1.6

intel.

supported erase block size is programmable and is communicated by the eSPI
controller to the target through the Channel Capabilities and Configuration
register. However, length field encoding of *011” is not applicable for Flash
Erase in Controller Attached Flash Sharing.

eSPI controller will forward the transaction as it is to the flash controller. The
flash controller will then perform the necessary check to ensure that the cycle
is supported, prior to sending it out to the flash. If the cycle is not supported
due to invalid addressing mode (32-bit versus 24/26-bit addressing),
unsupported command, unsupported block erase size or any other reasons, the
flash controller will synthesize an unsuccessful completion to the eSPI
controller which will then forward the completion to the eSPI target over the
eSPI bus, without sending the instruction to flash.

4.2.4.2 Target Attached Flash Sharing

An alternate configuration for run-time flash access supported by the eSPI
protocol is to put the flash device(s) behind the eSPI target such as EC or BMC.
All the flash accesses by the eSPI controller are tunneled to the eSPI target
over the eSPI protocol (Figure 53). The eSPI target then communicates with
the flash device(s) to perform the requested flash operations and return the
completion data back to the controller over the eSPI protocol. This allows run-
time flash sharing between the eSPI target and the eSPI controller.

The Target Attached Flash Sharing scheme uses 2 dedicated eSPI command
opcodes: PUT_FLASH_NP and GET_FLASH_C (Table 3).

The Target Attached Flash Sharing is mutually exclusive with the Controller
Attached Flash Sharing for a given eSPI interface. Prior to Flash Access channel
being enabled, either the Target Attached Flash Sharing or the Controller
Attached Flash Sharing is selected for operation, but not both. The eSPI
controller will have access to the flash as soon as the Flash Access channel is
enabled on the eSPI target side.

The support of Target attached Trusted Platform Module (TPM) is beyond the
scope of this specification.

Document Number: 841685, Revision: 1.6 79

intel.

Figure 53: Target Attached Flash Sharing

SPI Flash
Controller
A Target Attached eSPI Protocol
» Flash Access [€—> Block
A
v

eSP| SerDes Block

A

Controller eSPI Bus L 4
eSPl Target
(EC or BMC)

A
EC or BMC SPI Bus
v y

Flash

4.2.4.2.1 Target Attached Flash Sharing Operation

The eSPI Flash Access Channel in this scheme defines a set of Standard flash
commands. These commands enable the typical flash accesses supported by
most flash devices. In addition, up to 16 Platform-Specific flash commands
maybe defined for specific flash devices. Platform-Specific commands are
outside the scope of the eSPI specification. Table 16 lists the Flash Operations
that are supported in the Controller Attached and Target Attached flash
configurations over the eSPI protocol.

For all the Standard and Platform-Specific commands, the flash device owner is
responsible for handling the differences between the different flash vendors
and low-level flash access operations, making these differences transparent to
the eSPI controller.

The flash device owner is also responsible for managing the various flash
access parameters, including, but not limited to flash Single/Dual/Quad IO
mode for Opcode/Address/Data phases, flash Mode cycles, flash addressing
mode (24-bit vs. 32-bit), flash Wait cycles (bus turnaround time), flash
command sequencing (e.g., Write Enable prior to a Write), flash
Suspend/Resume (to manage QoS).

The Address and Length fields ({Length1[3:0], Length0[7:0]}) of the standard
eSPI packet format are defined as specified in Table 16. The Length field will
specify the length of the write data to the flash device or requested size of the

80

Document Number: 841685, Revision: 1.6

intel.

read data from the flash device. The only exception will be for the flash erase
block sizes, where the length encodings are as listed in Table 16.

The eSPI controller will specify the address for all flash accesses in 32-bit
format (4 bytes). The eSPI target such as EC or BMC is responsible for
determining whether the flash device supports 24-bit or 32-bit addressing and
based on that, driving the appropriate address length to the flash device. For
cases where the flash device supports or is programmed for 24-bit access, or
the requested flash operation does not support 32 bit addresses, the eSPI
target will ignore the most significant byte (Byte 3) of the address in the eSPI
packet transmitted by the eSPI controller for the flash operation.

All eSPI controller accesses to the flash will specify the physical address to the
device based on the allocated flash regions. The exact method of region
allocation is platform specific and outside the scope of the eSPI specification.

Table 16: eSPI Flash Access Channel Packet Format for Controller Attached and
Target Attached Flash Configurations

Cycle Type Flash Flash Address 3 A1t-taarghe<:d (A:A(;rt‘:nz?lltlezr
[7:0] Command | 4,acation Size Length [11:0] Flash Flash
Type Supported Supported
00h Standard Read 4B < Max Read Request Yes Yes
Size
01h Standard Write 4B < Max Payload Size Yes! Yes!
02h Standard Erase 4B Target Attached Yes! Yes!
Flash:
Oh: 4 KB
1h: 32 KB
2h: 64 KB
3h: 128 KB
4h - FFFh: Reserved
Controller Attached
Flash:
Oh: Reserved
1h: 4 KB
2h: 64 KB
3h: Reserved
4h: 128 KB
5h: 256 KB
6h - FFFh: Reserved
OR:R000011 Standard RPMC Op.1 N/A < Max Payload Size Yes? No
OR1R000100 Standard RPMC Op.2 N/A < Max Read Request Yes No
Size
05h, Standard Reserved Command | Command Specific Command Command
07h, Specific Specific Specific
09h-2Fh
30h-3Fh Platform- Reserved Command | Command Specific Command Command
Specific Specific Specific Specific
Document Number: 841685, Revision: 1.6 81

intel.

Notes:

1. The device that owns the flash is responsible for performing the Write
Enable prior and the Read Status polling after the Write/Erase operation.
The eSPI completion response for a flash Write/Erase operation will
indicate the result after the Read Status polling has completed.

2. The device that owns the flash is responsible for performing the Read
Status polling atomically after the RPMC Op.1 operation (i.e. no other
flash operations can be performed between the RPMC Op.1 and until the
Read Status polling has completed). The eSPI completion response for a
flash RPMC Op.1 operation will indicate the result after the Read Status
polling has completed.

3. In target attached flash sharing configuration, the Max Read Request Size
must never be more than the value advertised by the target in the Target
Maximum Read Request Size Supported field. The length field with a value
of ‘0’ indicates 4 KB of length.

All the flash operations from eSPI controller are non-posted transactions. Each
of the transactions will have a corresponding completion which indicates the
status of the requested operation, together with data if the cycle is a flash
access that returns data from the flash. The status of the completion will be
conveyed back to the eSPI controller.

The eSPI target shall opportunistically exercise flash Suspend/Resume
capability to speed up low latency commands such as reads by interleaving
them within high latency operations such as writes and erases when the
address ranges are non-overlapping.

The eSPI target is required to maintain a separate queue for flash access
commands from eSPI controller to potentially improve the QoS for the flash
access operations. The recommended queue depth is implementation specific
and outside the scope of this specification (typically a 2 to 4 deep queue will
suffice). When the eSPI controller issues a flash access command, the eSPI
target (such as EC or BMC) will continue to return the status for
FLASH_NP_FREE as True unless its corresponding queue is full. This will allow
the eSPI controller to issue and queue multiple outstanding flash operations.

An example of the flash access command queue within an eSPI target is shown
in Table 17.

Table 17: Example eSPI Target Attached Flash Access Command Sequence

Command # Flash Access Command from eSPI

Controller
4 Write
3 RPMC Op.1
2 Read 4 B, Address A2
1 Erase 64 KB, Address Al

Since commands #1 and #2 do not overlap in the flash, the eSPI target can
schedule them to the flash as it deems best for improving the eSPI controller’s
flash access QoS. For example, if command #2 is received soon after command

82 Document Number: 841685, Revision: 1.6

intel.

#1 has been issued to the flash, the eSPI target can choose to put the Flash in
Suspend/Resume to interrupt the Erase 64 KB command and move on to
service the Read 4 B command instead. For the RPMC Op.1 command (#3), the
eSPI target must issue and complete the subsequent Read Status polling
atomically before allowing any other flash operations (from the controller or the
eSPI target itself) to be issued to the flash. Similarly for the Write, the eSPI
target must first issue a Write Enable to the flash device, complete the Write
and the subsequent Read Status polling before sending the completion back to
the controller.

Flash Access Channel Maximum Read Request Size parameter in the Channel
Capability and Configuration register is defined to allow the eSPI controller to
limit the Flash Read request.

Similarly, Flash Access Channel Maximum Payload Size parameter in the
Channel Capability and Configuration register is defined to allow the eSPI
controller to limit the Flash Write data payload size.

If the flash access command from eSPI controller is not supported due to
invalid addressing mode (32-bit versus 24/26-bit addressing), unsupported
command, unsupported block erase size or any other reasons, the eSPI target
(such as EC or BMC) is responsible for the error detection and handling as
described in this specification.

4.3 Target Buffer Management

eSPI protocol defines a simplified buffer management mechanism. The eSPI
target communicates the availability of new transactions for transmission and
availability of receive buffers to store the incoming transactions through the
Status field of the Response phase.

The eSPI controller does not need to communicate the queue information to
the eSPI target. eSPI controller will wait until its relevant internal queue is free
before servicing the requests from target. If ordering rule permits, the eSPI
controller can choose to service another request which has queue resource
available, while waiting for the relevant queue resource to free up.

The eSPI target is responsible to ensure ordering prior to presenting the
request to the eSPI controller. A request should not be seen by the eSPI
controller through the Status field until it has met the ordering requirement
with respect to other pending requests. For example, if a non-posted read at
the top of the non-posted transmit queue is ordered behind a posted write, the
non-posted read should not set the NP_AVAIL bit in the status register until all
the posted writes in front of the non-posted read have been evicted.

The respective free indications can only be set if the eSPI target receiver
buffers can accept at least one maximum payload size packet. The free
indication in the Status field returned as part of the Response phase must
comprehend the buffer size consumed by the current transaction. For example,
if the eSPI controller initiates a posted write that exhausts the
posted/completion queue of the eSPI target receiver, the PC_FREE indication
must be cleared in the Status field during the Response Phase of the
corresponding command.

Document Number: 841685, Revision: 1.6 83

intel.

When the eSPI controller issues a GET_* command, the Status field in the
Response Phase must reflect the next state of the buffer associated with the
GET_* command. For example, if the eSPI controller issues a GET_PC and the
PC_AVAIL Status bit is set during the Response Phase of this command, it
indicates that there is yet another posted or completion transaction available
after this command. If the PC_AVAIL Status bit is cleared, it indicates that
there is no additional posted or completion transactions available after this
command at the time of reporting.

The _AVAIL or _FREE, once asserted, must continue to be committed by eSPI
target until the corresponding action is taken by controller to the associated
target’s buffer. For example, PC_AVAIL once asserted by target must only be
affected by GET_PC command from controller, PC_FREE once asserted by
target must only be affected by PUT_PC command from controller and so on.
Once asserted, the target is not allowed to change the _AVAIL or _FREE
indication due to other unrelated events.

Figure 54: eSPI Target Buffer Design (Conceptual)

eSPI Target
<39
88 X Channel 3
¢ JA) N = Queue
g—U —5
Flash Access Channel —> uﬁiE X
(Channel 3) g ¢
8
< g Channel 2
AN A Queue
L\
g
OOB Message Channel b
eSPI Controller (Channel 2)
=< Tunneled
z Virtual Wires,
_\V
Decode
Virtual Wire Channel
(Channel 1)
e
zg
€ 8 g Channel 0
g [A) A Queue
\L_\V —3
Peripheral Channel > é
(Channel 0)
| g
O
—} x
o

84 Document Number: 841685, Revision: 1.6

intel.

4.4 Transaction Ordering Rule

The ordering rules specified here apply to the transactions within the same
channel and share the same Chip Select# pin. There is no ordering
requirement between transactions on different channels. There is no ordering
requirement between transactions with the same channel number but involving
eSPI targets using different Chip Select# pin.

Row pass Column? Posted Request or Completion Non-Posted Request
Posted Request or Completion No! Yes?
Non-Posted Request No? No*

No - indicates that the subsequent transaction is not allowed to complete
before the previous transaction to preserve ordering in the system.

Yes - indicates that the subsequent transaction must be allowed to complete
before the previous one or a deadlock can occur.

Notes:

1. Posted request must not pass posted request to ensure the most updated
data is written last. Completion must pull posted write data back to the
originating bus to avoid stale data.

2. Non-posted request must push posted write data to avoid reading stale
data.

3. Posted request or completion must be allowed to pass non-posted request
to avoid deadlocks.

4. Non-posted requests are not required to pass each other.

The transaction ordering rule requires eSPI controller and eSPI target to pre-
allocate completion buffer for every non-posted transactions they initiated. This
ensures that completion returned will not block the forward progress of any
posted transactions behind.

To avoid possible deadlock, there must be no in-out dependency between
Transmit (Tx) and Receive (Rx), specifically an eSPI agent cannot make freeing
up of the Rx queue for a channel dependent on the forward progress of the
corresponding Tx queue. This applies to all the corresponding Tx/Rx pairs for
the peripheral channel, virtual wire channel, OOB channel and flash access
channel.

All the completions corresponding to the same channel with the same tag must
be returned in request order. There is no requirement for completions from the
same channel but different tag to be returned in request order. There is no
requirement for completions from different channel to be returned in request
order.

4.5 Zero Length Read and Write

Zero length memory, I/0 and Flash reads and writes are not supported.

Document Number: 841685, Revision: 1.6 85

intel.

5

Link Layer

5.1

Single I/0, Dual I/0, and Quad I/O Modes

All controllers and targets must support Single I/O mode of operation. Support
for Dual I/0O and Quad I/O mode of operation is advertised by the target
through the General Capabilities and Configurations register. Dual I/O and
Quad I/O mode can be independently support by a particular Enhanced Serial
Peripheral Interface (eSPI) target.

By default, coming out of eSPI Reset#, both controller and target operate in
Single I/O mode. The mode of operation can be changed by the controller
using the SET_CONFIGURATION command.

The SET_CONFIGURATION is completed with the current mode of operation.
The new mode of operation will only take effect at the deassertion edge of the
Chip Select#.

In Single I/O mode, I/0O[1:0] pins are uni-directional. eSPI controller drives the
I/O[0] during command phase, and response from target is driven on the
I/O[1]. eSPI target is required to tri-state I/O[1] during command phase as
I/0O[1] can be driven by eSPI controller such as when initiating an In-Band
Reset command.

In Dual I/O mode, I/O[1:0] pins become bi-directional to form the bi-
directional data bus and all the command and response phases are transferred
over the two bi-directional pins at the same time, effectively doubling the
transfer rate of the Single I/O mode.

In Quad I/O mode, I/0O[3:0] pins are bi-directional data bus and all the
command and response phases are transferred over the four bi-directional pins
at the same time, effectively doubling the transfer rate of the Dual I/O mode.

Each of the fields for an eSPI transaction is shifted out accordingly in the
defined order. For fields that contain multiple bytes, the order of the bytes
being shifted out on the eSPI bus is as follow: (LSB = Least Significant Byte,
MSB = Most Significant Byte)

e Header:
o Length: From MSB (with Tag field) to LSB

o Address: From MSB to LSB. This applies to eSPI transactions with
address including GET_CONFIGURATION and SET_CONFIGURATION.

e Data: From LSB to MSB
e Status: From LSB to MSB

Each of the bytes is shifted from the most significant bit (bit[7]) to the least
significant bit (bit[0]).

An example of a controller initiated peripheral channel memory read is as
shown below.

86

Document Number: 841685, Revision: 1.6

intel.

Figure 55: Byte Ordering on the eSPI Bus

Bytes are shifted out on eSPI bus in this order.
Each byte is shifted out from the most significant bit (msb) to the least significant bit (Isb).

7|6l5]4]3]2]1]0
Command Opcode
0 Cycle Type
2 ! T rength [11:81 Length: MSB to LSB
12] N
2 g 2 Length [7:0] “Tag"&Length[11:8] followed by Length[7:0]
o)
é f':? 3 Address [31:24]
(]
§ 4 Adress 1237161 Address: MSB to LSB
5 Address [15:8] Addr[31:24] followed by Addr[23:16], Addr[15:8] and Addr[7:0]
6 Address [7:0]
CRC
(Turn-Around)
Response Opcode
[0}
c%. 0 Cycle Type
g T: Length [11:8
3 ! * enatn el Length: MSB to LSB
2 2 Length [7:0] “Tag”&Length[11:8] followed by Length[7:0]
[}
§ 0 Data [7:0]
o ©
o = 1 Data [15:8]
@ r.’g Data: LSB to MSB
§ g 2 Data [23:16] Data[7:0] followed by Data[15:8], Data[23:16] and Data[31:24]
Q
& 3 Data [31:24]
Q
= 0 Status [7:0]
ﬁ Status: LSB to MSB
% 1 Status [15:8] Status[7:0] followed by Status[15:8]
»n
CRC

Document Number: 841685, Revision: 1.6 87

intel.

Figure 56: Single I/0 Mode

1+« 6 7 8 9. . +14 15 16 17- « - 62 63 64 65 .« - .« . 71 72
Clock ’ \ ’ ' \ ' \ ' \ ;}
Chip Select # \ ;;
PP) O 25 B 8 5 2000 8 0000 46 Gk

Command Opcode Header Byte 0 Header Byte 6 CRC
1o] /‘AV
-104 105 106 107- - - 136 137 138 139. . - 146 147- - . 154 155 . . . 161 162
clock mﬂm
Chip Select #
110 [0] /§<

L a7 20 0 00 0004007000740

Response Opcode Header Byte 2 Data Byte 0 Data Byte 3 Status Byte 0 Status Byte 1 CRC

Figure 57: Dual I/0 Mode

1 2 3 4 5 6 7 8 9 10. . .31 32 . .. 35 36
Chip Select # \ ;}
A
1/0 [0] -

S O 0 0006006087200 07206

Command Opcode Header Byte 0 Header Byte 1 Header Byte 6 CRC

Chip Select #

ﬂ 0000 0004004006686
720000400040 04008060

Response Opcode Header Byte 2 Data Byte 0 Data Byte 3 Status Byte 0 Status Byte 1 CRC

88

Document Number: 841685, Revision: 1.6

intel

®
Figure 58: Quad I/0 Mode
1 2 3 4 5 6 7 8 9 10 11 12 - o« = 16 17 18
Clock ’\'\"’\’\’\’\"’\'\’\’\’\’\'\’\’\}}
Chip Select # \ ;}
A
110 [0] w
LI O 00 0000000007408 055
SO0 0000008000 480000k
O 8.0 0000008004006 0k
A AN I I A S/ ~ S
Header Header Header Header Header Header
Command Opcode Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 6 CRC
20 21 - -28 29 30 31 .- - -36 37 38 39 40 41 42
Clock}}‘““\‘\"""’\"""'\‘““‘
Chip Select # {{ /
7
a0 0 808 80860
a0 0670800068
C7a0 0087200 80000
HraB 0807400 8.0 066
NN A N N N
Response Header Data Data Data Status Status CRC
Opcode Byte 2 Byte 0 Byte 1 Byte 3 Byte 0 Byte 1
89

Document Number: 841685, Revision: 1.6

intel.

5.2

Cyclic Redundancy Check (CRC)

CRC-8 is used to protect the eSPI transaction packets. The Command Phase
and Response Phase contain respective CRC byte. For Command Phase, the
CRC calculation includes all the bytes during the Command Phase such as the
Command Opcode, Header (if present) and Data (if present). For Response
Phase, the CRC calculation includes all the bytes during the Response Phase
such as the Response code (except WAIT_STATE Response Code which is not

included in the CRC calculation), Header (if present), Data (if present) and
Status.

The CRC value is calculated using the following rules:
e The polynomial is expressed as: x®+x*+x +1.

e The polynomial used for the CRC calculation has a coefficient expressed as
\\07hll.

e The seed value is "00h”. The CRC storage registers are reset to the initial
value of 00h prior to any CRC byte calculation.

e The CRC calculation starts with bit[7] of byte 0 and proceeds from bit[7] to
bit[0] of each byte.

CRC generation is mandatory for eSPI. However, CRC checking is default
disabled after eSPI reset# and it is enabled through SET_CONFIGURATION by
setting the CRC Checking Enable bit whereby upon the successful
SET_CONFIGURATION, CRC checking is enabled on both eSPI controller and
eSPI target at the deassertion edge of CS#. Both eSPI controller and eSPI
target must always be capable of supporting CRC checking as platform
requirements determine if CRC checking will be enabled for an eSPI interface.

When CRC checking is disabled, the CRC byte is ignored by the receiver.

Figure 59: CRC Polynomial Representation

CRC polynomial: Bt +x+1

Bit stream.
Starts with bit[7] of byte 0 and
proceeds from bit[7] to bit[0] of each byte

90

Document Number: 841685, Revision: 1.6

intel.

Table 18: CRC Byte with Input Data D7:D0 (@ Denotes Logical XOR)

1st Clock 2" Clock 3" Clock 4 Clock
Qo D7 D6 D5 D4
Q1 D7 D78@D6 D6D5 D56&D4
Q2 D7 D76@D6 D7D6&D5 D6D5@D4
Qs 0 D7 D7@D6 D7D6@D5
Qs 0 0 D7 D7@D6
Qs 0 0 D7
Qs 0 0
Q 0 0

5th Clock 6t Clock 7t Clock 8% Clock.

CRC = Q70

Qo D3 D2 D7&D1 D7D6@D0
Q: D4@D3 D3@D2 D7@D2@D1 D66@D14D0
Q2 D5¢D4®D3 D4@D3@D2 D7@D3®D2@D1 D6pD2dD16HDO
Qs D66D54D4 D5¢D4®D3 D4@D3@D2 D7@D3®D2¢pD1
Q4 D7@®D6&D5 D6@D5@D4 D5@D4®D3 D4@D3@D2
Qs D7@®D6 D7@®D6&D5 D6@D5@D4 D5¢D4®D3
Qs D7 D7@®D6 D7@®D6&D5 D6D5@D4
Q7 0 D7 D7@®D6 D7®&D6&D5

Document Number: 841685, Revision: 1.6

91

intel.

6

Target Registers

The Enhanced Serial Peripheral Interface (eSPI) defines a set of target
registers. These registers are required for enumeration, configuration and for
proper operation of the respective independent channels defined for the eSPI
bus.

The following tables describe the register attribute and register default value
encodings used in this specification.

Table 19: Register Attribute Description

Register Attribute Description

RO Read-Only. Register bits are read-only and cannot be altered by
software.

Table 20: Register Default Values Encoding Description

6.1

6.2

Register Default Value Description
Platform Specific Platform Specific. The default value of the register is platform
specific.
Table Table. The default value advertised in this field is described by a

table. See the description of the register to associate the register
with the corresponding table.

HwInit Hardware-Init. Register with the default value marked as
“HwInit” indicates that the default value is determined by the
hardware capability and the default value should reflect the
supported hardware capability.

Status Register

The Status register bits are reset by eSPI Reset#.

The content of the Status register is returned in the corresponding Status field
of the Response Phase.

Refer to Section 3.4.2 for the description of the Status register field.

Capabilities and Configuration Registers

The capabilities and configuration register bits are reset by eSPI Reset#. In
addition, the register may be reset by additional reset as described in the
respective register section.

Register fields that are marked as Reserved must always return zero when
read. Writing to the Reserved fields has no effect.

The GET_CONFIGURATION and SET_CONFIGURATION commands are used to

access these registers. The registers are only accessible on DWord granularity.
When configuring the registers using the SET_CONFIGURATION command, the
new register value to the target will only take effect at the deassertion edge of

92

Document Number: 841685, Revision: 1.6

Registers from offset 800h to FFFh are reserved as platform specific. This

intel.

the Chip Select#. Thus, the SET_CONFIGURATION command is run on the eSPI
bus based on the current pre-configured settings.

provides a 2 KB register space for platform specific application.

Table 21: Target Registers

Start (Hex) End (Hex) Register Name
000 003 Reserved
004 007 Device Identification
008 00B General Capabilities and Configurations
oocC 00F Reserved
010 013 Channel 0 Capabilities and Configurations
014 01F Reserved
020 023 Channel 1 Capabilities and Configurations
024 02F Reserved
030 033 Channel 2 Capabilities and Configurations
034 03F Reserved
040 043 Channel 3 Capabilities and Configurations
044 047 Channel 3 Capabilities and Configurations 2
048 04B Channel 3 Capabilities and Configurations 3
04C 04F Channel 3 Capabilities and Configurations 4
050 7FF Reserved
800 FFF Platform Specific registers

6.2.1.1 Offset 00h: Reserved

Document Number: 841685, Revision: 1.6

93

intel.

6.2.1.2 Offset 04h: Device Identification

Bit Type Default Description

31:8 RO 0 Reserved.
Version ID: Indicates compliance to specific eSPI specification

7:0 RO 01h revision. _ _ N o _
Targets compliant to this revision of the specification must advertise a
value of "01h” in this field.

6.2.1.3 Offset 08h: General Capabilities and Configurations

This register is also reset by the In-band RESET command.

Bit Type Default Description
CRC Checking Enable: This bit is set to '1’ by eSPI controller to enable
the CRC checking on the eSPI bus.
By default, CRC checking is disabled.

31 RW 0b
Ob: CRC checking is disabled.
1b: CRC checking is enabled.
Response Modifier Enable: This bit is set to ‘1’ to enable the use of
Response Modifier by eSPI target to append either a peripheral (channel
0) completion, a virtual wire (channel 1) packet or a flash access

30 RW ob (channel 3) completion to the GET_STATUS response phase.
When this bit is a ‘0’, eSPI target must only use the Response Modifier of
“00”, i.e. no append.
By default, the Response Modifier is disabled.
RTC-Integrated-BMC:

. Ob: BMC does not support an integrated RTC.

29 RO HwInit . .
1b: BMC supports an integrated RTC to which eSPI controller can
forward RTC targeting IO cycles.
Alert Mode: This bit serves to configure the Alert mechanism used by
the target to initiate a transaction on the eSPI interface.
Ob: I/O[1] pin is used to signal the Alert event.
1b: Alert# pin is used to signal the Alert event.

28 RW ob Note: This bit can only be ‘0’ or ‘1’ in a single controller-single target

topology. For single controller-multiple target topology, this bit must be
programmed to ‘1’.

Alert Mode is allowed to change from default ‘0’ to ‘1’ during runtime in
both single or multiple targets topologies provided when this happens,
only a single target is enabled for generating Alert# event.

94

Document Number: 841685, Revision: 1.6

intel.

Bit

Type

Default

Description

27:26

RW

00b

I/0 Mode Select: eSPI controller programs this field to enable the
appropriate mode of operation, which will take effect at the deassertion
edge of the Chip Select#.

The I/0 Mode configured in this field must be supported by both the
controller and the target. Single I/O mode is supported by default.

Encoding Operating Mode
00 Single I/0
01 Dual I/O
10 Quad I/0
11 Reserved.

25:24

RO

I/0 Mode Support: This field indicates the I/O modes supported by the
target.

Encoding Supported I/0 Mode
00 Single I/0
01 Single and Dual 1I/0
10 Single and Quad I/O
11 Single, Dual and Quad I/O

23

RW

Open Drain Alert# Select: This bit is set to ‘1’ by eSPI controller to
configure the Alert# pin as an open-drain output.

By default, Alert# pin operates as a driven output. This bit must only be
programmed to ‘1’ if open-drain Alert# pin is supported by the target.

The bit must be valid when Alert Mode bit is a ‘1’ indicating Alert# pin is
used for signaling the Alert event.

Ob: Alert# pin is a driven output.
1b: Alert# pin is an open-drain output.

22:20

RW

000b

Operating Frequency: This field identifies the frequency of operation.

Bits Frequency
000 20 MHz
001 25 MHz
010 33 MHz
011 50 MHz
100 66 MHz
Others Reserved.

Note: This field has a default value of “000” to reflect tinrT-FREQ (Table
23) of 20 MHz max.

19

RO

HwInit

Open Drain Alert# Supported: This bit indicates the support of the
Alert# pin as an open-drain output by the target.

Ob: Open-drain Alert# pin is not supported.
1b: Open-drain Alert# pin is supported.

Document Number: 841685, Revision: 1.6 95

intel.

Bit Type Default Description
Maximum Frequency Supported: This field identifies the maximum
frequency of operation supported by the target.
Bits Frequency
000b 20 MHz
001b 25 MHz
010b 33 MHz
18:16 | RO HwInit 011b 50 MHz
100b 66 MHz
Others Reserved.
The target that indicates support for the maximum frequency of
operation through this field will also support all the lower frequencies on
the list.
Note: Support for tiniT-FREQ (Table 23) is mandatory.
Maximum WAIT STATE Allowed: eSPI controller sets the maximum
WAIT STATE allowed to be responded by target before the target must
respond with an ACCEPT, DEFER, NON-FATAL ERROR or FATAL ERROR
response code.
15:12 RW 0 Thi§ is a 1-based field in the granularity of byte time. When “0”, it
indicates a value of 16 byte time.
A byte time corresponds to 8 serial clocks in the Single I/O mode, 4
serial clocks in the Dual I/O mode or 2 serial clocks in the Quad I/O
mode.
11:8 RO 0 Reserved.
Channel Supported: Each of the bits when set indicates that the
corresponding channel is supported by the target.
Bits Channel
0 Peripheral Channel
7:0 RO HwInit ripher
1 Virtual Wire Channel
2 OOB Message Channel
3 Flash Access Channel
4:7 Reserved for platform specific channels

96

Document Number: 841685, Revision: 1.6

intel.

6.2.1.4 Offset 10h: Channel 0 Capabilities and Configurations

This register is also reset by the Platform Reset (PLTRST#).

Bit Type Default Description
31:15 RO 0 Reserved.
Peripheral Channel Maximum Read Request Size: eSPI controller
sets the maximum read request size for the Peripheral channel.
The length of the read request must not cross the naturally aligned
address boundary of the corresponding Maximum Read Request Size.
000b: Reserved.
14:12 RW 001b 001b: 64 bytes address aligned max read request size.
010b: 128 bytes address aligned max read request size.
011b: 256 bytes address aligned max read request size.
100b: 512 bytes address aligned max read request size.
101b: 1024 bytes address aligned max read request size.
110b: 2048 bytes address aligned max read request size.
111b: 4096 bytes address aligned max read request size.
11 RO 0 Reserved.
Peripheral Channel Maximum Payload Size Selected: eSPI controller
sets the maximum payload size for the Peripheral channel.
The value set by the eSPI controller must never be more than the value
advertised in the Max Payload Size Supported field.
The payload of the transaction must not cross the naturally aligned
address boundary of the corresponding Maximum Payload Size.
10:8 RW 001b
000b: Reserved.
001b: 64 bytes address aligned max payload size.
010b: 128 bytes address aligned max payload size.
011b: 256 bytes address aligned max payload size.
100b - 111b: Reserved.
7 RO 0 Reserved.
Peripheral Channel Maximum Payload Size Supported: This field
advertises the Maximum Payload Size supported by the target.
) 000b: Reserved.
6:4 RO HwInit 001b: 64 bytes address aligned max payload size.
010b: 128 bytes address aligned max payload size.
011b: 256 bytes address aligned max payload size.
100b - 111b: Reserved.
3 RO 0 Reserved.

Document Number: 841685, Revision: 1.6 97

intel.

Bit

Type

Default

Description

RW

0b

Bus Master Enable: When this bit is a ‘0’, it disables the target from
generating bus mastering cycles on the Peripheral channel. When this bit
is a'l’, it allows the target to generate bus mastering cycles on the
Peripheral channel.

Prior to clearing the Bus Master Enable bit from *1’ to ‘0’, there must be
no outstanding non-posted cycle pending completion from the target.

RO

0b

Peripheral Channel Ready: When this bit is a '1’, it indicates that the
target is ready to accept transactions on the Peripheral channel.

eSPI controller should poll this bit after the channel is enabled before
running any transaction on this channel to the target.

Ob: Channel is not ready.

1b: Channel is ready.

RW

1b

Peripheral Channel Enable: The channel is by default enabled after the
eSPI Reset#.

This bit is cleared to ‘0’ by eSPI controller to disable the Peripheral
channel. Besides, clearing this bit from *1’ to ‘0’ triggers a reset to the
Peripheral channel. The channel remains disabled until this bit is set to ‘1’
again.

Prior to disabling the Peripheral channel, the Bus Master Enable bit
should be cleared to ‘0’ to disable the bus mastering cycles.

98

Document Number: 841685, Revision: 1.6

6.2.1.5

intel.

Offset 20h: Channel 1 Capabilities and Configurations

Bit

Type

Default

Description

31:22

RO

Reserved.

21:16

RW

Operating Maximum Virtual Wire Count: The maximum number of
Virtual Wire groups that can be sent in a single Virtual Wire packet.

This is a 0-based count. The default value of 0 indicates count of 1.

The value configured in this field must never be more than the value
advertised in the Maximum Virtual Wire Count Supported field.

15:14

RO

Reserved.

13:8

RO

HwInit

Maximum Virtual Wire Count Supported: This field advertises the
Maximum Virtual Wire Count supported by the target.

If the target supports different count value as initiator and as receiver of
the Virtual Wires, this field indicates the lower of the two.

The Virtual Wire Count specifies the maximum number of Virtual Wire
groups being communicated in a single Virtual Wire packet.

eSPI target must advertise a value of *000111b” or more in this field to
indicate the support of at least 8 Virtual Wire groups being
communicated in a single Virtual Wire packet.

This is a 0-based count.

7:2

RO

Reserved.

RO

0b

Virtual Wire Channel Ready: When this bit is a ‘1’, it indicates that
the target is ready to accept transactions on the Virtual Wire channel.

eSPI controller should poll this bit after the channel is enabled before
running any transaction on this channel to the target.

Ob: Channel is not ready.

1b: Channel is ready.

RW

0b

Virtual Wire Channel Enable: This bit is set to ‘1’ by eSPI controller to
enable the Virtual Wire channel.

Clearing this bit from *1’ to ‘0’ will not reset the Virtual Wire channel
whereby the state of all the Virtual Wires must continue to be
maintained internally. When this bit is ‘0, no transaction shall occur on
the Virtual Wire channel.

The channel is by default disabled after the eSPI Reset#.

Document Number: 841685, Revision: 1.6 99

intel.

6.2.1.6 Offset 30h: Channel 2 Capabilities and Configurations

Bit

Type

Default

Description

31:11

RO

Reserved.

10:8

RW

001b

OOB Message Channel Maximum Payload Size Selected: eSPI
controller sets the maximum payload size for the OOB Message
channel.

The value set by the eSPI controller must never be more than the value
advertised in the Max Payload Size Supported field.

The Maximum Payload Size applies to the actual payload of the protocol
embedded in the OOB packet. Refer to Section 4.2.3 for the detail of
the OOB message payload.

000b: Reserved.

001b: 64 bytes max payload size.
010b: 128 bytes max payload size.
011b: 256 bytes max payload size.
100b - 111b: Reserved.

RO

0b

Reserved.

6:4

RO

HwInit

0OOB Message Channel Maximum Payload Size Supported: This
field advertises the Maximum Payload Size supported by the target.

The Maximum Payload Size applies to the actual payload of the
protocol embedded in the OOB packet. Refer to Section 4.2.3 for the
detail of the OOB message payload.

000b: Reserved.

001b: 64 bytes max payload size.
010b: 128 bytes max payload size.
011b: 256 bytes max payload size.
100b - 111b: Reserved.

3:2

RO

Reserved.

RO

0b

0OOB Message Channel Ready: When this bit is a '1’, it indicates that
the target is ready to accept transactions on the OOB Message channel.

eSPI controller should poll this bit after the channel is enabled before
running any transaction on this channel to the target.

Ob: Channel is not ready.
1b: Channel is ready.

RW

0b

0O0B Message Channel Enable: This bit is set to ‘1’ by eSPI controller
to enable the OOB Message channel.

Clearing this bit from ‘1’ to ‘0’ triggers a reset to the OOB Message
channel such as during error handling. The channel remains disabled
until this bit is set to ‘1’ again.

The channel is by default disabled after the eSPI Reset#.

100

Document Number: 841685, Revision: 1.6

intel.

6.2.1.7 Offset 40h: Channel 3 Capabilities and Configurations

Bit

Type

Default

Description

31:24

RO

HwInit

RPMC OP1 Opcode on the 1t RPMC Flash device: This field
specifies the 8-bit RPMC SFDP OP1 Opcode supported by the Target’'s
1t RPMC Flash device if supported.

If the “Target RPMC Supported” field is 0, this field is ignored.

Note: If there are more than one RPMC flash devices supported behind
the target, the OP1 opcodes of the 2"-4" RPMC flash devices are
defined in the Channel 3 Capabilities and Configurations 3-4.

23:20

RO

HwlInit

RPMC Counter on the 1t RPMC Flash device: This field specifies the
number of RPMC counters supported by the Target’s 1t RPMC Flash
device if supported. Per RPMC SFDP specification, it is a 0-based
number, e.g. 0 indicates that 1 counter is supported, 1 indicates 2
counters, etc.

If the “Target RPMC Supported” field is 0, this field is ignored.

Note: If there are more than one RPMC flash devices supported behind
the target, the number of RPMC counters on the 2"-4%" RPMC flash
devices are defined in the Channel 3 Capabilities and Configurations 3-
4.

19:18

RO

Reserved.

17:16

RO

HwInit

Flash Sharing Capability Supported: This field indicates the flash
sharing capability supported by the target.

Target Controller
Bits Attached Flash Attached Flash
Sharing Sharing

00
01
10 Supported Not Supported
11 Supported Supported

Not Supported Supported

15

RO

Reserved.

Document Number: 841685, Revision: 1.6 101

intel.

Bit Type Default Description
Flash Access Channel Maximum Read Request Size: eSPI
controller sets the maximum read request size for the Flash Access
channel.
In the controller attached flash sharing configuration, the eSPI target
must not generate read request with size exceeding the set value.
In the target attached flash sharing configuration, the eSPI target must
handle read request received with size as large as the set value. The
value set by the eSPI controller must never be more than the value
advertised in the Target Maximum Read Request Size Supported field.
The length of the read request must not exceed the Maximum Read
14:12 RW 001b Request Size with no address alignment requirement.
000b: Reserved.
001b: 64 bytes max read request size.
010b: 128 bytes max read request size.
011b: 256 bytes max read request size.
100b: 512 bytes max read request size.
101b: 1024 bytes max read request size.
110b: 2048 bytes max read request size.
111b: 4096 bytes max read request size.
Flash Sharing Mode: When Flash Access channel is enabled, this bit
indicates the flash sharing scheme in operation.
Ob: Controller attached flash sharing.
1b: Target attached flash sharing.
11 RW / HwInit If the target supports only a single flash sharing scheme, this bit is
RO allowed to be implemented as a Read-Only (RO) bit with the value
indicates the supported flash sharing scheme.
If the target supports both flash sharing schemes, this bit must be
implemented as a Read-Write (RW) bit where eSPI controller will
configure the bit accordingly to setup the flash sharing scheme.
Flash Access Channel Maximum Payload Size Selected: eSPI
controller sets the maximum payload size for the Flash Access channel.
The value set by the eSPI controller must never be more than the value
advertised in the Max Payload Size Supported field.
10:8 RW 001b 000b: Reserved.
001b: 64 bytes max payload size.
010b: 128 bytes max payload size.
011b: 256 bytes max payload size.
100b - 111b: Reserved.

102

Document Number: 841685, Revision: 1.6

intel.

Bit Type Default Description

Flash Access Channel Maximum Payload Size Supported: This
field advertises the Maximum Payload Size supported by the target.

000b: Reserved.

715 RO HwlInit 001b: 64 bytes max payload size.
010b: 128 bytes max payload size.
011b: 256 bytes max payload size.
100b - 111b: Reserved.

Flash Block Erase Size: eSPI controller sets this field to communicate

the block erase size to the target.
This field is applicable only to controller attached flash sharing scheme.

000b: Reserved

001b: 4 Kbytes

4:2 RW 01b 010b: 64 Kbytes

011b: Both 4 Kbytes and 64 Kbytes are supported
100b: 128 Kbytes

101b: 256 Kbytes

110b - 111b: Reserved

Flash Access Channel Ready: When this bit is a ‘1’, it indicates that
the target is ready to accept transactions on the Flash Access channel.

eSPI controller should poll this bit after the channel is enabled before

1 RO 0b running any transaction on this channel to the target.
Ob: Channel is not ready.
1b: Channel is ready.
Flash Access Channel Enable: This bit is set to ‘1’ by eSPI controller
to enable the Flash Access channel.
0 RW ob Clearing this bit from ‘1’ to ‘0’ triggers a reset to the Flash Access

channel such as during error handling. The channel remains disabled
until this bit is set to ‘1’ again.
The channel is by default disabled after the eSPI Reset#.

Document Number: 841685, Revision: 1.6 103

intel.

6.2.1.8 Offset 44h: Channel 3 Capabilities and Configurations 2

Bit

Type

Default

Description

31:24

RO

Reserved.

23:22

RO

HwInit

Number of Target Attached Flash RPMC flash devices: If the
“Target RPMC Supported” field is greater than 0, this field indicates the
number of Target Attached Flash RPMC devices that the target
supports.

00b: 1 RPMC flash device is supported

01b: 2 RPMC flash devices are supported
10b: 3 RPMC flash devices are supported
11b: 4 RPMC flash devices are supported

If the “Target RPMC Supported” field is 0, this field is ignored.

21:16

RO

HwInit

Target RPMC Supported: This field indicates the total number of
Replay Protected Monotonic Counters (RPMC) supported by the Target.
It is a 1-based field.

Oh: Target does not support Replay Protected Monotonic counter.
1h: Target supports up to 1 Replay Protected Monotonic counter.
2h: Target supports up to 2 Replay Protected Monotonic counters.

3Fh: Target supports up to 63 Replay Protected Monotonic counters.

The value of this field is the total sum of Replay Protected Monotonic
counters supported by all RPMC flash devices behind the target.

If RPMC is not supported by the target, this field must indicate a value
of Oh.

104

Document Number: 841685, Revision: 1.6

intel.

Bit Type Default

Description

15:8 RO HwInit

Target Flash Erase Block Size: This field indicates the size of the
erase commands the controller can issue. If multiple bits are set then
the controller is allowed to issue an erase using any of the indicated
sizes.

If multiple regions are accessible by the controller, this field advertises
the common erase block sizes supported by these regions.

This field is only applicable when target attached flash sharing scheme
is selected.

Bit 0: Reserved

Bit 1: Reserved

Bit 2: 4 Kbytes EBS supported
Bit 3: Reserved

Bit 4: Reserved

Bit 5: 32 Kbytes EBS supported
Bit 6: 64 Kbytes EBS supported
Bit 7: 128 Kbytes EBS supported

7:3 RO 0

Reserved.

2:0 RO HwInit

Target Maximum Read Request Size Supported: This field
indicates the maximum read request size supported by the Target on
the Flash Access channel.

This field is only applicable when target attached flash sharing scheme
is selected.

000b, 001b: 64 bytes max read request size.
010b:
011b:
100b:
101b:
110b:
111b:

128 bytes max read request size.
256 bytes max read request size.
512 bytes max read request size.
1024 bytes max read request size.
2048 bytes max read request size.
4096 bytes max read request size.

Document Number: 841685, Revision: 1.6

105

intel.

6.2.1.9 Offset 48h: Channel 3 Capabilities and Configurations 3

Bit

Type

Default

Description

31:24

RO

HwlInit

RPMC OP1 Opcode on the 2" RPMC Flash device: If the "Number
of Target Attached Flash RPMC flash devices” field indicates the 2"
RPMC flash device is supported, this field specifies the 8-bit RPMC
SFDP OP1 Opcode supported by the Target’s 2" RPMC Flash device.

23:20

RO

HwlInit

RPMC Counter on the 2" RPMC Flash device: If the "Number of
Target Attached Flash RPMC flash devices” field indicates the 2" RPMC
flash device is supported, this field specifies the number of RPMC
counters supported by the Target’s 2" RPMC Flash device. Per RPMC
SFDP specification, it's a 0-based number, e.g. 0 indicates that 1
counter is supported, 1 indicates 2 counters, etc.

19:0

RO

Reserved.

6.2.1.10 Offset 4Ch: Channel 3 Capabilities and Configurations 4

Bit

Type

Default

Description

31:24

RO

HwInit

RPMC OP1 Opcode on the 4" RPMC Flash device: If the "Number
of Target Attached Flash RPMC flash devices” field indicates the 4t
RPMC flash device is supported, this field specifies the 8-bit RPMC SFDP
OP1 Opcode supported by the Target’s 4™ RPMC Flash device.

23:20

RO

HwInit

RPMC Counter on the 4" RPMC Flash device: If the “Number of
Target Attached Flash RPMC flash devices” field indicates the 4™ RPMC
flash device is supported, this field specifies the number of RPMC
counters supported by the Target’s 4" RPMC Flash device. Per RPMC
SFDP specification, it's a 0-based number, e.g. 0 indicates that 1
counter is supported, 1 indicates 2 counters, etc.

19:16

RO

Reserved.

15:8

RO

HwInit

RPMC OP1 Opcode on the 3 RPMC Flash device: If the "Number
of Target Attached Flash RPMC flash devices” field indicates the 3™
RPMC flash device is supported, this field specifies the 8-bit RPMC SFDP
OP1 Opcode supported by the Target’s 3¢ RPMC Flash device.

7:4

RO

HwInit

RPMC Counter on the 3" RPMC Flash device: If the “Number of
Target Attached Flash RPMC flash devices” field indicates the 3 RPMC
flash device is supported, this field specifies the number of RPMC
counters supported by the Target’s 3™ RPMC Flash device. Per RPMC
SFDP specification, it's a 0-based number, e.g. 0 indicates that 1
counter is supported, 1 indicates 2 counters, etc.

3:0

RO

Reserved.

106

Document Number: 841685, Revision: 1.6

intel.
7 Operating Specification

7.1 Electrical Specification

Note: The electrical specification defined in this section is preliminary and it is subjected to change.

Table 22: Electrical Specification

Symbol Parameter Condition Min Typ Max Unit
Vcc eSPI I/0 voltage 1.71 1.8 1.89 \
Ron Output driver impedance Vout = Vee/2 15 25 35 Ohm
Vi Input low voltage 0.3*Vcc
VI Input high voltage 0.7*Vcc
Vhys Input hysteresis voltage 0.1*Vcc \

Rlreset-pu Weak pull-up impedance Vout = 0.7*Vcc 10k 30k Ohm

R'reset-PD ﬁiﬁg:g:wn Vout = 0.3*Vce 10k 30k ohm

Ralert-pu ;’XfaA'Te‘:: :’;ﬁ:impedance Vout = 0.7*Vce 4.7k Ohm
Cin Input capacitance 5 pF
CL2 Load capacitance 10 pF
In Input leakage current 0 < Vin < Vcc ‘ ‘ +10 UA

Notes:

1. Weak pull-up on eSPI data and Chip Select# pins (except Alert# pin) and
weak pull-down on eSPI clock must be implemented as an integral part of
the eSPI controller buffer or on the board.

2. CiLis the test load defined for AC timing measurement.

The weak pull-up impedance value is defined for a typical eSPI bus loading
when Alert# pin is configured as open-drain. Platform is required to adjust
this value accordingly such that when Alert# pin is asserted, the assertion
of the CS# for the shortest possible transaction (which causes the target
to tri-state the Alert# pin), is able to pull the Alert# pin high fast enough
to the deasserted value before or by the last failing edge of the serial
clock at the end of the transaction.

Document Number: 841685, Revision: 1.6 107

intel.

7.2

Note:

Timing Parameters

All timing parameters for the Enhanced Serial Peripheral Interface (eSPI) are
specified from a device (target) perspective. The host is required to account for
channel effects in meeting the specified timings with the device.

The timing parameters defined in this section are preliminary and they are
subjected to change.

Table 23: AC Timing Specification

Symbol Parameter Description
tekH Clock High Time
tekL Clock Low Time
tsLcH Chip Select# Setup Time
tcLsH Chip Select# Hold Time
tsHsL Chip Select# Deassertion Time
tovcH Data In Setup Time
tcHDx Data In Hold Time
tclaz Output Disable Time during Turn-Around
tcLqv Output Data Valid Time
tcLox Output Data Hold Time
tsHqz Output Disable Time after Chip Select# Deassertion
tsiaz Chip Select# Assertion to I/0[1] Tri-stated
tsHAA Chip Select# Deassertion to I/O[1] Assertion
tineT eSPI Reset# Deassertion to First Transaction (GET_CONFIGURATION)
tINIT-FREQ Initial Bus Frequency upon eSPI Reset# Deassertion
20MHz 25MHz 33MHz 50MHz 66MHz
Symbol
Min Max Min Max Min Max Min Max Min Max Unit
tek 50 40 30 20 15 ns
tekH 0.4 0.4 0.4 0.4 0.4 tex
texe 0.4 0.4 0.4 0.4 0.4 tex
tsLcH 75 60 45 30 22 ns
tcisH 50 40 30 20 15 ns
tsHsL 50 40 30 20 15 ns
toveH 12 10 7 5 3 ns

108

Document Number: 841685, Revision: 1.6

intel.

20MHz 25MHz 33MHz 50MHz 66MHz
Symbol

Min Max Min Max Min Max Min Max Min Max Unit
tcHpx 12 10 7 5 3 ns
tcgz 15 12 9 8 6 ns
tcLov 20 15 10 8 6 ns
teoox 0 0 0 0 0 ns
tsHaz 15 12 9 8 6 ns
tsiLaz 15 12 9 8 6 ns
tsHaA 15 12 9 8 6 ns
tineT 1 1 1 1 1 us
tani- 20 20 20 20 20 MHz
FREQ

Figure 60: Input Timing Diagram

CLK

| toron [toLsi—es]

Chip Select#

tDVCH_’| |<- torox> |<- > |<—tCLQz tSHSL—|<—>|
tri-stated tSHQZ—PI |<-

pataino] { AbERT* H(commano))) ({ response \—
tSLAZ"I I" ->| |<—t3HAA

CLK

Chip Select# \

Data[n:0]

ALERT#
(Vo[11)

Document Number: 841685, Revision: 1.6 109

intel.

Figure 61: Output Timing Diagram

» to = ters—e>]

\tCKH>| |<-tCK|_->| |<- tcmv"l |<‘ tcmx"ll“ /—\—
Chip Select#
tri-stated tSHQZ"I |<-

patamo—————— { commanp)} - ((RESPONSE)’ | S
ey ___/ _

weak pull-up

:‘ tcLav _:‘ tcrLav
Chip Selecmﬁ _________ tCL tC Lax / \
I

I
Data[n:0]"">7 ~=="""" QB;E‘%BQBQ "";'"'
AIert#-"; """ \
(driven)
..../;{......_________________xvsakelﬂ'-_ue _____________
Alert#]
(0peN-drain) e o ! __

110

Document Number: 841685, Revision: 1.6

intel
8 System Architecture

8.1 Interrupts

The Enhanced Serial Peripheral Interface (eSPI) provides a mechanism for eSPI
endpoints that are transparent to software to communicate their interrupts
through the Interrupt Event Virtual Wires.

eSPI endpoints from different channels share the same set of interrupt lines
routed over the dedicated Virtual Wire channel.

Interrupts sent as the Interrupt Event Virtual Wires will be mapped to the
respective IRQ lines. The detail of interrupt mapping is platform specific and
outside the scope of the specification.

The ACPI method is used to communicate the IRQ number used by the eSPI
endpoints.

The specification does not preclude the endpoints that are transparent to PCI
software from using Message Signaled Interrupt (MSI). However, the method
to enable MSI support is beyond the scope of the specification.

8.2 Error Detection and Handling

eSPI bus supports error detection capability through CRC protection when CRC
checking is enabled. The errors detected can be logged and reported through
the respective eSPI controller configuration space, which is outside the scope of
this specification.

There is no error correction capability or hardware recovery mechanism defined
for the eSPI bus.

The categories of errors that are detectable over the eSPI bus by the eSPI
target and the eSPI controller are described in Section 8.2.1 and 8.2.2.

Due to lack of hardware recovery mechanism, all the errors detected on the
eSPI bus fall into one of the Fatal or non-Fatal category.

Segregating the errors into Fatal and non-Fatal categories is optional. It
provides a path for the software to handle the non-Fatal error in a more robust
manner instead of treating the non-Fatal error as System Error.

eSPI controller that does not support the segregation of errors into Fatal and
non-Fatal categories may choose to handle these errors in the same manner.

eSPI targets that do not support the segregation of errors into Fatal and non-
Fatal errors may choose to report all errors as Fatal Error response.

When eSPI Fatal Errors cannot be recovered by software, an eSPI_Reset# is
required to be asserted to reset both eSPI controller and target. This may lead
to a platform level reset for the recovery.

Document Number: 841685, Revision: 1.6 111

intel.

Note: If error segregation into Fatal and non-Fatal errors is supported, the eSPI
controller can choose to generate a System Error in response to Fatal Error and
generate an interrupt or SMI# in response to Non-Fatal Error. Handling the
error through interrupt or SMI# requires the corresponding device driver or
BIOS support.

8.2.1 Target's Detected Errors

This section describes the error detection and handling requirements for eSPI
target.

During the detection, the error may fall under one of the following Detection
Phase (DP):

1. Error results in uncertainty on the command phase boundary. In this case,
CRC checking is not applicable as CRC byte location is not known.

2. Command phase CRC error. Command packet is successfully decoded and
its boundary is known. However, CRC error is detected on the command
packet.

3. Correct CRC but other error detected. The error results in eSPI target not
being able to complete the execution of the command packet received.

4. Error detected outside of the command phase, such as unexpected
deaasertion of Chip Select#, or any internal error detected by eSPI target.
The details of the internal errors are beyond the scope of the specification.

Table 24: Target’s Detected Errors

Target's Response and Handling

Error Condition? DP2 R/03 Response Code (RC), Completion (C), Virtual Wire (VW)
RC C VW Description
Invalid Command 1 R X NO_RESPONSE Response Code.
Opcode Command is discarded

Invalid Cycle Type NO_RESPONSE Response Code.

(with respect to 1 R X Command is discarded
command)
Command phase > R X NO_RESPONSE Response Code.
CRC Error Command is discarded
Target tri-state the bus tsHqz after Chip
Unexpected Select# is deasserted.
deassertion of Chip 1,4 R Note: Controller is expected to detect
Select# CRC error during the response phase if

CRC checking is enabled

Protocol Error

PUT without FREE 3 R X
GET without AVAIL

FATAL_ERROR Response Code. Command
is discarded

112 Document Number: 841685, Revision: 1.6

intel.

Target's Response and Handling

Error Condition® DP2 R/ 03 Response Code (RC), Completion (C), Virtual Wire (VW)
RC C VW Description
Malformed Packet
during Command
Phase
Peripheral Channel:
Payload length >
Max Payload Size
(aligned)
Read request size >
Max Read Request FATAL_ERROR Response Code. Command
Size (aligned) is discarded.
(Address + Length) or
crosses 4KB FATAL ERROR Virtual Wire. Before
(aligned) boundar signaling the FATAL ERROR Virtual Wire,
9 Y the transaction is completed on the eSPI
Virtual Wire 3 R X X bus (ACCEPT) with the following:
Channel: Posted: Command is discarded
Count > Max Virtual Completion: Command is discarded
Wire Count Non-posted: Unsuccessful Completion
OOB Channel: without Data is returned and command
SMBus Byte Count > discarded
Max Payload Size Virtual Wire: Command is discarded
Flash Access
Channel:
Payload length >
Max Payload Size
Read request size >
Max Read Request
Size
NON_FATAL_ERROR Response Code.
Command is discarded.
or
NON-FATAL ERROR Virtual Wire (when
command is posted). Before signaling the
Unsupported NON-FATAL ERROR Virtual Wire, the
Command 3 0 X X X transaction is completed on the eSPI bus

(excluding Short
Command)

with command discarded.
or

Unsuccessful Completion without Data
(when command is non-posted). The
transaction is completed with
unsuccessful completion returned and
command discarded

Document Number: 841685, Revision: 1.6

113

intel.

Target's Response and Handling

Error Condition® DP2 R/ 03 Response Code (RC), Completion (C), Virtual Wire (VW)
RC C vw Description
NON_FATAL_ERROR Response Code.
Command is discarded.
or
NON-FATAL ERROR Virtual Wire (when
command is posted). Before signaling the
Unsupported Cycle NON-FATAL ERROR Virtual Wire, the
Type transaction is completed on the eSPI bus
3 (0] X X X . .
(with respect to with command discarded.
command) or
Unsuccessful Completion without Data
(when command is non-posted). The
transaction is completed with
unsuccessful completion returned and
command discarded
NON_FATAL_ERROR Response Code.
Command is discarded.
or
Unsupported 3 0 X X NON-FATAL ERROR Virtual Wire. Before
Message Code signaling the NON-FATAL ERROR Virtual
Wire, the Message transaction is
completed on the eSPI bus with
command discarded
NON_FATAL_ERROR Response Code.
Command is discarded.
Unsupported Length, or
Unsupported NON-FATAL ERROR Virtual Wire (when
Address/Length command is posted). Before signaling the
alignment, NON-FATAL ERROR Virtual Wire, the
Out of Range 3 o ¥ X X transaction is completed on the eSPI bus
Address/Length with command discarded.
combination
or
_ Unsuccessful Completion without Data
(excluding Short (when command is non-posted). The
Command) transaction is completed with
unsuccessful completion returned and
command discarded
Short Command
(terminated as NON_FATA.L_E.RROR Response Code.
connected, non- Command is discarded.
DEFER) that fails to or
be completed NON-FATAL ERROR Virtual Wire. Before
successfully signaling the NON-FATAL ERROR Virtual
3 (6} X X Wire, the transaction is completed on the

PUT_IORD_SHORT
PUT_IOWR_SHORT
PUT_MEMRD32_SHO
RT
PUT_MEMWR32_SH
ORT

eSPI bus with the following:
Posted: Command is discarded

Non-posted: Data of all 1’s is returned for
non-posted requires data. Command is
discarded

114

Document Number: 841685, Revision: 1.6

intel.

Target's Response and Handling

Error Condition® DP2 R/ 03 Response Code (RC), Completion (C), Virtual Wire (VW)
RC C vw Description

NON_FATAL_ERROR Response Code.
Command is discarded.

All other posted or

Command that fails

to be completed 3 0 X X | NON-FATAL ERROR Virtual Wire. Before

successfully signaling the NON-FATAL ERROR Virtual
Wire, the transaction is completed on the
eSPI bus with command discarded

All other non-posted NON_FATAL_ERROR Response Code.

Command that fails Command is discarded.

to be completed or

§ucces_,sfu|ly, 3 0 X X Unsuccessful Completion without Data.

including Short The transaction is completed with

Command after unsuccessful completion returned and

DEFER command discarded

Unexpected NON_FATAL_ERROR Response Code.

completion received Command is discarded.

(i.e. completion or

without non-posted 3 0 X X' | NON-FATAL ERROR Virtual Wire. Before

request, or signaling the NON-FATAL ERROR Virtual

f:ompletlon with Wire, the transaction is completed on the

invalid tag) eSPI bus with command discarded

All other Non-Fatal

Error conditions

detected by the

Target 3,4 0 X NON-FATAL ERROR Virtual Wire

(including errors

detected outside of

the bus transaction)

All other Fatal Error

conditions detected

by the Target .)

. . 3,4 (6} X FATAL ERROR Virtual Wire

(including errors

detected outside of

the bus transaction)

Unsupported or

Reserved Virtual

Wire (VW) with Valid

bit set No error is reported.

Within supported VW 3 0 The transaction is completed on the eSPI

Indices, or

e Unsupported or
reserved VW
Indices

bus with Virtual Wire received being
silently discarded without any effect

Document Number: 841685, Revision: 1.6

115

intel.

Notes:

1. Invalid command opcode or cycle type refers to unknown command
opcode or cycle type which is not defined by the eSPI Base Specification.
This includes command opcode or cycle type that may be added later to
any eSPI Addendum but not supported by the eSPI agents. Unsupported
command opcode or cycle type refers to command opcode or cycle type
which is defined by the eSPI Base Specification but it is not supported
based on specific product requirement.

2. Detection Phase (DP). The error detected falls under one of the Detection
Phase.

3. Required or Optional (R/0). Error conditions marked with Required (R)
must be supported by eSPI target.

8.2.1.1 No Response

In the case of invalid command, invalid cycle type or CRC error, the boundary
of the command packet is indeterminate.

The eSPI target must not drive the Response Phase when the boundary of the
command packet cannot be determined.

After the command phase and the Turn-Around time, upon receiving the
Response Code of all 1’s, the eSPI controller can deduce that there is either no
target present, or the target has encountered error and responded with
NO_RESPONSE. The target does not drive the response phase in this case and
the Response Code of all 1’s is a result of the weak pull-up on the I/0O[n:0]
pins.

8.2.1.2 Fatal Error Response

The eSPI target communicates to the eSPI controller that the current
transaction has a serious error by returning a Fatal Error response in the
Response Phase, or by signaling the Fatal Error through the Virtual Wire
message.

This could be due to the corresponding command could not be processed or
that a severe error has been detected by the eSPI targets that resulted in its
inability to make forward progress.

The error conditions with Fatal Error response from target are as described in
Table 24.

Based on the response, the eSPI controller may choose to generate a System
Error (SERR) if it is a PCI device or route the error as an interrupt or SMI#.
Alternatively, the eSPI controller may choose to take other necessary actions
or no action. The decision taken by the eSPI controller in response to Fatal
Error is implementation specific and beyond the scope of the specification.

The Response with Fatal Error comprises a Response, a Status and a CRC.
There is neither Header nor Data field during the Response phase.

116 Document Number: 841685, Revision: 1.6

intel.

Figure 62: Transaction with FATAL Error Response

Chip Select# _\ /

HOR DATA FATAL \
Data[n:0] 4(ceme X(o»manX w.,m.,X CcRC)/‘}(ERROR)(sTs X c'w]

8.2.1.3 Non-Fatal Error Response

The eSPI target returns a Non-Fatal error in response to a command which is
erroneous but does not impede the processing of the command and the
forward progress of the bus.

The error conditions with Non-Fatal Error response from target are as described
in Table 24.

The intent is to communicate Non-Fatal errors to higher layer protocol stacks
for more robust error recovery.

The behavior of the eSPI controller in response to receiving a Non-Fatal Error is
implementation specific and beyond the scope of the specification.

The Response with Non-Fatal Error comprises a Response, a Status and a CRC.
There is neither Header nor Data field during the Response phase.

Figure 63: Transaction with Non-FATAL Error Response

Chip Select# _\ /

HDR DATA NON_
Data[n:0] 4(cmp XtopﬁmmX m,,,im,,,X CRC)‘/:(FATAL_)(sTs X cnc] -

8.2.1.4 Unsuccessful Completion

For non-posted transaction that cannot be completed due to error, the eSPI
target returns an unsuccessful completion without data.

In the case of multiple split completions, the unsuccessful completion may be
returned in any of the split completion. However, when one of the split
completions has an unsuccessful completion status, the remaining split
completions are not returned. The unsuccessful completion is the last split
completion.

The error conditions with unsuccessful completion from target are as described
in Table 24.

Document Number: 841685, Revision: 1.6 117

intel.

8.2.1.5 Unexpected Chip Select# Deassertion

The deassertion of Chip Select# by eSPI controller may be unexpected to eSPI
target. As an example, such error condition happens when the transaction
length intended by the target is corrupted on the bus and as a result, an
incorrect length is being received by the controller:

1. eSPI controller deasserts Chip Select# sooner than target expects. The
target expects to send more data, but the transaction is ended with Chip
Select# deassertion.

2. eSPI controller deasserts Chip Select# later than target expects. The
target detects more eSPI serial clocks after it has completed the response
phase on the bus.

The eSPI target is required to tri-state the bus tsnqz after Chip Select# is
deasserted. The eSPI I/O[n:0] pins are expected to be pulled high by the
pullup resistors on the bus. However, for scenario 1, due to time taken to ramp
the pin high by the pull-up resistor when the prior state driven by the target is
‘0’ before the tri-stating, a false ALERT# may be detected on I/O[1] if the pin is
also functioning as the ALERT# input in a single controller-single target
configuration. Besides causing an unnecessary GET_STATUS from eSPI
controller, the spurious ALERT# will not affect the eSPI bus functionality.

The error condition is detectable by the eSPI controller as it will result in a CRC
error detected on the response phase when CRC checking is enabled.

Figure 64: Unexpected Chip Select# Deassertion

v MUgNMg Mg N NN g S\
Target detects unexpected
deassertion of Chip Selectf
Chip Select#
tSHQZ"l I"
Vom0l (commano) (RESPONSE) (eeT_status) cre) rRsp) sTs Y cRrc

Target must tri slals
10[n:0] by tskaz

False ALERT# (active low) is GET_STATUS by eSPI controller
detected as the pin ramps to ‘1’ in response to the false ALERT#
VO[1JALERT# (1op1]) o[{ wor1 X) Vo]

VO[1)/ALERT# may be ‘0’ (during V/O[1J/ALERT# is pulled to
response phase) prior to tri-state ‘1’ by pull-up resistor

118 Document Number: 841685, Revision: 1.6

intel.

8.2.2 Controller’'s Detected Errors

Table 25: Controller’s Detected Errors

Error Condition? R/ 0?2 Error Type Controller’s Handling
Invalid Response Code Controller terminates the transaction abruptly
. R Fatal Error - -
(with respect to command) by deasserting Chip Select#.
Invalid Cycle Type For the corresponding (peripheral, flash
R Fatal Error access) channel with error detected:

(with respect to command)

e Controller to return Unsuccessful Completion
to the initiator (such as host CPU) for ANY
outstanding Controller-to-Target non-posted.

e Discard any subsequent completion pulled
from the Target. (Note 1)

e Discard any subsequent Controller-to-Target
completions. (Note 2)

e A reset to the Target is required for this
channel part of the software error handling.

Response phase CRC Error R Fatal Error Notes:

1. Controller-to-Target non-posted has been
completed with Unsuccessful Completion.

2. To avoid delivering subsequent data to the
Target as the erroneous response phase
may be associated with a Controller-to-
Target completion (thus it is “lost” from
Target perspective). Delivering subsequent
completion to the Target results in data
going out of context.

Response Code: NO_RESPONSE

R Fatal Error
(After initialization phase)3

Response Code: FATAL_ERROR R Fatal Error

Document Number: 841685, Revision: 1.6 119

intel.

Error Condition? R/0? Error Type Controller’s Handling
In the case of NO_RESPONSE, Controller
terminates the transaction abruptly by
deasserting Chip Select#. If Response Code is
FATAL_ERROR or NON_FATAL_ERROR, Chip
Select# is deasserted normally at the end of
the response phase.
For the corresponding channel with error
detected, if command is a
e Controller-to-Target non-posted. Controller
to return Unsuccessful Completion to the
requestor
e Controller-to-Target completion. Controller
to discard any subsequent completion to the
Response Code: NON_FATAL_ERROR] Non-Fatal Error Target on this channel. (Note 3) In the case
of FATAL_ERROR, a reset to the Target is
required for this channel part of the software
error handling.
Notes:
3. To avoid delivering subsequent data to the
Target as the erroneous response phase is
associated with a Controller-to-Target
completion (thus it is “lost” from Target
perspective). Delivering subsequent
completion to the target results in data
going out of context.
Malformed Packet during Response Phase
Peripheral Channel:
Payload length > Max Payload Size
(aligned)
Read request size > Max Read Request
Size (aligned)
(Address + Length) crosses 4KB (aligned)
boundary Return Unsuccessful Completion to the Target
| e | et
Count > Max Virtual Wire Count
OOB Channel:
SMBus Byte Count > Max Payload Size
Flash Access Channel:
Payload length > Max Payload Size
Read request size > Max Read Request
Size
Unsupported Cycle Type Return Unsuccessful Completion to the Target
. (0} Non-fatal Error for non-posted that requires completion.
(with respect to command) Discard posted transaction from the Target
Unsupported Message Code (0] Non-fatal Error Discard Message transaction from the Target

120

Document Number: 841685, Revision: 1.6

intel.

Error Condition? R/0? Error Type Controller’s Handling

Unsupported Length,

Unsupported Address/Length alignment,
Out of Range Address/Length

combination

Return Unsuccessful Completion to the Target
(0] Non-fatal Error for non-posted that requires completion.
Discard posted transaction from the Target

Unsuccessful completion

Forward unsuccessful completion to the

received (0] Non-fatal Error
requester

Receive ERROR FATAL Virtual Wire R Fatal Error

No additional handling besides error logging
and reporting

Receive ERROR NON FATAL Virtual Wire (0] Non-fatal Error

No additional handling besides error logging
and reporting

Unexpected completion received (i.e.
completion without non-posted request, (0] Non-Fatal Error
or completion with invalid tag)

The transaction is completed on the eSPI bus
with Completion received silently discarded.

Unsupported or Reserved Virtual Wire

(VW) with Valid bit set

Within supported VW Indices, or reported
Unsupported or reserved VW Indices

No error The transaction is completed on the eSPI bus
o} with Virtual Wire received being silently
discarded without any effect.

Notes:

8.2.2.1

1. Invalid command opcode or cycle type refers to unknown command
opcode or cycle type which is not defined by the eSPI Base Specification.
This includes command opcode or cycle type that may be added later to
any eSPI Addendum but not supported by the eSPI agents. Unsupported
command opcode or cycle type refers to command opcode or cycle type
which is defined by the eSPI Base Specification but it is not supported
based on specific product requirement.

2. Required or Optional (R/0). Error conditions marked with Required (R)
must be supported by eSPI controller.

3. During initialization phase, the NO_RESPONSE for a GET_CONFIGURATION
cycle indicates that target is not present on the corresponding Chip
Select#. It is not an error condition.

Controller’s Error Handling

For eSPI target initiated posted writes which are unsuccessful, the error is not
communicated back to the initiating target. The error handling, logging and
reporting in the eSPI controller is implementation specific.

For eSPI target initiated non-posted transactions which are unsuccessful, an
unsuccessful completion will be returned to the eSPI target. The corresponding
error handling, logging and reporting in the eSPI controller is implementation
specific.

When an invalid Response Code, an invalid Cycle Type, or a CRC error is
detected on the Response Phase received from eSPI target, the Response
packet boundary is indeterminate. When this happens, the eSPI controller is
allowed to stop the clock and de-assert the Chip Select# at any point to
terminate the transaction. The eSPI target is required to detect and handle the
unexpected deassertion of Chip Select#.

Document Number: 841685, Revision: 1.6 121

intel.

8.3

8.3.1

8.3.2

Reset

eSPI Reset#

eSPI Reset# is an out-of-band pin used to communicate the interface reset
event between eSPI controller and eSPI target. Unless otherwise specified, the
entire eSPI interface related hardware logic and circuit for all the channels will
be reset by eSPI Reset#, including all the internal queues. Although the eSPI
interface is reset by the eSPI Reset#, the eSPI controller may or may not be
reset. It is hardware implementation specific and outside the scope of the
specification.

Platform Reset event is communicated through the PLTRST# virtual wire.
Platform Reset can be used to reset the GPIOs which are used to control the
other board components that share the same reset.

In typical implementation, the eSPI Reset# is the same as Platform Reset. For
Embedded Controller or Baseboard Management Controller, the eSPI Reset# is
connected to the Reset signal of deeper power well compared to Platform
Reset.

In-band RESET Command

In-band RESET command intends to recover the eSPI controller and targets
such that both sides are reset to a known set of interface settings to allow
communication to re-establish. The eSPI interface must be still functional in
order to transmit and receive the RESET command.

One example where eSPI controller and targets may go out of synchronization
is when SET_CONFIGURATION from eSPI controller to eSPI target results in an
error. As the transaction does not complete successfully, it is uncertain on the
state of the interface settings after the error.

The in-band RESET command has the following behavior. It is defined such that
the target is able to detect the In-band RESET command opcode regardless of
the I/O mode, i.e. either in Single, Dual or Quad I/0O configuration.

e RESET command opcode is FFh (i.e. all 1's).

e It is sent with the 20MHz speed or lower.

e No CRC byte and thus CRC checking must be ignored.

e The transaction has no response phase from eSPI target.

e All I/O lines are driven to high ('1") for 16 eSPI clocks and tri-stated at the
deassertion edge of CS#, meeting the tsiqz Output Disable timing.

When eSPI target detects the RESET command opcode, it behaves in the
following:

e Ignore all the subsequent bits received.

e Bypass or ignore the CRC checking.

122

Document Number: 841685, Revision: 1.6

intel.

e Wait until CS# deassertion and assert the in-band reset internally at the
CS# deassertion edge.

The In-band RESET will reset the following target register settings to the
default reset value:

e Offset 008h-00Bh: General Capabilities and Configurations

All other target registers are not reset by the In-band RESET, and they must
retain their values across the In-band RESET.

Figure 65: In-band RESET Command

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Chip Select# \ /

Data[0] =======ssssees / \...
Data[l] -----eeeeeeem- / \...
Data[2] ---===sssssss= / \...
Data[3] ===-=ssssnn==- / \...

8.4 Power Management Event (PME)

Power Management Event (PME) is used by eSPI targets to request for wake up
from low power states.

This event is communicated as in-band message through the Virtual Wire
channel. The assertion of this event is not qualified with PCI Power
Management Configuration registers.

8.5 Power Sequencing and Initialization

This section describes the entry and exit flows for various platform power
management states. The actual flow may differ slightly from one
implementation to another. Implementers should refer to the respective
component specification for the exact flows.

8.5.1 Exit from G3

The following sequence of steps will be performed by the Enhanced Serial
Peripheral Interface (eSPI) controller upon deassertion of eSPI Reset# on exit
from G3:

1. By default, eSPI controller and targets operate in low speed mode with a
clock frequency of tiniT-Freq.

Document Number: 841685, Revision: 1.6 123

intel.

By default, eSPI controller and targets operate in single input and single
output mode using CITO (also known as MISO) and COTI (also known as
MOSI) pins.

eSPI controller will wait for tinir from eSPI Reset# de-assertion before
starting the first operation on the bus.

eSPI controller initiates a GET_CONFIGURATION to discover specific
capabilities of the eSPI targets.

a. The mechanism by which the eSPI controller knows which Chip
Select# and Alert# pin correspond to specific eSPI target is
implementation specific.

b. GET_CONFIGURATION is initiated.

eSPI controller evaluates the discovered capabilities and performs
SET_CONFIGURATION command to the eSPI targets to configure the
capabilities based on supported configurations.
a. To reduce the initialization time, eSPI controller could configure the
eSPI targets to run at a higher supported bandwidth.

6. The Virtual Wire channel is then enabled, if supported

10.

11.

12.

Once the Flash controller is ready, the Flash Access Channel is enabled if
supported.

Chipset waits for the TARGET_BOOT_LOAD_DONE Virtual Wire message
from eSPI target before continuing the exit sequence. eSPI target must
send the TARGET_BOOT_LOAD_DONE message regardless of whether
flash access channel is supported. TARGET_BOOT_LOAD_STATUS must be
valid at the same time or prior to the TARGET_BOOT_LOAD_DONE Virtual
Wire.

Chipset sends in-band Virtual Wire messages to communicate the
SLP_S5#, SLP_S4+# and SLP_S3# de-assertion as part of the power up
sequence.

Chipset sends SUS_STAT# Virtual Wire message to eSPI target to
communicate SUS_STAT# de-assertion.

Once the core well is up and out of reset, the corresponding PLTRST#
deassertion message is sent from Chipset to eSPI target.

The eSPI Peripheral Channel is then enabled if supported and cycles can
then be initiated by both the controller and targets through this channel.

124

Document Number: 841685, Revision: 1.6

	1 Introduction
	1.1 Requirements

	2 Architecture Overview
	2.1 System Topology
	2.2 Architecture Descriptions
	2.3 Pin Descriptions

	3 Bus Protocol
	3.1 Basic Protocol
	3.2 Command Phase
	3.3 Turn-Around (TAR)
	3.4 Response Phase
	3.4.1 Response
	3.4.2 Status

	3.5 Alert Phase
	3.6 Get Status Command
	3.7 Get Configuration and Set Configuration Command
	3.8 Non-Posted Transaction
	3.9 Posted Transaction
	3.10 WAIT STATE

	4 Transaction Layer
	4.1 Cycle Types and Packet Format
	4.1.1 Cycle Types
	4.1.2 Tag
	4.1.3 Length
	4.1.4 Address
	4.1.5 Data

	4.2 Channels
	4.2.1 Peripheral Channel
	4.2.1.1 Latency Tolerance Reporting (LTR) Message

	4.2.2 Virtual Wires Channel
	4.2.2.1 Virtual Wire Index
	4.2.2.2 System Event Virtual Wires
	4.2.2.3 Communicating Timing Event on Virtual Wires
	4.2.2.4 Interrupt Event
	4.2.2.5 General-Purpose I/O Expander

	4.2.3 OOB (Tunneled SMBus) Message Channel
	4.2.4 Run-time Flash Access Channel
	4.2.4.1 Controller Attached Flash Sharing
	4.2.4.2 Target Attached Flash Sharing
	4.2.4.2.1 Target Attached Flash Sharing Operation

	4.3 Target Buffer Management
	4.4 Transaction Ordering Rule
	4.5 Zero Length Read and Write

	5 Link Layer
	5.1 Single I/O, Dual I/O, and Quad I/O Modes
	5.2 Cyclic Redundancy Check (CRC)

	6 Target Registers
	6.1 Status Register
	6.2 Capabilities and Configuration Registers
	6.2.1.1 Offset 00h: Reserved
	6.2.1.2 Offset 04h: Device Identification
	6.2.1.3 Offset 08h: General Capabilities and Configurations
	6.2.1.4 Offset 10h: Channel 0 Capabilities and Configurations
	6.2.1.5 Offset 20h: Channel 1 Capabilities and Configurations
	6.2.1.6 Offset 30h: Channel 2 Capabilities and Configurations
	6.2.1.7 Offset 40h: Channel 3 Capabilities and Configurations
	6.2.1.8 Offset 44h: Channel 3 Capabilities and Configurations 2
	6.2.1.9 Offset 48h: Channel 3 Capabilities and Configurations 3
	6.2.1.10 Offset 4Ch: Channel 3 Capabilities and Configurations 4

	7 Operating Specification
	7.1 Electrical Specification
	7.2 Timing Parameters

	8 System Architecture
	8.1 Interrupts
	8.2 Error Detection and Handling
	8.2.1 Target’s Detected Errors
	8.2.1.1 No Response
	8.2.1.2 Fatal Error Response
	8.2.1.3 Non-Fatal Error Response
	8.2.1.4 Unsuccessful Completion
	8.2.1.5 Unexpected Chip Select# Deassertion

	8.2.2 Controller’s Detected Errors
	8.2.2.1 Controller’s Error Handling

	8.3 Reset
	8.3.1 eSPI Reset#
	8.3.2 In-band RESET Command

	8.4 Power Management Event (PME)
	8.5 Power Sequencing and Initialization
	8.5.1 Exit from G3

