intel

Intel® 64 and IA-32 Architectures
Software Developer's Manual

Volume 1:
Basic Architecture

NOTE: The Intef® 64 and IA-32 Architectures Software Developer’s Manual consists of ten volumes:
Basic Architecture, Order Number 253665; Instruction Set Reference, A-L, Order Number 253666;
Instruction Set Reference, M-U, Order Number 253667; Instruction Set Reference, V, Order Number
326018; Instruction Set Reference, W-Z, Order Number 334569; System Programming Guide, Part 1,
Order Number 253668; System Programming Guide, Part 2, Order Number 253669; System
Programming Guide, Part 3, Order Number 326019; System Programming Guide, Part 4, Order Number
332831; Model-Specific Registers, Order Number 335592. Refer to all ten volumes when evaluating
your design needs.

Order Number: 253665-084US
June 2024

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.
No product or component can be absolutely secure.
Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability,
fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of
dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not publicly
available. These are not “commercial” names and not intended to function as trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document, with
the sole exception that a) you may publish an unmodified copy and b) code included in this document is licensed subject to
the Zero-Clause BSD open source license (0BSD), https://opensource.org/licenses/OBSD. You may create software
implementations based on this document and in compliance with the foregoing that are intended to execute on the Intel
product(s) referenced in this document. No rights are granted to create modifications or derivatives of this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD

CONTENTS

PAGE
CHAPTER 1
ABOUT THIS MANUAL
1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUALttt ete e ete et et e e 1-1
1.2 OVERVIEW OF VOLUME 1: BASIC ARCHITECTUREottt ettt et e e e et e e e e e eees 1-4
13 NOTATIONAL CONVENTIONS . L ottt ettt et et et e e e et et e et et e et et e a e 1-6
1.3.1 Bit AN BYTe OMer. ..ttt i e e e e e e 1-6
13.2 Reserved Bits and Software Compatibilityooioiiii i e 1-6
1.3.2.1 LISy om0 1= = [T 1-7
133 Hexadecimal and Binary NUMIDEIS ot e e e 1-7
134 SegMENTEA AQArESSING .« vttt ettt e et e e e e e 1-7
135 A New Syntax for CPUID, CR, aNd MSR ValUBSottt ettt e ettt e ettt ettt aenens 1-8
136 [Cal= 51103 1-8
14 RELATED LITERATURE . ..o\ttt ettt e et et e e e e e e et et e e r e e e e n e e s 1-9
CHAPTER 2
INTEL® 64 AND IA-32 ARCHITECTURES
2.1 BRIEF HISTORY OF INTEL® 64 AND IA-32 ARCHITECTURES.\ttt ettt e e et eees 2-1
2.1.1 16-Bit Processors and Segmentation (1078)ttt e 2-1
2.1.2 The INtel® 286 ProcesSOr (1982) ... v ittt e e e e 2-1
213 THE INteI386™ ProCESSOM (TO85). . vttt vttt ittt ettt et et et e e et e e e et e e es 2-1
214 The INtel486™ ProCeSSOr (1980 .. vttt ittt e e e e e e e e e e eas 2-1
215 The Intel® Pentium® ProCeSSOr (1993, ..ttt ittt et eas 2-2
216 The P6 Family of Processors (1995—1999). uuuiii e e 2-2
21.7 The Intel® Pentium® 4 Processor Family (2000—2006).c.uuiririre i eens 2-3
218 The Intel® Xeon® Processor (2001 —2007) ...ttt ettt et i eens 2-3
2.1.9 The Intel® Pentium®M Processor (2003—2006) vtututetttttie e e et 2-3
2.1.10 The Intel® Pentium® Processor Extreme Edition (2005). vttt e 2-4
2.1.11 The Intel® Core™ Duo and Intel® Core™ Solo Processors (2006—2007). .. .vvvriritititei ittt einnnenans 2-4
21.12 The Intel® Xeon® Processor 5100, 5300 Series, and Intel® Core™ 2 Processor Family (2006)coovuts. 2-4
2.1.13 The Intel® Xeon® Processor 5200, 5400, 7400 Series, and Intel® Core™ 2 Processor Family (2007)................... 2-4
2.1.14 The Intel Atom® Processor Family (2008)vvririi ettt e 2-5
2.1.15 The Intel Atom® Processor Family Based on Silvermont Microarchitecture (2013)covvviiiiiiiiii i 2-5
2.1.16 The Intel® Core™ i7 Processor Family (2008). u ittt e e 2-5
2.1.17 The Intel® Xeon® Processor 7500 Series (20T0) . v vttt ittt et e 2-5
2.1.18 2010 Intel® Core™ Processor Family (20T10)vuereei et 2-6
2.1.19 The Intel® Xeon® Processor 5600 Series (20T0) vttt e 2-6
2.1.20 The Second Generation Intel® Core™ Processor Family (20T 1) ... e eens 2-6
2.1.21 The Third Generation Intel® Core™ Processor Family (2012) ... vvvvrvriiii e 2-6
2.1.22 The Fourth Generation Intel® Core™ Processor Family (20713). vuiuiritii e ens 2-7
2.2 MORE ON SPECIFIC ADVANCES ...ttt ettt e et e e e et et e et a et 2-7
2.2.1 PE Family MIiCroarChiteCUre. .. vt e e e e e e 2-7
2.2.2 N (= N2 TNy ol i ol o = ot T (= oy U = 2-8
2.2.2.1 The Front ENd PiPeliNe. . .o i e e 2-9
2.2.2.2 L 10y L0 B0 =T ol o I 2-10
2.2.2.3 8 S = 1= L 2-10
2.2.3 p Y =] 0oy ol o = 1 (<ot U = 2-10
2.2.3.1 T oL = T 2-11
2232 Lo Tal N o o = PP 2-12
224 oY= AN (o il e ol o = a3 (= oy (U = 2-12
2.2.5 N (=] =Ty I T il T =Yoo= 2-13
2.2.6 Sandy Bridge MiCroarChiteCIUME v it et e e 2-13
2.2.7 SIMD IS TUCTIONS . . v ettt ettt et e e et e e e e e e e 2-14
2.28 Intel® Hyper-Threading TeChNOIOgy oo e e 2-16

Vol. 1 iii

CONTENTS

PAGE
2.2.8.1 Some IMPlemMENtation NOTES ...\ttt e ettt e e e s 2-17
2.2.9 10 T = I =Tt T o] o T | P 2-18
2.2.10 1Y (=] R A 1 =Ty (U =P 2-20
2.2.11 Intel® Virtualization Technology (INtel® V) e i e 2-20
2.3 INTEL® 64 AND IA-32 PROCESSOR GENERATIONS ..ttt ittt sttt aaas 2-20
2.4 PLANNED REMOVAL OF INTEL® INSTRUCTION SET ARCHITECTURE AND FEATURES FROM UPCOMING PRODUCTS...... 2-28
2.5 INTEL® INSTRUCTION SET ARCHITECTURE AND FEATURES REMOVED vv ettt 2-28
CHAPTER 3
BASIC EXECUTION ENVIRONMENT
3.1 MODES OF OPER ATION. L .ottt sttt ettt et e e e et et e e e et e e e et e e e 3-1
3.1.1 INTEI® B4 ATCRITECTUNE . ..\t ettt ettt ettt e e e e e e e e e e e e e e 3-1
3.2 OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT ..\ttt et et e e et 3-2
3.2.1 64-Bit Mode EXECUTION ENVITONMIENT. . . vttt ettt ettt et e et e e e et e e e et 3-5
33 MEMORY ORGANIZATION L.ttt et e e et e e e et e e e et e e e et e a e et 3-6
3.3.1 A-32 MEMOTY MOGEIS. . .ottt e e e e e e e e e e e e 3-7
33.2 Paging and VirtUal MemOrYttt et e et e e e e 3-8
333 Memory Organization iN 64-Bit MOdet i i i e e e 3-8
334 Modes of Operation vs. Memory Model.o et e 3-9
335 32-Bit and 16-Bit Address and Operand SiZeSuuieiiiii ittt 3-9
336 Extended Physical Addressing in Protected Mode ..o it e 3-9
337 Address Calculations iN B4-Bit MOGE oot e 3-10
33.7.1 L0 o T Tor= 2 Ya [=1 3-10
3.4 BASIC PROGRAM EXECUTION REGISTERS ..ttt ittt et ettt e e e 3-10
34.1 L07= L=t W 0Ty (=T =) 5 3-11
34.1.1 General-Purpose Registers in 64-Bit MOGEo ittt e i i e e 3-12
34.2 SBgMENT RIS IS ittt ittt et e e e e e e e e 3-13
34.2.1 Segment Registers iN B4-Bit MOGe.ttt e 3-15
343 [I I =T 0] (=] 3-15
34.3.1) = L (LS = 10 3-16
3432)] - T 3-17
3433 System FIags and IOPL Field.o vu it e e e e e e e 3-17
3434 RFLAGS RegiSter in B4-Bit MOGE.ottt ettt ettt eas 3-18
35 INSTRUCTION POINTER .. ettt ettt et e et e e et e e et et e et et e e e aans 3-18
3.5.1 Instruction Pointer in 64-Bit MOde.o e 3-18
3.6 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES ..\ttt ettt 3-18
3.6.1 Operand Size and Address Size in 64-Bit Modeot i e e 3-19
3.7 OPERAND ADDRESSING . . vttt ettt ettt e e et e e e e e e e 3-19
3.7.1 IMMEIATE O P ANAS .« o\ vttt ittt ettt ettt e e e e e e e e e e 3-20
37.2 RS0 (=T 01T = T P 3-20
3.7.2.1 Register Operands in 64-Bit MOdet 3-21
373 1= T 1o V0 0= = [T 3-21
3.7.3.1 Memory Operands iN B64-Bit MOdeot i e e 3-21
374 SPECITYING @ SEGMENT SEIBCTOT ..ottt e e e 3-21
3.7.4.1 Segmentation iN B64-Bit MOGE ot e 3-22
375 SPECITYING AN OF Bt . vttt e e e e e 3-22
3.7.5.1 Specifying an Offsetin 64-Bit MOdeot 3-24
3.76 Assembler and Compiler Addressing MOGES ... o.v it i e e e e s 3-24
3.7.7 7480 i 2 Ya e =3 Vs S 3-24
CHAPTER 4
DATA TYPES
4.1 FUND AMEN T AL DAT A Ty PSS, ettt ettt e e e e e e e e et e s 4-1
4.1.1 Alignment of Words, Doublewords, Quadwords, and Double Quadwordsc.cooviiiiii i 4-2
4.2 NUMERIC DA T A TY PES . . ittt et e e e e e e e e e e e e e e 4-2
4.2.1 0 =T 0 =] 4-3
4211 [0 0 T =T N =TT 4-3
42.1.2 Y1010 (=T =T 4-4
422 FloatiNg-POINt Data Ty DS, .t vttt ettt et e et e e e e e e 4-4

iv. Vol. 1

CONTENTS

PAGE

4.3 POINTER DA T A TY PES . ..ttt et e et e e et e e e et et e e et et e et 4-6
431 Pointer Data Types iN B4-Bit MOGEo v ittt e e e 4-7
44 BIT FIELD DAT A TY P ettt ettt e e e e e e e e e e e e e e e e 4-7
4.5 ST RING DA T A TY PES ittt e e e e e e e e e e 4-8
4.6 PACKED SIMD DA T A TYPES ..ottt ittt e e e e et e e e e e e e e 4-8
46.1 64-Bit SIMD Packed Data Ty PES . o vttt ettt ettt ettt ettt e e e e e e e e e 4-8
46.2 128-Bit Packed SIMD Data Ty DS . . o vttt ettt ettt et e e ettt e e e e ettt e e e e 4-8
4.7 BCD AND PACKED BCD INTEGERS. . . . o ettt ettt e e et e e et e et e e e et et e e aens 4-9
4.8 REAL NUMBERS AND FLOATING-POINT FORMAT S . .ttt ettt et et eens 4-11
4.8.1 Rl NUM DB Sy S O . .ttt et et e e e e et e e e e 4-11
482 Floating-Point FOMmat . ..o i i i e e e e e 4-11
48.2.1 [N Fo 0 g F=1 =T J L1 T] =T 4-13
48.2.2 BIaS B EXPOM BN . .\ttt ettt e e e e e e e e e 4-13
483 Real Number and Non-numMber ENCOAINGSo vt vttt e e e 4-13
483.1 Y1 [1= 7= o P 4-14
483.2 Normalized and Denormalized FINite NUMDEIS ... virir e ees 4-14
4833 Y10 [T I 0 T =T 4-15
4834 NGNS Lttt e e e e e 4-15
4835 Operating on SNaNs and QNGNSttt 4-16
4836 Using SNaNs and QNaNs in APPlICatioNSuu ittt e 4-16
483.7 QNaN Floating-Point INAefinite e 4-17
4838 Half Precision Floating-Point Operationouriuii e 4-17
484 ROUNAING .« ittt i i it e e e e 4-17
4.84.1 Rounding Control (RC) FIElASttt 4-18
484.2 Truncation with Intel® SSE, SSE2, and AVX Conversion INStrUCLiONSvvvvrvrn i 4-18
4.9 OVERVIEW OF FLOATING-POINT EXCEPTIONSottt ettt ettt e e e e e eens 4-19
491 Floating-Point EXCeption CoNditionS v ittt s e s 4-20
4911 Invalid Operation EXCEPLION (H1) . ..o v vt e e 4-20
49.1.2 Denormal Operand EXCEPTION (HD). v vttt e e e e 4-20
49.1.3 Divide-By-Zero EXCEPTION (HZ) . .o oo ettt e e e e 4-21
49.1.4 Numeric Overflow EXCEPTION (H0) v ettt e e e e e e 4-21
4915 Numeric Underflow EXCEPLioN (HU) oviu i e e e 4-22
49.16 Inexact-Result (Precision) EXCEPTioN (FP)t e e 4-22
49.2 Floating-Point EXCEPLION Priorityo .o e 4-23
493 Typical Actions of a Floating-Point Exception Handler it ie e 4-24
CHAPTER 5

INSTRUCTION SET SUMMARY

5.1 GENERAL-PURPOSE INSTRUCTIONS .. .ttt ettt e e et et e e et e e e et et e e et e e et 5-5
5.1.1 B = =T S =Tl [3 £ oy o 5-5
51.2 BiNary Arithmetic INSTTUCTIONS.ttt e e e e e e e 5-6
513 Decimal Arithmetic INSTTUCTIONS e e e e e e e et aees 5-7
514 [ot I 0 1S3 1 0T o L 5-7
515 Shift @Nd ROTAtE INSTTUCTIONS. . o\ ettt e e e e e e e e e e 5-7
516 Bit aNd ByTe INSTrUCT ONS. . o ettt e e 5-7
517 (0o (o I =T S =Tl [3 £ oy o 5-8
518 SHMING S UCTIONS . o .ttt e e e e e et e e e e 5-9
519 7O I 0 Sy 8 on 1o L 5-9
5.1.10 ENter and Leave INStrUCHIONS. . . .ottt ettt e et e e e e e e e e e e 5-10
51.11 FIag Control (EFLAG) INStrUCTIONS v vttt e et st e et e e e et et e et et e et e e n e 5-10
5.1.12 Segment ReGISTEr IS TrUCTIONS .. vttt e e e e et e e e 5-10
51.13 MiSCEIlANEOUS INSTIUCTIONS . . .\ttt ettt ettt e et e et 5-10
51.14 User Mode Extended State Save/Restore INSIrUCTiONS.o vvr it e 5-11
5.1.15 Random Number Generator INSTrUCTIONS . .. vttt e e e e aees 5-11
5.1.16 BMIT and BMIZ2 INSTrUCTIONSottt et ettt et e ettt e e e e ettt e e ettt e e r e 5-11
5.1.16.1 Detection of VEX-Encoded GPR Instructions, LZCNT, TZCNT, and PREFETCHWoovvviiiiiii s 5-11
5.2 XB7 FPU INSTRUCTIONS . . .ottt ettt e ettt et e e e e e e e et e et e et et e et n e e 5-12
5.2.1 X87 FPU Data Transter INStrUCTIONSttt ettt e et et et eens 5-12
5.2.2 X87 FPU Basic Arithmetic INSTrUCTIONS. . ..o v ettt e e e e e e e 5-12

CONTENTS

5.2.3 X87 FPU CompariSOn INSTIUCTIONS . ..\ v vttt ettt ettt ettt ettt e e e ettt e e e e ettt nenanaes 5-13
524 X87 FPU Transcendental INSTrUCTIONS.o vttt e e e e e 5-13
5.25 X87 FPU Load ConStants INStrUCTIONS. . .o v vttt ettt ettt e e ettt e e e e an e eans 5-14
526 X87 FPU CoNtrol INSTrUCHIONS. « v vttt ettt ettt et ettt ettt e e et ettt e e et a e 5-14
53 X87 FPU AND SIMD STATE MANAGEMENT INSTRUCTIONSottt 5-14
54 MMX NS TRUCTION S . L ettt ettt et e et e e et e e e et e e e e et e et et e e et e n e eanes 5-15
5.4.1 MMX Data Transter INStrUCHIONS . . .ottt ettt ettt et e e et ettt e e 5-15
542 MMX CONVErSION INSTIUCTIONS. . . o\ttt ettt ettt et e et ettt et e et e eens 5-15
543 MMX Packed Arithmetic INStrUCTIONS oot 5-15
544 MMX ComparisON INSTIUCTIONSottt e et e ettt e et e e eens 5-16
545 | o T o=y o w1 5-16
546 MMX Shift and ROTate INSTrUCTIONS ...t v ettt e e e e e e e e 5-16
54.7 MMX State Management INStrUCTIONSttt ettt et e e e 5-16
55 INTEL® SSE INSTRUCTIONS . . oottt ettt e et e e e e e et et e e et e e et n e eenas 5-17
55.1 Intel® SSE SIMD Single Precision Floating-Point INStruCtionsvuiii i e 5-17
55.1.1 Intel® SSE Data TransTer INSTTUCTIONS ...\ v vttt e e e i aaas 5-17
55.1.2 Intel® SSE Packed Arithmetic INSTIUCTIONS v et i ie e eens 5-17
5513 Intel® SSE ComMParisOn IS trUCTIONS. .. .ot ittt e e ettt 5-18
55.14 INtel® SSE Logical INStrUCTIONS ...\ttt e ettt e 5-18
55.1.5 Intel® SSE Shuffle and Unpack INSTtrUCTIONS v vt e 5-18
5516 Intel® SSE ConVErsion INSTTUCTIONS v ettt ettt et e et e e e e e e e 5-18
55.2 Intel® SSE MXCSR State Management INStrUCTIONS vttt 5-19
553 Intel® SSE 64-Bit SIMD INteger INSTrUCTIONS . . .o\ttt e ettt i e 5-19
554 Intel® SSE Cacheability Control, Prefetch, and Instruction Ordering Instructions.cocoiiiiiiiiiiinnns. 5-19
56 INTEL® SSE2 INSTRUCTIONS . . .ttt ettt ettt et e e e e et e et et e e e e e et et a e aanes 5-19
56.1 Intel® SSE2 Packed and Scalar Double Precision Floating-Point Instructions ..o 5-20
56.1.1 Intel® SSE2 Data Movement INSTIUCTIONS vttt ettt e 5-20
56.1.2 Intel® SSE2 Packed Arithmetic INSTrUCTIONS . .. vttt e aaas 5-20
56.1.3 INtel® SSE2 LoGiCal INStrUCTIONSottt it e et e e et e 5-21
56.14 INtel® SSE2 ComMPare INSTrUCTIONS . . ot ottt e e e et e e et e 5-21
56.1.5 Intel® SSE2 Shuffle and Unpack INSTtrUCTIONS.ot ettt e eaaas 5-21
56.1.6 Intel® SSE2 ConVersioN INSTTUCTIONSttt ettt e e et e e e e e 5-21
56.2 Intel® SSE2 Packed Single Precision Floating-Point INStructionS.vvvuier e 5-22
56.3 Intel® SSE2 128-Bit SIMD INteger INSTrUCTIONSt e e 5-22
564 Intel® SSE2 Cacheability Control and Ordering INStrUCtioNS ittt i e it 5-22
57 INTEL® SSES INSTRUCTIONS . . .ttt ettt ettt ettt e e e et e et et e et et e e e e 5-23
5.7.1 Intel® SSE3 x87-FP Integer Conversion INStrUCTioN.ovi i e 5-23
5.7.2 Intel® SSE3 Specialized 128-Bit Unaligned Data Load INSTruction oot 5-23
573 Intel® SSE3 SIMD Floating-Point Packed ADD/SUB INSTIUCTIONS. . ..o\t vttt eee e 5-23
574 Intel® SSE3 SIMD Floating-Point Horizontal ADD/SUB INSTrUCTIONS ...\ vvvt vt eeeans 5-23
575 Intel® SSE3 SIMD Floating-Point LOAD/MOVE/DUPLICATE INSTrUCTIONS .+ .o v vt v ettt e i eens 5-24
576 Intel® SSE3 Agent Synchronization INSTTUCTIONS.ttt e 5-24
58 SUPPLEMENTAL STREAMING SIMD EXTENSIONS 3 (SSSE3) INSTRUCTIONS ...\ttt 5-24
5.8.1 Horizontal Addition/SUDTraCTioN v ettt et e e 5-24
582 Packed ADSOIUTE ValUBS. vttt e e e e e e e 5-25
583 Multiply and Add Packed Signed and Unsigned BYTESoouiiiiniii e 5-25
584 Packed Multiply High with RoUNd and SCaleooii i e et et e 5-25
585 Packed SHUTTIE BYteS . ..ottt e e e e e e e e e e 5-25
586 PaCKEA SIgN . .ottt e e e e 5-25
5.8.7 Packed AlIGN RIGNT. ..o e e 5-26
59 INTEL® SSEA INSTRUCTIONS . . .ottt ittt ettt e e et et e e et e et et e et e e e et e e aenes 5-26
5.10 INTEL® SSEA. T INSTRUCTIONS . .ttt ettt ettt e e e e e e e e et e e e e e s 5-26
5.10.1 Dword MURIPIY INSTIUCTIONS e e e e 5-26
5.10.2 Floating-Point Dot Product INStrUCtONS . .. oot e e e ettt e 5-27
5.10.3 Streaming Load Hint INSTrUCtiON oot e e e e 5-27
5104 Packed Blending INStrUCTIONSottt e e e e 5-27
5.105 Packed Integer MIN/MAX NS UG ONS. ..ottt ettt ettt e et e et e e e e e e e 5-27
5.10.6 Floating-Point Round Instructions with Selectable RoundingMode. ... e 5-27
5.10.7 Insertion and Extractions from XMM ReGISTEISttt e 5-28

vi Vol. 1

CONTENTS

PAGE

5.10.8 Packed Integer FOrMat COMVEISIONSttt ettt ettt e e ettt et ettt e e et et ettt e e e n et enaeen 5-28
5.109 Improved Sums of Absolute Differences (SAD) for 4-Byte BIockS.cvvuiiiiii e 5-28
5.10.10 HOMIZONTal SaMCN .o e e e e 5-29
5.10.11 PACKEA TS T ot vttt et e e e e 5-29
5.10.12 Packed Qword EqQuality COMPAriSONSttt ettt et e ettt e e ettt e e e r e a e 5-29
5.10.13 Dword Packing With Unsigned Saturation.viiiii i e et 5-29
511 INTEL® SSE4.2 INSTRUCTION SET. .\ttt ettt ittt e e et e e e ettt eens 5-29
511.1 String and Text Processing INStrUCTIONSttt e e 5-29
511.2 Packed Comparison SIMD Integer INSTrUCtiON v .t e i 5-29
5.12 INTEL® AES-NIAND PCLMULQDQ .+ oottt ettt e st e e e et e e e e et e e e et e e e e 5-29
5.13 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AV X). .ottt ettt et ettt e et eaes 5-30
5.14 16-BIT FLOATING-POINT CONVERSION ..ttt ittt et e e et e e et et e e st e e 5-30
5.15 FUSED-MULTIPLY-ADD (FMA) .ottt ettt et et et e e e e et et e et et e e e eees 5-30
5.16 INTEL® ADVANCED VECTOR EXTENSIONS 2 (INTEL® AVX2) .« vttt ettt ettt et eens 5-31
517 INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) .+t v vve ettt et 5-31
5.18 INTEL® SHA EXTENSIONS ..ttt et et e e e e e e et e e e e 5-31
5.19 INTEL® ADVANCED VECTOR EXTENSIONS 512 (INTEL® AVX-5T2) « vttt it 5-31
5.20 SY ST EM INSTRUCT ONS. . . .ottt e e e e e e e e ey 5-36
5.21 B64-BIT MODE INSTRUCTIONS. . ..ttt ettt ettt et et e et e e et e e et e e et e et eans 5-37
5.22 VIRTUAL-MACHINE EXTENSIONS . . oottt ettt et e e a e et 5-38
5.23 SAFER MODE EXTENSIONS . . .ottt e ettt e e et e e e et e e e 5-38
5.24 INTEL® MEMORY PROTECTION EXTENSIONS. ..ottt et e e e e e e e eees 5-39
5.25 INTEL® SOFTWARE GUARD EXTENSIONS . . .ottt e e e e e e e e e e 5-39
5.26 SHADOW STACK MANAGEMENT INSTRUCTIONS . . .ottt t ettt ety 5-40
5.27 CONTROL TRANSFER TERMINATING INSTRUCTIONS. . . . ettt ettt et e e e e eas 5-40
5.28 INTEL® AMX INSTRUCTIONS . . .ottt et e e e e e et et et e ettt e et et e i eens 5-40
5.29 USER INTERRUPT INSTRUCTIONS .. .ttt ettt ettt e e e e et e et et et e e eens 5-40
5.30 ENQUEUE STORE INSTRUCTIONS . o ettt ettt ettt e ettt e e et e e e eaes 5-41
CHAPTER 6

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

6.1 PROCEDURE CALL TYPES ottt ettt e et et e e e et e e e et et e e et et e e et e e s 6-1
6.2 ST A K S et e e e e e e e e e 6-1
6.2.1 SETING UP @ STaC0K. oo vttt e e e e e 6-2
6.2.2 1) [0t 2 a0 2T o 6-2
6.2.3 Address-Size AttriDUTES TOr STaCK ACCESSES. . vttt ettt ettt ettt e e e e 6-3
6.24 Procedure LinKing INformationt e e e e 6-3
6.24.1 STACK-FramME Base P oI el .ttt ettt ettt et e e 6-3
6.2.4.2 ReTUNN INStrUCTION P oI el . .ottt e e e e e e e e 6-3
6.2.5 Stack Behavior in B4-Bit MOttt e e 6-4
6.3 SHA D O ST ACK S ottt ittt e e e e e e e e e e e e 6-4
6.4 CALLING PROCEDURES USING CALL AND RET 1ttt ittt e et ettt e e ettt et e e e 6-4
6.4.1 NeEar CALL and RET OPBration. ..ottt ittt it ettt ettt ettt e et et ettt ettt eneas 6-4
6.4.2 ol O B T T S I 07T o 6-5
6.4.3 P arAMIE T PaSSINg « o\ vttt ittt s e e e e e e 6-7
6.4.3.1 Passing Parameters Through the General-Purpose REGISTEIS vvit ittt i aens 6-7
6.43.2 Passing Parameters on the STack.oo oo e 6-7
6433 Passing Parameters in an ArgUMEnt List. i i i e e e 6-7
6.4.4 Saving Procedure State INformationo e e 6-7
6.4.5 Calls 10 OTher Privilege LBVEIS.ottt et e e e e e e et 6-7
6.4.6 CALL and RET Operation Between Privilege LEVEIS. e 6-8
6.4.7 Branch FUNCLIONS N B4-Bit MOGEottt e e e 6-12
6.5 INTERRUPTS AND EXCEP TIONS .ottt ittt ettt et e e e e e e e e et e e e eaes 6-12
6.5.1 Call and Return Operation for Interrupt or Exception Handling Procedures.covviiiiiiii i 6-13
6.5.2 Calls to Interrupt or Exception Handler Tasksoviiii i i e e e 6-18
6.5.3 Interrupt and Exception Handling in Real-Address MOdeovir ittt e 6-18
6.54 INT n, INTO, INT3, INTT, and BOUND INSTrUCTIONS . .« v v vt e ettt et e e e e e e e e 6-18
6.5.5 Handling Floating-Point EXCEPTIONS . . .\t e ittt e e e e e 6-19
6.5.6 Interrupt and Exception Behavior in 64-Bit MOGE.vv it e 6-19

Vol. 1 vii

CONTENTS

PAGE

6.6 PROCEDURE CALLS FOR BLOCK-STRUCTURED LANGUAGESottt 6-20
6.6.1 EN T ER ISt UC 0N .ottt ettt e e e e e ettt e e e e e e 6-20
6.6.2 LN S 1 ot 1T PP 6-24
CHAPTER 7

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

7.1 PROGRAMMING ENVIRONMENT FOR GP INSTRUCTIONS.ottt et ettt e e ettt e eanes 7-1
7.2 PROGRAMMING ENVIRONMENT FOR GP INSTRUCTIONS IN 64-BIT MODE.ottt 7-1
73 SUMMARY OF GP INSTRUCTIONS ...ttt ettt e e et e e e e e e s e e et e e 7-2
7.3.1 Data TranST e NS UCTIONS .o ettt et e e e e e et e e e e 7-2
7311 General Data MovemENt INSTrUCTIONS ... vttt sttt et e et et aas 7-3
731.2 EXCNANGE IS UG I ONS oottt it ittt et i e e e e e 7-4
7313 Exchange INstructions N B64-Bit MOde.o i e e s 7-5
7314 Stack ManipuUlation INSTTUCTIONS.ttt e e e e e e 7-5
7315 Stack Manipulation INStructions in 64-Bit Mode.o vt e 7-7
73.16 Type CONVETSION INSTTUCTIONS .ottt sttt ettt e e e et e e e et aaaas 7-7
7317 Type Conversion INStructions in 64-Bit MOde.ot 7-8
732 Binary Arthmetic IS rUCTIONS . . oot i it et e et e e 7-8
7.3.2.1 Addition and SUDTraCtion INSTTUCTIONSottt e e e i e e e 7-8
7322 Increment and Decrement INStrUCTIONS. e e e e e 7-8
7323 Increment and Decrement Instructions in 64-Bit Mode.ot e 7-8
7324 Comparison and Sign Change INStrUCTIONSo\ttt e e e 7-8
7.3.25 Multiplication and DiViSion INSTTUCTIONS.o v i e e e e e e ee s 7-9
733 Decimal Arthmetic INSTrUCTIONS. . ..ottt e e e ettt e ettt e 7-9
7331 Packed BCD AdjUSTMEnt INSTrUCTIONS ...\ vttt ittt e e et ettt ittt 7-9
7332 Unpacked BCD Adjustment INStrUCTIONSo\ttt e et ettt et 7-9
734 Decimal Arithmetic INStructions in 64-Bit MOde.vvvii i e 7-10
735 [0 otz I8 0 3 ot 1T L P 7-10
736 Shift aNd ROTATE INSTTUCTIONS . . .\ vttt ettt e e e e e e e st e e 7-10
7.36.1) A8 T 1o 7-10
736.2 DoUDIE-Shift ISt UG ONS. . . o\ttt et ettt e e e e e e 7-12
7363 R0} = (=N 3 11 ot T L 7-13
737 Bit aNd ByTe INSIrUC ONS . . ottt e e e e 7-13
7.3.7.1 Bit Test and Modify INSTrUCHIONS v v e e e e 7-14
73.7.2 2 Y or= T N Sy (T o 0 PP 7-14
7373 Byte Set on Condition INSTrUCTIONS. v vttt e e e e e 7-14
7374 =SS 1S T o 7-14
738 CoNtrol TranSTer INSTTUCTIONSottt et ettt e e e e e et naaes 7-14
7.38.1 Unconditional Transfer INStrUCTIONS. . ..o v vttt e e e aaas 7-14
7382 Conditional TransTer INStTUCTIONS . ..o\ttt e e i 7-15
7383 Control Transfer INStructions in 64-Bit Modeottt e e e 7-17
7384 Software INtermUPT INSTTUCTIONS o e e e e e et s 7-17
7385 Software Interrupt Instructions in 64-Bit Mode and Compatibility Mode.cooiiii it 7-18
739 R0 11 10571 11T L 7-18
7.39.1 A0 101) (o o 7-18
7.39.2 RePEatEd STriNG OPEratiONS . . o\ vttt ettt sttt e 7-19
7393 [Y Y (T 0= = 11 {o 7-19
7394 String Operations iN B4-Bit MOdeo it i e i e 7-20
7.3.10 4 8T Sy (N on 1T 7-20
7.3.11 /0 INSTrUCtioNS i B4-Bit MOOEottt e e e e e e 7-20
7312 ENter anNd Leave INStrUCTIONS . . .o e ettt e e e e e e e e e e 7-21
7.3.13 Flag Control (EFLAG) INStrUCTIONS . .\ v vt vttt e ettt e e et e e e e e e 7-21
7.313.1 Carry and Direction FIag INSTrUCTIONS. vt e e 7-21
73.13.2 EFLAGS Transter INSTrUCTIONS ..\ttt ettt e e e et e e e e ettt e aaas 7-21
73133 INterrUPT FIag INS UGt ONS L. ot i it it et e e e e 7-22
7314 Flag Control (RFLAG) INStructions in 64-Bit MOdeovit it e e 7-22
7.3.15 Segment RegiSTer INStUCTIONSttt et e e e 7-22
7.3.15.1 Segment-Register Load and STore INSTrUCTIONSo v vttt e e e e 7-22
7.3.15.2 Far Control Trans er INStrUCTIONSttt e e e e eaaas 7-22

viii Vol. 1

CONTENTS

PAGE

7.3.15.3 Software INtermUPT INSTTUCTIONS e e ettt 7-23
73154 Load Far POINTEr INSTIUCTIONSttt ettt et e e e e e e aenas 7-23
7.3.16 MISCEIIANEOUS INSTTUCTIONS .« .\ttt ettt ettt ettt et e e e e e e et ettt e e et aeas 7-23
7.3.16.1 Address Computation INSTIUCTION.o et e e e e e 7-23
7.3.16.2 Table LOOKUD NS rUCTIONS. . o oottt ittt et e et e et et ettt i 7-23
7.3.16.3 Processor Identification INSTrUCTION. v vt et e 7-23
73.16.4 No-Operation and Undefined INSTrUCtionS.o it e et ees 7-23
7317 Random Number Generator INSTTUCTIONS v . v ettt e e e e et 7-24
73171 RO R AN D . ..ttt ettt e e e e e e e e e e 7-24
7.3.17.2 RS EE D . . vttt ettt e e e e e e e 7-24
CHAPTER 8

PROGRAMMING WITH THE X87 FPU

8.1 X87 FPU EXECUTION ENVIRONMENT . . ottt ittt sttt et et e et e e e e e 8-1
8.1.1 x87 FPU in 64-Bit Mode and Compatibility MOdEoviviiii i e e e 8-1
8.1.2 XB87 FPU Data ReGIS OIS v o\ttt vttt ettt ettt ettt e e e e et e e e 8-1
8.1.2.1 Parameter Passing With the x87 FPU Register Stack........ ..o e 8-3
813 XB7 FPU STatUus REGIS Oottt ittt ettt et e e e et e e e 8-4
8.1.3.1 TOP OF STACK (TOP) PO .+ vttt ettt ettt ettt et e et e et et e e et et e e 8-4
8.1.3.2 (000 a1 o T T o T[T =T 8-4
8133 X87 FPU Floating-Point EXCEPTION FIBgS . ..o\ v vttt e e eas 8-5
8134 STACK FAUIE a0 . ottt e e e e e e 8-6
814 Branching and Conditional Moves on Condition COdES.vuvu it 8-6
8.1.5 XB87 FPU CONTrOl WO . . .ottt et ettt et e et e e e e ettt e et 8-7
8.1.5.1 X87 FPU Floating-Point EXCePTion Mask Bitsovuiiiii i i e i e e et e s 8-7
8.1.5.2 Precision Control FIEld v e e e e e e 8-7
8153 Rounding Control Field.o u e e s e e e e 8-8
8.1.6 LT YA oo I =T 8-8
8.1.7 XB7 FPU Tag W Ord oottt ettt et e e e e e e e e e 8-8
8.1.8 x87 FPU Instruction and Data (Operand) POINTEIS e ettt eeees 8-9
8.1.9 1y Y T o oo T = 8-10
8.1.9.1 Fopcode Compatibility SUD-MOdE.ot i e e 8-10
8.1.10 Saving the x87 FPU State with FSTENV/FNSTENV and FSAVE/FNSAVE e 8-11
8.1.11 Saving the X87 FPU State With FXSAVE e e 8-12
8.2 XB7 FPU DAT A TY PES .ottt it ittt e e e e e e e e e 8-13
8.2.1 D0 L= T (=T 8-14
8.2.2 Unsupported Double Extended Precision Floating-Point Encodings and Pseudo-Denormals 8-14
83 XB7 FPU INSTRUCTION SET ...ttt ittt ettt et e e e et e e et e e et e e et e a e eans 8-15
8.3.1 ESCAPE (ESC) INSTTUCTIONS .ot v ettt ettt et e et et e et e e e e e 8-15
83.2 X87 FPU INSTrUCTION OPBrands ...\ i ittt ettt ettt e ettt e 8-15
833 [1 T =T S =Tl Y o o o 8-15
834 L0ad CoNSTaNT INSTUCTIONS. . ..ottt e e e e e e e e e e e e e e 8-17
835 BasiC AMThmMEtiC NS UCTIONS . . . oot e e e e e e e 8-17
836 Comparison and Classification INSTrUCTIONSo et ees 8-18
8.3.6.1 Branching on the Xx87 FPU Condition COAES v v vttt et 8-20
83.7 B To T na = o ol [« 0T o 3 P 8-20
838 APPrOXIMAtioN OF Pi ..o e e e e 8-21
839 Logarithmic, EXponential, and SCale.t e e e 8-21
8.3.10 Transcendental INSTTUCTION ACCUIAEY ... v vttt ettt et e e e e ettt e e et e a e nees 8-21
8.3.11 X87 FPU CoNtrol INSTrUCTIONS. « oottt st ettt ettt e e et e et et e et et e et r e 8-23
83.12 Waiting vs. Non-Waiting INStrUCTiONS. . ..ottt e e e 8-24
83.13 Unsupported X87 FPU INStrUCTIONS . . vttt ettt et ettt et et e e et e e 8-24
84 X87 FPU FLOATING-POINT EXCEPTION HANDUING . . oottt et e e e 8-24
84.1 Arithmetic vs. Non-arithmetic INStrUCTIONSot e e ees 8-25
8.5 X87 FPU FLOATING-POINT EXCEPTION CONDITIONS ..ottt ittt ettt e et e et 8-26
8.5.1 INValid OPEration EXCEPIONottt ittt et e e e e e 8-26
8.5.1.1 Stack Overflow or Underflow EXCepPtion (HIS) v ittt 8-26
85.1.2 Invalid Arithmetic Operand EXCEpPTiON (HIA)t e e 8-27
8.5.2 Denormal Operand EXCEPTION (HD).ttt ettt ettt 8-28

CONTENTS

PAGE
853 Divide-By-Zero EXCOPION (FZ) .\ttt ittt e e 8-28
854 Numeric Overflow EXCEPTION (H0) .. vttt e e e e e e 8-28
85.5 Numeric Underflow EXCeption (HU)iuiin e 8-29
8.5.6 Inexact-Result (Precision) EXCEPLION (HP)o.ir i e 8-30
8.6 X87 FPU EXCEPTION SYNCHRONIZATION . . 4ttt ettt ettt et et et e et e et e e e s 8-30
8.7 HANDLING X87 FPU EXCEPTIONS IN SOFTWARE . ..ottt ettt et 8-31
8.7.1 N = LAY = o T = 8-32
8.7.2 MS-DOS* Compatibility SUD-MOGE. it e e 8-32
8.7.3 Handling x87 FPU EXCEPTIONS IN SO WA .. .o\ v ittt e e e e aes 8-33
CHAPTER 9
PROGRAMMING WITH INTEL® MMX™ TECHNOLOGY
9.1 OVERVIEW OF MMX TECHNOLOGY . . vttt t ittt s et e e e e et e et e e e e e e e et et n e e 9-1
9.2 THE MMX TECHNOLOGY PROGRAMMING ENVIRONMENT .ttt et 9-1
9.2.1 MMX Technology in 64-Bit Mode and Compatibility Modecovviiiiii i e 9-2
9.2.2 1 G BT a] (=T 9-2
9.23 i1 DG = 1 LY/ 0= 9-3
9.24 MEMOY Data FOmmIatS Lottt ittt ettt e e e 9-3
9.25 Single Instruction, Multiple Data (SIMD) Execution Modelt e 9-4
93 SATURATION AND WRAPAROUND MODES ...\ttt ittt et et et et et e e et e e e e e e e e 9-4
9.4 1 G A I 10 9-5
9.4.1 B = =T S =T [£ oy o 0 9-6
94.2 L a1 1= ol Ty ot T 9-6
943 (00033 o = o T xS 9-7
944 {00 1Y £=T T I] N oo 3 9-7
945 T Lo Ty Tt T 9-7
946 o Tu ez I8 3 1 ot 1T L P 9-7
94.7] 31 Y ot T L 9-8
94.8 o RN T 3 1 0Tt o 9-8
95 COMPATIBILITY WITH X87 FPU ARCHITECTUREottt ettt et et e e et r et 9-8
9.5.1 MMX Instructions and the X87 FPU Tag Wordo ettt i it e ettt i it i ieaeas 9-8
96 WRITING APPLICATIONS WITH MMX CODE. . . ottt ettt ettt e et et et et e et e e e e e e 9-8
96.1 Checking for MMX TeChnology SUPPOMT . .. vttt e e e e e 9-8
96.2 Transitions Between X87 FPU and MMX COQe. vvtiii ittt e 9-9
96.3 USIiNG the EMMS INSTTUCTION .« ..ttt ettt et e et et et et e e et et ettt e e 9-9
964 Mixing MMX and X87 FPU INStrUCHIONSottt et e et e et it 9-10
96.5 INterfacing With MMX COQ@. . .. oottt e e ettt e et ettt 9-10
9.6.6 Using MMX Code in a Multitasking Operating System ENVIroNmMeNt.ot i ineeees 9-10
9.6.7 Exception HaNdling in MMX Q00 . ..o vvvit ittt et et e e e e 9-11
9.6.8 REGISTET M DINg .« ottt ettt e e e e e e 9-11
96.9 Effect of Instruction Prefixes 0n MMX INSTTUCTIONS . .. v vt it e aaes 9-11
CHAPTER 10
PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE)
10.1 OV ERVIEW OF INTEL® SSE . . ittt ittt ettt ettt et e e et aas 10-1
10.2 INTEL® SSE PROGRAMMING ENVIRONMENT ..ottt ettt et et e e anas 10-2
10.2.1 Intel® SSE in 64-Bit Mode and Compatibility MOGe. v v i e 10-3
10.2.2 D (=T (=T 10-3
10.2.3 MXCSR Control and STatus ReGIS\ i it i i e it e e 10-3
10.2.3.1 SIMD Floating-Point Mask and FIag Bitsouiii i i i et et e 10-4
10.2.3.2 SIMD Floating-Point Rounding Control Fieldcooiuiii i i it 10-4
10.23.3 LS o= o 10-4
10.23.4 DENOTMIAIS AT -ZBI0S . . o ettt ettt et et et et et e e e e e e e e 10-5
1024 Compatibility of Intel® SSE with Intel® SSE2 and SSE3, MMX, and the x87 FPU..........ccoiiiiiiiiiii i 10-5
103 INTEL® SSE DAT A TY PES .ttt ittt ettt et e e e e e e e e e e e e 10-5
104 INTEL® SSE INSTRUCTION SET ..ttt ittt ettt e et e e e e e e e et et e e et e e e et e eees 10-6
10.4.1 Intel® SSE Packed and Scalar Floating-Point INSTrUCtioONSovii i i 10-6
10.4.1.1 Intel® SSE Data Movement INSTTUCTIONSttt ettt ettt e et et n e in e e 10-7
104.1.2 INtel® SSE Arithmetic INSTrUCTIONS.\ c et e e e 10-8

X Vol. 1

CONTENTS

PAGE

104.2 INtel® SSE LoGical INSTTUCTIONSottt et e e e e et e e e e e 10-9
104.2.1 Intel® SSE ComParison INSTIUCTIONS ...\ttt e e e e 10-9
104.2.2 Intel® SSE Shuffle and Unpack INSTrUCTIONSo e 10-9
104.3 INtel® SSE CoNVErSION INSTIUCTIONS . . ot vttt ettt ettt e e et e e ettt enens 10-11
1044 Intel® SSE 64-Bit SIMD Integer INSTrUCTIONS. . ..ottt e e ettt e 10-11
104.5 MXCSR State Management INSTrUCTIONS. v ettt e et e et 10-12
10.4.6 Cacheability Control, Prefetch, and Memory Ordering INStructionsov i ee e 10-12
10.4.6.1 Cacheability Control INSTrUCTIONS ...\ttt e et e e e e as 10-12
104.6.2 Caching of Temporal vs. Non-Temporal Dataovvuiiii i e 10-12
104.6.3 PREFETCHR INStrUCHIONS . o vttt ettt e e e e e e e e e e e e 10-13
10.4.6.4 A = AN £y« T o 10-14
10.5 FXSAVE AND FXRSTOR INSTRUCTIONS . . .ttt ettt e ettt e e e e e e e e e et et es 10-14
10.5.1 L YN T P 10-14
10.5.1.1 DS 7 = 1 (=P 10-15
10.5.1.2 B) =1 (= 10-16
10.5.2 OPEration Of FXS AV E . . . e e e e e 10-16
10.5.3 OpEration Of FXRSTOR ...t e e ettt e 10-17
10.6 HANDLING INTEL® SSE INSTRUCTION EXCEPTIONS ..\ttt ettt ettt e e 10-17
10.7 WRITING APPLICATIONS WITH INTEL® SSE . .ottt ettt ettt et et et ee s 10-17
CHAPTER 11

PROGRAMMING WITH INTEL® STREAMING SIMD EXTENSIONS 2 (INTEL® SSE2)

11.1 OVERVIEW OF INTEL® SO ..ttt ittt ettt et ettt e e e e e e e ety 11-1
11.2 INTEL® SSE2 PROGRAMMING ENVIRONMENT . .ottt ittt e et e e e e e e e et e e et e e 11-2
11.2.1 Intel® SSE2 in 64-Bit Mode and Compatibility MOdecootii i e e 11-3
11.2.2 Compatibility of Intel® SSE2 with Intel® SSE, MMX Technology, and x87 FPU Programming Environment............ 11-3
11.2.3 DENOrMaAlS-ATE-ZEI0S Flag . . .ottt e e e 11-3
11.3 INTEL® SSE DAT A TY P . . ittt e e e et e 11-3
114 INTEL® SSE2 INSTRUCTIONS ...ttt ettt ettt et e e e e e e e et et e e et a e 11-4
11.4.1 Packed and Scalar Double Precision Floating-Point INStructions ... e i 11-4
11.4.1.1 Data MoVEmMENT INSTIUCTIONSottt et e e e e e et e e et 11-5
11.4.1.2 Intel® SSE2 Arithmetic INSTIUCTIONSttt e e e e 11-6
11.4.1.3 INtel® SSE2 LoGiCal INSTrUCTIONS. . ..ot v ettt e e e e e e e 11-7
11.41.4 Intel® SSE2 ComMPariSON INSTTUCTIONSttt ettt e et 11-7
11415 Intel® SSE2 Shuffle and Unpack INSITUCTIONS.o et e 11-7
11.4.1.6 Intel® SSE2 CoNVErsioN INSTIUCTIONS.t e ettt ettt e e st a e a e e nees 11-9
11.4.2 Intel® SSE2 64-Bit and 128-Bit SIMD Integer INStrUCtioNSv vttt e e e e 11-11
1143 128-Bit SIMD Integer INSTruCtion EXTENSIONS\ v et ettt ettt e et e s 11-11
1144 Cacheability Control and Memory Ordering INStrUCTIONSo v ' vttt e i iaas 11-12
11.44.1 L LAY 0 3T T 11-12
11.44.2 Cacheability Control INSTIUCTIONS v ettt ettt et ees 11-12
11443 Memory Ordering INSTrUCHIONS. . ..ottt et e e et e e e e e 11-12
11444 = 1 11-12
1145 BraNCN HINES L oo e e e 11-13
115 INTEL® SSE, SSE2, AND SSE3 EXCEPTIONS ..ottt ettt e e 11-13
11.5.1 SIMD Floating-Point EXCEPTIONS ..\ .ttt ittt e et e e 11-13
11.5.2 SIMD Floating-Point EXception CONditioNS.o v vt e 11-14
11.5.2.1 Invalid Operation EXCEPHION (H) v e e e e 11-14
11.5.2.2 Denormal-Operand EXCEPLioN (HD)oui e e e 11-15
11.5.23 Divide-By-Zero EXCOPTION (FZ) ..o\ttt et e e 11-15
11524 Numeric Overflow EXCEPTION (B0) u ittt 11-15
11.5.25 Numeric Underflow EXCEPTION (HU). . ..o vuiuit e e 11-16
11.5.2.6 Inexact-Result (Precision) EXCEPLION (HP)ovvir i e 11-16
1153 Generating SIMD Floating-Point EXCEPLIONS v vttt e e 11-16
11.53.1 Handling Masked EXCEDTIONS i ettt it e et e e 11-17
11.53.2 Handling Unmasked EXCEPTIONSttt ettt e e e et ettt n e aees 11-18
11533 Handling Combinations of Masked and Unmasked EXCEPTIONSveir ittt ieieeas 11-18
11.54 Handling SIMD Floating-Point EXCeptions in SOTtWare.o v e e 11-18
1155 Interaction of SIMD and x87 FPU Floating-Point EXCEPLIONS.vui it 11-18

CONTENTS

11.6 WRITING APPLICATIONS WITH INTEL® SSE AND SSE2 . . .ottt ittt 11-19
11.6.1 General Guidelines for Using Intel® SSE and SSE2 it e e e e 11-19
116.2 Checking for Intel® SSE and SSE2 SUPPOTT et e 11-19
1163 Checking for the DAZ Flag in the MXCSR ReGISTEr vi it 11-20
11.6.4 Initialization Of INTEI® SSE AN SSE2 ...\ttt e e e 11-20
11.6.5 Saving and Restoring the SSE/SSE2 STate. .. . it ittt e e et 11-21
11.6.6 Guidelines for Writing t0 the MXCSR REGISTETt \ ittt e e et iaas 11-21
11.6.7 Interaction of Intel® SSE and SSE2 Instructions with x87 FPU and MMX Instructions.oovvvvviinnn. 11-22
11.6.8 Compatibility of SIMD and x87 FPU Floating-Point Data TYPESvuvritiitn ittt nens 11-22
1169 Mixing Packed and Scalar Floating-Point and 128-Bit SIMD Integer InstructionsandData......................... 11-22
11.6.10 Interfacing with Intel® SSE and SSE2 Procedures and FUNCHIONSouirir it eaens 11-23
11.6.10.1 Passing Parameters in XMM ReGIS OISottt i et et i e 11-23
11.6.10.2 Saving XMM Register State on a Procedure or Function Call...........ooiiii i e 11-23
11.6.10.3 Caller-Save Recommendation for Procedure and Function Calls.oovuiiiiiei e 11-24
11.6.11 Updating Existing MMX Technology Routines Using 128-Bit SIMD Integer Instructions..............oviviiviininn 11-24
116.12 Branching on Arithmetic OPerationsiii ittt et eas 11-24
11.6.13 Cacheability HIMT INSTrUCTIONS. . .. oottt ettt ettt e et e et et ettt a e e 11-25
11.6.14 Effect of Instruction Prefixes on Intel® SSE and SSE2 INStrUCTIONSo v vv v v 11-25
CHAPTER 12

PROGRAMMING WITH INTEL® SSE3, SSSE3, INTEL® SSE4, AND INTEL® AES-NI

121 PROGRAMMING ENVIRONMENT AND DAT A TYPES . et 12-1
12.1.1 Intel® SSE3, SSSE3, and Intel® SSE4 in 64-Bit Mode and Compatibility Modecoviiiiiii i 12-1
12.1.2 Compatibility of Intel® SSE3 and SSSE3 with MMX Technology, the x87 FPU Environment, and Intel® SSE and SSE2 . 12-1
12.1.3 Horizontal and ASYmMMETriC PrOCESSING. . .\ttt vttt ettt e ettt ettt e ettt e 12-1
12.2 OVERVIEW OF INTEL® SSE3 INSTRUCTIONS ..ttt ettt et et e e e e et e e et n e aaaes 12-2
123 INTEL® SSE3 INSTRUCTIONS. . ..ttt ettt et e et et e e et e et et et et et et et e e eees 12-2
12.3.1 X87 FPU Instruction for INteger ConMVEISION . .. v .ttt ettt et e 12-3
1232 SIMD Integer Instruction for Specialized 128-Bit Unaligned Dataloadcooviiiiiiiiiiii e 12-3
1233 SIMD Floating-Point Instructions That Enhance LOAD/MOVE/DUPLICATE Performance.covvvvvivinnnnnns. 12-3
1234 SIMD Floating-Point Instructions Provide Packed Addition/Subtraction.............ccoiiiiiii i 12-4
12.3.5 SIMD Floating-Point Instructions Provide Horizontal Addition/Subtraction...............cooviiiii i 12-4
12.3.6 Two Thread Synchronization INSTrUCTIONS v .t e e 12-5
124 WRITING APPLICATIONS WITH INTEL® SSE3 ..ttt ittt e e e e aanes 12-5
12.4.1 Guidelines for Using INtel® SSE3 e e e 12-5
124.2 Checking for INTEI® SSE 3 SUP PO . ..o\ttt it ettt et e e ettt e ettt 12-5
1243 Enable FTZ and DAZ for SIMD Floating-Point Computationc.iuirieiii i i ee e 12-6
1244 Programming Intel® SSE3 with Intel® SSEaNd SSE2t e 12-6
125 OVERVIEW OF SSSE3 INSTRUCTIONS ..ottt et ettt e e et e e et e et et aenas 12-6
126 SSSE INSTRUCTIONS. . . ettt ettt et et e et e e e et e e e e e e e e aenes 12-6
12.6.1 Horizontal Addition/SUDTEaCHION . . oottt e e e e e e e e 12-7
12.6.2 Packed ADSOIUTE ValUBS.ttt e e e e et e 12-7
12.6.3 Multiply and Add Packed Signed and Unsigned ByTescoviiiiiii i it e 12-8
1264 Packed Multiply High with Round and SCaleooini i e i e 12-8
12.6.5 PaCcKed SHUTTIE By O . ittt e e e e e e 12-8
12.6.6 PaCKEA SIgN .« ettt e e e e 12-8
12.6.7 Packed AlIGN RIGNT. ottt e e 12-8
12.7 WRITING APPLICATIONS WITH SSSE3 EXTENSIONS . . .ottt ettt e e e 12-9
12.7.1 GUIdelines TOr USING SSSE 3. . ..ttt i i e et ettt e e et e e 12-9
12.7.2 ChecKing TOT SSSE 3 SUP PO . . ottt ettt et e et ettt e e e et e e et 12-9
128 INTEL® SSE3, SSSE3, AND INTEL® SSE4 EXCEPTIONS. . . oottt ettt e e e e eeens 12-9
12.8.1 Device Not Available (DNA) EXCEPTIONS. . ..ttt ettt et et e e e e 12-9
128.2 Numeric Error FIag and IGNNEH e e 12-9
1283 (=111 1o 12-10
1284 IEEE 754 Compliance of Intel® SSE4.1 Floating-Point INStructions.o e 12-10
129 INTEL® SSEA OV RV EW . . ettt et et e e et e et et et e n e e 12-10
1270 INTEL® SSEA. T INSTRUCTION SET ...ttt ettt ettt et ettt et e et et et e e e et et e eans 12-11
12.10.1 DWOrd MUHIPIY INStrUCTIONS & .o\ e ettt et et e e e e e et 12-11
12.10.2 Floating-Point Dot Product INSTIUCTIONSot e e 12-11

Xii Vol. 1

CONTENTS

PAGE

12.10.3 Streaming Load Hint INSTrUCtioN.ot e e e e e 12-12
12104 Packed Blending INStrUCtiONS. vttt ettt e e e 12-14
12.10.5 Packed Integer MIN/MAX INSTIUCTIONSttt et neas 12-14
12.10.6 Floating-Point Round Instructions with Selectable RoundingMode ... 12-14
12.10.7 Insertion and Extractions from XMM REGISTEISttt e e ettt et eeaens 12-15
12.10.8 Packed Integer FOrmMat COMVEISIONSttt t ettt et e e ettt e ettt et ettt e e et aeens 12-15
12.10.9 Improved Sums of Absolute Differences (SAD) for 4-Byte BlOCKS.vvvviiiii i 12-16
127010 HOMIZONTAl SBAICN . ..ottt et e e e e e e e e 12-16
L0 1 O I O - ol =T =T P 12-17
12.10.12 Packed Qword EQUality COMPAIISONS vttt ettt et et et et e et et e et e e e nee s 12-17
12.10.13 Dword Packing With Unsigned Saturationt e e et aaes 12-17
1217 INTEL® SSEA.2 INSTRUCTION SET . ot ittt ittt ettt ettt et et et e e et e e e e e ae s 12-17
12111 String and Text Processing INStrUCTIONS ittt e et ettt eiaaas 12-17
1211.1.1 Memory Operand AlIGNmENt ...t e 12-18
12.11.2 Packed Comparison SIMD Integer INSTrUCTiON v vt e e e e 12-18
1212 WRITING APPLICATIONS WITH INTEL® SSE4 EXTENSIONSttt et e e 12-18
12121 Guidelines for Using INtel® SSEA EXTENSIONSo\ttt ettt et ettt e ettt eaaenanas 12-18
12.12.2 Checking for INTEI® SSEA. T SUP PO ..\ ittt ittt ettt et e e ettt ettt aaenenas 12-19
12.12.3 Checking Tor INTEI® SSEA.2 SUP PO ..\ vttt ettt ettt ettt a e 12-19
1213 INTEL® AES-NEOVERVIEW . . o vttt et e et e et et e et et e e e e e e 12-19
12.13.1 Little-Endian Architecture and Big-Endian Specification (FIPS 197)t e 12-19
12.13.1.1 AES Data Structure in INtel® 64 ArChiteCIUME . . vttt e 12-20
12.13.2 AES Transformations and FUNCTIONSottt st e 12-21
12.13.3 O 0P 12-24
12134 Checking Tor INTel® ABS-NI SUD PO ..\ ittt e e e et et e ettt eneaas 12-24
CHAPTER 13

MANAGING STATE USING THE XSAVE FEATURE SET

13.1 XSAVE-SUPPORTED FEATURES AND STATE-COMPONENT BITMAPS. . ..ottt 13-1
13.2 ENUMERATION OF CPU SUPPORT FOR XSAVE INSTRUCTIONS AND XSAVE-SUPPORTED FEATURESovvees 13-3
133 ENABLING THE XSAVE FEATURE SET AND XSAVE-ENABLED FEATURES. ...\ttt 13-5
134 S AV E AR E A . ittt e e e e 13-7
13.4.1 Legacy Region Of N XS AV E ATa ..ttt ettt e e e e 13-8
134.2 Y S o 1= T T 13-9
1343 Extended Region Of @n XSAVE ArBa i ittt e e 13-9
135 XS AV E-MAN A GED ST AT E ittt ettt e e e e e et e e e e 13-10
13.5.1 D 7 €= (=S 13-10
135.2 Y) =1 (= 13-11
1353 LG 1 (= 13-11
13.5.4 1 G = 1 (= 13-11
13.5.5 LY 1 - | (S 13-12
13.5.6 el B = (=P 13-13
13.5.7 o L0 | PP 13-13
1358 Y |) - | (P 13-14
1359 [0S) - | (= 13-14
13.5.10 |G = 1= 13-14
13.5.11 UIN T R StaTE. 4 ottt ettt ettt et ettt et et et et et e e e e e e e e 13-15
13.5.12 BR S AT v vttt ettt e e e e e e e e e 13-16
13.5.13 1T = =P 13-17
13.5.14 Q) =1 (= 13-17
136 PROCESSOR TRACKING OF XSAVE-MANAGED STATE ..ottt ittt e 13-18
13.7 OPERATION OF XS AV E. ..ttt ettt e e e e e e et e et et e 13-19
13.8 OPERATION OF XRST O R .. ittt ettt ettt e et e e et e e et e e et e e e e 13-20
13.8.1 Standard FOrm O XRS T O R . ..t e e e e e e 13-20
13.8.2 Compacted FOrm Of XRSTOR ittt ettt ettt et et ettt ettt aaaanas 13-21
13.83 XRSTOR and the Init and Modified Optimizationso.iuiii i it 13-21
139 OPERATION OF XS AV O T ettt ettt et et et et e e et e e e et e e e e e 13-22
1370 OPERATION OF XSAVEC ..ttt et e e e e e e e e e e ee s 13-23
T3.TT OPERATION OF XSAVES .ottt e e e e e e e 13-24

Vol. 1 xiii

CONTENTS

PAGE
1312 OPERATION OF XRSTORS ..ttt ittt ettt ettt et e et et e et et et et e et e e s 13-25
13.13 MEMORY ACCESSES BY THE XSAVE FEATURE SET. .. ittt e e eens 13-27
1314 EXTENDED FEATURE DISABLE (XFD). . vttt ettt ettt e ettt ettt e e et et e e e e s 13-27
CHAPTER 14
PROGRAMMING WITH INTEL® AVX, FMA, AND INTEL® AVX2
14.1 INTEL® AV X OV RV E W .ttt ettt e e e et e e et e e e et e e e e aans 14-1
14.1.1 256-Bit Wide SIMD RegiSTOI SUP PO, . .\ vttt ittt ettt et e et e ettt et e et e 14-1
14.1.2 INSTrUCTioN SYNTaX ENNaNCEMENTS . ittt e e e e e 14-2
141.3 VEX Prefix INStruction ENCOdING SUP POt v vttt et e e 14-2
14.2 FUNCTIONAL OV RV E W vttt et e et st e e e e e e e e e e e e e e e e e e 14-3
14.2.1 256-Bit Floating-Point Arithmetic Processing ENNancementsS.t e i 14-9
14.2.2 256-Bit Non-Arithmetic InStruction ENNaNCeMENTSttt e nenaes 14-9
14.2.3 Arithmetic Primitives for 128-Bit Vector and Scalar processing.vvvviietit it ci i anenas 14-11
14.2.4 Non-Arithmetic Primitives for 128-Bit Vector and Scalar Processing.ovvvriiiriiiii it iiinenianns 14-13
143 DETECTION OF INTEL® AVX INSTRUCTIONS .ttt ettt e e e e e et et eenas 14-15
14.3.1 Detection of VEX-Encoded AES and VPCLMULQDQ oviiii ettt e e ettt et 14-17
144 HALF PRECISION FLOATING-POINT CONVERSIONottt ettt e e e e e e e e e n e e s 14-18
14.4.1 Detection Of FTBC INStrUCTIONSottt ettt e e et e et e e et 14-20
14.5 FUSED-MULTIPLY-ADD (FMA) EXTENSIONS. . .ottt ettt e e e et e e e e s 14-21
14.5.1 FMA Instruction Operand Order and Arithmetic BENaVIOr.o.vu it e 14-22
14.5.2 Fused-Multiply-ADD (FMA) NUMEC BEhaVior. ov ot s 14-22
1453 DEtECtiON OF FM A L ottt e e e e e e e 14-24
146 OVERVIEW OF INTEL® ADVANCED VECTOR EXTENSIONS 2 (INTEL® AVX2) v\ v vttt et ieaaas 14-25
14.6.1 Intel® AVX2 and 256-Bit Vector INteger ProCeSSiNg. . ..o .ottt i i i e et it 14-25
14.7 PROMOTED VECTOR INTEGER INSTRUCTIONS IN INTEL® AVX2 ..\ttt e ettt 14-26
14.7.1 DEteCtioN Of INTEl® A X . ettt e ettt e e e e 14-31
14.8 ACCESSING YMM REGISTERS ..ttt e e et a e 14-32
149 MEMORY ALIGNMEN T Lottt et e e e e e e e e e e e e e e 14-32
1410 SIMD FLOATING-POINT EXCEPTIONS . . .ottt ittt ettt ettt et e ettt e e et eees 14-34
TA T EMULATION ottt e et e e et et e e et et e e et e e e e 14-34
1412 WRITING INTEL® AVX FLOATING-POINT EXCEPTION HANDLERSttt 14-34
1413 GENERAL PURPOSE INSTRUCTION SET ENHANCEMENTS. . ..ottt 14-35
CHAPTER 15
PROGRAMMING WITH INTEL® AVX-512
15.1 OV RV B ottt et e e e e e e e e 15-1
15.1.1 5712-Bit Wide SIMD ReGISTOr SUP PO . . o\ttt ittt ittt ettt ettt ettt ettt 15-1
15.1.2 32 SIMD RIS O SUP PO . . ottt ettt ittt ettt e et ettt e e e e e e 15-1
15.1.3 Eight OpmMask ReGiStEr SUP PO . . .ottt e e e e e e 15-1
15.1.4 INSTrUCtioN SYNTaX ENNaNCEMENT ..\ttt e e 15-2
15.1.5 EVEX INStruction ENCOdING SUPPOTTttt 15-3
15.2 DETECTION OF AVX-512 FOUNDATION INSTRUCTIONSottt e e et e e e aas 15-3
15.2.1 Additional 512-Bit Instruction Extensions of the Intel® AVX-512 Family ...t 15-4
15.2.2 Detection 0f AVXST2-FP 16 INSTrUCTIONS . . .\ vt ettt ettt et et e ees 15-5
153 DETECTION OF 512-BIT INSTRUCTION GROUPS OF THE INTEL® AVX-5T2 FAMILY ... 15-6
154 DETECTION OF INTEL® AVX-512 INSTRUCTION GROUPS OPERATING AT 256 AND 128-BIT VECTOR LENGTHS......... 15-7
15.5 ACCESSING XMM, YMM, AND ZMM REGISTERS . .\ttt ittt et e e e e e e e 15-8
15.6 ENHANCED VECTOR PROGRAMMING ENVIRONMENT USING EVEX ENCODING ... ovvvteie it eieieienaan 15-8
15.6.1 OPMASK Register to Predicate Vector Data ProCesSingovvviiit ittt i ettt aeans 15-9
15.6.1.1 OPMASK REGISTEN KO ..ottt et ettt e e e e e e e e e 15-9
15.6.1.2 EXAMPIE OF OPMasK USaQES . .ot v vttt ittt ettt e e 15-10
15.6.2 0] 1T Q[0Tt o PP 15-11
15.6.3 20T o o 1 PP 15-11
15.6.4 Static Rounding Mode and SUppress All EXCEPTIONS v vttt 15-12
15.6.5 Compressed DiSPB N ENCOMING c.v ittt ittt e et e et e e e e e 15-13
15.7 MEMORY ALIGNMEN T L.ttt e e ettt e e e e e e et e e e 15-13
15.8 SIMD FLOATING-POINT EXCEPTIONS . . . ottt ettt ettt e et et e et e e e e e 15-14
159 INSTRUCTION EXCEPTION SPECIFICATION. . ottt ettt e et ettt et e et e et e e eens 15-15

Xiv Vol. 1

CONTENTS

PAGE
15,10 EMULATION ettt ettt et e e et e e e e et e e e e e e 15-15
15.117 WRITING FLOATING-POINT EXCEPTION HANDLERS ot 15-15
CHAPTER 16
PROGRAMMING WITH INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS
16.1 OV RV B .ttt et s e e e e e e e e 16-1
16.2 INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS . ..ttt 16-1
16.2.1 [L Yo k=Tt T 1= = = 16-2
16.2.2 R ST T L [= Lol 16-3
16.3 INTEL® TSX APPLICATION PROGRAMMING MODEL ettt e et e e e e et e e et et e et e e eeens 16-3
16.3.1 Detection of Transactional Synchronization SUPPOTt.o e 16-3
16.3.1.1 9720 =Y o o) o [ST o 16-3
16.3.1.2 9720 =Y 1o o I ST 0o 16-3
16.3.1.3 Detection Of XTEST INStrUCTION .\ttt ettt e et e ettt e s 16-4
16.3.1.4 Detection of Intel® TSX Suspend Load Address Trackingvvvrvrieiiiii e 16-4
16.3.2 Querying Transactional EXECULION STatUS v ittt e 16-4
16.3.3 Requirements fOr HLE LOCKSttt et et 16-4
1634 TraNSACTIONAl NS TN ...ttt e ittt e e e 16-4
16.3.4.1 HLE NeStiNg and Elisiont it i e et e ettt e 16-4
16.34.2 I 8N =TS 1 T 16-5
16.34.3 NESTING HLE @Nd R T, oottt e e e e e e 16-5
16.3.5 RTM Abort STatus Definitionou e e e e 16-5
16.3.6 I (= T A e [=T o T 16-6
16.3.7 RTM-ENabled DEDUGGEr SUP PO L. . . ittt ettt ettt e ettt ettt ettt ettt 16-6
16.3.8 Intel® TSX Suspend/Resume Load Address Tracking SUPPOMtottt i i ettt eaas 16-6
16.3.9 Programming ConSIQerationS u vttt et ettt e e e e e 16-6
16.3.9.1 Instruction Based ConSIderations. v.v ittt e e e s 16-7
16.3.9.2 RUNTIME CONSIAEIatioNS. . . v\ttt ettt et e e e e e e e e r e r e 16-8
CHAPTER 17
CONTROL-FLOW ENFORCEMENT TECHNOLOGY (CET)
17.1 INTRODUCTION. L sttt ettt ettt et e e e et e e et et e et et e et et e e e et e 17-1
17.1.1 R = 10 1T Lo 17-1
17.1.2 INAIrECt BranCh TracKing ..o v ettt e e e e e e s 17-1
17.1.3 Speculative Behavior when CET is ENabled.ot e e 17-2
17.2 SHA D O ST ACK S ittt e e e et e e e 17-2
17.2.1 Shadow Stack Pointer and its Operand and Address Size Attributes. ... i 17-2
17.2.2 =T .01 7o (o 17-2
17.2.3 SUPETVISOr SNAdOW STACK TOKEN ..\ttt ittt et et e e ettt a e eees 17-3
17.2.4 Shadow Stack Usage 0n Task SWITCh . ..o vvu it e 17-5
17.2.5 SWITChING SNAAOW STaCKS . v oottt e e e e e e e 17-5
17.26 Constraining Execution @t Targets Of RET. it e 17-7
17.3 INDIRECT BRANCH TRACKING . . ottt t ittt ettt e et et e e e e et e e e e e et et e e et e ees 17-7
17.3.1 No-track Prefix for Near INdirect CALL/MPo e e e e ettt ettt aaes 17-8
17.3.2 =T 11T o 17-9
1733 INAIrECt BranCh TracKing .. oo ettt e e e e e e e e 17-10
17.3.3.1 Control Transfers between CPL 3 and CPL € 3o i it 17-10
17.33.2 Control Transfers Within CPL 3 0r CPL € 3 ...ttt eaees 17-10
1734 Indirect Branch Tracking State Machine. e e et 17-11
17.3.5 LAV LIS JRL LT L11=T 0 1 17-12
17.3.6 Legacy Compatibility Treatment.o e e e e 17-12
17.3.6.1 Legacy Code Page Bitmap FOmmat.u ittt e e e et 17-13
1737 (0113 T= 0o] [a L= =1 [0 17-13
17.3.7.1 Intel® Transactional Synchronization Extensions (Intel® TSX) Interactions.c.ooviiiiiiiiiii i, 17-13
17.3.7.2 #CP(ENDBRANCH) Priority Wt #NM and HUD oo it 17-13
17373 #CP(ENDBRANCH) Priority W.rt #BP and DB,ottt 17-13
17.3.8 Constraining Speculation after Missing ENDBRANCH.ot et 17-14
17.4 INTEL® TRUSTED EXECUTION TECHNOLOGY (INTEL® TXT) INTERACTIONS ...ttt 17-14

Vol. T Xxv

CONTENTS

PAGE
CHAPTER 18
PROGRAMMING WITH INTEL® ADVANCED MATRIX EXTENSIONS
18.1 INT RO DUCTION . ottt ettt ettt e e e e et e e et e e e et e e et et e e e e e 18-1
18.1.1 Tile ArChiteCTUrE DEtailS . v o vttt e e e e e e e e 18-3
18.1.2 TMUL Architecture DetailSttt e et 18-4
18.1.3 Handling of Tile Row and Column Limits.o vt e e e it ia e 18-4
18.1.4 EXCEPTIONS AN I O U S . .. vttt et ettt e e e e e e e e 18-5
18.2 RECOMMENDATIONS FOR SYSTEM SOFTWAREottt e 18-5
183 IMPLEMENTATION PARAME T ERS .. . ittt ittt e e e 18-5
184 HELPER FUN CTIONS oottt ettt et e e et e e e e e e e e e e e e e e 18-6
CHAPTER 19
INPUT/OUTPUT
19.1 /0 PORT ADDRESSING . . . vttt ettt ettt et e e et e e e et e e e e e s 19-1
19.2 /O PORT HARDWWAREottt ettt et e e e et e e et e e e e e e et 19-1
193 /0 ADDRESS SPACE ...ttt ettt e e e e e e 19-1
19.3.1 MemOry-Mapped 1/0o e e 19-2
194 O INSTRUCTIONS . . oottt ettt e e et ettt e e e et e e et et e et et e e et e 19-3
195 PROTECTED-MODE 1/ ..ttt ettt e e et e e e e et e e et ettt e e s 19-3
19.5.1 O PrIVIIEGE LBV . .ttt et et et e e 19-3
19.5.2 /0 PEmMISSION Bt MaD .ottt e e e e 19-4
19.6 ORDERING [0 ottt ettt e e e e e e e 19-5
CHAPTER 20
PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION
20.1 USING THE CPUID INSTRUCTION . . s ettt vttt et et e et et e e et e e et e e et e e et e e et e aaas 20-1
20.1.1 N (o) (=i I =T =T (o T - L 20-1
20.1.2 Identification Of Earlier IA-32 PrOCESSONS. . .\ttt ettt ettt ettt et e 20-1
APPENDIX A
EFLAGS CROSS-REFERENCE
A1 EFLAGS AND INSTRUCTIONS ...ttt ettt et et e e e e e e e e et e e e e et e e et ey A-1
APPENDIX B
EFLAGS CONDITION CODES
B.1 CONDITION CODESottt t e ettt e e et e e e et e e e et et e e et et e e et e e e a e e s B-1
APPENDIX C
FLOATING-POINT EXCEPTIONS SUMMARY
C1 OV RV B ottt st et e e e e e e e e e e C-1
C2 XB7 FPU INSTRUCTIONS . ..ottt t et ettt e e et et e e e e et e e e et e e ee s C-1
Cc3 INTEL® SSE INSTRUCTIONS . .ottt e e et et e et et e e et et e et et et e n e et e e n e eaas C-3
C4 INTEL® SSE2 INSTRUCTIONS. . . .ottt ettt e et et e e e et e e et et et et e et et e e ia e eens C-5
C5 INTEL® SSE3 INSTRUCTIONS. . . .ottt ettt e et et e et et et et et et et e et et e e a e e s c-7
Cc6 SSSEB INSTRUCTION S, . . ettt ettt ettt e et e et e e e e et e e e e e c-7
C7 INTEL® SSEA INSTRUCTIONS. . ..ottt ettt ettt et e e et e et e e e et e et et c-7
APPENDIX D
GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
D.1 TWO OPTIONS FOR HANDLING FLOATING-POINT EXCEPTIONS ...ttt ettt eees D-1
D.2 SOFTWARE EXCEPTION HANDLUING . . . oottt ettt e et e e e et e e e e e et e e e es D-1
D3 EXCEPTION SYNCHRONIZATION L.ttt ittt ettt s e e e e e e e e e e e et e ey D-3
D4 SIMD FLOATING-POINT EXCEPTIONS AND THE IEEE STANDARD 754 ... oottt D-3
D.4.1 Floating-Point EMUIGTIONo i i e e e D-3
DA4.2 Intel® SSE, SSEZ, and SSE3 Response To Floating-Point EXCEPTIONSvvvvi it D-4
D4.2.1 N U =T ol =T o o 0 D-5
D4.2.2 Results of Operations with NaN Operands or a NaN Result for Intel® SSE, SSE2, and SSE3 Numeric Instructions. .. .D-5
D4.23 Condition Codes, Exception Flags, and Response for Masked and Unmasked Numeric Exceptions.................. D-9

Xxvi Vol. 1

CONTENTS

PAGE

D43 Example SIMD Floating-Point Emulation Implementation i e D-15
APPENDIX E

INTEL® MEMORY PROTECTION EXTENSIONS

€1 INTEL® MEMORY PROTECTION EXTENSIONS (INTEL® MPX) ..ottt ettt et e E-1
€2 INTRODUCTION. sttt et ettt et et ettt e et e e e et et e et e e e e et e e e e et E-1
€3 INTEL MPX PROGRAMMING ENVIRONMENT ..ttt ettt ettt e et et et e e e e e et e eans E-2
€3.1 Detection and Enumeration of INtel MPX INterfacesvvvi i s E-2
€3.2 2o TU 0 K R0] (=] 5 E-2
€33 Configuration and STatUS RIS OIS, . v\ttt ettt e e e e E-3
€34 Read and Write 0F IA3Z2_ BN D CFGS. . .. vttt ettt e et e et e e e et e et e E-4
€4 INTEL MPX INSTRUCTION SUMMARY ...ttt ittt ittt e et e e et e e et et e E-4
€4.1 1 a0 oo T = oo T E-5
€4.2 USAGE aN0 EXAMIDIES. . o\ vttt ittt ettt ettt et e e e e e e E-5
€4.3 Loading and Storing BOUNAS IM MmO Y . ..o v ittt et ettt et e ettt e e E-6
€4.3.1 BNDLDX and BNDSTX iN B4-Bit MOGE.ottt ettt e e e E-7
€4.3.2 BNDLDX and BNDSTX OUtSide B4-Bit MOGEottt ettt E-8
€5 INTERACTIONS WITH INTEL MP X L oottt ettt e e e e e e e e et e e e e E-9
€5.1 Intel MPX and Operating MOdes ... oot i i e e e e e E-9
€5.2 Intel® MPX Support for Pointer Operations with Branching. ..o i e E-10
€53 (07 O] I 1 = o T o E-10
€54 BOUND INstruction @and INtel MPXot et e e e e e e E-11
€55 Programming CoNSIAErationS v ittt et ettt et e e e e E-11
E5.6 Intel MPX and System Management MOGeo i i e e e E-11
€5.7 SUPPOMt Of It MP X N VM MCS L. i e e ettt e e ettt e ettt E-11
€5.8 SUpPOrt Of INtel MPX N INtel TS K. . ottt e ettt e e ettt aaas E-12

Vol. 1 Xxvii

CONTENTS

PAGE

FIGURES
Figure 1-1. Bit ANd By OMaer. . vttt et e e e e 1-6
Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation.o.ueiriiii e 1-8
Figure 2-1. The P6 Processor Microarchitecture with Advanced Transfer Cache Enhancement.................ccoovvnnts. 2-7
Figure 2-2. The Intel NetBurst® MicroarChiteCIUreo e et i es 2-9
Figure 2-3. The Intel® Core™ Microarchitecture Pipeline Functionality ... i 2-11
Figure 2-4. SIMD Extensions, Register Layouts, and Data TyYPeS vve ittt 2-16
Figure 2-5. Comparison of an |A-32 Processor Supporting Intel® Hyper-Threading Technology and a Traditional Dual

e 0T Yo Y VA3 =111 2-17
Figure 2-6. Intel 64 and |A-32 Processors that SUPPOrt DUal-Comeo vt i i e ittt eens 2-18
Figure 2-7. Intel® 64 Processors that SUPPOrt QUAad-Come. ettt e enees 2-19
Figure 2-8. = 0 I 7 o o o 1Yo 2-19
Figure 3-1. I1A-32 Basic Execution Environment for Non-64-Bit MOdesoviiiiii e 3-3
Figure 3-2. 64-Bit Mode EXECULION ENVITONMENT. . .\ttt ettt e e e e e et 3-6
Figure 3-3. Three Memory Management MOAeISo . e 3-8
Figure 3-4. General System and Application Programming Registerscoovir it i e e e i 3-11
Figure 3-5. Alternate General-PUrpose Register NamEsttt e e e e it 3-12
Figure 3-6. Use of Segment Registers for Flat Memory Model e e 3-14
Figure 3-7. Use of Segment Registers in Segmented Memory Model. ... e 3-14
Figure 3-8. [I O =T 3 1= 3-16
Figure 3-9. Memory OPerand AdAresS. vttt e e e e e e 3-21
Figure 3-10. Memory Operand Address in 64-Bit Mode.ooiiiiii i e et et i 3-21
Figure 3-11. Offset (or Effective Address) ComPULAtioN v. vttt e e 3-23
Figure 4-1. FUNAAMENTAl Data Ty DS, « vttt ettt et ittt e ettt e e et ettt e e et e et e 4-1
Figure 4-2. Bytes, Words, Doublewords, Quadwords, and Double Quadwords in Memorycoovviiiiiiiiiiii s 4-2
Figure 4-3. NV U =T ol =) = T R 0= 4-3
Figure 4-4. a1 p =T =1 = TIN5 4-6
Figure 4-5. POINTErS IN B4-Bit MOGEottt i e e e 4-7
Figure 4-6. Bit FIEld Data Ty P « ittt ittt ettt e e e e e e e e e e e i 4-7
Figure 4-7. B4-Bit Packed SIMD Data Ty PES ..ottt ittt et ettt e e e e e et e e e e e e 4-8
Figure 4-8. 128-Bit Packed SIMD Data Ty S . . vttt vttt ettt et ettt e e e e e 4-9
Figure 4-9. B Data Ty DS v vttt vttt ettt ettt e e e e e e e e e e e e 4-10
Figure 4-10. Binary Real NUMDEr SYS oM.ttt e e e e e aenas 4-12
Figure 4-11. Binary FIoating-Point FOrmat.o i i i e it et i e e 4-12
Figure 4-12. Real NUMDErs and NaN sot i i it e ettt et ettt a i eans 4-14
Figure 6-1. 1) =1) {1 1 6-2
Figure 6-2. Stack 0N NEar ANd Far CallS ...ttt e s e e e 6-6
Figure 6-3. Shadow Stack on Near and Far Callsoviu i e e 6-6
Figure 6-4. PrOtECHION RINGS. . .ottt e e e e 6-8
Figure 6-5. Stack Switch on a Call to a Different Privilege LeVel e 6-9
Figure 6-6. Shadow Stack Switch on a Call to a Different Privilege Level ... i 6-10
Figure 6-7. Stack Usage on Transfers to Interrupt and Exception Handling Routines. ... innnns 6-15
Figure 6-8. Shadow Stack Usage on Transfers to Interrupt and Exception HandlingRoutinescocoviviiinn, 6-16
Figure 6-9. NS TR PrOCEAUNES . vttt ettt et e e e e e e et e e et e s 6-21
Figure 6-10. Stack Frame After Entering the MAIN ProCedurettt e 6-22
Figure 6-11. Stack Frame After Entering Procedure A. e i ittt ettt et 6-22
Figure 6-12. Stack Frame After Entering Procedure B.o e ettt 6-23
Figure 6-13. Stack Frame After Entering Procedure C. . ..ot e e ettt i 6-24
Figure 7-1. Operation of the PUSH INStrUCHON. . ..ot e i es 7-5
Figure 7-2. Operation of the PUSHA INStrUCTIONttt e e e e e e 7-6
Figure 7-3. Operation of the POP INSTIUCTION e et e e e e e 7-6
Figure 7-4. Operation of the POPA INSTIUCTION.t e e e e 7-7
Figure 7-5. I 0 i =4 (=11 1 [7-7
Figure 7-6. SHL/SAL INSTrUCTION OPBration . ..o\ttt e e ettt e ettt 7-11
Figure 7-7. Y | S o Tt T T =T o 7-11
Figure 7-8. SAR INSTTUCTION O atiON. v vttt sttt ettt e e e e ettt e e e 7-12
Figure 7-9. SHLD and SHRD INSTrUCtion OPErationsttt ettt ettt et e et e e 7-12
Figure 7-10. ROL, ROR, RCL, and RCR INStruction OPerations.uvvuriiiniiiii it 7-13

Xviii Vol. 1

CONTENTS

PAGE
Figure 7-11. Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD INStructionscovvviiiii i cii i 7-21
Figure 8-1. X87 FPU EXECUTION ENVIiTONMBN T . .ottt et e 8-2
Figure 8-2. X87 FPU Data Register STacko e 8-2
Figure 8-3. Example x87 FPU Dot Product CompULationouiuii e 8-3
Figure 8-4. XB7 FPU Status WOrd. . ..ot i i e e e e 8-4
Figure 8-5. Moving the Condition Codes 10 the EFLAGS REGISTEr ...\t itt it et 8-6
Figure 8-6. DeS 37 = 0 o o) XY o o 8-7
Figure 8-7. XB7 FPU Tag WO . oottt ettt e e e e e e e e e e e e 8-8
Figure 8-8. Contents of XB7 FPU OpCode ReGISTerS. ... v ittt ittt 8-11
Figure 8-9. Protected Mode x87 FPU State Image in Memory, 32-Bit Format ... 8-11
Figure 8-10. Real Mode x87 FPU State Image in Memory, 32-Bit FOrmat.cciiiiii i et 8-12
Figure 8-11. Protected Mode x87 FPU State Image in Memory, 16-Bit Format ...t 8-12
Figure 8-12. Real Mode x87 FPU State Image in Memory, 16-Bit Format......... ... e 8-12
Figure 8-13. X87 FPU Data TyPe FOMmMatS . o ittt vttt ittt e e et e et e ettt e e e e ettt aaas 8-13
Figure 9-1. MMX Technology EXeCUtioN ENVITONMIENT. . ..\ttt e ettt et aenes 9-2
Figure 9-2. 1 D =0 =] Y= 9-3
Figure 9-3. Data Types Introduced with the MMX TeChNOlOgy.o vt e e i 9-3
Figure 9-4. SIMD EXECULION MOl . ..ot i e e e e e e 9-4
Figure 10-1. Intel® SSE EXECUTION ENVITONMENTttt e e et e e ettt n e n e ananas 10-2
FIGUrE TO-2. XMM REGIS OIS . o\ttt vttt ettt ettt et e e et e e e e e et e e e et e 10-3
Figure 10-3. MXCSR Control/Status REGISTOr ..o\ttt eas 10-4
Figure 10-4. 128-Bit Packed Single Precision Floating-Point Data TYPevviiii e 10-6
Figure 10-5. Packed Single Precision Floating-Point Operation.cc.iiitiiii i i e et ae e 10-7
Figure 10-6. Scalar Single Precision Floating-Point Operation.o.iuiit i e ettt ae e 10-7
Figure 10-7. SHUFPS Instruction, Packed Shuffle Operationouvriuiiiiii i et e e 10-10
Figure 10-8. UNPCKHPS Instruction, High Unpack and Interleave Operationovuiiuiiiiiiiiiiiiininiieennns 10-10
Figure 10-9. UNPCKLPS Instruction, Low Unpack and Interleave Operation.vuvuiuvtiiiiiiiiiiiiiienieienenn, 10-10
Figure 11-1. Intel® Steaming SIMD Extensions 2 Execution ENVIFONMENTttt 11-2
Figure 11-2. Data Types Introduced With INtel® SSE2 i e e e 11-4
Figure 11-3. Packed Double Precision Floating-Point Operations.cc.vit ittt it ae e 11-5
Figure 11-4. Scalar Double Precision FIoating-Point Operations.ouvuiuitiii ittt et n i aaas 11-5
Figure 11-5. SHUFPD Instruction, Packed Shuffle Operation.vuiuiuitnii i i 11-8
Figure 11-6. UNPCKHPD Instruction, High Unpack, and Interleave Operationcouvririiiiiiiiiiiiiiiniieienanns 11-8
Figure 11-7. UNPCKLPD Instruction, Low Unpack, and Interleave Operationc.vviiiiiiniiiiiiiiieninenaen, 11-8
Figure 11-8. Intel® SSE and SSE2 Conversion INSTrUCTIONSttt i e ittt ene e 11-9
Figure 11-9. Example Masked Response for Packed Operationsuuieiiiiie ettt ee i eanas 11-17
Figure 12-1. Asymmetric Processing in ADDSUBPDttt et et ettt eaaas 12-2
Figure 12-2. Horizontal Data Movement in HADDPDouii e e 12-2
Figure 12-3. Horizontal Data Movement in PHADDDtiit e et 12-7
Figure 12-4. MPSADBW OPEIation v vttt ettt et et e e e et e et e e 12-16
FIgUrE T2-5. AES STate FlOW. . ..ottt i i ettt e et e ettt et e e e 12-19
Figure 14-1. 256-Bit Wide SIMD RIS,ttt i e e e it e i e e ae e 14-2
Figure 14-2. General Procedural Flow of Application Detection of Intel® AVX e 14-15
Figure 14-3. General Procedural Flow of Application Detection of FIOat-16..o e 14-20
Figure 15-1. 512-Bit Wide Vectors and SIMD RegiSter Set.vuiri it e e 15-2
Figure 15-2. Procedural Flow for Application Detection of AVX-512 Foundation Instructionscocovviinen.. 15-4
Figure 15-3. Procedural Flow for Application Detection of 512-Bit INSTructions.cooiiiiii i 15-5
Figure 15-4. Procedural Flow for Application Detection of 512-Bit INStruction GroupSvvviiii it iieieanns 15-6
Figure 15-5. Procedural Flow for Detection of Intel® AVX-512 Instructions Operating at Vector Lengths < 512.............. 15-7
Figure 17-1. Supervisor Shadow Stack with a Supervisor Shadow Stack Token. ...t 17-4
Figure 17-2. RSTORSSP to Switch to New Shadow STacK.vvii i e 17-6
Figure 17-3. SAVEPREVSSP t0 Save a Restore PoiNt.o.vu i e 17-6
Figure 17-4. Priority of Control Protection Exception on Missing ENDBRANCH.ot 17-8
Figure 18-1. INtel® AMX ATCN OO UN . .. ittt it e et e et e ettt e ettt ettt ene e 18-1
Figure 18-2. The TMUL UNIT . .. ot e e e e e ettt e e et ettt e e e ettt e e e n it aaas 18-3
Figure 18-3. MatriX MU DY CH= A B ittt ittt e ettt et e e e ettt 18-4
Figure 19-T. Memory-Mapped [/ . ..ot et e e e e e e e 19-2
Figure 19-2. 1/0 Permission Bit Map.ottt e e e e e e 19-4
Figure D-1. Control Flow for Handling Unmasked Floating-Point EXCEPtioNSc.venieii e D-4

Vol.1 Xix

CONTENTS

Figure E-1.
Figure E-2.
Figure E-3.
Figure E-4.
Figure E-5.

XX Vol. 1

Layout of the Bounds Registers BNDO-BND 3.ouiuiittt ettt it aenes E-3
Common Layout of the Bound Configuration Registers BNDCFGU and BNDCFGS.covvviviiiiiinnnnnnns E-3
Layout of the Bound Status Registers BNDSTATUS E-4
Bound Paging Structure and Address Translation in 64-BitMode. ..ot E-7
Bound Paging Structure and Address Translation Outside 64-BitMode ...t E-9

CONTENTS

PAGE

TABLES

Table 2-1. Key Features 0f MOSt RECENT IA-32 PrOCESSOMS . vt v vttt sttt et et ettt e e et n e eees 2-21
Table 2-2. Key Features of Most Recent INtel® B4 PrOCESSOIS .. v vttt ettt e eees 2-21
Table 2-3. Key Features of Previous Generations of [A-32 ProCeSSOrS v vt it ittt 2-27
Table 2-4. Planned Intel® ISA and Features Removal List.ouvuert et 2-28
Table 2-5. Intel® ISA and Features REMOVEl LISt ov .ot 2-28
Table 3-1. INSETUCHION PO SiZES . . v\ttt e e e e e e 3-10
Table 3-2. Addressable General PUrPOSE REGISTEIS ... vttt et e eaas 3-13
Table 3-3. Effective Operand- and Address-Size AtIrDULESot e e 3-19
Table 3-4. Effective Operand- and Address-Size Attributes in64-BitMode. ...ttt 3-19
Table 3-5. Default Segment Selection RUIES.ttt e e e ettt e 3-22
Table 4-1. SigNed INtEGET ENCOAINGS « .\ vttt ettt ettt e ettt e e e e e e e e e e 4-4
Table 4-2. Length, Precision, and Range of FIoating-Point Data TyPeS ... vvvvii it e 4-5
Table 4-3. Floating-Point Number and NaN ENCOdINGS.o vttt e e neas 4-5
Table 4-4. Packed Decimal INnteger ENCOAINGS vttt et e 4-10
Table 4-5. Real and Floating-Point NUmber Notation.o e e ettt eaas 4-12
Table 4-6. DENOrMAliZatiON PrOCESS. . vttt ettt et ettt e e e e e e e 4-15
Table 4-7. Rules Tor HandING NaNSo e e e e e e e et 4-16
Table 4-8. Rounding Modes and Encoding of Rounding Control (RC) Field...........covvviii i 4-18
Table 4-9. Numeric Overflow TRresSholds.o e e e e 4-21
Table 4-10. Masked Responses 1o NUMEric OVErflowc.oiniui e e 4-21
Table 4-11. Numeric Underflow (Normalized) Thresholds.ouiii i e 4-22
Table 5-2. Instruction Set Extensions Introduction in Intel® 64 and [A-32 ProCeSSOrSvvvi i eeens 5-2
Table 5-1. Instruction Groups in INtel® 64 and IA-32 PrOCESSOMS ... v ittt ettt ettt ettt n et aenens 5-2
Table 5-3. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGXTcccoviiinn.n, 5-39
Table 6-1. EXCEPTIONS AN M O T U DTS, ot vttt et et e e e e 6-13
Table 7-1. MOVE INSTTUCTION OPEIatioNSo v ettt ettt et et e e e e e et e e e et e e e 7-3
Table 7-2. Conditional MOVE INSTIUCTIONS ...ttt ettt e e et e e e et e e r e r e e ens 7-4
Table 7-3. Bit Test and Modify INSTTUCHIONS.ot e e ettt ettt 7-14
Table 7-4. Conditional JUMP INSTrUCTIONS ...\ttt et e e e e ettt 7-16
Table 8-1. Condition Code INter P ETaTIONo\ttt e e e 8-5
Table 8-2. Precision CoNtrol FIEld (PO). vttt et e e e e e e e e 8-8
Table 8-3. Unsupported Double Extended Precision Floating-Point Encodings and Pseudo-Denormals 8-14
Table 8-4. D = T S = L S € (oo 3 P 8-16
Table 8-5. Floating-Point Conditional Move INSTrUCTIONS v vttt i e e e et eaas 8-16
Table 8-6. Setting of x87 FPU Condition Code Flags for Floating-Point Number Comparisons.covvvvevinennnn.n. 8-19
Table 8-7. Setting of EFLAGS Status Flags for Floating-Point Number Comparisons.o.vvviiii it 8-19
Table 8-8. TEST Instruction Constants for Conditional Branchingouiiiii i e 8-20
Table 8-9. Arithmetic and Non-arithmetic INStrUCTIONSo vttt e eaas 8-25
Table 8-10. Invalid Arithmetic Operations and the Masked Responsesto Themottt 8-27
Table 8-11. Divide-By-Zero Conditions and the Masked Responses t0 Them. ..o e 8-28
Table 9-1. Data Range Limits for Saturation.v i e e et et e 9-5
Table 9-2. MMX INSTTUCTION ST SUMIMIANY . v vttt ettt e e e et e et e ettt a e 9-6
Table 9-3. Effect of Prefixes on MMX INSITUCHIONS oo vt e 9-11
Table 10-1. PREFETCHh Instructions Caching HINTSo .o oo e 10-13
Table 10-2. FOrmMat OF AN FX S AV E AT ..ottt ettt e e e e e e e 10-15
Table 11-1. Masked Responses of Intel® SSE, SSE2, and SSE3 Instructions to Invalid Arithmetic Operations 11-14
Table 11-2. SSE and SSE2 State Following a Power-up/Reset or INIT ... e 11-20
Table 11-3. Effect of Prefixes on the Intel® SSE, SSE2, and SSE3 INSrUCLIONSvvvvv vt 11-26
Table 12-1. SIMD Numeric Exceptions Signaled by SSEA. Tot e e 12-10
Table 12-2. Enhanced 32-Bit SIMD Multiply Supported by INtel® SSE4.T o iicceaea 12-11
Table 12-3. Blend Field Size and Control Modes Supported by Intel® SSE4.1 i e 12-14
Table 12-4. Enhanced SIMD Integer MIN/MAX Instructions Supported by Intel® SSE4.T ... 12-14
Table 12-5. New SIMD Integer Conversions Supported by Intel® SSE4.1 ... e 12-15
Table 12-6. New SIMD Integer Conversions Supported by Intel® SSE4.To e 12-16
Table 12-7. Enhanced SIMD Pack Support by INtel® SSEA. e e 12-17
Table 12-8. Byte and 32-Bit Word Representation of @ 128-Bit State........ccovviiiii i e 12-20
Table 12-9. Matrix Representation of @ 128-Bit State.o e 12-20

Vol. 1 XXi

CONTENTS

Table 12-10.
Table 12-11.
Table 12-12.
Table 12-13.
Table 12-14.
Table 12-15.
Table 13-1.
Table 14-1.
Table 14-2.
Table 14-3.
Table 14-4.
Table 14-5.
Table 14-6.
Table 14-7.
Table 14-8.
Table 14-9.
Table 14-10.
Table 14-12.
Table 14-13.
Table 14-14.
Table 14-11.
Table 14-15.
Table 14-16.
Table 14-17.
Table 14-18.
Table 14-19.
Table 14-20.
Table 14-21.
Table 14-22.
Table 14-23.
Table 15-1.
Table 15-2.
Table 15-3.
Table 15-4.
Table 15-5.
Table 15-6.
Table 15-7.
Table 16-1.
Table 17-1.
Table 19-1.
Table A-1.
Table A-2.
Table B-1.
Table C-1.
Table C-2.
Table C-3.
Table C-4.
Table C-5.
Table C-6.
Table D-1.

Table D-2.
Table D-3.

Table D-4.
Table D-5.
Table D-6.
Table D-7.
Table D-8.

XXxii Vol. 1

Little Endian Representation 0f @ 128-Bit STatevvitiriii i i i i 12-21
Little Endian Representation of @ 4x4 Byte MatriXo.vviriiiiin i e 12-21
The ShiftROWS TranS ormMation.ot e e e e aens 12-22
Look-up Table Associated with S-Box Transformationovvviii e 12-22
The INVShiftROWS Trans OrmMation . .. v .ttt e e e e 12-23
Look-up Table Associated with InvS-Box Transformationcoviiiiii i e eee s 12-24
Format of the Legacy Region 0f @n XSAVE ArBa.vuiuiri ittt et ettt eaaas 13-8
Promoted SSSE3 and Intel® SSE, SSE2, SSE3, and SSE4 INSTIUCTIONS .. v v 14-3
Promoted 256-Bit and 128-Bit Arithmetic Intel® AVX INStructions.ovvviiii i 14-9
Promoted 256-Bit and 128-Bit Data Movement Intel® AVX INStructions. 14-9
256-Bit Intel® AVX Instruction ENNanCEmMENTSottt s 14-10
Promotion of Legacy SIMD ISA to 128-Bit Arithmetic Intel® AVX Instructions. ...t 14-11
128-Bit Intel® AVX INStruction ENNanCemMENTo\ttt e 14-13
Promotion of Legacy SIMD ISA to 128-Bit Non-Arithmetic Intel® AVX instruction...............cooviiiiinnnns, 14-14
Immediate Byte Encoding for 16-Bit Floating-Point Conversion Instructions.cooviiiiiiiiiininininn 14-18
Non-Numerical Behavior for VCVTPHZ2PS and VCVTPSZ2PH.o i 14-18
Invalid Operation for VCVTPHZ2PS and VCVTPS2PH.o e 14-18
Underflow Condition for VOV T PS2PH. ... ottt 14-19
Overflow Condition fOr VOV T PS2PHttt e e e e 14-19
Inexact Condition for VOV T P S 2PH e e 14-19
Denormal Condition SUMIMIAIY ... vttt e e e ettt 14-19
L o Y o oo 14-21
Rounding Behavior of Zero Result in FMA Operation.ouvuiiiiiii it i e eeees 14-23
FMA NUMETIC BENAVIOT. . . oot e e e et e e es 14-23
Promoted Vector Integer SIMD Instructions in Intel® AVXZo e 14-26
VEX-Only SIMD Instructions in INtel® AVX and AV X2ot i 14-29
New Primitive in Intel® AVX2 INStIUCTIONS v e e 14-30
Alignment Faulting Conditions when Memory Accessis Not Aligned ... 14-33
Instructions Requiring EXplicitly AlIgned Memoryot e e i e e 14-33
Instructions Not Requiring Explicit Memory Alignment e i et ieaeas 14-34
512-Bit Instruction Groups in the Intel® AVX-5T2 Family. ..o e 15-6
Feature Flag Collection Required of 256/128 Bit Vector Lengths for Each Instruction Group.................... 15-7
Instruction Mnemonics That Do Not Support EVEX. 128 ENCOdiNg.vvvvii et i e 15-8
Characteristics of Three Rounding Control Interfaces.o s 15-12
Static ROUNAING MOGE. . ..ot i i i e e et e e e 15-12
SIMD Instructions Requiring Explicitly Aligned Memoryoovirii i i e et 15-14
Instructions Not Requiring Explicit Memory AlIgNmentouir it i nenaaas 15-14
RTM Abort STatus Definitionoouie i e 16-5
Indirect Branch Tracking State Machingovvu i e e e 17-11
/0 INSTrUCHiON Serialization. vt e e 19-6
€0des DeSCriDING FIagS. . . ot vttt it ettt e e e e e e e A-1
EFLAGS CrOSS- RO OIBNCE. . o\ vttt ettt e et e e e e e e e A-1
EFLAGS CONAITION COOBS . .o v vttt ittt ettt e e et e e e et e e e et e e e et e e e e e e B-1
x87 FPU and SIMD Floating-Point EXCEPTIONS. . ..\ttt et e e C-1
Exceptions Generated with x87 FPU Floating-Point INStrUCtionsScoviinii i i C-1
Exceptions Generated with Intel® SSE INSTIUCTIONS.o i e e C-3
Exceptions Generated with Intel® SSE2 INStrUCTIONS it e e e C-5
Exceptions Generated with Intel® SSE3 INStrUCTIONS it e e e Cc-7
Exceptions Generated with INtel® SSE4 INSTrUCTIONS vtit i it eaaes C-8
ADDPS, ADDSS, SUBPS, SUBSS, MULPS, MULSS, DIVPS, DIVSS, ADDPD, ADDSD, SUBPD, SUBSD, MULPD, MULSD,
DIVPD, DIVSD, ADDSUBPS, ADDSUBPD, HADDPS, HADDPD, HSUBPS, and HSUBPD.ooviiciee e D-5
CMPPS.EQ, CMPSS.EQ, CMPPS.ORD, CMPSS.ORD, CMPPD.EQ, CMPSD.EQ, CMPPD.ORD, and CMPSD.ORD D-6
CMPPS.NEQ, CMPSS.NEQ, CMPPS.UNORD, CMPSS.UNORD, CMPPD.NEQ, CMPSD.NEQ, CMPPD.UNORD, and
CMPSDUNGORD ..ottt et e e e e et e e e e e e e e e D-6
CMPPS.LT, CMPSS.LT, CMPPS.LE, CMPSS.LE, CMPPD.LT, CMPSD.LT, CMPPD.LE, and CMPSD.LE............covvvvnnt D-6
CMPPS.NLT, CMPSS.NLT, CMPPS.NLE, CMPSS.NLE, CMPPD.NLT, CMPSD.NLT, CMPPD.NLE, and CMPSD.NLE............ D-7
COMISS @NA COMISD ...ttt ettt e et et et et et et et et e et e e D-7
UCOMISS @Nd UCOMISD ..ottt ittt ettt e et et e e e et e e e e e e e e e D-7

CVTPS2PI, CVTSS2SI, CVTTPS2PI, CVTTSS2SI, CVTPDZ2PI, CVTSD2SI, CVTTPD2PI, CVTTSD2SI, CVTPS2DQ,

CONTENTS

PAGE

CVTTPSZ2DQ, CVTPDZ2DQ, aNd CVTTPDZDQ . .. et ve ettt ettt e e e e et e e et e e et et eas D-7
Table D-S. MAXPS, MAXSS, MINPS, MINSS, MAXPD, MAXSD, MINPD, and MINSD.otiin e D-8
Table D-10. SQRTPS, SQRTSS, SQRTPD, @Nd SQRTSD ..\ttt ettt ettt e a e D-8
Table D-T1. CVUTPS2PD and CV T S 2 D . vttt ittt ettt e e et e e et et e e e e e e e D-8
Table D-T2. CVUTPDZPS aNd CV T D 2SS . oottt ittt e e e e e e e e e e e D-8
Table D-13. #1-INValid Operations ov ittt ettt ettt e e e e e e e D-9
Table D-14. H#Z - DiVIde-DY-Zer0.ot i i e e D-11
Table D-15. #D - Denormal OPEranad. v ittt ettt ettt e e et e e e e e e e D-12
Table D-16. #HO - NUMEIC OVErIOWottt e e e e e et D-13
Table D-17. HU - NUMEMC UNAer oW . o oo e e e e e e D-14
Table D-18. #P - IneXact RESUI (PreCiSiON) ve ittt et e e et D-15
Table €-1. Error Code Definition Of BND ST ATUS ...ttt e e e e e e e e e e e E-4
Table E-2. INtel MPX INStrUCTION SUMIMIAIY . .ottt ettt et e e et ettt e et e ettt eaens E-5
Table €-3. Effective Address Size of Intel® MPX Instructions with 67H Prefix. ..o E-10
Table E-4. Bounds Register INIT Behavior Due to BND Prefix with Branch Instructions..............c.covoiiiiiiiiinnnn. E-11

Vol. 1 xxiii

CONTENTS

PAGE

XXiv Vol. 1

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture (order number
253665) is part of a set that describes the architecture and programming environment of Intel® 64 and IA-32
architecture processors. Other volumes in this set are:

* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C & 2D: Instruction Set
Reference (order numbers 253666, 253667, 326018, and 334569).

* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D: System
Programming Guide (order numbers 253668, 253669, 326019, and 332831).

* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4: Model-Specific Registers (order
number 335592).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, describes the basic architecture
and programming environment of Intel 64 and IA-32 processors. The Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who write operating systems or exec-
utives. The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C, & 3D, describe
the operating-system support environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, addresses the programming environment for classes of software that host operating systems. The
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 4, describes the model-specific registers
of Intel 64 and IA-32 processors.

1.1 INTEL® 64 AND IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64 and IA-32 processors, which
include:

* Pentium® processors

® P6 family processors

* Pentium® 4 processors

* Pentium® M processors

* Intel® Xeon® processors

* Pentium® D processors

* Pentium® processor Extreme Editions

* 64-bit Intel® Xeon® processors

* Intel® Core™ Duo processor

* Intel® Core™ Solo processor

* Dual-Core Intel® Xeon® processor LV

* Intel® Core™ 2 Duo processor

* Intel® Core™ 2 Quad processor Q6000 series

* Intel® Xeon® processor 3000, 3200 series

* Intel® Xeon® processor 5000 series

* Intel® Xeon® processor 5100, 5300 series

* Intel® Core™ 2 Extreme processor X7000 and X6800 series
* Intel® Core™ 2 Extreme processor QX6000 series
* Intel® Xeon® processor 7100 series

Vol. T 1-1

ABOUT THIS MANUAL

* Intel® Pentium® Dual-Core processor

* Intel® Xeon® processor 7200, 7300 series

* Intel® Xeon® processor 5200, 5400, 7400 series

* Intel® Core™ 2 Extreme processor QX9000 and X9000 series
* Intel® Core™ 2 Quad processor Q9000 series

* Intel® Core™ 2 Duo processor E8000, T9000 series

* Intel Atom® processor family

* Intel Atom® processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, 2500, Z600, Z2000,
C1000 series are built from 45 nm and 32 nm processes

* Intel® Core™ i7 processor

* Intel® Core™i5 processor

* Intel® Xeon® processor E7-8800/4800/2800 product families
* Intel® Core™ i7-3930K processor

* 2nd generation Intel® Core™ i7-2xxx, Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series
* Intel® Xeon® processor E3-1200 product family

* Intel® Xeon® processor E5-2400/1400 product family

* Intel® Xeon® processor E5-4600/2600/1600 product family
* 3rd generation Intel® Core™ processors

* Intel® Xeon® processor E3-1200 v2 product family

* Intel® Xeon® processor E5-2400/1400 v2 product families

* Intel® Xeon® processor E5-4600/2600/1600 v2 product families
* Intel® Xeon® processor E7-8800/4800/2800 v2 product families
* 4th generation Intel® Core™ processors

* The Intel® Core™ M processor family

* Intel® Core™ i7-59xx Processor Extreme Edition

* Intel® Core™ i7-49xx Processor Extreme Edition

* Intel® Xeon® processor E3-1200 v3 product family

* Intel® Xeon® processor E5-2600/1600 v3 product families

* 5th generation Intel® Core™ processors

* Intel® Xeon® processor D-1500 product family

* Intel® Xeon® processor E5 v4 family

* Intel Atom® processor X7-Z8000 and X5-Z8000 series

* Intel Atom® processor Z3400 series

* Intel Atom® processor Z3500 series

* 6th generation Intel® Core™ processors

* Intel® Xeon® processor E3-1500m v5 product family

* 7th generation Intel® Core™ processors

* Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series

* Intel® Xeon® Scalable Processor Family

* 8th generation Intel® Core™ processors

* Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series

* Intel® Xeon® E processors

* 9th generation Intel® Core™ processors

* 2nd generation Intel® Xeon® Scalable Processor Family

1-2 Vol. 1

ABOUT THIS MANUAL

* 10th generation Intel® Core™ processors

* 11th generation Intel® Core™ processors

* 3rd generation Intel® Xeon® Scalable Processor Family
* 12th generation Intel® Core™ processors

* 13th generation Intel® Core™ processors

* 4th generation Intel® Xeon® Scalable Processor Family
* 5th generation Intel® Xeon® Scalable Processor Family
* Intel® Core™ Ultra 7 processors

P6 family processors are IA-32 processors based on the P6 family microarchitecture. This includes the Pentium®
Pro, Pentium® 1I, Pentium® Ill, and Pentium® 11l Xeon® processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based on the Intel NetBurst® microar-
chitecture. Most early Intel® Xeon® processors are based on the Intel NetBurst® microarchitecture. Intel Xeon
processor 5000, 7100 series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV are based on an improved
Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel® Pentium® dual-core, Intel®
Core™ 2 Duo, Intel® Core™ 2 Quad, and Intel® Core™ 2 Extreme processors are based on Intel® Core™ microar-
chitecture.

The Intel® Xeon® processor 5200, 5400, 7400 series, Intel® Core™ 2 Quad processor Q9000 series, and Intel®
Core™ 2 Extreme processors QX9000, X9000 series, Intel® Core™ 2 processor ES000 series are based on
Enhanced Intel® Core™ microarchitecture.

The Intel Atom® processors 200, 300, D400, D500, D2000, N200, N400, N2000, E2000, Z500, Z600, Z2000,
C1000 series are based on the Intel Atom® microarchitecture and supports Intel 64 architecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core Intel® Xeon® processor LV,
and early generations of Pentium 4 and Intel Xeon processors support IA-32 architecture. The Intel® Atom™
processor Z5xx series support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100, 7200, 7300, 7400 series, Intel®
Core™ 2 Duo, Intel® Core™ 2 Extreme, Intel® Core™ 2 Quad processors, Pentium® D processors, Pentium® Dual-
Core processor, newer generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architecture.

The Intel® Core™ i7 processor and Intel® Xeon® processor 3400, 5500, 7500 series are based on 45 nm Nehalem
microarchitecture. Westmere microarchitecture is a 32 nm version of the Nehalem microarchitecture. Intel®
Xeon® processor 5600 series, Intel Xeon processor E7 and various Intel Core i7, i5, i3 processors are based on the
Westmere microarchitecture. These processors support Intel 64 architecture.

The Intel® Xeon® processor E5 family, Intel® Xeon® processor E3-1200 family, Intel® Xeon® processor E7-
8800/4800/2800 product families, Intel® Core™ i7-3930K processor, and 2nd generation Intel® Core™ i7-2xxx,
Intel® Core™ i5-2xxx, Intel® Core™ i3-2xxx processor series are based on the Sandy Bridge microarchitecture and
support Intel 64 architecture.

The Intel® Xeon® processor E7-8800/4800/2800 v2 product families, Intel® Xeon® processor E3-1200 v2 product
family and 3rd generation Intel® Core™ processors are based on the Ivy Bridge microarchitecture and support
Intel 64 architecture.

The Intel® Xeon® processor E5-4600/2600/1600 v2 product families, Intel® Xeon® processor E5-2400/1400 v2
product families and Intel® Core™ i7-49xx Processor Extreme Edition are based on the Ivy Bridge-E microarchitec-
ture and support Intel 64 architecture.

The Intel® Xeon® processor E3-1200 v3 product family and 4th Generation Intel® Core™ processors are based on
the Haswell microarchitecture and support Intel 64 architecture.

The Intel® Xeon® processor E5-2600/1600 v3 product families and the Intel® Core™ i7-59xx Processor Extreme
Edition are based on the Haswell-E microarchitecture and support Intel 64 architecture.

The Intel Atom® processor Z8000 series is based on the Airmont microarchitecture.

Vol.1T 1-3

ABOUT THIS MANUAL

The Intel Atom® processor Z3400 series and the Intel Atom® processor Z3500 series are based on the Silvermont
microarchitecture.

The Intel® Core™ M processor family, 5th generation Intel® Core™ processors, Intel® Xeon® processor D-1500
product family and the Intel® Xeon® processor E5 v4 family are based on the Broadwell microarchitecture and
support Intel 64 architecture.

The Intel® Xeon® Scalable Processor Family, Intel® Xeon® processor E3-1500m v5 product family and 6th gener-
ation Intel® Core™ processors are based on the Skylake microarchitecture and support Intel 64 architecture.

The 7th generation Intel® Core™ processors are based on the Kaby Lake microarchitecture and support Intel 64
architecture.

The Intel Atom® processor C series, the Intel Atom® processor X series, the Intel® Pentium® processor J series,
the Intel® Celeron® processor J series, and the Intel® Celeron® processor N series are based on the Goldmont
microarchitecture.

The Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series is based on the Knights Landing microarchitecture and
supports Intel 64 architecture.

The Intel® Pentium® Silver processor series, the Intel® Celeron® processor J series, and the Intel® Celeron®
processor N series are based on the Goldmont Plus microarchitecture.

The 8th generation Intel® Core™ processors, 9th generation Intel® Core™ processors, and Intel® Xeon® E proces-
sors are based on the Coffee Lake microarchitecture and support Intel 64 architecture.

The Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series is based on the Knights Mill microarchitecture and
supports Intel 64 architecture.

The 2nd generation Intel® Xeon® Scalable Processor Family is based on the Cascade Lake product and supports
Intel 64 architecture.

Some 10th generation Intel® Core™ processors are based on the Ice Lake microarchitecture, and some are based
on the Comet Lake microarchitecture; both support Intel 64 architecture.

Some 11th generation Intel® Core™ processors are based on the Tiger Lake microarchitecture, and some are
based on the Rocket Lake microarchitecture; both support Intel 64 architecture.

Some 3rd generation Intel® Xeon® Scalable Processor Family processors are based on the Cooper Lake product,
and some are based on the Ice Lake microarchitecture; both support Intel 64 architecture.

The 12th generation Intel® Core™ processors are based on the Alder Lake performance hybrid architecture and
support Intel 64 architecture.

The 13th generation Intel® Core™ processors are based on the Raptor Lake performance hybrid architecture and
support Intel 64 architecture.

The 4th generation Intel® Xeon® Scalable Processor Family is based on Sapphire Rapids microarchitecture and
supports Intel 64 architecture.

The 5th generation Intel® Xeon® Scalable Processor Family is based on Emerald Rapids microarchitecture and
supports Intel 64 architecture.

The Intel® Core™ Ultra 7 processor is based on Meteor Lake hybrid architecture and supports Intel 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment for Intel's 32-bit microproces-
sors. Intel® 64 architecture is the instruction set architecture and programming environment which is the superset
of Intel’s 32-bit and 64-bit architectures. It is compatible with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 1: BASIC ARCHITECTURE

A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all volumes of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual. It also describes the notational conventions in these manuals and lists related Intel
manuals and documentation of interest to programmers and hardware designers.

1-4 Vol. 1

ABOUT THIS MANUAL

Chapter 2 — Intel® 64 and IA-32 Architectures. Introduces the Intel 64 and IA-32 architectures along with
the families of Intel processors that are based on these architectures. It also gives an overview of the common
features found in these processors and brief history of the Intel 64 and IA-32 architectures.

Chapter 3 — Basic Execution Environment. Introduces the models of memory organization and describes the
register set used by applications.

Chapter 4 — Data Types. Describes the data types and addressing modes recognized by the processor; provides
an overview of real numbers and floating-point formats and of floating-point exceptions.

Chapter 5 — Instruction Set Summary. Lists all Intel 64 and IA-32 instructions, divided into technology groups.

Chapter 6 — Procedure Calls, Interrupts, and Exceptions. Describes the procedure stack and mechanisms
provided for making procedure calls and for servicing interrupts and exceptions.

Chapter 7 — Programming with General-Purpose Instructions. Describes basic load and store, program
control, arithmetic, and string instructions that operate on basic data types, general-purpose and segment regis-
ters; also describes system instructions that are executed in protected mode.

Chapter 8 — Programming with the x87 FPU. Describes the x87 floating-point unit (FPU), including floating-
point registers and data types; gives an overview of the floating-point instruction set and describes the processor's
floating-point exception conditions.

Chapter 9 — Programming with Intel® MMX™ Technology. Describes Intel MMX technology, including MMX
registers and data types; also provides an overview of the MMX instruction set.

Chapter 10 — Programming with Intel® Streaming SIMD Extensions (Intel® SSE). Describes SSE exten-
sions, including XMM registers, the MXCSR register, and packed single precision floating-point data types; provides
an overview of the SSE instruction set and gives guidelines for writing code that accesses the SSE extensions.

Chapter 11 — Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2). Describes SSE2
extensions, including XMM registers and packed double precision floating-point data types; provides an overview
of the SSE2 instruction set and gives guidelines for writing code that accesses SSE2 extensions. This chapter also
describes SIMD floating-point exceptions that can be generated with SSE and SSE2 instructions. It also provides
general guidelines for incorporating support for SSE and SSE2 extensions into operating system and applications
code.

Chapter 12 — Programming with Intel® Streaming SIMD Extensions 3 (Intel® SSE3), Supplemental
Streaming SIMD Extensions 3 (SSSE3), Intel® Streaming SIMD Extensions 4 (Intel® SSE4) and Intel®
AES New Instructions (Intel® AES-NI). Provides an overview of the SSE3 instruction set, Supplemental SSE3,
SSE4, AESNI instructions, and guidelines for writing code that access these extensions.

Chapter 13 — Managing State Using the XSAVE Feature Set. Describes the XSAVE feature set instructions
and explains how software can enable the XSAVE feature set and XSAVE-enabled features.

Chapter 14 — Programming with Intel® AVX, FMA, and Intel® AVX2. Provides an overview of the Intel® AvVX
instruction set, FMA, and Intel® AVX2 extensions and gives guidelines for writing code that access these exten-
sions.

Chapter 15 — Programming with Intel® AVX-512. Provides an overview of the Intel® AVX-512 instruction set
extensions and gives guidelines for writing code that access these extensions.

Chapter 16 — Programming with Intel® Transactional Synchronization Extensions. Describes the instruc-
tion extensions that support lock elision techniques to improve the performance of multi-threaded software with
contended locks.

Chapter 17 — Control-flow Enforcement Technology. Provides an overview of the Control-flow Enforcement
Technology (CET) and gives guidelines for writing code that access these extensions.

Chapter 18 — Programming with Intel® Advanced Matrix Extensions. Provides an overview of the Intel®
Advanced Matrix Extensions and gives guidelines for writing code that access these extensions.

Chapter 19 — Input/Output. Describes the processor’s I/O mechanism, including I/0O port addressing, 1/0O
instructions, and I/O protection mechanisms.

Chapter 20 — Processor Identification and Feature Determination. Describes how to determine the CPU
type and features available in the processor.

Vol.1T 1-5

ABOUT THIS MANUAL

Appendix A — EFLAGS Cross-Reference. Summarizes how the IA-32 instructions affect the flags in the EFLAGS
register.

Appendix B — EFLAGS Condition Codes. Summarizes how conditional jump, move, and ‘byte set on condition
code’ instructions use condition code flags (OF, CF, ZF, SF, and PF) in the EFLAGS register.

Appendix C — Floating-Point Exceptions Summary. Summarizes exceptions raised by the x87 FPU floating-
point and SSE/SSE2/SSE3 floating-point instructions.

Appendix D — Guidelines for Writing SIMD Floating-Point Exception Handlers. Gives guidelines for writing
exception handlers for exceptions generated by SSE/SSE2/SSE3 floating-point instructions.

Appendix E — Intel® Memory Protection Extensions. Provides an overview of the Intel® Memory Protection
Extensions, a feature that has been deprecated and will not be available on future processors.

1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic representation of instructions, and for
hexadecimal and binary numbers. This notation is described below.

1.3.1 Bit and Byte Order

Inillustrations of data structures in memory, smaller addresses appear toward the bottom of the figure; addresses
increase toward the top. Bit positions are numbered from right to left. The numerical value of a set bit is equal to
two raised to the power of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this means
the bytes of a word are numbered starting from the least significant byte. See Figure 1-1.

Highest Data Structure

Address 31 24 23 16 15 8 7 0 = Bit offset
28

24

20

16

12

8

4
0 Lowest
Address

Byte Offset

Byte 3 Byte 2 Byte 1 Byte O

Figure 1-1. Bit and Byte Order

1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When bits are marked as
reserved, it is essential for compatibility with future processors that software treat these bits as having a future,
though unknown, effect. The behavior of reserved bits should be regarded as not only undefined, but unpredict-
able.

Software should follow these guidelines in dealing with reserved bits:

* Do not depend on the states of any reserved bits when testing the values of registers that contain such bits.
Mask out the reserved bits before testing.

* Do not depend on the states of any reserved bits when storing to memory or to a register.
®* Do not depend on the ability to retain information written into any reserved bits.

1-6 Vol. 1

ABOUT THIS MANUAL

®* When loading a register, always load the reserved bits with the values indicated in the documentation, if any,
or reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved bits in Intel 64 and IA-32 registers.
Depending upon the values of reserved register bits will make software dependent upon the
unspecified manner in which the processor handles these bits. Programs that depend upon
reserved values risk incompatibility with future processors.

1.3.2.1 Instruction Operands

When instructions are represented symbolically, a subset of the IA-32 assembly language is used. In this subset,
an instruction has the following format:
label: mnemonic argument1, argument2, argument3
where:
®* Alabel is an identifier which is followed by a colon.
* A mnemonic is a reserved name for a class of instruction opcodes which have the same function.

®* The operands argumentl, argument2, and argument3 are optional. There may be from zero to three
operands, depending on the opcode. When present, they take the form of either literals or identifiers for data
items. Operand identifiers are either reserved names of registers or are assumed to be assigned to data items
declared in another part of the program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the source and the left
operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is the destination operand,
and SUBTOTAL is the source operand. Some assembly languages put the source and destination in reverse order.

1.3.3 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by the character H (for
example, OF82EH). A hexadecimal digit is a character from the following set: 0, 1, 2, 3,4,5,6,7,8,9,A,B, C, D,
E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the character B (for
example, 1010B). The “"B"” designation is only used in situations where confusion as to the type of number might
arise.

1.3.4 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a sequence of bytes.
Whether one or more bytes are being accessed, a byte address is used to locate the byte or bytes memory. The
range of memory that can be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing where a program may have many
independent address spaces, called segments. For example, a program can keep its code (instructions) and stack
in separate segments. Code addresses would always refer to the code space, and stack addresses would always
refer to the stack space. The following notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment pointed by the DS
register:

Vol. 1T 1-7

ABOUT THIS MANUAL

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS register points to the
code segment and the EIP register contains the address of the instruction.

CSEIP

1.3.5 A New Syntax for CPUID, CR, and MSR Values

Obtain feature flags, status, and system information by using the CPUID instruction, by checking control register
bits, and by reading model-specific registers. We are moving toward a new syntax to represent this information.

See Figure 1-2.

CPUID Input and Output

CPUID.01H:EDX.SSE[bit 25] = 1

: i :

Input value for EAX register

Output register and feature flag or field
name with bit position(s)

Value (or range) of output

Control Register Values

CR4.0SFXSR[bit 9] = 1

: i :

Example CR name

Feature flag or field name
with bit position(s)

Value (or range) of output

Model-Specific Register Values

IA32_MISC_ENABLE.ENABLEFOPCODE[bit 2] = 1

=]

Example MSR name

Feature flag or field name with bit position(s)

Value (or range) of output

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

1.3.6 Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example, an attempt to
divide by zero generates an exception. However, some exceptions, such as breakpoints, occur under other condi-

1-8 Vol. 1

ABOUT THIS MANUAL

tions. Some types of exceptions may provide error codes. An error code reports additional information about the

error. An example of the notation used to show an exception and error code is shown below:

#PF(fault code)
This example refers to a page-fault exception under conditions where an error code naming a type of fault is

reported. Under some conditions, exceptions that produce error codes may not be able to report an accurate code.

In this case, the error code is zero, as shown below for a general-protection exception:

#GP(0)

1.4 RELATED LITERATURE

Literature related to Intel 64 and IA-32 processors is listed and viewable on-line at:
https://software.intel.com/en-us/articles/intel-sdm
See also:

* The latest security information on Intel® products:
https://www.intel.com/content/www/us/en/security-center/default.html

®* Software developer resources, guidance, and insights for security advisories:
https://software.intel.com/security-software-guidance/

®* The data sheet for a particular Intel 64 or IA-32 processor
®* The specification update for a particular Intel 64 or IA-32 processor

* Intel® C++ Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

* Intel® Fortran Compiler documentation and online help:
http://software.intel.com/en-us/articles/intel-compilers/

* Intel® Software Development Tools:
https://software.intel.com/en-us/intel-sdp-home

* Intel® 64 and IA-32 Architectures Software Developer’s Manual (in one, four or ten volumes):
https://software.intel.com/en-us/articles/intel-sdm

* Intel® 64 and IA-32 Architectures Optimization Reference Manual:
https://software.intel.com/en-us/articles/intel-sdm#optimization

* Intel® Trusted Execution Technology Measured Launched Environment Programming Guide:

http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html

* Intel® Software Guard Extensions (Intel® SGX) Information:
https://software.intel.com/en-us/isa-extensions/intel-sgx

®* Developing Multi-threaded Applications: A Platform Consistent Approach:
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applica-
tions.pdf

* Using Spin-Loops on Intel® Pentium® 4 Processor and Intel® Xeon® Processor:
https://software.intel.com/sites/default/files/22/30/25602

® Performance Monitoring Unit Sharing Guide:
http://software.intel.com/file/30388

Literature related to select features in future Intel processors are available at:

* Intel® Architecture Instruction Set Extensions Programming Reference:
https://software.intel.com/en-us/isa-extensions

More relevant links are:
* Intel® Developer Zone:
https://software.intel.com/en-us

Vol. 1

1-9

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
https://software.intel.com/en-us/isa-extensions/intel-sgx
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www.intel.com/content/www/us/en/software-developers/intel-txt-software-development-guide.html
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
https://software.intel.com/en-us
https://software.intel.com/en-us
http://software.intel.com/en-us/articles/intel-compilers/
http://software.intel.com/en-us/articles/intel-compilers/
https://software.intel.com/en-us/isa-extensions
https://software.intel.com/sites/default/files/article/147714/51534-developing-multithreaded-applications.pdf
https://software.intel.com/en-us/intel-sdp-home
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm#optimization
https://www.intel.com/content/www/us/en/security-center/default.html
https://software.intel.com/sites/default/files/22/30/25602
https://software.intel.com/security-software-guidance/

ABOUT THIS MANUAL

®* Developer centers:
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html

® Processor support general link:
http://www.intel.com/support/processors/

* Intel® Hyper-Threading Technology (Intel® HT Technology):
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm

1-10 Vol.1

http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/content/www/us/en/hardware-developers/developer-centers.html
http://www.intel.com/support/processors/
http://www.intel.com/technology/platform-technology/hyper-threading/index.htm
http://developer.intel.com/technology/hyperthread/
https://software.intel.com/en-us/articles/resource-center/

CHAPTER 2
INTEL® 64 AND IA-32 ARCHITECTURES

2.1 BRIEF HISTORY OF INTEL® 64 AND IA-32 ARCHITECTURES

The following sections provide a summary of the major technical evolutions from IA-32 to Intel 64 architecture:
starting from the Intel 8086 processor to the latest Intel® Core® 2 Duo, Core 2 Quad and Intel Xeon processor
5300 and 7300 series. Object code created for processors released as early as 1978 still executes on the latest
processors in the Intel 64 and IA-32 architecture families.

2.1.1 16-Bit Processors and Segmentation (1978)

The IA-32 architecture family was preceded by 16-bit processors, the 8086 and 8088. The 8086 has 16-bit regis-
ters and a 16-bit external data bus, with 20-bit addressing giving a 1-MByte address space. The 8088 is similar to
the 8086 except it has an 8-bit external data bus.

The 8086/8088 introduced segmentation to the IA-32 architecture. With segmentation, a 16-bit segment register
contains a pointer to a memory segment of up to 64 KBytes. Using four segment registers at a time, 8086/8088

processors are able to address up to 256 KBytes without switching between segments. The 20-bit addresses that
can be formed using a segment register and an additional 16-bit pointer provide a total address range of 1 MByte.

2.1.2 The Intel® 286 Processor (1982)

The Intel 286 processor introduced protected mode operation into the IA-32 architecture. Protected mode uses the
segment register content as selectors or pointers into descriptor tables. Descriptors provide 24-bit base addresses
with a physical memory size of up to 16 MBytes, support for virtual memory management on a segment swapping
basis, and a number of protection mechanisms. These mechanisms include:

®* Segment limit checking.
®* Read-only and execute-only segment options.
®* Four privilege levels.

2.1.3 The Intel386™ Processor (1985)

The Intel386 processor was the first 32-bit processor in the IA-32 architecture family. It introduced 32-bit registers
for use both to hold operands and for addressing. The lower half of each 32-bit Intel386 register retains the prop-
erties of the 16-bit registers of earlier generations, permitting backward compatibility. The processor also provides
a virtual-8086 mode that allows for even greater efficiency when executing programs created for 8086/8088
processors.

In addition, the Intel386 processor has support for:

® A 32-bit address bus that supports up to 4-GBytes of physical memory.

®* A segmented-memory model and a flat memory model.

®* Paging, with a fixed 4-KByte page size providing a method for virtual memory management.
®* Support for parallel stages.

2.1.4 The Intel486™ Processor (1989)

The Intel486™ processor added more parallel execution capability by expanding the Intel386 processor’s instruc-
tion decode and execution units into five pipelined stages. Each stage operates in parallel with the others on up to
five instructions in different stages of execution.

Vol. 1T 2-1

INTEL® 64 AND IA-32 ARCHITECTURES

In addition, the processor added:

* An 8-KByte on-chip first-level cache that increased the percent of instructions that could execute at the scalar
rate of one per clock.

®* Anintegrated x87 FPU.
®* Power saving and system management capabilities.

2.1.5 The Intel® Pentium® Processor (1993)

The introduction of the Intel Pentium processor added a second execution pipeline to achieve superscalar perfor-
mance (two pipelines, known as u and v, together can execute two instructions per clock). The on-chip first-level
cache doubled, with 8 KBytes devoted to code and another 8 KBytes devoted to data. The data cache uses the MESI
protocol to support more efficient write-back cache in addition to the write-through cache previously used by the
Intel486 processor. Branch prediction with an on-chip branch table was added to increase performance in looping
constructs.

In addition, the processor added:

®* Extensions to make the virtual-8086 mode more efficient and allow for 4-MByte as well as 4-KByte pages.
* Internal data paths of 128 and 256 bits add speed to internal data transfers.

® Burstable external data bus was increased to 64 bits.

®* An APIC to support systems with multiple processors.

® A dual processor mode to support glueless two processor systems.

A subsequent stepping of the Pentium family introduced Intel MMX technology (the Pentium Processor with MMX
technology). Intel MMX technology uses the single-instruction, multiple-data (SIMD) execution model to perform
parallel computations on packed integer data contained in 64-bit registers.

See Section 2.2.7, “SIMD Instructions.”

2.1.6 The P6 Family of Processors (1995—1999)

The P6 family of processors was based on a superscalar microarchitecture that set new performance standards; see
also Section 2.2.1, “P6 Family Microarchitecture.” One of the goals in the design of the P6 family microarchitecture
was to exceed the performance of the Pentium processor significantly while using the same 0.6-micrometer, four-
layer, metal BICMOS manufacturing process. Members of this family include the following:

* The Intel Pentium Pro processor is three-way superscalar. Using parallel processing techniques, the
processor is able on average to decode, dispatch, and complete execution of (retire) three instructions per
clock cycle. The Pentium Pro introduced the dynamic execution (micro-data flow analysis, out-of-order
execution, superior branch prediction, and speculative execution) in a superscalar implementation. The
processor was further enhanced by its caches. It has the same two on-chip 8-KByte 1st-Level caches as the
Pentium processor and an additional 256-KByte Level 2 cache in the same package as the processor.

®* The Intel Pentium II processor added Intel MMX technology to the P6 family processors along with new
packaging and several hardware enhancements. The processor core is packaged in the single edge contact
cartridge (SECC). The Level | data and instruction caches were enlarged to 16 KBytes each, and Level 2 cache
sizes of 256 KBytes, 512 KBytes, and 1 MBytes are supported. A half-frequency backside bus connects the
Level 2 cache to the processor. Multiple low-power states such as AutoHALT, Stop-Grant, Sleep, and Deep Sleep
are supported to conserve power when idling.

®* The Pentium II Xeon processor combined the premium characteristics of previous generations of Intel
processors. This includes: 4-way, 8-way (and up) scalability and a 2 MBytes 2nd-Level cache running on a full-
frequency backside bus.

®* The Intel Celeron processor family focused on the value PC market segment. Its introduction offers an
integrated 128 KBytes of Level 2 cache and a plastic pin grid array (P.P.G.A.) form factor to lower system design
cost.

®* The Intel Pentium lll processor introduced the Streaming SIMD Extensions (SSE) to the IA-32 architecture.
SSE extensions expand the SIMD execution model introduced with the Intel MMX technology by providing a

2-2 Vol.1

INTEL® 64 AND IA-32 ARCHITECTURES

new set of 128-bit registers and the ability to perform SIMD operations on packed single precision floating-
point values. See Section 2.2.7, “"SIMD Instructions.”

®* The Pentium Il Xeon processor extended the performance levels of the IA-32 processors with the
enhancement of a full-speed, on-die, and Advanced Transfer Cache.

2.1.7 The Intel® Pentium® 4 Processor Family (2000—2006)

The Intel Pentium 4 processor family is based on Intel NetBurst microarchitecture; see Section 2.2.2, “Intel
NetBurst® Microarchitecture.”

The Intel Pentium 4 processor introduced Streaming SIMD Extensions 2 (SSE2); see Section 2.2.7, “SIMD Instruc-
tions.” The Intel Pentium 4 processor 3.40 GHz, supporting Hyper-Threading Technology introduced Streaming
SIMD Extensions 3 (SSE3); see Section 2.2.7, "SIMD Instructions.”

Intel 64 architecture was introduced in the Intel Pentium 4 Processor Extreme Edition supporting Hyper-Threading
Technology and in the Intel Pentium 4 Processor 6xx and 5xx sequences.

Intel® Virtualization Technology (Intel® VT) was introduced in the Intel Pentium 4 processor 672 and 662.

2.1.8 The Intel® Xeon® Processor (2001—2007)

Intel Xeon processors (with exception for dual-core Intel Xeon processor LV, Intel Xeon processor 5100 series) are
based on the Intel NetBurst microarchitecture; see Section 2.2.2, “Intel NetBurst® Microarchitecture.” As a family,
this group of IA-32 processors (more recently Intel 64 processors) is designed for use in multi-processor server
systems and high-performance workstations.

The Intel Xeon processor MP introduced support for Intel® Hyper-Threading Technology; see Section 2.2.8, “Intel®
Hyper-Threading Technology.”

The 64-bit Intel Xeon processor 3.60 GHz (with an 800 MHz System Bus) was used to introduce Intel 64 architec-
ture. The Dual-Core Intel Xeon processor includes dual core technology. The Intel Xeon processor 70xx series
includes Intel Virtualization Technology.

The Intel Xeon processor 5100 series introduces power-efficient, high performance Intel Core microarchitecture.
This processor is based on Intel 64 architecture; it includes Intel Virtualization Technology and dual-core tech-
nology. The Intel Xeon processor 3000 series are also based on Intel Core microarchitecture. The Intel Xeon
processor 5300 series introduces four processor cores in a physical package, they are also based on Intel Core
microarchitecture.

2.1.9 The Intel® Pentium® M Processor (2003—2006)

The Intel Pentium M processor family is a high performance, low power mobile processor family with microarchitec-
tural enhancements over previous generations of IA-32 Intel mobile processors. This family is designed for
extending battery life and seamless integration with platform innovations that enable new usage models (such as
extended mobility, ultra thin form-factors, and integrated wireless networking).

Its enhanced microarchitecture includes:
® Support for Intel Architecture with Dynamic Execution.

* A high performance, low-power core manufactured using Intel’s advanced process technology with copper
interconnect.

®* On-die, primary 32-KByte instruction cache and 32-KByte write-back data cache.

®* On-die, second-level cache (up to 2 MByte) with Advanced Transfer Cache Architecture.
®* Advanced Branch Prediction and Data Prefetch Logic.

® Support for MMX technology, Streaming SIMD instructions, and the SSE2 instruction set.
® A 400 or 533 MHz, Source-Synchronous Processor System Bus.

* Advanced power management using Enhanced Intel SpeedStep® technology.

Vol.1 2-3

INTEL® 64 AND IA-32 ARCHITECTURES

2.1.10 The Intel® Pentium® Processor Extreme Edition (2005)

The Intel Pentium processor Extreme Edition introduced dual-core technology. This technology provides advanced
hardware multi-threading support. The processor is based on Intel NetBurst microarchitecture and supports Intel
SSE, SSE2, SSE3, Intel Hyper-Threading Technology, and Intel 64 architecture.

See also:

® Section 2.2.2, “Intel NetBurst® Microarchitecture.”

® Section 2.2.3, “Intel® Core™ Microarchitecture.”

® Section 2.2.7, “SIMD Instructions.”

® Section 2.2.8, “"Intel® Hyper-Threading Technology.”
® Section 2.2.9, “Multi-Core Technology.”

® Section 2.2.10, “Intel® 64 Architecture.”

2.1.11 The Intel® Core™ Duo and Intel® Core™ Solo Processors (2006—2007)

The Intel Core Duo processor offers power-efficient, dual-core performance with a low-power design that extends
battery life. This family and the single-core Intel Core Solo processor offer microarchitectural enhancements over
Pentium M processor family.

Its enhanced microarchitecture includes:

* Intel® Smart Cache which allows for efficient data sharing between two processor cores.

®* Improved decoding and SIMD execution.

* Intel® Dynamic Power Coordination and Enhanced Intel® Deeper Sleep to reduce power consumption.
* Intel® Advanced Thermal Manager which features digital thermal sensor interfaces.

® Support for power-optimized 667 MHz bus.

The dual-core Intel Xeon processor LV is based on the same microarchitecture as Intel Core Duo processor, and
supports IA-32 architecture.

2.1.12 The Intel® Xeon® Processor 5100, 5300 Series, and Intel® Core™ 2 Processor Family
(2006)

The Intel Xeon processor 3000, 3200, 5100, 5300, and 7300 series, Intel Pentium Dual-Core, Intel Core 2 Extreme,
Intel Core 2 Quad processors, and Intel Core 2 Duo processor family support Intel 64 architecture; they are based
on the high-performance, power-efficient Intel® Core microarchitecture built on 65 nm process technology. The
Intel Core microarchitecture includes the following innovative features:

* Intel® Wide Dynamic Execution to increase performance and execution throughput.

* Intel® Intelligent Power Capability to reduce power consumption.

* Intel® Advanced Smart Cache which allows for efficient data sharing between two processor cores.
* Intel® Smart Memory Access to increase data bandwidth and hide latency of memory accesses.

* Intel® Advanced Digital Media Boost which improves application performance using multiple generations of
Streaming SIMD extensions.

The Intel Xeon processor 5300 series, Intel Core 2 Extreme processor QX6800 series, and Intel Core 2 Quad
processors support Intel quad-core technology.

2.1.13 The Intel® Xeon® Processor 5200, 5400, 7400 Series, and Intel® Core™ 2 Processor
Family (2007)

The Intel Xeon processor 5200, 5400, and 7400 series, Intel Core 2 Quad processor Q9000 Series, Intel Core 2 Duo
processor E8000 series support Intel 64 architecture; they are based on the Enhanced Intel® Core microarchitec-

2-4 Vol.1

INTEL® 64 AND IA-32 ARCHITECTURES

ture using 45 nm process technology. The Enhanced Intel Core microarchitecture provides the following improved
features:

* Aradix-16 divider, faster OS primitives further increases the performance of Intel® Wide Dynamic Execution.

* Improves Intel® Advanced Smart Cache with Up to 50% larger level-two cache and up to 50% increase in way-
set associativity.

* A 128-bit shuffler engine significantly improves the performance of Intel® Advanced Digital Media Boost and
SSE4.

The Intel Xeon processor 5400 series and the Intel Core 2 Quad processor Q9000 Series support Intel quad-core
technology. The Intel Xeon processor 7400 series offers up to six processor cores and an L3 cache up to 16 MBytes.

2.1.14 The Intel Atom® Processor Family (2008)

The first generation of Intel Atom® processors are built on 45 nm process technology. They are based on a new
microarchitecture, Intel Atom® microarchitecture, which is optimized for ultra low power devices. The Intel Atom®
microarchitecture features two in-order execution pipelines that minimize power consumption, increase battery
life, and enable ultra-small form factors. The initial Intel Atom Processor family and subsequent generations
including Intel Atom processor D2000, N2000, E2000, Z2000, C1000 series provide the following features:

* Enhanced Intel® SpeedStep® Technology.
* Intel® Hyper-Threading Technology.
®* Deep Power Down Technology with Dynamic Cache Sizing.

® Support for instruction set extensions up to and including Supplemental Streaming SIMD Extensions 3
(SSSE3).

* Support for Intel® Virtualization Technology.
* Support for Intel® 64 Architecture (excluding Intel Atom processor Z5xx Series).

2.1.15 The Intel Atom® Processor Family Based on Silvermont Microarchitecture (2013)

Intel Atom Processor C2xxx, E3xxx, S1xxx series are based on the Silvermont microarchitecture. Processors based
on the Silvermont microarchitecture support instruction set extensions up to and including SSE4.2, AESNI, and
PCLMULQDQ.

2.1.16 The Intel® Core™ i7 Processor Family (2008)

The Intel Core i7 processor 900 series supports Intel 64 architecture, and is based on Nehalem microarchitecture
using 45 nm process technology. The Intel Core i7 processor and Intel Xeon processor 5500 series include the
following features:

* Intel® Turbo Boost Technology converts thermal headroom into higher performance.

* Intel® HyperThreading Technology in conjunction with Quadcore to provide four cores and eight threads.
®* Dedicated power control unit to reduce active and idle power consumption.

®* Integrated memory controller on the processor supporting three channels of DDR3 memory.

* 8 MB inclusive Intel® Smart Cache.

* Intel® QuickPath interconnect (QPI) providing point-to-point link to chipset.

® Support for SSE4.2 and SSE4.1 instruction sets.

® Second generation Intel Virtualization Technology.

2.1.17 The Intel®* Xeon® Processor 7500 Series (2010)

The Intel Xeon processor 7500 and 6500 series are based on Nehalem microarchitecture using 45 nm process tech-
nology. These processors support the same features described in Section 2.1.16, plus the following features:

Vol.1 2-5

INTEL® 64 AND IA-32 ARCHITECTURES

®* Up to eight cores per physical processor package.
* Up to 24 MB inclusive Intel® Smart Cache.

* Provides Intel® Scalable Memory Interconnect (Intel® SMI) channels with Intel® 7500 Scalable Memory Buffer
to connect to system memory.

®* Advanced RAS supporting software recoverable machine check architecture.

2.1.18 2010 Intel® Core™ Processor Family (2010)

The 2010 Intel Core processor family spans Intel Core i7, i5, and i3 processors. These processors are based on
Westmere microarchitecture using 32 nm process technology. The features can include:

®* Deliver smart performance using Intel Hyper-Threading Technology plus Intel Turbo Boost Technology.
® Enhanced Intel Smart Cache and integrated memory controller.

* Intelligent power gating.

®* Repartitioned platform with on-die integration of 45 nm integrated graphics.

® Range of instruction set support up to AESNI, PCLMULQDQ, SSE4.2 and SSE4.1.

2.1.19 The Intel®* Xeon® Processor 5600 Series (2010)

The Intel Xeon processor 5600 series are based on Westmere microarchitecture using 32 nm process technology.
They support the same features described in Section 2.1.16, plus the following features:

® Up to six cores per physical processor package.

* Upto 12 MB enhanced Intel® Smart Cache.

® Support for AESNI, PCLMULQDQ, SSE4.2 and SSE4.1 instruction sets.
®* Flexible Intel Virtualization Technologies across processor and I/0.

2.1.20 The Second Generation Intel® Core™ Processor Family (2011)

The Second Generation Intel Core processor family spans Intel Core i7, i5, and i3 processors based on the Sandy
Bridge microarchitecture. These processors are built from 32 nm process technology and have features including:

® Intel Turbo Boost Technology for Intel Core i5 and i7 processors.

® Intel Hyper-Threading Technology.

®* Enhanced Intel Smart Cache and integrated memory controller.

* Processor graphics and built-in visual features like Intel® Quick Sync Video, Intel® Insider™, etc.

® Range of instruction set support up to AVX, AESNI, PCLMULQDQ, SSE4.2 and SSE4.1.

The Intel Xeon processor E3-1200 product family is also based on the Sandy Bridge microarchitecture.

The Intel Xeon processor E5-2400/1400 product families are based on the Sandy Bridge-EP microarchitecture.

The Intel Xeon processor E5-4600/2600/1600 product families are based on the Sandy Bridge-EP microarchitec-
ture and provide support for multiple sockets.

2.1.21 The Third Generation Intel® Core™ Processor Family (2012)

The Third Generation Intel Core processor family spans Intel Corei7, i5, and i3 processors based on the Ivy Bridge
microarchitecture. The Intel Xeon processor E7-8800/4800/2800 v2 product families and Intel Xeon processor E3-
1200 v2 product family are also based on the Ivy Bridge microarchitecture.

The Intel Xeon processor E5-2400/1400 v2 product families are based on the Ivy Bridge-EP microarchitecture.

The Intel Xeon processor E5-4600/2600/1600 v2 product families are based on the Ivy Bridge-EP microarchitec-
ture and provide support for multiple sockets.

2-6 Vol.1

INTEL® 64 AND IA-32 ARCHITECTURES

2.1.22 The Fourth Generation Intel® Core™ Processor Family (2013)

The Fourth Generation Intel Core processor family spans Intel Core i7, i5, and i3 processors based on the Haswell
microarchitecture. Intel Xeon processor E3-1200 v3 product family is also based on the Haswell microarchitecture.

2.2 MORE ON SPECIFIC ADVANCES

The following sections provide more information on major innovations.

2.2.1 P6 Family Microarchitecture

The Pentium Pro processor introduced a new microarchitecture commonly referred to as P6 processor microarchi-
tecture. The P6 processor microarchitecture was later enhanced with an on-die, Level 2 cache, called Advanced
Transfer Cache.

The microarchitecture is a three-way superscalar, pipelined architecture. Three-way superscalar means that by
using parallel processing techniques, the processor is able on average to decode, dispatch, and complete execution
of (retire) three instructions per clock cycle. To handle this level of instruction throughput, the P6 processor family
uses a decoupled, 12-stage superpipeline that supports out-of-order instruction execution.

Figure 2-1 shows a conceptual view of the P6 processor microarchitecture pipeline with the Advanced Transfer
Cache enhancement.

E System Bus a

—— Frequently used

BusUmt ... Less frequently used
2nd Level Cache 1st Level Cache
On-die, 8-way 4-way, low latency
Front End
Execution
Instruction Execution
Fetch/
Decode r--» Cache > Out-of-Order =) Retirement
Microcode Core
ROM
N
— ' H_II\ .
: Branch History Update
t-4 BTSs/Branch Prediction

OM16520

Figure 2-1. The P6 Processor Microarchitecture with Advanced Transfer Cache Enhancement

To ensure a steady supply of instructions and data for the instruction execution pipeline, the P6 processor microar-
chitecture incorporates two cache levels. The Level 1 cache provides an 8-KByte instruction cache and an 8-KByte
data cache, both closely coupled to the pipeline. The Level 2 cache provides 256-KByte, 512-KByte, or 1-MByte
static RAM that is coupled to the core processor through a full clock-speed 64-bit cache bus.

The centerpiece of the P6 processor microarchitecture is an out-of-order execution mechanism called dynamic
execution. Dynamic execution incorporates three data-processing concepts:

Vol.1 2-7

INTEL® 64 AND IA-32 ARCHITECTURES

Deep branch prediction allows the processor to decode instructions beyond branches to keep the instruction
pipeline full. The P6 processor family implements highly optimized branch prediction algorithms to predict the
direction of the instruction.

Dynamic data flow analysis requires real-time analysis of the flow of data through the processor to
determine dependencies and to detect opportunities for out-of-order instruction execution. The out-of-order
execution core can monitor many instructions and execute these instructions in the order that best optimizes
the use of the processor’s multiple execution units, while maintaining the data integrity.

Speculative execution refers to the processor’s ability to execute instructions that lie beyond a conditional
branch that has not yet been resolved, and ultimately to commit the results in the order of the original
instruction stream. To make speculative execution possible, the P6 processor microarchitecture decouples the
dispatch and execution of instructions from the commitment of results. The processor’s out-of-order execution
core uses data-flow analysis to execute all available instructions in the instruction pool and store the results in
temporary registers. The retirement unit then linearly searches the instruction pool for completed instructions
that no longer have data dependencies with other instructions or unresolved branch predictions. When
completed instructions are found, the retirement unit commits the results of these instructions to memory
and/or the IA-32 registers (the processor’s eight general-purpose registers and eight x87 FPU data registers)
in the order they were originally issued and retires the instructions from the instruction pool.

2.2.2 Intel NetBurst® Microarchitecture

The Intel NetBurst microarchitecture provides:

The Rapid Execution Engine.
— Arithmetic Logic Units (ALUs) run at twice the processor frequency.
— Basic integer operations can dispatch in 1/2 processor clock tick.
Hyper-Pipelined Technology.
— Deep pipeline to enable industry-leading clock rates for desktop PCs and servers.
— Frequency headroom and scalability to continue leadership into the future.
Advanced Dynamic Execution.
— Deep, out-of-order, speculative execution engine.
* Up to 126 instructions in flight.
* Up to 48 loads and 24 stores in pipelinel.
— Enhanced branch prediction capability.
* Reduces the misprediction penalty associated with deeper pipelines.
* Advanced branch prediction algorithm.
* 4K-entry branch target array.
New cache subsystem.
— First level caches.
* Advanced Execution Trace Cache stores decoded instructions.
* Execution Trace Cache removes decoder latency from main execution loops.
* Execution Trace Cache integrates path of program execution flow into a single line.
* Low latency data cache.
— Second level cache.
* Full-speed, unified 8-way Level 2 on-die Advance Transfer Cache.
* Bandwidth and performance increases with processor frequency.

1.

Intel 64 and IA-32 processors based on the Intel NetBurst microarchitecture at 90 nm process can handle more than 24 stores in
flight.

2-8 Vol.1

INTEL® 64 AND IA-32 ARCHITECTURES

High-performance, quad-pumped bus interface to the Intel NetBurst microarchitecture system bus.
— Supports quad-pumped, scalable bus clock to achieve up to 4X effective speed.

— Capable of delivering up to 8.5 GBytes of bandwidth per second.

Superscalar issue to enable parallelism.

Expanded hardware registers with renaming to avoid register name space limitations.

64-byte cache line size (transfers data up to two lines per sector).

Figure 2-2 is an overview of the Intel NetBurst microarchitecture. This microarchitecture pipeline is made up of
three sections: (1) the front end pipeline, (2) the out-of-order execution core, and (3) the retirement unit.

System Bus
< x > —» Frequently used paths
y . Less frequently used
-> paths
Bus Unit
r— - == 1
3rd Level Cache I
| Optional
b e e — — ¢ _____ 1
2nd Level Cache 1st Level Cache
8-Way 4-way
1 A
6 Front End Y
Trace Cache SR
Fetch/Decode == Microcode ROM »| Out-Of-Order > Retirement
Core
7 f
Branch History Update
BTBs/Branch Prediction
OM16521

Figure 2-2. The Intel NetBurst® Microarchitecture

2.2.2.1 The Front End Pipeline

The front end supplies instructions in program order to the out-of-order execution core. It performs a number of
functions:

Prefetches instructions that are likely to be executed.

Fetches instructions that have not already been prefetched.

Decodes instructions into micro-operations.

Generates microcode for complex instructions and special-purpose code.
Delivers decoded instructions from the execution trace cache.

Predicts branches using highly advanced algorithm.

The pipeline is designed to address common problems in high-speed, pipelined microprocessors. Two of these
problems contribute to major sources of delays:

Time to decode instructions fetched from the target.

Vol.1T 2-9

INTEL® 64 AND IA-32 ARCHITECTURES

®* Wasted decode bandwidth due to branches or branch target in the middle of cache lines.

The operation of the pipeline’s trace cache addresses these issues. Instructions are constantly being fetched and
decoded by the translation engine (part of the fetch/decode logic) and built into sequences of micro-ops called
traces. At any time, multiple traces (representing prefetched branches) are being stored in the trace cache. The
trace cache is searched for the instruction that follows the active branch. If the instruction also appears as the first
instruction in a pre-fetched branch, the fetch and decode of instructions from the memory hierarchy ceases and the
pre-fetched branch becomes the new source of instructions (see Figure 2-2).

The trace cache and the translation engine have cooperating branch prediction hardware. Branch targets are
predicted based on their linear addresses using branch target buffers (BTBs) and fetched as soon as possible.

2.2.2.2 Out-Of-Order Execution Core

The out-of-order execution core’s ability to execute instructions out of order is a key factor in enabling parallelism.
This feature enables the processor to reorder instructions so that if one micro-op is delayed, other micro-ops may
proceed around it. The processor employs several buffers to smooth the flow of micro-ops.

The core is designed to facilitate parallel execution. It can dispatch up to six micro-ops per cycle (this exceeds trace
cache and retirement micro-op bandwidth). Most pipelines can start executing a hew micro-op every cycle, so
several instructions can be in flight at a time for each pipeline. A number of arithmetic logical unit (ALU) instruc-
tions can start at two per cycle; many floating-point instructions can start once every two cycles.

2.2.2.3 Retirement Unit

The retirement unit receives the results of the executed micro-ops from the out-of-order execution core and
processes the results so that the architectural state updates according to the original program order.

When a micro-op completes and writes its result, it is retired. Up to three micro-ops may be retired per cycle. The
Reorder Buffer (ROB) is the unit in the processor which buffers completed micro-ops, updates the architectural
state in order, and manages the ordering of exceptions. The retirement section also keeps track of branches and
sends updated branch target information to the BTB. The BTB then purges pre-fetched traces that are no longer
needed.

2.2.3 Intel® Core™ Microarchitecture

Intel Core microarchitecture introduces the following features that enable high performance and power-efficient
performance for single-threaded as well as multi-threaded workloads:

* Intel® Wide Dynamic Execution enable each processor core to fetch, dispatch, execute in high bandwidths
to support retirement of up to four instructions per cycle.

— Fourteen-stage efficient pipeline.

— Three arithmetic logical units.

— Four decoders to decode up to five instruction per cycle.

— Macro-fusion and micro-fusion to improve front-end throughput.

— Peak issue rate of dispatching up to six micro-ops per cycle.

— Peak retirement bandwidth of up to 4 micro-ops per cycle.

— Advanced branch prediction.

— Stack pointer tracker to improve efficiency of executing function/procedure entries and exits.

* Intel® Advanced Smart Cache delivers higher bandwidth from the second level cache to the core, and
optimal performance and flexibility for single-threaded and multi-threaded applications.

— Large second level cache up to 4 MB and 16-way associativity.
— Optimized for multicore and single-threaded execution environments.

— 256-bit internal data path to improve bandwidth from L2 to first-level data cache.

2-10 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

Intel® Smart Memory Access prefetches data from memory in response to data access patterns and reduces
cache-miss exposure of out-of-order execution.

— Hardware prefetchers to reduce effective latency of second-level cache misses.
— Hardware prefetchers to reduce effective latency of first-level data cache misses.
— Memory disambiguation to improve efficiency of speculative execution engine.

Intel® Advanced Digital Media Boost improves most 128-bit SIMD instructions with single-cycle
throughput and floating-point operations.

— Single-cycle throughput of most 128-bit SIMD instructions.
— Up to eight floating-point operations per cycle.

— Three issue ports available to dispatching SIMD instructions for execution.

Intel Core 2 Extreme, Intel Core 2 Duo processors and Intel Xeon processor 5100 series implement two processor
cores based on the Intel Core microarchitecture, the functionality of the subsystems in each core are depicted in
Figure 2-3.

| Instruction Fetch and PreDecode I:

v

| Instruction Queue |
Micro- *
code —}| Decode |
ROM
I 4
Shared L2 Cache

| Rename/Alloc | Up to 10.7 GB/s
FSB

Retirement Unit
(Re-Order Buffer)

¥

| Scheduler |
ALU ALU ALU
Branch FAdd FMul Load Store
MMX/SSE/FP MMX/SSE MMX/SSE
Move

|

L1D Cache and DTLB |

Figure 2-3. The Intel® Core™ Microarchitecture Pipeline Functionality

2.2.3.1 The Front End

The front end of Intel Core microarchitecture provides several enhancements to feed the Intel Wide Dynamic
Execution engine:

Instruction fetch unit prefetches instructions into an instruction queue to maintain steady supply of instruction
to the decode units.

Four-wide decode unit can decode 4 instructions per cycle or 5 instructions per cycle with Macrofusion.

Macrofusion fuses common sequence of two instructions as one decoded instruction (micro-ops) to increase
decoding throughput.

Microfusion fuses common sequence of two micro-ops as one micro-ops to improve retirement throughput.

Vol.1 2-11

INTEL® 64 AND IA-32 ARCHITECTURES

Instruction queue provides caching of short loops to improve efficiency.
Stack pointer tracker improves efficiency of executing procedure/function entries and exits.

Branch prediction unit employs dedicated hardware to handle different types of branches for improved branch
prediction.

Advanced branch prediction algorithm directs instruction fetch unit to fetch instructions likely in the architec-
tural code path for decoding.

2.2.3.2 Execution Core

The execution core of the Intel Core microarchitecture is superscalar and can process instructions out of order to
increase the overall rate of instructions executed per cycle (IPC). The execution core employs the following feature
to improve execution throughput and efficiency:

Up to six micro-ops can be dispatched to execute per cycle.

Up to four instructions can be retired per cycle.

Three full arithmetic logical units.

SIMD instructions can be dispatched through three issue ports.

Most SIMD instructions have 1-cycle throughput (including 128-bit SIMD instructions).

Up to eight floating-point operation per cycle.

Many long-latency computation operation are pipelined in hardware to increase overall throughput.
Reduced exposure to data access delays using Intel Smart Memory Access.

2.2.4 Intel Atom® Microarchitecture

Intel Atom microarchitecture maximizes power-efficient performance for single-threaded and multi-threaded
workloads by providing:

Advanced Micro-Ops Execution

— Single-micro-op instruction execution from decode to retirement, including instructions with register-only,
load, and store semantics.

— Sixteen-stage, in-order pipeline optimized for throughput and reduced power consumption.

— Dual pipelines to enable decode, issue, execution, and retirement of two instructions per cycle.
— Advanced stack pointer to improve efficiency of executing function entry/returns.

Intel® Smart Cache

— Second level cache is 512 KB and 8-way associativity.

— Optimized for multi-threaded and single-threaded execution environments

— 256-bit internal data path between L2 and L1 data caches improves high bandwidth.

Efficient Memory Access

— Efficient hardware prefetchers to L1 and L2, speculatively loading data likely to be requested by processor
to reduce cache miss impact.

Intel® Digital Media Boost

— Two issue ports for dispatching SIMD instructions to execution units.
— Single-cycle throughput for most 128-bit integer SIMD instructions.
— Up to six floating-point operations per cycle.

— Up to two 128-bit SIMD integer operations per cycle.

— Safe Instruction Recognition (SIR) to allow long-latency floating-point operations to retire out of order with
respect to integer instructions.

2-12 Vol. 1

2.2.5

INTEL® 64 AND IA-32 ARCHITECTURES

Nehalem Microarchitecture

Nehalem microarchitecture provides the foundation for many features of Intel Core i7 processors. It builds on the
success of 45 nm Intel Core microarchitecture and provides the following feature enhancements:

* Enhanced processor core

Improved branch prediction and recovery from misprediction.
Enhanced loop streaming to improve front end performance and reduce power consumption.
Deeper buffering in out-of-order engine to extract parallelism.

Enhanced execution units to provide acceleration in CRC, string/text processing and data shuffling.

* Smart Memory Access

Integrated memory controller provides low-latency access to system memory and scalable memory
bandwidth.

New cache hierarchy organization with shared, inclusive L3 to reduce snoop traffic.
Two level TLBs and increased TLB size.
Fast unaligned memory access.

* HyperThreading Technology

Provides two hardware threads (logical processors) per core.

Takes advantage of 4-wide execution engine, large L3, and massive memory bandwidth.

* Dedicated Power management Innovations

2.2.6

Integrated microcontroller with optimized embedded firmware to manage power consumption.
Embedded real-time sensors for temperature, current, and power.

Integrated power gate to turn off/on per-core power consumption

Versatility to reduce power consumption of memory, link subsystems.

Sandy Bridge Microarchitecture

Sandy Bridge microarchitecture builds on the successes of Intel® Core™ microarchitecture and Nehalem microar-
chitecture. It offers the following features:

¢ Intel Advanced Vector Extensions (Intel AVX).

256-bit floating-point instruction set extensions to the 128-bit Intel Streaming SIMD Extensions, providing
up to 2X performance benefits relative to 128-bit code.

Non-destructive destination encoding offers more flexible coding techniques.

Supports flexible migration and co-existence between 256-bit AVX code, 128-bit AVX code and legacy 128-
bit SSE code.

®* Enhanced front-end and execution engine.

New decoded Icache component that improves front-end bandwidth and reduces branch misprediction
penalty.

Advanced branch prediction.

Additional macro-fusion support.

Larger dynamic execution window.

Multi-precision integer arithmetic enhancements (ADC/SBB, MUL/IMUL).

LEA bandwidth improvement.

Reduction of general execution stalls (read ports, writeback conflicts, bypass latency, partial stalls).
Fast floating-point exception handling.

Vol.1 2-13

INTEL® 64 AND IA-32 ARCHITECTURES

— XSAVE/XRSTORE performance improvements and XSAVEOPT new instruction.
® Cache hierarchy improvements for wider data path.
— Doubling of bandwidth enabled by two symmetric ports for memory operation.
— Simultaneous handling of more in-flight loads and stores enabled by increased buffers.
— Internal bandwidth of two loads and one store each cycle.
— Improved prefetching.
— High bandwidth low latency LLC architecture.
— High bandwidth ring architecture of on-die interconnect.

For additional information on Intel® Advanced Vector Extensions (AVX), see Section 5.13, “Intel® Advanced Vector
Extensions (Intel® AVX)” and Chapter 14, "Programming with Intel® AVX, FMA, and Intel® AVX2” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1.

2.2.7 SIMD Instructions

Beginning with the Pentium II and Pentium with Intel MMX technology processor families, six extensions have been
introduced into the Intel 64 and IA-32 architectures to perform single-instruction multiple-data (SIMD) operations.
These extensions include the MMX technology, SSE extensions, SSE2 extensions, SSE3 extensions, Supplemental
Streaming SIMD Extensions 3, and SSE4. Each of these extensions provides a group of instructions that perform
SIMD operations on packed integer and/or packed floating-point data elements.

SIMD integer operations can use the 64-bit MMX or the 128-bit XMM registers. SIMD floating-point operations use
128-bit XMM registers. Figure 2-4 shows a summary of the various SIMD extensions (MMX technology, Intel SSE,
Intel SSE2, Intel SSE3, SSSE3, and Intel SSE4), the data types they operate on, and how the data types are packed
into MMX and XMM registers.

The Intel MMX technology was introduced in the Pentium II and Pentium with MMX technology processor families.
MMX instructions perform SIMD operations on packed byte, word, or doubleword integers located in MMX registers.
These instructions are useful in applications that operate on integer arrays and streams of integer data that lend
themselves to SIMD processing.

Intel SSE was introduced in the Pentium Il processor family. Intel SSE instructions operate on packed single preci-
sion floating-point values contained in XMM registers and on packed integers contained in MMX registers. Several

Intel SSE instructions provide state management, cache control, and memory ordering operations. Other Intel SSE
instructions are targeted at applications that operate on arrays of single precision floating-point data elements (3-
D geometry, 3-D rendering, and video encoding and decoding applications).

Intel SSE2 was introduced in the Pentium 4 and Intel Xeon processors. Intel SSE2 instructions operate on packed
double precision floating-point values contained in XMM registers and on packed integers contained in MMX and
XMM registers. Intel SSE2 integer instructions extend IA-32 SIMD operations by adding new 128-bit SIMD integer
operations and by expanding existing 64-bit SIMD integer operations to 128-bit XMM capability. Intel SSE2 instruc-
tions also provide new cache control and memory ordering operations.

Intel SSE3 was introduced with the Pentium 4 processor supporting Hyper-Threading Technology (built on 90 nm
process technology). Intel SSE3 offers 13 instructions that accelerate performance of Streaming SIMD Extensions
technology, Streaming SIMD Extensions 2 technology, and x87-FP math capabilities.

SSSE3 was introduced with the Intel Xeon processor 5100 series and Intel Core 2 processor family. SSSE3 offer 32
instructions to accelerate processing of SIMD integer data.

Intel SSE4 offers 54 instructions. 47 of them are referred to as Intel SSE4.1 instructions. Intel SSE4.1 was intro-
duced with the Intel Xeon processor 5400 series and Intel Core 2 Extreme processor QX9650. The other seven Intel
SSE4 instructions are referred to as Intel SSE4.2 instructions.

Intel AES-NI and PCLMULQDQ introduced seven new instructions. Six of them are primitives for accelerating algo-
rithms based on AES encryption/decryption standard, and are referred to as Intel AES-NI.

The PCLMULQDQ instruction accelerates general-purpose block encryption, which can perform carry-less multipli-
cation for two binary numbers up to 64-bit wide.

2-14 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

Intel 64 architecture allows four generations of 128-bit SIMD extensions to access up to 16 XMM registers. IA-32
architecture provides eight XMM registers.

Intel® Advanced Vector Extensions offers comprehensive architectural enhancements over previous generations of
Streaming SIMD Extensions. Intel AVX introduces the following architectural enhancements:

Support for 256-bit wide vectors and SIMD register set.

256-bit floating-point instruction set enhancement with up to 2X performance gain relative to 128-bit
Streaming SIMD extensions.

Instruction syntax support for generalized three-operand syntax to improve instruction programming flexibility
and efficient encoding of new instruction extensions.

Enhancement of legacy 128-bit SIMD instruction extensions to support three operand syntax and to simplify
compiler vectorization of high-level language expressions.

Support flexible deployment of 256-bit AVX code, 128-bit AVX code, legacy 128-bit code and scalar code.

In addition to performance considerations, programmers should also be cognizant of the implications of VEX-
encoded AVX instructions with the expectations of system software components that manage the processor state
components enabled by XCRO. For additional information see Section 2.3.10.1, “Vector Length Transition and
Programming Considerations” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

See also:

Section 5.4, "MMX Instructions,” and Chapter 9, “Programming with Intel® MMX™ Technology.”

Section 5.5, “"Intel® SSE Instructions,” and Chapter 10, “Programming with Intel® Streaming SIMD Extensions
(Intel® SSE).”

Section 5.6, “Intel® SSE2 Instructions,” and Chapter 11, “Programming with Intel® Streaming SIMD
Extensions 2 (Intel® SSE2).”

Section 5.7, “Intel® SSE3 Instructions,” Section 5.8, "Supplemental Streaming SIMD Extensions 3 (SSSE3)
Instructions,” Section 5.9, “Intel® SSE4 Instructions,” and Chapter 12, “Programming with Intel® SSE3,
SSSE3, Intel® SSE4, and Intel® AES-NI.”

Vol.1 2-15

INTEL® 64 AND IA-32 ARCHITECTURES

SIMD Extension Register Layout Data Type

MMX Registers
MMX Technology - SSSE3 III:IIIID 8 Packed Byte Integers

|:|:|:|:| 4 Packed Word Integers
|:|:| 2 Packed Doubleword Integers

Quadword

SSE - AVX

XMM Registers

4 Packed Single Precision
| | | | | Floating-Point Values

| | | 2 Packed Double Precision
Floating-Point Values

||||||||||||||||| 16 Packed Byte Integers

8 Packed Word Integers

|

4 Packed Doubleword
| Integers
|
|

2 Quadword Integers

Double Quadword

AVX
YMM Registers

[T T T T T T T 1 8PackedSPrpvalues

| | | | | 4Packed DP FP Values
| [| 2728-bitData

Figure 2-4. SIMD Extensions, Register Layouts, and Data Types

2.2.8 Intel® Hyper-Threading Technology

Intel Hyper-Threading Technology (Intel HT Technology) was developed to improve the performance of IA-32
processors when executing multi-threaded operating system and application code or single-threaded applications
under multi-tasking environments. The technology enables a single physical processor to execute two or more
separate code streams (threads) concurrently using shared execution resources.

Intel HT Technology is one form of hardware multi-threading capability in IA-32 processor families. It differs from
multi-processor capability using separate physically distinct packages with each physical processor package mated
with a physical socket. Intel HT Technology provides hardware multi-threading capability with a single physical
package by using shared execution resources in a processor core.

Architecturally, an IA-32 processor that supports Intel HT Technology consists of two or more logical processors,
each of which has its own IA-32 architectural state. Each logical processor consists of a full set of IA-32 data regis-
ters, segment registers, control registers, debug registers, and most of the MSRs. Each also has its own advanced
programmable interrupt controller (APIC).

Figure 2-5 shows a comparison of a processor that supports Intel HT Technology (implemented with two logical
processors) and a traditional dual processor system.

2-16 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

IA-32 Processor Supporting
Hyper-Threading Technology

AS| |AS |AS| |AS|

Traditional Multiple Processor (MP) System

Processor Core Processor Core Processor Core
1A-32 processor 1A-32 processor IA-32 processor
Two logical Each processor is a
processors that share separate physical
a single core package
ya N ya N
N\ 7 N\ 7

AS = |A-32 Architectural State

OM16522

Figure 2-5. Comparison of an IA-32 Processor Supporting Intel® Hyper-Threading Technology
and a Traditional Dual Processor System

Unlike a traditional MP system configuration that uses two or more separate physical IA-32 processors, the logical
processors in an IA-32 processor supporting Intel HT Technology share the core resources of the physical
processor. This includes the execution engine and the system bus interface. After power up and initialization, each
logical processor can be independently directed to execute a specified thread, interrupted, or halted.

Intel HT Technology leverages the process and thread-level parallelism found in contemporary operating systems
and high-performance applications by providing two or more logical processors on a single chip. This configuration
allows two or more threads! to be executed simultaneously on each a physical processor. Each logical processor
executes instructions from an application thread using the resources in the processor core. The core executes
these threads concurrently, using out-of-order instruction scheduling to maximize the use of execution units during
each clock cycle.

2.2.8.1 Some Implementation Notes

All Intel HT Technology configurations require:

® A processor that supports Intel HT Technology.

®* A chipset and BIOS that utilize the technology.

® Operating system optimizations.

See http://www.intel.com/products/ht/hyperthreading_more.htm for information.

At the firmware (BIOS) level, the basic procedures to initialize the logical processors in a processor supporting Intel
HT Technology are the same as those for a traditional DP or MP platform. The mechanisms that are described in the
Multiprocessor Specification, Version 1.4, to power-up and initialize physical processors in an MP system also apply
to logical processors in a processor that supports Intel HT Technology.

An operating system designed to run on a traditional DP or MP platform may use CPUID to determine the presence
of hardware multi-threading support feature and the number of logical processors they provide.

Although existing operating system and application code should run correctly on a processor that supports Intel HT
Technology, some code modifications are recommended to get the optimum benefit. These modifications are
discussed in Chapter 7, “Multiple-Processor Management,” Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

1. In the remainder of this document, the term “thread” will be used as a general term for the terms “process” and “thread.”

Vol.1 2-17

INTEL® 64 AND IA-32 ARCHITECTURES

2.2.9 Multi-Core Technology

Multi-core technology is another form of hardware multi-threading capability in IA-32 processor families. Multi-core
technology enhances hardware multi-threading capability by providing two or more execution cores in a physical
package.

The Intel Pentium processor Extreme Edition is the first member in the IA-32 processor family to introduce multi-
core technology. The processor provides hardware multi-threading support with both two processor cores and Intel
Hyper-Threading Technology. This means that the Intel Pentium processor Extreme Edition provides four logical
processors in a physical package (two logical processors for each processor core). The Dual-Core Intel Xeon
processor features multi-core, Intel Hyper-Threading Technology and supports multi-processor platforms.

The Intel Pentium D processor also features multi-core technology. This processor provides hardware multi-
threading support with two processor cores but does not offer Intel Hyper-Threading Technology. This means that
the Intel Pentium D processor provides two logical processors in a physical package, with each logical processor
owning the complete execution resources of a processor core.

The Intel Core 2 processor family, Intel Xeon processor 3000 series, Intel Xeon processor 5100 series, and Intel
Core Duo processor offer power-efficient multi-core technology. The processor contains two cores that share a
smart second level cache. The Level 2 cache enables efficient data sharing between two cores to reduce memory
traffic to the system bus.

Intel Core Duo Processor
Intel Core 2 Duo Processor

Intel Pentium dual-core Processor Pentium D Processor

Architectual State

Architectual State

Execution Engine

Execution Engine

Local APIC

Local APIC

Second Level Cache

Architectual State

Architectual State

Execution Engine

Execution Engine

Local APIC

Local APIC

Bus Interface

Bus Interface

Bus Interface

g !

System Bus

System Bus

Pentium Processor Extreme Edition

Architectual Architectual Architectual Architectual
State State State State

Execution Engine Execution Engine

Local APIC Local APIC Local APIC Local APIC

Bus Interface Bus Interface

!

System Bus

OM19809

Figure 2-6. Intel 64 and IA-32 Processors that Support Dual-Core

The Pentium® dual-core processor is based on the same technology as the Intel Core 2 Duo processor family.

The Intel Xeon processor 7300, 5300, and 3200 series, Intel Core 2 Extreme Quad-Core processor, and Intel Core
2 Quad processors support Intel quad-core technology. The Quad-core Intel Xeon processors and the Quad-Core
Intel Core 2 processor family are also in Figure 2-7.

2-18 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

Intel Core 2 Extreme Quad-core Processor

Intel Core 2 Quad Processor
Intel Xeon Processor 3200 Series
Intel Xeon Processor 5300 Series

Architectual State

Architectual State

Architectual State | Architectual State

Execution Engine

Execution Engine

Execution Engine

Execution Engine

Local APIC

Local APIC

Local APIC

Local APIC

Second Level Cache

Second Level Cache

Bus Interface

Bus Interface

System Bus

OoM19810

Figure 2-7. Intel® 64 Processors that Support Quad-Core

Intel Core i7 processors support Intel quad-core technology, Intel HyperThreading Technology, provides Intel
QuickPath interconnect link to the chipset and have integrated memory controller supporting three channels to

DDR3 memory.

Intel Core i7 Processor

Logical | Logical | Logical | Logical | Logical | Logical | Logical | Logical
Proces | Proces | Proces | Proces | Proces | Proces | Proces | Proces
sor sor sor sor sor sor sor sor
L1 and L2 L1 and L2 L1 and L2 L1 and L2

Execution Engine

Execution Engine

Execution Engine

Execution Engine

Third Level Cache

QuickPath Interconnect (QPI) Interface, Integrated Memory Controller

QPI

Chipset

IMC

DDR3

OM19810b

Figure 2-8. Intel® Core™ i7 Processor

Vol.1 2-19

INTEL® 64 AND IA-32 ARCHITECTURES

2.2.10 Intel® 64 Architecture

Intel 64 architecture increases the linear address space for software to 64 bits and supports physical address space
up to 52 bits. The technology also introduces a new operating mode referred to as IA-32e mode.

IA-32e mode operates in one of two sub-modes: (1) compatibility mode enables a 64-bit operating system to run
most legacy 32-bit software unmodified, (2) 64-bit mode enables a 64-bit operating system to run applications
written to access 64-bit address space.

In the 64-bit mode, applications may access:

® 64-bit flat linear addressing.

* 8 additional general-purpose registers (GPRs).

®* 8 additional registers for streaming SIMD extensions (Intel SSE, SSE2, and SSE3, and SSSE3).
® 64-bit-wide GPRs and instruction pointers.

®* Uniform byte-register addressing.

® Fast interrupt-prioritization mechanism.

®* A new instruction-pointer relative-addressing mode.

An Intel 64 architecture processor supports existing IA-32 software because it is able to run all non-64-bit legacy
modes supported by IA-32 architecture. Most existing IA-32 applications also run in compatibility mode.

2.2.11 Intel® Virtualization Technology (Intel® VT)

Intel® Virtualization Technology for Intel 64 and IA-32 architectures provide extensions that support virtualization.
The extensions are referred to as Virtual Machine Extensions (VMX). An Intel 64 or IA-32 platform with VMX can
function as multiple virtual systems (or virtual machines). Each virtual machine can run operating systems and
applications in separate partitions.

VMX also provides programming interface for a new layer of system software (called the Virtual Machine Monitor
(VMM)) used to manage the operation of virtual machines. Information on VMX and on the programming of VMMs
is in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C.

Intel Core i7 processor provides the following enhancements to Intel Virtualization Technology:

® Virtual processor ID (VPID) to reduce the cost of VMM managing transitions.

®* Extended page table (EPT) to reduce the number of transitions for VMM to manage memory virtualization.
® Reduced latency of VM transitions.

2.3 INTEL® 64 AND IA-32 PROCESSOR GENERATIONS

In the mid-1960s, Intel co-founder and Chairman Emeritus Gordon Moore had this observation: *... the number of
transistors that would be incorporated on a silicon die would double every 18 months for the next several years.”
Over the past three and half decades, this prediction known as “Moore's Law” has continued to hold true.

The computing power and the complexity (or roughly, the number of transistors per processor) of Intel architecture
processors has grown in close relation to Moore's law. By taking advantage of new process technology and new
microarchitecture designs, each new generation of IA-32 processors has demonstrated frequency-scaling head-
room and new performance levels over the previous generation processors.

2-20 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

The key features of the Intel Pentium 4 processor, Intel Xeon processor, Intel Xeon processor MP, Pentium lll
processor, and Pentium Il Xeon processor with advanced transfer cache are shown in Table 2-1. Older generation
IA-32 processors, which do not employ on-die Level 2 cache, are shown in Table 2-2.

Table 2-1. Key Features of Most Recent IA-32 Processors

Intel Date Microarchitecture | Top-Bin Clock | Tran- Register System Max. On-Die
Processor Intro- Frequency at | sistors Sizes! Bus Band- | Extern. Caches?
duced Introduction width Addr.
Space
Intel Pentium | 2004 Intel Pentium M 2.00 GHz 140 M GP: 32 3.2 GB/s 4GB L1: 64 KB
M Processor FPU: 80 L2: 2 MB
Processor MMX: 64
7553 XMM: 128
Intel Core Duo | 2006 Improved Intel 2.16 GHz 152 M GP: 32 5.3 GB/s 4GB L1:64 KB
Processor Pentium M FPU: 80 L2:2MB (2
T2600 73 Processor MMX: 64 MB Total)
Microarchitecture; XMM: 128
Dual Core;

Intel Smart Cache,
Advanced Thermal

Manager
Intel Atom 2008 Intel Atom 1.86 GHz - 47 M GP: 32 Uptod42 |4GB L1: 56 KB*
Processor Microarchitecture; | 800 MHz FPU: 80 GB/s L2:512 KB
Z5xx series Intel Virtualization MMX: 64

Technology. XMM: 128

NOTES:
1. The register size and external data bus size are given in bits.

2. First level cache is denoted using the abbreviation L1, 2nd level cache is denoted as L2. The size of L1 includes the first-level data
cache and the instruction cache where applicable, but does not include the trace cache.

3. Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family,
not across different processor families. See http://www.intel.com/products/processor_number for details.

4. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.

Table 2-2. Key Features of Most Recent Intel® 64 Processors

Intel Date Micro-architec- Highest Tran- Register System Max. On-Die
Processor Intro- ture Processor sistors | Sizes Bus/QPI Extern. Caches
duced Base Fre- Link Addr.
quency at Speed Space
Intro-
duction
64-bit Intel 2004 Intel NetBurst 3.60 GHz 125M GP: 32,64 6.4 GB/s 64 GB 12K pop
Xeon Microarchitecture; FPU: 80 Execution
Processor Intel Hyper- MMX: 64 Trace Cache;
with 800 MHz Threading XMM: 128 16 KB LT;
System Bus Technology; Intel 1MBL2
64 Architecture
64-bit Intel 2005 Intel NetBurst 3.33 GHz 675M | GP:32,64 53GB/s! |1024GB | 12K pop
Xeon Microarchitecture; FPU: 80 (1TB) Execution
Processor MP Intel Hyper- MMX: 64 Trace Cache;
with 8MB L3 Threading XMM: 128 16 KB L1;
Technology; Intel 1MBLZ,
64 Architecture 8MBL3

Vol.1 2-21

INTEL® 64 AND IA-32 ARCHITECTURES

Table 2-2. Key Features of Most Recent Intel® 64 Processors (Contd.)

Intel Date Micro-architec- Highest Tran- Register System Max. On-Die
Processor Intro- ture Processor sistors | Sizes Bus/QPI Extern. Caches
duced Base Fre- Link Addr.
quency at Speed Space
Intro-
duction
Intel Pentium | 2005 Intel NetBurst 3.73 GHz 164 M GP: 32,64 8.5 GB/s 64 GB 12K pop
4 Microarchitecture; FPU: 80 Execution
Processor Intel Hyper- MMX: 64 Trace Cache;
Extreme Threading XMM: 128 16 KB LT1;
Edition Technology; Intel 2MBL2
Supporting 64 Architecture
Hyper-
Threading
Technology
Intel Pentium | 2005 Intel NetBurst 3.20 GHz 230 M GP: 32,64 6.4 GB/s 64 GB 12K pop
Processor Microarchitecture; FPU: 80 Execution
Extreme Intel Hyper- MMX: 64 Trace Cache;
Edition 840 Threading XMM: 128 16 KB LT;
Technology; Intel 1MBLZ (2
64 Architecture; MB Total)
Dual-core 2
Dual-Corelntel | 2005 Intel NetBurst 3.00 GHz 321M | GP: 32,64 6.4 GB/s 64 GB 12K pop
Xeon Microarchitecture; FPU: 80 Execution
Processor Intel Hyper- MMX: 64 Trace Cache;
7041 Threading XMM: 128 16 KB LT;
Technology; Intel 2MBL2 (4
64 Architecture; MB Total)
Dual-core 3
Intel Pentium | 2005 Intel NetBurst 3.80 GHz 164 M GP: 32,64 6.4 GB/s 64 GB 12K pop
4 Microarchitecture; FPU: 80 Execution
Processor 672 Intel Hyper- MMX: 64 Trace Cache;
Threading XMM: 128 16 KB LT;
Technology; Intel 2MBL2
64 Architecture;
Intel Virtualization
Technology.
Intel Pentium | 2006 Intel NetBurst 3.46 GHz 376 M | GP: 32,64 8.5 GB/s 64 GB 12K pop
Processor Microarchitecture; FPU: 80 Execution
Extreme Intel 64 MMX: 64 Trace Cache;
Edition 955 Architecture; Dual XMM: 128 16 KBLT;
Core; 2MBL2
Intel Virtualization (4 MB Total)
Technology.
Intel Core 2 2006 Intel Core 2.93 GHz 291 M |GP:32,64 8.5 GB/s 64 GB L1:64 KB
Extreme Microarchitecture; FPU: 80 L2:4MB (4
Processor Dual Core; MMX: 64 MB Total)
X6800 Intel 64 XMM: 128

Architecture;

Intel Virtualization
Technology.

2-22 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

Table 2-2. Key Features of Most Recent Intel® 64 Processors (Contd.)

Intel Date Micro-architec- Highest Tran- Register System Max. On-Die
Processor Intro- ture Processor sistors | Sizes Bus/QPI Extern. Caches
duced Base Fre- Link Addr.
quency at Speed Space
Intro-
duction
Intel Xeon 2006 Intel Core 3.00 GHz 291 M |GP:32,64 106 GB/s | 64 GB L1:64 KB
Processor Microarchitecture; FPU: 80 L2:4 MB (4
5160 Dual Core; MMX: 64 MB Total)
Intel 64 XMM: 128
Architecture;
Intel Virtualization
Technology.
Intel Xeon 2006 Intel NetBurst 3.40 GHz 13B GP: 32,64 128 GB/s | 64 GB L1:64 KB
Processor Microarchitecture; FPU: 80 L2:1TMB(2
7140 Dual Core; MMX: 64 MB Total)
Intel 64 XMM: 128 L3: 16 MB
Architecture; (16 MB
Intel Virtualization Total)
Technology.
Intel Core 2 2006 Intel Core 2.66 GHz 582M | GP: 32,64 8.5 GB/s 64 GB L1:64 KB
Extreme Microarchitecture; FPU: 80 L2:4 MB (4
Processor Quad Core; MMX: 64 MB Total)
QX6700 Intel 64 XMM: 128
Architecture;
Intel Virtualization
Technology.
Quad-core 2006 Intel Core 2.66 GHz 582 M GP: 32,64 106 GB/s | 256 GB L1:64 KB
Intel Xeon Microarchitecture; FPU: 80 L2:4MB (8
Processor Quad Core; MMX: 64 MB Total)
5355 Intel 64 XMM: 128
Architecture;
Intel Virtualization
Technology.
Intel Core 2 2007 Intel Core 3.00 GHz 291 M | GP: 32,64 106 GB/s | 64 GB L1:64 KB
Duo Processor Microarchitecture; FPU: 80 L2: 4 MB (4
€6850 Dual Core; MMX: 64 MB Total)
Intel 64 XMM: 128
Architecture;
Intel Virtualization
Technology;
Intel Trusted
Execution
Technology
Intel Xeon 2007 Intel Core 2.93 GHz 582M |GP:32,64 8.5 GB/s 1024 GB | L1:64KB
Processor Microarchitecture; FPU: 80 L2:4MB (8
7350 Quad Core; MMX: 64 MB Total)
Intel 64 XMM: 128

Architecture;

Intel Virtualization
Technology.

Vol.1 2-23

INTEL® 64 AND IA-32 ARCHITECTURES

Table 2-2. Key Features of Most Recent Intel® 64 Processors (Contd.)

Intel Date Micro-architec- Highest Tran- Register System Max. On-Die
Processor Intro- ture Processor sistors | Sizes Bus/QPI Extern. Caches
duced Base Fre- Link Addr.
quency at Speed Space
Intro-
duction
Intel Xeon 2007 Enhanced Intel 3.00 GHz 820M | GP: 32,64 12.8GCB/s | 256 GB L1:64 KB
Processor Core FPU: 80 L2:6 MB(12
5472 Microarchitecture; MMX: 64 MB Total)
Quad Core; XMM: 128
Intel 64
Architecture;
Intel Virtualization
Technology.
Intel Atom 2008 Intel Atom 20-1.60 47 M GP: 32,64 Upto4.2 Up to L1:56 KB*
Processor Microarchitecture; | GHz FPU: 80 GB/s 64GB L2:512KB
Intel 64 MMX: 64
Architecture; XMM: 128
Intel Virtualization
Technology.
Intel Xeon 2008 Enhanced Intel 2.67 GHz 1.9B GP: 32,64 8.5 GB/s 1024GB | L1:64 KB
Processor Core FPU: 80 L2:3MB (9
7460 Microarchitecture; MMX: 64 MB Total)
Six Cores; XMM: 128 L3: 16 MB
Intel 64
Architecture;
Intel Virtualization
Technology.
Intel Atom 2008 Intel Atom 1.60 GHz 94 M GP: 32,64 Upto4.2 Up to L1: 56 KB>
Processor 330 Microarchitecture; FPU: 80 GB/s 64GCB L2:512KB
Intel 64 MMX: 64 (1 MB Total)
Architecture; XMM: 128
Dual core;
Intel Virtualization
Technology.
Intel Core i7- | 2008 Nehalem 3.20 GHz 731M | GP:32,64 QP1:6.4 64 GB L1:64 KB
965 microarchitecture; FPU: 80 GT/s; L2: 256 KB
Processor Quadcore; MMX: 64 Memory: L3:8 MB
Extreme HyperThreading XMM: 128 25 GB/s
Edition Technology; Intel
QPI; Intel 64

Architecture;

Intel Virtualization
Technology.

2-24 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

Table 2-2. Key Features of Most Recent Intel® 64 Processors (Contd.)

Intel
Processor

Date
Intro-
duced

Micro-architec-
ture

Highest
Processor
Base Fre-
quency at
Intro-
duction

Tran-
sistors

Register
Sizes

System
Bus/QPI
Link
Speed

Max.
Extern.
Addr.
Space

On-Die
Caches

Intel Core i7-
620M
Processor

2010

Intel Turbo Boost
Technology,
Westmere
microarchitecture;
Dual-core;
HyperThreading
Technology; Intel
64 Architecture;

Intel Virtualization
Technology.,
Integrated graphics

2.66 GHz

383 M

GP: 32,64
FPU: 80
MMX: 64
XMM: 128

64 GB

L1:64 KB
L2: 256 KB

L3:4MB

Intel Xeon-
Processor
5680

2010

Intel Turbo Boost
Technology,
Westmere
microarchitecture;
Six core;
HyperThreading
Technology; Intel
64 Architecture;

Intel Virtualization
Technology.

3.33 GHz

GP:32,64
FPU: 80
MMX: 64
XMM: 128

QPi: 6.4
GT/s; 32
GB/s

1TB

L1:64 KB
L2: 256 KB

L3:12MB

Intel Xeon-
Processor
7560

2010

Intel Turbo Boost
Technology,
Nehalem
microarchitecture;
Eight core;
HyperThreading
Technology; Intel
64 Architecture;

Intel Virtualization
Technology.

2.26 GHz

23B

GP: 32,64
FPU: 80
MMX: 64
XMM: 128

QPI:6.4
GT/s;

Memory:
76 GB/s

16 TB

L1:64KB
L2: 256 KB

L3:24 MB

Intel Core i7-
2600K
Processor

2011

Intel Turbo Boost
Technology, Sandy
Bridge
microarchitecture;
Four core;
HyperThreading
Technology; Intel
64 Architecture;

Intel Virtualization
Technology.,
Processor graphics,
Quicksync Video

3.40 GHz

995 M

GP: 32,64
FPU: 80
MMX: 64
XMM: 128

YMM: 256

DMI: 5
GT/s;
Memory:
21 GB/s

64 GB

L1:64 KB
L2: 256 KB

L3:8MB

Vol.1 2-25

INTEL® 64 AND IA-32 ARCHITECTURES

Table 2-2. Key Features of Most Recent Intel® 64 Processors (Contd.)

Intel Date Micro-architec- Highest Tran- Register System Max. On-Die
Processor Intro- ture Processor sistors | Sizes Bus/QPI Extern. Caches
duced Base Fre- Link Addr.
quency at Speed Space
Intro-
duction
Intel Xeon- 2011 Intel Turbo Boost | 3.50 GHz GP: 32,64 DMI: 5 1TB L1:64 KB
Processor E3- Technology, Sandy FPU: 80 GT/s; L2: 256 KB
1280 Bridge MMX: 64 Memory: L3:8 MB
microarchitecture; XMM: 128 21 GB/s
Four core; YMM: 256
HyperThreading
Technology; Intel
64 Architecture;
Intel Virtualization
Technology.
Intel Xeon- 2011 Intel Turbo Boost | 2.40 GHz 2.28B GP: 32,64 QP64 16 TB L1:64 KB
Processor E7- Technology, FPU: 80 GT/s; L2: 256 KB
8870 Westmere MMX: 64 Memory: L3: 30 MB
microarchitecture; XMM: 128 102 GB/s

Ten core;
HyperThreading
Technology; Intel
64 Architecture;

Intel Virtualization
Technology.

NOTES:

1. The 64-bit Intel Xeon Processor MP with an 8-MByte L3 supports a multi-processor platform with a dual system bus; this creates a
platform bandwidth with 10.6 GBytes.

2. In Intel Pentium Processor Extreme Edition 840, the size of on-die cache is listed for each core. The total size of L2 in the physical

package in 2 MBytes.

3. In Dual-Core Intel Xeon Processor 7041, the size of on-die cache is listed for each core. The total size of L2 in the physical package in

4 MBytes.

4. In Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.
5.1n Intel Atom Processor, the size of L1 instruction cache is 32 KBytes, L1 data cache is 24 KBytes.

2-26 Vol. 1

INTEL® 64 AND IA-32 ARCHITECTURES

Table 2-3. Key Features of Previous Generations of IA-32 Processors

Intel Date Max. Clock Tran- Register Ext. Data Max. Caches
Processor Intro- Frequency/ sistors Sizes! Bus Size? Extern.
duced Technology at Addr.
Introduction Space
8086 1978 8 MHz 29K 16 GP 16 1MB None
Intel 286 1982 12.5 MHz 134K 16 GP 16 16 MB Note 3
Intel386 DX 1985 20 MHz 275K 32 GP 32 4GB Note 3
Processor
Intel486 DX 1989 25 MHz 1.2M 32GP 32 4GB L1:8KB
Processor 80 FPU
Pentium Processor 1993 60 MHz 31M 32GP 64 4GB L1:16 KB
80 FPU
Pentium Pro 1995 200 MHz 55M 32 GP 64 64 GB L1:16 KB
Processor 80 FPU L2: 256 KB or
512 KB
Pentium II Processor | 1997 266 MHz 7M 32 GP 64 64 GB L1:32KB
80 FPU L2: 256 KBor
64 MMX 512 KB
Pentium Ill Processor | 1999 500 MHz 82M 32GP 64 64 GB L1:32KB
80 FPU L2:512KB
64 MMX
128 XMM
Pentium Ill and 1999 700 MHz 28 M 32GP 64 64 GB L1:32KB
Pentium Il Xeon 80 FPU L2: 256 KB
Processors 64 MMX
128 XMM
Pentium 4 Processor | 2000 1.50 GHz, Intel 42 M 32GP 64 64 GB 12K pop
NetBurst 80 FPU Execution
Microarchitecture 64 MMX Trace Cache;
128 XMM L1:8KB
L2: 256 KB
Intel Xeon Processor | 2001 1.70 GHz, Intel 42 M 32GP 64 64 GB 12K pop
NetBurst 80 FPU Execution
Microarchitecture 64 MMX Trace Cache;
128 XMM L1:8KB
L2:512KB
Intel Xeon Processor | 2002 2.20 GHz, Intel 55M 32GP 64 64 GB 12K pop
NetBurst 80 FPU Execution
Microarchitecture, 64 MMX Trace Cache;
HyperThreading 128 XMM L1:8KB
Technology L2:512KB
Pentium M Processor | 2003 1.60 GHz, Intel 77M 32 GP 64 4GB L1:64 KB
NetBurst 80 FPU L2: 1 MB
Microarchitecture 64 MMX
128 XMM

Vol. 1 2-27

INTEL® 64 AND IA-32 ARCHITECTURES

Table 2-3. Key Features of Previous Generations of IA-32 Processors (Contd.)

Intel Pentium 4 2004 3.40 GHz, Intel 125M 32 GP 64 64 GB 12K pop
Processor NetBurst 80 FPU Execution
Supporting Hyper- Microarchitecture, 64 MMX Trace Cache;
Threading HyperThreading 128 XMM L1: 16 KB
Technology at 90 nm Technology L2: 1 MB
process
NOTES:

1. The register size and external data bus size are given in bits. Note also that each 32-bit general-purpose (GP) registers can be
addressed as an 8- or a 16-bit data registers in all of the processors.

2. Internal data paths are 2 to 4 times wider than the external data bus for each processor.

2.4 PLANNED REMOVAL OF INTEL® INSTRUCTION SET ARCHITECTURE AND
FEATURES FROM UPCOMING PRODUCTS

This section lists Intel Instruction Set Architecture (ISA) and features that Intel plans to remove from select prod-
ucts starting from a specific year.

Table 2-4. Planned Intel® ISA and Features Removal List

Intel ISA/Feature Year of Removal
XAPIC mode 2025 onwards
Uncore PMI. IA32_DEBUGCTL MSR, bit 13 (MSR address 1D39H) 2026 onwards

2.5 INTEL® INSTRUCTION SET ARCHITECTURE AND FEATURES REMOVED

This section lists Intel ISA and features that Intel has already removed for select upcoming products. All sections
relevant to the removed features will be identified as such and may be moved to an archived section in future
Intel® 64 and IA-32 Architectures Software Developer's Manual releases.

Table 2-5. Intel® ISA and Features Removal List

Intel ISA/Feature Year of Removal
Intel® Memory Protection Extensions (Intel® MPX) 2019 onwards
MSR_TEST_CTRL, bit 31 (MSR address 33H) 2019 onwards
Hardware Lock Elision (HLE) 2019 onwards
VP2INTERSECT 2023 onwards

2-28 Vol. 1

CHAPTER 3
BASIC EXECUTION ENVIRONMENT

This chapter describes the basic execution environment of an Intel 64 or IA-32 processor as seen by assembly-
language programmers. It describes how the processor executes instructions and how it stores and manipulates
data. The execution environment described here includes memory (the address space), general-purpose data
registers, segment registers, the flag register, and the instruction pointer register.

3.1 MODES OF OPERATION

The IA-32 architecture supports three basic operating modes: protected mode, real-address mode, and system
management mode. The operating mode determines which instructions and architectural features are accessible:

®* Protected mode — This mode is the native state of the processor. Among the capabilities of protected mode
is the ability to directly execute “real-address mode” 8086 software in a protected, multi-tasking environment.
This feature is called virtual-8086 mode, although it is not actually a processor mode. Virtual-8086 mode is
actually a protected mode attribute that can be enabled for any task.

®* Real-address mode — This mode implements the programming environment of the Intel 8086 processor with
extensions (such as the ability to switch to protected or system management mode). The processor is placed in
real-address mode following power-up or a reset.

* System management mode (SMM) — This mode provides an operating system or executive with a
transparent mechanism for implementing platform-specific functions such as power management and system
security. The processor enters SMM when the external SMM interrupt pin (SMI#) is activated or an SMI is
received from the advanced programmable interrupt controller (APIC).

In SMM, the processor switches to a separate address space while saving the basic context of the currently
running program or task. SMM-specific code may then be executed transparently. Upon returning from SMM,
the processor is placed back into its state prior to the system management interrupt. SMM was introduced with
the Intel386" SL and Intel486 " SL processors and became a standard IA-32 feature with the Pentium
processor family.

3.1.1 Intel® 64 Architecture

Intel 64 architecture adds IA-32e mode. IA-32e mode has two sub-modes.
These are:

* Compatibility mode (sub-mode of IA-32e mode) — Compatibility mode permits most legacy 16-bit and
32-bit applications to run without re-compilation under a 64-bit operating system. For brevity, the compatibility
sub-mode is referred to as compatibility mode in IA-32 architecture. The execution environment of compati-
bility mode is the same as described in Section 3.2. Compatibility mode also supports all of the privilege levels
that are supported in 64-bit and protected modes. Legacy applications that run in Virtual 8086 mode or use
hardware task management will not work in this mode.

Compatibility mode is enabled by the operating system (OS) on a code segment basis. This means that a single
64-bit OS can support 64-bit applications running in 64-bit mode and support legacy 32-bit applications (not
recompiled for 64-bits) running in compatibility mode.

Compatibility mode is similar to 32-bit protected mode. Applications access only the first 4 GByte of linear-
address space. Compatibility mode uses 16-bit and 32-bit address and operand sizes. Like protected mode, this
mode allows applications to access physical memory greater than 4 GByte using PAE (Physical Address Exten-
sions).

®* 64-bit mode (sub-mode of IA-32e mode) — This mode enables a 64-bit operating system to run applica-
tions written to access 64-bit linear address space. For brevity, the 64-bit sub-mode is referred to as 64-bit
mode in IA-32 architecture.

Vol. 1T 3-1

BASIC EXECUTION ENVIRONMENT

64-bit mode extends the number of general purpose registers and SIMD extension registers from 8 to 16.
General purpose registers are widened to 64 bits. The mode also introduces a new opcode prefix (REX) to
access the register extensions. See Section 3.2.1 for a detailed description.

64-bit mode is enabled by the operating system on a code-segment basis. Its default address size is 64 bits and
its default operand size is 32 bits. The default operand size can be overridden on an instruction-by-instruction
basis using a REX opcode prefix in conjunction with an operand size override prefix.

REX prefixes allow a 64-bit operand to be specified when operating in 64-bit mode. By using this mechanism,
many existing instructions have been promoted to allow the use of 64-bit registers and 64-bit addresses.

3.2 OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT

Any program or task running on an IA-32 processor is given a set of resources for executing instructions and for
storing code, data, and state information. These resources (described briefly in the following paragraphs and
shown in Figure 3-1) make up the basic execution environment for an IA-32 processor.

An Intel 64 processor supports the basic execution environment of an IA-32 processor, and a similar environment
under IA-32e mode that can execute 64-bit programs (64-bit sub-mode) and 32-bit programs (compatibility sub-
mode).

The basic execution environment is used jointly by the application programs and the operating system or executive
running on the processor.

Address space — Any task or program running on an IA-32 processor can address a linear address space of
up to 4 GBytes (232 bytes) and a physical address space of up to 64 GBytes (236 bytes). See Section 3.3.6,
“Extended Physical Addressing in Protected Mode,” for more information about addressing an address space
greater than 4 GBytes.

Basic program execution registers — The eight general-purpose registers, the six segment registers, the
EFLAGS register, and the EIP (instruction pointer) register comprise a basic execution environment in which to
execute a set of general-purpose instructions. These instructions perform basic integer arithmetic on byte,
word, and doubleword integers, handle program flow control, operate on bit and byte strings, and address
memory. See Section 3.4, “Basic Program Execution Registers,” for more information about these registers.

x87 FPU registers — The eight x87 FPU data registers, the x87 FPU control register, the status register, the
x87 FPU instruction pointer register, the x87 FPU operand (data) pointer register, the x87 FPU tag register, and
the x87 FPU opcode register provide an execution environment for operating on single precision, double
precision, and double extended precision floating-point values, word integers, doubleword integers, quadword
integers, and binary coded decimal (BCD) values. See Section 8.1, “x87 FPU Execution Environment,” for more
information about these registers.

MMX registers — The eight MMX registers support execution of single-instruction, multiple-data (SIMD)
operations on 64-bit packed byte, word, and doubleword integers. See Section 9.2, "The MMX Technology
Programming Environment,” for more information about these registers.

XMM registers — The eight XMM data registers and the MXCSR register support execution of SIMD operations
on 128-bit packed single precision and double precision floating-point values and on 128-bit packed byte, word,
doubleword, and quadword integers. See Section 10.2, “Intel® SSE Programming Environment,” for more
information about these registers.

YMM registers — The YMM data registers support execution of 256-bit SIMD operations on 256-bit packed
single precision and double precision floating-point values and on 256-bit packed byte, word, doubleword, and
quadword integers.

Bounds registers — Each of the BNDO-BND3 register stores the lower and upper bounds (64 bits each)
associated with the pointer to a memory buffer. They support execution of the Intel MPX instructions.

BNDCFGU and BNDSTATUS— BNDCFGU configures user mode MPX operations on bounds checking.
BNDSTATUS provides additional information on the #BR caused by an MPX operation.

3-2 Vol.1

BASIC EXECUTION ENVIRONMENT

Basic Program Execution Registers Address Space*
)) 2732 -1
Eight 32-bit
Registers General-Purpose Registers
Six 16-bit :
Registers Segment Registers
| 32-bits | EFLAGS Register
| 32-bits | EIP (Instruction Pointer Register)

FPU Registers

E:ght_SO-bit Floating-Point
egisters Data Registers 0
_ . *The address space can be
Control Register flat or segmented. Using
Status Register the physical address
i) extension mechanism, a
Tag Register physical address space of
[Opcode Register (11-bits) 2736 - 1 can be addressed.
| 48 bits | FPU Instruction Pointer Register
[48 bits | FPU Data (Operand) Pointer Register
MMX Registers Bounds Registers
Eight 64-bit Four 128-bit Registers
Registers MMX Registers
BNDCFGU ‘ ‘ BNDSTATUS
XMM Registers
Eight 128-bit
Registers XMM Registers
| 32-bits | MXCSR Register
YMM Registers
Eight 256-bit
Registers YMM Registers

Figure 3-1. IA-32 Basic Execution Environment for Non-64-Bit Modes

Vol.1T 3-3

BASIC EXECUTION ENVIRONMENT

Stack — To support procedure or subroutine calls and the passing of parameters between procedures or
subroutines, a stack and stack management resources are included in the execution environment. The stack
(not shown in Figure 3-1) is located in memory. See Section 6.2, “Stacks,” for more information about stack
structure.

In addition to the resources provided in the basic execution environment, the IA-32 architecture provides the
following resources as part of its system-level architecture. They provide extensive support for operating-system
and system-development software. Except for the I/O ports, the system resources are described in detail in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C & 3D.

I/0 ports — The IA-32 architecture supports a transfers of data to and from input/output (I/O) ports. See
Chapter 19, “Input/Output,” in this volume.

Control registers — The five control registers (CRO through CR4) determine the operating mode of the
processor and the characteristics of the currently executing task. See Chapter 2, "System Architecture
Overview,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Memory management registers — The GDTR, IDTR, task register, and LDTR specify the locations of data
structures used in protected mode memory management. See Chapter 2, "System Architecture Overview,” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Debug registers — The debug registers (DRO through DR7) control and allow monitoring of the processor’s
debugging operations. See in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Memory type range registers (MTRRs) — The MTRRs are used to assign memory types to regions of
memory. See the sections on MTRRs in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 3A, 3B, 3C & 3D.

Model-specific registers (MSRs) — The processor provides a variety of model-specific registers that are
used to control and report on processor performance. Virtually all MSRs handle system related functions and
are not accessible to an application program. One exception to this rule is the time-stamp counter. The MSRs
are described in Chapter 2, “Model-Specific Registers (MSRs),” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 4.

Machine check registers — The machine check registers consist of a set of control, status, and error-
reporting MSRs that are used to detect and report on hardware (machine) errors. See Chapter 16, “Machine-
Check Architecture,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Performance monitoring counters — The performance monitoring counters allow processor performance
events to be monitored. See Chapter 20, “Performance Monitoring,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B.

The remainder of this chapter describes the organization of memory and the address space, the basic program
execution registers, and addressing modes. Refer to the following chapters in this volume for descriptions of the
other program execution resources shown in Figure 3-1:

X87 FPU registers — See Chapter 8, "Programming with the x87 FPU.”
MMX Registers — See Chapter 9, “"Programming with Intel® MMX™ Technology.”

XMM registers — See Chapter 10, “Programming with Intel® Streaming SIMD Extensions (Intel® SSE),”
Chapter 11, “Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2),” and Chapter 12,
“Programming with Intel® SSE3, SSSE3, Intel® SSE4, and Intel® AES-NI.”

YMM registers — See Chapter 14, “Programming with Intel® AVX, FMA, and Intel® AVX2.”

BND registers, BNDCFGU, BNDSTATUS — See Chapter 13, "Managing State Using the XSAVE Feature Set,”
and Appendix E, “Intel® Memory Protection Extensions.”

Stack implementation and procedure calls — See Chapter 6, “"Procedure Calls, Interrupts, and Exceptions.”

3-4 Vol.1

BASIC EXECUTION ENVIRONMENT

3.2.1 64-Bit Mode Execution Environment

The execution environment for 64-bit mode is similar to that described in Section 3.2. The following paragraphs
describe the differences that apply.

Address space — A task or program running in 64-bit mode on an IA-32 processor can address linear address
space of up to 2% bytes (subject to the canonical addressing requirement described in Section 3.3.7.1) and
physical address space of up to 2°2 bytes. Software can query CPUID for the physical address size supported
by a processor.

Basic program execution registers — The number of general-purpose registers (GPRs) available is 16.
GPRs are 64-bits wide and they support operations on byte, word, doubleword, and quadword integers.
Accessing byte registers is done uniformly to the lowest 8 bits. The instruction pointer register becomes 64 bits.
The EFLAGS register is extended to 64 bits wide, and is referred to as the RFLAGS register. The upper 32 bits
of RFLAGS is reserved. The lower 32 bits of RFLAGS is the same as EFLAGS. See Figure 3-2.

XMM registers — There are 16 XMM data registers for SIMD operations. See Section 10.2, “Intel® SSE
Programming Environment,” for more information about these registers.

YMM registers — There are 16 YMM data registers for SIMD operations. See Chapter 14, “Programming with
Intel® AVX, FMA, and Intel® AVX2,” for more information about these registers.

BND registers, BNDCFGU, BNDSTATUS — See Chapter 13, "Managing State Using the XSAVE Feature Set,”
and Appendix E, “Intel® Memory Protection Extensions.”

Stack — The stack pointer size is 64 bits. Stack size is not controlled by a bit in the SS descriptor (as it is in
non-64-bit modes) nor can the pointer size be overridden by an instruction prefix.

Control registers — Control registers expand to 64 bits. A new control register (the task priority register: CR8
or TPR) has been added. See Chapter 2, “Intel® 64 and IA-32 Architectures,” in this volume.

Debug registers — Debug registers expand to 64 bits. See Chapter 18, "Debug, Branch Profile, TSC, and
Intel® Resource Director Technology (Intel® RDT) Features,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B.

Vol.1T 3-5

BASIC EXECUTION ENVIRONMENT

Descriptor table registers — The global descriptor table register (GDTR) and interrupt descriptor table
register (IDTR) expand to 10 bytes so that they can hold a full 64-bit base address. The local descriptor table
register (LDTR) and the task register (TR) also expand to hold a full 64-bit base address.

Basic Program Execution Registers Address Space
Sixteen 64-bit 27641
Registers General-Purpose Registers
Six 16-bit)
Registers Segment Registers
[64-bits | RFLAGS Register
| 64-bits | RIP (Instruction Pointer Register)

FPU Registers

Eight 80-bit Floatin .
; g-Point
Registers Data Registers
its ontrol Register
Control Regi
16 bits tatus Register
Status Regi
its ag Register
Tag Regi

[] Opcode Register (11-bits)
|
|

[64 bits FPU Instruction Pointer Register
| 64 bits FPU Data (Operand) Pointer Register
MMX Registers Bounds Registers
Eight 64-bit Four 128-bit Registers
Registers MMX Registers
BNDCFGU | | BNDSTATUS
XMM Registers
Sixteen 128-bit
Registers XMM Registers
| 32-bits | MXCSR Register
YMM Registers
Sixteen 256-bit
Registers YMM Registers

Figure 3-2. 64-Bit Mode Execution Environment

3.3 MEMORY ORGANIZATION

The memory that the processor addresses on its bus is called physical memory. Physical memory is organized as
a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical address. The physical
address space ranges from zero to a maximum of 236 _1 (64 GBytes) if the processor does not support Intel
64 architecture. Intel 64 architecture introduces a set of changes in physical and linear address space; these
are described in Section 3.3.3, Section 3.3.4, and Section 3.3.7.

3-6 Vol.1

BASIC EXECUTION ENVIRONMENT

Virtually any operating system or executive designed to work with an IA-32 or Intel 64 processor will use the
processor’'s memory management facilities to access memory. These facilities provide features such as segmenta-
tion and paging, which allow memory to be managed efficiently and reliably. Memory management is described in
detail in Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A. The following paragraphs describe the basic methods of addressing memory when
memory management is used.

3.3.1 IA-32 Memory Models

When employing the processor’'s memory management facilities, programs do not directly address physical
memory. Instead, they access memory using one of three memory models: flat, sesgmented, or real address mode:

Flat memory model — Memory appears to a program as a single, continuous address space (Figure 3-3). This
space is called a linear address space. Code, data, and stacks are all contained in this address space. Linear
address space is byte addressable, with addresses running contiguously from 0 to 232 - 1 (if not in 64-bit
mode). An address for any byte in linear address space is called a linear address.

Segmented memory model — Memory appears to a program as a group of independent address spaces
called segments. Code, data, and stacks are typically contained in separate segments. To address a byte in a
segment, a program issues a logical address. This consists of a segment selector and an offset (logical
addresses are often referred to as far pointers). The segment selector identifies the segment to be accessed
and the offset identifies a byte in the address space of the segment. Programs running on an IA-32 processor
can address up to 16,383 segments of different sizes and types, and each segment can be as large as 232
bytes.

Internally, all the segments that are defined for a system are mapped into the processor’s linear address space.
To access a memory location, the processor thus translates each logical address into a linear address. This
translation is transparent to the application program.

The primary reason for using segmented memory is to increase the reliability of programs and systems. For
example, placing a program’s stack in a separate segment prevents the stack from growing into the code or
data space and overwriting instructions or data, respectively.

Real-address mode memory model — This is the memory model for the Intel 8086 processor. It is
supported to provide compatibility with existing programs written to run on the Intel 8086 processor. The real-
address mode uses a specific implementation of segmented memory in which the linear address space for the
program and the operating system/executive consists of an array of segments of up to 64 KBytes in size each.
The maximum size of the linear address space in real-address mode is 220 bytes.

See also: Chapter 21, “8086 Emulation,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B.

Vol.1 3-7

BASIC EXECUTION ENVIRONMENT

Flat Model
Linear Address
Linear
Address
Space*
Segmented Model
Segments
; Linear
Offset (effective address) Address
. l:l—> Space*
Abc{)jlq’lecsasl Segment Selector >
Real-Address Mode Model
Linear Address
Offset Space Divided — —
Into Equal
. Sized Segments | _ _ |
AtLj?jgr:acsasl Segment Selector ‘ >
* The linear address space r
can be paged when using the
flat or segmented model.

Figure 3-3. Three Memory Management Models

3.3.2 Paging and Virtual Memory

With the flat or the segmented memory model, linear address space is mapped into the processor’s physical
address space either directly or through paging. When using direct mapping (paging disabled), each linear address
has a one-to-one correspondence with a physical address. Linear addresses are sent out on the processor’s address
lines without translation.

When using the IA-32 architecture’s paging mechanism (paging enabled), linear address space is divided into
pages which are mapped to virtual memory. The pages of virtual memory are then mapped as needed into physical
memory. When an operating system or executive uses paging, the paging mechanism is transparent to an applica-
tion program. All that the application sees is linear address space.

In addition, IA-32 architecture’s paging mechanism includes extensions that support:
® Physical Address Extensions (PAE) to address physical address space greater than 4 GBytes.
®* Page Size Extensions (PSE) to map linear address to physical address in 4-MBytes pages.

See also: Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

3.3.3 Memory Organization in 64-Bit Mode

Intel 64 architecture supports physical address space greater than 64 GBytes; the actual physical address size of
IA-32 processors is implementation specific. In 64-bit mode, there is architectural support for 64-bit linear address
space. However, processors supporting Intel 64 architecture may implement less than 64-bits (see Section
3.3.7.1). The linear address space is mapped into the processor physical address space through the PAE paging
mechanism.

3-8 Vol.1

BASIC EXECUTION ENVIRONMENT

3.34 Modes of Operation vs. Memory Model

When writing code for an IA-32 or Intel 64 processor, a programmer needs to know the operating mode the
processor is going to be in when executing the code and the memory model being used. The relationship between
operating modes and memory models is as follows:

®* Protected mode — When in protected mode, the processor can use any of the memory models described in
this section. (The real-addressing mode memory model is ordinarily used only when the processor is in the
virtual-8086 mode.) The memory model used depends on the design of the operating system or executive.
When multitasking is implemented, individual tasks can use different memory models.

®* Real-address mode — When in real-address mode, the processor only supports the real-address mode
memory model.

* System management mode — When in SMM, the processor switches to a separate address space, called the
system management RAM (SMRAM). The memory model used to address bytes in this address space is similar
to the real-address mode model. See Chapter 32, “System Management Mode,” in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3C, for more information on the memory model used in
SMM.

* Compatibility mode — Software that needs to run in compatibility mode should observe the same memory
model as those targeted to run in 32-bit protected mode. The effect of segmentation is the same as it is in 32-
bit protected mode semantics.

®* 64-bit mode — Segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address
space. Specifically, the processor treats the segment base of CS, DS, ES, and SS as zero in 64-bit mode (this
makes a linear address equal an effective address). Segmented and real address modes are not available in 64-
bit mode.

3.3.5 32-Bit and 16-Bit Address and Operand Sizes

IA-32 processors in protected mode can be configured for 32-bit or 16-bit address and operand sizes. With 32-bit
address and operand sizes, the maximum linear address or segment offset is FFFFFFFFH (232-1); operand sizes are
typically 8 bits or 32 bits. With 16-bit address and operand sizes, the maximum linear address or segment offset is
FFFFH (216-1); operand sizes are typically 8 bits or 16 bits.

When using 32-bit addressing, a logical address (or far pointer) consists of a 16-bit segment selector and a 32-bit
offset; when using 16-bit addressing, an address consists of a 16-bit segment selector and a 16-bit offset.

Instruction prefixes allow temporary overrides of the default address and/or operand sizes from within a program.

When operating in protected mode, the segment descriptor for the currently executing code segment defines the
default address and operand size. A segment descriptor is a system data structure not normally visible to applica-
tion code. Assembler directives allow the default addressing and operand size to be chosen for a program. The
assembler and other tools then set up the segment descriptor for the code segment appropriately.

When operating in real-address mode, the default addressing and operand size is 16 bits. An address-size override
can be used in real-address mode to enable 32-bit addressing. However, the maximum allowable 32-bit linear
address is still 000FFFFFH (220-1).

3.3.6 Extended Physical Addressing in Protected Mode

Beginning with P6 family processors, the IA-32 architecture supports addressing of up to 64 GBytes (23° bytes) of
physical memory. A program or task could not address locations in this address space directly. Instead, it
addresses individual linear address spaces of up to 4 GBytes that mapped to 64-GByte physical address space
through a virtual memory management mechanism. Using this mechanism, an operating system can enable a
program to switch 4-GByte linear address spaces within 64-GByte physical address space.

The use of extended physical addressing requires the processor to operate in protected mode and the operating
system to provide a virtual memory management system. See “36-Bit Physical Addressing Using the PAE Paging
Mechanism” in Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A.

Vol.1T 3-9

BASIC EXECUTION ENVIRONMENT

3.3.7 Address Calculations in 64-Bit Mode

In most cases, 64-bit mode uses flat address space for code, data, and stacks. In 64-bit mode (if there is no
address-size override), the size of effective address calculations is 64 bits. An effective-address calculation uses a
64-bit base and index registers and sign-extend displacements to 64 bits.

In the flat address space of 64-bit mode, linear addresses are equal to effective addresses because the base
address is zero. In the event that FS or GS segments are used with a non-zero base, this rule does not hold. In 64-
bit mode, the effective address components are added and the effective address is truncated (See for example the
instruction LEA) before adding the full 64-bit segment base. The base is never truncated, regardless of addressing
mode in 64-bit mode.

The instruction pointer is extended to 64 bits to support 64-bit code offsets. The 64-bit instruction pointer is called
the RIP. Table 3-1 shows the relationship between RIP, EIP, and IP.

Table 3-1. Instruction Pointer Sizes

Bits 63:32 ‘ Bits 31:16 Bits 15:0
16-bit instruction pointer Not Modified IP
32-bit instruction pointer Zero Extension ‘ EIP
64-bit instruction pointer RIP

Generally, displacements and immediates in 64-bit mode are not extended to 64 bits. They are still limited to 32
bits and sign-extended during effective-address calculations. In 64-bit mode, however, support is provided for 64-
bit displacement and immediate forms of the MOV instruction.

All 16-bit and 32-bit address calculations are zero-extended in IA-32e mode to form 64-bit addresses. Address
calculations are first truncated to the effective address size of the current mode (64-bit mode or compatibility
mode), as overridden by any address-size prefix. The result is then zero-extended to the full 64-bit address width.
Because of this, 16-bit and 32-bit applications running in compatibility mode can access only the low 4 GBytes of
the 64-bit mode effective addresses. Likewise, a 32-bit address generated in 64-bit mode can access only the low
4 GBytes of the 64-bit mode effective addresses.

3.3.7.1 Canonical Addressing

In 64-bit mode, an address is considered to be in canonical form if address bits 63 through to the most-significant
implemented bit by the microarchitecture are set to either all ones or all zeros.

Intel 64 architecture defines a 64-bit linear address. Implementations can support less. The first implementation of
IA-32 processors with Intel 64 architecture supports a 48-bit linear address. This means a canonical address must
have bits 63 through 48 set to zeros or ones (depending on whether bit 47 is a zero or one).

Although implementations may not use all 64 bits of the linear address, they should check bits 63 through the

most-significant implemented bit to see if the address is in canonical form. If a linear-memory reference is not in
canonical form, the implementation should generate an exception. In most cases, a general-protection exception
(#GP) is generated. However, in the case of explicit or implied stack references, a stack fault (#SS) is generated.

Instructions that have implied stack references, by default, use the SS segment register. These include PUSH/POP-
related instructions and instructions using RSP/RBP as base registers. In these cases, the canonical fault is #SS.

If an instruction uses base registers RSP/RBP and uses a segment override prefix to specify a non-SS segment, a

canonical fault generates a #GP (instead of an #SS). In 64-bit mode, only FS and GS segment-overrides are appli-
cable in this situation. Other segment override prefixes (CS, DS, ES, and SS) are ignored. Note that this also means
that an SS segment-override applied to a “non-stack” register reference is ignored. Such a sequence still produces
a #GP for a canonical fault (and not an #SS).

3.4 BASIC PROGRAM EXECUTION REGISTERS

IA-32 architecture provides 16 basic program execution registers for use in general system and application
programing (see Figure 3-4). These registers can be grouped as follows:

3-10 Vol. 1

BASIC EXECUTION ENVIRONMENT

®* General-purpose registers. These eight registers are available for storing operands and pointers.
* Segment registers. These registers hold up to six segment selectors.

®* EFLAGS (program status and control) register. The EFLAGS register report on the status of the program
being executed and allows limited (application-program level) control of the processor.

®* EIP (instruction pointer) register. The EIP register contains a 32-bit pointer to the next instruction to be
executed.

3.4.1 General-Purpose Registers

The 32-bit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are provided for holding the
following items:

®* Operands for logical and arithmetic operations.

® Operands for address calculations.

® Memory pointers.

Although all of these registers are available for general storage of operands, results, and pointers, caution should

be used when referencing the ESP register. The ESP register holds the stack pointer and as a general rule should
not be used for another purpose.

Many instructions assign specific registers to hold operands. For example, string instructions use the contents of

the ECX, ESI, and EDI registers as operands. When using a segmented memory model, some instructions assume
that pointers in certain registers are relative to specific segments. For instance, some instructions assume that a

pointer in the EBX register points to a memory location in the DS segment.

31 General-Purpose Registers

EAX
EBX
ECX
EDX
Esl

EDI

EBP
ESP

Segment Registers
15 0

cs
DS
SS
€S
FS
GS

31Program Status and Control Register

| | EFLAGS

31 Instruction Pointer 0
| | ep

Figure 3-4. General System and Application Programming Registers

Vol.1T 3-11

BASIC EXECUTION ENVIRONMENT

The special uses of general-purpose registers by instructions are described in Chapter 5, “Instruction Set
Summary,” in this volume. See also: Chapter 3, Chapter 4, Chapter 5, and Chapter 6 of the Intel® 64 and IA-32
Architectures Software Developer’'s Manual, Volumes 2A, 2B, 2C, & 2D. The following is a summary of special uses:

® EAX — Accumulator for operands and results data.

* EBX — Pointer to data in the DS segment.

® ECX — Counter for string and loop operations.

* EDX — I/O pointer.

®* ESI — Pointer to data in the segment pointed to by the DS register; source pointer for string operations.

®* EDI — Pointer to data (or destination) in the segment pointed to by the ES register; destination pointer for
string operations.

® ESP — Stack pointer (in the SS segment).
* EBP — Pointer to data on the stack (in the SS segment).

As shown in Figure 3-5, the lower 16 bits of the general-purpose registers map directly to the register set found in
the 8086 and Intel 286 processors and can be referenced with the names AX, BX, CX, DX, BP, SI, DI, and SP. Each
of the lower two bytes of the EAX, EBX, ECX, and EDX registers can be referenced by the names AH, BH, CH, and
DH (high bytes) and AL, BL, CL, and DL (low bytes).

General-Purpose Registers
31 1615 87 0 16-bit 32-bit

AH AL AX EAX

BH BL BX EBX

CH CL CX ECX

DH DL DX EDX
BP EBP
S| €Sl
DI DI
SP ESP

Figure 3-5. Alternate General-Purpose Register Names

3.4.1.1 General-Purpose Registers in 64-Bit Mode

In 64-bit mode, there are 16 general purpose registers and the default operand size is 32 bits. However, general-
purpose registers are able to work with either 32-bit or 64-bit operands. If a 32-bit operand size is specified: EAX,
EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D - R15D are available. If a 64-bit operand size is specified: RAX, RBX, RCX,
RDX, RDI, RSI, RBP, RSP, R8-R15 are available. RBD-R15D/R8-R15 represent eight new general-purpose registers.
All of these registers can be accessed at the byte, word, dword, and qword level. REX prefixes are used to generate
64-bit operand sizes or to reference registers R8-R15.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved across transitions from 64-bit
mode into compatibility mode then back into 64-bit mode. However, values of R8-R15 and XMM8-XMM15 are unde-
fined after transitions from 64-bit mode through compatibility mode to legacy or real mode and then back through
compatibility mode to 64-bit mode.

3-12 Vol. 1

BASIC EXECUTION ENVIRONMENT

Table 3-2. Addressable General Purpose Registers

Register Type Without REX With REX

Byte Registers AL, BL, CL, DL, AH, BH, CH, DH AL, BL, CL, DL, DIL, SIL, BPL, SPL, R8B - R15B

Word Registers AX, BX, CX, DX, DI, SI, BP, SP AX, BX, CX, DX, DI, SI, BP, SP, RBW - R15W
Doubleword Registers EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP | EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D - R15D
Quadword Registers N.A. RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8 - R15

In 64-bit mode, there are limitations on accessing byte registers. An instruction cannot reference legacy high-
bytes (for example: AH, BH, CH, DH) and one of the new byte registers at the same time (for example: the low
byte of the RAX register). However, instructions may reference legacy low-bytes (for example: AL, BL, CL, or DL)
and new byte registers at the same time (for example: the low byte of the R8 register, or RBP). The architecture
enforces this limitation by changing high-byte references (AH, BH, CH, DH) to low byte references (BPL, SPL, DIL,
SIL: the low 8 bits for RBP, RSP, RDI, and RSI) for instructions using a REX prefix.

When in 64-bit mode, operand size determines the number of valid bits in the destination general-purpose
register:

® 64-bit operands generate a 64-bit result in the destination general-purpose register.

® 32-bit operands generate a 32-bit result, zero-extended to a 64-bit result in the destination general-purpose
register.

®* 8-bit and 16-bit operands generate an 8-bit or 16-bit result. The upper 56 bits or 48 bits (respectively) of the
destination general-purpose register are not modified by the operation. If the result of an 8-bit or 16-bit
operation is intended for 64-bit address calculation, explicitly sign-extend the register to the full 64-bits.

Because the upper 32 bits of 64-bit general-purpose registers are undefined in 32-bit modes, the upper 32 bits of
any general-purpose register are not preserved when switching from 64-bit mode to a 32-bit mode (to protected
mode or compatibility mode). Software must not depend on these bits to maintain a value after a 64-bit to 32-bit
mode switch.

34.2 Segment Registers

The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. A segment selector is a special
pointer that identifies a segment in memory. To access a particular segment in memory, the segment selector for
that segment must be present in the appropriate segment register.

When writing application code, programmers generally create segment selectors with assembler directives and
symbols. The assembler and other tools then create the actual segment selector values associated with these
directives and symbols. If writing system code, programmers may need to create segment selectors directly. See
Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

How segment registers are used depends on the type of memory management model that the operating system or
executive is using. When using the flat (unsegmented) memory model, segment registers are loaded with segment
selectors that point to overlapping segments, each of which begins at address 0 of the linear address space (see
Figure 3-6). These overlapping segments then comprise the linear address space for the program. Typically, two
overlapping segments are defined: one for code and another for data and stacks. The CS segment register points
to the code segment and all the other segment registers point to the data and stack segment.

When using the segmented memory model, each segment register is ordinarily loaded with a different segment
selector so that each segment register points to a different segment within the linear address space (see

Figure 3-7). At any time, a program can thus access up to six segments in the linear address space. To access a
segment not pointed to by one of the segment registers, a program must first load the segment selector for the
segment to be accessed into a segment register.

Vol.1 3-13

BASIC EXECUTION ENVIRONMENT

Linear Address
Space for Program
Segment Registers Overlapping
Segments
of up to
Bz | 4 GBytes
sS —| Beginning at
ES Address 0
FS —
GS —
The segment selector in

Y

each segment register
points to an overlapping
segment in the linear
address space.

Figure 3-6. Use of Segment Registers for Flat Memory Model

Code
. Segment
Segment Registers
Data
cs Segment
DS Stack
SS Segment
B —— - All segments
FS » are mapped
Gs o to the same
- linear-address
space
Data
Segment
Data
Segment
- Data
Segment
R

Figure 3-7. Use of Segment Registers in Segmented Memory Model

Each of the segment registers is associated with one of three types of storage: code, data, or stack. For example,
the CS register contains the segment selector for the code segment, where the instructions being executed are
stored. The processor fetches instructions from the code segment, using a logical address that consists of the
segment selector in the CS register and the contents of the EIP register. The EIP register contains the offset within
the code segment of the next instruction to be executed. The CS register cannot be loaded explicitly by an applica-
tion program. Instead, it is loaded implicitly by instructions or internal processor operations that change program
control (such as procedure calls, interrupt handling, or task switching).

The DS, ES, FS, and GS registers point to four data segments. The availability of four data segments permits effi-
cient and secure access to different types of data structures. For example, four separate data segments might be
created: one for the data structures of the current module, another for the data exported from a higher-level
module, a third for a dynamically created data structure, and a fourth for data shared with another program. To

access additional data segments, the application program must load segment selectors for these segments into the
DS, ES, FS, and GS registers, as needed.

The SS register contains the segment selector for the stack segment, where the procedure stack is stored for the
program, task, or handler currently being executed. All stack operations use the SS register to find the stack

3-14 Vol. 1

BASIC EXECUTION ENVIRONMENT

segment. Unlike the CS register, the SS register can be loaded explicitly, which permits application programs to set
up multiple stacks and switch among them.

See Section 3.3, "Memory Organization,” for an overview of how the segment registers are used in real-address
mode.

The four segment registers CS, DS, SS, and ES are the same as the segment registers found in the Intel 8086 and
Intel 286 processors and the FS and GS registers were introduced into the IA-32 Architecture with the Intel386™
family of processors.

3.4.2.1 Segment Registers in 64-Bit Mode

In 64-bit mode: CS, DS, ES, SS are treated as if each segment base is 0, regardless of the value of the associated
segment descriptor base. This creates a flat address space for code, data, and stack. FS and GS are exceptions.
Both segment registers may be used as additional base registers in linear address calculations (in the addressing
of local data and certain operating system data structures).

Even though segmentation is generally disabled, segment register loads may cause the processor to perform
segment access assists. During these activities, enabled processors will still perform most of the legacy checks on
loaded values (even if the checks are not applicable in 64-bit mode). Such checks are needed because a segment
register loaded in 64-bit mode may be used by an application running in compatibility mode.

Limit checks for CS, DS, ES, SS, FS, and GS are disabled in 64-bit mode.

343 EFLAGS Register

The 32-bit EFLAGS register contains a group of status flags, a control flag, and a group of system flags. Figure 3-8
defines the flags within this register. Following initialization of the processor (either by asserting the RESET pin or
the INIT pin), the state of the EFLAGS register is 00000002H. Bits 1, 3, 5, 15, and 22 through 31 of this register
are reserved. Software should not use or depend on the states of any of these bits.

Some of the flags in the EFLAGS register can be modified directly, using special-purpose instructions (described in
the following sections). There are no instructions that allow the whole register to be examined or modified directly.

The following instructions can be used to move groups of flags to and from the procedure stack or the EAX register:
LAHF, SAHF, PUSHF, PUSHFD, POPF, and POPFD. After the contents of the EFLAGS register have been transferred to
the procedure stack or EAX register, the flags can be examined and modified using the processor’s bit manipulation
instructions (BT, BTS, BTR, and BTC).

When suspending a task (using the processor’s multitasking facilities), the processor automatically saves the state
of the EFLAGS register in the task state segment (TSS) for the task being suspended. When binding itself to a new
task, the processor loads the EFLAGS register with data from the new task’s TSS.

When a call is made to an interrupt or exception handler procedure, the processor automatically saves the state of
the EFLAGS registers on the procedure stack. When an interrupt or exception is handled with a task switch, the
state of the EFLAGS register is saved in the TSS for the task being suspended.

Vol.1 3-15

BASIC EXECUTION ENVIRONMENT

313029 28 27 26 252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

ViV

| A|VIR N
OOOOOOOOOOD;;CMFO

X ID Flag (IDy ‘
X Virtual Interrupt Pending (VIP)
X Virtual Interrupt Flag (VIF)

X Alignment Check / Access Control (AC)
Virtual-8086 Mode (VM)
Resume Flag (RF)
Nested Task (NT)
1/0 Privilege Level (IOPL)
Overflow Flag (OF)
Direction Flag (DF)
Interrupt Enable Flag (IF)
Trap Flag (TF)
Sign Flag (SF)
Zero Flag (ZF)
Auxiliary Carry Flag (AF)
Parity Flag (PF)
Carry Flag (CF)

olp|t|T[s|z| |Al,|P
FIF FIF|OF|O|F|

4
rUO-—

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

XOW VOOV XXOnXXXX

Reserved bit positions. DO NOT USE.
Always set to values previously read.

Figure 3-8. EFLAGS Register

As the IA-32 Architecture has evolved, flags have been added to the EFLAGS register, but the function and place-
ment of existing flags have remained the same from one family of the IA-32 processors to the next. As a result,
code that accesses or modifies these flags for one family of IA-32 processors works as expected when run on later
families of processors.

3.4.3.1 Status Flags

The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results of arithmetic instructions,
such as the ADD, SUB, MUL, and DIV instructions. The status flag functions are:

CF (bit 0) Carry flag — Set if an arithmetic operation generates a carry or a borrow out of the most-
significant bit of the result; cleared otherwise. This flag indicates an overflow condition for
unsigned-integer arithmetic. It is also used in multiple-precision arithmetic.

PF (bit 2) Parity flag — Set if the least-significant byte of the result contains an even number of 1 bits;
cleared otherwise.

AF (bit 4) Auxiliary Carry flag — Set if an arithmetic operation generates a carry or a borrow out of bit
3 of the result; cleared otherwise. This flag is used in binary-coded decimal (BCD) arithmetic.

ZF (bit 6) Zero flag — Set if the result is zero; cleared otherwise.

SF (bit 7) Sign flag — Set equal to the most-significant bit of the result, which is the sign bit of a signed
integer. (0 indicates a positive value and 1 indicates a negative value.)

OF (bit 11) Overflow flag — Set if the integer result is too large a positive number or too small a negative

number (excluding the sign-bit) to fit in the destination operand; cleared otherwise. This flag
indicates an overflow condition for signed-integer (two’s complement) arithmetic.

Of these status flags, only the CF flag can be modified directly, using the STC, CLC, and CMC instructions. Also the
bit instructions (BT, BTS, BTR, and BTC) copy a specified bit into the CF flag.

3-16 Vol. 1

BASIC EXECUTION ENVIRONMENT

The status flags allow a single arithmetic operation to produce results for three different data types: unsigned inte-
gers, signed integers, and BCD integers. If the result of an arithmetic operation is treated as an unsigned integer,
the CF flag indicates an out-of-range condition (carry or a borrow); if treated as a signed integer (two’s comple-
ment number), the OF flag indicates a carry or borrow; and if treated as a BCD digit, the AF flag indicates a carry
or borrow. The SF flag indicates the sign of a signed integer. The ZF flag indicates either a signed- or an unsigned-
integer zero.

When performing multiple-precision arithmetic on integers, the CF flag is used in conjunction with the add with
carry (ADC) and subtract with borrow (SBB) instructions to propagate a carry or borrow from one computation to
the next.

The condition instructions Jcc (jump on condition code cc), SETcc (byte set on condition code cc), LOOPcc, and
CMOVcc (conditional move) use one or more of the status flags as condition codes and test them for branch, set-
byte, or end-loop conditions.

3.43.2 DF Flag

The direction flag (DF, located in bit 10 of the EFLAGS register) controls string instructions (MOVS, CMPS, SCAS,
LODS, and STOS). Setting the DF flag causes the string instructions to auto-decrement (to process strings from
high addresses to low addresses). Clearing the DF flag causes the string instructions to auto-increment
(process strings from low addresses to high addresses).

The STD and CLD instructions set and clear the DF flag, respectively.

3433 System Flags and IOPL Field

The system flags and IOPL field in the EFLAGS register control operating-system or executive operations. They
should not be modified by application programs. The functions of the system flags are as follows:

TF (bit 8) Trap flag — Set to enable single-step mode for debugging; clear to disable single-step mode.

IF (bit 9) Interrupt enable flag — Controls the response of the processor to maskable interrupt
requests. Set to respond to maskable interrupts; cleared to inhibit maskable interrupts.

IOPL (bits 12 and 13)
I/0 privilege level field — Indicates the I/O privilege level of the currently running program
or task. The current privilege level (CPL) of the currently running program or task must be less
than or equal to the I/0 privilege level to access the I/O address space. The POPF and IRET
instructions can modify this field only when operating at a CPL of 0.

NT (bit 14) Nested task flag — Controls the chaining of interrupted and called tasks. Set when the
current task is linked to the previously executed task; cleared when the current task is not
linked to another task.

RF (bit 16) Resume flag — Controls the processor’s response to debug exceptions.

VM (bit 17) Virtual-8086 mode flag — Set to enable virtual-8086 mode; clear to return to protected
mode without virtual-8086 mode semantics.

AC (bit 18) Alignment check (or access control) flag — If the AM bit is set in the CRO register, align-

ment checking of user-mode data accesses is enabled if and only if this flag is 1.

If the SMAP bit is set in the CR4 register, explicit supervisor-mode data accesses to user-mode
pages are allowed if and only if this bit is 1. See Section 4.6, “Access Rights,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

VIF (bit 19) Virtual interrupt flag — Virtual image of the IF flag. Used in conjunction with the VIP flag.
(To use this flag and the VIP flag the virtual mode extensions are enabled by setting the VME
flag in control register CR4.)

VIP (bit 20) Virtual interrupt pending flag — Set to indicate that an interrupt is pending; clear when no
interrupt is pending. (Software sets and clears this flag; the processor only reads it.) Used in
conjunction with the VIF flag.

ID (bit 21) Identification flag — The ability of a program to set or clear this flag indicates support for
the CPUID instruction.

Vol.1 3-17

BASIC EXECUTION ENVIRONMENT

For a detailed description of these flags: see Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

3434 RFLAGS Register in 64-Bit Mode

In 64-bit mode, EFLAGS is extended to 64 bits and called RFLAGS. The upper 32 bits of RFLAGS register is
reserved. The lower 32 bits of RFLAGS is the same as EFLAGS.

3.5 INSTRUCTION POINTER

The instruction pointer (EIP) register contains the offset in the current code segment for the next instruction to be
executed. It is advanced from one instruction boundary to the next in straight-line code or it is moved ahead or
backwards by a number of instructions when executing JMP, Jcc, CALL, RET, and IRET instructions.

The EIP register cannot be accessed directly by software; it is controlled implicitly by control-transfer instructions
(such as JMP, Jcc, CALL, and RET), interrupts, and exceptions. The only way to read the EIP register is to execute a
CALL instruction and then read the value of the return instruction pointer from the procedure stack. The EIP
register can be loaded indirectly by modifying the value of a return instruction pointer on the procedure stack and
executing a return instruction (RET or IRET). See Section 6.2.4.2, “"Return Instruction Pointer.”

All IA-32 processors prefetch instructions. Because of instruction prefetching, an instruction address read from the
bus during an instruction load does not match the value in the EIP register. Even though different processor gener-
ations use different prefetching mechanisms, the function of the EIP register to direct program flow remains fully

compatible with all software written to run on IA-32 processors.

3.5.1 Instruction Pointer in 64-Bit Mode

In 64-bit mode, the RIP register becomes the instruction pointer. This register holds the 64-bit offset of the next
instruction to be executed. 64-bit mode also supports a technique called RIP-relative addressing. Using this tech-
nique, the effective address is determined by adding a displacement to the RIP of the next instruction.

3.6 OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES

When the processor is executing in protected mode, every code segment has a default operand-size attribute and
address-size attribute. These attributes are selected with the D (default size) flag in the segment descriptor for the
code segment (see Chapter 3, “Protected-Mode Memory Management,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A). When the D flag is set, the 32-bit operand-size and address-size attri-
butes are selected; when the flag is clear, the 16-bit size attributes are selected. When the processor is executing
in real-address mode, virtual-8086 mode, or SMM, the default operand-size and address-size attributes are always
16 bits.

The operand-size attribute selects the size of operands. When the 16-bit operand-size attribute is in force, oper-
ands can generally be either 8 bits or 16 bits, and when the 32-bit operand-size attribute is in force, operands can
generally be 8 bits or 32 bits.

The address-size attribute selects the sizes of addresses used to address memory: 16 bits or 32 bits. When the 16-
bit address-size attribute is in force, segment offsets and displacements are 16 bits. This restriction limits the size
of a segment to 64 KBytes. When the 32-bit address-size attribute is in force, segment offsets and displacements
are 32 bits, allowing up to 4 GBytes to be addressed.

The default operand-size attribute and/or address-size attribute can be overridden for a particular instruction by
adding an operand-size and/or address-size prefix to an instruction. See Chapter 2, “Instruction Format,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A. The effect of this prefix applies only to
the targeted instruction.

Table 3-4 shows effective operand size and address size (when executing in protected mode or compatibility mode)
depending on the settings of the D flag and the operand-size and address-size prefixes.

3-18 Vol. 1

BASIC EXECUTION ENVIRONMENT

Table 3-3. Effective Operand- and Address-Size Attributes

D Flag in Code Segment Descriptor 0 0 0 0 1 1 1 1
Operand-Size Prefix 66H N N Y Y N N Y Y
Address-Size Prefix 67H N Y N Y N Y N Y
Effective Operand Size 16 16 32 32 32 32 16 16
Effective Address Size 16 32 16 32 32 16 32 16
NOTES:

Y: Yes - this instruction prefix is present.
N: No - this instruction prefix is not present.

3.6.1 Operand Size and Address Size in 64-Bit Mode

In 64-bit mode, the default address size is 64 bits and the default operand size is 32 bits. Defaults can be over-
ridden using prefixes. Address-size and operand-size prefixes allow mixing of 32/64-bit data and 32/64-bit
addresses on an instruction-by-instruction basis. Table 3-4 shows valid combinations of the 66H instruction prefix
and the REX.W prefix that may be used to specify operand-size overrides in 64-bit mode. Note that 16-bit
addresses are not supported in 64-bit mode.

REX prefixes consist of 4-bit fields that form 16 different values. The W-bit field in the REX prefixes is referred to as
REX.W. If the REX.W field is properly set, the prefix specifies an operand size override to 64 bits. Note that software
can still use the operand-size 66H prefix to toggle to a 16-bit operand size. However, setting REX.W takes prece-
dence over the operand-size prefix (66H) when both are used.

In the case of SSE/SSE2/SSE3/SSSE3 SIMD instructions: the 66H, F2H, and F3H prefixes are mandatory for
opcode extensions. In such a case, there is no interaction between a valid REX.W prefix and a 66H opcode exten-
sion prefix.

See Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

Table 3-4. Effective Operand- and Address-Size Attributes in 64-Bit Mode

L Flag in Code Segment Descriptor

1 1 1 1 1 1 1 1
REX.W Prefix 0 0 0 0 1 1 1 1
Operand-Size Prefix 66H N N Y Y N N Y Y
Address-Size Prefix 67H N Y N Y N Y N Y
Effective Operand Size 32 32 16 16 64 64 64 64
Effective Address Size 64 32 64 32 64 32 64 32
NOTES:

Y: Yes - this instruction prefix is present.
N: No - this instruction prefix is not present.

3.7 OPERAND ADDRESSING

IA-32 machine-instructions act on zero or more operands. Some operands are specified explicitly and others are
implicit. The data for a source operand can be located in:

® Theinstruction itself (an immediate operand).
®* Aregister.

®* A memory location.

®* AnI/O port.

Vol.1 3-19

BASIC EXECUTION ENVIRONMENT

When an instruction returns data to a destination operand, it can be returned to:
®* Aregister.

®* A memory location.

®* AnI/O port.

3.7.1 Immediate Operands

Some instructions use data encoded in the instruction itself as a source operand. These operands are called imme-
diate operands (or simply immediates). For example, the following ADD instruction adds an immediate value of 14
to the contents of the EAX register:

ADD EAX, 14

All arithmetic instructions (except the DIV and IDIV instructions) allow the source operand to be an immediate
value. The maximum value allowed for an immediate operand varies among instructions, but can never be greater
than the maximum value of an unsigned doubleword integer (232).

3.7.2 Register Operands

Source and destination operands can be any of the following registers, depending on the instruction being
executed:

® 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, or EBP).
® 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, or BP).

®* 8-bit general-purpose registers (AH, BH, CH, DH, AL, BL, CL, or DL).

® Segment registers (CS, DS, SS, ES, FS, and GS).

® EFLAGS register.

® X87 FPU registers (STO through ST7, status word, control word, tag word, data operand pointer, and instruction
pointer).

® MMKX registers (MMO through MM7).

® XMM registers (XMMO through XMM7) and the MXCSR register.

® Control registers (CR0O, CR2, CR3, and CR4) and system table pointer registers (GDTR, LDTR, IDTR, and task
register).

®* Debug registers (DRO, DR1, DR2, DR3, DR6, and DR7).

® MBSR registers.

Some instructions (such as the DIV and MUL instructions) use quadword operands contained in a pair of 32-bit
registers. Register pairs are represented with a colon separating them. For example, in the register pair EDX:EAX,
EDX contains the high order bits and EAX contains the low order bits of a quadword operand.

Several instructions (such as the PUSHFD and POPFD instructions) are provided to load and store the contents of
the EFLAGS register or to set or clear individual flags in this register. Other instructions (such as the Jcc instruc-
tions) use the state of the status flags in the EFLAGS register as condition codes for branching or other decision
making operations.

The processor contains a selection of system registers that are used to control memory management, interrupt and
exception handling, task management, processor management, and debugging activities. Some of these system
registers are accessible by an application program, the operating system, or the executive through a set of system
instructions. When accessing a system register with a system instruction, the register is generally an implied
operand of the instruction.

3-20 Vol. 1

BASIC EXECUTION ENVIRONMENT

3.7.2.1 Register Operands in 64-Bit Mode

Register operands in 64-bit mode can be any of the following:

® 64-bit general-purpose registers (RAX, RBX, RCX, RDX, RSI, RDI, RSP, RBP, or R8-R15).

® 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, or R8D-R15D).
® 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, BP, or RBW-R15W).

* 8-bit general-purpose registers: AL, BL, CL, DL, SIL, DIL, SPL, BPL, and R8B-R15B are available using REX
prefixes; AL, BL, CL, DL, AH, BH, CH, DH are available without using REX prefixes.

®* Segment registers (CS, DS, SS, ES, FS, and GS).
® RFLAGS register.

® X87 FPU registers (STO0 through ST7, status word, control word, tag word, data operand pointer, and instruction
pointer).

® MMKX registers (MMO through MM7).
®* XMM registers (XMMO through XMM15) and the MXCSR register.

®* Control registers (CR0O, CR2, CR3, CR4, and CR8) and system table pointer registers (GDTR, LDTR, IDTR, and
task register).

®* Debug registers (DRO, DR1, DR2, DR3, DR6, and DR7).
® MSR registers.
®* RDX:RAX register pair representing a 128-bit operand.

3.7.3 Memory Operands

Source and destination operands in memory are referenced by means of a segment selector and an offset (see
Figure 3-9). Segment selectors specify the segment containing the operand. Offsets specify the linear or effective
address of the operand. Offsets can be 32 bits (represented by the notation m16:32) or 16 bits (represented by the
notation m16:16).

15 0 31 0

‘ Sse ment ‘ ‘ Offset (or Linear Address)
elector

Figure 3-9. Memory Operand Address

3.7.3.1 Memory Operands in 64-Bit Mode

In 64-bit mode, a memory operand can be referenced by a segment selector and an offset. The offset can be 16
bits, 32 bits or 64 bits (see Figure 3-10).

15 0 63 0

Segment ‘ ‘ Offset (or Linear Address)
Selector

Figure 3-10. Memory Operand Address in 64-Bit Mode

3.7.4 Specifying a Segment Selector

The segment selector can be specified either implicitly or explicitly. The most common method of specifying a
segment selector is to load it in a segment register and then allow the processor to select the register implicitly,
depending on the type of operation being performed. The processor automatically chooses a segment according to
the rules given in Table 3-5.

Vol.1 3-21

BASIC EXECUTION ENVIRONMENT

When storing data in memory or loading data from memory, the DS segment default can be overridden to allow
other segments to be accessed. Within an assembler, the segment override is generally handled with a colon ™:”
operator. For example, the following MOV instruction moves a value from register EAX into the segment pointed to

by the ES register. The offset into the segment is contained in the EBX register:
MOV ES:[EBX], EAX

Table 3-5. Default Segment Selection Rules

Reference Type | Register Used | Segment Used Default Selection Rule
Instructions CS Code Segment Allinstruction fetches.
Stack SS Stack Segment All stack pushes and pops.
Any memory reference which uses the ESP or EBP register as a base
register.
Local Data DS Data Segment All data references, except when relative to stack or string destination.
Destination Strings | ES Data Segment Destination of string instructions.
pointed to with the
ES register

At the machine level, a segment override is specified with a segment-override prefix, which is a byte placed at the
beginning of an instruction. The following default segment selections cannot be overridden:

® Instruction fetches must be made from the code segment.
* Destination strings in string instructions must be stored in the data segment pointed to by the ES register.
® Push and pop operations must always reference the SS segment.

Some instructions require a segment selector to be specified explicitly. In these cases, the 16-bit segment selector
can be located in a memory location or in a 16-bit register. For example, the following MOV instruction moves a
segment selector located in register BX into segment register DS:

MOV DS, BX

Segment selectors can also be specified explicitly as part of a 48-bit far pointer in memory. Here, the first double-
word in memory contains the offset and the next word contains the segment selector.

3.7.4.1 Segmentation in 64-Bit Mode

In IA-32e mode, the effects of segmentation depend on whether the processor is running in compatibility mode or
64-bit mode. In compatibility mode, segmentation functions just as it does in legacy IA-32 mode, using the 16-bit
or 32-bit protected mode semantics described above.

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address
space. The processor treats the segment base of CS, DS, ES, SS as zero, creating a linear address that is equal to
the effective address. The exceptions are the FS and GS segments, whose segment registers (which hold the
segment base) can be used as additional base registers in some linear address calculations.

3.7.5 Specifying an Offset

The offset part of a memory address can be specified directly as a static value (called a displacement) or through
an address computation made up of one or more of the following components:

* Displacement — An 8-, 16-, or 32-bit value.

* Base — The value in a general-purpose register.

®* Index — The value in a general-purpose register.

® Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

3-22 Vol. 1

BASIC EXECUTION ENVIRONMENT

The offset which results from adding these components is called an effective address. Each of these components
can have either a positive or negative (2s complement) value, with the exception of the scaling factor. Figure 3-11
shows all the possible ways that these components can be combined to create an effective address in the selected
segment.

Base Index Scale Displacement

EAX o

EBX [EAXS None
| EBX | [

ECX | | | \)
[EX 1 8-bit

EDX ‘

esp |t | EDX I+
P 4 16-bit

€BP -

ESl g/ 32-bit

DI \E) "

Offset = Base + (Index * Scale) + Displacement

Figure 3-11. Offset (or Effective Address) Computation

The uses of general-purpose registers as base or index components are restricted in the following manner:
®* The ESP register cannot be used as an index register.

®* When the ESP or EBP register is used as the base, the SS segment is the default segment. In all other cases,
the DS segment is the default segment.

The base, index, and displacement components can be used in any combination, and any of these components can
be NULL. A scale factor may be used only when an index also is used. Each possible combination is useful for data
structures commonly used by programmers in high-level languages and assembly language.

The following addressing modes suggest uses for common combinations of address components.

* Displacement — A displacement alone represents a direct (uncomputed) offset to the operand. Because the
displacement is encoded in the instruction, this form of an address is sometimes called an absolute or static
address. It is commonly used to access a statically allocated scalar operand.

* Base — A base alone represents an indirect offset to the operand. Since the value in the base register can
change, it can be used for dynamic storage of variables and data structures.

* Base + Displacement — A base register and a displacement can be used together for two distinct purposes:

— As an index into an array when the element size is not 2, 4, or 8 bytes—The displacement component
encodes the static offset to the beginning of the array. The base register holds the results of a calculation
to determine the offset to a specific element within the array.

— To access a field of a record: the base register holds the address of the beginning of the record, while the
displacement is a static offset to the field.

An important special case of this combination is access to parameters in a procedure activation record. A
procedure activation record is the stack frame created when a procedure is entered. Here, the EBP register is
the best choice for the base register, because it automatically selects the stack segment. This is a compact
encoding for this common function.

®* (Index * Scale) + Displacement — This address mode offers an efficient way to index into a static array
when the element size is 2, 4, or 8 bytes. The displacement locates the beginning of the array, the index
register holds the subscript of the desired array element, and the processor automatically converts the
subscript into an index by applying the scaling factor.

* Base + Index + Displacement — Using two registers together supports either a two-dimensional array (the
displacement holds the address of the beginning of the array) or one of several instances of an array of records
(the displacement is an offset to a field within the record).

®* Base + (Index = Scale) + Displacement — Using all the addressing components together allows efficient
indexing of a two-dimensional array when the elements of the array are 2, 4, or 8 bytes in size.

Vol.1 3-23

BASIC EXECUTION ENVIRONMENT

3.7.5.1 Specifying an Offset in 64-Bit Mode

The offset part of a memory address in 64-bit mode can be specified directly as a static value or through an address
computation made up of one or more of the following components:

* Displacement — An 8-bit, 16-bit, or 32-bit value.

* Base — The value in a 64-bit general-purpose register.

®* Index — The value in a 64-bit general-purpose register.

® Scale factor — A value of 2, 4, or 8 that is multiplied by the index value.

The base and index value can be specified in one of sixteen available general-purpose registers in most cases. See
Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

The following unique combination of address components is also available.

®* RIP + Displacement —In 64-bit mode, RIP-relative addressing uses a signed 32-bit displacement to
calculate the effective address of the next instruction by sign-extend the 32-bit value and add to the 64-bit
value in RIP.

3.7.6 Assembler and Compiler Addressing Modes

At the machine-code level, the selected combination of displacement, base register, index register, and scale factor
is encoded in an instruction. All assemblers permit a programmer to use any of the allowable combinations of these
addressing components to address operands. High-level language compilers will select an appropriate combination
of these components based on the language construct a programmer defines.

3.7.7 1/0 Port Addressing

The processor supports an I/0 address space that contains up to 65,536 8-bit I/O ports. Ports that are 16-bit and
32-bit may also be defined in the I/O address space. An I/0O port can be addressed with either an immediate
operand or a value in the DX register. See Chapter 19, “Input/Output,” for more information about I/O port
addressing.

3-24 Vol. 1

CHAPTER 4
DATA TYPES

This chapter introduces data types defined for the Intel 64 and IA-32 architectures. A section at the end of this
chapter describes the real-number and floating-point concepts used in x87 FPU and Intel SSE, SSE2, SSE3, SSSE3,
SSE4, and AVX extensions.

4.1 FUNDAMENTAL DATA TYPES

The fundamental data types are bytes, words, doublewords, quadwords, and double quadwords (see Figure 4-1).
A byte is eight bits, a word is 2 bytes (16 bits), a doubleword is 4 bytes (32 bits), a quadword is 8 bytes (64 bits),
and a double quadword is 16 bytes (128 bits). A subset of the IA-32 architecture instructions operates on these
fundamental data types without any additional operand typing.

7 0
I:l Byte
N
15 87 0
Word
N+1 N
31 16 15 0
| High Word| Low Word | Doubleword
N+2 N
63 32 31 0
| High Doubleword | Low Doubleword | Quadword
N+4 N

127 64 63
High Quadword | Low Quadword

N+8 N

0
Double
Quadword

Figure 4-1. Fundamental Data Types

The quadword data type was introduced into the IA-32 architecture in the Intel486 processor; the double quadword
data type was introduced in the Pentium Ill processor with the Intel SSE extensions.

Figure 4-2 shows the byte order of each of the fundamental data types when referenced as operands in memory.
The low byte (bits 0 through 7) of each data type occupies the lowest address in memory and that address is also
the address of the operand.

Vol. T 4-1

DATA TYPES

4€H FH A
12H EH
7AH DH A
Word at Address BH FEH CH Doubleword at Address AH
Contains FEO6H 06H BH Contains 7AFEQ636H
v 36H AH
Byte at Address SH — 1FH oH T
Contains 1TFH __ Quadword at Address 6H
ﬁ A4H 8H Contains
A 7AFE06361FA4230BH
Word at Address 6H 23H 7H
Contains 230BH OBH 6H Y
45H 5H
67H 4H
Word at Address 2H e
Contains 74CBH i 74H 3H e auadinord at Add
Double quadword at Address OH
Word at Address 1H AN CBH 2H cOntaingI
Contains CB31H 31H TH | 4E127AFE06361FA4230B456774CB311;
12H OH y

Figure 4-2. Bytes, Words, Doublewords, Quadwords, and Double Quadwords in Memory

4.1.1 Alignment of Words, Doublewords, Quadwords, and Double Quadwords

Words, doublewords, and quadwords do not need to be alighed in memory on natural boundaries. The natural
boundaries for words, doublewords, and quadwords are even-numbered addresses, addresses evenly divisible by
four, and addresses evenly divisible by eight, respectively. However, to improve the performance of programs, data
structures (especially stacks) should be aligned on natural boundaries whenever possible. The reason for this is
that the processor requires two memory accesses to make an unaligned memory access; aligned accesses require
only one memory access. A word or doubleword operand that crosses a 4-byte boundary or a quadword operand
that crosses an 8-byte boundary is considered unaligned and requires two separate memory bus cycles for access.

Some instructions that operate on double quadwords require memory operands to be aligned on a natural
boundary. These instructions generate a general-protection exception (#GP) if an unaligned operand is specified. A
natural boundary for a double quadword is any address evenly divisible by 16. Other instructions that operate on
double quadwords permit unaligned access (without generating a general-protection exception). However, addi-
tional memory bus cycles are required to access unaligned data from memory.

4.2 NUMERIC DATA TYPES

Although bytes, words, and doublewords are fundamental data types, some instructions support additional inter-
pretations of these data types to allow operations to be performed on numeric data types (signed and unsigned
integers, and floating-point humbers). Single precision (32-bit) floating-point and double precision (64-bit)
floating-point data types are supported across all generations of Intel SSE extensions and Intel AVX extensions.
The half precision (16-bit) floating-point data type was supported only with F16C extensions (VCVTPH2PS and
VCVTPS2PH) beginning with the third generation of Intel® Core™ processors based on Ivy Bridge microarchitec-
ture. Starting with the 4th generation Intel® Xeon® Scalable Processor Family, an Intel® AVX-512 instruction set
architecture (ISA) for FP16 was added, supporting a wide range of general-purpose numeric operations for 16-bit
half precision floating-point values (binary16 in IEEE Standard 754-2019 for Floating-Point Arithmetic, aka half
precision or FP16), which complements the existing 32-bit and 64-bit floating-point instructions already available
in the Intel Xeon processor-based products. This ISA also provides complex-valued native hardware support for
half precision floating-point. See Figure 4-3.

4-2 Vol. 1

DATA TYPES

|:| Byte Unsigned
Integer
7 0
|:| Word Unsigned
15 0 Integer
Doubleword
Unsigned Integer
31 0
‘ Quadword
Unsigned Integer
63 0
Sign
D:| Byte Signed
Integer
Sign 76 0
Sign 1514 0 Integer
‘ Doubleword Signed
Integer
Sign 3130 0
H ‘ Quadword Signed
Integer
63 62 0
Sign
[:I:| Half Precision
Sign 1514 9 0 Floating Point
‘ ‘ ‘ ‘ Single Precision
Sign 31 30 23 22 0 Floating Point
‘ ‘ ‘ ‘ Double Precision
Floating Point
63 62 52 51 0
Sign Integer Bit
‘ ‘ ‘ ‘ ‘ Double Extended
Precision Floating Point
7978 64 63 62 0

Figure 4-3. Numeric Data Types

4.2.1 Integers

The Intel 64 and IA-32 architectures define two types of integers: unsigned and signed. Unsigned integers are ordi-
nary binary values ranging from 0 to the maximum positive number that can be encoded in the selected operand

size. Signed integers are two’s complement binary values that can be used to represent both positive and negative
integer values.

Some integer instructions (such as the ADD, SUB, PADDB, and PSUBB instructions) operate on either unsigned or
signed integer operands. Other integer instructions (such as IMUL, MUL, IDIV, D1V, FIADD, and FISUB) operate on
only one integer type.

The following sections describe the encodings and ranges of the two types of integers.

4.2.1.1 Unsigned Integers

Unsigned integers are unsigned binary numbers contained in a byte, word, doubleword, and quadword. Their
values range from 0 to 255 for an unsigned byte integer, from 0 to 65,535 for an unsigned word integer, from 0

Vol.1T 4-3

DATA TYPES

to 232 - 1 for an unsigned doubleword integer, and from 0 to 2% - 1 for an unsigned quadword integer. Unsigned
integers are sometimes referred to as ordinals.

42.1.2 Signed Integers

Signed integers are signed binary numbers held in a byte, word, doubleword, or quadword. All operations on signed
integers assume a two's complement representation. The sign bit is located in bit 7 in a byte integer, bit 15in a
word integer, bit 31 in a doubleword integer, and bit 63 in a quadword integer (see the signed integer encodings in
Table 4-1).

Table 4-1. Signed Integer Encodings

Class Two’s Complement Encoding
Sign
Positive Largest 0 11.11
Smallest 0 00.01
Zero 0 00.00
Negative Smallest 1 11.11
Largest 1 00.00
Integer indefinite 1 00..00
Signed Byte Integer: <— 7 bits =
Signed Word Integer: <— 15 bits —
Signed Doubleword Integer: & 31 bits =
Signed Quadword Integer: < 63 bits =

The sign bit is set for negative integers and cleared for positive integers and zero. Integer values range from -128
to +127 for a byte integer, from -32,768 to +32,767 for a word integer, from -231 to +23! - 1 for a doubleword
integer, and from -2°3 to +2%3 - 1 for a quadword integer.

When storing integer values in memory, word integers are stored in 2 consecutive bytes; doubleword integers are
stored in 4 consecutive bytes; and quadword integers are stored in 8 consecutive bytes.

The integer indefinite is a special value that is sometimes returned by the x87 FPU when operating on integer
values. For more information, see Section 8.2.1, “"Indefinites.”

4.2.2 Floating-Point Data Types

The IA-32 architecture defines and operates on four floating-point data types: half precision floating-point, single
precision floating-point, double precision floating-point, and double-extended precision floating-point (see

Figure 4-3). The data formats for these data types correspond directly to formats specified in the IEEE Standard
754 for Floating-Point Arithmetic.

The half precision (16-bit) floating-point data type was supported only with F16C extensions (VCVTPH2PS and
VCVTPS2PH) beginning with the third generation of Intel Core processors based on Ivy Bridge microarchitecture.
Starting with the 4th generation Intel Xeon Scalable Processor Family, an Intel AVX-512 instruction set architecture
(ISA) for FP16 was added, supporting a wide range of general-purpose numeric operations for 16-bit half precision
floating-point values (binary16 in the IEEE Standard 754-2019 for Floating-Point Arithmetic, aka half precision or
FP16), which complements the existing 32-bit and 64-bit floating-point instructions already available in the Intel
Xeon processor-based products.

4-4 Vol. 1

DATA TYPES

Table 4-2 gives the length, precision, and approximate normalized range that can be represented by each of these
data types. Denormal values are also supported in each of these types.

Table 4-2. Length, Precision, and Range of Floating-Point Data Types

Data Type Length Precision Approximate Normalized Range
(Bits) (Bits) Binary Decimal
Half Precision 16 11 271410 27° 6.10 x 107 t0 6.55 x 10%
Single Precision 32 24 27126 19 2128 1.18x 10738 10 3.40 x 1038
Double Precision 64 53 271022 1 21024 2.23x1073%8 10 1.80 x 10398
Double-Extended 80 64 2716382 14 216384 3.36 x 1074932 10 1.19 x 10932

Precision

NOTE

Section 4.8, “Real Numbers and Floating-Point Formats,” gives an overview of the IEEE Standard
754 floating-point formats and defines the terms integer bit, QNaN, SNaN, and denormal value.

Table 4-3 shows the floating-point encodings for zeros, denormalized finite numbers, normalized finite numbers,
infinites, and NaNs for each of the three floating-point data types. It also gives the format for the QNaN floating-
point indefinite value. (See Section 4.8.3.7, "QNaN Floating-Point Indefinite,” for a discussion of the use of the

QNaN floating-point indefinite value.)

For the half precision, single precision, and double precision formats, only the fraction part of the significand is
encoded. The integer is assumed to be 1 for all numbers except 0 and denormalized finite numbers. For the double
extended precision format, the integer is contained in bit 63, and the most-significant fraction bit is bit 62. Here,
the integer is explicitly set to 1 for normalized numbers, infinities, and NaNs, and to O for zero and denormalized

numbers.
Table 4-3. Floating-Point Number and NaN Encodings
. . Significand
Class Sign Biased Exponent 3 -
Integer Fraction

Positive +oo 11.11 1 00..00
+Normals 11.10 1 11.11
00..01 00..00
+Denormals 0 00..00 0 11.11
0 00..00 0 00..01
+Zero 0 00.00 0 00..00
Negative —Zero 1 00..00 0 00..00
—Denormals 1 00.00 0 00.01
1 00.00 0 11.11
—Normals 1 00.01 1 00.00
1 11.10 1 11.11
-o0 1 11.11 1 00..00

Vol. 1T 4-5

DATA TYPES

Table 4-3. Floating-Point Number and NaN Encodings (Contd.)

. . Significand
Class Sign Biased Exponent 3 -
Integer Fraction

NaNs SNaN X 11.11 1 0X.XX?2

QNaN X 11.11 1 XXX

QNaN Floating- 1 11.11 1 10..00

Point Indefinite

Half Precision < 5Bits — < 10 Bits >

Single Precision: < 8Bits — < 23Bits —

Double Precision: < 11Bits = <= 52 Bits =

Double Extended Precision: < 15Bits — < 63 Bits —

NOTES:
1. Integer bit is implied and not stored for half precision, single precision, and double precision formats.
2. The fraction for SNaN encodings must be non-zero with the most-significant bit O.

The exponent of each floating-point data type is encoded in biased format; see Section 4.8.2.2, “"Biased Exponent.”
The biasing constant is 15 for the half precision format, 127 for the single precision format, 1023 for the double
precision format, and 16,383 for the double extended precision format.

When storing floating-point values in memory, half precision values are stored in 2 consecutive bytes in memory;
single precision values are stored in 4 consecutive bytes in memory; double precision values are stored in 8 consec-
utive bytes; and double extended precision values are stored in 10 consecutive bytes.

The single precision and double precision floating-point data types are operated on by x87 FPU, and Intel
SSE/SSE2/SSE3/SSE4.1/AVX instructions. The double extended precision floating-point format is only operated on
by the x87 FPU. See Section 11.6.8, "Compatibility of SIMD and x87 FPU Floating-Point Data Types,” for a discus-
sion of the compatibility of single precision and double precision floating-point data types between the x87 FPU and
Intel SSE/SSE2/SSE3 extensions.

4.3 POINTER DATA TYPES

Pointers are addresses of locations in memory.

In non-64-bit modes, the architecture defines two types of pointers: a near pointer and a far pointer. A near
pointer is a 32-bit (or 16-bit) offset (also called an effective address) within a segment. Near pointers are used
for all memory references in a flat memory model or for references in a segmented model where the identity of the
segment being accessed is implied.

A far pointer is a logical address, consisting of a 16-bit segment selector and a 32-bit (or 16-bit) offset. Far pointers
are used for memory references in a segmented memory model where the identity of a segment being accessed
must be specified explicitly. Near and far pointers with 32-bit offsets are shown in Figure 4-4.

Near Pointer
| Offset |
31 0

Far Pointer or Logical Address
| Segment Selector \ Offset |
47 32 31 0

Figure 4-4. Pointer Data Types

4-6 Vol. 1

DATA TYPES

4.3.1 Pointer Data Types in 64-Bit Mode

In 64-bit mode (a sub-mode of IA-32e mode), a near pointer is 64 bits. This equates to an effective address. Far
pointers in 64-bit mode can be one of three forms:

®* 16-bit segment selector, 16-bit offset if the operand size is 32 bits.
® 16-bit segment selector, 32-bit offset if the operand size is 32 bits.
®* 16-bit segment selector, 64-bit offset if the operand size is 64 bits.
See Figure 4-5.

Near Pointer

64-bit Offset
63 0
Far Pointer with 64-bit Operand Size
16-bit Segment Selector 64-bit Offset
79 64 63 0

Far Pointer with 32-bit Operand Size

16-bit Segment Selector 32-bit Offset
47 32 31 0
Far Pointer with 32-bit Operand Size
16-bit Segment Selector 16-bit Offset
31 16 15 0

Figure 4-5. Pointers in 64-Bit Mode

4.4 BIT FIELD DATA TYPE

A bit field (see Figure 4-6) is a contiguous sequence of bits. It can begin at any bit position of any byte in memory
and can contain up to 32 bits.

Bit Field
| |
| Field Length —|

Least
Significant
Bit

Figure 4-6. Bit Field Data Type

Vol.1 4-7

DATA TYPES

4.5 STRING DATA TYPES

Strings are continuous sequences of bits, bytes, words, or doublewords. A bit string can begin at any bit position
of any byte and can contain up to 232 - 1 bits. A byte string can contain bytes, words, or doublewords and can
range from zero to 232 - 1 bytes (4 GBytes).

4.6 PACKED SIMD DATA TYPES

Intel 64 and IA-32 architectures define and operate on a set of 64-bit and 128-bit packed data type for use in SIMD
operations. These data types consist of fundamental data types (packed bytes, words, doublewords, and quad-
words) and numeric interpretations of fundamental types for use in packed integer and packed floating-point oper-
ations.

4.6.1 64-Bit SIMD Packed Data Types

The 64-bit packed SIMD data types were introduced into the IA-32 architecture in the Intel MMX technology. They
are operated on in MMX registers. The fundamental 64-bit packed data types are packed bytes, packed words, and
packed doublewords (see Figure 4-7). When performing numeric SIMD operations on these data types, these data
types are interpreted as containing byte, word, or doubleword integer values.

Fundamental 64-Bit Packed SIMD Data Types

| | | | | | | | |PackedBytes
63 0

| | | | | Packed Words
63 0

| | | Packed Doublewords
63 0

64-Bit Packed Integer Data Types

| | | | | | | | | Packed Byte Integers
63 0

| | | | | Packed Word Integers
63 0

| | | Packed Doubleword Integers

63 0
Figure 4-7. 64-Bit Packed SIMD Data Types

4.6.2 128-Bit Packed SIMD Data Types

The 128-bit packed SIMD data types were introduced into the IA-32 architecture in the Intel SSE extensions and
used with Intel SSE2, SSE3, SSSE3, SSE4.1, and AVX extensions. They are operated on primarily in the 128-bit
XMM registers and memory. The fundamental 128-bit packed data types are packed bytes, packed words, packed
doublewords, and packed quadwords (see Figure 4-8). When performing SIMD operations on these fundamental
data types in XMM registers, these data types are interpreted as containing packed or scalar half precision floating-
point, single precision floating-point or double precision floating-point values, or as containing packed byte, word,
doubleword, or quadword integer values.

4-8 Vol. 1

Fundamental 128-bit Packed SIMD Data Types
| L L PP P DD L] packeanyes
127 0
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Packed Words
127 0
‘ ‘ ‘ ‘ ‘ Packed Doublewords
127 0
‘ ‘ ‘ Packed Quadwords
127 0
128-bit Packed Floating-Point and Integer Data Types
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Packed Half Precision
Floating-Point
127 0
‘ ‘ ‘ ‘ ‘ Packed Single Precision
Floating-Point
127 0
‘ ‘ ‘ Packed Double Precision
Floating-Point
127 0
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Packed Byte Integers
127 0
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Packed Word Integers
127 0
‘ ‘ ‘ ‘ ‘ Packed Doubleword
Integers
127
Packed Quadword
Integers
127 0

Figure 4-8. 128-Bit Packed SIMD Data Types

4.7 BCD AND PACKED BCD INTEGERS

Binary-coded decimal integers (BCD integers) are unsigned 4-bit integers with valid values ranging from 0 to 9. IA-
32 architecture defines operations on BCD integers located in one or more general-purpose registers or in one or
more x87 FPU registers (see Figure 4-9).

DATA TYPES

Vol.1T 4-9

DATA TYPES

BCD Integers
7 43 0
Packed BCD Integers

7 43 0

Sign 80-Bit Packed BCD Decimal Integers
[x [pb17, D16 D15 D14 D13 D12, D11,D10, D9, K D8 K D7 , D6 ,D5 D4 D3 D2 6 D1, DO |
7978 7271 0
4 Bits = 1 BCD Digit

Figure 4-9. BCD Data Types

When operating on BCD integers in general-purpose registers, the BCD values can be unpacked (one BCD digit per
byte) or packed (two BCD digits per byte). The value of an unpacked BCD integer is the binary value of the low half-
byte (bits 0 through 3). The high half-byte (bits 4 through 7) can be any value during addition and subtraction, but
must be zero during multiplication and division. Packed BCD integers allow two BCD digits to be contained in one
byte. Here, the digit in the high half-byte is more significant than the digit in the low half-byte.

When operating on BCD integers in x87 FPU data registers, BCD values are packed in an 80-bit format and referred
to as decimal integers. In this format, the first 9 bytes hold 18 BCD digits, 2 digits per byte. The least-significant
digit is contained in the lower half-byte of byte 0 and the most-significant digit is contained in the upper half-byte
of byte 9. The most significant bit of byte 10 contains the sign bit (0 = positive and 1 = negative; bits 0 through 6
of byte 10 are don't care bits). Negative decimal integers are not stored in two's complement form; they are distin-
guished from positive decimal integers only by the sign bit. The range of decimal integers that can be encoded in
this format is ~1018+ 1 to 1018 -1,

The decimal integer format exists in memory only. When a decimal integer is loaded in an x87 FPU data register, it
is automatically converted to the double extended precision floating-point format. All decimal integers are exactly
representable in double extended precision format.

Table 4-4 gives the possible encodings of value in the decimal integer data type.

Table 4-4. Packed Decimal Integer Encodings

_ Magnitude
Class Sign - - - - -
digit digit digit digit digit
Positive
Largest 0 0000000 1001 1001 1001 1001 1001
Smallest 0 0000000 0000 0000 0000 0000 0001
Zero 0 0000000 0000 0000 0000 0000 0000
Negative
Zero 1 0000000 0000 0000 0000 0000 0000
Smallest 1 0000000 0000 0000 0000 0000 0001
Largest 1 0000000 1001 1001 1001 1001 1001

4-10 Vol.1

DATA TYPES

Table 4-4. Packed Decimal Integer Encodings (Contd.)

_ Magnitude
Class Sign - . - — -
digit digit digit ‘ digit | digit
Packed BCD 1 1111111 1111 1111 1100 0000 0000
Integer
Indefinite
< 1 byte — <— 9 bytes —

The packed BCD integer indefinite encoding (FFFFCO00000000000000H) is stored by the FBSTP instruction in
response to a masked floating-point invalid-operation exception. Attempting to load this value with the FBLD
instruction produces an undefined result.

4.8 REAL NUMBERS AND FLOATING-POINT FORMATS

This section describes how real numbers are represented in floating-point format in x87 FPU and
SSE/SSE2/SSE3/SSE4.1 and Intel AVX floating-point instructions. It also introduces terms such as normalized
numbers, denormalized numbers, biased exponents, signed zeros, and NaNs. Readers who are already familiar
with floating-point processing techniques and the IEEE Standard 754 for Floating-Point Arithmetic may wish to skip
this section.

4.8.1 Real Number System

As shown in Figure 4-10, the real-number system comprises the continuum of real numbers from minus infinity (-
=) to plus infinity (+).

Because the size and number of registers that any computer can have is limited, only a subset of the real-number
continuum can be used in real-number (floating-point) calculations. As shown at the bottom of Figure 4-10, the
subset of real numbers that the IA-32 architecture supports represents an approximation of the real number
system. The range and precision of this real-number subset is determined by the IEEE Standard 754 floating-point
formats.

4.8.2 Floating-Point Format

To increase the speed and efficiency of real-number computations, computers and microprocessors typically repre-
sent real numbers in a binary floating-point format. In this format, a real number has three parts: a sign, a signif-
icand, and an exponent (see Figure 4-11).

The sign is a binary value that indicates whether the number is positive (0) or negative (1). The significand has
two parts: a 1-bit binary integer (also referred to as the J-bit) and a binary fraction. The integer-bit is often not
represented, but instead is an implied value. The exponent is a binary integer that represents the base-2 power by
which the significand is multiplied.

Table 4-5 shows how the real number 178.125 (in ordinary decimal format) is stored in IEEE Standard 754 floating-
point format. The table lists a progression of real number notations that leads to the single precision, 32-bit
floating-point format. In this format, the significand is normalized (see Section 4.8.2.1, "Normalized Numbers")
and the exponent is biased (see Section 4.8.2.2, "Biased Exponent”). For the single precision floating-point format,
the biasing constant is +127.

Vol. 1 4-11

DATA TYPES

Binary Real Number System

-100 -10 -1 0 1 10 100
| | |

¢ [R
- | | I 1 T s>

Subset of binary real numbers that can be represented with
IEEE single precision (32-bit) floating-point format
-100 -10 -1 0 1 10 100

D S S

'_'T— 10.0000000000000000000000

1111111111111 111111111
Precision | <«—— 24 Binary Digits ——

Numbers within this range
cannot be represented.

Figure 4-10. Binary Real Number System

Sign

H Exponent ‘ Significand ‘

=

‘ ‘ Fraction ‘

Integer or J-Bit /4

Figure 4-11. Binary Floating-Point Format

Table 4-5. Real and Floating-Point Number Notation

Notation Value
Ordinary Decimal 178.125
Scientific Decimal 1.78125€152
Scientific Binary 1.0110010001€,111
Scientific Binary 1.0110010001€,10000110
(Biased Exponent)
IEEE Single Precision Format Sign Biased Exponent Normalized Significand
0 10000110 01100100010000000000000
1. (Implied)

4-12 Vol.1

DATA TYPES

4.8.2.1 Normalized Numbers

In most cases, floating-point numbers are encoded in normalized form. This means that except for zero, the signif-
icand is always made up of an integer of 1 and the following fraction:

1.fff...ff

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, the exponent is decre-
mented by one.)

Representing numbers in normalized form maximizes the number of significant digits that can be accommodated
in a significand of a given width. To summarize, a normalized real number consists of a normalized significand that
represents a real number between 1 and 2 and an exponent that specifies the number’s binary point.

4.8.2.2 Biased Exponent

In the IA-32 architecture, the exponents of floating-point numbers are encoded in a biased form. This means that
a constant is added to the actual exponent so that the biased exponent is always a positive number. The value of
the biasing constant depends on the number of bits available for representing exponents in the floating-point
format being used. The biasing constant is chosen so that the smallest normalized number can be reciprocated
without overflow.

See Section 4.2.2, “Floating-Point Data Types,” for a list of the biasing constants that the IA-32 architecture uses
for the various sizes of floating-point data-types.

4.8.3 Real Number and Non-number Encodings

A variety of real numbers and special values can be encoded in the IEEE Standard 754 floating-point format. These
numbers and values are generally divided into the following classes:

®* Signed zeros

®* Denormalized finite numbers

®* Normalized finite numbers

® Signed infinities

® NaNs

® Indefinite numbers

(The term NaN stands for *Not a Number.”)

Figure 4-12 shows how the encodings for these numbers and non-numbers fit into the real number continuum. The
encodings shown here are for the IEEE single precision floating-point format. The term “S” indicates the sign bit,
“E” the biased exponent, and “Sig” the significand. The exponent values are given in decimal. The integer bit is
shown for the significands, even though the integer bit is implied in single precision floating-point format.

Vol.1 4-13

DATA TYPES

NaN NaN
— Denormalized Finite + Denormalized Finite
o = Normalized Finite n 0|+ 0 Lt Normalized Finite +o°
T T

Real Number and NaN Encodings For 32-Bit Floating-Point Format

s E Sig' s E Sig'

[1] o [0.000.. |-o0 +0[o] o] o0.00.]
(1] 0 [oxxx..Z] ~penormalized +Denormalized (475170 XXX..7 |

— Normalized +N lized

[1]1..254] 1.XXX... | “Fimite oo [0]1...254] 1.XXX...]
[1] 255 [1.000.. | - +o [0] 255 [1.000... |
[x3 255 | 1.0XX..2 | SNaN SNaN [x3 255 | 1.0XX..Z |
[x3 255 | 1.1XX... | QNaN aNaN [X§ 255 | 1.1XX... |

NOTES:

1. Integer bit of fraction implied for
single precision floating-point format.

2. Fraction must be non-zero.

3. Sign bit ignored.

Figure 4-12. Real Numbers and NaNs

An IA-32 processor can operate on and/or return any of these values, depending on the type of computation being
performed. The following sections describe these number and non-number classes.

4.8.3.1 Signed Zeros

Zero can be represented as a +0 or a -0 depending on the sign bit. Both encodings are equal in value. The sign of
a zero result depends on the operation being performed and the rounding mode being used. Signed zeros have
been provided to aid in implementing interval arithmetic. The sign of a zero may indicate the direction from which
underflow occurred, or it may indicate the sign of an - that has been reciprocated.

4.8.3.2 Normalized and Denormalized Finite Numbers

Non-zero, finite numbers are divided into two classes: normalized and denormalized. The normalized finite
numbers comprise all the non-zero finite values that can be encoded in a normalized real number format between
zero and «. In the single precision floating-point format shown in Figure 4-12, this group of numbers includes all
the numbers with biased exponents ranging from 1 to 254, (unbiased, the exponent range is from -126, to
+12710).

When floating-point numbers become very close to zero, the normalized-number format can no longer be used to
represent the numbers. This is because the range of the exponent is not large enough to compensate for shifting
the binary point to the right to eliminate leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by making the integer bit (and
perhaps other leading bits) of the significand zero. The numbers in this range are called denormalized numbers.
The use of leading zeros with denormalized numbers allows smaller numbers to be represented. However, this
denormalization may cause a loss of precision (the number of significant bits is reduced by the leading zeros).

When performing normalized floating-point computations, an IA-32 processor normally operates on normalized
numbers and produces normalized numbers as results. Denormalized numbers represent an underflow condition.
The exact conditions are specified in Section 4.9.1.5, *Numeric Underflow Exception (#U).”

A denormalized number is computed through a technique called gradual underflow. Table 4-6 gives an example of
gradual underflow in the denormalization process. Here the single precision format is being used, so the minimum
exponent (unbiased) is —-1264. The true result in this example requires an exponent of -129,¢ in order to have a

4-14 Vol.1

DATA TYPES

normalized number. Since —-129, is beyond the allowable exponent range, the result is denormalized by inserting
leading zeros until the minimum exponent of —-126¢ is reached.

Table 4-6. Denormalization Process

Operation Sign Exponent* Significand

True Result 0 -129 1.01011100000..00
Denormalize 0 -128 0.10101110000...00
Denormalize 0 =127 0.01010111000..00
Denormalize 0 -126 0.00101011100..00
Denormal Result 0 -126 0.00101011100..00

* Expressed as an unbiased, decimal number.

In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating a zero result.
The Intel 64 and IA-32 architectures deal with denormal values in the following ways:
® It avoids creating denormals by normalizing numbers whenever possible.

* It provides the floating-point underflow exception to permit programmers to detect cases when denormals are
created.

* It provides the floating-point denormal-operand exception to permit procedures or programs to detect when
denormals are being used as source operands for computations.

4.8.3.3 Signed Infinities

The two infinities, + « and - «, represent the maximum positive and negative real numbers, respectively, that can
be represented in the floating-point format. Infinity is always represented by a significand of 1.00...00 (the integer
bit may be implied) and the maximum biased exponent allowed in the specified format (for example, 2554 for the
single precision format).

The signs of infinities are observed, and comparisons are possible. Infinities are always interpreted in the affine
sense; that is, —= is less than any finite number and +< is greater than any finite number. Arithmetic on infinities
is always exact. Exceptions are generated only when the use of an infinity as a source operand constitutes an
invalid operation.

Whereas denormalized numbers may represent an underflow condition, the two « numbers may represent the
result of an overflow condition. Here, the normalized result of a computation has a biased exponent greater than
the largest allowable exponent for the selected result format.

48.3.4 NaNs

Since NaNs are non-numbers, they are not part of the real number line. In Figure 4-12, the encoding space for
NaNs in the floating-point formats is shown above the ends of the real humber line. This space includes any value
with the maximum allowable biased exponent and a non-zero fraction (the sign bit is ignored for NaNs).

The IA-32 architecture defines two classes of NaNs: quiet NaNs (QNaNs) and signaling NaNs (SNaNs). A QNaN is a
NaN with the most significant fraction bit set; an SNaN is a NaN with the most significant fraction bit clear. QNaNs
are allowed to propagate through most arithmetic operations without signaling an exception. SNaNs generally
signal a floating-point invalid-operation exception whenever they appear as operands in arithmetic operations.

SNaNs are typically used to trap or invoke an exception handler. They must be inserted by software; that is, the
processor never generates an SNaN as a result of a floating-point operation.

Vol.1 4-15

DATA TYPES

4.8.3.5 Operating on SNaNs and QNaNs

When a floating-point operation is performed on an SNaN and/or a QNaN, the result of the operation is either a
QNaN delivered to the destination operand or the generation of a floating-point invalid operation exception,
depending on the following rules:

If one of the source operands is an SNaN and the floating-point invalid-operation exception is not masked (see
Section 4.9.1.1, “Invalid Operation Exception (#1)”), then a floating-point invalid-operation exception is
signaled and no result is stored in the destination operand. If one of the source operands is a QNaN and the
floating-point invalid-operation exception is not masked and the operation is one that generates an invalid-
operation exception for QNaN operands as described in Section 8.5.1.2, “Invalid Arithmetic Operand Exception
(#IA),” or Section 11.5.2.1, “Invalid Operation Exception (#I),” then a floating-point invalid-operation
exception is signaled and no result is stored in the destination operand.

If either or both of the source operands are NaNs and floating-point invalid-operation exception is masked, the
result is as shown in Table 4-7. When an SNaN is converted to a QNaN, the conversion is handled by setting the
most-significant fraction bit of the SNaN to 1. Also, when one of the source operands is an SNaN, or when it is
a QNaN and the operation is one that generates an invalid-operation exception for QNaN operands as described
in Section 8.5.1.2, “Invalid Arithmetic Operand Exception (#IA),” or Section 11.5.2.1, “Invalid Operation
Exception (#1),” then the floating-point invalid-operation exception flag is set. Note that for some combinations
of source operands, the result is different for x87 FPU operations and for Intel SSE/SSE2/SSE3/SSE4.1
operations. Intel AVX follows the same behavior as Intel SSE/SSE2/SSE3/SSE4.1 in this respect.

When neither of the source operands is a NaN, but the operation generates a floating-point invalid-operation
exception (see Tables 8-10 and 11-1), the result is commonly a QNaN FP Indefinite (Section 4.8.3.7).

Any exceptions to the behavior described in Table 4-7 are described in Section 8.5.1.2, “Invalid Arithmetic Operand
Exception (#IA),” and Section 11.5.2.1, “Invalid Operation Exception (#I).”

Table 4-7. Rules for Handling NaNs

Source Operands Result!

SNaN and QNaN X87 FPU — QNaN source operand.

SSE/SSE2/SSE3/SSE4.1/AVX — First source operand (if this operand is an
SNaN, it is converted to a QNaN).

Two SNaNs X87 FPU — SNaN source operand with the larger significand, converted into a
QNaN.
SSE/SSE2/SSE3/SSE4.1/AVX — First source operand converted to a QNaN.

Two QNaNs X87 FPU — QNaN source operand with the larger significand.
SSE/SSE2/SSE3/SSE4.1/AVX — First source operand.

SNaN and a floating-point value SNaN source operand, converted into a QNaN.

QNaN and a floating-point value QNaN source operand.

SNaN (for instructions that take only one operand) | SNaN source operand, converted into a QNaN.

QNaN (for instructions that take only one operand) | QNaN source operand.

NOTE:

1. For SSE/SSE2/SSE3/SSE4.1 instructions, the first operand is generally a source operand that becomes the destination operand. For

AVX instructions, the first source operand is usually the 2nd operand in a non-destructive source syntax. Within the Result column,
the x87 FPU notation also applies to the FISTTP instruction in SSE3; the SSE3 notation applies to the SIMD floating-point instruc-
tions.

4.8.3.6 Using SNaNs and QNaNs in Applications

Except for the rules given at the beginning of Section 4.8.3.4, “NaNs,"” for encoding SNaNs and QNaNs, software is
free to use the bits in the significand of a NaN for any purpose. Both SNaNs and QNaNs can be encoded to carry and
store data, such as diagnostic information.

4-16 Vol.1

DATA TYPES

By unmasking the invalid operation exception, the programmer can use signaling NaNs to trap to the exception
handler. The generality of this approach and the large number of NaN values that are available provide the sophis-
ticated programmer with a tool that can be applied to a variety of special situations.

For example, a compiler can use signaling NaNs as references to uninitialized (real) array elements. The compiler
can preinitialize each array element with a signaling NaN whose significand contains the index (relative position) of
the element. Then, if an application program attempts to access an element that it has not initialized, it can use the
NaN placed there by the compiler. If the invalid operation exception is unmasked, an interrupt will occur, and the

exception handler will be invoked. The exception handler can determine which element has been accessed, since

the operand address field of the exception pointer will point to the NaN, and the NaN will contain the index number
of the array element.

Quiet NaNs are often used to speed up debugging. In its early testing phase, a program often contains multiple
errors. An exception handler can be written to save diagnostic information in memory whenever it is invoked. After
storing the diagnostic data, it can supply a quiet NaN as the result of the erroneous instruction, and that NaN can
point to its associated diagnostic area in memory. The program will then continue, creating a different NaN for each
error. When the program ends, the NaN results can be used to access the diagnostic data saved at the time the
errors occurred. Many errors can thus be diagnosed and corrected in one test run.

In embedded applications that use computed results in further computations, an undetected QNaN can invalidate
all subsequent results. Such applications should therefore periodically check for QNaNs and provide a recovery
mechanism to be used if a QNaN result is detected.

4.8.3.7 QNaN Floating-Point Indefinite

For the floating-point data type encodings (single precision, double precision, and double extended precision), one
unique encoding (a QNaN) is reserved for representing the special value QNaN floating-point indefinite. The x87
FPU and the Intel SSE/SSE2/SSE3/SSE4.1/AVX extensions return these indefinite values as responses to some
masked floating-point exceptions. Table 4-3 shows the encoding used for the QNaN floating-point indefinite.

4.8.3.8 Half Precision Floating-Point Operation

Two instructions, VCVTPH2PS and VCVTPS2PH, which provide conversion only between half precision and single
precision floating-point values, were introduced with the F16C extensions beginning with the third generation of
Intel Core processors based on Ivy Bridge microarchitecture. Starting with the 4th generation Intel Xeon Scalable
Processor Family, an Intel AVX-512 instruction set architecture (ISA) for FP16 was added, supporting a wide range
of general-purpose numeric operations for 16-bit half precision floating-point values (binary16 in the IEEE Stan-
dard 754-2019 for Floating-Point Arithmetic, aka half precision or FP16). These additions complement the existing
32-bit and 64-bit floating-point instructions already available in the Intel Xeon processor-based products.

The SIMD floating-point exception behavior of the VCVTPH2PS and VCVTPS2PH instructions, as well as of the other
half precision instructions, are described in Section 14.4.1.

48.4 Rounding

When performing floating-point operations, the processor produces an infinitely precise floating-point result in the
destination format (half precision, single precision, double precision, or double extended precision floating-point)
whenever possible. However, because only a subset of the numbers in the real number continuum can be repre-
sented in IEEE Standard 754 floating-point formats, it is often the case that an infinitely precise result cannot be
encoded exactly in the format of the destination operand.

For example, the following value (@) has a 24-bit fraction. The least-significant bit of this fraction (the underlined
bit) cannot be encoded exactly in the single precision format (which has only a 23-bit fraction):

(a) 1.0001 0000 1000 0011 1001 0111E;, 101

To round this result (a), the processor first selects two representable fractions b and c that most closely bracket a
in value (b < a < ¢).

(b) 1.0001 0000 1000 0011 1001 O11E, 101
(c) 1.0001 0000 1000 0011 1001 100E, 101

Vol.1 4-17

DATA TYPES

The processor then sets the result to b or to ¢ according to the selected rounding mode. Rounding introduces an
error in a result that is less than one unit in the last place (the least significant bit position of the floating-point
value) to which the result is rounded.

The IEEE Standard 754 defines four rounding modes (see Table 4-8): round to nearest, round up, round down, and
round toward zero. The default rounding mode (for the Intel 64 and IA-32 architectures) is round to nearest. This
mode provides the most accurate and statistically unbiased estimate of the true result and is suitable for most
applications.

Table 4-8. Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding Mode RC Field Description
Setting
Round to 00B Rounded result is the closest to the infinitely precise result. If two values are equally close, the
nearest (even) result is the even value (that is, the one with the least-significant bit of zero). Default
Round down 01B Rounded result is closest to but no greater than the infinitely precise result.
(toward —eo)
Round up 10B Rounded result is closest to but no less than the infinitely precise result.
(toward +eo)
Round toward 11B Rounded result is closest to but no greater in absolute value than the infinitely precise result.
zero (Truncate)

The round up and round down modes are termed directed rounding and can be used to implement interval arith-
metic. Interval arithmetic is used to determine upper and lower bounds for the true result of a multistep computa-
tion, when the intermediate results of the computation are subject to rounding.

The round toward zero mode (sometimes called the “chop” mode) is commonly used when performing integer
arithmetic with the x87 FPU.

The rounded result is called the inexact result. When the processor produces an inexact result, the floating-point
precision (inexact) flag (PE) is set (see Section 4.9.1.6, “Inexact-Result (Precision) Exception (#P)").

The rounding modes have no effect on comparison operations, operations that produce exact results, or operations
that produce NaN results.

4.8.4.1 Rounding Control (RC) Fields

In the Intel 64 and IA-32 architectures, the rounding mode is controlled by a 2-bit rounding-control (RC) field
(Table 4-8 shows the encoding of this field). The RC field is implemented in two different locations:

® X87 FPU control register (bits 10 and 11).

® The MXCSR register (bits 13 and 14).

Although these two RC fields perform the same function, they control rounding for different execution environ-
ments within the processor. The RC field in the x87 FPU control register controls rounding for computations
performed with the x87 FPU instructions; the RC field in the MXCSR register controls rounding for SIMD floating-
point computations performed with the Intel SSE/SSE2/SSE3/SSE4.1/AVX instructions.

4.8.4.2 Truncation with Intel® SSE, SSE2, and AVX Conversion Instructions

The following Intel SSE/SSE2 instructions automatically truncate the results of conversions from floating-point
values to integers when the result it inexact: CVTTPD2DQ, CVTTPS2DQ, CVTTPD2PI, CVTTPS2PI, CVTTSD2SI, and
CVTTSS2SI. Here, truncation means the round toward zero mode described in Table 4-8. There are also several
Intel AVX2 and AVX-512 instructions which use truncation (VCVTT*).

4-18 Vol.1

DATA TYPES

4.9 OVERVIEW OF FLOATING-POINT EXCEPTIONS

The following section provides an overview of floating-point exceptions and their handling in the IA-32 architec-
ture. For information specific to the x87 FPU and to the Intel SSE/SSE2/SSE3/SSE4.1/AVX extensions, refer to the
following sections:

® Section 4.9, “"Overview of Floating-Point Exceptions.”

® Section 11.5, “Intel® SSE, SSE2, and SSE3 Exceptions.”

® Section 12.8.4, “IEEE 754 Compliance of Intel® SSE4.1 Floating-Point Instructions.”
® Section 14.10, “SIMD Floating-Point Exceptions.”

When operating on floating-point operands, the IA-32 architecture recognizes and detects six classes of exception
conditions:

* Invalid operation (#I).

®* Divide-by-zero (#2).

®* Denormalized operand (#D).

®* Numeric overflow (#0).

®* Numeric underflow (#U).

®* Inexact result (precision) (#P).

The nomenclature of “#” symbol followed by one or two letters (for example, #P) is used in this manual to indicate
exception conditions. It is merely a short-hand form and is not related to assembler mnemonics.

NOTE

All of the exceptions listed above except the denormal-operand exception (#D) are defined in IEEE
Standard 754.

The invalid-operation, divide-by-zero and denormal-operand exceptions are pre-computation exceptions (that is,
they are detected before any arithmetic operation occurs). The numeric-underflow, numeric-overflow and precision
exceptions are post-computation exceptions.

Each of the six exception classes has a corresponding flag bit (IE, ZE, OE, UE, DE, or PE) and mask bit (IM, ZM, OM,
UM, DM, or PM). When one or more floating-point exception conditions are detected, the processor sets the appro-
priate flag bits, then takes one of two possible courses of action, depending on the settings of the corresponding
mask bits:

® Mask bit set. Handles the exception automatically, producing a predefined (and often times usable) result,
while allowing program execution to continue undisturbed.

® Mask bit clear. Invokes a software exception handler to handle the exception.

The masked (default) responses to exceptions have been chosen to deliver a reasonable result for each exception
condition and are generally satisfactory for most floating-point applications. By masking or unmasking specific
floating-point exceptions, programmers can delegate responsibility for most exceptions to the processor and
reserve the most severe exception conditions for software exception handlers.

Because the exception flags are “sticky,” they provide a cumulative record of the exceptions that have occurred
since they were last cleared. A programmer can thus mask all exceptions, run a calculation, and then inspect the
exception flags to see if any exceptions were detected during the calculation.

In the IA-32 architecture, floating-point exception flag and mask bits are implemented in two different locations:

® X87 FPU status word and control word. The flag bits are located at bits 0 through 5 of the x87 FPU status word
and the mask bits are located at bits 0 through 5 of the x87 FPU control word (see Figures 8-4 and 8-6).

® MXCSR register. The flag bits are located at bits 0 through 5 of the MXCSR register and the mask bits are
located at bits 7 through 12 of the register (see Figure 10-3).

Although these two sets of flag and mask bits perform the same function, they report on and control exceptions for
different execution environments within the processor. The flag and mask bits in the x87 FPU status and control
words control exception reporting and masking for computations performed with the x87 FPU instructions; the

Vol.1 4-19

DATA TYPES

companion bits in the MXCSR register control exception reporting and masking for SIMD floating-point computa-
tions performed with the Intel SSE/SSE2/SSE3/SSE4.1/AVX instructions.

Note that when exceptions are masked, the processor may detect multiple exceptions in a single instruction,
because it continues executing the instruction after performing its masked response. For example, the processor
can detect a denormalized operand, perform its masked response to this exception, and then detect numeric
underflow.

See Section 4.9.2, “Floating-Point Exception Priority,” for a description of the rules for exception precedence when
more than one floating-point exception condition is detected for an instruction.

4.9.1 Floating-Point Exception Conditions

The following sections describe the various conditions that cause a floating-point exception to be generated and the
masked response of the processor when these conditions are detected. The Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volumes 3A, 3B, 3C, & 3D, lists the floating-point exceptions that can be signaled for
each floating-point instruction.

4.9.1.1 Invalid Operation Exception (#l)

The processor reports an invalid operation exception in response to one or more invalid arithmetic operands. If the
invalid operation exception is masked, the processor sets the IE flag and returns an indefinite value or a QNaN. This
value overwrites the destination register specified by the instruction. If the invalid operation exception is not
masked, the IE flag is set, a software exception handler is invoked, and the operands remain unaltered.

See Section 4.8.3.6, “"Using SNaNs and QNaNs in Applications,” for information about the result returned when an
exception is caused by an SNaN.

The processor can detect a variety of invalid arithmetic operations that can be coded in a program. These opera-
tions generally indicate a programming error, such as dividing « by « . See the following sections for information
regarding the invalid-operation exception when detected while executing x87 FPU or Intel
SSE/SSE2/SSE3/SSE4.1/AVX instructions:

® X87 FPU; Section 8.5.1, “Invalid Operation Exception.”

® SIMD floating-point exceptions; Section 11.5.2.1, “Invalid Operation Exception (#I).”
® Section 12.8.4, “IEEE 754 Compliance of Intel® SSE4.1 Floating-Point Instructions.”
® Section 14.10, "SIMD Floating-Point Exceptions.”

49.1.2 Denormal Operand Exception (#D)

The processor reports the denormal-operand exception if an arithmetic instruction attempts to operate on a
denormal operand (see Section 4.8.3.2, “"Normalized and Denormalized Finite Numbers”). When the exception is
masked, the processor sets the DE flag and proceeds with the instruction. Operating on denormal numbers will
produce results at least as good as, and often better than, what can be obtained when denormal numbers are
flushed to zero. Programmers can mask this exception so that a computation may proceed, then analyze any loss
of accuracy when the final result is delivered.

When a denormal-operand exception is not masked, the DE flag is set, a software exception handler is invoked, and
the operands remain unaltered. When denormal operands have reduced significance due to loss of low-order bits,
it may be advisable to not operate on them. Precluding denormal operands from computations can be accom-
plished by an exception handler that responds to unmasked denormal-operand exceptions.

See the following sections for information regarding the denormal-operand exception when detected while
executing x87 FPU or Intel SSE/SSE2/SSE3/SSE4.1/AVX instructions:

® X87 FPU; Section 8.5.2, "Denormal Operand Exception (#D).”

® SIMD floating-point exceptions; Section 11.5.2.2, “"Denormal-Operand Exception (#D).”
® Section 12.8.4, “IEEE 754 Compliance of Intel® SSE4.1 Floating-Point Instructions.”

® Section 14.10, “"SIMD Floating-Point Exceptions.”

4-20 Vol.1

DATA TYPES

49.1.3 Divide-By-Zero Exception (#2)

The processor reports the floating-point divide-by-zero exception whenever an instruction attempts to divide a
finite non-zero operand by 0. The masked response for the divide-by-zero exception is to set the ZE flag and return
an infinity signed with the exclusive OR of the sign of the operands. If the divide-by-zero exception is not masked,
the ZE flag is set, a software exception handler is invoked, and the operands remain unaltered.

See the following sections for information regarding the divide-by-zero exception when detected while executing
x87 FPU or Intel SSE/SSE2/AVX instructions:

® X87 FPU; Section 8.5.3, “"Divide-By-Zero Exception (#2Z).”

® SIMD floating-point exceptions; Section 11.5.2.3, “Divide-By-Zero Exception (#2Z).”
® Section 12.8.4, “IEEE 754 Compliance of Intel® SSE4.1 Floating-Point Instructions.”
® Section 14.10, “"SIMD Floating-Point Exceptions.”

49.1.4 Numeric Overflow Exception (#0)

The processor reports a floating-point numeric overflow exception whenever the rounded result of an instruction
exceeds the largest allowable finite value that will fit into the destination operand. Table 4-9 shows the threshold
range for numeric overflow for each of the floating-point formats; overflow occurs when a rounded result falls at or
outside this threshold range.

Table 4-9. Numeric Overflow Thresholds

Floating-Point Format Overflow Thresholds
Half Precision [x]>1.0%210

Single Precision [x]>1.0%2128
Double Precision |x]|=1.0% 21024
Double Extended Precision |x|>1.0x 216384

When a numeric-overflow exception occurs and the exception is masked, the processor sets the OE flag and
returns one of the values shown in Table 4-10, according to the current rounding mode. See Section 4.8.4,
“Rounding.”

When numeric overflow occurs and the numeric-overflow exception is not masked, the OE flag is set, a software
exception handler is invoked, and the source and destination operands either remain unchanged or a biased result
is stored in the destination operand (depending whether the overflow exception was generated during an Intel
SSE/SSE2/SSE3/SSE4.1/AVX floating-point operation or an x87 FPU operation).

Table 4-10. Masked Responses to Numeric Overflow

Rounding Mode Sign of True Result Result
To nearest + +oo
Toward - + Largest finite positive number
Toward +e + +oo
- Largest finite negative number
Toward zero + Largest finite positive number
- Largest finite negative number

See the following sections for information regarding the numeric overflow exception when detected while executing
x87 FPU instructions or while executing Intel SSE/SSE2/SSE3/SSE4.1/AVX instructions:

® X87 FPU; Section 8.5.4, "Numeric Overflow Exception (#0).”

Vol.1 4-21

DATA TYPES

® SIMD floating-point exceptions; Section 11.5.2.4, “*Numeric Overflow Exception (#0).”
® Section 12.8.4, “IEEE 754 Compliance of Intel® SSE4.1 Floating-Point Instructions.”
® Section 14.10, “"SIMD Floating-Point Exceptions.”

49.1.5 Numeric Underflow Exception (#U)

The processor detects a potential floating-point numeric underflow condition whenever the result of rounding with
unbounded exponent (taking into account precision control for x87) is non-zero and tiny; that is, non-zero and less
than the smallest possible normalized, finite value that will fit into the destination operand. Table 4-11 shows the
threshold range for numeric underflow for each of the floating-point formats (assuming normalized results); under-
flow occurs when a rounded result falls strictly within the threshold range. The ability to detect and handle under-
flow is provided to prevent a very small result from propagating through a computation and causing another
exception (such as overflow during division) to be generated at a later time. Results which trigger underflow are
also potentially less accurate.

Table 4-11. Numeric Underflow (Normalized) Thresholds

Floating-Point Format Underflow Thresholds’
Half Precision [x]<1.0%2714

Single Precision |x]<1.0x27126
Double Precision |x|<1.0%2°1022
Double Extended Precision |x|<1.0% 2716382
NOTES:

1. Where ‘X’ is the result rounded to destination precision with an unbounded exponent range.

How the processor handles an underflow condition, depends on two related conditions:

® Creation of a tiny, non-zero result.

®* Creation of an inexact result; that is, a result that cannot be represented exactly in the destination format.
Which of these events causes an underflow exception to be reported and how the processor responds to the excep-
tion condition depends on whether the underflow exception is masked:

* Underflow exception masked — The underflow exception is reported (the UE flag is set) only when the result
is both tiny and inexact. The processor returns a correctly signed result whose magnitude is less than or equal
to the smallest positive normal floating-point number to the destination operand, regardless of inexactness.

* Underflow exception not masked — The underflow exception is reported when the result is non-zero tiny,
regardless of inexactness. The processor leaves the source and destination operands unaltered or stores a
biased result in the destination operand (depending whether the underflow exception was generated during an
Intel SSE/SSE2/SSE3/AVX floating-point operation or an x87 FPU operation) and invokes a software exception
handler.

See the following sections for information regarding the numeric underflow exception when detected while
executing x87 FPU instructions or while executing Intel SSE/SSE2/SSE3/SSE4.1/AVX instructions:

® X87 FPU; Section 8.5.5, "Numeric Underflow Exception (#U).”

® SIMD floating-point exceptions; Section 11.5.2.5, "Numeric Underflow Exception (#U).”
® Section 12.8.4, “IEEE 754 Compliance of Intel® SSE4.1 Floating-Point Instructions.”

® Section 14.10, “SIMD Floating-Point Exceptions.”

49.1.6 Inexact-Result (Precision) Exception (#P)

The inexact-result exception (also called the precision exception) occurs if the result of an operation is not exactly
representable in the destination format. For example, the fraction 1/3 cannot be precisely represented in binary
floating-point form. This exception occurs frequently and indicates that some (normally acceptable) accuracy will
be lost due to rounding. The exception is supported for applications that need to perform exact arithmetic only.
Because the rounded result is generally satisfactory for most applications, this exception is commonly masked.

4-22 Vol.1

DATA TYPES

If the inexact-result exception is masked when an inexact-result condition occurs and a numeric overflow or under-
flow condition has not occurred, the processor sets the PE flag and stores the rounded result in the destination
operand. The current rounding mode determines the method used to round the result. See Section 4.8.4,
“Rounding.”

If the inexact-result exception is not masked when an inexact result occurs and numeric overflow or underflow has
not occurred, the PE flag is set, the rounded result is stored in the destination operand, and a software exception
handler is invoked.

If an inexact result occurs in conjunction with numeric overflow or underflow, one of the following operations is
carried out:

* If an inexact result occurs along with masked overflow or underflow, the OE flag or UE flag and the PE flag are
set and the result is stored as described for the overflow or underflow exceptions; see Section 4.9.1.4,
“"Numeric Overflow Exception (#0),” or Section 4.9.1.5, "Numeric Underflow Exception (#U).” If the inexact
result exception is unmasked, the processor also invokes a software exception handler.

* Ifaninexact result occurs along with unmasked overflow or underflow and the destination operand is a register,
the OE or UE flag and the PE flag are set, the result is stored as described for the overflow or underflow
exceptions, and a software exception handler is invoked.

If an unmasked numeric overflow or underflow exception occurs and the destination operand is a memory location
(which can happen only for a floating-point store), the inexact-result condition is not reported and the C1 flag is
cleared.

See the following sections for information regarding the inexact-result exception when detected while executing
x87 FPU or Intel SSE/SSE2/SSE3/SSE4.1/AVX instructions:

® X87 FPU; Section 8.5.6, “"Inexact-Result (Precision) Exception (#P).”

® SIMD floating-point exceptions; Section 11.5.2.3, “"Divide-By-Zero Exception (#2).”
® Section 12.8.4, “IEEE 754 Compliance of Intel® SSE4.1 Floating-Point Instructions.”
® Section 14.10, “SIMD Floating-Point Exceptions.”

49.2 Floating-Point Exception Priority

The processor handles exceptions according to a predetermined precedence. When an instruction generates two or
more exception conditions, the exception precedence sometimes results in the higher-priority exception being
handled and the lower-priority exceptions being ignored. For example, dividing an SNaN by zero can potentially
signal an invalid-operation exception (due to the SNaN operand) and a divide-by-zero exception. Here, if both
exceptions are masked, the processor handles the higher-priority exception only (the invalid-operation exception),
returning a QNaN to the destination. Alternately, a denormal-operand or inexact-result exception can accompany
a numeric underflow or overflow exception with both exceptions being handled.

The precedence for floating-point exceptions is as follows:
1. Invalid-operation exception, subdivided as follows:

a. Stack underflow (occurs with x87 FPU only).

b. Stack overflow (occurs with x87 FPU only).

c. Operand of unsupported format (occurs with x87 FPU only when using the double extended precision
floating-point format).

d. SNaN operand.

2. QNaN operand. Though this is not an exception, the handling of a QNaN operand has precedence over lower-
priority exceptions. For example, a QNaN divided by zero results in a QNaN, not a zero-divide exception.

3. Any other invalid-operation exception not mentioned above or a divide-by-zero exception.

Denormal-operand exception. If masked, then instruction execution continues, and a lower-priority exception
can occur as well.

5. Numeric overflow and underflow exceptions; possibly in conjunction with the inexact-result exception.

Inexact-result exception.

Vol.1 4-23

DATA TYPES

Invalid operation, zero divide, and denormal operand exceptions are detected before a floating-point operation
begins. Overflow, underflow, and precision exceptions are not detected until a true result has been computed.
When an unmasked pre-operation exception is detected, the destination operand has not yet been updated, and
appears as if the offending instruction has not been executed. When an unmasked post-operation exception is
detected, the destination operand may be updated with a result, depending on the nature of the exception (except
for Intel SSE/SSE2/SSE3/AVX instructions, which do not update their destination operands in such cases).

4.9.3 Typical Actions of a Floating-Point Exception Handler

After the floating-point exception handler is invoked, the processor handles the exception in the same manner that
it handles non-floating-point exceptions. The floating-point exception handler is normally part of the operating
system or executive software, and it usually invokes a user-registered floating-point exception handle.

A typical action of the exception handler is to store state information in memory. Other typical exception handler
actions include:

®* Examining the stored state information to determine the nature of the error.

®* Taking actions to correct the condition that caused the error.

® Clearing the exception flags.

® Returning to the interrupted program and resuming normal execution.

In lieu of writing recovery procedures, the exception handler can do the following:
* Increment in software an exception counter for later display or printing.

® Print or display diagnostic information (such as the state information).

® Halt further program execution.

4-24 Vol.1

CHAPTER 5
INSTRUCTION SET SUMMARY

This chapter provides an abridged overview of Intel 64 and IA-32 instructions. Instructions are divided into the
following groups:

® Section 5.1, “"General-Purpose Instructions.”

® Section 5.2, "x87 FPU Instructions.”

® Section 5.3, "x87 FPU AND SIMD State Management Instructions.”

® Section 5.4, "MMX Instructions.”

® Section 5.5, “Intel® SSE Instructions.”

® Section 5.6, “Intel® SSE2 Instructions.”

® Section 5.7, “Intel® SSE3 Instructions.”

® Section 5.8, "Supplemental Streaming SIMD Extensions 3 (SSSE3) Instructions.
® Section 5.9, “Intel® SSE4 Instructions.”

® Section 5.10, “Intel® SSE4.1 Instructions.”

® Section 5.11, “Intel® SSE4.2 Instruction Set.”

® Section 5.12, “Intel® AES-NI and PCLMULQDQ."”

® Section 5.13, “Intel® Advanced Vector Extensions (Intel® AVX).”

® Section 5.14, “16-bit Floating-Point Conversion.”

® Section 5.15, “Fused-Multiply-ADD (FMA).”

® Section 5.16, “Intel® Advanced Vector Extensions 2 (Intel® AVX2).”

® Section 5.17, “Intel® Transactional Synchronization Extensions (Intel® TSX).”
® Section 5.18, “Intel® SHA Extensions.”

® Section 5.19, “Intel® Advanced Vector Extensions 512 (Intel® AVX-512).”
® Section 5.20, “"System Instructions.”

® Section 5.21, “64-Bit Mode Instructions.”

® Section 5.22, “Virtual-Machine Extensions.”

N

’

® Section 5.23, “Safer Mode Extensions.”

® Section 5.24, “Intel® Memory Protection Extensions.”

® Section 5.25, “"Intel® Software Guard Extensions.”

® Section 5.26, "Shadow Stack Management Instructions.”
® Section 5.27, “Control Transfer Terminating Instructions.”
® Section 5.28, “Intel® AMX Instructions.”

® Section 5.29, “User Interrupt Instructions.”

® Section 5.30, "Enqueue Store Instructions.”

Table 5-1 lists the groups and IA-32 processors that support each group. More recent instruction set extensions are
listed in Table 5-2. Within these groups, most instructions are collected into functional subgroups.

Vol. T 5-1

INSTRUCTION SET SUMMARY

Table 5-1. Instruction Groups in Intel® 64 and IA-32 Processors

Instruction Set
Architecture

Intel 64 and IA-32 Processor Support

General Purpose

All Intel 64 and IA-32 processors.

X87 FPU Intel486, Pentium, Pentium with MMX Technology, Celeron, Pentium Pro, Pentium II, Pentium II Xeon,
Pentium IIl, Pentium lll Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Atom processors.

X87 FPU and SIMD State | Pentium II, Pentium II Xeon, Pentium Ill, Pentium Il Xeon, Pentium 4, Intel Xeon processors, Pentium M,

Management Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom processors.

MMX Technology Pentium with MMX Technology, Celeron, Pentium II, Pentium IT Xeon, Pentium Ill, Pentium Il Xeon, Pentium

4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors, Intel Atom
processors.

SSE Extensions

Pentium lll, Pentium lll Xeon, Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Atom processors.

SSE?2 Extensions

Pentium 4, Intel Xeon processors, Pentium M, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo processors,
Intel Atom processors.

SSE3 Extensions

Pentium 4 supporting HT Technology (built on 90 nm process technology), Intel Core Solo, Intel Core Duo,
Intel Core 2 Duo processors, Intel Xeon processor 3xxxx, 5xxx, 7xxx Series, Intel Atom processors.

SSSE3 Extensions

Intel Xeon processor 3xxx, 5100, 5200, 5300, 5400, 5500, 5600, 7300, 7400, 7500 series, Intel Core 2
Extreme processors QX6000 series, Intel Core 2 Duo, Intel Core 2 Quad processors, Intel Pentium Dual-Core
processors, Intel Atom processors.

IA-32e mode: 64-bit
mode instructions

Intel 64 processors.

System Instructions

Intel 64 and |A-32 processors.

VMX Instructions

Intel 64 and IA-32 processors supporting Intel Virtualization Technology.

SMX Instructions

Intel Core 2 Duo processor E6Ex50, EBxxx; Intel Core 2 Quad processor Q9xxx.

Table 5-2. Instruction Set Extensions Introduction in Intel® 64 and IA-32 Processors

Instruction Set Architecture

Processor Generation Introduction

SSE4.1 Extensions

Intel® Xeon® processor 3100, 3300, 5200, 5400, 7400, 7500 series, Intel® Core™ 2 Extreme
processors QX9000 series, Intel® Core™ 2 Quad processor Q9000 series, Intel® Core™ 2 Duo processors
8000 series and T9000 series, Intel Atom® processor based on Silvermont microarchitecture.

SSE4.2 Extensions, CRC32,

POPCNT

Intel® Core™ i7 965 processor, Intel® Xeon® processors X3400, X3500, X5500, X6500, X7500 series,
Intel Atom processor based on Silvermont microarchitecture.

Intel® AES-NI, PCLMULQDQ

Intel® Xeon® processor E7 series, Intel® Xeon® processors X3600 and X5600, Intel® Core™ i7 980X
processor, Intel Atom processor based on Silvermont microarchitecture. Use CPUID to verify presence
of Intel AES-NI and PCLMULQDAQ across Intel® Core™ processor families.

Intel® AVX Intel® Xeon® processor €3 and E5 families, 2nd Generation Intel® Core™i7, i5, i3 processor 2xxx
families.

F16C 3rd Generation Intel® Core™ processors, Intel® Xeon® processor €3-1200 v2 product family, Intel®
Xeon® processor E5 v2 and E7 v2 families.

RDRAND 3rd Generation Intel Core processors, Intel Xeon processor €3-1200 v2 product family, Intel Xeon

processor E5 v2 and E7 v2 families, Intel Atom processor based on Silvermont microarchitecture.

FS/GS base access

3rd Generation Intel Core processors, Intel Xeon processor €3-1200 v2 product family, Intel Xeon
processor E5 v2 and E7 v2 families, Intel Atom® processor based on Goldmont microarchitecture.

5-2 Vol.1

INSTRUCTION SET SUMMARY

Table 5-2. Instruction Set Extensions Introduction in Intel® 64 and IA-32 Processors (Contd.)

Instruction Set Architecture

Processor Generation Introduction

FMA, AVX2, BMIT, BMIZ,
INVPCID, LZCNT, Intel® TSX

Intel® Xeon® processor E3/E5/€7 v3 product families, 4th Generation Intel® Core™ processor family.

MOVBE

Intel Xeon processor E3/€5/€7 v3 product families, 4th Generation Intel Core processor family, Intel
Atom processors.

PREFETCHW Intel® Core™ M processor family; 5th Generation Intel® Core™ processor family, Intel Atom processor
based on Silvermont microarchitecture.
ADX Intel Core M processor family, 5th Generation Intel Core processor family.

RDSEED, CLAC, STAC

Intel Core M processor family, 5th Generation Intel Core processor family, Intel Atom processor based
on Goldmont microarchitecture.

AVX512€R, AVX512PF,
PREFETCHWT1

Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series.

AVX512F, AVX512CD

Intel Xeon Phi Processor 3200, 5200, 7200 Series, Intel® Xeon® Scalable Processor Family, Intel® Core™
i3-8121U processor.

CLFLUSHOPT, XSAVEC,
XSAVES, Intel® MPX

Intel Xeon Scalable Processor Family, 6th Generation Intel® Core™ processor family, Intel Atom
processor based on Goldmont microarchitecture.

SGX1

6th Generation Intel Core processor family, Intel Atom® processor based on Goldmont Plus
microarchitecture.

AVX512DQ, AVX512BW,
AVX512VL

Intel Xeon Scalable Processor Family, Intel Core i3-8121U processor based on Cannon Lake
microarchitecture.

CLwB Intel Xeon Scalable Processor Family, Intel Atom® processor based on Tremont microarchitecture, 11th
Generation Intel Core processor family based on Tiger Lake microarchitecture.

PKU Intel Xeon Scalable Processor Family, 10th generation Intel® Core™ processors based on Comet Lake
microarchitecture.

AVX512_IFMA, Intel Core i3-8121U processor based on Cannon Lake microarchitecture.

AVX512_VBMI

Intel® SHA Extensions

Intel Core i3-8121U processor based on Cannon Lake microarchitecture, Intel Atom processor based
on Goldmont microarchitecture, 3rd Generation Intel® Xeon® Scalable Processor Family based on Ice
Lake microarchitecture.

UMIP Intel Core i3-8121U processor based on Cannon Lake microarchitecture, Intel Atom processor based
on Goldmont Plus microarchitecture.

PTWRITE Intel Atom processor based on Goldmont Plus microarchitecture, 12th generation Intel® Core™
processor based on Alder Lake performance hybrid architecture, 4th generation Intel® Xeon® Scalable
Processor Family based on Sapphire Rapids microarchitecture.

RDPID 10th Generation Intel® Core™ processor family based on Ice Lake microarchitecture, Intel Atom

processor based on Goldmont Plus microarchitecture.

AVX512_4FMAPS,
AVX512_4VNNIw

Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series.

AVX512_VNNI

2nd Generation Intel® Xeon® Scalable Processor Family, 10th Generation Intel Core processor family
based on Ice Lake microarchitecture.

AVX512_VPOPCNTDQ

Intel Xeon Phi Processor 7215, 7285, 7295 Series, 10th Generation Intel Core processor family based
on Ice Lake microarchitecture.

Fast Short REP MOV

10th Generation Intel Core processor family based on Ice Lake microarchitecture.

GFNI (SSE)

10th Generation Intel Core processor family based on Ice Lake microarchitecture, Intel Atom processor
based on Tremont microarchitecture.

Vol. 1T 5-3

INSTRUCTION SET SUMMARY

Table 5-2. Instruction Set Extensions Introduction in Intel® 64 and IA-32 Processors (Contd.)

Instruction Set Architecture

Processor Generation Introduction

VAES, GFNI (AVX/AVX512),
AVX512_VBMI2,
VPCLMULQDQ,
AVX512_BITALG

10th Generation Intel Core processor family based on Ice Lake microarchitecture.

ENCLV

Future processors.

Split Lock Detection

10th Generation Intel Core processor family based on Ice Lake microarchitecture, Intel Atom processor
based on Tremont microarchitecture.

CLDEMOTE

Intel Atom processor based on Tremont microarchitecture, 4th generation Intel® Xeon® Scalable
Processor Family based on Sapphire Rapids microarchitecture.

Direct stores: MOVDIRI,
MOVDIR64B

Intel Atom processor based on Tremont microarchitecture, 11th Generation Intel Core processor
family based on Tiger Lake microarchitecture, 4th generation Intel® Xeon® Scalable Processor Family
based on Sapphire Rapids microarchitecture.

User wait: TPAUSE,
UMONITOR, UMWAIT

Intel Atom processor based on Tremont microarchitecture, 12th generation Intel Core processor based
on Alder Lake performance hybrid architecture, 4th generation Intel® Xeon® Scalable Processor Family
based on Sapphire Rapids microarchitecture.

AVX512_BF16

3rd Generation Intel® Xeon® Scalable Processor Family based on Cooper Lake product, 4th generation
Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.

AVX512_VP2INTERSECT

11th Generation Intel Core processor family based on Tiger Lake microarchitecture.

Key Locker!

11th Generation Intel Core processor family based on Tiger Lake microarchitecture, 12th generation
Intel Core processor based on Alder Lake performance hybrid architecture.

Control-flow Enforcement

11th Generation Intel Core processor family based on Tiger Lake microarchitecture, 4th generation

Technology (CET) Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.
TME-MK?, PCONFIG 3rd Generation Intel® Xeon® Scalable Processor Family based on Ice Lake microarchitecture.
WBNOINVD 3rd Generation Intel® Xeon® Scalable Processor Family based on Ice Lake microarchitecture.

LBRs (architectural)

12th generation Intel Core processor based on Alder Lake performance hybrid architecture, 4th
generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.

Intel® Virtualization
Technology - Redirect
Protection (Intel® VT-rp) and
HLAT

12th generation Intel Core processor based on Alder Lake performance hybrid architecture, 4th
generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.

AVX-VNNI 12th generation Intel Core processor based on Alder Lake performance hybrid architecture3, 4th
generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.
SERIALIZE 12th generation Intel Core processor based on Alder Lake performance hybrid architecture, 4th

generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.

Intel® Thread Director and
HRESET

12th generation Intel Core processor based on Alder Lake performance hybrid architecture.

Fast zero-length REP MOVSB,

12th generation Intel Core processor based on Alder Lake performance hybrid architecture, 4th

fast short REP STOSB generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.
Fast Short REP CMPSB, fast | 4th generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.
short REP SCASB

Supervisor Memory 12th generation Intel Core processor based on Alder Lake performance hybrid architecture, 4th
Protection Keys (PKS) generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.

Attestation Services for
Intel® SGX

3rd Generation Intel® Xeon® Scalable Processor Family based on Ice Lake microarchitecture.

Enqueue Stores: ENQCMD
and ENQCMDS

4th generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.

5-4 Vol.1

INSTRUCTION SET SUMMARY

Table 5-2. Instruction Set Extensions Introduction in Intel® 64 and IA-32 Processors (Contd.)
Instruction Set Architecture | Processor Generation Introduction

Intel® TSX Suspend Load 4th generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.
Address Tracking
(TSXLDTRK)

Intel® Advanced Matrix 4th generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.
Extensions (Intel® AMX)

Includes CPUID Leaf 1EH,
“TMUL Information Main
Leaf”, and CPUID bits AMX-
BF16, AMX-TILE, and AMX-

INT8.
User Interrupts (UINTR) 4th generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.
IPI Virtualization 4th generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.

AVX512-FP16, for the FP16 | 4th generation Intel® Xeon® Scalable Processor Family based on Sapphire Rapids microarchitecture.
Data Type

NOTES:

1. Details on Key Locker can be found in the Intel Key Locker Specification here:
https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html.

2. Further details on TME-MK usage can be found here:
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf.

3. Alder Lake performance hybrid architecture does not support Intel® AVX-512. ISA features such as Intel® AVX, AVX-VNNI, Intel® AVX2,
and UMONITOR/UMWAIT/TPAUSE are supported.

The following sections list instructions in each major group and subgroup. Given for each instruction is its
mnemonic and descriptive names. When two or more mnemonics are given (for example, CMOVA/CMOVNBE), they
represent different mnemonics for the same instruction opcode. Assemblers support redundant mnemonics for
some instructions to make it easier to read code listings. For instance, CMOVA (Conditional move if above) and
CMOVNBE (Conditional move if not below or equal) represent the same condition. For detailed information about
specific instructions, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C,
& 2D.

5.1 GENERAL-PURPOSE INSTRUCTIONS

The general-purpose instructions perform basic data movement, arithmetic, logic, program flow, and string opera-
tions that programmers commonly use to write application and system software to run on Intel 64 and IA-32
processors. They operate on data contained in memory, in the general-purpose registers (EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP) and in the EFLAGS register. They also operate on address information contained in
memory, the general-purpose registers, and the segment registers (CS, DS, SS, ES, FS, and GS).

This group of instructions includes the data transfer, binary integer arithmetic, decimal arithmetic, logic operations,
shift and rotate, bit and byte operations, program control, string, flag control, segment register operations, and
miscellaneous subgroups. The sections that follow introduce each subgroup.

For more detailed information on general purpose-instructions, see Chapter 7, "Programming With General-
Purpose Instructions.”

5.1.1 Data Transfer Instructions

The data transfer instructions move data between memory and the general-purpose and segment registers. They
also perform specific operations such as conditional moves, stack access, and data conversion.

Vol. 1T 5-5

https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specification.html
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf

INSTRUCTION SET SUMMARY

MOV

CMOVE/CMOVZ
CMOVNE/CMOVNZ
CMOVA/CMOVNBE
CMOVAE/CMOVNB
CMOVB/CMOVNAE
CMOVBE/CMOVNA
CMOVG/CMOVNLE
CMOVGE/CMOVNL
CMOVL/CMOVNGE
CMOVLE/CMOVNG
CMOVC

CMOVNC

CMOVO

CMOVNO

CMOVS

CMOVNS
CMOVP/CMOVPE
CMOVNP/CMOVPO
XCHG

BSWAP

XADD

CMPXCHG
CMPXCHGSB
PUSH

POP
PUSHA/PUSHAD
POPA/POPAD
CWD/CDQ
CBW/CWDE
MOVSX

MOVZX

5.1.2

Move data between general-purpose registers; move data between memory and general-
purpose or segment registers; move immediates to general-purpose registers.

Conditional move if equal/Conditional move if zero.

Conditional move if not equal/Conditional move if not zero.
Conditional move if above/Conditional move if not below or equal.
Conditional move if above or equal/Conditional move if not below.
Conditional move if below/Conditional move if not above or equal.
Conditional move if below or equal/Conditional move if not above.
Conditional move if greater/Conditional move if not less or equal.
Conditional move if greater or equal/Conditional move if not less.
Conditional move if less/Conditional move if not greater or equal.
Conditional move if less or equal/Conditional move if not greater.
Conditional move if carry.

Conditional move if not carry.

Conditional move if overflow.

Conditional move if not overflow.

Conditional move if sign (negative).

Conditional move if not sign (non-negative).

Conditional move if parity/Conditional move if parity even.
Conditional move if not parity/Conditional move if parity odd.
Exchange.

Byte swap.

Exchange and add.

Compare and exchange.

Compare and exchange 8 bytes.

Push onto stack.

Pop off of stack.

Push general-purpose registers onto stack.

Pop general-purpose registers from stack.

Convert word to doubleword/Convert doubleword to quadword.
Convert byte to word/Convert word to doubleword in EAX register.
Move and sign extend.

Move and zero extend.

Binary Arithmetic Instructions

The binary arithmetic instructions perform basic binary integer computations on byte, word, and doubleword inte-
gers located in memory and/or the general purpose registers.

ADCX
ADOX
ADD
ADC
SuB
SBB
IMUL
MUL
IDIV

5-6 Vol.1

Unsigned integer add with carry.
Unsigned integer add with overflow.
Integer add.

Add with carry.

Subtract.

Subtract with borrow.

Signed multiply.

Unsigned multiply.

Signed divide.

INSTRUCTION SET SUMMARY

DIV Unsigned divide.
INC Increment.

DEC Decrement.

NEG Negate.

CMP Compare.

5.1.3 Decimal Arithmetic Instructions

The decimal arithmetic instructions perform decimal arithmetic on binary coded decimal (BCD) data.

DAA Decimal adjust after addition.
DAS Decimal adjust after subtraction.
AAA ASCII adjust after addition.

AAS ASCII adjust after subtraction.
AAM ASCII adjust after multiplication.
AAD ASCII adjust before division.

5.14 Logical Instructions

The logical instructions perform basic AND, OR, XOR, and NOT logical operations on byte, word, and doubleword
values.

AND Perform bitwise logical AND.

OR Perform bitwise logical OR.

XOR Perform bitwise logical exclusive OR.
NOT Perform bitwise logical NOT.

5.1.5 Shift and Rotate Instructions

The shift and rotate instructions shift and rotate the bits in word and doubleword operands.
SAR Shift arithmetic right.

SHR Shift logical right.

SAL/SHL Shift arithmetic left/Shift logical left.
SHRD Shift right double.

SHLD Shift left double.

ROR Rotate right.

ROL Rotate left.

RCR Rotate through carry right.

RCL Rotate through carry left.

5.1.6 Bit and Byte Instructions

Bit instructions test and modify individual bits in word and doubleword operands. Byte instructions set the value of
a byte operand to indicate the status of flags in the EFLAGS register.

BT Bit test.

BTS Bit test and set.

BTR Bit test and reset.

BTC Bit test and complement.
BSF Bit scan forward.

Vol.1 5-7

INSTRUCTION SET SUMMARY

BSR
SETE/SETZ
SETNE/SETNZ
SETA/SETNBE

SETAE/SETNB/SETNC
SETB/SETNAE/SETC

SETBE/SETNA
SETG/SETNLE
SETGE/SETNL
SETL/SETNGE
SETLE/SETNG
SETS

SETNS

SETO

SETNO
SETPE/SETP
SETPO/SETNP
TEST

CRC32!

POPCNT?

Bit scan reverse.

Set byte if equal/Set byte if zero.

Set byte if not equal/Set byte if not zero.

Set byte if above/Set byte if not below or equal.

Set byte if above or equal/Set byte if not below/Set byte if not carry.
Set byte if below/Set byte if not above or equal/Set byte if carry.
Set byte if below or equal/Set byte if not above.

Set byte if greater/Set byte if not less or equal.

Set byte if greater or equal/Set byte if not less.

Set byte if less/Set byte if not greater or equal.

Set byte if less or equal/Set byte if not greater.

Set byte if sign (negative).

Set byte if not sign (non-negative).

Set byte if overflow.

Set byte if not overflow.

Set byte if parity even/Set byte if parity.

Set byte if parity odd/Set byte if not parity.

Logical compare.

Provides hardware acceleration to calculate cyclic redundancy checks for fast and efficient
implementation of data integrity protocols.

Calculates of number of bits set to 1 in the second operand (source) and returns the count
in the first operand (a destination register).

5.1.7 Control Transfer Instructions

The control transfer instructions provide jump, conditional jump, loop, and call and return operations to control

program flow.
JMP
JE/IZ
IJNE/INZ
JA/INBE
JAE/INB
JB/INAE
JBE/INA
JG/INLE
JGE/JNL
JL/INGE
JLE/ING
JC

JNC

JO

JNO

Js

INS

Jump.

Jump if equal/Jump if zero.

Jump if not equal/Jump if not zero.

Jump if above/Jump if not below or equal.
Jump if above or equal/Jump if not below.
Jump if below/Jump if not above or equal.
Jump if below or equal/Jump if not above.
Jump if greater/Jump if not less or equal.

Jump if greater or equal/Jump if not less.

Jump if less/Jump if not greater or equal.
Jump if less or equal/Jump if not greater.

Jump if carry.

Jump if not carry.

Jump if overflow.

Jump if not overflow.

Jump if sign (negative).

Jump if not sign (non-negative).

1. Processor support of CRC32 is enumerated by CPUID.01:ECX[SSE4.2] = 1
2. Processor support of POPCNT is enumerated by CPUID.01:ECX[POPCNT] = 1

5-8 Vol.1

JPO/INP
JPE/IP
JCXZ/IECXZ
LOOP
LOOPZ/LOOPE
LOOPNZ/LOOPNE
CALL

RET

IRET

INT

INTO

BOUND
ENTER

LEAVE

INSTRUCTION SET SUMMARY

Jump if parity odd/Jump if not parity.

Jump if parity even/Jump if parity.

Jump register CX zero/Jump register ECX zero.
Loop with ECX counter.

Loop with ECX and zero/Loop with ECX and equal.
Loop with ECX and not zero/Loop with ECX and not equal.
Call procedure.

Return.

Return from interrupt.

Software interrupt.

Interrupt on overflow.

Detect value out of range.

High-level procedure entry.

High-level procedure exit.

5.1.8 String Instructions

The string instructions operate on strings of bytes, allowing them to be moved to and from memory.

MOVS/MOVSB
MOVS/MOVSW
MOVS/MOVSD
CMPS/CMPSB
CMPS/CMPSW
CMPS/CMPSD
SCAS/SCASB
SCAS/SCASW
SCAS/SCASD
LODS/LODSB
LODS/LODSW
LODS/LODSD
STOS/STOSB
STOS/STOSW
STOS/STOSD
REP
REPE/REPZ
REPNE/REPNZ

Move string/Move byte string.

Move string/Move word string.

Move string/Move doubleword string.
Compare string/Compare byte string.
Compare string/Compare word string.
Compare string/Compare doubleword string.
Scan string/Scan byte string.

Scan string/Scan word string.

Scan string/Scan doubleword string.

Load string/Load byte string.

Load string/Load word string.

Load string/Load doubleword string.

Store string/Store byte string.

Store string/Store word string.

Store string/Store doubleword string.
Repeat while ECX not zero.

Repeat while equal/Repeat while zero.
Repeat while not equal/Repeat while not zero.

5.1.9 I/0 Instructions

These instructions move data between the processor’s I/O ports and a register or memory.

IN

ouT
INS/INSB
INS/INSW
INS/INSD
OUTS/0UTSB
OUTS/OUTSW

Read from a port.

Write to a port.

Input string from port/Input byte string from port.

Input string from port/Input word string from port.

Input string from port/Input doubleword string from port.
Output string to port/Output byte string to port.

Output string to port/Output word string to port.

Vol.1T 5-9

INSTRUCTION SET SUMMARY

OUTS/OUTSD Output string to port/Output doubleword string to port.

5.1.10 Enter and Leave Instructions

These instructions provide machine-language support for procedure calls in block-structured languages.
ENTER High-level procedure entry.
LEAVE High-level procedure exit.

5.1.11 Flag Control (EFLAG) Instructions

The flag control instructions operate on the flags in the EFLAGS register.

STC Set carry flag.

CLC Clear the carry flag.

CMC Complement the carry flag.
CLD Clear the direction flag.
STD Set direction flag.

LAHF Load flags into AH register.
SAHF Store AH register into flags.
PUSHF/PUSHFD Push EFLAGS onto stack.
POPF/POPFD Pop EFLAGS from stack.
STI Set interrupt flag.

CLI Clear the interrupt flag.

5.1.12 Segment Register Instructions

The segment register instructions allow far pointers (segment addresses) to be loaded into the segment registers.
LDS Load far pointer using DS.

LES Load far pointer using ES.
LFS Load far pointer using FS.
LGS Load far pointer using GS.
LSS Load far pointer using SS.

5.1.13 Miscellaneous Instructions

The miscellaneous instructions provide such functions as loading an effective address, executing a “no-operation,”
and retrieving processor identification information.

LEA Load effective address.

NOP No operation.

ub Undefined instruction.

XLAT/XLATB Table lookup translation.

CPUID Processor identification.

MOVBE! Move data after swapping data bytes.
PREFETCHW Prefetch data into cache in anticipation of write.
PREFETCHWT1 Prefetch hint T1 with intent to write.

1. Processor support of MOVBE is enumerated by CPUID.01:ECX.MOVBE[bit 22] = 1.

5-10 Vol. 1

INSTRUCTION SET SUMMARY

CLFLUSH Flushes and invalidates a memory operand and its associated cache line from all levels of
the processor’s cache hierarchy.
CLFLUSHOPT Flushes and invalidates a memory operand and its associated cache line from all levels of

the processor’s cache hierarchy with optimized memory system throughput.

5.1.14 User Mode Extended State Save/Restore Instructions

XSAVE Save processor extended states to memory.

XSAVEC Save processor extended states with compaction to memory.
XSAVEOPT Save processor extended states to memory, optimized.
XRSTOR Restore processor extended states from memory.

XGETBV Reads the state of an extended control register.

5.1.15 Random Number Generator Instructions
RDRAND Retrieves a random number generated from hardware.
RDSEED Retrieves a random number generated from hardware.

5.1.16 BMI1 and BMI2 Instructions

ANDN Bitwise AND of first source with inverted second source operands.
BEXTR Contiguous bitwise extract.

BLSI Extract lowest set bit.

BLSMSK Set all lower bits below first set bit to 1.

BLSR Reset lowest set bit.

BZHI Zero high bits starting from specified bit position.
LZCNT Count the number of leading zero bits.

MULX Unsigned multiply without affecting arithmetic flags.
PDEP Parallel deposit of bits using a mask.

PEXT Parallel extraction of bits using a mask.

RORX Rotate right without affecting arithmetic flags.
SARX Shift arithmetic right.

SHLX Shift logic left.

SHRX Shift logic right.

TZCNT Count the number of trailing zero bits.

5.1.16.1 Detection of VEX-Encoded GPR Instructions, LZCNT, TZCNT, and PREFETCHW

VEX-encoded general-purpose instructions do not operate on any vector registers.

There are separate feature flags for the following subsets of instructions that operate on general purpose registers,
and the detection requirements for hardware support are:

CPUID.(EAX=07H, ECX=0H):EBX.BMI1[bit 3]: if 1 indicates the processor supports the first group of advanced bit
manipulation extensions (ANDN, BEXTR, BLSI, BLSMSK, BLSR, TZCNT);

CPUID.(EAX=07H, ECX=0H):EBX.BMI2[bit 8]: if 1 indicates the processor supports the second group of advanced
bit manipulation extensions (BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX);

CPUID.EAX=80000001H:ECX.LZCNT[bit 5]: if 1 indicates the processor supports the LZCNT instruction.

CPUID.EAX=80000001H:ECX.PREFTEHCHW][bit 8]: if 1 indicates the processor supports the PREFTEHCHW instruc-
tion. CPUID.(EAX=07H, ECX=0H):ECX.PREFTEHCHWT1[bit 0]: if 1 indicates the processor supports the PREFT-
EHCHWT1 instruction.

Vol. 1T 5-11

INSTRUCTION SET SUMMARY

5.2 X87 FPU INSTRUCTIONS

The x87 FPU instructions are executed by the processor’s x87 FPU. These instructions operate on floating-point,
integer, and binary-coded decimal (BCD) operands. For more detail on x87 FPU instructions, see Chapter 8,
“Programming with the x87 FPU.”

These instructions are divided into the following subgroups: data transfer, load constants, and FPU control instruc-
tions. The sections that follow introduce each subgroup.

5.2.1 X87 FPU Data Transfer Instructions

The data transfer instructions move floating-point, integer, and BCD values between memory and the x87 FPU
registers. They also perform conditional move operations on floating-point operands.

FLD Load floating-point value.

FST Store floating-point value.

FSTP Store floating-point value and pop.

FILD Load integer.

FIST Store integer.

FISTPL Store integer and pop.

FBLD Load BCD.

FBSTP Store BCD and pop.

FXCH Exchange registers.

FCMOVE Floating-point conditional move if equal.
FCMOVNE Floating-point conditional move if not equal.
FCMOVB Floating-point conditional move if below.
FCMOVBE Floating-point conditional move if below or equal.
FCMOVNB Floating-point conditional move if not below.
FCMOVNBE Floating-point conditional move if not below or equal.
FCMOVU Floating-point conditional move if unordered.
FCMOVNU Floating-point conditional move if not unordered.

5.2.2 X87 FPU Basic Arithmetic Instructions

The basic arithmetic instructions perform basic arithmetic operations on floating-point and integer operands.
FADD Add floating-point.

FADDP Add floating-point and pop.
FIADD Add integer.

FSUB Subtract floating-point.

FSUBP Subtract floating-point and pop.
FISUB Subtract integer.

FSUBR Subtract floating-point reverse.
FSUBRP Subtract floating-point reverse and pop.
FISUBR Subtract integer reverse.

FMUL Multiply floating-point.

FMULP Multiply floating-point and pop.
FIMUL Multiply integer.

FDIV Divide floating-point.

1. SSE3 provides an instruction FISTTP for integer conversion.

5-12 Vol. 1

FDIVP
FIDIV
FDIVR
FDIVRP
FIDIVR
FPREM
FPREM1
FABS
FCHS
FRNDINT
FSCALE
FSQRT
FXTRACT

5.2.3

FCOM
FCOMP
FCOMPP
FUCOM
FUCOMP
FUCOMPP
FICOM
FICOMP
FCOMI
FUCOMI
FCOMIP
FUCOMIP
FTST
FXAM

5.2.4

Divide floating-point and pop.
Divide integer.

Divide floating-point reverse.
Divide floating-point reverse and pop.
Divide integer reverse.

Partial remainder.

IEEE partial remainder.

Absolute value.

Change sign.

Round to integer.

Scale by power of two.

Square root.

Extract exponent and significand.

X87 FPU Comparison Instructions

The compare instructions examine or compare floating-point or integer operands.

Compare floating-point.
Compare floating-point and pop.

Compare floating-point and pop twice.

Unordered compare floating-point.

Unordered compare floating-point and pop.
Unordered compare floating-point and pop twice.

Compare integer.
Compare integer and pop.

Compare floating-point and set EFLAGS.

Unordered compare floating-point and set EFLAGS.
Compare floating-point, set EFLAGS, and pop.
Unordered compare floating-point, set EFLAGS, and pop.
Test floating-point (compare with 0.0).

Examine floating-point.

X87 FPU Transcendental Instructions

INSTRUCTION SET SUMMARY

The transcendental instructions perform basic trigonometric and logarithmic operations on floating-point oper-

ands.
FSIN
FCOS
FSINCOS
FPTAN
FPATAN
F2XM1
FYL2X
FYL2XP1

Sine.

Cosine.

Sine and cosine.
Partial tangent.
Partial arctangent.
2X-1.

y*logoX.
y*xlogo(x+1).

Vol.1 5-13

INSTRUCTION SET SUMMARY

5.2.5 X87 FPU Load Constants Instructions

The load constants instructions load common constants, such as «, into the x87 floating-point registers.
FLD1 Load +1.0.

FLDZ Load +0.0.
FLDPI Load =.
FLDL2E Load logye.
FLDLN2 Load loge2.
FLDL2T Load log,10.
FLDLG2 Load logyg2.

5.2.6 X87 FPU Control Instructions

The x87 FPU control instructions operate on the x87 FPU register stack and save and restore the x87 FPU state.

FINCSTP Increment FPU register stack pointer.

FDECSTP Decrement FPU register stack pointer.

FFREE Free floating-point register.

FINIT Initialize FPU after checking error conditions.

FNINIT Initialize FPU without checking error conditions.

FCLEX Clear floating-point exception flags after checking for error conditions.
FNCLEX Clear floating-point exception flags without checking for error conditions.
FSTCW Store FPU control word after checking error conditions.

FNSTCW Store FPU control word without checking error conditions.

FLDCW Load FPU control word.

FSTENV Store FPU environment after checking error conditions.

FNSTENV Store FPU environment without checking error conditions.

FLDENV Load FPU environment.

FSAVE Save FPU state after checking error conditions.

FNSAVE Save FPU state without checking error conditions.

FRSTOR Restore FPU state.

FSTSW Store FPU status word after checking error conditions.

FNSTSW Store FPU status word without checking error conditions.
WAIT/FWAIT Wait for FPU.

FNOP FPU no operation.

53 X87 FPU AND SIMD STATE MANAGEMENT INSTRUCTIONS

Two state management instructions were introduced into the IA-32 architecture with the Pentium II processor
family:

FXSAVE Save x87 FPU and SIMD state.

FXRSTOR Restore x87 FPU and SIMD state.

Initially, these instructions operated only on the x87 FPU (and MMX) registers to perform a fast save and restore,
respectively, of the x87 FPU and MMX state. With the introduction of SSE extensions in the Pentium Il processor

family, these instructions were expanded to also save and restore the state of the XMM and MXCSR registers. Intel
64 architecture also supports these instructions.

See Section 10.5, "FXSAVE and FXRSTOR Instructions,” for more detail.

5-14 Vol. 1

INSTRUCTION SET SUMMARY

5.4 MMX INSTRUCTIONS

Four extensions have been introduced into the IA-32 architecture to permit IA-32 processors to perform single-
instruction multiple-data (SIMD) operations. These extensions include the MMX technology, SSE extensions, SSE2
extensions, and SSE3 extensions. For a discussion that puts SIMD instructions in their historical context, see
Section 2.2.7, "SIMD Instructions.”

MMX instructions operate on packed byte, word, doubleword, or quadword integer operands contained in memory,
in MMX registers, and/or in general-purpose registers. For more detail on these instructions, see Chapter 9,
“Programming with Intel® MMX™ Technology.”

MMX instructions can only be executed on Intel 64 and IA-32 processors that support the MMX technology. Support
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

MMX instructions are divided into the following subgroups: data transfer, conversion, packed arithmetic, compar-
ison, logical, shift and rotate, and state management instructions. The sections that follow introduce each
subgroup.

5.4.1 MMX Data Transfer Instructions

The data transfer instructions move doubleword and quadword operands between MMX registers and between
MMX registers and memory.

MOVD Move doubleword.
MOVQ Move quadword.

5.4.2 MMX Conversion Instructions

The conversion instructions pack and unpack bytes, words, and doublewords

PACKSSWB Pack words into bytes with signed saturation.
PACKSSDW Pack doublewords into words with signed saturation.
PACKUSWB Pack words into bytes with unsigned saturation.
PUNPCKHBW Unpack high-order bytes.

PUNPCKHWD Unpack high-order words.

PUNPCKHDQ Unpack high-order doublewords.

PUNPCKLBW Unpack low-order bytes.

PUNPCKLWD Unpack low-order words.

PUNPCKLDQ Unpack low-order doublewords.

5.4.3 MMX Packed Arithmetic Instructions

The packed arithmetic instructions perform packed integer arithmetic on packed byte, word, and doubleword inte-
gers.

PADDB Add packed byte integers.

PADDW Add packed word integers.

PADDD Add packed doubleword integers.

PADDSB Add packed signed byte integers with signed saturation.
PADDSW Add packed signed word integers with signed saturation.
PADDUSB Add packed unsigned byte integers with unsigned saturation.
PADDUSW Add packed unsigned word integers with unsigned saturation.
PSUBB Subtract packed byte integers.

PSUBW Subtract packed word integers.

Vol.1 5-15

INSTRUCTION SET SUMMARY

PSUBD Subtract packed doubleword integers.

PSUBSB Subtract packed signed byte integers with signed saturation.
PSUBSW Subtract packed signed word integers with signed saturation.
PSUBUSB Subtract packed unsigned byte integers with unsigned saturation.
PSUBUSW Subtract packed unsigned word integers with unsigned saturation.
PMULHW Multiply packed signed word integers and store high result.
PMULLW Multiply packed signed word integers and store low result.
PMADDWD Multiply and add packed word integers.

544 MMX Comparison Instructions

The compare instructions compare packed bytes, words, or doublewords.

PCMPEQB Compare packed bytes for equal.

PCMPEQW Compare packed words for equal.

PCMPEQD Compare packed doublewords for equal.

PCMPGTB Compare packed signed byte integers for greater than.
PCMPGTW Compare packed signed word integers for greater than.
PCMPGTD Compare packed signed doubleword integers for greater than.

545 MMX Logical Instructions
The logical instructions perform AND, AND NOT, OR, and XOR operations on quadword operands.

PAND Bitwise logical AND.

PANDN Bitwise logical AND NOT.
POR Bitwise logical OR.

PXOR Bitwise logical exclusive OR.

5.4.6 MMX Shift and Rotate Instructions

The shift and rotate instructions shift and rotate packed bytes, words, or doublewords, or quadwords in 64-bit
operands.

PSLLW Shift packed words left logical.

PSLLD Shift packed doublewords left logical.
PSLLQ Shift packed quadword left logical.

PSRLW Shift packed words right logical.

PSRLD Shift packed doublewords right logical.
PSRLQ Shift packed quadword right logical.
PSRAW Shift packed words right arithmetic.
PSRAD Shift packed doublewords right arithmetic.

54.7 MMX State Management Instructions

The EMMS instruction clears the MMX state from the MMX registers.
EMMS Empty MMX state.

5-16 Vol. 1

INSTRUCTION SET SUMMARY

5.5 INTEL® SSE INSTRUCTIONS

Intel SSE instructions represent an extension of the SIMD execution model introduced with the MMX technology.
For more detail on these instructions, see Chapter 10, “Programming with Intel® Streaming SIMD Extensions
(Intel® SSE).”

Intel SSE instructions can only be executed on Intel 64 and IA-32 processors that support Intel SSE extensions.
Support for these instructions can be detected with the CPUID instruction. See the description of the CPUID
instruction in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A.

Intel SSE instructions are divided into four subgroups (note that the first subgroup has subordinate subgroups of
its own):

® SIMD single precision floating-point instructions that operate on the XMM registers.
® MXCSR state management instructions.

® 64-bit SIMD integer instructions that operate on the MMX registers.

® Cacheability control, prefetch, and instruction ordering instructions.

The following sections provide an overview of these groups.

5.5.1 Intel® SSE SIMD Single Precision Floating-Point Instructions

These instructions operate on packed and scalar single precision floating-point values located in XMM registers
and/or memory. This subgroup is further divided into the following subordinate subgroups: data transfer, packed
arithmetic, comparison, logical, shuffle and unpack, and conversion instructions.

5.5.1.1 Intel® SSE Data Transfer Instructions

Intel SSE data transfer instructions move packed and scalar single precision floating-point operands between XMM
registers and between XMM registers and memory.

MOVAPS Move four aligned packed single precision floating-point values between XMM registers or
between an XMM register and memory.

MOVUPS Move four unaligned packed single precision floating-point values between XMM registers
or between an XMM register and memory.

MOVHPS Move two packed single precision floating-point values to and from the high quadword of
an XMM register and memory.

MOVHLPS Move two packed single precision floating-point values from the high quadword of an XMM
register to the low quadword of another XMM register.

MOVLPS Move two packed single precision floating-point values to and from the low quadword of an
XMM register and memory.

MOVLHPS Move two packed single precision floating-point values from the low quadword of an XMM
register to the high quadword of another XMM register.

MOVMSKPS Extract sign mask from four packed single precision floating-point values.

MOVSS Move scalar single precision floating-point value between XMM registers or between an

XMM register and memory.

5.5.1.2 Intel® SSE Packed Arithmetic Instructions

Intel SSE packed arithmetic instructions perform packed and scalar arithmetic operations on packed and scalar
single precision floating-point operands.

ADDPS Add packed single precision floating-point values.
ADDSS Add scalar single precision floating-point values.
SUBPS Subtract packed single precision floating-point values.
SUBSS Subtract scalar single precision floating-point values.

Vol.1 5-17

INSTRUCTION SET SUMMARY

MULPS Multiply packed single precision floating-point values.

MULSS Multiply scalar single precision floating-point values.

DIVPS Divide packed single precision floating-point values.

DIVSS Divide scalar single precision floating-point values.

RCPPS Compute reciprocals of packed single precision floating-point values.

RCPSS Compute reciprocal of scalar single precision floating-point values.

SQRTPS Compute square roots of packed single precision floating-point values.

SQRTSS Compute square root of scalar single precision floating-point values.

RSQRTPS Compute reciprocals of square roots of packed single precision floating-point values.
RSQRTSS Compute reciprocal of square root of scalar single precision floating-point values.
MAXPS Return maximum packed single precision floating-point values.

MAXSS Return maximum scalar single precision floating-point values.

MINPS Return minimum packed single precision floating-point values.

MINSS Return minimum scalar single precision floating-point values.

5.5.1.3 Intel® SSE Comparison Instructions

Intel SSE compare instructions compare packed and scalar single precision floating-point operands.

CMPPS Compare packed single precision floating-point values.

CMPSS Compare scalar single precision floating-point values.

COMISS Perform ordered comparison of scalar single precision floating-point values and set flags in
EFLAGS register.

UCOMISS Perform unordered comparison of scalar single precision floating-point values and set flags

in EFLAGS register.

5514 Intel® SSE Logical Instructions

Intel SSE logical instructions perform bitwise AND, AND NOT, OR, and XOR operations on packed single precision
floating-point operands.

ANDPS Perform bitwise logical AND of packed single precision floating-point values.
ANDNPS Perform bitwise logical AND NOT of packed single precision floating-point values.
ORPS Perform bitwise logical OR of packed single precision floating-point values.
XORPS Perform bitwise logical XOR of packed single precision floating-point values.

5.5.1.5 Intel® SSE Shuffle and Unpack Instructions

Intel SSE shuffle and unpack instructions shuffle or interleave single precision floating-point values in packed single
precision floating-point operands.

SHUFPS Shuffles values in packed single precision floating-point operands.

UNPCKHPS Unpacks and interleaves the two high-order values from two single precision floating-point
operands.

UNPCKLPS Unpacks and interleaves the two low-order values from two single precision floating-point
operands.

5.5.1.6 Intel® SSE Conversion Instructions

Intel SSE conversion instructions convert packed and individual doubleword integers into packed and scalar single
precision floating-point values and vice versa.

CVTPI2PS Convert packed doubleword integers to packed single precision floating-point values.
CVTSI2SS Convert doubleword integer to scalar single precision floating-point value.

5-18 Vol. 1

INSTRUCTION SET SUMMARY

CVTPS2PI Convert packed single precision floating-point values to packed doubleword integers.

CVTTPS2PI Convert with truncation packed single precision floating-point values to packed double-
word integers.

CVTSS2SI Convert a scalar single precision floating-point value to a doubleword integer.

CVTTSS2SI Convert with truncation a scalar single precision floating-point value to a scalar double-

word integer.

5.5.2 Intel® SSE MXCSR State Management Instructions

MXCSR state management instructions allow saving and restoring the state of the MXCSR control and status
register.

LDMXCSR Load MXCSR register.

STMXCSR Save MXCSR register state.

5.5.3 Intel® SSE 64-Bit SIMD Integer Instructions

These Intel SSE 64-bit SIMD integer instructions perform additional operations on packed bytes, words, or double-
words contained in MMX registers. They represent enhancements to the MMX instruction set described in Section
5.4, “MMX Instructions.”

PAVGB Compute average of packed unsigned byte integers.
PAVGW Compute average of packed unsigned word integers.
PEXTRW Extract word.

PINSRW Insert word.

PMAXUB Maximum of packed unsigned byte integers.

PMAXSW Maximum of packed signed word integers.

PMINUB Minimum of packed unsigned byte integers.

PMINSW Minimum of packed signed word integers.

PMOVMSKB Move byte mask.

PMULHUW Multiply packed unsigned integers and store high result.
PSADBW Compute sum of absolute differences.

PSHUFW Shuffle packed integer word in MMX register.

554 Intel® SSE Cacheability Control, Prefetch, and Instruction Ordering Instructions

The cacheability control instructions provide control over the caching of non-temporal data when storing data from
the MMX and XMM registers to memory. The PREFETCHh allows data to be prefetched to a selected cache level. The
SFENCE instruction controls instruction ordering on store operations.

MASKMOVQ Non-temporal store of selected bytes from an MMX register into memory.

MOVNTQ Non-temporal store of quadword from an MMX register into memory.

MOVNTPS Non-temporal store of four packed single precision floating-point values from an XMM
register into memory.

PREFETCHhA Load 32 or more of bytes from memory to a selected level of the processor’s cache hier-
archy.

SFENCE Serializes store operations.

5.6 INTEL® SSE2 INSTRUCTIONS

Intel SSE2 extensions represent an extension of the SIMD execution model introduced with MMX technology and
the Intel SSE extensions. Intel SSE2 instructions operate on packed double precision floating-point operands and

Vol.1 5-19

INSTRUCTION SET SUMMARY

on packed byte, word, doubleword, and quadword operands located in the XMM registers. For more detail on these
instructions, see Chapter 11, “Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2).”

Intel SSE2 instructions can only be executed on Intel 64 and IA-32 processors that support the Intel SSE2 exten-
sions. Support for these instructions can be detected with the CPUID instruction. See the description of the CPUID
instruction in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A.

These instructions are divided into four subgroups (note that the first subgroup is further divided into subordinate
subgroups):

®* Packed and scalar double precision floating-point instructions.
® Packed single precision floating-point conversion instructions.
® 128-bit SIMD integer instructions.

® Cacheability-control and instruction ordering instructions.

The following sections give an overview of each subgroup.

5.6.1 Intel® SSE2 Packed and Scalar Double Precision Floating-Point Instructions

Intel SSE2 packed and scalar double precision floating-point instructions are divided into the following subordinate
subgroups: data movement, arithmetic, comparison, conversion, logical, and shuffle operations on double preci-
sion floating-point operands. These are introduced in the sections that follow.

5.6.1.1 Intel® SSE2 Data Movement Instructions

Intel SSE2 data movement instructions move double precision floating-point data between XMM registers and
between XMM registers and memory.

MOVAPD Move two aligned packed double precision floating-point values between XMM registers or
between an XMM register and memory.

MOVUPD Move two unaligned packed double precision floating-point values between XMM registers
or between an XMM register and memory.

MOVHPD Move high packed double precision floating-point value to and from the high quadword of
an XMM register and memory.

MOVLPD Move low packed single precision floating-point value to and from the low quadword of an
XMM register and memory.

MOVMSKPD Extract sign mask from two packed double precision floating-point values.

MOVSD Move scalar double precision floating-point value between XMM registers or between an

XMM register and memory.

5.6.1.2 Intel® SSE2 Packed Arithmetic Instructions

The arithmetic instructions perform addition, subtraction, multiply, divide, square root, and maximum/minimum
operations on packed and scalar double precision floating-point operands.

ADDPD Add packed double precision floating-point values.

ADDSD Add scalar double precision floating-point values.

SUBPD Subtract packed double precision floating-point values.

SUBSD Subtract scalar double precision floating-point values.

MULPD Multiply packed double precision floating-point values.

MULSD Multiply scalar double precision floating-point values.

DIVPD Divide packed double precision floating-point values.

DIVSD Divide scalar double precision floating-point values.

SQRTPD Compute packed square roots of packed double precision floating-point values.
SQRTSD Compute scalar square root of scalar double precision floating-point values.

5-20 Vol. 1

INSTRUCTION SET SUMMARY

MAXPD Return maximum packed double precision floating-point values.
MAXSD Return maximum scalar double precision floating-point values.
MINPD Return minimum packed double precision floating-point values.
MINSD Return minimum scalar double precision floating-point values.

5.6.1.3 Intel® SSE2 Logical Instructions

Intel SSE2 logical instructions perform AND, AND NOT, OR, and XOR operations on packed double precision
floating-point values.

ANDPD Perform bitwise logical AND of packed double precision floating-point values.
ANDNPD Perform bitwise logical AND NOT of packed double precision floating-point values.
ORPD Perform bitwise logical OR of packed double precision floating-point values.
XORPD Perform bitwise logical XOR of packed double precision floating-point values.

5.6.1.4 Intel® SSE2 Compare Instructions

Intel SSE2 compare instructions compare packed and scalar double precision floating-point values and return the
results of the comparison either to the destination operand or to the EFLAGS register.

CMPPD Compare packed double precision floating-point values.

CMPSD Compare scalar double precision floating-point values.

COMISD Perform ordered comparison of scalar double precision floating-point values and set flags
in EFLAGS register.

UCOMISD Perform unordered comparison of scalar double precision floating-point values and set

flags in EFLAGS register.

5.6.1.5 Intel® SSE2 Shuffle and Unpack Instructions

Intel SSE2 shuffle and unpack instructions shuffle or interleave double precision floating-point values in packed
double precision floating-point operands.

SHUFPD Shuffles values in packed double precision floating-point operands.

UNPCKHPD Unpacks and interleaves the high values from two packed double precision floating-point
operands.

UNPCKLPD Unpacks and interleaves the low values from two packed double precision floating-point
operands.

5.6.1.6 Intel® SSE2 Conversion Instructions

Intel SSE2 conversion instructions convert packed and individual doubleword integers into packed and scalar
double precision floating-point values and vice versa. They also convert between packed and scalar single precision
and double precision floating-point values.

CVTPD2PI Convert packed double precision floating-point values to packed doubleword integers.

CVTTPD2PI Convert with truncation packed double precision floating-point values to packed double-
word integers.

CVTPI2PD Convert packed doubleword integers to packed double precision floating-point values.

CVTPD2DQ Convert packed double precision floating-point values to packed doubleword integers.

CVTTPD2DQ Convert with truncation packed double precision floating-point values to packed double-
word integers.

CVTDQ2PD Convert packed doubleword integers to packed double precision floating-point values.

CVTPS2PD Convert packed single precision floating-point values to packed double precision floating-
point values.

Vol.1 5-21

INSTRUCTION SET SUMMARY

CVTPD2PS Convert packed double precision floating-point values to packed single precision floating-
point values.

CVTSS2SD Convert scalar single precision floating-point values to scalar double precision floating-
point values.

CVTSD2SS Convert scalar double precision floating-point values to scalar single precision floating-
point values.

CVTSD2SI Convert scalar double precision floating-point values to a doubleword integer.

CVTTSD2SI Convert with truncation scalar double precision floating-point values to scalar doubleword
integers.

CVTSI2SD Convert doubleword integer to scalar double precision floating-point value.

5.6.2 Intel® SSE2 Packed Single Precision Floating-Point Instructions

Intel SSE2 packed single precision floating-point instructions perform conversion operations on single precision
floating-point and integer operands. These instructions represent enhancements to the Intel SSE single precision
floating-point instructions.

CVTDQ2PS Convert packed doubleword integers to packed single precision floating-point values.

CVTPS2DQ Convert packed single precision floating-point values to packed doubleword integers.

CVTTPS2DQ Convert with truncation packed single precision floating-point values to packed doubleword
integers.

5.6.3 Intel® SSE2 128-Bit SIMD Integer Instructions

Intel SSE2 SIMD integer instructions perform additional operations on packed words, doublewords, and quadwords
contained in XMM and MMX registers.

MOVDQA Move aligned double quadword.

MOVDQU Move unaligned double quadword.

MOVQ2DQ Move quadword integer from MMX to XMM registers.
MOVDQ2Q Move quadword integer from XMM to MMX registers.
PMULUDQ Multiply packed unsigned doubleword integers.
PADDQ Add packed quadword integers.

PSUBQ Subtract packed quadword integers.

PSHUFLW Shuffle packed low words.

PSHUFHW Shuffle packed high words.

PSHUFD Shuffle packed doublewords.

PSLLDQ Shift double quadword left logical.

PSRLDQ Shift double quadword right logical.

PUNPCKHQDQ Unpack high quadwords.

PUNPCKLQDQ Unpack low quadwords.

5.64 Intel® SSE2 Cacheability Control and Ordering Instructions

Intel SSE2 cacheability control instructions provide additional operations for caching of non-temporal data when
storing data from XMM registers to memory. LFENCE and MFENCE provide additional control of instruction ordering
on store operations.

CLFLUSH See Section 5.1.13.

LFENCE Serializes load operations.

MFENCE Serializes load and store operations.

PAUSE Improves the performance of “spin-wait loops”.

5-22 Vol. 1

INSTRUCTION SET SUMMARY

MASKMOVDQU Non-temporal store of selected bytes from an XMM register into memory.

MOVNTPD Non-temporal store of two packed double precision floating-point values from an XMM
register into memory.

MOVNTDQ Non-temporal store of double quadword from an XMM register into memory.

MOVNTI Non-temporal store of a doubleword from a general-purpose register into memory.

5.7 INTEL® SSE3 INSTRUCTIONS

The Intel SSE3 extensions offers 13 instructions that accelerate performance of Streaming SIMD Extensions tech-
nology, Streaming SIMD Extensions 2 technology, and x87-FP math capabilities. These instructions can be grouped
into the following categories:

® One x87 FPU instruction used in integer conversion.

® One SIMD integer instruction that addresses unaligned data loads.
®* Two SIMD floating-point packed ADD/SUB instructions.

® Four SIMD floating-point horizontal ADD/SUB instructions.

® Three SIMD floating-point LOAD/MOVE/DUPLICATE instructions.

®* Two thread synchronization instructions.

Intel SSE3 instructions can only be executed on Intel 64 and IA-32 processors that support Intel SSE3 extensions.
Support for these instructions can be detected with the CPUID instruction. See the description of the CPUID
instruction in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A.

The sections that follow describe each subgroup.

5.7.1 Intel® SSE3 x87-FP Integer Conversion Instruction

FISTTP Behaves like the FISTP instruction but uses truncation, irrespective of the rounding mode
specified in the floating-point control word (FCW).

5.7.2 Intel® SSE3 Specialized 128-Bit Unaligned Data Load Instruction
LDDQU Special 128-bit unaligned load designed to avoid cache line splits.

5.7.3 Intel® SSE3 SIMD Floating-Point Packed ADD/SUB Instructions

ADDSUBPS Performs single precision addition on the second and fourth pairs of 32-bit data elements
within the operands; single precision subtraction on the first and third pairs.
ADDSUBPD Performs double precision addition on the second pair of quadwords, and double precision

subtraction on the first pair.

5.7.4 Intel® SSE3 SIMD Floating-Point Horizontal ADD/SUB Instructions

HADDPS Performs a single precision addition on contiguous data elements. The first data element of
the result is obtained by adding the first and second elements of the first operand; the
second element by adding the third and fourth elements of the first operand; the third by
adding the first and second elements of the second operand; and the fourth by adding the
third and fourth elements of the second operand.

HSUBPS Performs a single precision subtraction on contiguous data elements. The first data
element of the result is obtained by subtracting the second element of the first operand
from the first element of the first operand; the second element by subtracting the fourth
element of the first operand from the third element of the first operand; the third by

Vol.1 5-23

INSTRUCTION SET SUMMARY

subtracting the second element of the second operand from the first element of the second
operand; and the fourth by subtracting the fourth element of the second operand from the
third element of the second operand.

HADDPD Performs a double precision addition on contiguous data elements. The first data element
of the result is obtained by adding the first and second elements of the first operand; the
second element by adding the first and second elements of the second operand.

HSUBPD Performs a double precision subtraction on contiguous data elements. The first data
element of the result is obtained by subtracting the second element of the first operand
from the first element of the first operand; the second element by subtracting the second
element of the second operand from the first element of the second operand.

5.7.5 Intel® SSE3 SIMD Floating-Point LOAD/MOVE/DUPLICATE Instructions

MOVSHDUP Loads/moves 128 bits; duplicating the second and fourth 32-bit data elements.

MOVSLDUP Loads/moves 128 bits; duplicating the first and third 32-bit data elements.

MOVDDUP Loads/moves 64 bits (bits[63:0] if the source is a register) and returns the same 64 bits in
both the lower and upper halves of the 128-bit result register; duplicates the 64 bits from
the source.

5.7.6 Intel® SSE3 Agent Synchronization Instructions
MONITOR Sets up an address range used to monitor write-back stores.

MWAIT Enables a logical processor to enter into an optimized state while waiting for a write-back
store to the address range set up by the MONITOR instruction.

5.8 SUPPLEMENTAL STREAMING SIMD EXTENSIONS 3 (SSSE3) INSTRUCTIONS

SSSE3 provide 32 instructions (represented by 14 mnemonics) to accelerate computations on packed integers.
These include:

®* Twelve instructions that perform horizontal addition or subtraction operations.

® Six instructions that evaluate absolute values.

® Two instructions that perform multiply and add operations and speed up the evaluation of dot products.

®* Two instructions that accelerate packed-integer multiply operations and produce integer values with scaling.
®* Two instructions that perform a byte-wise, in-place shuffle according to the second shuffle control operand.

® Six instructions that negate packed integers in the destination operand if the signs of the corresponding
element in the source operand is less than zero.

®* Two instructions that align data from the composite of two operands.

SSSE3 instructions can only be executed on Intel 64 and IA-32 processors that support SSSE3 extensions. Support
for these instructions can be detected with the CPUID instruction. See the description of the CPUID instruction in
Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A.

The sections that follow describe each subgroup.

5.8.1 Horizontal Addition/Subtraction

PHADDW Adds two adjacent, signed 16-bit integers horizontally from the source and destination
operands and packs the signed 16-bit results to the destination operand.
PHADDSW Adds two adjacent, signed 16-bit integers horizontally from the source and destination

operands and packs the signed, saturated 16-bit results to the destination operand.

5-24 Vol. 1

INSTRUCTION SET SUMMARY

PHADDD Adds two adjacent, signed 32-bit integers horizontally from the source and destination
operands and packs the signed 32-bit results to the destination operand.
PHSUBW Performs horizontal subtraction on each adjacent pair of 16-bit signed integers by

subtracting the most significant word from the least significant word of each pair in the
source and destination operands. The signed 16-bit results are packed and written to the
destination operand.

PHSUBSW Performs horizontal subtraction on each adjacent pair of 16-bit signed integers by
subtracting the most significant word from the least significant word of each pair in the
source and destination operands. The signed, saturated 16-bit results are packed and
written to the destination operand.

PHSUBD Performs horizontal subtraction on each adjacent pair of 32-bit signed integers by
subtracting the most significant doubleword from the least significant double word of each
pair in the source and destination operands. The signed 32-bit results are packed and
written to the destination operand.

5.8.2 Packed Absolute Values

PABSB Computes the absolute value of each signed byte data element.
PABSW Computes the absolute value of each signhed 16-bit data element.
PABSD Computes the absolute value of each signed 32-bit data element.

5.8.3 Multiply and Add Packed Signed and Unsigned Bytes

PMADDUBSW Multiplies each unsigned byte value with the corresponding signed byte value to produce
an intermediate, 16-bit signed integer. Each adjacent pair of 16-bit signed values are
added horizontally. The signed, saturated 16-bit results are packed to the destination
operand.

5.8.4 Packed Multiply High with Round and Scale

PMULHRSW Multiplies vertically each signed 16-bit integer from the destination operand with the
corresponding signed 16-bit integer of the source operand, producing intermediate, signed
32-bit integers. Each intermediate 32-bit integer is truncated to the 18 most significant
bits. Rounding is always performed by adding 1 to the least significant bit of the 18-bit
intermediate result. The final result is obtained by selecting the 16 bits immediately to the
right of the most significant bit of each 18-bit intermediate result and packed to the desti-
nation operand.

5.8.5 Packed Shuffle Bytes

PSHUFB Permutes each byte in place, according to a shuffle control mask. The least significant
three or four bits of each shuffle control byte of the control mask form the shuffle index.
The shuffle mask is unaffected. If the most significant bit (bit 7) of a shuffle control byte is
set, the constant zero is written in the result byte.

5.8.6 Packed Sign

PSIGNB/W/D Negates each signed integer element of the destination operand if the sign of the corre-
sponding data element in the source operand is less than zero.

Vol.1 5-25

INSTRUCTION SET SUMMARY

5.8.7 Packed Align Right

PALIGNR Source operand is appended after the destination operand forming an intermediate value
of twice the width of an operand. The result is extracted from the intermediate value into
the destination operand by selecting the 128-bit or 64-bit value that are right-aligned to
the byte offset specified by the immediate value.

5.9 INTEL® SSE4 INSTRUCTIONS

Intel Streaming SIMD Extensions 4 (Intel SSE4) introduces 54 new instructions. 47 of the Intel SSE4 instructions
are referred to as Intel SSE4.1 in this document, and 7 new Intel SSE4 instructions are referred to as Intel SSE4.2.

Intel SSE4.1 is targeted to improve the performance of media, imaging, and 3D workloads. Intel SSE4.1 adds
instructions that improve compiler vectorization and significantly increase support for packed dword computation.
The technology also provides a hint that can improve memory throughput when reading from uncacheable WC
memory type.

The 47 Intel SSE4.1 instructions include:

® Two instructions perform packed dword multiplies.

®* Two instructions perform floating-point dot products with input/output selects.

® One instruction performs a load with a streaming hint.

® Six instructions simplify packed blending.

®* Eight instructions expand support for packed integer MIN/MAX.

®* Four instructions support floating-point round with selectable rounding mode and precision exception override.
® Seven instructions improve data insertion and extractions from XMM registers

* Twelve instructions improve packed integer format conversions (sign and zero extensions).
® One instruction improves SAD (sum absolute difference) generation for small block sizes.

® One instruction aids horizontal searching operations.

® One instruction improves masked comparisons.

® One instruction adds gword packed equality comparisons.

® One instruction adds dword packing with unsigned saturation.

The Intel SSE4.2 instructions operating on XMM registers include:

® String and text processing that can take advantage of single-instruction multiple-data programming
techniques.

®* A SIMD integer instruction that enhances the capability of the 128-bit integer SIMD capability in SSE4.1.

5.10 INTEL® SSE4.1 INSTRUCTIONS

Intel SSE4.1 instructions can use an XMM register as a source or destination. Programming Intel SSE4.1 is similar
to programming 128-bit Integer SIMD and floating-point SIMD instructions in Intel SSE/SSE2/SSE3/SSSE3. Intel
SSE4.1 does not provide any 64-bit integer SIMD instructions operating on MMX registers. The sections that follow
describe each subgroup.

5.10.1 Dword Multiply Instructions
PMULLD Returns four lower 32-bits of the 64-bit results of signed 32-bit integer multiplies.
PMULDQ Returns two 64-bit signed result of signed 32-bit integer multiplies.

5-26 Vol. 1

INSTRUCTION SET SUMMARY

5.10.2 Floating-Point Dot Product Instructions
DPPD Perform double precision dot product for up to 2 elements and broadcast.
DPPS Perform single precision dot products for up to 4 elements and broadcast.

5.10.3 Streaming Load Hint Instruction

MOVNTDQA Provides a non-temporal hint that can cause adjacent 16-byte items within an aligned 64-
byte region (a streaming line) to be fetched and held in a small set of temporary buffers
(“streaming load buffers”). Subsequent streaming loads to other aligned 16-byte items in
the same streaming line may be supplied from the streaming load buffer and can improve
throughput.

5.10.4 Packed Blending Instructions

BLENDPD Conditionally copies specified double precision floating-point data elements in the source
operand to the corresponding data elements in the destination, using an immediate byte
control.

BLENDPS Conditionally copies specified single precision floating-point data elements in the source
operand to the corresponding data elements in the destination, using an immediate byte
control.

BLENDVPD Conditionally copies specified double precision floating-point data elements in the source
operand to the corresponding data elements in the destination, using an implied mask.

BLENDVPS Conditionally copies specified single precision floating-point data elements in the source
operand to the corresponding data elements in the destination, using an implied mask.

PBLENDVB Conditionally copies specified byte elements in the source operand to the corresponding
elements in the destination, using an implied mask.

PBLENDW Conditionally copies specified word elements in the source operand to the corresponding

elements in the destination, using an immediate byte control.

5.10.5 Packed Integer MIN/MAX Instructions

PMINUW Compare packed unsigned word integers.
PMINUD Compare packed unsigned dword integers.
PMINSB Compare packed signed byte integers.
PMINSD Compare packed signed dword integers.
PMAXUW Compare packed unsigned word integers.
PMAXUD Compare packed unsigned dword integers.
PMAXSB Compare packed signed byte integers.
PMAXSD Compare packed signed dword integers.

5.10.6 Floating-Point Round Instructions with Selectable Rounding Mode

ROUNDPS Round packed single precision floating-point values into integer values and return rounded
floating-point values.

ROUNDPD Round packed double precision floating-point values into integer values and return
rounded floating-point values.

ROUNDSS Round the low packed single precision floating-point value into an integer value and return
a rounded floating-point value.

ROUNDSD Round the low packed double precision floating-point value into an integer value and

return a rounded floating-point value.

Vol. 1 5-27

INSTRUCTION SET SUMMARY

5.10.7 Insertion and Extractions from XMM Registers

EXTRACTPS

INSERTPS

PINSRB
PINSRD
PINSRQ
PEXTRB

PEXTRW
PEXTRD

PEXTRQ

5.10.8
PMOVSXBW

PMOVZXBW
PMOVSXBD
PMOVZXBD
PMOVSXWD
PMOVZXWD
PMOVSXBQ
PMOVZXBQ
PMOVSXWQ
PMOVZXWQ
PMOVSXDQ

PMOVZXDQ

5.10.9
MPSADBW

5-28 Vol. 1

Extracts a single precision floating-point value from a specified offset in an XMM register
and stores the result to memory or a general-purpose register.

Inserts a single precision floating-point value from either a 32-bit memory location or
selected from a specified offset in an XMM register to a specified offset in the destination
XMM register. In addition, INSERTPS allows zeroing out selected data elements in the desti-
nation, using a mask.

Insert a byte value from a register or memory into an XMM register.
Insert a dword value from 32-bit register or memory into an XMM register.
Insert a qword value from 64-bit register or memory into an XMM register.

Extract a byte from an XMM register and insert the value into a general-purpose register or
memory.

Extract a word from an XMM register and insert the value into a general-purpose register
or memory.

Extract a dword from an XMM register and insert the value into a general-purpose register
or memory.
Extract a gword from an XMM register and insert the value into a general-purpose register
or memory.

Packed Integer Format Conversions

Sign extend the lower 8-bit integer of each packed word element into packed signed word
integers.

Zero extend the lower 8-bit integer of each packed word element into packed signed word
integers.

Sign extend the lower 8-bit integer of each packed dword element into packed signed
dword integers.

Zero extend the lower 8-bit integer of each packed dword element into packed signed
dword integers.

Sign extend the lower 16-bit integer of each packed dword element into packed signed
dword integers.

Zero extend the lower 16-bit integer of each packed dword element into packed signed
dword integers.

Sign extend the lower 8-bit integer of each packed qword element into packed signed
gword integers.

Zero extend the lower 8-bit integer of each packed qword element into packed signed
gword integers.

Sign extend the lower 16-bit integer of each packed qword element into packed signed
gword integers.

Zero extend the lower 16-bit integer of each packed qword element into packed signed
gword integers.

Sign extend the lower 32-bit integer of each packed qword element into packed signed
gword integers.

Zero extend the lower 32-bit integer of each packed qword element into packed signed
gword integers.

Improved Sums of Absolute Differences (SAD) for 4-Byte Blocks

Performs eight 4-byte wide Sum of Absolute Differences operations to produce eight word
integers.

INSTRUCTION SET SUMMARY

5.10.10 Horizontal Search

PHMINPOSUW Finds the value and location of the minimum unsigned word from one of 8 horizontally
packed unsigned words. The resulting value and location (offset within the source) are
packed into the low dword of the destination XMM register.

5.10.11 Packed Test

PTEST Performs a logical AND between the destination with this mask and sets the ZF flag if the
result is zero. The CF flag (zero for TEST) is set if the inverted mask AND’d with the desti-
nation is all zeroes.

5.10.12 Packed Qword Equality Comparisons
PCMPEQQ 128-bit packed qword equality test.

5.10.13 Dword Packing With Unsigned Saturation
PACKUSDW Packs dword to word with unsigned saturation.

5.11 INTEL® SSE4.2 INSTRUCTION SET

Five of the Intel SSE4.2 instructions operate on XMM register as a source or destination. These include four
text/string processing instructions and one packed quadword compare SIMD instruction. Programming these five
Intel SSE4.2 instructions is similar to programming 128-bit Integer SIMD in Intel SSE2/SSSE3. Intel SSE4.2 does
not provide any 64-bit integer SIMD instructions.

CRC32 operates on general-purpose registers and is summarized in Section 5.1.6. The sections that follow summa-
rize each subgroup.

5.11.1 String and Text Processing Instructions

PCMPESTRI Packed compare explicit-length strings, return index in ECX/RCX.
PCMPESTRM Packed compare explicit-length strings, return mask in XMMO.
PCMPISTRI Packed compare implicit-length strings, return index in ECX/RCX.
PCMPISTRM Packed compare implicit-length strings, return mask in XMMO.

5.11.2 Packed Comparison SIMD Integer Instruction
PCMPGTQ Performs logical compare of greater-than on packed integer quadwords.

5.12 INTEL® AES-NI AND PCLMULQDQ

Six Intel® AES-NI instructions operate on XMM registers to provide accelerated primitives for block encryp-
tion/decryption using Advanced Encryption Standard (FIPS-197). The PCLMULQDQ instruction performs carry-less
multiplication for two binary numbers up to 64-bit wide.

AESDEC Perform an AES decryption round using an 128-bit state and a round key.
AESDECLAST Perform the last AES decryption round using an 128-bit state and a round key.
AESENC Perform an AES encryption round using an 128-bit state and a round key.
AESENCLAST Perform the last AES encryption round using an 128-bit state and a round key.
AESIMC Perform an inverse mix column transformation primitive.

Vol.1 5-29

INSTRUCTION SET SUMMARY

AESKEYGENASSIST Assist the creation of round keys with a key expansion schedule.
PCLMULQDQ Perform carryless multiplication of two 64-bit numbers.

5.13 INTEL® ADVANCED VECTOR EXTENSIONS (INTEL® AVX)

Intel® Advanced Vector Extensions (AVX) promote legacy 128-bit SIMD instruction sets that operate on the XMM
register set to use a “vector extension” (VEX) prefix and operates on 256-bit vector registers (YMM). Almost all
prior generations of 128-bit SIMD instructions that operate on XMM (but not on MMX registers) are promoted to
support three-operand syntax with VEX-128 encoding.

VEX-prefix encoded Intel AVX instructions support 256-bit and 128-bit floating-point operations by extending the
legacy 128-bit SIMD floating-point instructions to support three-operand syntax.

Additional functional enhancements are also provided with VEX-encoded Intel AVX instructions.
The list of Intel AVX instructions is included in the following tables:

®* Table 14-2 lists 256-bit and 128-bit floating-point arithmetic instructions promoted from legacy 128-bit SIMD
instruction sets.

®* Table 14-3 lists 256-bit and 128-bit data movement and processing instructions promoted from legacy 128-bit
SIMD instruction sets.

®* Table 14-4 lists functional enhancements of 256-bit Intel AVX instructions not available from legacy 128-bit
SIMD instruction sets.

®* Table 14-5 lists 128-bit integer and floating-point instructions promoted from legacy 128-bit SIMD instruction
sets.

®* Table 14-6 lists functional enhancements of 128-bit Intel AVX instructions not available from legacy 128-bit
SIMD instruction sets.

®* Table 14-7 lists 128-bit data movement and processing instructions promoted from legacy instruction sets.

5.14 16-BIT FLOATING-POINT CONVERSION

Conversions between single precision floating-point (32-bit) and half precision floating-point (16-bit) data are
provided by the VCVTPS2PH and VCVTPH2PS instructions, introduced beginning with the third generation of Intel
Core processors based on Ivy Bridge microarchitecture:

VCVTPH2PS Convert eight/four data elements containing 16-bit floating-point data into eight/four
single precision floating-point data.
VCVTPS2PH Convert eight/four data elements containing single precision floating-point data into

eight/four 16-bit floating-point data.

Starting with the 4th generation Intel Xeon Scalable Processor Family based on Sapphire Rapids microarchitecture,
Intel® AVX-512 instruction set architecture for FP16 was added, supporting a wide range of general-purpose
numeric operations for 16-bit half precision floating-point values (binary16 in IEEE Standard 754-2019 for
Floating-Point Arithmetic, aka half precision or FP16). Section 5.19 includes a list of these instructions.

5.15 FUSED-MULTIPLY-ADD (FMA)

FMA extensions enhances Intel AVX with high-throughput, arithmetic capabilities covering fused multiply-add,
fused multiply-subtract, fused multiply add/subtract interleave, signed-reversed multiply on fused multiply-add
and multiply-subtract. FMA extensions provide 36 256-bit floating-point instructions to perform computation on
256-bit vectors and additional 128-bit and scalar FMA instructions.

® Table 14-15 lists FMA instruction sets.

5-30 Vol. 1

INSTRUCTION SET SUMMARY

5.16 INTEL® ADVANCED VECTOR EXTENSIONS 2 (INTEL® AVX2)

Intel® AVX2 extends Intel AVX by promoting most of the 128-bit SIMD integer instructions with 256-bit numeric
processing capabilities. Intel AVX2 instructions follow the same programming model as AVX instructions.

In addition, AVX2 provide enhanced functionalities for broadcast/permute operations on data elements, vector
shift instructions with variable-shift count per data element, and instructions to fetch non-contiguous data
elements from memory.

®* Table 14-18 lists promoted vector integer instructions in AVX2.
®* Table 14-19 lists new instructions in AVX2 that complements AVX.

5.17 INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX)

XABORT Abort an RTM transaction execution.

XACQUIRE Prefix hint to the beginning of an HLE transaction region.
XRELEASE Prefix hint to the end of an HLE transaction region.
XBEGIN Transaction begin of an RTM transaction region.

XEND Transaction end of an RTM transaction region.

XTEST Test if executing in a transactional region.

XRESLDTRK Resume tracking load addresses.

XSUSLDTRK Suspend tracking load addresses.

5.18 INTEL® SHA EXTENSIONS

Intel® SHA extensions provide a set of instructions that target the acceleration of the Secure Hash Algorithm
(SHA), specifically the SHA-1 and SHA-256 variants.

SHA1MSG1 Perform an intermediate calculation for the next four SHA1 message dwords from the
previous message dwords.

SHA1MSG2 Perform the final calculation for the next four SHA1 message dwords from the intermediate
message dwords.

SHA1NEXTE Calculate SHA1 state E after four rounds.

SHA1RNDS4 Perform four rounds of SHA1 operations.

SHA256MSG1 Perform an intermediate calculation for the next four SHA256 message dwords.

SHA256MSG2 Perform the final calculation for the next four SHA256 message dwords.

SHA256RNDS2 Perform two rounds of SHA256 operations.

5.19 INTEL® ADVANCED VECTOR EXTENSIONS 512 (INTEL® AVX-512)

The Intel® AVX-512 family comprises a collection of 512-bit SIMD instruction sets to accelerate a diverse range of
applications. Intel AVX-512 instructions provide a wide range of functionality that support programming in 512-bit,
256 and 128-bit vector register, plus support for opmask registers and instructions operating on opmask registers.

The collection of 512-bit SIMD instruction sets in Intel AVX-512 include new functionality not available in Intel AVX
and Intel AVX2, and promoted instructions similar to equivalent ones in Intel AVX/Intel AVX2 but with enhance-
ment provided by opmask registers not available to VEX-encoded Intel AVX/Intel AVX2. Some instruction
mnemonics in Intel AVX/Intel AVX2 that are promoted into Intel AVX-512 can be replaced by new instruction
mnemonics that are available only with EVEX encoding, e.g., VBROADCASTF128 into VBROADCASTF32X4. Details
of EVEX instruction encoding are discussed in Section 2.7, “Intel® AVX-512 Encoding,” of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A. Starting with the 4th generation Intel Xeon Scalable
Processor Family, an Intel AVX-512 instruction set architecture for FP16 was added, supporting a wide range of

Vol. 1 5-31

INSTRUCTION SET SUMMARY

general-purpose numeric operations for 16-bit half precision floating-point values, which complements the existing
32-bit and 64-bit floating-point instructions already available in the Intel Xeon processor-based products.

512-bit instruction mnemonics in AVX-512F instructions that are not Intel AVX or AVX2 promotions include:

VALIGND/Q
VBLENDMPD/PS
VCOMPRESSPD/PS
VCVT(T)PD2UDQ
VCVT(T)PS2UDQ
VCVTQQ2PD/PS
VCVT(T)SD2USI
VCVT(T)SS2USI
VCVTUDQ2PD/PS
VCVTUSI2USD/S
VEXPANDPD/PS

VEXTRACTF32X4/64X4
VEXTRACTI32X4/64X4

VFIXUPIMMPD/PS
VFIXUPIMMSD/SS
VGETEXPPD/PS
VGETEXPSD/SS
VGETMANTPD/PS
VGETMANTSD/SS

VINSERTF32X4/64X4

VMOVDQA32/64
VMOVDQU32/64
VPBLENDMD/Q
VPBROADCASTD/Q
VPCMPD/UD
VPCMPQ/UQ
VPCOMPRESSQ/D
VPERMI2D/Q
VPERMI2PD/PS
VPERMT2D/Q
VPERMT2PD/PS
VPEXPANDD/Q
VPMAXSQ
VPMAXUD/UQ
VPMINSQ
VPMINUD/UQ
VPMOV(S|US)QB

VPMOV(S|US)QW
VPMOV(S|US)QD

VPMOV(S|US)DB

5-32 Vol. 1

Perform dword/qword alignment of two concatenated source vectors.

Replace the VBLENDVPD/PS instructions (using opmask as select control).
Compress packed DP or SP elements of a vector.

Convert packed DP FP elements of a vector to packed unsigned 32-bit integers.
Convert packed SP FP elements of a vector to packed unsigned 32-bit integers.
Convert packed signed 64-bit integers to packed DP/SP FP elements.

Convert the low DP FP element of a vector to an unsigned integer.

Convert the low SP FP element of a vector to an unsigned integer.

Convert packed unsigned 32-bit integers to packed DP/SP FP elements.

Convert an unsigned integer to the low DP/SP FP element and merge to a vector.
Expand packed DP or SP elements of a vector.

Extract a vector from a full-length vector with 32/64-bit granular update.

Extract a vector from a full-length vector with 32/64-bit granular update.
Perform fix-up to special values in DP/SP FP vectors.

Perform fix-up to special values of the low DP/SP FP element.

Convert the exponent of DP/SP FP elements of a vector into FP values.

Convert the exponent of the low DP/SP FP element in a vector into FP value.
Convert the mantissa of DP/SP FP elements of a vector into FP values.

Convert the mantissa of the low DP/SP FP element of a vector into FP value.
Insert a 128/256-bit vector into a full-length vector with 32/64-bit granular update.
VMOVDQA with 32/64-bit granular conditional update.

VMOVDQU with 32/64-bit granular conditional update.

Blend dword/qword elements using opmask as select control.

Broadcast from general-purpose register to vector register.

Compare packed signed/unsigned dwords using specified primitive.

Compare packed signed/unsigned quadwords using specified primitive.
Compress packed 64/32-bit elements of a vector.

Full permute of two tables of dword/qword elements overwriting the index vector.
Full permute of two tables of DP/SP elements overwriting the index vector.

Full permute of two tables of dword/qword elements overwriting one source table.
Full permute of two tables of DP/SP elements overwriting one source table.
Expand packed dword/qword elements of a vector.

Compute maximum of packed signed 64-bit integer elements.

Compute maximum of packed unsigned 32/64-bit integer elements.

Compute minimum of packed signed 64-bit integer elements.

Compute minimum of packed unsigned 32/64-bit integer elements.

Down convert qword elements in a vector to byte elements using truncation (saturation |
unsigned saturation).

Down convert qword elements in a vector to word elements using truncation (saturation |
unsigned saturation).

Down convert gword elements in a vector to dword elements using truncation (saturation |
unsigned saturation).

Down convert dword elements in a vector to byte elements using truncation (saturation |
unsigned saturation).

VPMOV(S|US)DW

VPROLD/Q
VPROLVD/Q

VPRORD/Q
VPRORRD/Q

VPSCATTERDD/DQ
VPSCATTERQD/QQ
VPSRAQ

VPSRAVQ
VPTESTNMD/Q

VPTERLOGD/Q

VPTESTMD/Q
VRCP14PD/PS
VRCP14SD/SS
VRNDSCALEPD/PS
VRNDSCALESD/SS
VRSQRT14PD/PS
VRSQRT14SD/SS

VSCALEPD/PS
VSCALESD/SS

VSCATTERDD/DQ
VSCATTERQD/QQ
VSHUFF32X4/64X2
VSHUFI32X4/64X2

INSTRUCTION SET SUMMARY

Down convert dword elements in a vector to word elements using truncation (saturation |
unsigned saturation).

Rotate dword/qword element left by a constant shift count with conditional update.

Rotate dword/qword element left by shift counts specified in a vector with conditional
update.

Rotate dword/qword element right by a constant shift count with conditional update.

Rotate dword/qword element right by shift counts specified in a vector with conditional
update.

Scatter dword/qword elements in a vector to memory using dword indices.
Scatter dword/qword elements in a vector to memory using qword indices.
Shift gqwords right by a constant shift count and shifting in sign bits.

Shift qwords right by shift counts in a vector and shifting in sign bits.

Perform bitwise NAND of dword/gqword elements of two vectors and write results to
opmask.

Perform bitwise ternary logic operation of three vectors with 32/64 bit granular conditional
update.

Perform bitwise AND of dword/qword elements of two vectors and write results to opmask.
Compute approximate reciprocals of packed DP/SP FP elements of a vector.

Compute the approximate reciprocal of the low DP/SP FP element of a vector.

Round packed DP/SP FP elements of a vector to specified humber of fraction bits.

Round the low DP/SP FP element of a vector to specified number of fraction bits.
Compute approximate reciprocals of square roots of packed DP/SP FP elements of a vector.

Compute the approximate reciprocal of square root of the low DP/SP FP element of a
vector.

Multiply packed DP/SP FP elements of a vector by powers of two with exponents specified
in a second vector.

Multiply the low DP/SP FP element of a vector by powers of two with exponent specified in
the corresponding element of a second vector.

Scatter SP/DP FP elements in a vector to memory using dword indices.
Scatter SP/DP FP elements in a vector to memory using qword indices.
Shuffle 128-bit lanes of a vector with 32/64 bit granular conditional update.
Shuffle 128-bit lanes of a vector with 32/64 bit granular conditional update.

512-bit instruction mnemonics in AVX-512DQ that are not Intel AVX or AVX2 promotions include:

VCVT(T)PD2QQ
VCVT(T)PD2UQQ
VCVT(T)PS2QQ
VCVT(T)PS2UQQ
VCVTUQQ2PD/PS
VEXTRACTF64X2
VEXTRACTI64X2
VFPCLASSPD/PS
VFPCLASSSD/SS
VINSERTF64X2
VINSERTI64X2
VPMOVM2D/Q
VPMOVB2D/Q2M

Convert packed DP FP elements of a vector to packed signed 64-bit integers.
Convert packed DP FP elements of a vector to packed unsigned 64-bit integers.
Convert packed SP FP elements of a vector to packed signed 64-bit integers.
Convert packed SP FP elements of a vector to packed unsigned 64-bit integers.
Convert packed unsigned 64-bit integers to packed DP/SP FP elements.
Extract a vector from a full-length vector with 64-bit granular update.

Extract a vector from a full-length vector with 64-bit granular update.

Test packed DP/SP FP elements in a vector by numeric/special-value category.
Test the low DP/SP FP element by numeric/special-value category.

Insert a 128-bit vector into a full-length vector with 64-bit granular update.
Insert a 128-bit vector into a full-length vector with 64-bit granular update.
Convert opmask register to vector register in 32/64-bit granularity.

Convert a vector register in 32/64-bit granularity to an opmask register.

Vol.1 5-33

INSTRUCTION SET SUMMARY

VPMULLQ
VRANGEPD/PS
VRANGESD/SS
VREDUCEPD/PS

VREDUCESD/SS

Multiply packed signed 64-bit integer elements of two vectors and store low 64-bit signed
result.

Perform RANGE operation on each pair of DP/SP FP elements of two vectors using specified
range primitive in imm8.

Perform RANGE operation on the pair of low DP/SP FP element of two vectors using speci-
fied range primitive in imms8.

Perform Reduction operation on packed DP/SP FP elements of a vector using specified
reduction primitive in imm8.

Perform Reduction operation on the low DP/SP FP element of a vector using specified
reduction primitive in immS8.

512-bit instruction mnemonics in AVX-512BW that are not Intel AVX or AVX2 promotions include:

VDBPSADBW
VMOVDQU8/16
VPBLENDMB
VPBLENDMW

VPBROADCASTB/W

VPCMPB/UB
VPCMPW/UW
VPERMW
VPERMI2B/W
VPMOVM2B/W
VPMOVB2M/W2M
VPMOV(S|US)WB

VPSLLVW
VPSRAVW
VPSRLVW
VPTESTNMB/W
VPTESTMB/W

Double block packed Sum-Absolute-Differences on unsigned bytes.
VMOVDQU with 8/16-bit granular conditional update.

Replaces the VPBLENDVB instruction (using opmask as select control).
Blend word elements using opmask as select control.

Broadcast from general-purpose register to vector register.

Compare packed signed/unsigned bytes using specified primitive.
Compare packed signed/unsigned words using specified primitive.
Permute packed word elements.

Full permute from two tables of byte/word elements overwriting the index vector.
Convert opmask register to vector register in 8/16-bit granularity.
Convert a vector register in 8/16-bit granularity to an opmask register.

Down convert word elements in a vector to byte elements using truncation (saturation |
unsigned saturation).

Shift word elements in a vector left by shift counts in a vector.

Shift words right by shift counts in a vector and shifting in sign bits.

Shift word elements in a vector right by shift counts in a vector.

Perform bitwise NAND of byte/word elements of two vectors and write results to opmask.
Perform bitwise AND of byte/word elements of two vectors and write results to opmask.

512-bit instruction mnemonics in AVX-512CD that are not Intel AVX or AVX2 promotions include:

VPBROADCASTM
VPCONFLICTD/Q
VPLZCNTD/Q

Broadcast from opmask register to vector register.
Detect conflicts within a vector of packed 32/64-bit integers.
Count the number of leading zero bits of packed dword/qword elements.

Opmask instructions include:

KADDB/W/D/Q
KANDB/W/D/Q
KANDNB/W/D/Q
KMOVB/W/D/Q
KNOTB/W/D/Q
KORB/W/D/Q
KORTESTB/W/D/Q
KSHIFTLB/W/D/Q
KSHIFTRB/W/D/Q
KTESTB/W/D/Q

5-34 Vol. 1

Add two 8/16/32/64-bit opmasks.

Logical AND two 8/16/32/64-bit opmasks.

Logical AND NOT two 8/16/32/64-bit opmasks.

Move from or move to opmask register of 8/16/32/64-bit data.

Bitwise NOT of two 8/16/32/64-bit opmasks.

Logical OR two 8/16/32/64-bit opmasks.

Update EFLAGS according to the result of bitwise OR of two 8/16/32/64-bit opmasks.
Shift left 8/16/32/64-bit opmask by specified count.

Shift right 8/16/32/64-bit opmask by specified count.

Update EFLAGS according to the result of bitwise TEST of two 8/16/32/64-bit opmasks.

INSTRUCTION SET SUMMARY

KUNPCKBW/WD/DQ Unpack and interleave two 8/16/32-bit opmasks into 16/32/64-bit mask.
KXNORB/W/D/Q Bitwise logical XNOR of two 8/16/32/64-bit opmasks.
KXORB/W/D/Q Logical XOR of two 8/16/32/64-bit opmasks.

512-bit instruction mnemonics in AVX-512ER include:

VEXP2PD/PS Compute approximate base-2 exponential of packed DP/SP FP elements of a vector.

VEXP2SD/SS Compute approximate base-2 exponential of the low DP/SP FP element of a vector.

VRCP28PD/PS Compute approximate reciprocals to 28 bits of packed DP/SP FP elements of a vector.

VRCP28SD/SS Compute the approximate reciprocal to 28 bits of the low DP/SP FP element of a vector.

VRSQRT28PD/PS Compute approximate reciprocals of square roots to 28 bits of packed DP/SP FP elements
of a vector.

VRSQRT28SD/SS Compute the approximate reciprocal of square root to 28 bits of the low DP/SP FP element
of a vector.

512-bit instruction mnemonics in AVX-512PF include:

VGATHERPFODPD/PS Sparse prefetch of packed DP/SP FP vector with TO hint using dword indices.
VGATHERPFOQPD/PS Sparse prefetch of packed DP/SP FP vector with TO hint using qword indices.
VGATHERPF1DPD/PS Sparse prefetch of packed DP/SP FP vector with T1 hint using dword indices.
VGATHERPF1QPD/PS Sparse prefetch of packed DP/SP FP vector with T1 hint using gqword indices.
VSCATTERPFODPD/PS Sparse prefetch of packed DP/SP FP vector with TO hint to write using dword indices.
VSCATTERPFOQPD/PS Sparse prefetch of packed DP/SP FP vector with TO hint to write using qword indices.
VSCATTERPF1DPD/PS Sparse prefetch of packed DP/SP FP vector with T1 hint to write using dword indices.
VSCATTERPF1QPD/PS Sparse prefetch of packed DP/SP FP vector with T1 hint to write using gqword indices.

512-bit instruction mnemonics in AVX512-FP16 include:

VADDPH/SH Add packed/scalar FP16 values.

VCMPPH/SH Compare packed/scalar FP16 values.

VCOMISH Compare scalar ordered FP16 values and set EFLAGS.

VCVTDQ2PH Convert packed signed doubleword integers to packed FP16 values.
VCVTPD2PH Convert packed double precision FP values to packed FP16 values.
VCVTPH2DQ/QQ Convert packed FP16 values to signed doubleword/quadword integers.
VCVTPH2PD Convert packed FP16 values to FP64 values.

VCVTPH2PS[X] Convert packed FP16 values to single precision floating-point values.
VCVTPH2QQ Convert packed FP16 values to signed quadword integer values.

VCVTPH2UDQ/QQ Convert packed FP16 values to unsigned doubleword/quadword integers.
VCVTPH2UW/W Convert packed FP16 values to unsigned/signed word integers.

VCVTPS2PH[X] Convert packed single precision floating-point values to packed FP16 values.
VCVTQQ2PH Convert packed signed quadword integers to packed FP16 values.

VCVTSD2SH Convert low FP64 value to an FP16 value.

VCVTSH2SD/SS Convert low FP16 value to an FP64/FP32 value.

VCVTSH2SI/USI Convert low FP16 value to signed/unsigned integer.

VCVTSI2SH Convert a signed doubleword/quadword integer to an FP16 value.

VCVTSS2SH Convert low FP32 value to an FP16 value.

VCVTTPH2DQ/QQ Convert with truncation packed FP16 values to signed doubleword/quadword integers.
VCVTTPH2UDQ/QQ Convert with truncation packed FP16 values to unsigned doubleword/quadword integers.
VCVTTPH2UW/W Convert packed FP16 values to unsigned/signed word integers.

Vol.1 5-35

INSTRUCTION SET SUMMARY

VCVTTSH2SI/USI Convert with truncation low FP16 value to a signed/unsigned integer.

VCVTUDQ2PH Convert packed unsigned doubleword integers to packed FP16 values.
VCVTUQQ2PH Convert packed unsigned quadword integers to packed FP16 values.
VCVTUSI2SH Convert unsigned doubleword integer to an FP16 value.

VCVTUW2PH Convert packed unsigned word integers to FP16 values.

VCVTW2PH Convert packed signed word integers to FP16 values.

VDIVPH/SH Divide packed/scalar FP16 values.

VF[C]MADDCPH Complex multiply and accumulate FP16 values.
VF[CIMADDCSH Complex multiply and accumulate scalar FP16 values.

VF[C]MULCPH Complex multiply FP16 values.

VF[C]MULCSH Complex multiply scalar FP16 values.

VF[,N]MADD[132,213,231]PH Fused multiply-add of packed FP16 values.
VF[,N]JMADD[132,213,231]SH Fused multiply-add of scalar FP16 values.
VFMADDSUB[132,213,231]PH Fused multiply-alternating add/subtract of packed FP16 values.
VFMSUBADD[132,213,231]PH Fused multiply-alternating subtract/add of packed FP16 values.
VF[,N]MSUB[132,213,231]PH Fused multiply-subtract of packed FP16 values.
VF[,NIJMSUB[132,213,231]SH Fused multiply-subtract of scalar FP16 values.

VFPCLASSPH/SH Test types of packed/scalar FP16 values.
VGETEXPPH/SH Convert exponents of packed/scalar FP16 values to FP16 values.
VGETMANTPH/SH Extract FP16 vector of normalized mantissas from FP16 vector/scalar.

VMAXPH/PS Return maximum of packed/scalar FP16 values.
VMINPH/PS Return minimum of packed/scalar FP16 values.
VMOVSH Move scalar FP16 value.

VMOVW Move word.

VMULPH/SH Multiply packed/scalar FP16 values.

VRCPPH/SH Compute reciprocals of packed/scalar FP16 values.

VREDUCEPH/SH Perform reduction transformation on packed/scalar FP16 values.
VRNDSCALEPH/SH Round packed/scalar FP16 values to include a given number of fraction bits.

VRSQRTPH/SH Compute reciprocals of square roots of packed/scalar FP16 values.
VSCALEPH/SH Scale packed/scalar FP16 values with FP16 values.

VSQRTPH/SH Compute square root of packed/scalar FP16 values.

VSUBPH/SH Subtract packed/scalar FP16 values.

VUCOMISH Unordered compare scalar FP16 values and set EFLAGS.

5.20 SYSTEM INSTRUCTIONS

The following system instructions are used to control those functions of the processor that are provided to support
for operating systems and executives.

CLAC Clear AC Flag in EFLAGS register.

STAC Set AC Flag in EFLAGS register.

LGDT Load global descriptor table (GDT) register.
SGDT Store global descriptor table (GDT) register.
LLDT Load local descriptor table (LDT) register.
SLDT Store local descriptor table (LDT) register.
LTR Load task register.

STR Store task register.

5-36 Vol. 1

LIDT
SIDT
MOV
LMSW
SMSW
CLTS
ARPL
LAR

LSL
VERR
VERW
MOV
INVD
WBINVD
INVLPG
INVPCID
LOCK (prefix)

HLT

RSM
RDMSR
WRMSR
RDPMC
RDTSC
RDTSCP
SYSENTER
SYSEXIT
XSAVE
XSAVEC
XSAVEOPT
XSAVES
XRSTOR
XRSTORS
XGETBV
XSETBV
RDFSBASE
RDGSBASE
WRFSBASE
WRGSBASE

INSTRUCTION SET SUMMARY

Load interrupt descriptor table (IDT) register.
Store interrupt descriptor table (IDT) register.
Load and store control registers.

Load machine status word.

Store machine status word.

Clear the task-switched flag.

Adjust requested privilege level.

Load access rights.

Load segment limit.

Verify segment for reading

Verify segment for writing.

Load and store debug registers.

Invalidate cache, no writeback.

Invalidate cache, with writeback.

Invalidate TLB Entry.

Invalidate Process-Context Identifier.

Perform atomic access to memory (can be applied to a number of general purpose instruc-

tions that provide memory source/destination access).

Halt processor.

Return from system management mode (SMM).

Read model-specific register.

Write model-specific register.

Read performance monitoring counters.

Read time stamp counter.

Read time stamp counter and processor ID.

Fast System Call, transfers to a flat protected mode kernel at CPL = 0.
Fast System Call, transfers to a flat protected mode kernel at CPL = 3.
Save processor extended states to memory.

Save processor extended states with compaction to memory.

Save processor extended states to memory, optimized.

Save processor supervisor-mode extended states to memory.
Restore processor extended states from memory.

Restore processor supervisor-mode extended states from memory.
Reads the state of an extended control register.

Writes the state of an extended control register.

Reads from FS base address at any privilege level.

Reads from GS base address at any privilege level.

Writes to FS base address at any privilege level.

Writes to GS base address at any privilege level.

5.21 64-BIT MODE INSTRUCTIONS

The following instructions are introduced in 64-bit mode. This mode is a sub-mode of IA-32e mode.

CDQE
CMPSQ

CMPXCHG16B

Convert doubleword to quadword.
Compare string operands.
Compare RDX:RAX with m128.

Vol. 1 5-37

INSTRUCTION SET SUMMARY

LODSQ Load gqword at address (R)SI into RAX.

MOVSQ Move gword from address (R)SI to (R)DI.

MOVZX (64-bits) Move bytes/words to doublewords/quadwords, zero-extension.

STOSQ Store RAX at address RDI.

SWAPGS Exchanges current GS base register value with value in MSR address CO000102H.
SYSCALL Fast call to privilege level 0 system procedures.

SYSRET Return from fast system call.

5.22 VIRTUAL-MACHINE EXTENSIONS

The behavior of the VMCS-maintenance instructions is summarized below:

VMPTRLD Takes a single 64-bit source operand in memory. It makes the referenced VMCS active and
current.

VMPTRST Takes a single 64-bit destination operand that is in memory. Current-VMCS pointer is
stored into the destination operand.

VMCLEAR Takes a single 64-bit operand in memory. The instruction sets the launch state of the VMCS

referenced by the operand to “clear”, renders that VMCS inactive, and ensures that data
for the VMCS have been written to the VMCS-data area in the referenced VMCS region.

VMREAD Reads a component from the VMCS (the encoding of that field is given in a register
operand) and stores it into a destination operand.
VMWRITE Writes a component to the VMCS (the encoding of that field is given in a register operand)

from a source operand.

The behavior of the VMX management instructions is summarized below:

VMLAUNCH Launches a virtual machine managed by the VMCS. A VM entry occurs, transferring control
to the VM.

VMRESUME Resumes a virtual machine managed by the VMCS. A VM entry occurs, transferring control
to the VM.

VMXOFF Causes the processor to leave VMX operation.

VMXON Takes a single 64-bit source operand in memory. It causes a logical processor to enter VMX
root operation and to use the memory referenced by the operand to support VMX opera-
tion.

The behavior of the VMX-specific TLB-management instructions is summarized below:

INVEPT Invalidate cached Extended Page Table (EPT) mappings in the processor to synchronize
address translation in virtual machines with memory-resident EPT pages.

INVVPID Invalidate cached mappings of address translation based on the Virtual Processor ID
(VPID).

None of the instructions above can be executed in compatibility mode; they generate invalid-opcode exceptions if
executed in compatibility mode.

The behavior of the guest-available instructions is summarized below:

VMCALL Allows a guest in VMX non-root operation to call the VMM for service. A VM exit occurs,
transferring control to the VMM.
VMFUNC Allows software in VMX non-root operation to invoke a VM function, which is processor

functionality enabled and configured by software in VMX root operation. No VM exit occurs.

5.23 SAFER MODE EXTENSIONS

The behavior of the GETSEC instruction leaves of the Safer Mode Extensions (SMX) are summarized below:
GETSEC[CAPABILITIES]Returns the available leaf functions of the GETSEC instruction.

5-38 Vol. 1

GETSEC[ENTERACCS]

GETSEC[EXITAC]
GETSEC[SENTER]

GETSEC[SEXIT]

INSTRUCTION SET SUMMARY

Loads an authenticated code chipset module and enters authenticated code execution
mode.

Exits authenticated code execution mode.

Establishes a Measured Launched Environment (MLE) which has its dynamic root of trust
anchored to a chipset supporting Intel Trusted Execution Technology.

Exits the MLE.

GETSEC[PARAMETERS] Returns SMX related parameter information.

GETSEC[SMCRTL]
GETSEC[WAKEUP]

5.24

SMX mode control.
Wakes up sleeping logical processors inside an MLE.

INTEL®* MEMORY PROTECTION EXTENSIONS

Intel Memory Protection Extensions (Intel MPX) provides a set of instructions to enable software to add robust
bounds checking capability to memory references. Details of Intel MPX are described in Appendix E, “Intel®
Memory Protection Extensions.”

BNDMK
BNDCL

BNDCU
BNDCN

BNDMOV
BNDMOV
BNDLDX
BNDSTX

5.25

Create a LowerBound and an UpperBound in a register.
Check the address of a memory reference against a LowerBound.
Check the address of a memory reference against an UpperBound in 1's complement form.

Check the address of a memory reference against an UpperBound not in 1's complement
form.

Copy or load from memory of the LowerBound and UpperBound to a register.
Store to memory of the LowerBound and UpperBound from a register.

Load bounds using address translation.

Store bounds using address translation.

INTEL®* SOFTWARE GUARD EXTENSIONS

Intel Software Guard Extensions (Intel SGX) provide two sets of instruction leaf functions to enable application
software to instantiate a protected container, referred to as an enclave. The enclave instructions are organized as
leaf functions under two instruction mnemonics: ENCLS (ring 0) and ENCLU (ring 3). Details of Intel SGX are
described in Chapter 34 through Chapter 40 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,

Volume 3D.

The first implementation of Intel SGX is also referred to as SGX1, it is introduced with the 6th Generation Intel
Core Processors. The leaf functions supported in SGX1 are shown in Table 5-3.

Table 5-3. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1

Supervisor Instruction Description User Instruction Description
ENCLS[EADD] Add a page ENCLU[EENTER] Enter an Enclave
ENCLS[EBLOCK] Block an EPC page ENCLU[EEXIT] Exit an Enclave
ENCLS[ECREATE] Create an enclave ENCLU[EGETKEY] Create a cryptographic key
ENCLS[EDBGRD] Read data by debugger ENCLU[EREPORT] Create a cryptographic report
ENCLS[EDBGWR] Write data by debugger ENCLU[ERESUME] Re-enter an Enclave
ENCLS[EEXTEND] Extend EPC page measurement

ENCLS[EINIT] Initialize an enclave

ENCLS[ELDB] Load an EPC page as blocked

ENCLS[ELDU] Load an EPC page as unblocked

ENCLS[EPA] Add version array

Vol.1 5-39

INSTRUCTION SET SUMMARY

Table 5-3. Supervisor and User Mode Enclave Instruction Leaf Functions in Long-Form of SGX1

Supervisor Instruction Description User Instruction Description
ENCLS[EREMOVE] Remove a page from EPC

ENCLS[ETRACK] Activate EBLOCK checks

ENCLS[EWB] Write back/invalidate an EPC page

5.26 SHADOW STACK MANAGEMENT INSTRUCTIONS

Shadow stack management instructions allow the program and run-time to perform operations like recovering
from control protection faults, shadow stack switching, etc. The following instructions are provided.

CLRSSBSY Clear busy bit in a supervisor shadow stack token.
INCSSP Increment the shadow stack pointer (SSP).
RDSSP Read shadow stack point (SSP).

RSTORSSP Restore a shadow stack pointer (SSP).
SAVEPREVSSP Save previous shadow stack pointer (SSP).
SETSSBSY Set busy bit in a supervisor shadow stack token.
WRSS Write to a shadow stack.

WRUSS Write to a user mode shadow stack.

5.27 CONTROL TRANSFER TERMINATING INSTRUCTIONS

ENDBR32 Terminate an Indirect Branch in 32-bit and Compatibility Mode.
ENDBR64 Terminate an Indirect Branch in 64-bit Mode.

5.28 INTEL® AMX INSTRUCTIONS

LDTILECFG Load tile configuration.

STTILECFG Store tile configuration.

TDPBF16PS Dot product of BF16 tiles accumulated into packed single precision tile.
TDPBSSD Dot product of signed bytes with dword accumulation.
TDPBSUD Dot product of signed/unsigned bytes with dword accumulation.
TDPBUSD Dot product of unsigned/signed bytes with dword accumulation.
TDPBUUD Dot product of unsigned bytes with dword accumulation.
TILELOADD Load data into tile.

TILELOADDT1 Load data into tile with hint to optimize data caching.
TILERELEASE Release tile.

TILESTORED Store tile.

TILEZERO Zero tile.

5.29 USER INTERRUPT INSTRUCTIONS

CLUI Clear user interrupt flag.
SENDUIPI Send user interprocessor interrupt.
STUI Set user interrupt flag.

TESTUI Determine user interrupt flag.

5-40 Vol. 1

INSTRUCTION SET SUMMARY

UIRET User-interrupt return.

5.30 ENQUEUE STORE INSTRUCTIONS

ENQCMD Enqueue command.
ENQCMDS Enqueue command supervisor.

Vol.1 5-41

INSTRUCTION SET SUMMARY

5-42 Vol. 1

CHAPTER 6
PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

This chapter describes the facilities in the Intel 64 and IA-32 architectures for executing calls to procedures or
subroutines. It also describes how interrupts and exceptions are handled from the perspective of an application
programmer.

6.1 PROCEDURE CALL TYPES

The processor supports procedure calls in the following two different ways:
® CALL and RET instructions.
® ENTER and LEAVE instructions, in conjunction with the CALL and RET instructions.

Both of these procedure call mechanisms use the procedure stack, commonly referred to simply as “the stack,” to
save the state of the calling procedure, pass parameters to the called procedure, and store local variables for the
currently executing procedure.

The processor’s facilities for handling interrupts and exceptions are similar to those used by the CALL and RET
instructions.

Processors that support Control-Flow Enforcement Technology (CET) support an additional stack referred to as “the
shadow stack”. The CALL instruction, when shadow stacks are enabled, additionally saves the state of the calling
procedure on the shadow stack; and the RET instruction restores the state of the calling procedure if the state on
the stack and the shadow stack match.

6.2 STACKS

The stack (see Figure 6-1) is a contiguous array of memory locations. It is contained in a segment and identified by
the segment selector in the SS register. When using the flat memory model, the stack can be located anywhere in
the linear address space for the program. A stack can be up to 4 GBytes long, the maximum size of a segment.

Items are placed on the stack using the PUSH instruction and removed from the stack using the POP instruction.
When an item is pushed onto the stack, the processor decrements the ESP register, then writes the item at the new
top of stack. When an item is popped off the stack, the processor reads the item from the top of stack, then incre-
ments the ESP register. In this manner, the stack grows down in memory (towards lesser addresses) when items
are pushed on the stack and shrinks up (towards greater addresses) when the items are popped from the stack.

A program or operating system/executive can set up many stacks. For example, in multitasking systems, each task
can be given its own stack. The number of stacks in a system is limited by the maximum number of segments and
the available physical memory.

When a system sets up many stacks, only one stack—the current stack—is available at a time. The current stack
is the one contained in the segment referenced by the SS register.

Vol. T 6-1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Stack Segment
Bottom of Stack
(Initial ESP Value)
Local Variables
g:)g:grrg The Stack Can Be
| 16 or 32 Bits Wide
Parameters
Passed to The EBP register is
Called typically set to point
Procedure to the return
‘ instruction pointer.
Frame Boundary Ret mstroct
eturn Instruction :
Pointer 4—{ EBP Register ‘
4—{ ESP Register ‘

Top of Stack

Pushes Move the Pops Move the
Top Of Stack to Top Of Stack to
Lower Addresses Higher Addresses

Figure 6-1. Stack Structure

The processor references the SS register automatically for all stack operations. For example, when the ESP register
is used as a memory address, it automatically points to an address in the current stack. Also, the CALL, RET, PUSH,
POP, ENTER, and LEAVE instructions all perform operations on the current stack.

6.2.1 Setting Up a Stack

To set a stack and establish it as the current stack, the program or operating system/executive must do the
following:

1. Establish a stack segment.
2. Load the segment selector for the stack segment into the SS register using a MOV, POP, or LSS instruction.

3. Load the stack pointer for the stack into the ESP register using a MOV, POP, or LSS instruction. The LSS
instruction can be used to load the SS and ESP registers in one operation.

See “Segment Descriptors” in Chapter 3, “Protected-Mode Memory Management,” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3A, for information on how to set up a segment descriptor and
segment limits for a stack segment.

6.2.2 Stack Alignment

The stack pointer for a stack segment should be aligned on 16-bit (word) or 32-bit (double-word) boundaries,
depending on the width of the stack segment. The D flag in the segment descriptor for the current code segment
sets the stack-segment width (see "Segment Descriptors” in Chapter 3, “Protected-Mode Memory Management,” of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). The PUSH and POP instructions
use the D flag to determine how much to decrement or increment the stack pointer on a push or pop operation,
respectively. When the stack width is 16 bits, the stack pointer is incremented or decremented in 16-bit increments;
when the width is 32 bits, the stack pointer is incremented or decremented in 32-bit increments. Pushing a 16-bit
value onto a 32-bit wide stack can result in stack misaligned (that is, the stack pointer is not aligned on a double-

6-2 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

word boundary). One exception to this rule is when the contents of a segment register (a 16-bit segment selector)
are pushed onto a 32-bit wide stack. Here, the processor automatically aligns the stack pointer to the next 32-bit
boundary.

The processor does not check stack pointer alignment. It is the responsibility of the programs, tasks, and system
procedures running on the processor to maintain proper alignment of stack pointers. Misaligning a stack pointer
can cause serious performance degradation and in some instances program failures.

6.2.3 Address-Size Attributes for Stack Accesses

Instructions that use the stack implicitly (such as the PUSH and POP instructions) have two address-size attributes
each of either 16 or 32 bits. This is because they always have the implicit address of the top of the stack, and they
may also have an explicit memory address (for example, PUSH Array1[EBX]). The attribute of the explicit address
is determined by the D flag of the current code segment and the presence or absence of the 67H address-size
prefix.

The address-size attribute of the top of the stack determines whether SP or ESP is used for the stack access. Stack
operations with an address-size attribute of 16 use the 16-bit SP stack pointer register and can use a maximum
stack address of FFFFH; stack operations with an address-size attribute of 32 bits use the 32-bit ESP register and
can use a maximum address of FFFFFFFFH. The default address-size attribute for data segments used as stacks is
controlled by the B flag of the segment’s descriptor. When this flag is clear, the default address-size attribute is 16;
when the flag is set, the address-size attribute is 32.

6.2.4 Procedure Linking Information

The processor provides two pointers for linking of procedures: the stack-frame base pointer and the return instruc-
tion pointer. When used in conjunction with a standard software procedure-call technique, these pointers permit
reliable and coherent linking of procedures.

6.2.4.1 Stack-Frame Base Pointer

The stack is typically divided into frames. Each stack frame can then contain local variables, parameters to be
passed to another procedure, and procedure linking information. The stack-frame base pointer (contained in the
EBP register) identifies a fixed reference point within the stack frame for the called procedure. To use the stack-
frame base pointer, the called procedure typically copies the contents of the ESP register into the EBP register prior
to pushing any local variables on the stack. The stack-frame base pointer then permits easy access to data struc-
tures passed on the stack, to the return instruction pointer, and to local variables added to the stack by the called
procedure.

Like the ESP register, the EBP register automatically points to an address in the current stack segment (that is, the
segment specified by the current contents of the SS register).

6.2.4.2 Return Instruction Pointer

Prior to branching to the first instruction of the called procedure, the CALL instruction pushes the address in the EIP
register onto the current stack. This address is then called the return-instruction pointer and it points to the
instruction where execution of the calling procedure should resume following a return from the called procedure.
Upon returning from a called procedure, the RET instruction pops the return-instruction pointer from the stack back
into the EIP register. Execution of the calling procedure then resumes.

The processor does not keep track of the location of the return-instruction pointer. It is thus up to the programmer
to ensure that stack pointer is pointing to the return-instruction pointer on the stack, prior to issuing a RET instruc-
tion. A common way to reset the stack pointer to the point to the return-instruction pointer is to move the contents
of the EBP register into the ESP register. If the EBP register is loaded with the stack pointer immediately following
a procedure call, it should point to the return instruction pointer on the stack.

The processor does not require that the return instruction pointer point back to the calling procedure. Prior to
executing the RET instruction, the return instruction pointer can be manipulated in software to point to any address

Vol. 1T 6-3

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

in the current code segment (near return) or another code segment (far return). Performing such an operation,
however, should be undertaken very cautiously, using only well defined code entry points.

6.2.5 Stack Behavior in 64-Bit Mode

In 64-bit mode, address calculations that reference SS segments are treated as if the segment base is zero. Fields
(base, limit, and attribute) in segment descriptor registers are ignored. SS DPL is modified such that it is always
equal to CPL. This will be true even if it is the only field in the SS descriptor that is modified.

Registers E(SP), E(IP) and E(BP) are promoted to 64-bits and are re-named RSP, RIP, and RBP respectively. Some
forms of segment load instructions are invalid (for example, LDS, POP ES).

PUSH/POP instructions increment/decrement the stack using a 64-bit width. When the contents of a segment
register is pushed onto 64-bit stack, the pointer is automatically aligned to 64 bits (as with a stack that has a 32-
bit width).

6.3 SHADOW STACKS

A shadow stack is a second stack used exclusively for control transfer operations. This stack is separate from the
procedure stack. The shadow stack is not used to store data, hence is not explicitly writeable by software. Writes
to the shadow stack are restricted to control transfer instructions and shadow stack management instructions.
Shadow stacks can be enabled separately for privilege level 3 (user mode) or privilege levels less than 3 (super-
visor mode).

Shadow stacks are active only in protected mode with paging enabled. Shadow stacks cannot be enabled for a
program executing in virtual 8086 mode.

Processors that support shadow stacks have an architectural register called the shadow stack pointer (SSP) that
points to the current top of the shadow stack. The SSP cannot be directly encoded as a source, destination, or
memory operand in instructions. The width of the shadow stack is 32-bit in 32-bit/compatibility mode, and is 64-
bit in 64-bit mode. The address-size attribute of the shadow stack is likewise 32-bit in 32-bit/compatibility mode,
and 64-bit in 64-bit mode.

The size of the shadow stack pushes and pops for far CALL and call to interrupt/exception handlers is fixed at 64
bits, and the processor uses 8-byte, zero padded stores for these pushes in 32-bit/compatibility modes.

6.4 CALLING PROCEDURES USING CALL AND RET

The CALL instruction allows control transfers to procedures within the current code segment (near call) and in a
different code segment (far call). Near calls usually provide access to local procedures within the currently running
program or task. Far calls are usually used to access operating system procedures or procedures in a different task.
See “"CALL—Call Procedure” in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A, for a detailed description of the CALL instruction.

The RET instruction also allows near and far returns to match the near and far versions of the CALL instruction. In
addition, the RET instruction allows a program to increment the stack pointer on a return to release parameters
from the stack. The number of bytes released from the stack is determined by an optional argument (n) to the RET
instruction. See "RET—Return from Procedure” in Chapter 4, “Instruction Set Reference, M-U,"” of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2B, for a detailed description of the RET instruction.

6.4.1 Near CALL and RET Operation
When executing a near call, the processor does the following (see Figure 6-2):
1. Pushes the current value of the EIP register on the stack.

If shadow stack is enabled and the displacement value is not 0, pushes the current value of the EIP register on
the shadow stack.

6-4 Vol. 1

2.
3.

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Loads the offset of the called procedure in the EIP register.
Begins execution of the called procedure.

When executing a near return, the processor performs these actions:

1.

Pops the top-of-stack value (the return instruction pointer) into the EIP register.

If shadow stack is enabled, pops the top-of-stack (the return instruction pointer) value from the shadow stack
and if it's not the same as the return instruction pointer popped from the stack, then the processor causes a
control protection exception with error code NEAR-RET (#CP(NEAR-RET)).

If the RET instruction has an optional n argument, increments the stack pointer by the number of bytes
specified with the n operand to release parameters from the stack.

Resumes execution of the calling procedure.

6.4.2 Far CALL and RET Operation

When executing a far call, the processor performs these actions (see Figure 6-2):

1.

gu » W N

Pushes the current value of the CS register on the stack.
If shadow stack is enabled:

a. Temporarily saves the current value of the SSP register internally and aligns the SSP to the next 8 byte
boundary.

b. Pushes the current value of the CS register on the shadow stack.

c. Pushes the current value of LIP (CS.base + EIP) on the shadow stack.

d. Pushes the internally saved value of the SSP register on the shadow stack.

Pushes the current value of the EIP register on the stack.

Loads the segment selector of the segment that contains the called procedure in the CS register.
Loads the offset of the called procedure in the EIP register.

Begins execution of the called procedure.

When executing a far return, the processor does the following:

1.
2.

Pops the top-of-stack value (the return instruction pointer) into the EIP register.

Pops the top-of-stack value (the segment selector for the code segment being returned to) into the CS register.
If shadow stack is enabled:

a. Causes a control protection exception (#CP(FAR-RET/IRET)) if the SSP is not aligned to 8 bytes.

b. Compares the values on the shadow stack at address SSP+8 (the LIP) and SSP+16 (the CS) to the CS and
(CS.base + EIP) popped from the stack, and causes a control protection exception (#CP(FAR-RET/IRET)) if
they do not match.

c. Pops the top-of-stack value (the SSP of the procedure being returned to) from shadow stack into the SSP
register.

If the RET instruction has an optional n argument, increments the stack pointer by the number of bytes
specified with the n operand to release parameters from the stack.

Resumes execution of the calling procedure.

Vol. 1T 6-5

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

6-6 Vol. 1

Stack
Frame
After
Call

Stack During

Near Call
Stack
Frame
Param 1 Before
Call
Param 2
Param 3 [¢—— ESP Before Call
Calling EIP «— ESP After Call

Stack

Stack During
Near Return

Frame
After
Call

[« ESP After Return

Param 1

Param 2

Param 3

Calling EIP

«—— ESP Before Return

Stack During
Far Call

Param 1

Param 2

Param 3

«—— ESP Before Call

Calling CS

Calling EIP

«— ESP After Call

Stack During
Far Return

«—— ESP After Return

Param 1

Param 2

Param 3

Calling CS

Calling EIP

«—— ESP Before Return

Note: On a near or far return, parameters are released from the stack based
on the optional n operand in the RET n instruction.

Figure 6-2. Stack on Near and Far Calls

Shadow Stack
During Near Call

<— SSP Before Call

Calling EIP

«— SSP After Call

[«—— SSP After Return

Calling EIP

<+—— SSP Before Return

Shadow Stack
During Far Call

Calling CS

Calling LIP

Calling SSP

<+—— SSP Before Call

<+—— SSP After Call

[«—— SSP After Return

Calling CS

Calling LIP

Calling SSP

«—— SSP Before Return

Note: There are no parameters on the shadow stack. RET and RET n operate identically on

the shadow stack.

Figure 6-3. Shadow Stack on Near and Far Calls

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

6.4.3 Parameter Passing

Parameters can be passed between procedures in any of three ways: through general-purpose registers, in an
argument list, or on the stack.

6.4.3.1 Passing Parameters Through the General-Purpose Registers

The processor does not save the state of the general-purpose registers on procedure calls. A calling procedure can
thus pass up to six parameters to the called procedure by copying the parameters into any of these registers
(except the ESP and EBP registers) prior to executing the CALL instruction. The called procedure can likewise pass
parameters back to the calling procedure through general-purpose registers.

6.4.3.2 Passing Parameters on the Stack

To pass a large number of parameters to the called procedure, the parameters can be placed on the stack, in the
stack frame for the calling procedure. Here, it is useful to use the stack-frame base pointer (in the EBP register) to
make a frame boundary for easy access to the parameters.

The stack can also be used to pass parameters back from the called procedure to the calling procedure.

6.4.3.3 Passing Parameters in an Argument List

An alternate method of passing a larger number of parameters (or a data structure) to the called procedure is to
place the parameters in an argument list in one of the data segments in memory. A pointer to the argument list can
then be passed to the called procedure through a general-purpose register or the stack. Parameters can also be
passed back to the calling procedure in this same manner.

6.4.4 Saving Procedure State Information

The processor does not save the contents of the general-purpose registers, segment registers, or the EFLAGS
register on a procedure call. A calling procedure should explicitly save the values in any of the general-purpose
registers that it will need when it resumes execution after a return. These values can be saved on the stack or in
memory in one of the data segments.

The PUSHA and POPA instructions facilitate saving and restoring the contents of the general-purpose registers.

PUSHA pushes the values in all the general-purpose registers on the stack in the following order: EAX, ECX, EDX,
EBX, ESP (the value prior to executing the PUSHA instruction), EBP, ESI, and EDI. The POPA instruction pops all the
register values saved with a PUSHA instruction (except the ESP value) from the stack to their respective registers.

If a called procedure changes the state of any of the segment registers explicitly, it should restore them to their
former values before executing a return to the calling procedure.

If a calling procedure needs to maintain the state of the EFLAGS register, it can save and restore all or part of the
register using the PUSHF/PUSHFD and POPF/POPFD instructions. The PUSHF instruction pushes the lower word of
the EFLAGS register on the stack, while the PUSHFD instruction pushes the entire register. The POPF instruction
pops a word from the stack into the lower word of the EFLAGS register, while the POPFD instruction pops a double
word from the stack into the register.

6.4.5 Calls to Other Privilege Levels

The IA-32 architecture’s protection mechanism recognizes four privilege levels, numbered from 0 to 3, where a
greater number mean less privilege. The reason to use privilege levels is to improve the reliability of operating
systems. For example, Figure 6-4 shows how privilege levels can be interpreted as rings of protection.

Vol. 1T 6-7

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Protection Rings

Operating
System
Kernel

Operating System
Services (Device
Drivers, Etc.)

Applications

Highest Lowest
0 1 2 3

Privilege Levels

Figure 6-4. Protection Rings

In this example, the highest privilege level 0 (at the center of the diagram) is used for segments that contain the
most critical code modules in the system, usually the kernel of an operating system. The outer rings (with progres-
sively lower privileges) are used for segments that contain code modules for less critical software.

Code modules in lower privilege segments can only access modules operating at higher privilege segments by
means of a tightly controlled and protected interface called a gate. Attempts to access higher privilege segments
without going through a protection gate and without having sufficient access rights causes a general-protection
exception (#GP) to be generated.

If an operating system or executive uses this multilevel protection mechanism, a call to a procedure thatisin a
more privileged protection level than the calling procedure is handled in a similar manner as a far call (see Section
6.4.2, “Far CALL and RET Operation”). The differences are as follows:

®* The segment selector provided in the CALL instruction references a special data structure called a call gate
descriptor. Among other things, the call gate descriptor provides the following:

— Access rights information.
— The segment selector for the code segment of the called procedure.
— An offset into the code segment (that is, the instruction pointer for the called procedure).

®* The processor switches to a new stack to execute the called procedure. Each privilege level has its own stack.
The segment selector and stack pointer for the privilege level 3 stack are stored in the SS and ESP registers,
respectively, and are automatically saved when a call to a more privileged level occurs. The segment selectors
and stack pointers for the privilege level 2, 1, and 0 stacks are stored in a system segment called the task state
segment (TSS).

The use of a call gate and the TSS during a stack switch are transparent to the calling procedure, except when a
general-protection exception is raised.

6.4.6 CALL and RET Operation Between Privilege Levels
When making a call to a more privileged protection level, the processor does the following (see Figure 6-5):
1. Performs an access rights check (privilege check).

2. Temporarily saves (internally) the current contents of the SS, ESP, CS, and EIP registers.

6-8 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Stack for Calling Stack for Called
Procedure Procedure
Calling SS o
Calling ESP
Param 1 Param 1
Stack Stack
Frame Param 2 Param 2 Frame
Before Call After Call
Param 3 [«— ESP Before Call Param 3
Calling CS
ESP After Call —> Calling EIP —
Calling SS
«—— ESP After Return Calling ESP
Param 1 Param 1
Param 2 Param 2
Param 3 Param 3
Calling CS
ESP Before Return —», Calling EIP
Note: On a return, parameters are released on both stacks based on the optional n
operand in the RET n instruction.

Figure 6-5. Stack Switch on a Call to a Different Privilege Level

Vol.1T 6-9

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Calling to Procedure at Higher Privilege Level from Privilege Level 3

Shadow Stack for Handler's Shadow
Calling Procedure Stack

SSP Before Call Supervisor

and After Return Shadow Stack

SSP After Call and Token

Before Return

Calling to Procedure at Higher Privilege Level from Privilege Level 2 or 1

Interrupted Procedure’s Handler's Shadow
Shadow Stack Stack
SSP Before Call .
and After Return Supervisor
Shadow Stack
Token
CS
LIP
SSP After Call and
Before Return SSP

Note: There are no parameters on the shadow stack. RET and RET n operate
identically on the shadow stack.

Figure 6-6. Shadow Stack Switch on a Call to a Different Privilege Level

3. Loads the segment selector and stack pointer for the new stack (that is, the stack for the privilege level being
called) from the TSS into the SS and ESP registers and switches to the new stack.

4. Pushes the temporarily saved SS and ESP values for the calling procedure’s stack onto the new stack.

Copies the parameters from the calling procedure’s stack to the new stack. A value in the call gate descriptor
determines how many parameters to copy to the new stack.

6. Pushes the temporarily saved CS and EIP values for the calling procedure to the new stack.

If shadow stack is enabled at the privilege level of the calling procedure, then the processor temporarily saves
the SSP of the calling procedure internally. If the calling procedure is at privilege level 3, the SSP of the calling
procedure is also saved into the IA32_PL3_SSP MSR.

6-10 Vol.1

8.

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

If shadow stack is enabled at the privilege level of the called procedure, then the SSP for the called procedure
is obtained from one of the MSRs listed below, depending on the target privilege level. The SSP obtained is then
verified to ensure it points to a valid supervisor shadow stack that is not currently active by verifying a
supervisor shadow stack token at the address pointed to by the SSP. The operations performed to verify and
acquire the supervisor shadow stack token by making it busy are as described in Section 17.2.3 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

— IA32_PL2_SSP if transitioning to ring 2.
— IA32_PL1_SSP if transitioning to ring 1.
— IA32_PLO_SSP if transitioning to ring 0.

If shadow stack is enabled at the privilege level of the called procedure and the calling procedure was not at
privilege level 3, then the processor pushes the temporarily saved CS, LIP (CS.base + EIP), and SSP of the
calling procedure to the new shadow stack.!

Loads the segment selector for the new code segment and the new instruction pointer from the call gate into
the CS and EIP registers, respectively.

Begins execution of the called procedure at the new privilege level.

When executing a return from the privileged procedure, the processor performs these actions:

1.
2.

6.

Performs a privilege check.

Restores the CS and EIP registers to their values prior to the call.

If shadow stack is enabled at the current privilege level:

— Causes a control protection exception (#CP(FAR-RET/IRET)) if SSP is not aligned to 8 bytes.

— If the privilege level of the procedure being returned to is less than 3 (returning to supervisor mode):

* Compares the values on shadow stack at address SSP+8 (the LIP) and SSP+16 (the CS) to the CS and
(CS.base + EIP) popped from the stack and causes a control protection exception (#CP(FAR-
RET/IRET)) if they do not match.

* Temporarily saves the top-of-stack value (the SSP of the procedure being returned to) internally.

— If a busy supervisor shadow stack token is present at address SSP+24, then marks the token free using
operations described in Section 17.2.3 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

— If the privilege level of the procedure being returned to is less than 3 (returning to supervisor mode), re-
stores the SSP register from the internally saved value.

— If the privilege level of the procedure being returned to is 3 (returning to user mode) and shadow stack is
enabled at privilege level 3, then restores the SSP register with value of IA32_PL3_SSP MSR.

If the RET instruction has an optional n argument, increments the stack pointer by the number of bytes
specified with the n operand to release parameters from the stack. If the call gate descriptor specifies that one
or more parameters be copied from one stack to the other, a RET n instruction must be used to release the
parameters from both stacks. Here, the n operand specifies the number of bytes occupied on each stack by the
parameters. On a return, the processor increments ESP by n for each stack to step over (effectively remove)
these parameters from the stacks.

Restores the SS and ESP registers to their values prior to the call, which causes a switch back to the stack of
the calling procedure.

If the RET instruction has an optional n argument, increments the stack pointer by the number of bytes
specified with the n operand to release parameters from the stack (see explanation in step 3).

Resumes execution of the calling procedure.

See Chapter 5, “Protection,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for
detailed information on calls to privileged levels and the call gate descriptor.

1.

If any of these pushes leads to an exception or a VM exit, the supervisor shadow-stack token remains busy.

Vol.1 6-11

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

6.4.7 Branch Functions in 64-Bit Mode

The 64-bit extensions expand branching mechanisms to accommodate branches in 64-bit linear-address space.
These are:

®* Near-branch semantics are redefined in 64-bit mode.
®* In 64-bit mode and compatibility mode, 64-bit call-gate descriptors for far calls are available.

In 64-bit mode, the operand size for all near branches (CALL, RET, JCC, JCXZ, JMP, and LOOP) is forced to 64 bits.
These instructions update the 64-bit RIP without the need for a REX operand-size prefix.

The following aspects of near branches are controlled by the effective operand size:
® Truncation of the size of the instruction pointer.

® Size of a stack pop or push, due to a CALL or RET.

® Size of a stack-pointer increment or decrement, due to a CALL or RET.

¢ Indirect-branch operand size.

In 64-bit mode, all of the above actions are forced to 64 bits regardless of operand size prefixes (operand size
prefixes are silently ignored). However, the displacement field for relative branches is still limited to 32 bits and the
address size for near branches is not forced in 64-bit mode.

Address sizes affect the size of RCX used for JCXZ and LOOP; they also impact the address calculation for memory
indirect branches. Such addresses are 64 bits by default; but they can be overridden to 32 bits by an address size
prefix.

Software typically uses far branches to change privilege levels. The legacy IA-32 architecture provides the call-gate
mechanism to allow software to branch from one privilege level to another, although call gates can also be used for
branches that do not change privilege levels. When call gates are used, the selector portion of the direct or indirect
pointer references a gate descriptor (the offset in the instruction is ignored). The offset to the destination’s code
segment is taken from the call-gate descriptor.

64-bit mode redefines the type value of a 32-bit call-gate descriptor type to a 64-bit call gate descriptor and
expands the size of the 64-bit descriptor to hold a 64-bit offset. The 64-bit mode call-gate descriptor allows far
branches that reference any location in the supported linear-address space. These call gates also hold the target
code selector (CS), allowing changes to privilege level and default size as a result of the gate transition.

Because immediates are generally specified up to 32 bits, the only way to specify a full 64-bit absolute RIP in 64-
bit mode is with an indirect branch. For this reason, direct far branches are eliminated from the instruction set in
64-bit mode.

64-bit mode also expands the semantics of the SYSENTER and SYSEXIT instructions so that the instructions
operate within a 64-bit memory space. The mode also introduces two new instructions: SYSCALL and SYSRET
(which are valid only in 64-bit mode). For details, see "SYSENTER—Fast System Call,” "SYSEXIT—Fast Return from
Fast System Call,” "SYSCALL—Fast System Call,” and "SYSRET—Return From Fast System Call” in Chapter 4,
“Instruction Set Reference, M-U,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2B.

6.5 INTERRUPTS AND EXCEPTIONS

The processor provides two mechanisms for interrupting program execution, interrupts, and exceptions:
®* Aninterruptis an asynchronous event that is typically triggered by an I/O device.

®* An exception is a synchronous event that is generated when the processor detects one or more predefined
conditions while executing an instruction. The IA-32 architecture specifies three classes of exceptions: faults,
traps, and aborts.

The processor responds to interrupts and exceptions in essentially the same way. When an interrupt or exception
is signaled, the processor halts execution of the current program or task and switches to a handler procedure that
has been written specifically to handle the interrupt or exception condition. The processor accesses the handler
procedure through an entry in the interrupt descriptor table (IDT). When the handler has completed handling the
interrupt or exception, program control is returned to the interrupted program or task.

6-12 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

The operating system, executive, and/or device drivers normally handle interrupts and exceptions independently
from application programs or tasks. Application programs can, however, access the interrupt and exception
handlers incorporated in an operating system or executive through assembly-language calls. The remainder of this
section gives a brief overview of the processor’s interrupt and exception handling mechanism. See Chapter 6,
“Interrupt and Exception Handling,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3A, for a description of this mechanism.

The IA-32 Architecture defines 18 predefined interrupts and exceptions and 224 user defined interrupts, which are
associated with entries in the IDT. Each interrupt and exception in the IDT is identified with a number, called a
vector. Table 6-1 lists the interrupts and exceptions with entries in the IDT and their respective vectors. Vectors 0
through 8, 10 through 14, and 16 through 19 are the predefined interrupts and exceptions; vectors 32 through 255
are for software-defined interrupts, which are for either software interrupts or maskable hardware inter-
rupts.

Note that the processor defines several additional interrupts that do not point to entries in the IDT; the most
notable of these interrupts is the SMI interrupt. See Chapter 6, “Interrupt and Exception Handling,” in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information about the interrupts
and exceptions.

When the processor detects an interrupt or exception, it does one of the following things:
®* Executes an implicit call to a handler procedure.
®* Executes an implicit call to a handler task.

6.5.1 Call and Return Operation for Interrupt or Exception Handling Procedures

A call to an interrupt or exception handler procedure is similar to a procedure call to another protection level (see
Section 6.4.6, "CALL and RET Operation Between Privilege Levels”). Here, the vector references one of two kinds
of gates in the IDT: an interrupt gate or a trap gate. Interrupt and trap gates are similar to call gates in that they

provide the following information:

® Access rights information

®* The segment selector for the code segment that contains the handler procedure

®* An offset into the code segment to the first instruction of the handler procedure

The difference between an interrupt gate and a trap gate is as follows. If an interrupt or exception handler is called
through an interrupt gate, the processor clears the interrupt enable (IF) flag in the EFLAGS register to prevent

subsequent interrupts from interfering with the execution of the handler. When a handler is called through a trap
gate, the state of the IF flag is not changed.

Table 6-1. Exceptions and Interrupts

Vector | Mnemonic Description Source
0 #DE Divide Error DIV and IDIV instructions.
1 #DB Debug Any code or data reference.
2 NMI Interrupt Non-maskable external interrupt.
3 #BP Breakpoint INT3 instruction.
4 #OF Overflow INTO instruction.
5 #BR BOUND Range Exceeded BOUND instruction.
6 #UD Invalid Opcode (Undefined Opcode) UD instruction or reserved opcode.
7 #NM Device Not Available (No Math Coprocessor) | Floating-point or WAIT/FWAIT instruction.
8 #DF Double Fault Any instruction that can generate an exception, an NMI, or
an INTR.

9 #MF CoProcessor Segment Overrun (reserved) Floating-point instruction.

10 #TS Invalid TSS Task switch or TSS access.

11 #NP Segment Not Present Loading segment registers or accessing system segments.

Vol.1 6-13

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Table 6-1. Exceptions and Interrupts (Contd.)

Vector | Mnemonic Description Source
12 #SS Stack Segment Fault Stack operations and SS register loads.
13 #GP General Protection Any memory reference and other protection checks.
14 #PF Page Fault Any memory reference.
15 Reserved
16 #MF Floating-Point Error (Math Fault) Floating-point or WAIT/FWAIT instruction.
17 #AC Alignment Check Any data reference in memory.2
18 #MC Machine Check Error codes (if any) and source are model dependent.3
19 #XM SIMD Floating-Point Exception SIMD Floating-Point Instruction®
20 #VE Virtualization Exception EPT violations®
21 #CP Control Protection Exception The RET, IRET, RSTORSSP, and SETSSBSY instructions can
generate this exception. When CET indirect branch tracking
is enabled, this exception can be generated due to a
missing ENDBRANCH instruction at the target of an indirect
call or jump.
22-31 Reserved
32-255 Maskable Interrupts External interrupt from INTR pin or INT ninstruction.
NOTES:

1. 1A-32 processors after the Intel386 processor do not generate this exception.
2. This exception was introduced in the Intel486 processor.
3. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.
4. This exception was introduced in the Pentium Il processor.
5. This exception can occur only on processors that support the 1-setting of the “EPT-violation #VE" VM-execution control.

If the code segment for the handler procedure has the same privilege level as the currently executing program or
task, the handler procedure uses the current stack; if the handler executes at a more privileged level, the processor
switches to the stack for the handler’s privilege level.

If no stack switch occurs, the processor does the following when calling an interrupt or exception handler (see
Figure 6-7):

Pushes the current contents of the EFLAGS, CS, and EIP registers (in that order) on the stack.

1.

If shadow stack is enabled:

a. Temporarily saves the current value of the SSP register internally.

b. Pushes the current value of the CS register on the shadow stack.

c. Pushes the current value of LIP (CS.base + EIP) on the shadow stack.

d. Pushes the temporarily saved SSP value on the shadow stack.

Pushes an error code (if appropriate) on the stack.

Loads the segment selector for the new code segment and the new instruction pointer (from the interrupt gate

or trap gate) into the CS and EIP registers, respectively.

If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

Begins execution of the handler procedure.

6-14 Vol.1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Stack Usage with No Privilege-Level Change

Interrupted Procedure’s
and Handler's Stack

<«— ESP Before
Transfer to Handler

EFLAGS

Cs

EIP

Error Code «— ESPAfter
Transfer to Handler

Stack Usage with Privilege-Level Change

Interrupted Procedure’s Handler's Stack
Stack

«— ESP Before
Transfer to Handler

SS

ESP

EFLAGS

CSs

EIP

ESP After

Transfer to Handler Error Code

Figure 6-7. Stack Usage on Transfers to Interrupt and Exception Handling Routines

Vol.1 6-15

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

6-16 Vol.1

Shadow Stack Usage with No Privilege-Level Change

Interrupted Procedure’s
and Handler's Shadow Stack

«— SSP Before
Transfer to Handler

CS

LIP

SSP «— SSP After
Transfer to Handler

Shadow Stack Usage with Privilege-Level Change from Level 3

Interrupted Procedure’s Handler's Shadow Stack
Shadow Stack
SSP Before
«— Transfer to Handler Supervisor
SSP After —> Shai‘;‘l’(veimk

Transfer to Handler

Shadow Stack Usage with Privilege-Level Change from Level 2 or 1

Interrupted Procedure’s Handler's Shadow Stack
Shadow Stack

SSP Before
4— Transfer to Handler

Supervisor
Shadow Stack
Token

CSs

LIP

SSP After —» SSP
Transfer to Handler

Figure 6-8. Shadow Stack Usage on Transfers to Interrupt and Exception Handling Routines

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

If a stack switch does occur, the processor does the following:

1.
2.

6.
7.

Temporarily saves (internally) the current contents of the SS, ESP, EFLAGS, CS, and EIP registers.

Loads the segment selector and stack pointer for the new stack (that is, the stack for the privilege level being
called) from the TSS into the SS and ESP registers and switches to the new stack.

Pushes the temporarily saved SS, ESP, EFLAGS, CS, and EIP values for the interrupted procedure’s stack onto
the new stack.

If shadow stack is enabled at the privilege level of the interrupted procedure, then the processor temporarily
saves the SSP of the interrupted procedure internally. If the interrupted procedure is at privilege level 3, the
SSP of the interrupted procedure is also saved into the IA32_PL3_SSP MSR.

If shadow stack is enabled at the privilege level being called, then the SSP for the called privilege level is
obtained from one of the MSRs listed below, depending on the target privilege level. The SSP obtained is then
verified to ensure it points to a valid supervisor shadow stack that is not currently active by verifying a
supervisor shadow stack token at the address pointed to by the SSP. The operations performed to verify and
acquire the supervisor shadow stack token by making it busy are as described in Section 17.2.3 of the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

— IA32_PL2_SSP if transitioning to ring 2.
— IA32_PL1_SSP if transitioning to ring 1.
— IA32_PLO_SSP if transitioning to ring 0.

If shadow stack is enabled at the privilege level being called and the interrupted procedure was not at privilege
level 3, then the processor pushes the temporarily saved CS, LIP (CS.base + EIP), and SSP of the interrupted
procedure to the new shadow stack.!

Pushes an error code on the new stack (if appropriate).

Loads the segment selector for the new code segment and the new instruction pointer (from the interrupt gate
or trap gate) into the CS and EIP registers, respectively.

If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.
Begins execution of the handler procedure at the new privilege level.

A return from an interrupt or exception handler is initiated with the IRET instruction. The IRET instruction is similar
to the far RET instruction, except that it also restores the contents of the EFLAGS register for the interrupted proce-
dure. When executing a return from an interrupt or exception handler from the same privilege level as the inter-
rupted procedure, the processor performs these actions:

1.

2.
3.
4.

Restores the CS and EIP registers to their values prior to the interrupt or exception.
If shadow stack is enabled:

a. Compares the values on the shadow stack at address SSP+8 (the LIP) and SSP+16 (the CS) to the CS and
(CS.base + EIP) popped from the stack, and causes a control protection exception (#CP(FAR-RET/IRET)) if
they do not match.

b. Pops the top-of-stack value (the SSP prior to the interrupt or exception) from the shadow stack into the SSP
register.

Restores the EFLAGS register.
Increments the stack pointer appropriately.
Resumes execution of the interrupted procedure.

When executing a return from an interrupt or exception handler from a different privilege level than the interrupted
procedure, the processor performs these actions:

1.
2.
3.

Performs a privilege check.
Restores the CS and EIP registers to their values prior to the interrupt or exception.
Restores the EFLAGS register.

—_

. If any of these pushes leads to an exception or a VM exit, the supervisor shadow-stack token remains busy.

Vol.1 6-17

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

If shadow stack is enabled at the current privilege level:
— If SSP is not aligned to 8 bytes, then causes a control protection exception (#CP(FAR-RET/IRET)).
— If the privilege level of the procedure being returned to is less than 3 (returning to supervisor mode):

* Compares the values on the shadow stack at address SSP+8 (the LIP) and SSP+16 (the CS) to the CS
and (CS.base + EIP) popped from the stack, and causes a control protection exception (#CP(FAR-
RET/IRET)) if they do not match.

* Temporarily saves the top-of-stack value (the SSP of the procedure being returned to) internally.

— If a busy supervisor shadow stack token is present at address SSP+24, then marks the token free using
operations described in Section 17.2.3 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

— If the privilege level of the procedure being returned to is less than 3 (returning to supervisor mode),
restores the SSP register from the internally saved value.

— If the privilege level of the procedure being returned to is 3 (returning to user mode) and shadow stack is
enabled at privilege level 3, then restores the SSP register with the value of the IA32_PL3_SSP MSR.

4. Restores the SS and ESP registers to their values prior to the interrupt or exception, resulting in a stack switch
back to the stack of the interrupted procedure.

5. Resumes execution of the interrupted procedure.

6.5.2 Calls to Interrupt or Exception Handler Tasks

Interrupt and exception handler routines can also be executed in a separate task. Here, an interrupt or exception
causes a task switch to a handler task. The handler task is given its own address space and (optionally) can execute
at a higher protection level than application programs or tasks.

The switch to the handler task is accomplished with an implicit task call that references a task gate descriptor.
The task gate provides access to the address space for the handler task. As part of the task switch, the processor
saves complete state information for the interrupted program or task. Upon returning from the handler task, the
state of the interrupted program or task is restored and execution continues. See Chapter 6, “Interrupt and Excep-
tion Handling,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for more infor-
mation on handling interrupts and exceptions through handler tasks.

6.5.3 Interrupt and Exception Handling in Real-Address Mode

When operating in real-address mode, the processor responds to an interrupt or exception with an implicit far call
to an interrupt or exception handler. The processor uses the interrupt or exception vector as an index into an inter-
rupt table. The interrupt table contains instruction pointers to the interrupt and exception handler procedures.

The processor saves the state of the EFLAGS register, the EIP register, the CS register, and an optional error code
on the stack before switching to the handler procedure.

A return from the interrupt or exception handler is carried out with the IRET instruction.

See Chapter 21, "8086 Emulation,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B, for more information on handling interrupts and exceptions in real-address mode.

6.5.4 INT n, INTO, INT3, INT1, and BOUND Instructions

The INT n, INTO, INT3, and BOUND instructions allow a program or task to explicitly call an interrupt or exception
handler. The INT n instruction (opcode CD) uses a vector as an argument, which allows a program to call any inter-
rupt handler.

The INTO instruction (opcode CE) explicitly calls the overflow exception (#OF) handler if the overflow flag (OF) in
the EFLAGS register is set. The OF flag indicates overflow on arithmetic instructions, but it does not automatically
raise an overflow exception. An overflow exception can only be raised explicitly in either of the following ways:

6-18 Vol.1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

® Execute the INTO instruction.

* Test the OF flag and execute the INT n instruction with an argument of 4 (the vector of the overflow exception)
if the flag is set.

Both the methods of dealing with overflow conditions allow a program to test for overflow at specific places in the

instruction stream.

The INT3 instruction (opcode CC) explicitly calls the breakpoint exception (#BP) handler. Similarly, the INT1
instruction (opcode F1) explicitly calls the debug exception (#DB) handler.!

The BOUND instruction explicitly calls the BOUND-range exceeded exception (#BR) handler if an operand is found
to be not within predefined boundaries in memory. This instruction is provided for checking references to arrays
and other data structures. Like the overflow exception, the BOUND-range exceeded exception can only be raised
explicitly with the BOUND instruction or the INT n instruction with an argument of 5 (the vector of the bounds-
check exception). The processor does not implicitly perform bounds checks and raise the BOUND-range exceeded
exception.

6.5.5 Handling Floating-Point Exceptions

When operating on individual or packed floating-point values, the IA-32 architecture supports a set of six floating-
point exceptions. These exceptions can be generated during operations performed by the x87 FPU instructions or
by SSE/SSE2/SSE3 instructions. When an x87 FPU instruction (including the FISTTP instruction in SSE3) generates
one or more of these exceptions, it in turn generates floating-point error exception (#MF); when an
SSE/SSE2/SSE3 instruction generates a floating-point exception, it in turn generates SIMD floating-point excep-
tion (#XM).

See the following sections for further descriptions of the floating-point exceptions, how they are generated, and
how they are handled:

® Section 4.9.1, “Floating-Point Exception Conditions,” and Section 4.9.3, “Typical Actions of a Floating-Point
Exception Handler.”

® Section 8.4, "x87 FPU Floating-Point Exception Handling,” and Section 8.5, *x87 FPU Floating-Point Exception
Conditions.”

® Section 11.5.1, “SIMD Floating-Point Exceptions.”
® Interrupt Behavior.

6.5.6 Interrupt and Exception Behavior in 64-Bit Mode

64-bit extensions expand the legacy IA-32 interrupt-processing and exception-processing mechanism to allow
support for 64-bit operating systems and applications. Changes include:

* All interrupt handlers pointed to by the IDT are 64-bit code (does not apply to the SMI handler).
®* The size of interrupt-stack pushes is fixed at 64 bits. The processor uses 8-byte, zero extended stores.

®* The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy environments, this push is
conditional and based on a change in current privilege level (CPL).

® The new SS is set to NULL if there is a change in CPL.

®* IRET behavior changes.

®* Thereis a new interrupt stack-switch mechanism and a new interrupt shadow stack-switch mechanism.
® The alignment of interrupt stack frame is different.

1. Hardware vendors may use the INT1 instruction for hardware debug. For that reason, Intel recommends software vendors instead
use the INT3 instruction for software breakpoints.

Vol.1 6-19

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

6.6 PROCEDURE CALLS FOR BLOCK-STRUCTURED LANGUAGES

The IA-32 architecture supports an alternate method of performing procedure calls with the ENTER (enter proce-
dure) and LEAVE (leave procedure) instructions. These instructions automatically create and release, respectively,
stack frames for called procedures. The stack frames have predefined spaces for local variables and the necessary
pointers to allow coherent returns from called procedures. They also allow scope rules to be implemented so that
procedures can access their own local variables and some number of other variables located in other stack frames.

ENTER and LEAVE offer two benefits:
® They provide machine-language support for implementing block-structured languages, such as C and Pascal.
®* They simplify procedure entry and exit in compiler-generated code.

6.6.1 ENTER Instruction

The ENTER instruction creates a stack frame compatible with the scope rules typically used in block-structured
languages. In block-structured languages, the scope of a procedure is the set of variables to which it has access.
The rules for scope vary among languages. They may be based on the nesting of procedures, the division of the
program into separately compiled files, or some other modularization scheme.

ENTER has two operands. The first specifies the number of bytes to be reserved on the stack for dynamic storage
for the procedure being called. Dynamic storage is the memory allocated for variables created when the procedure
is called, also known as automatic variables. The second parameter is the lexical nesting level (from 0 to 31) of the
procedure. The nesting level is the depth of a procedure in a hierarchy of procedure calls. The lexical level is unre-
lated to either the protection privilege level or to the I/O privilege level of the currently running program or task.

ENTER, in the following example, allocates 2 Kbytes of dynamic storage on the stack and sets up pointers to two
previous stack frames in the stack frame for this procedure:

ENTER 2048,3

The lexical nesting level determines the number of stack frame pointers to copy into the new stack frame from the
preceding frame. A stack frame pointer is a doubleword used to access the variables of a procedure. The set of
stack frame pointers used by a procedure to access the variables of other procedures is called the display. The first
doubleword in the display is a pointer to the previous stack frame. This pointer is used by a LEAVE instruction to
undo the effect of an ENTER instruction by discarding the current stack frame.

After the ENTER instruction creates the display for a procedure, it allocates the dynamic local variables for the
procedure by decrementing the contents of the ESP register by the number of bytes specified in the first parameter.
This new value in the ESP register serves as the initial top-of-stack for all PUSH and POP operations within the
procedure.

To allow a procedure to address its display, the ENTER instruction leaves the EBP register pointing to the first
doubleword in the display. Because stacks grow down, this is actually the doubleword with the highest address in
the display. Data manipulation instructions that specify the EBP register as a base register automatically address
locations within the stack segment instead of the data segment.

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical level is 0, the non-nested
form is used. The non-nested form pushes the contents of the EBP register on the stack, copies the contents of the
ESP register into the EBP register, and subtracts the first operand from the contents of the ESP register to allocate
dynamic storage. The non-nested form differs from the nested form in that no stack frame pointers are copied. The
nested form of the ENTER instruction occurs when the second parameter (lexical level) is not zero.

The following pseudo code shows the formal definition of the ENTER instruction. STORAGE is the number of bytes
of dynamic storage to allocate for local variables, and LEVEL is the lexical nesting level.

6-20 Vol.1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

PUSH EBP;
FRAME_PTR := ESP;
IFLEVEL> O
THEN
DO (LEVEL — 1) times
EBP := EBP - 4;
PUSH Pointer(EBP); (* doubleword pointed to by EBP *)
0D;

PUSH FRAME_PTR;
Fl;
EBP := FRAME_PTR;
ESP := ESP — STORAGE;

The main procedure (in which all other procedures are nested) operates at the highest lexical level, level 1. The
first procedure it calls operates at the next deeper lexical level, level 2. A level 2 procedure can access the variables
of the main program, which are at fixed locations specified by the compiler. In the case of level 1, the ENTER
instruction allocates only the requested dynamic storage on the stack because there is no previous display to copy.

A procedure that calls another procedure at a lower lexical level gives the called procedure access to the variables
of the caller. The ENTER instruction provides this access by placing a pointer to the calling procedure's stack frame
in the display.

A procedure that calls another procedure at the same lexical level should not give access to its variables. In this
case, the ENTER instruction copies only that part of the display from the calling procedure which refers to previ-
ously nested procedures operating at higher lexical levels. The new stack frame does not include the pointer for
addressing the calling procedure’s stack frame.

The ENTER instruction treats a re-entrant procedure as a call to a procedure at the same lexical level. In this case,
each succeeding iteration of the re-entrant procedure can address only its own variables and the variables of the
procedures within which it is nested. A re-entrant procedure always can address its own variables; it does not
require pointers to the stack frames of previous iterations.

By copying only the stack frame pointers of procedures at higher lexical levels, the ENTER instruction makes
certain that procedures access only those variables of higher lexical levels, not those at parallel lexical levels (see
Figure 6-9).

Main (Lexical Level 1)

Procedure A (Lexical Level 2)

| Procedure B (Lexical Level 3) |

Procedure C (Lexical Level 3)

| Procedure D (Lexical Level 4) |

Figure 6-9. Nested Procedures

Block-structured languages can use the lexical levels defined by ENTER to control access to the variables of nested
procedures. In Figure 6-9, for example, if procedure A calls procedure B which, in turn, calls procedure C, then
procedure C will have access to the variables of the MAIN procedure and procedure A, but not those of procedure
B because they are at the same lexical level. The following definition describes the access to variables for the
nested procedures in Figure 6-9.

1. MAIN has variables at fixed locations.

2. Procedure A can access only the variables of MAIN.

Vol.1 6-21

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

3. Procedure B can access only the variables of procedure A and MAIN. Procedure B cannot access the variables of

procedure C or procedure D.

4. Procedure C can access only the variables of procedure A and MAIN. Procedure C cannot access the variables of

procedure B or procedure D.

5. Procedure D can access the variables of procedure C, procedure A, and MAIN. Procedure D cannot access the

variables of procedure B.

In Figure 6-10, an ENTER instruction at the beginning of the MAIN procedure creates three doublewords of dynamic
storage for MAIN, but copies no pointers from other stack frames. The first doubleword in the display holds a copy
of the last value in the EBP register before the ENTER instruction was executed. The second doubleword holds a
copy of the contents of the EBP register following the ENTER instruction. After the instruction is executed, the EBP
register points to the first doubleword pushed on the stack, and the ESP register points to the last doubleword in

the stack frame.

When MAIN calls procedure A, the ENTER instruction creates a new display (see Figure 6-11). The first doubleword
is the last value held in MAIN's EBP register. The second doubleword is a pointer to MAIN's stack frame which is
copied from the second doubleword in MAIN's display. This happens to be another copy of the last value held in
MAIN’s EBP register. Procedure A can access variables in MAIN because MAIN is at level 1.

Therefore the base address for the dynamic storage used in MAIN is the current address in the EBP register, plus
four bytes to account for the saved contents of MAIN’s EBP register. All dynamic variables for MAIN are at fixed,

positive offsets from this value.

Display

Dynamic
Storage

Old EBP

<«<«— EBP

Main’s EBP

~— ESP

Figure 6-10. Stack Frame After Entering the MAIN Procedure

Display

Dynamic
Storage

i

Old EBP
Main’s EBP
Main’s EBP <— EBP
Main’s EBP
Procedure A’'s EBP
««— ESP

Figure 6-11. Stack Frame After Entering Procedure A

6-22 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

When procedure A calls procedure B, the ENTER instruction creates a new display (see Figure 6-12). The first
doubleword holds a copy of the last value in procedure A’s EBP register. The second and third doublewords are
copies of the two stack frame pointers in procedure A’s display. Procedure B can access variables in procedure A
and MAIN by using the stack frame pointers in its display.

When procedure B calls procedure C, the ENTER instruction creates a new display for procedure C (see

Figure 6-13). The first doubleword holds a copy of the last value in procedure B’s EBP register. This is used by the
LEAVE instruction to restore procedure B’s stack frame. The second and third doublewords are copies of the two
stack frame pointers in procedure A’s display. If procedure C were at the next deeper lexical level from procedure
B, a fourth doubleword would be copied, which would be the stack frame pointer to procedure B’s local variables.

Note that procedure B and procedure C are at the same level, so procedure C is not intended to access procedure
B’s variables. This does not mean that procedure C is completely isolated from procedure B; procedure C is called
by procedure B, so the pointer to the returning stack frame is a pointer to procedure B’s stack frame. In addition,
procedure B can pass parameters to procedure C either on the stack or through variables global to both procedures
(that is, variables in the scope of both procedures).

Old EBP
Main’s EBP

Main’s EBP
Main’s EBP
Procedure A’s EBP

" | ProcedureAsEBP |<«—EBP
. Main’s EBP
Display
Procedure A’'s EBP
L Procedure B’s EBP
Dynamic
Storage
| <«<—ESP

Figure 6-12. Stack Frame After Entering Procedure B

Vol.1 6-23

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Old EBP
Main’s EBP

Main’s EBP
Main’s EBP
Procedure A’'s EBP

Procedure A’'s EBP
Main’s EBP
Procedure A’'s EBP
Procedure B’s EBP

Procedure B's EBP <—EBP
Main’s EBP

Display
Procedure A’s EBP
L Procedure C’s EBP
Dynamic
Storage
| <«<— ESP
Figure 6-13. Stack Frame After Entering Procedure C

6.6.2 LEAVE Instruction

The LEAVE instruction, which does not have any operands, reverses the action of the previous ENTER instruction.
The LEAVE instruction copies the contents of the EBP register into the ESP register to release all stack space allo-
cated to the procedure. Then it restores the old value of the EBP register from the stack. This simultaneously
restores the ESP register to its original value. A subsequent RET instruction then can remove any arguments and
the return address pushed on the stack by the calling program for use by the procedure.

6-24 Vol.1

CHAPTER 7
PROGRAMMING WITH
GENERAL-PURPOSE INSTRUCTIONS

General-purpose (GP) instructions are a subset of the IA-32 instructions that represent the fundamental instruction
set for the Intel IA-32 processors. These instructions were introduced into the IA-32 architecture with the first IA-
32 processors (the Intel 8086 and 8088). Additional instructions were added to the general-purpose instruction set
in subsequent families of IA-32 processors (the Intel 286, Intel386, Intel486, Pentium, Pentium Pro, and Pentium
IT processors).

Intel 64 architecture further extends the capability of most general-purpose instructions so that they are able to
handle 64-bit data in 64-bit mode. A small number of general-purpose instructions (still supported in non-64-bit
modes) are not supported in 64-bit mode.

General-purpose instructions perform basic data movement, memory addressing, arithmetic and logical, program
flow control, input/output, and string operations on a set of integer, pointer, and BCD data types. This chapter
provides an overview of the general-purpose instructions. See the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, for detailed descriptions of individual instructions.

7.1 PROGRAMMING ENVIRONMENT FOR GP INSTRUCTIONS

The programming environment for the general-purpose instructions consists of the set of registers and address
space. The environment includes the following items:

®* General-purpose registers — Eight 32-bit general-purpose registers (see Section 3.4.1, “General-Purpose
Registers”) are used in non-64-bit modes to address operands in memory. These registers are referenced by
the names EAX, EBX, ECX, EDX, EBP, ESI EDI, and ESP.

* Segment registers — The six 16-bit segment registers contain segment pointers for use in accessing memory
(see Section 3.4.2, "Segment Registers”). These registers are referenced by the names CS, DS, SS, ES, FS, and
GS.

®* EFLAGS register — This 32-bit register (see Section 3.4.3, "EFLAGS Register”) is used to provide status and
control for basic arithmetic, compare, and system operations.

®* EIP register — This 32-bit register contains the current instruction pointer (see Section 3.5, “Instruction
Pointer”).

General-purpose instructions operate on the following data types. The width of valid data types is dependent on
processor mode (see Chapter 4):

®* Bytes, words, doublewords.

®* Signed and unsigned byte, word, doubleword integers.
®* Near and far pointers.

* Bitfields.

®* BCD integers.

7.2 PROGRAMMING ENVIRONMENT FOR GP INSTRUCTIONS IN 64-BIT MODE

The programming environment for the general-purpose instructions in 64-bit mode is similar to that described in
Section 7.1.

®* General-purpose registers — In 64-bit mode, sixteen general-purpose registers available. These include the
eight GPRs described in Section 7.1 and eight new GPRs (R8D-R15D). R8D-R15D are available by using a REX
prefix. All sixteen GPRs can be promoted to 64 bits. The 64-bit registers are referenced as RAX, RBX, RCX, RDX,
RBP, RSI, RDI, RSP, and R8-R15 (see Section 3.4.1.1, “"General-Purpose Registers in 64-Bit Mode"”). Promotion
to 64-bit operand requires REX prefix encodings.

Vol. 1T 7-1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

* Segment registers — In 64-bit mode, segmentation is available but it is set up uniquely (see Section 3.4.2.1,
“Segment Registers in 64-Bit Mode”).

®* Flags and Status register — When the processor is running in 64-bit mode, EFLAGS becomes the 64-bit
RFLAGS register (see Section 3.4.3, “"EFLAGS Register”).

* Instruction Pointer register — In 64-bit mode, the EIP register becomes the 64-bit RIP register (see Section
3.5.1, “Instruction Pointer in 64-Bit Mode").

General-purpose instructions operate on the following data types in 64-bit mode. The width of valid data types is
dependent on default operand size, address size, or a prefix that overrides the default size:

®* Bytes, words, doublewords, quadwords.

®* Signed and unsigned byte, word, doubleword, quadword integers.

®* Near and far pointers.

* Bit fields.

See also:

® Chapter 3, “Basic Execution Environment,” for more information about IA-32e modes.

® Chapter 2, “Instruction Format,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A, for more detailed information about REX prefixes.

* Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D, for a complete
listing of all instructions. This information documents the behavior of individual instructions in the 64-bit mode
context.

7.3 SUMMARY OF GP INSTRUCTIONS

General purpose instructions are divided into the following subgroups:
* Data transfer.

® Binary arithmetic.
®* Decimal arithmetic.
® Logical.

® Shift and rotate.

® Bit and byte.

® Control transfer.

¢ String.

e I/O.

®* Enter and Leave.

®* Flag control.

® Segment register.

® Miscellaneous.

Each sub-group of general-purpose instructions is discussed in the context of non-64-bit mode operation first.
Changes in 64-bit mode beyond those affected by the use of the REX prefixes are discussed in separate sub-
sections within each subgroup. For a simple list of general-purpose instructions by subgroup, see Chapter 5.

7.3.1 Data Transfer Instructions

The data transfer instructions move bytes, words, doublewords, or quadwords both between memory and the
processor’s registers and between registers. For the purpose of this discussion, these instructions are divided into
subordinate subgroups that provide for:

® General data movement.

7-2 Vol.1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

®* Exchange.
® Stack manipulation.
®* Type conversion.

7.3.1.1 General Data Movement Instructions

Move instructions — The MOV (move) and CMOVcc (conditional move) instructions transfer data between
memory and registers or between registers.

The MOV instruction performs basic load data and store data operations between memory and the processor’s
registers and data movement operations between registers. It handles data transfers along the paths listed in Table
7-1. (See "MOV—Move to/from Control Registers” and "MOV—Move to/from Debug Registers” in Chapter 4,
“Instruction Set Reference, M-U,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A, for information on moving data to and from the control and debug registers.)

The MOV instruction cannot move data from one memory location to another or from one segment register to
another segment register. Memory-to-memory moves are performed with the MOVS (string move) instruction (see
Section 7.3.9, “String Operations”).

Conditional move instructions — The CMOVcc instructions are a group of instructions that check the state of the
status flags in the EFLAGS register and perform a move operation if the flags are in a specified state. These instruc-
tions can be used to move a 16-bit or 32-bit value from memory to a general-purpose register or from one general-
purpose register to another. The flag state being tested is specified with a condition code (cc) associated with the

instruction. If the condition is not satisfied, a move is not performed and execution continues with the instruction

following the CMOVcc instruction.

Table 7-1. Move Instruction Operations
Type of Data Movement Source — Destination

From memory to a register Memory location — General-purpose register
Memory location — Segment register

From a register to memory General-purpose register — Memory location
Segment register — Memory location

Between registers General-purpose register — General-purpose register
General-purpose register — Segment register
Segment register — General-purpose register
General-purpose register — Control register

Control register — General-purpose register
General-purpose register — Debug register

Debug register — General-purpose register

Immediate data to a register Immediate — General-purpose register

Immediate data to memory Immediate — Memory location

Table 7-2 shows mnemonics for CMOVcc instructions and the conditions being tested for each instruction. The
condition code mnemonics are appended to the letters "CMOV” to form the mnemonics for CMOVcc instructions.
The instructions listed in Table 7-2 as pairs (for example, CMOVA/CMOVNBE) are alternate names for the same
instruction. The assembler provides these alternate names to make it easier to read program listings.

CMOVcc instructions are useful for optimizing small IF constructions. They also help eliminate branching overhead
for IF statements and the possibility of branch mispredictions by the processor.

These conditional move instructions are supported in the P6 family, Pentium 4, and Intel Xeon processors. Software
can check if CMOVcc instructions are supported by checking the processor’s feature information with the CPUID
instruction.

Vol.1 7-3

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

7.3.1.2 Exchange Instructions

The exchange instructions swap the contents of one or more operands and, in some cases, perform additional oper-
ations such as asserting the LOCK signal or modifying flags in the EFLAGS register.

The XCHG (exchange) instruction swaps the contents of two operands. This instruction takes the place of three
MOV instructions and does not require a temporary location to save the contents of one operand location while the
other is being loaded. When a memory operand is used with the XCHG instruction, the processor’s LOCK signal is
automatically asserted. This instruction is thus useful for implementing semaphores or similar data structures for
process synchronization. See “Bus Locking” in Chapter 9, “Multiple-Processor Management,”of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information on bus locking.

The BSWAP (byte swap) instruction reverses the byte order in a 32-bit register operand. Bit positions 0 through 7
are exchanged with 24 through 31, and bit positions 8 through 15 are exchanged with 16 through 23. Executing
this instruction twice in a row leaves the register with the same value as before. The BSWAP instruction is useful for
converting between “big-endian” and "little-endian” data formats. This instruction also speeds execution of decimal
arithmetic. (The XCHG instruction can be used to swap the bytes in a word.)

Table 7-2. Conditional Move Instructions

Instruction Mnemonic Status Flag States Condition Description
Unsigned Conditional Moves
CMOVA/CMOVNBE (CForzF)=0 Above/not below or equal
CMOVAE/CMOVNB CF=0 Above or equal/not below
CMOVNC CF=0 Not carry
CMOVB/CMOVNAE CF=1 Below/not above or equal
cMovC CF=1 Carry
CMOVBE/CMOVNA (CForzF)=1 Below or equal/not above
CMOVE/CMOVZ ZF=1 Equal/zero
CMOVNE/CMOVNZ ZF=0 Not equal/not zero
CMOVP/CMOVPE PF=1 Parity/parity even
CMOVNP/CMOVPO PF=0 Not parity/parity odd
Signed Conditional Moves
CMOVGE/CMOVNL (SF xor OF)=0 Greater or equal/not less
CMOVL/CMOVNGE (SF xor OF) =1 Less/not greater or equal
CMOVLE/CMOVNG ((SF xor OF) or ZF) =1 Less or equal/not greater
CMOVO OF=1 Overflow
CMOVNO OF=0 Not overflow
CMOVS SF=1 Sign (negative)
CMOVNS SF=0 Not sign (non-negative)

The XADD (exchange and add) instruction swaps two operands and then stores the sum of the two operands in the
destination operand. The status flags in the EFLAGS register indicate the result of the addition. This instruction can
be combined with the LOCK prefix (see "LOCK—Assert LOCK# Signal Prefix” in Chapter 3, “Instruction Set Refer-
ence, A-L,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A) in a multiprocessing
system to allow multiple processors to execute one DO loop.

The CMPXCHG (compare and exchange) and CMPXCHG8B (compare and exchange 8 bytes) instructions are used
to synchronize operations in systems that use multiple processors. The CMPXCHG instruction requires three oper-
ands: a source operand in a register, another source operand in the EAX register, and a destination operand. If
the values contained in the destination operand and the EAX register are equal, the destination operand is
replaced with the value of the other source operand (the value not in the EAX register). Otherwise, the original

7-4 Vol.1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

value of the destination operand is loaded in the EAX register. The status flags in the EFLAGS register reflect the
result that would have been obtained by subtracting the destination operand from the value in the EAX register.

The CMPXCHG instruction is commonly used for testing and modifying semaphores. It checks to see if a semaphore
is free. If the semaphore is free, it is marked allocated; otherwise it gets the ID of the current owner. This is all done
in one uninterruptible operation. In a single-processor system, the CMPXCHG instruction eliminates the need to
switch to protection level 0 (to disable interrupts) before executing multiple instructions to test and modify a sema-
phore.

For multiple processor systems, CMPXCHG can be combined with the LOCK prefix to perform the compare and
exchange operation atomically. (See “Locked Atomic Operations” in Chapter 9, “Multiple-Processor Management,”
of the Intel®™ 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for more information on atomic
operations.)

The CMPXCHGS8B instruction also requires three operands: a 64-bit value in EDX:EAX, a 64-bit value in ECX:EBX,
and a destination operand in memory. The instruction compares the 64-bit value in the EDX:EAX registers with the
destination operand. If they are equal, the 64-bit value in the ECX:EBX registers is stored in the destination
operand. If the EDX:EAX registers and the destination are not equal, the destination is loaded in the EDX:EAX
registers. The CMPXCHGS8B instruction can be combined with the LOCK prefix to perform the operation atomically.

7.3.1.3 Exchange Instructions in 64-Bit Mode

The CMPXCHG16B instruction is available in 64-bit mode only. It is an extension of the functionality provided by
CMPXCHGS8B that operates on 128-bits of data.

7314 Stack Manipulation Instructions

The PUSH, POP, PUSHA (push all registers), and POPA (pop all registers) instructions move data to and from the
stack. The PUSH instruction decrements the stack pointer (contained in the ESP register), then copies the source
operand to the top of stack (see Figure 7-1). It operates on memory operands, immediate operands, and register
operands (including segment registers). The PUSH instruction is commonly used to place parameters on the stack
before calling a procedure. It can also be used to reserve space on the stack for temporary variables.

Stack
Before Pushing Doubleword After Pushing Doubleword
Gowtn 31 0 31 0
t n < ESP
n-4 Doubleword Value |<<—ESP
n-8

Figure 7-1. Operation of the PUSH Instruction

The PUSHA instruction saves the contents of the eight general-purpose registers on the stack (see Figure 7-2).
This instruction simplifies procedure calls by reducing the number of instructions required to save the contents of
the general-purpose registers. The registers are pushed on the stack in the following order: EAX, ECX, EDX, EBX,
the initial value of ESP before EAX was pushed, EBP, ESI, and EDI.

Vol.1 7-5

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

The POP instruction copies the word or doubleword at the current top of stack (indicated by the ESP register) to the
location specified with the destination operand. It then increments the ESP register to point to the new top of stack
(see Figure 7-3). The destination operand may specify a general-purpose register, a segment register, or a memory
location.

The POPA instruction reverses the effect of the PUSHA instruction. It pops the top eight words or doublewords from
the top of the stack into the general-purpose registers, except for the ESP register (see Figure 7-4). If the operand-
size attribute is 32, the doublewords on the stack are transferred to the registers in the following order: EDI, ESI,
EBP, ignore doubleword, EBX, EDX, ECX, and EAX. The ESP register is restored by the action of popping the stack.
If the operand-size attribute is 16, the words on the stack are transferred to the registers in the following order: DI,

Before Pushing Registers
31 0

Stack

<—ESP

After Pushing Registers

31

0

EAX

ECX

EDX

EBX

Old ESP

EBP

ESI

EDI

<—ESP

Figure 7-2. Operation of the PUSHA Instruction

Stack
Growth

j B }

Before Popping Doubleword
31 0

Stack

Doubleword Value

< ESP

After Popping Doubleword

31

0

<< ESP

Figure 7-3. Operation of the POP Instruction

SI, BP, ignore word, BX, DX, CX, and AX.

7-6 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

Stack
Before Popping Registers After Popping Registers
Stack 0 31 0 31
Growth
J n-4 <—ESP
n-8 EAX

n-12 ECX

n-16 EDX

n-20 EBX

n-24 Ignored

n-28 EBP

n-32 ESI

n- 36 EDI - ESP

Figure 7-4. Operation of the POPA Instruction

7.3.1.5 Stack Manipulation Instructions in 64-Bit Mode

In 64-bit mode, the stack pointer size is 64 bits and cannot be overridden by an instruction prefix. In implicit stack
references, address-size overrides are ignored. Pushes and pops of 32-bit values on the stack are not possible in
64-bit mode. 16-bit pushes and pops are supported by using the 66H operand-size prefix. PUSHA, PUSHAD, POPA,
and POPAD are not supported.

7.3.1.6 Type Conversion Instructions

The type conversion instructions convert bytes into words, words into doublewords, and doublewords into quad-
words. These instructions are especially useful for converting integers to larger integer formats, because they
perform sign extension (see Figure 7-5).

Two kinds of type conversion instructions are provided: simple conversion and move and convert.

Before Sign

15 0
[STNWINWIN N8N NN W[N]][] E€fore
Extension

After Sign

31 15 0
B EE e e e e e o o s
Extension

Figure 7-5. Sign Extension

Simple conversion — The CBW (convert byte to word), CWDE (convert word to doubleword extended), CWD
(convert word to doubleword), and CDQ (convert doubleword to quadword) instructions perform sign extension to
double the size of the source operand.

The CBW instruction copies the sign (bit 7) of the byte in the AL register into every bit position of the upper byte of
the AX register. The CWDE instruction copies the sign (bit 15) of the word in the AX register into every bit position
of the high word of the EAX register.

The CWD instruction copies the sign (bit 15) of the word in the AX register into every bit position in the DX register.
The CDQ instruction copies the sign (bit 31) of the doubleword in the EAX register into every bit position in the EDX
register. The CWD instruction can be used to produce a doubleword dividend from a word before a word division,

and the CDQ instruction can be used to produce a quadword dividend from a doubleword before doubleword divi-
sion.

Vol.1 7-7

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

Move with sign or zero extension — The MOVSX (move with sign extension) and MOVZX (move with zero
extension) instructions move the source operand into a register then perform the sign extension.

The MOVSX instruction extends an 8-bit value to a 16-bit value or an 8-bit or 16-bit value to a 32-bit value by sign
extending the source operand, as shown in Figure 7-5. The MOVZX instruction extends an 8-bit value to a 16-bit
value or an 8-bit or 16-bit value to a 32-bit value by zero extending the source operand.

7.3.1.7 Type Conversion Instructions in 64-Bit Mode

The MOVSXD instruction operates on 64-bit data. It sign-extends a 32-bit value to 64 bits. This instruction is not
encodable in non-64-bit modes.

7.3.2 Binary Arithmetic Instructions

Binary arithmetic instructions operate on 8-, 16-, and 32-bit numeric data encoded as signed or unsigned binary
integers. The binary arithmetic instructions may also be used in algorithms that operate on decimal (BCD) values.

For the purpose of this discussion, these instructions are divided into subordinate subgroups of instructions that:
® Add and subtract.

® Increment and decrement.

® Compare and change signs.

® Multiply and divide.

7.3.2.1 Addition and Subtraction Instructions

The ADD (add integers), ADC (add integers with carry), SUB (subtract integers), and SBB (subtract integers with
borrow) instructions perform addition and subtraction operations on signed or unsigned integer operands.

The ADD instruction computes the sum of two integer operands.

The ADC instruction computes the sum of two integer operands, plus 1 if the CF flag is set. This instruction is used
to propagate a carry when adding numbers in stages.

The SUB instruction computes the difference of two integer operands.

The SBB instruction computes the difference of two integer operands, minus 1 if the CF flag is set. This instruction
is used to propagate a borrow when subtracting numbers in stages.

7.3.2.2 Increment and Decrement Instructions

The INC (increment) and DEC (decrement) instructions add 1 to or subtract 1 from an unsigned integer operand,
respectively. A primary use of these instructions is for implementing counters.

7.3.2.3 Increment and Decrement Instructions in 64-Bit Mode

The INC and DEC instructions are supported in 64-bit mode. However, some forms of INC and DEC (the register
operand being encoded using register extension field in the MOD R/M byte) are not encodable in 64-bit mode
because the opcodes are treated as REX prefixes.

73.24 Comparison and Sign Change Instructions

The CMP (compare) instruction computes the difference between two integer operands and updates the OF, SF, ZF,
AF, PF, and CF flags according to the result. The source operands are not modified, nor is the result saved. The CMP
instruction is commonly used in conjunction with a Jcc (jump) or SETcc (byte set on condition) instruction, with the
latter instructions performing an action based on the result of a CMP instruction.

The NEG (negate) instruction subtracts a signed integer operand from zero. The effect of the NEG instruction is to
change the sign of a two's complement operand while keeping its magnitude.

7-8 Vol.1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

7.3.2.5 Multiplication and Division Instructions

The processor provides two multiply instructions, MUL (unsigned multiply) and IMUL (signed multiply), and two
divide instructions, DIV (unsigned divide) and IDIV (signed divide).

The MUL instruction multiplies two unsigned integer operands. The result is computed to twice the size of the
source operands (for example, if word operands are being multiplied, the result is a doubleword).

The IMUL instruction multiplies two signed integer operands. The result is computed to twice the size of the source
operands; however, in some cases the result is truncated to the size of the source operands (see “IMUL—Signed
Multiply” in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A).

The DIV instruction divides one unsigned operand by another unsigned operand and returns a quotient and a
remainder.

The IDIV instruction is identical to the DIV instruction, except that IDIV performs a signed division.

7.3.3 Decimal Arithmetic Instructions

Decimal arithmetic can be performed by combining the binary arithmetic instructions ADD, SUB, MUL, and DIV
(discussed in Section 7.3.2, “Binary Arithmetic Instructions”) with the decimal arithmetic instructions. The decimal
arithmetic instructions are provided to carry out the following operations:

® To adjust the results of a previous binary arithmetic operation to produce a valid BCD result.

®* To adjust the operands of a subsequent binary arithmetic operation so that the operation will produce a valid
BCD result.

These instructions operate on both packed and unpacked BCD values. For the purpose of this discussion, the
decimal arithmetic instructions are divided into subordinate subgroups of instructions that provide:

®* Packed BCD adjustments.
® Unpacked BCD adjustments.

7.3.3.1 Packed BCD Adjustment Instructions

The DAA (decimal adjust after addition) and DAS (decimal adjust after subtraction) instructions adjust the results
of operations performed on packed BCD integers (see Section 4.7, "BCD and Packed BCD Integers”). Adding two
packed BCD values requires two instructions: an ADD instruction followed by a DAA instruction. The ADD instruc-
tion adds (binary addition) the two values and stores the result in the AL register. The DAA instruction then adjusts
the value in the AL register to obtain a valid, 2-digit, packed BCD value and sets the CF flag if a decimal carry
occurred as the result of the addition.

Likewise, subtracting one packed BCD value from another requires a SUB instruction followed by a DAS instruction.
The SUB instruction subtracts (binary subtraction) one BCD value from another and stores the result in the AL
register. The DAS instruction then adjusts the value in the AL register to obtain a valid, 2-digit, packed BCD value
and sets the CF flag if a decimal borrow occurred as the result of the subtraction.

7.33.2 Unpacked BCD Adjustment Instructions

The AAA (ASCII adjust after addition), AAS (ASCII adjust after subtraction), AAM (ASCII adjust after multiplica-
tion), and AAD (ASCII adjust before division) instructions adjust the results of arithmetic operations performed
on unpacked BCD values (see Section 4.7, "BCD and Packed BCD Integers”). All these instructions assume that
the value to be adjusted is stored in the AL register or, in one instance, the AL and AH registers.

The AAA instruction adjusts the contents of the AL register following the addition of two unpacked BCD values. It
converts the binary value in the AL register into a decimal value and stores the result in the AL register in unpacked
BCD format (the decimal number is stored in the lower 4 bits of the register and the upper 4 bits are cleared). If a
decimal carry occurred as a result of the addition, the CF flag is set and the contents of the AH register are incre-
mented by 1.

Vol.1T 7-9

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

The AAS instruction adjusts the contents of the AL register following the subtraction of two unpacked BCD values.
Here again, a binary value is converted into an unpacked BCD value. If a borrow was required to complete the
decimal subtract, the CF flag is set and the contents of the AH register are decremented by 1.

The AAM instruction adjusts the contents of the AL register following a multiplication of two unpacked BCD values.
It converts the binary value in the AL register into a decimal value and stores the least significant digit of the result
in the AL register (in unpacked BCD format) and the most significant digit, if there is one, in the AH register (also
in unpacked BCD format).

The AAD instruction adjusts a two-digit BCD value so that when the value is divided with the DIV instruction, a valid
unpacked BCD result is obtained. The instruction converts the BCD value in registers AH (most significant digit) and
AL (least significant digit) into a binary value and stores the result in register AL. When the value in AL is divided by
an unpacked BCD value, the quotient and remainder will be automatically encoded in unpacked BCD format.

7.3.4 Decimal Arithmetic Instructions in 64-Bit Mode

Decimal arithmetic instructions are not supported in 64-bit mode, they are either invalid or not encodable.

7.3.5 Logical Instructions

The logical instructions AND, OR, XOR (exclusive or), and NOT perform the standard Boolean operations for which
they are named. The AND, OR, and XOR instructions require two operands; the NOT instruction operates on a
single operand.

7.3.6 Shift and Rotate Instructions

The shift and rotate instructions rearrange the bits within an operand. For the purpose of this discussion, these
instructions are further divided into subordinate subgroups of instructions that:

® Shift bits
® Double-shift bits (move them between operands)
® Rotate bits

7.3.6.1 Shift Instructions

The SAL (shift arithmetic left), SHL (shift logical left), SAR (shift arithmetic right), SHR (shift logical right) instruc-
tions perform an arithmetic or logical shift of the bits in a byte, word, or doubleword.

The SAL and SHL instructions perform the same operation (see Figure 7-6). They shift the source operand left by
from 1 to 31 bit positions. Empty bit positions are cleared. The CF flag is loaded with the last bit shifted out of the
operand.

7-10 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

Initial State
CF Operand

10001000100010001000100010001111‘

After 1-bit SHL/SAL Instruction

4—{00010001000100010001000100011110‘4—0

After 10-bit SHL/SAL Instruction

|Z|<—{00100010001000100011110000000000‘4—0

Figure 7-6. SHL/SAL Instruction Operation

The SHR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure 7-7). As with the
SHL/SAL instruction, the empty bit positions are cleared and the CF flag is loaded with the last bit shifted out of the
operand.

Initial State Operand CF

‘100010001000100010001000100011‘I1|

After 1-bit SHR Instruction

0—>‘O1000100010001000100010001000111|—>

After 10-bit SHR Instruction

0—>‘00000000001000100010001000100010|—>|z|

Figure 7-7. SHR Instruction Operation

The SAR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure 7-8). This instruction
differs from the SHR instruction in that it preserves the sign of the source operand by clearing empty bit positions

if the operand is positive or setting the empty bits if the operand is negative. Again, the CF flag is loaded with the
last bit shifted out of the operand.

The SAR and SHR instructions can also be used to perform division by powers of 2 (see "SAL/SAR/SHL/SHR—Shift
Instructions” in Chapter 4, “Instruction Set Reference, M-U,” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B).

Vol.1T 7-11

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

Initial State (Positive Operand) Operand CF

|01000100010001000100010001000111‘

After 1-bit SAR Instruction

|j70100010001000100010001000100011}_>

Initial State (Negative Operand) CF
|11000100010001000100010001000111}—»

After 1-bit SAR Instruction

l—i;1100010001000100010001000100011}—»

Figure 7-8. SAR Instruction Operation

7.3.6.2 Double-Shift Instructions

The SHLD (shift left double) and SHRD (shift right double) instructions shift a specified number of bits from one
operand to another (see Figure 7-9). They are provided to facilitate operations on unaligned bit strings. They can
also be used to implement a variety of bit string move operations.

SHLD Instruction
31 0

4—{ Destination (Memory or Register) ‘«

31 0

Source (Register) ‘

31 SHRD Instruction 0

‘ Source (Register) |—

31 0
Destination (Memory or Register) |—>

Figure 7-9. SHLD and SHRD Instruction Operations

The SHLD instruction shifts the bits in the destination operand to the left and fills the empty bit positions (in the
destination operand) with bits shifted out of the source operand. The destination and source operands must be the
same length (either words or doublewords). The shift count can range from 0 to 31 bits. The result of this shift
operation is stored in the destination operand, and the source operand is not modified. The CF flag is loaded with
the last bit shifted out of the destination operand.

The SHRD instruction operates the same as the SHLD instruction except bits are shifted to the right in the destina-
tion operand, with the empty bit positions filled with bits shifted out of the source operand.

7-12 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

7.3.6.3 Rotate Instructions

The ROL (rotate left), ROR (rotate right), RCL (rotate through carry left) and RCR (rotate through carry right)
instructions rotate the bits in the destination operand out of one end and back through the other end (see
Figure 7-10). Unlike a shift, no bits are lost during a rotation. The rotate count can range from 0 to 31.

ROL Instruction
31 0

CF |= Destination (Memory or Register)

A

31 ROR Instruction 0

—>‘ Destination (Memory or Register) |>*

31 RCL Instruction

4—{ Destination (Memory or Register) |<—

31 RCR Instruction

—>‘ Destination (Memory or Register) }—»

Figure 7-10. ROL, ROR, RCL, and RCR Instruction Operations

The ROL instruction rotates the bits in the operand to the left (toward more significant bit locations). The ROR
instruction rotates the operand right (toward less significant bit locations).

The RCL instruction rotates the bits in the operand to the left, through the CF flag. This instruction treats the CF flag
as a one-bit extension on the upper end of the operand. Each bit that exits from the most significant bit location of
the operand moves into the CF flag. At the same time, the bit in the CF flag enters the least significant bit location
of the operand.

The RCR instruction rotates the bits in the operand to the right through the CF flag.

For all the rotate instructions, the CF flag always contains the value of the last bit rotated out of the operand, even
if the instruction does not use the CF flag as an extension of the operand. The value of this flag can then be tested
by a conditional jump instruction (JC or INC).

7.3.7 Bit and Byte Instructions

These instructions operate on bit or byte strings. For the purpose of this discussion, they are further divided into
subordinate subgroups that:

®* Test and modify a single bit.

® Scan a bit string.

® Set a byte given conditions.

®* Test operands and report results.

Vol.1 7-13

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

7.3.7.1 Bit Test and Modify Instructions

The bit test and modify instructions (see Table 7-3) operate on a single bit, which can be in an operand. The loca-
tion of the bit is specified as an offset from the least significant bit of the operand. When the processor identifies
the bit to be tested and modified, it first loads the CF flag with the current value of the bit. Then it assigns a new
value to the selected bit, as determined by the modify operation for the instruction.

Table 7-3. Bit Test and Modify Instructions

Instruction Effect on CF Flag Effect on Selected Bit

BT (Bit Test) CF flag « Selected Bit No effect

BTS (Bit Test and Set) CF flag « Selected Bit Selected Bit « 1

BTR (Bit Test and Reset) CF flag « Selected Bit Selected Bit < 0

BTC (Bit Test and Complement) CF flag « Selected Bit Selected Bit « NOT (Selected Bit)

7.3.7.2 Bit Scan Instructions

The BSF (bit scan forward) and BSR (bit scan reverse) instructions scan a bit string in a source operand for a set bit
and store the bit index of the first set bit found in a destination register. The bit index is the offset from the least
significant bit (bit 0) in the bit string to the first set bit. The BSF instruction scans the source operand low-to-high
(from bit O of the source operand toward the most significant bit); the BSR instruction scans high-to-low (from the
most significant bit toward the least significant bit).

7.3.7.3 Byte Set on Condition Instructions

The SETcc (set byte on condition) instructions set a destination-operand byte to 0 or 1, depending on the state of
selected status flags (CF, OF, SF, ZF, and PF) in the EFLAGS register. The suffix (cc) added to the SET mnemonic
determines the condition being tested for.

For example, the SETO instruction tests for overflow. If the OF flag is set, the destination byte is set to 1; if OF is
clear, the destination byte is cleared to 0. Appendix B, “EFLAGS Condition Codes,” lists the conditions it is possible
to test for with this instruction.

73.74 Test Instruction

The TEST instruction performs a logical AND of two operands and sets the SF, ZF, and PF flags according to the
results. The flags can then be tested by the conditional jump or loop instructions or the SETcc instructions. The
TEST instruction differs from the AND instruction in that it does not alter either of the operands.

7.3.8 Control Transfer Instructions

The processor provides both conditional and unconditional control transfer instructions to direct the flow of
program execution. Conditional transfers are taken only for specified states of the status flags in the EFLAGS
register. Unconditional control transfers are always executed.

For the purpose of this discussion, these instructions are further divided into subordinate subgroups that process:
®* Unconditional transfers.

® Conditional transfers.

® Software interrupts.

7.3.8.1 Unconditional Transfer Instructions

The JMP, CALL, RET, INT, and IRET instructions transfer program control to another location (destination address)
in the instruction stream. The destination can be within the same code segment (near transfer) or in a different
code segment (far transfer).

7-14 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

Jump instruction — The JMP (jump) instruction unconditionally transfers program control to a destination
instruction. The transfer is one-way; that is, a return address is not saved. A destination operand specifies the
address (the instruction pointer) of the destination instruction. The address can be a relative address or an
absolute address.

A relative address is a displacement (offset) with respect to the address in the EIP register. The destination
address (a near pointer) is formed by adding the displacement to the address in the EIP register. The displacement
is specified with a signed integer, allowing jumps either forward or backward in the instruction stream.

An absolute address is a offset from address 0 of a segment. It can be specified in either of the following ways:

®* An address in a general-purpose register — This address is treated as a near pointer, which is copied into
the EIP register. Program execution then continues at the new address within the current code segment.

®* An address specified using the standard addressing modes of the processor — Here, the address can
be a near pointer or a far pointer. If the address is for a near pointer, the address is translated into an offset and
copied into the EIP register. If the address is for a far pointer, the address is translated into a segment selector
(which is copied into the CS register) and an offset (which is copied into the EIP register).

In protected mode, the JMP instruction also allows jumps to a call gate, a task gate, and a task-state segment.

Call and return instructions — The CALL (call procedure) and RET (return from procedure) instructions allow a
jump from one procedure (or subroutine) to another and a subsequent jump back (return) to the calling procedure.

The CALL instruction transfers program control from the current (or calling) procedure to another procedure (the
called procedure). To allow a subsequent return to the calling procedure, the CALL instruction saves the current
contents of the EIP register on the stack before jumping to the called procedure. The EIP register (prior to trans-
ferring program control) contains the address of the instruction following the CALL instruction. When this address
is pushed on the stack, it is referred to as the return instruction pointer or return address.

The address of the called procedure (the address of the first instruction in the procedure being jumped to) is spec-
ified in @ CALL instruction the same way as it is in a JMP instruction (see “Jump instruction” on page 7-15). The
address can be specified as a relative address or an absolute address. If an absolute address is specified, it can be
either a near or a far pointer.

The RET instruction transfers program control from the procedure currently being executed (the called procedure)
back to the procedure that called it (the calling procedure). Transfer of control is accomplished by copying the
return instruction pointer from the stack into the EIP register. Program execution then continues with the instruc-
tion pointed to by the EIP register.

The RET instruction has an optional operand, the value of which is added to the contents of the ESP register as part
of the return operation. This operand allows the stack pointer to be incremented to remove parameters from the
stack that were pushed on the stack by the calling procedure.

See Section 6.4, “Calling Procedures Using CALL and RET,” for more information on the mechanics of making proce-
dure calls with the CALL and RET instructions.

Return from interrupt instruction — When the processor services an interrupt, it performs an implicit call to an
interrupt-handling procedure. The IRET (return from interrupt) instruction returns program control from an inter-
rupt handler to the interrupted procedure (that is, the procedure that was executing when the interrupt occurred).
The IRET instruction performs a similar operation to the RET instruction (see “Call and return instructions” on page
7-15) except that it also restores the EFLAGS register from the stack. The contents of the EFLAGS register are
automatically stored on the stack along with the return instruction pointer when the processor services an inter-
rupt.

7.3.8.2 Conditional Transfer Instructions

The conditional transfer instructions execute jumps or loops that transfer program control to another instruction in
the instruction stream if specified conditions are met. The conditions for control transfer are specified with a set of
condition codes that define various states of the status flags (CF, ZF, OF, PF, and SF) in the EFLAGS register.

Conditional jump instructions — The Jcc (conditional) jump instructions transfer program control to a destina-
tion instruction if the conditions specified with the condition code (cc) associated with the instruction are satisfied
(see Table 7-4). If the condition is not satisfied, execution continues with the instruction following the Jcc instruc-
tion. As with the JMP instruction, the transfer is one-way; that is, a return address is not saved.

Vol.1 7-15

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

Table 7-4. Conditional Jump Instructions

Signed Conditional Jumps
JG/INLE

((SF xor OF) or ZF) =0

Instruction Mnemonic Condition (Flag States) Description

Unsigned Conditional Jumps
JA/INBE (CForzF)=0 Above/not below or equal
JAE/|NB CF=0 Above or equal/not below
JB/JNAE CF=1 Below/not above or equal
JBE/INA (CFor ZF)=1 Below or equal/not above
JC CF=1 Carry
JE/Z ZF =1 Equal/zero
JNC CF=0 Not carry
JNE/INZ ZF=0 Not equal/not zero
JNP/JPO PF=0 Not parity/parity odd
JP/JPE PF=1 Parity/parity even
JCXZ CX=0 Register CX is zero
JECXZ ECX=0 Register ECX is zero

Greater/not less or equal

JGE/JNL (SF xor OF)=0 Greater or equal/not less
JU/INGE (SF xor OF) =1 Less/not greater or equal
JLE/ING ((SF xor OF) or ZF) =1 Less or equal/not greater
JNO OF=0 Not overflow

JNS SF=0 Not sign (non-negative)
JO OF=1 Overflow

S SF=1 Sign (negative)

The destination operand specifies a relative address (a signed offset with respect to the address in the EIP register)
that points to an instruction in the current code segment. The Jcc instructions do not support far transfers;
however, far transfers can be accomplished with a combination of a Jcc and a JMP instruction (see “Jcc—Jump if
Condition Is Met” in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and IA-32 Architectures Software
Developer’'s Manual, Volume 2A).

Table 7-4 shows the mnemonics for the Jcc instructions and the conditions being tested for each instruction. The
condition code mnemonics are appended to the letter “]” to form the mnemonic for a Jcc instruction. The instruc-
tions are divided into two groups: unsigned and signed conditional jumps. These groups correspond to the results
of operations performed on unsigned and signed integers respectively. Those instructions listed as pairs (for
example, JA/INBE) are alternate names for the same instruction. Assemblers provide alternate names to make it
easier to read program listings.

The JCXZ and JECXZ instructions test the CX and ECX registers, respectively, instead of one or more status flags.
See “Jump if zero instructions” on page 7-17 for more information about these instructions.

Loop instructions — The LOOP, LOOPE (loop while equal), LOOPZ (loop while zero), LOOPNE (loop while not
equal), and LOOPNZ (loop while not zero) instructions are conditional jump instructions that use the value of the
ECX register as a count for the number of times to execute a loop. All the loop instructions decrement the count in
the ECX register each time they are executed and terminate a loop when zero is reached. The LOOPE, LOOPZ,
LOOPNE, and LOOPNZ instructions also accept the ZF flag as a condition for terminating the loop before the count
reaches zero.

The LOOP instruction decrements the contents of the ECX register (or the CX register, if the address-size attribute
is 16), then tests the register for the loop-termination condition. If the count in the ECX register is non-zero,
program control is transferred to the instruction address specified by the destination operand. The destination

7-16 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

operand is a relative address (that is, an offset relative to the contents of the EIP register), and it generally points
to the first instruction in the block of code that is to be executed in the loop. When the count in the ECX register
reaches zero, program control is transferred to the instruction immediately following the LOOP instruction,
which terminates the loop. If the count in the ECX register is zero when the LOOP instruction is first executed, the
register is pre-decremented to FFFFFFFFH, causing the loop to be executed 232 times.

The LOOPE and LOOPZ instructions perform the same operation (they are mnemonics for the same instruction).
These instructions operate the same as the LOOP instruction, except that they also test the ZF flag.

If the count in the ECX register is not zero and the ZF flag is set, program control is transferred to the destination
operand. When the count reaches zero or the ZF flag is clear, the loop is terminated by transferring program control
to the instruction immediately following the LOOPE/LOOPZ instruction.

The LOOPNE and LOOPNZ instructions (mnemonics for the same instruction) operate the same as the
LOOPE/LOOPZ instructions, except that they terminate the loop if the ZF flag is set.

Jump if zero instructions — The JECXZ (jump if ECX zero) instruction jumps to the location specified in the desti-
nation operand if the ECX register contains the value zero. This instruction can be used in combination with a loop
instruction (LOOP, LOOPE, LOOPZ, LOOPNE, or LOOPNZ) to test the ECX register prior to beginning a loop. As
described in “Loop instructions” on page 7-16, the loop instructions decrement the contents of the ECX register
before testing for zero. If the value in the ECX register is zero initially, it will be decremented to FFFFFFFFH on the
first loop instruction, causing the loop to be executed 232 times. To prevent this problem, a JECXZ instruction can
be inserted at the beginning of the code block for the loop, causing a jump out of the loop if the ECX register count
is initially zero. When used with repeated string scan and compare instructions, the JECXZ instruction can deter-
mine whether the loop terminated because the count reached zero or because the scan or compare conditions were
satisfied.

The JCXZ (jump if CX is zero) instruction operates the same as the JECXZ instruction when the 16-bit address-size
attribute is used. Here, the CX register is tested for zero.

7.3.8.3 Control Transfer Instructions in 64-Bit Mode

In 64-bit mode, the operand size for all near branches (CALL, RET, JCC, JCXZ, JMP, and LOOP) is forced to 64 bits.
The listed instructions update the 64-bit RIP without need for a REX operand-size prefix.

Near branches in the following operations are forced to 64-bits (regardless of operand size prefixes):
®* Truncation of the size of the instruction pointer.

® Size of a stack pop or push, due to CALL or RET.

® Size of a stack-pointer increment or decrement, due to CALL or RET.

¢ Indirect-branch operand size.

Note that the displacement field for relative branches is still limited to 32 bits and the address size for near
branches is not forced.

Address size determines the register size (CX/ECX/RCX) used for JCXZ and LOOP. It also impacts the address
calculation for memory indirect branches. Addresses size is 64 bits by default, although it can be over-ridden to 32
bits (using a prefix).

7.3.84 Software Interrupt Instructions

The INT n (software interrupt), INTO (interrupt on overflow), and BOUND (detect value out of range) instructions
allow a program to explicitly raise a specified interrupt or exception, which in turn causes the handler routine for
the interrupt or exception to be called.

The INT n instruction can raise any of the processor’s interrupts or exceptions by encoding the vector of the inter-
rupt or exception in the instruction. This instruction can be used to support software generated interrupts or to test
the operation of interrupt and exception handlers.

The IRET (return from interrupt) instruction returns program control from an interrupt handler to the interrupted
procedure. The IRET instruction performs a similar operation to the RET instruction.

Vol.1 7-17

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

The CALL (call procedure) and RET (return from procedure) instructions allow a jump from one procedure to
another and a subsequent return to the calling procedure. EFLAGS register contents are automatically stored on
the stack along with the return instruction pointer when the processor services an interrupt.

The INTO instruction raises the overflow exception if the OF flag is set. If the flag is clear, execution continues
without raising the exception. This instruction allows software to access the overflow exception handler explicitly to
check for overflow conditions.

The BOUND instruction compares a signed value against upper and lower bounds, and raises the "BOUND range
exceeded” exception if the value is less than the lower bound or greater than the upper bound. This instruction is
useful for operations such as checking an array index to make sure it falls within the range defined for the array.

7.3.8.5 Software Interrupt Instructions in 64-Bit Mode and Compatibility Mode

In 64-bit mode, the stack size is 8 bytes wide. IRET must pop 8-byte items off the stack. SS:RSP pops uncondition-
ally. BOUND is not supported.

In compatibility mode, SS:RSP is popped only if the CPL changes.

7.3.9 String Operations

The GP instructions includes a set of string instructions that are designed to access large data structures; these
are introduced in Section 7.3.9.1. Section 7.3.9.2 describes how REP prefixes can be used with these instructions
to perform more complex repeated string operations. Certain processors optimize repeated string operations
with fast-string operation, as described in Section 7.3.9.3. Section 7.3.9.4 explains how string operations can be
used in 64-bit mode.

7.3.9.1 String Instructions

The MOVS (Move String), CMPS (Compare string), SCAS (Scan string), LODS (Load string), and STOS (Store
string) instructions permit large data structures, such as alphanumeric character strings, to be moved and exam-
ined in memory. These instructions operate on individual elements in a string, which can be a byte, word, or
doubleword. The string elements to be operated on are identified with the ESI (source string element) and EDI
(destination string element) registers. Both of these registers contain absolute addresses (offsets into a segment)
that point to a string element.

By default, the ESI register addresses the segment identified with the DS segment register. A segment-override
prefix allows the ESI register to be associated with the CS, SS, ES, FS, or GS segment register. The EDI register
addresses the segment identified with the ES segment register; no segment override is allowed for the EDI register.
The use of two different segment registers in the string instructions permits operations to be performed on strings
located in different segments. Or by associating the ESI register with the ES segment register, both the source and
destination strings can be located in the same segment. (This latter condition can also be achieved by loading the
DS and ES segment registers with the same segment selector and allowing the ESI register to default to the DS
register.)

The MOVS instruction moves the string element addressed by the ESI register to the location addressed by the EDI
register. The assembler recognizes three “short forms” of this instruction, which specify the size of the string to be
moved: MOVSB (move byte string), MOVSW (move word string), and MOVSD (move doubleword string).

The CMPS instruction subtracts the destination string element from the source string element and updates the
status flags (CF, ZF, OF, SF, PF, and AF) in the EFLAGS register according to the results. Neither string element is
written back to memory. The assembler recognizes three “short forms” of the CMPS instruction: CMPSB (compare
byte strings), CMPSW (compare word strings), and CMPSD (compare doubleword strings).

The SCAS instruction subtracts the destination string element from the contents of the EAX, AX, or AL register
(depending on operand length) and updates the status flags according to the results. The string element and
register contents are not modified. The following “short forms” of the SCAS instruction specify the operand length:
SCASB (scan byte string), SCASW (scan word string), and SCASD (scan doubleword string).

The LODS instruction loads the source string element identified by the ESI register into the EAX register (for a
doubleword string), the AX register (for a word string), or the AL register (for a byte string). The “short forms” for

7-18 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

this instruction are LODSB (load byte string), LODSW (load word string), and LODSD (load doubleword string). This
instruction is usually used in a loop, where other instructions process each element of the string after they are
loaded into the target register.

The STOS instruction stores the source string element from the EAX (doubleword string), AX (word string), or AL
(byte string) register into the memory location identified with the EDI register. The “short forms” for this instruction
are STOSB (store byte string), STOSW (store word string), and STOSD (store doubleword string). This instruction
is also normally used in a loop. Here a string is commonly loaded into the register with a LODS instruction, oper-
ated on by other instructions, and then stored again in memory with a STOS instruction.

The I/0 instructions (see Section 7.3.10, “I/O Instructions”) also perform operations on strings in memory.

7.3.9.2 Repeated String Operations

Each of the string instructions described in Section 7.3.9.1 perform one iteration of a string operation. To operate
on strings longer than a doubleword, the string instructions can be combined with a repeat prefix (REP) to create a
repeating instruction or be placed in a loop.

When used in string instructions, the ESI and EDI registers are automatically incremented or decremented after
each iteration of an instruction to point to the next element (byte, word, or doubleword) in the string. String oper-
ations can thus begin at higher addresses and work toward lower ones, or they can begin at lower addresses and
work toward higher ones. The DF flag in the EFLAGS register controls whether the registers are incremented (DF =
0) or decremented (DF = 1). The STD and CLD instructions set and clear this flag, respectively.

The following repeat prefixes can be used in conjunction with a count in the ECX register to cause a string instruc-
tion to repeat:

®* REP — Repeat while the ECX register not zero.
* REPE/REPZ — Repeat while the ECX register not zero and the ZF flag is set.
* REPNE/REPNZ — Repeat while the ECX register not zero and the ZF flag is clear.

When a string instruction has a repeat prefix, the operation executes until one of the termination conditions spec-
ified by the prefix is satisfied. The REPE/REPZ and REPNE/REPNZ prefixes are used only with the CMPS and SCAS
instructions. Also, note that a REP STOS instruction is the fastest way to initialize a large block of memory.

7.3.9.3 Fast-String Operation

To improve performance, more recent processors support modifications to the processor’s operation during the
string store operations initiated with the MOVS, MOVSB, STOS, and STOSB instructions. This optimized operation,
called fast-string operation, is used when the execution of one of those instructions meets certain initial condi-
tions (see below). Instructions using fast-string operation effectively operate on the string in groups that may
include multiple elements of the native data size (byte, word, doubleword, or quadword). With fast-string opera-
tion, the processor recognizes interrupts and data breakpoints only on boundaries between these groups. Fast-
string operation is used only if the source and destination addresses both use either the WB or WC memory types.

The initial conditions for fast-string operation are implementation-specific and may vary with the native string size.
Examples of parameters that may impact the use of fast-string operation include the following:

®* The alignment indicated in the EDI and ESI alignment registers.
®* The address order of the string operation.

® The value of the initial operation counter (ECX).

®* The difference between the source and destination addresses.

NOTE

Initial conditions for fast-string operation in future Intel 64 or IA-32 processor families may differ
from above. The Intel® 64 and IA-32 Architectures Optimization Reference Manual may contain
model-specific information.

Vol.1 7-19

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

Software can disable fast-string operation by clearing the fast-string-enable bit (bit 0) of IA32_MISC_ENABLE MSR.
However, Intel recommends that system software always enable fast-string operation.

When fast-string operation is enabled (because IA32_MISC_ENABLE[0] = 1), some processors may further
enhance the operation of the REP MOVSB and REP STOSB instructions. A processor supports these enhancements
if CPUID.(EAX=07H, ECX=0H):EBX[bit 9] is 1. The Intel® 64 and IA-32 Architectures Optimization Reference
Manual may include model-specific recommendations for use of these enhancements.

The stores produced by fast-string operation may appear to execute out of order. Software dependent upon
sequential store ordering should not use string operations for the entire data structure to be stored. Data and
semaphores should be separated. Order-dependent code should write to a discrete semaphore variable after any
string operations to allow correctly ordered data to be seen by all processors. Atomicity of load and store operations
is guaranteed only for native data elements of the string with native data size, and only if they are included in a
single cache line. See Section 9.2.4, “Fast-String Operation and Out-of-Order Stores,” of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

7394 String Operations in 64-Bit Mode

The behavior of MOVS (Move String), CMPS (Compare string), SCAS (Scan string), LODS (Load string), and STOS
(Store string) instructions in 64-bit mode is similar to their behavior in non-64-bit modes, with the following differ-
ences:

®* The source operand is specified by RSI or DS:ESI, depending on the address size attribute of the operation.

®* The destination operand is specified by RDI or DS:EDI, depending on the address size attribute of the
operation.

® Operation on 64-bit data is supported by using the REX.W prefix.

When using REP prefixes for string operations in 64-bit mode, the repeat count is specified by RCX or ECX
(depending on the address size attribute of the operation). The default address size is 64 bits.

7.3.10 1/0 Instructions
The IN (input from port to register), INS (input from port to string), OUT (output from register to port), and OUTS
(output string to port) instructions move data between the processor’s I/O ports and either a register or memory.

The register I/0 instructions (IN and OUT) move data between an I/O port and the EAX register (32-bit I/0), the
AX register (16-bit I/0O), or the AL (8-bit I/0) register. The I/O port being read or written to is specified with an
immediate operand or an address in the DX register.

The block I/0 instructions (INS and OUTS) instructions move blocks of data (strings) between an I/O port and
memory. These instructions operate similar to the string instructions (see Section 7.3.9, “String Operations”). The
ESI and EDI registers are used to specify string elements in memory and the repeat prefix (REP) is used to repeat
the instructions to implement block moves. The assembler recognizes the following alternate mnemonics for these
instructions: INSB (input byte), INSW (input word), and INSD (input doubleword), and OUTSB (output byte),
OUTSW (output word), and OUTSD (output doubleword).

The INS and OUTS instructions use an address in the DX register to specify the I/O port to be read or written to.

7.3.11 1/0 Instructions in 64-Bit Mode

For I/0 instructions to and from memory, the differences in 64-bit mode are:
®* The source operand is specified by RSI or DS:ESI, depending on the address size attribute of the operation.

® The destination operand is specified by RDI or DS:EDI, depending on the address size attribute of the
operation.

®* Operation on 64-bit data is not encodable and REX prefixes are silently ignored.

7-20 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

7.3.12 Enter and Leave Instructions

The ENTER and LEAVE instructions provide machine-language support for procedure calls in block-structured
languages, such as C and Pascal. These instructions and the call and return mechanism that they support are
described in detail in Section 6.6, “Procedure Calls for Block-Structured Languages.”

7.3.13 Flag Control (EFLAG) Instructions

The Flag Control (EFLAG) instructions allow the state of selected flags in the EFLAGS register to be read or modi-
fied. For the purpose of this discussion, these instructions are further divided into subordinate subgroups of
instructions that manipulate:

® Carry and direction flags.
® The EFLAGS register.
® Interrupt flags.

7.3.13.1 Carry and Direction Flag Instructions

The STC (set carry flag), CLC (clear carry flag), and CMC (complement carry flag) instructions allow the CF flag in
the EFLAGS register to be modified directly. They are typically used to initialize the CF flag to a known state before
an instruction that uses the flag in an operation is executed. They are also used in conjunction with the rotate-with-
carry instructions (RCL and RCR).

The STD (set direction flag) and CLD (clear direction flag) instructions allow the DF flag in the EFLAGS register to
be modified directly. The DF flag determines the direction in which index registers ESI and EDI are stepped when
executing string processing instructions. If the DF flag is clear, the index registers are incremented after each iter-
ation of a string instruction; if the DF flag is set, the registers are decremented.

7.3.13.2 EFLAGS Transfer Instructions

The EFLAGS transfer instructions allow groups of flags in the EFLAGS register to be copied to a register or memory
or be loaded from a register or memory.

The LAHF (load AH from flags) and SAHF (store AH into flags) instructions operate on five of the EFLAGS status
flags (SF, ZF, AF, PF, and CF). The LAHF instruction copies the status flags to bits 7, 6, 4, 2, and 0 of the AH register,
respectively. The contents of the remaining bits in the register (bits 5, 3, and 1) are unaffected, and the contents
of the EFLAGS register remain unchanged. The SAHF instruction copies bits 7, 6, 4, 2, and 0 from the AH register
into the SF, ZF, AF, PF, and CF flags, respectively in the EFLAGS register.

The PUSHF (push flags), PUSHFD (push flags double), POPF (pop flags), and POPFD (pop flags double) instructions
copy the flags in the EFLAGS register to and from the stack. The PUSHF instruction pushes the lower word of the
EFLAGS register onto the stack (see Figure 7-11). The PUSHFD instruction pushes the entire EFLAGS register onto
the stack (with the RF and VM flags read as clear).

PUSHFD/POPFD

L.y
’

A

PUSHF/POPF

| < >
[

313029 28 27 26 25 24 232221201918 17161514 13121110 9 8 7 6 5 4 3 2 1 0

T[v|a
P|F

R

\Y
ojofo|ofojofOf0OfO]|O NG

o—

I
N| O |ofD|1[T|s|Z|s|Alo|P[4]C
T| P |FIF|F|F|F|F|O[F|OF|T|F

L

Figure 7-11. Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD Instructions

The POPF instruction pops a word from the stack into the EFLAGS register. Only bits 11, 10, 8, 7, 6, 4, 2, and 0 of
the EFLAGS register are affected with all uses of this instruction. If the current privilege level (CPL) of the current

Vol.1 7-21

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

code segment is 0 (most privileged), the IOPL bits (bits 13 and 12) also are affected. If the I/O privilege level
(IOPL) is greater than or equal to the CPL, numerically, the IF flag (bit 9) also is affected.

The POPFD instruction pops a doubleword into the EFLAGS register. This instruction can change the state of the AC
bit (bit 18) and the ID bit (bit 21), as well as the bits affected by a POPF instruction. The restrictions for changing
the IOPL bits and the IF flag that were given for the POPF instruction also apply to the POPFD instruction.

7.3.13.3 Interrupt Flag Instructions

The STI (set interrupt flag) and CLI (clear interrupt flag) instructions allow the interrupt IF flag in the EFLAGS
register to be modified directly. The IF flag controls the servicing of hardware-generated interrupts (those received
at the processor’s INTR pin). If the IF flag is set, the processor services hardware interrupts; if the IF flag is clear,
hardware interrupts are masked.

The ability to execute these instructions depends on the operating mode of the processor and the current privilege
level (CPL) of the program or task attempting to execute these instructions.

7.3.14 Flag Control (RFLAG) Instructions in 64-Bit Mode
In 64-bit mode, the LAHF and SAHF instructions are supported if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

PUSHF and POPF behave the same in 64-bit mode as in non-64-bit mode. PUSHFD always pushes 64-bit RFLAGS
onto the stack (with the RF and VM flags read as clear). POPFD always pops a 64-bit value from the top of the stack
and loads the lower 32 bits into RFLAGS. It then zero extends the upper bits of RFLAGS.

7.3.15 Segment Register Instructions

The processor provides a variety of instructions that address the segment registers of the processor directly. These
instructions are only used when an operating system or executive is using the segmented or the real-address mode
memory model.

For the purpose of this discussion, these instructions are divided into subordinate subgroups of instructions that
allow:

®* Segment-register load and store.
® Far control transfers.

® Software interrupt calls.

®* Handling of far pointers.

7.3.15.1 Segment-Register Load and Store Instructions

The MOV instruction (introduced in Section 7.3.1.1, “"General Data Movement Instructions”) and the PUSH and POP
instructions (introduced in Section 7.3.1.4, “Stack Manipulation Instructions”) can transfer 16-bit segment selec-
tors to and from segment registers (DS, ES, FS, GS, and SS). The transfers are always made to or from a segment
register and a general-purpose register or memory. Transfers between segment registers are not supported.

The POP and MOV instructions cannot place a value in the CS register. Only the far control-transfer versions of the
JMP, CALL, and RET instructions (see Section 7.3.15.2, “Far Control Transfer Instructions”) affect the CS register
directly.

7.3.15.2 Far Control Transfer Instructions

The JMP and CALL instructions (see Section 7.3.8, “Control Transfer Instructions”) both accept a far pointer as a
destination to transfer program control to a segment other than the segment currently being pointed to by the CS
register. When a far call is made with the CALL instruction, the current values of the EIP and CS registers are both
pushed on the stack.

The RET instruction (see “Call and return instructions” on page 7-15) can be used to execute a far return. Here,
program control is transferred from a code segment that contains a called procedure back to the code segment that

7-22 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

contained the calling procedure. The RET instruction restores the values of the CS and EIP registers for the calling
procedure from the stack.

7.3.15.3 Software Interrupt Instructions

The software interrupt instructions INT, INTO, and IRET (see Section 7.3.8.4, “"Software Interrupt Instructions”)
can also call and return from interrupt and exception handler procedures that are located in a code segment other
than the current code segment. With these instructions, however, the switching of code segments is handled trans-
parently from the application program.

7.3.15.4 Load Far Pointer Instructions

The load far pointer instructions LDS (load far pointer using DS), LES (load far pointer using ES), LFS (load far
pointer using FS), LGS (load far pointer using GS), and LSS (load far pointer using SS) load a far pointer from
memory into a segment register and a general-purpose general register. The segment selector part of the far

pointer is loaded into the selected segment register and the offset is loaded into the selected general-purpose
register.

7.3.16 Miscellaneous Instructions

The following instructions perform operations that are of interest to applications programmers. For the purpose of
this discussion, these instructions are further divided into subordinate subgroups of instructions that provide for:

®* Address computations.

®* Table lookup.

®* Processor identification.

® NOP and undefined instruction entry.

7.3.16.1 Address Computation Instruction

The LEA (load effective address) instruction computes the effective address in memory (offset within a segment)
of a source operand and places it in a general-purpose register. This instruction can interpret any of the processor’s
addressing modes and can perform any indexing or scaling that may be needed. It is especially useful for initial-
izing the ESI or EDI registers before the execution of string instructions or for initializing the EBX register before an
XLAT instruction.

7.3.16.2 Table Lookup Instructions

The XLAT and XLATB (table lookup) instructions replace the contents of the AL register with a byte read from a
translation table in memory. The initial value in the AL register is interpreted as an unsigned index into the trans-
lation table. This index is added to the contents of the EBX register (which contains the base address of the table)
to calculate the address of the table entry. These instructions are used for applications such as converting character
codes from one alphabet into another (for example, an ASCII code could be used to look up its EBCDIC equivalent
in a table).

7.3.16.3 Processor Identification Instruction

The CPUID (processor identification) instruction returns information about the processor on which the instruction
is executed.

7.3.16.4 No-Operation and Undefined Instructions

The NOP (no operation) instruction increments the EIP register to point at the next instruction, but affects nothing
else.

Vol.1 7-23

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

The UD (undefined) instruction generates an invalid opcode exception. Intel reserves the opcode for this instruction
for this function. The instruction is provided to allow software to test an invalid opcode exception handler.

7.3.17 Random Number Generator Instructions

The instructions for generating random numbers to comply with NIST SP800-90A, SP800-90B, and SP800-90C
standards are described in this section.

7.3.17.1 RDRAND

The RDRAND instruction returns a random number. All Intel processors that support the RDRAND instruction indi-
cate the availability of the RDRAND instruction via reporting CPUID.01H:ECX.RDRAND[bit 30] = 1.

RDRAND returns random numbers that are supplied by a cryptographically secure, deterministic random bit gener-
ator DRBG. The DRBG is designed to meet the NIST SP 800-90A standard. The DRBG is re-seeded frequently from
an on-chip non-deterministic entropy source to guarantee data returned by RDRAND is statistically uniform, non-
periodic and non-deterministic.

In order for the hardware design to meet its security goals, the random number generator continuously tests itself
and the random data it is generating. Runtime failures in the random number generator circuitry or statistically
anomalous data occurring by chance will be detected by the self test hardware and flag the resulting data as being
bad. In such extremely rare cases, the RDRAND instruction will return no data instead of bad data.

Under heavy load, with multiple cores executing RDRAND in parallel, it is possible, though unlikely, for the demand
of random numbers by software processes/threads to exceed the rate at which the random number generator
hardware can supply them. This will lead to the RDRAND instruction returning no data transitorily. The RDRAND
instruction indicates the occurrence of this rare situation by clearing the CF flag.

The RDRAND instruction returns with the carry flag set (CF = 1) to indicate valid data is returned. It is recom-
mended that software using the RDRAND instruction to get random numbers retry for a limited number of itera-
tions while RDRAND returns CF=0 and complete when valid data is returned, indicated with CF=1. This will deal
with transitory underflows. A retry limit should be employed to prevent a hard failure in the RNG (expected to be
extremely rare) leading to a busy loop in software.

The intrinsic primitive for RDRAND is defined to address software’s need for the common cases (CF = 1) and the
rare situations (CF = 0). The intrinsic primitive returns a value that reflects the value of the carry flag returned by
the underlying RDRAND instruction. The example below illustrates the recommended usage of an RDRAND intrinsic
in a utility function, a loop to fetch a 64 bit random value with a retry count limit of 10. A C implementation might
be written as follows:

#define SUCCESS 1
#define RETRY _LIMIT EXCEEDED 0
#define RETRY LIMIT 10

int get random_64(unsigned __int 64 * arand)
{inti;
for (1=0;i<RETRY_LIMIT;i++) {
if(_rdrand64_step(arand)) return SUCCESS;

}
return RETRY LIMIT EXCEEDED;

7.3.17.2 RDSEED

The RDSEED instruction returns a random number. All Intel processors that support the RDSEED instruction indi-
cate the availability of the RDSEED instruction via reporting CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] = 1.

7-24 Vol. 1

PROGRAMMING WITH GENERAL-PURPOSE INSTRUCTIONS

RDSEED returns random numbers that are supplied by a cryptographically secure, enhanced non-deterministic
random bit generator (Enhanced NRBG). The NRBG is designed to meet the NIST SP 800-90B and NIST SP800-90C

standards.

In order for the hardware design to meet its security goals, the random number generator continuously tests itself
and the random data it is generating. Runtime failures in the random number generator circuitry or statistically
anomalous data occurring by chance will be detected by the self test hardware and flag the resulting data as being
bad. In such extremely rare cases, the RDSEED instruction will return no data instead of bad data.

Under heavy load, with multiple cores executing RDSEED in parallel, it is possible for the demand of random
numbers by software processes/threads to exceed the rate at which the random number generator hardware can
supply them. This will lead to the RDSEED instruction returning no data transitorily. The RDSEED instruction indi-
cates the occurrence of this situation by clearing the CF flag.

The RDSEED instruction returns with the carry flag set (CF = 1) to indicate valid data is returned. It is recom-
mended that software using the RDSEED instruction to get random numbers retry for a limited number of iterations
while RDSEED returns CF=0 and complete when valid data is returned, indicated with CF=1. This will deal with
transitory underflows. A retry limit should be employed to prevent a hard failure in the NRBG (expected to be
extremely rare) leading to a busy loop in software.

The intrinsic primitive for RDSEED is defined to address software’s need for the common cases (CF = 1) and the
rare situations (CF = 0). The intrinsic primitive returns a value that reflec