intel.

Hardening Intel® Trusted eXecution
Technology and Intel® Boot Guard

Security White Paper

July 2024

Revision 0.21

Authors:

Foundational Software Technologies
Intel Product Assurance and Security

Document Number: 824411

intel

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with
your system manufacturer or retailer or learn more at intel.com.

Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer
or retailer.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel
product specifications and roadmaps

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-
4725 or visit www.intel.com/design/literature.htm.

Intel, the Intel logo, are trademarks of Intel Corporation in the U.S. and/or other countries.
*QOther names and brands may be claimed as the property of others.
© 2024 Intel Corporation. All rights reserved.

2 824411

intel

Contents

1 INErOAUCHION e s 5
2 ST =T ol B Y o0 o = PN 6
3 Libsafe Containment ..o 7
4 ShadoW STACK ..vviiiii i 8
5 [= = I]2 e T =N 9
6 SAdOW POINEEE e 10
7 Post-Quantum Cryptographyooeieie i e 11
8 ST =T 8L) VA = a1 1= o [Ve 12
9 (@00 0| 1513 o] o P 13
10 Y 0] 0 1= o o G 14
Tables

Table 1 - Platform Suppport for Intel® ACM security enhancements.......ccocviiiiiiiiiiiiiiiic e 14

824411 3

intel

Revision History

Document Revision Description Revision Date
Number Number
824411 0.1 Initial draft October 2023
0.11 Add platform support table April 2024
Clean up unneeded references
0.12 Add diagrams and standardized names June 2024
0.13 Clean up additional references June 2024
0.2 Accuracy improvements July 2024
0.21 Accuracy improvements July 2024
8§
4 824411

I n te I ® Introduction

1 Introduction

When the Trusted Computing Group (TCG) began its operation in the late 90’s, it was
in a bid to promote trust in the personal computing platform. Intel, a member of the
group, has implemented its specification for Dynamic Root of Trust for Measurement
(D-RTM), in the form of Intel® Trusted eXecution Technology (TXT). A dynamic root
of trust enables measurement and attestation of platform state as the system boots
into a measured launch environment (MLE). Later, Intel also implemented a Static
Root of Trust for Measurement (S-RTM), in the form of Intel® Boot Guard (BtG).
Together, Intel® Trusted eXecution Technology (TXT) and Intel® Boot Guard (BtG)
are part of Intel® Hardware Shield offering for Intel's vPro® capable platforms.
Security is the primary commercial and corporate design value proposition for these
features, allowing a computing platform operator to prevent tampering of the platform
root of trust and establish a trusted and protected environment for operating systems
and software.

Intel’s implementations are partly based on low-level privileged firmware known as
Intel Authenticated Code Modules (ACMs). This firmware is authenticated by
microcode and then loaded into an internal cache for execution. Intel develops this
ACM firmware and integrates it with platform reference BIOS, while continually
engaging in effective high-assurance secure embedded software development, in close
collaboration with the Intel Product Assurance and Security (IPAS) group. Given its
privileged nature and its security premise, it is imperative for such firmware to remain
robust, both in terms of quality and against adversarial attempts to circumvent
protections.

As experience shows, developing bug-free code is hard. Therefore, the team devised
and executed on a firmware hardening roadmap, accounting for the unique needs of
the firmware at hand, to deliver multiple incremental security improvements. Though
hardening alone cannot guarantee the absence of bugs, it can serve to reduce their
exploitability. To name a few, these transparent enhancements include Libsafe
Containment (also known as Secure Memory Copy), Shadow Stack and Shadow
Pointers for control flow integrity or redundancy, Post Quantum Cryptography and
Data XOR Code (also known as Memory Isolation). These firmware enhancements
address classes of vulnerabilities (e.g., classic buffer overflows) in a minimally
intrusive manner, to collectively reduce Intel platforms’ attack surface and business
risk. This whitepaper describes these hardening measures, alongside references for
context.

8§

Document Number: 824411

https://trustedcomputinggroup.org/resource/d-rtm-architecture-specification/

I n te I ® Security Scope

2 Security Scope

Security is a notoriously elusive goal. In addition to strictly adhering to Security
Development Lifecycle (SDL) practices, Intel works to remediate internally discovered
and externally submitted product security incident response tickets (PSIRTs) and close
security gaps. A useful approach has been to root out classes of vulnerabilities
altogether en masse, as opposed to treating individual bugs. Intel chose an
incremental hardening strategy, to reduce the impact and severity of as yet
undiscovered security vulnerabilities. Hardening applies to any platform supporting
Intel Trusted Execution Technology (TXT) and Intel Boot Guard. This includes Client
and Server markets, catering to the largest OEMs.

6 824411

@
Libsafe Containment I n te I &

3 Libsafe Containment

Overview

ACMs protect control metadata during copy operations, by walking the call stack as
part of vetted copy functions, ensuring copy operations do not clobber important data.

This technique (also known by the name "“Secure Memory Copy”) leverages the
codebase’s use of vetted copy functions, in order to place within these copy functions
a dedicated security check, that determines whether the copy destination is valid
within a stack frame or not. If the check fails, then the firmware proceeds with
graceful failure, thwarting an attack. The use of existing copy functions ensures
consolidated security checks without littering the codebase, while preserving stack
integrity. The technique is inspired by libsafe.

secure copy
validity check

secure copy
validity check

source

source

destination destination

stack data stack data

Simplified Illustration: validity check allows a source buffer to be copied to a
legitimate destination (left pane), but not to a sensitive destination (right pane)

References

A. BARATLOO, N. SINGH, AND T. TSAI. TRANSPARENT RUN-TIME DEFENSE AGAINST STACK SMASHING
ATTACKS. IN PROCEEDINGS OF THE 2000 USENIX ANNUAL TECHNICAL CONFERENCE, PAGES 251-
262, SAN Josk, CA, June 2000. USENIX. [LINK]

824411 7

http://www.usenix.org/publications/library/proceedings/usenix2000/general/full_papers/baratloo/baratloo.pdf

I n te I ® Shadow Stack

4 Shadow Stack

Overview

A shadow stack mechanism for control flow integrity addresses the notorious buffer
overflow technique that has plagued implementations over the past four decades. A
shadow stack adds control redundancy, by maintaining a separate copy of the call
stack. This separate copy may reside in the data segment, adjacent to the regular
stack, in hardware, or other place in memory. The location will depend on the
constraints of the particular firmware. Pushes and pops to the call stack correspond to
symmetric pushes and pops to the shadow stack. When popping the call stack, the
shadow stack can be cross-referenced for consistency, and an inequality indicates a
violation, to be dealt with appropriately.

ACMs leverage the compiler to introduce instrumentation in the form of calls at
function entry and exit, injecting custom security logic that maintains a shadow copy
of control metadata. Upon entering a function, an entry hook is called to store a copy
of the return address on the shadow stack. Upon exiting a function, an exit hook is
called to perform a security check that determines whether the two copies diverge. If
the check fails, then firmware proceeds with graceful failure, thwarting the attack. The
use of custom injected security logic ensures consolidated security checks and a
transparent mitigation.

References

K. SAMELSON AND F. L. BAUER. 1960. SEQUENTIAL FORMULA TRANSLATION. COMMUN. ACM 3, 2
(Fes. 1960), 76-83.

BAUER F.L. (2002) FROM THE STACK PRINCIPLE TO ALGOL. IN: BROY M., DENERT E. (EDS)
SOFTWARE PIONEERS. SPRINGER, BERLIN, HEIDELBERG.

SMASHING THE STACK FOR FUN AND PROFIT, BY ALEPH ONE, PHRACK MAGAZINE ISSUE 49
HTTPS://WEB.ARCHIVE.ORG/HTTP://PHRACK.ORG/ISSUES/49/14 .HTML

H. SHACHAM (2007) THE GEOMETRY OF INNOCENT FLESH ON THE BONE: RETURN-INTO-LIBC WITHOUT
FUNCTION CALLS (ON THE X86). IN PROCEEDINGS OF THE 14TH ACM CONFERENCE ON COMPUTER AND
COMMUNICATIONS SECURITY (CCS '07). ASSOCIATION FOR COMPUTING MACHINERY, NEW YORK, NY,
USA, 552-561. DOI: HTTPS://DOI.ORG/10.1145/1315245.1315313

L. SzekeRes, M. PAYER, T. WEI AND D. SonG, "SoK: ETERNAL WAR IN MEMORY," 2013 IEEE
SYMPOSIUM ON SECURITY AND PRIVACY, 2013, pp. 48-62, por: 10.1109/SP.2013.13.

N. BuROw, X. ZHANG AND M. PAYER, "SOK: SHINING LIGHT ON SHADOW STACKs," 2019 IEEE

SYMPOSIUM ON SECURITY AND PrivAcy (SP), 2019, pp. 985-999, por:
10.1109/SP.2019.00076.

8 824411

https://web.archive.org/http:/phrack.org/issues/49/14.html

i
Data XOR Code I n te I ®

5 Data XOR Code

Overview

ACMs implement WAX, to avoid an unrestricted von Neumann machine. Within ACMs,
code is not writable, and data is not executable. In order to achieve this separation,
ACMs enable x86/x64 paging modes early in the execution, and define code pages and
data pages, each with suitable page table attributes, such that memory isolation will
be enforced by hardware upon every memory access. If writing code or fetching data
is attempted, then an ACM will abort gracefully with an error message.

read-only

code

non-executable

Simplified Illustration: memory is separated into code and data, the former being
executable but not modifiable, the latter being modifiable but not executable

References

J. vON NEUMANN, "FIRST DRAFT OF A REPORT ON THE EDVAC," IN IEEE ANNALS OF THE HISTORY OF
COMPUTING, voL. 15, No. 4, pp. 27-75, 1993
HTTP://PEOPLE.CSAIL.MIT.EDU/BROOKS/IDOCS/FIRSTDRAFT.PDF

INTEL (2024) INTEL 64 AND IA-32 ARCHITECTURES SOFTWARE DEVELOPER'S MANUAL: COMBINED
Vorumes (1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, AnD 4)
HTTPS://WWW.INTEL.COM/CONTENT/WWW,/US/EN/DEVELOPER/ARTICLES/TECHNICAL/INTEL-SDM.HTML

PAX TEAM, PAX NON-EXECUTABLE PAGES DESIGN AND IMPLEMENTATION
HTTPS://PAX.GRSECURITY.NET/DOCS/NOEXEC.TXT

WINDOWS XP SERVICE PAcCK 2 DATA EXECUTION PREVENTION
HTTPS://H10032.www1.HP.cOM/CTG/MANUAL/C00387685.PDF

824411 9

http://people.csail.mit.edu/brooks/idocs/firstdraft.pdf
http://people.csail.mit.edu/brooks/idocs/firstdraft.pdf
http://people.csail.mit.edu/brooks/idocs/firstdraft.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://pax.grsecurity.net/docs/noexec.txt
https://h10032.www1.hp.com/ctg/Manual/c00387685.pdf

i
I n te I ® Shadow Pointer

Shadow Pointer

10

Overview

ACM embedded firmware is hardened by protecting function pointers, using a form of
forward edge control flow integrity which we dub "shadow pointers", a specialized
notion of a generalized shadow memory. With this technique, function pointers are
copied into a shadow store, to be cross-referenced upon function invocation. In such a
manner, malicious function pointer modifications are caught and gracefully handled.

Protection is achieved by pre-processing the code with a transpiler - an LLVM-based
source transformation tool for instrumenting pointer assignment and dereference.
Upon function pointer assignment, a hook is inserted for updating shadow memory.
Upon function pointer dereference, a hook is inserted for checking that the pointer has
not changed. The instrumented code is subsequently compiled with the protection.

Naturally, the protection afforded by the technique is limited to the window between
function pointer assignment and invocation, and cannot defend against an adversary
overwriting both the original function pointer and the shadow function pointer.

shadow 1 p &f 1 Interceptor
store .

checks integrity
p : | atomically with ABORT

invocation

&f () &f 1= x

MEMORY

Simplified Illustration: integrity check upon function pointer invocation determines
that a function pointer has been corrupted relative to its shadow copy and gracefully
aborts - the discrepancy is that the pointer ‘p’ no longer points to ‘f’ as it should

References

CFIMON: DETECTING VIOLATION OF CFI USING PERFORMANCE COUNTERS DSN'12
PROTECTING FUNCTION POINTERS IN BINARY (FPGATE) CCS'13

CoDE-POINTER INTEGRITY USENIX OSDI'14

MI1SSING THE POINT(ER): ON THE EFFECTIVENESS OF CODE POINTER INTEGRITY

GETTING THE POINT(ER): ON THE FEASIBILITY OF ATTACKS ON CODE-POINTER INTEGRITY
ENFORCING FORWARD-EDGE CONTROL-FLOW INTEGRITY IN GCC & LLVM USENIX'14
PrACTICAL CONTEXT-SENSITIVE CFI (PATHARMOR) CCS’15

Per-INPUT CONTROL FLOW INTEGRITY (PICFI) CCS’'15

CCFI: CRYPTOGRAPHICALLY ENFORCED CONTROL FLOwW INTEGRITY CCS’15

CAPTURING ODAY ExpLOITS WITH PERFECTLY PLACED HARDWARE TRAPS BH’'16

EFFICIENT PROTECTION OF PATH-SENSITIVE CONTROL SECURITY (PITTYPAT) USENIX'17
REST IN PROTECTION: A KERNEL-LEVEL APPROACH TO MITIGATE RIP TAMPERING ICISSP’17
SECURITY ANALYSIS OF PROCESSOR ISA FOR ENFORCING CONTROL-FLOW INTEGRITY HASP'19

824411

https://ieeexplore.ieee.org/document/6263958
https://ieeexplore.ieee.org/document/6263958
http://www.seclab.cs.sunysb.edu/seclab/pubs/asiaccs13.pdf
http://www.seclab.cs.sunysb.edu/seclab/pubs/asiaccs13.pdf
http://www.seclab.cs.sunysb.edu/seclab/pubs/asiaccs13.pdf
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://ieeexplore.ieee.org/document/7163060
https://www.ieee-security.org/TC/SP2015/posters/paper_48.pdf
https://www.ieee-security.org/TC/SP2015/posters/paper_48.pdf
https://www.ieee-security.org/TC/SP2015/posters/paper_48.pdf
https://www.ieee-security.org/TC/SP2015/posters/paper_48.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-tice.pdf
http://www.cs.vu.nl/~giuffrida/papers/ccs-2015.pdf
http://www.cs.vu.nl/~giuffrida/papers/ccs-2015.pdf
http://www.cs.vu.nl/~giuffrida/papers/ccs-2015.pdf
https://dl.acm.org/doi/10.1145/2810103.2813644
https://dl.acm.org/DOI/10.1145/2810103.2813676
https://www.blackhat.com/docs/us-16/materials/us-16-Pierce-Capturing-0days-With-PERFectly-Placed-Hardware-Traps-wp.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Pierce-Capturing-0days-With-PERFectly-Placed-Hardware-Traps-wp.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Pierce-Capturing-0days-With-PERFectly-Placed-Hardware-Traps-wp.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ding
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ding
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ding
https://pdfs.semanticscholar.org/64c6/cf0dbb79b5268dc3c0ba2f55a744f805429d.pdf?_ga=2.143732016.42415957.1636417298-1963156131.1633724629
https://dl.acm.org/doi/10.1145/3337167.3337175

@
Post-Quantum Cryptography I n te I 5

7 Post-Quantum Cryptography

Overview

Literature suggests that quantum computers may have capabilities to break or weaken
classic cryptographic systems approximately by the year 2030. To raise the bar
against quantum computing attacks on classic cryptographic systems, standards are
being developed to enhance security.

For post quantum cryptography (PQC) resilient digital signatures, ACM is supporting
Leighton-Micali Signatures (LMS) for all manifests. The ACM signature structure format
will maintain its familiar layout, with a minor change to the version bit to indicate
hybrid signature support.

This optional hybrid approach for post quantum cryptography (PQC) resilient digital
signatures is recommended when the public key hash is stored in silicon and backward
compatibility is needed until all OEM customers of ACM are ready to follow the
recommendation to use LMS only. For example, if necessary, the Boot Guard Key
Manifest (KM) may use LMS combined with currently supported legacy schemes
RSASSA or ECDSA.

Because LMS private keys are limited in the number of signatures they can produce
before the key is permanently disabled, careful analysis was needed to confirm the
number of signatures can satisfy all Boot Guard manifest requirements.

References

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, "RECOMMENDATIONS FOR STATEFUL HASH-
BASED SIGNATURE SCHEMES," OCTOBER 2020. [ONLINE]. AVAILABLE:
HTTPS://NVLPUBS.NIST.GOV/NISTPUBS/SPECIALPUBLICATIONS/NIST.SP.800-208.PDF.

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, "POST-QUANTUM CRYPTOGRAPHY WORKSHOPS

AND TIMELINE," 8 APRIL 2024. [ONLINE]. AVAILABLE: HTTPS://CSRC.NIST.GOV/PROJECTS/POST-
QUANTUM-CRYPTOGRAPHY/WORKSHOPS-AND-TIMELINE

824411 11

I n te I ® Security Engineering

8 Security Engineering

Good security starts with good engineering. Intel continues to enhance its software
development and validation practices, as demonstrated by:

¢ Requirements Engineering: Product requirements are recorded and
traceable to ensure that adequate validation is completed. Monthly
checkpoints with stakeholders are held to ensure requirements are addressed
with consensus and to track progress on requirement validation.

e Architecture: Architectural design is established based on requirements.
Unique constraints for hardening the architecture are captured in requirement
collaterals.

o Design and Implementation: A detailed design is developed based on the
requirements and architecture. That detailed design is used to describe and
implement the product. For each hardening measure, the detailed design
documentation includes security concerns and mitigations.

e Unit Testing: Software modules are verified to ensure compliance with
requirements and verify the correctness and robustness of the solution. Unit
Tests also confirm that mitigations defend against known security issues.

¢ Build Process and Test Automation: A consistent build process has been
established, including integration and testing. Some functional and systems
testing can run without manual intervention, so automated test scripts are
used where appropriate. Test cases are categorized based on their purpose
and may be executed with different cadences.

¢ Peer Reviews: Periodic checkpoints ensure that all stakeholders review and
provide feedback on feature designs, with findings tracked to closure.
Collaborative code reviews occur on a weekly basis. Patches are not checked
in until they get approval by at least two deciders and one developer. Regular
hackathons are conducted by a red team.

¢ Policy Compliance: Best known methods are followed to ensure compliance
with security, privacy, and legal policies. This includes following Intel’s defined
Security Development Lifecycle process.

e Quality Assurance: Independent assessment of the quality of work is done
against pre-defined standards.

¢ Project Management: Project activities, schedule, and budget are planned,
monitored, and adjusted.

e Risk Management: Project risks are tracked and managed, following best
known methods to reduce risk. Reported vulnerabilities help the team pursue
data-driven countermeasures.

8§

12 824411

@
Conclusion I n te I ®

9 Conclusion

Intel® TXT and Intel® Boot Guard represent major building blocks for a safe
computing environment. Security is continually and incrementally improved via new
defense in depth and anti-exploitations techniques adopted into Intel Authenticated
Code Modules. Intel is committed to continue working on hardening Intel technologies
and delivering state-of-the-art solutions to enable and enhance users’ secure-
computing experience.

824411 13

@
intel.

10 Appendix

Table 1 - Platform Support for Intel® ACM security enhancements

Client Server
Libsafe Containment Supported Supported
Shadow Stack Supported Supported
Data XOR Code Supported Supported
Shadow Pointer Supported Supported
Post-Quantum Supported Supported
Cryptography
8§

14 824411

