intel.

Intel Sensor Fusion Development Kit

Design and Development Reference

April 2023

Document Number: 771026-1.0

intel.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject
matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product
specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or visit
www.intel.com/design/literature.htm.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation.
Performance varies depending on system configuration. No product or component can be absolutely secure. Check with your system
manufacturer or retailer or learn more at intel.com.

No product or component can be absolutely secure.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation

Intel Sensor Fusion Development Kit
Development Document April 2023
2 Document Number: 771026-1.0

http://www.intel.com/design/literature.htm
http://intel.com/

Contents
1.0 Introduction 6
1.1 OVBIVIBW ..ttt s eSS E AR bt st 6
1.2 BT 011 0T o =4 P 6
2.0 Software Design Description 8
2.1 L@ A T 1L B LT = o N 8
2.2 DL e= 1 (=To B TT=Y = o 10
2.2.1 DL AV T gl L= = o P 10
2.2.2 Middleware Layer DESISN ... eeeeereerreesseessemssesssesssesssesssesssesssesssesssesssesssesssesssesssssssssssssseses 13
2.2.3 (DTS o] =3V 2Y o] o1 Tr=1 o o IO 22
3.0 Reference 25
4.0 Supported Platforms 26
4.1 HardWare PLatfOrM..... e ceeereesemsscesesseseessesssessessessssssssssssssss s ssssssssssssssesssssssesssesans 26
4.2 SOFtWAre ENVIFONMENTeececeeerereereer s s sees s seessesssesssesssesssesssesssesssesssessessessesssesssessesssesssesssesssees 26
Figures
Figure 1. Hardware FUNCHIONALITY ... ceeeeeeeeeeeeseeeeseeseeeesesseseesesse s sesssessesenases .8
Figure 2. Software System Data FLOW DIagram ... ssssssssssssssssssssssssssssssssssssns
Figure 3. PCle Driver Structure ...
Figure 4. Block Diagram of V4L2 Device
Figure 5. Flowchart of LIDAR NOE......ceneeneeeereeneesessesseessessesseeaes
Figure 6. Flowchart of Camera Node........coumrenreenneenn.
Figure 7. Basic Block Diagram of Clustering Node
Figure 8. Flowchart of Clustering NOdeoenerneerneerneeeneerneesseesreennens
Figure 9. Detect Node WOrKfloOw........oceeveenreeneeneensennerseesessesseenens
Figure 10. Stitch Node WoOrkflow ...
Figure 11. Fusion NOde WOrKflOWsssssssssssssssssssssssssssssssssenns
Figure 12. Display Application FUNCEION BLOCKS.......eereememmeessessesseesseessesssesssssssessssssss s ssssssssssssseens
Tables
Table 1. BT 00 417 o] o =4y 6
Table 2. Functional Interface of Camera DriVer ... w12
Table 3. Functional Interface of LIDAR DIIVENemrserseesssssssssssssssssssssssssssssssssssssessssesssessssssaseess 12
Table 4. Functional Interface of PCle Configuration......ssssssssesssesssssssssssssens 13
Table 5. Functional Interface of LIDAR NOGEcceereemremmeeseessessssssesssesssesssssssesssssssssssssssssssssssssssssssssens 14
Intel Sensor Fusion Development Kit
April 2023 Development Document

Document Number: 771026-1.0 3

intel.

Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.

Functional Interface of Camera NOAE...... s ssss s ssssssssssssssessens 17
Functional Interface of FIlter MOAULE ...ttt ssss s sssss s ssaeens 18
Functional Interface of Segmentation Module.........s 18
Functional Interface of CluSTering MOAULE ... sesseens 19
Functional Interface of DeteCt NOAE ... et ass s assssssaeannns 19
Functional Interface of SHCh NOGE.... s s ss st sssassasens 21
Functional Interface of FUSION NOGE........ s s sss s s sssssssssssssssssssasses 22

Intel Sensor Fusion Development Kit
Development Document April 2023

4

Document Number: 771026-1.0

Revision History

intel

Date Revision Description
April, 2023 1.0 Initial release
Intel Sensor Fusion Development Kit
April 2023 Development Document

Document Number: 771026-1.0

5

]
I n t e I Introduction
®

1.0

Introduction

1.1

1.2

Table 1.

This documentation contains information about the system environment in which the
Intel® Sensor Fusion Development Kit software runs, and provides an overview of
various functional interfaces. Please refer to the Intel Sensor Fusion Development Kit
User Guide (RDC #774272) for more support of software installation, defect description,
and constraints.

Overview

This project aims to provide a leading platform for the fusion of industrial sensors in
mobile robots. This software was developed for the Linux* operating system (kernel
5.10), and thus relies upon the use of Linux drivers for sensor fusion, ROS2 software
packages to process Field Programmable Gate Arrays (FPGA) timestamp and
synchronization, and the development of applications to demonstrate the performance
of sensor fusion. During project development, test plans and test cases were designed
based on functional interfaces. After completing the programming work, the software
test report and recorded troubleshooting steps were delivered.

Terminology
Terminology
Term Description

FPGA Field Programmable Gate Arrays
ROS Robot Operating System
V4L2 Video device driver on Linux systems
12C Inter-Integrated Circuit
MSOP Main data Stream Output Protocol
ucwp User Configuration Write Protocol
DIFOP Device Information Output Protocol
DMA Direct Memory Access
DBSCAN Clustering Algorithm
PCL Point Cloud Library

Intel Sensor Fusion Development Kit
Development Document April 2023

6

Document Number: 771026-1.0

Introduction

intel

Term

Description

ul

User Interface

April 2023

Document Number: 771026-1.0

Intel Sensor Fusion Development Kit

Development Document
7

[
I n t e I Software Design Description
®

2.0 Software Design Description

2.1 Overall Design

In accordance with hardware functionality requirements (as shown in Figure 1), the first
priority for software development is driver development for a LIiDAR device, the camera
device, and FPGA time synchronization processing functionality of the Linux system.
The utility layer will then implement data processing via Robot Operating System (ROS)
nodes and display the result in the User Interface (Ul).

Figure 1. Hardware Functionality

- +
K\-’mk m‘.#m | .tm 0
PCle HIP Gen2x4 T PCle HIP Gen2x1 SPI to Avalon-MM
Avalon M or MM Writer Schedule ey =y
a—— —— ‘Conduit 103 - LIDAR 2 Cametas Master (DMA) M: Avalon MM Master
t Avalon MM Slave -~
Avalon-MM Slave Re-Sync Schedule

DDR3 Controller HIP Conault 105 - camera resync.
Avalon MM Slave Avalon- MM Slave - ﬁ
[stamps
Sa— TS| MU 9-acs
Avalon-MM Slave

Avalon-MM Master x4 Conduit I0s.
E
Control Avalon- MM slaves of Data Path s SOOI
LIDAR Submodule Asnaed S = é
Register Maps =
=
Avalon- MM Conduit >
Frame Writer Master 10s = 10 Submodule

Avalon-MM Stave

Avalon- MM Slave m

Terasic UDP Controller

Streaming
|

Rs232,2 [ro | o |
ETH Controller

GPi06

HPIF]

| !
sz g Actuators

From the system perspective, the software design can be separated into three layers
from the bottom to the top: the driver layer, the middle layer, and the application layer.
Data communication between layers is demonstrated in Figure 2.

Intel Sensor Fusion Development Kit
Development Document
8

April 2023
Document Number: 771026-1.0

[|
Software Design Description I n t e I
®

Figure 2. Software System Data Flow Diagram

April 2023

User Space

Display

Application
Fusion Image Lidar Point Cloud Time Jitter Config Info
Display Display Display Display
4

A A

h _
-~ = -‘
Kernel Space
LIiDAR Driver

Linux o P -

Based on hardware functionality, three device driver nodes are created for user space
applications to handle hardware operations. /dev/fpga_cdev is used for FPGA device
configuration; /dev/rs16_dev is used for LiDAR sensor configuration and sensor data
retrieval; /dev/videox (x = 0~3) is used for camera sensor configuration and video
data retrieval. A user space library is provided to encapsulate the device driver interface
for application access. A display application is created to display device information
(Config Information Display), sensor data latency graph (Time Jitter Display), original
point cloud data (LiDAR Point Cloud Display) and camera fusion data (Fusion Image
Display). Config Information Display retrieves data from the /dev/fpga cdev device
node to get camera position/angle, time offset, and fps (frame per second). Time Jitter
Display subscribes data from Time Jitter Node to handle time stamping information of
LiDAR and camera sensor data. LiDAR Point Cloud Display subscribes LiDAR sensor
data from LiDAR node, which mainly handles the main data stream output protocol
(MSOP) data and device information output protocol (DIFOP) data from LiDAR sensor.

Intel Sensor Fusion Development Kit
Development Document

Document Number: 771026-1.0 9

[
I n t e I Software Design Description
®

Note:

2.2

2.2.1

Figure 3.

Fusion Image Display subscribes data from the stitch node, which gets video data from
four camera sensors and stitches them into a single picture. The fusion node also
integrates object detect and point cloud clustering functionality.

Driver code will be open published at GitHub:
https://github.com/TianjinSiasun/Sensor_Fusion_drv

GUI demo application and ROS packages will be provided by Intel separately. Please contact
FAE or PAE to get them.

Detailed Design

Driver Design

The driver design adopts a master-division structure (as shown in Figure 3), where the
resource request and configuration of the two PCIE lanes are performed separately in
the main driver portal. The requested resources are then made available to each sub-
module for use.

PCle Driver Structure

IRQ Server

cameras module lidar module common control module i2c adapter module

Cameras Module Driver Design

The driver for the camera module is developed based on the V4L2 framework, which is
a common driver framework of video capturing devices on Linux. The video capturing
device driver registers a character device file, named videox in the /dev directory, and
implements image data acquisition through the system calling interface: read, write,
ioctl and mmap, etc. A basic block diagram of the v412 device driver system is shown in
Figure 4.

Intel Sensor Fusion Development Kit
Development Document April 2023

10

Document Number: 771026-1.0

https://github.com/TianjinSiasun/Sensor_Fusion_drv

[|
Software Design Description I n t e I
®

Figure 4. Block Diagram of V4L2 Device

User Space

video_device

v4l2_file_operations

Hardware

Camera

_ Fevide node :l Hnaaner : e

The sensor fusion project contains four camera module devices (two GMSL interfaces
and two MIPI interfaces). Each module is registered as a video_device and the
file_operations and essential ioctl functions are implemented in the driver program to
initialize the device, set the camera configuration, and get data. There are two main
functions:

¢ Initial configuration of camera module

The module has an initial configuration of a standard inter-integrated circuit (12C)
configuration. The implementation is that: register 4 1I2C_BUS, for camera module
devices, in the related file_operations interface of the corresponding video_device,
receive and send I2C data using 12C common interface to achieve initialization of
camera module configuration.

¢ Image data acquisition

Data acquisition is achieved by a combination of interruption and mmap mapping

space. A memory space will be mapped to user layer from the system kernel space
by mmap function and these spaces are capable to support Direct Memory Access
(DMA). After FPGA reports interruption, user layer can call functions to have direct

access to memory space data of kernel space.

Functional Interface is expressed in Table 2.

Intel Sensor Fusion Development Kit
April 2023 Development Document
Document Number: 771026-1.0 11

intel.

Table 2.

Table 3.

Functional Interface of Camera Driver

Software Design Description

Functional Interface

Description

open(FILE_VIDEO, O_RDWR)

Open device file

open(FILE_VIDEO, O_RDWR)

Open device

ioctl(fd,VIDIOC_QUERYCAP,&cap)

Query properties of device

ioctl(fd,VIDIOC_S_FMT,&fmt)

Set frame format

ioctl(fd,VIDIOC_S_PAPM,&stream_para)

Set frame rate

ioctl

Apply for frame buffer

ioctl(fd,VIDIOC_QBUF,&buf)

Enqueue

ioctl(fd,VIDIOC_STREAMON,&type)

Start video streaming

ioctl(fd,VIDIOC_DQBUF,&buf)

Dequeue

(
(
(
(fd,VIDIOC_REQBUFS,&req)
(
(
(
(

ioctl(fd,VIDIOC_STREAMOFF,&req)

Stop video streaming

close(FILE_VIDEO)

Close device

LiDAR Driver Design

In agreement with data transmission protocol of LiDAR devices and implementation of
FPGA, the normal character device driver design is applied, and makes it easy for
facilitating utility layer to encapsule the driver interface as a library file.

e LiDAR driver uses DMA to the MSOP package and transmits the data of FPGA to
specific memory space. The transmission status is reported in the form of
interruptions. Mapping to the user space by mmap can accelerate the transmission.

e For user configuration write protocol (UCWP) and DIFOP data, ioctl command is

applied to receive and deliver data.

e Initialization and synchronization settings operations, etc. of LiDAR device.

Functional interface of LiDAR device is defined as per Table 3.

Functional Interface of LiDAR Driver

Functional Interface

Description

int Lidar_Open(void)

Open LiDAR device

void Lidar_Init(int fd)

Initialize LiDAR device

int Lidar_Get_DIFOP(int fd, RS16DifopPkt *difop)

Get LiDAR DIFOP data

int Lidar_Set_TimeStamp(int fd, RSTimestampYMD
time)

Set LiDAR time stamp

int Lidar_Get_MSOP(int fd, unsigned char *mem,
unsigned char *pkgnum, RS16MsopPkt *msop)

Get LiDAR MSOP data

int Lidar_Set_fps(int fd, unsigned int fps)

Set LiDAR fps

int Lidar_Set_Ethnet(int fd, RSEthNet eth)

Set LiDAR Ethernet

Intel Sensor Fusion Development Kit
Development Document

12

April 2023
Document Number: 771026-1.0

Software Design Description

intel

int Lidar_Set_FOV(int fd, RSFOV fov)

Set LiDAR FOV

int Lidar_Set_Target_Angle(int fd, unsigned int
angle)

Set LiDAR target angle range

int Lidar_Set_Motor_Phase(int fd, int angle)

Set LiDAR motor phase

int Lidar_mmap_Addr(int fd, unsigned int *phy_addr)

Get LiIDAR MSOP data address for
mmap mapping in application

int Lidar_Close(int fd)

Close LiDAR device

PCle Configuration

PCle configuration implements functions of operational interfaces, such as
configuration of internal buffer of FPGA, configuration of synchronization and trigger

mode of cameras, etc.

Functional interface of PCle configuration defined per Table 4.

Table 4. Functional Interface of PCle Configuration
Functional Interface Description
void Buf_Sys_Enable(int fd, bool enable) Enabling BUF & SYNC management
module.
void Buf_Config(int fd,bufcfg cfg) Set the size and the number of
buffers of FPGA for storing camera
and LiDAR data
void FPGA_TimeStamp_SET(int fd, TimeStampCfg Set FPGA timestamp.
time)
TimeStamp FPGA _TimeStamp_GET (int fd) Get FPGA timestamp.
void Trigger_Mode_Set(int fd,bool mode) Set trigger mode of camera.
void Camera_Angle_FPS_Set(int fd, SyncCfg sync) Set configurations for
synchronization, including camera
mounting angles, and time offset, etc.
SyncCfg Camera_Angle_FPS_Get(int fd) Get FPS, camera mounting angles,
offset value.
2.2.2 Middleware Layer Design
LiDAR Node
LiDAR node is mainly used to read the MSOP data and DIFOP data from LiDAR device
driver; and forward them to rslidar node.
Intel Sensor Fusion Development Kit
April 2023 Development Document

Document Number: 771026-1.0

13

intel.

Figure 5. Flowchart of LIDAR Node

Software Design Description

Set parameter
configuration

A4

Read DIFOP
data

A4

Send DIFOP
package

Read MSOP
data

A 4

Send MSOP
package

v

Rslidar_sdk

When starting the node, begin by setting the parameter configuration based on the
LiDAR driver interface. The LiDAR MSOP acquisition thread will start to read MSOP data
and extract the first block angle of the first MSOP package from each data frame. Then,
based on the angle of the first block, it will calculate the time stamp of position O
degree. This time stamp will be sent to Time Jitter node, and the MSOP package will be
sent to rslidar_sdk as UDP packages via the ROS topic /points2. In the meantime, DIFOP
acquisition thread will begin to read DIFOP data and forward it to rslidar_sdk in the

form of UDP packages.

The functional interface of LIDAR node is defined as per Table 5.

Table 5. Functional Interface of LIDAR Node

Functional Interface

Description

int init_lidar();

Initialize LiDAR device

void DifGet();

Get LiDAR device configuration

Intel Sensor Fusion Development Kit
Development Document
14

April 2023
Document Number: 771026-1.0

[|
Software Design Description I n t e I
®

Functional Interface Description
void MosGet(); Get MSOP data
void difop_start(); Start DIFOP
void msop_start(); Start MSOP
int LIDAR_UDP_Difop(); LiDAR difop client
int LIDAR_UDP_MSOP(); LiDAR msop client
void msop_exit() Close MSOP thread
void difop_exit(); Close DIFOP thread

Camera Node

Camera node implements data capturing of video stream, getting, and setting the
device parameters based on the V4L2 driver. To reduce low-level software
dependencies, the camera node is designed as an ROS node. Camera data is published
in the form of ROS messages.

Intel Sensor Fusion Development Kit
April 2023 Development Document
Document Number: 771026-1.0 15

[
I n t e I Software Design Description
®

Figure 6. Flowchart of Camera Node

(Start)

Y

Open camera device and
set configuration
parameters

:

Buffer mapping

A 4

Start capturing

v

Acquire data €

h

Publish ROS message

Stop or Not

YES
¥

Stop capturing

k.

Release memory

Stop

Four threads are used to process data from four camera devices. According to the
driver interface, the device is started, and configuration the parameters are delivered.
Open the memory mapping space in the camera’s main data area and capture data
signals. When the signal has been captured, analyze the image data with OpenCV,
compress it to ROS image message by cv_bridge and publish it.

Functional interface of camera node is defined as per Table 6.

Intel Sensor Fusion Development Kit
Development Document
16

April 2023
Document Number: 771026-1.0

Software Design Description

Table 6. Functional Interface of Camera Node

intel.

Functional Interface

Description

int fun_open_dev(const char * path);

Open camera device

int fun_close_dev();

Close camera device

int fun_mmaping(void *buff , int size);

Buffer mapping

int fun_unmmaping(void *buff)

Buffer unmapping

int fun_start_capture();

Start capturing

int fun_stop_capture();

Stop capturing

int fun_pull_data();

Pull data

int fun_publish_data();

Publish ROS message

Clustering Node

Clustering node implements functions as point cloud pre-processing, point cloud
clustering, and point cloud area picking, etc. The overall system design is separated into
layers for data reading, extraction of valid region, ground plane fitting of point cloud
data, point cloud clustering, implementation clustering algorithm (DBSCAN), publishing
of clustering results, transferring, and testing of joint calibration. The software design is
developed and transferred according to the different layers of functions. The detailed

functions are shown in Figure 7.

Figure 7. Basic Block Diagram of Clustering Node

Point cloud
segmentation

Clustering

Joint calibration
code migration

Point cloud filter

Publish result

Calibration test

April 2023
Document Number: 771026-1.0

Intel Sensor Fusion Development Kit
Development Document
17

[
I n t e I Software Design Description
®

Figure 8. Flowchart of Clustering Node

Get raw point cloud data
from LIiDAR

v

Point cloud segmentation,
subtract the plane

v

Point cloud filter, filter out
the noisy points

.

DBSCAN clustering, obtain
bounding boxes of human

or car
Y A4
Publish result Publish filtered point cloud
data

Functional interface of filter module is defined as per Table 7.

Table 7. Functional Interface of Filter Module

Functional Interface Description
int remove_nan(pcl::PointCloud<pcl:PointXYZI>:Ptr Remove NaN points
pcl_pc_in);
int statistical_filtered(pcl::PointCloud<pcl::PointXYZI>::Ptr Statistical filter

initial_pointCloud);

int radius_filtered(pcl::PointCloud<pcl:PointXYZI>::Ptr Radius filter
initial_pointCloud);

int cropbox_filtered(pcl::PointCloud<pcl:PointXYZI>:Ptr Cropbox filter
initial_pointCloud);

Functional interface of segmentation module is defined as per Table 8.

Table 8. Functional Interface of Segmentation Module

Functional Interface Description
int init_sacSeg() ; Module initialization
int sacSegmentation(pcl::PointCloud<pcl::PointXYZI>:Ptr External points extraction
filtering_pointCloud);

Functional interface of clustering module defined as below:

Intel Sensor Fusion Development Kit
Development Document April 2023
18 Document Number: 771026-1.0

Software Design Description

Table 9. Functional Interface of Clustering Module

intel

Functional Interface

Description

int dbscan(pcl::PointCloud<pcl::PointXYZI>:Ptr pcl_pc_in);

DBSCAN clustering

int marker_pose_pub(std:vector <pcl:PointCloud
<pcl::PointXYZI> :Ptr, Eigen:: aligned_allocator
<pcl:PointCloud <pcl:PointXYZI>:Ptr>> clusters) ;

Publish clustering result

Detect Node

Detect node retrieves data from video camera and then detect objects. It runs
OpenVINO™ inference engine, with YOLOv5-nano IR model optimized on OpenVINO™.
Its workflow is described as per Figure 9.

Figure 9. Detect Node Workflow

Waiting to detect
pictures

——preprocessing—»|

Initialize CpenVING

N

Read Network Model

l

Configuration
Parameters

l

Load OpenVINO
IR model

l

Create an inference
request

F—inference—|

Inference result Target coordinate
processing information

Functional interface of detect node is defined as per Table 10.

Table 10. Functional Interface of Detect Node

Functional Interface

Description

int load_ov(const std::string &ml_file, const std::string
&label_file, const std::string &device = "CPU");

Load OpenVINO™ IR model

void post_process(cv:Mat &input_image,
std:vector<Obijinfo_t> &out_vec, int camera_id);

Get inference result

&input_vec);

void draw_rect(cv::Mat &input_img, std:vector<Objlinfo_t>

Mark object rectangles

Detect result data structure defined as below:

April 2023
Document Number: 771026-1.0

Intel Sensor Fusion Development Kit
Development Document
19

[
I n t e I Software Design Description
®

typedef struct ObjInfo {
char name[16]; // detect obj name
double x; // rect x
double y; // rect y
double width; // rect w
double height; // rect h
double confidences; // confidences
bool is match; // [use] is match
double d; // [use]distance
double angle;

} ObjInfo t;

Stitch Node

Stitch node gets image data from video cameras and fusion data of image and point
cloud, and stitch data from four cameras to one single image. Its workflow is described
in Figure 10.

Figure 10. Stitch Node Workflow

Load the DL model
Detection Fusion
Four camera raw Detect Object deteciion coordinate information Fusion with point| | coordinate information Objoct Mk
h . | —
images pre-processing cloud data

Image with fusion information

Start frame data
processing

Fusion
pre-processing

I

Feature extraction Smchm@—) Image fusion
parameters

Feature point
processing

l

Estimating camera
parameters

|

Accurate camera
parameters

e Start frame data processing: Get stitching parameters.
e Fusion pre-processing: Downscaling image size, improve feature extraction speed.

e Feature extraction: Extract features of images from four cameras with non-linear
AKAZE algorithm.

Intel Sensor Fusion Development Kit

Development Document April 2023
20 Document Number: 771026-1.0

[|
Software Design Description I n t e I
®

Table 11.

Feature point processing: Apply Nearest Neighbor for feature extraction, determine
if a full scene can be generated from the feature to estimate the camera
parameters: according to the feature and feature points, estimate the intrinsic
matrix and orthogonal rotation matrix of four images.

Accurate camera parameters: Get optimized 3D model and camera parameters
from visual reconstruction with bundle adjustment.

Detect pre-processing: Convert fusion images to 4-dimension blob of neural
network model input.

Object detection: Load OpenVINO™ optimized YOLOv5-nano IR model and run
inference.

Object mark: Mark the result of image and point cloud data fusion in the original
images.

Image fusion: Project four images onto a sphere with model parameters to obtain a
consistent field of view and make a panorama. Since the exposure is not fixed, the
overall brightness of the pictures taken at different times will be different, so direct
stitching will result in significant variations in light and darkness. Therefore, the
exposure compensation should be set so that overall brightness of the different
photos is the same, use the graph cut algorithm to find the stitching and use the
multiband blending algorithm for image fusion

Functional interface of stitch node is defined as per Table 11:

Functional Interface of Stitch Node

Functional Interface Description

int picture_stitch_with_fusion_info(std::vector<cv:Mat> Stitch images
&in_vec_pic_mat, std::vector
<std:vector<bys::Objlnfo_t> > &in_vec_info, size_t
pic_nums, cv::Mat &out_pic);

Fusion Node

Figure 11. Fusion Node Workflow

April 2023

point cloud clustering point coordinates

Extract feature center

features and the target box)
size According to the calibrated

Then point cloud features image and spliced to generate o "
and image detection a panoramic image Display application
information
i Extract identified to fuse
Image del:ctlon targats
resu rectangle properties

internal and external
reference point cloud fuse the information through
Mapped to the pixel The matrix transformation is
coordinate system, marked on a single original

will fuse the
panoramic image in
Displayed an the

:‘ four images

Intel Sensor Fusion Development Kit
Development Document

Document Number: 771026-1.0 21

[
I n t e I Software Design Description
®

Table 12.

2.2.3

The fusion node currently processes a feature-based fusion of LiDAR and camera data.
First, the coordinate systems of multiple-sensor system should be clarified in space
dimension, including LiDAR coordinate system and visual coordinate system (cameral
coordinate system, image physical coordinate system, image pixel coordinate system).
The LiDAR coordinate system works as a world coordinate system. As hard
synchronization is implemented on FPGA hardware layer, time fusion is not
implemented in the utility layer so far. The time of every frame of data is assumed to be
synchronized by FPGA and only fusion of space is implemented in utility layer.

e Firstly, accept the clustering features of point cloud and detection feature of four
camera images, and both data type is MarkerArray message in ROS.

e Extract the Cartesian coordinate of centroid of the point cloud feature and the size
of the bounding box. In the meantime, extract the pixel coordinate of the centroid
of the image feature, the size of the bounding box and the detected result.

e The extrinsic and intrinsic can be jointly calibrated with four cameras and LiDAR.
The centroid coordinate of point cloud feature will be mapped to the
corresponding camera image coordinate system and fused with image detection
information. The information of bounding box after fusion contains distance and
detection information of the object and it will be attached to four camera images
correspondingly.

e Transmit four images with fused feature and information to the image stitching
module.

Functional interface of fusion node is defined as per Table 12.

Functional Interface of Fusion Node

Functional Interface Description
int set_calib_files(const cv::String &calib_files); Read calibration file
int fusionPoint(const geometry_msgs:msg:PoseArray Point fusion

&posesmsg,
std:vector<bys::Objlnfo_t> &input_objs);

Display Application

Display application demonstrates the point cloud, the camera views and fluctuation of
time difference between each camera. All data and functions will be displayed in one
screen and the layout of each function block should be matched for corresponding
data analysis and it has been separated to four areas:

Intel Sensor Fusion Development Kit
Development Document April 2023

22

Document Number: 771026-1.0

[|
Software Design Description I n t e I
®

Figure 12. Display Application Function Blocks

Device
Configuration

Time
fluctuation
curve

Point Cloud Display

Get point cloud data via ROS2 communication protocol
Get point cloud data: pcl::PointCloud<pcl::PointXYZ>

Display the point cloud via QVTKWidget interface of Qt by function:
pcli:visualization::PCLVisualizer().

Modify point cloud size and coordinate
viastd::shared_ptr<pcl:visualization::PCLVisualizer>

Modify points size and color via
pclivisualization::PointCloudColorHandlerCustomPointCloud<pcl::PointXYZ>

Camera Data Display

Image data from four cameras should be merged and displayed in the application.
Post-processing will be applied for better visual effect, including shadow of the images,

etc.

Time Fluctuation Display

Camera 0°time stamp (T1) is retrieved based on time stamp of camera data packages.
LiDAR 0O°time stamp (T2) is retrieved based on time stamp of the first data package
from LiDAR sensor. Latency (AT) is calculated by the difference of T1 and T2: AT =T1 -
T2.In the application, time fluctuation curve is display with time as X-axis and latency
as Y-axis. Max latency is also displayed.

April 2023

Intel Sensor Fusion Development Kit
Development Document

Document Number: 771026-1.0 23

intel.

Approach to calculate O°time stamp of cameras and LiDAR is described below:

Software Design Description

0°of camera data packages:

Take 20fps as example, each cycle takes 50000us (t). Based on camera’s hardware
characteristics (exposure time, latency of data transmission, etc.), camera time
offset (C) can be calculated. Then based on angle (A) of each camera’s position and
actual time stamp (T) of each camera, 0°time stamp (T1) can be calculated using the
formula:

T1=T-A/360*t+C

O°of LiDAR data packages:
Take 20fps as example, each cycle takes 50000us (t). Depacketize the first MSOP
package to get time stamp of the first MSOP package (T), and horizontal angel (A) of

the first block of MSOP UDP package, then calculate 0°time stamp (T2) according to
the formula:

T2 =T + (360 - A)/360*

Device Configuration Display

Device configuration displays sensor configuration (LiDAR fps, camera fps, camera
position, etc) retrieved from FPGA PCle driver.

Intel Sensor Fusion Development Kit
Development Document April 2023

24

Document Number: 771026-1.0

[]
Reference I n t e I
®

3.0 Reference

Reference documentation:
e Phoenix Hill FPGA RTL Design Specification
e RS-Lidar-16_User_Guide_v4.3.3_CN

e Linux Media Subsystem Documentation

Intel Sensor Fusion Development Kit
April 2023 Development Document
Document Number: 771026-1.0 25

u
I n t e I Supported Platforms
®
4.0 Supported Platforms
4.1 Hardware Platform
e Mainboard: Intel Phoenix Hill Reference Board
e LiDAR sensor: RoboSense RS-LiDAR-16
e Camera sensor: OmniVision OV8865
4.2 Software Environment
e Operating System: Ubuntu 20.04
e Middleware: ROS2 (Foxy Fitzroy)
e Linux Kernel version: Kernel 5.15
e Dependency Libraries
— OpenVINO™ 2022.1
— OpenCV 455
- PCL1.12
- VTK8.2.0
Intel Sensor Fusion Development Kit
Development Document April 2023

26

Document Number: 771026-1.0

	Design and Development Reference
	Notices and Disclaimers
	Contents
	Revision History
	1.0 Introduction
	1.1 Overview
	1.2 Terminology

	2.0 Software Design Description
	2.1 Overall Design
	2.2 Detailed Design
	2.2.1 Driver Design
	2.2.2 Middleware Layer Design
	2.2.3 Display Application

	3.0 Reference
	4.0 Supported Platforms
	4.1 Hardware Platform
	4.2 Software Environment

