
R

Intel® Ethernet Controller E810 Data
Plane Development Kit (DPDK)
22.11/23.03
Configuration Guide

NEX Cloud Networking Group (NCNG)

Rev. 1.1

June 2023

Doc. No.: 764257, Rev.: 1.1

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

This document (and any related software) is Intel copyrighted material, and your use is governed by the express license under which it is provided to
you. Unless the license provides otherwise, you may not use, modify, copy, publish, distribute, disclose or transmit this document (and related
materials) without Intel's prior written permission. This document (and related materials) is provided as is, with no express or implied warranties, other
than those that are expressly stated in the license.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without
notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors which may cause deviations from published specifications.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

Other names and brands may be claimed as the property of others.

Copyright © 2023, Intel Corporation. All rights reserved.

R

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
Configuration Guide June 2023
2 Doc. No.: 764257, Rev.: 1.1

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0

Contents

Revision History..5

1.0 Introduction... 6
1.1 DPDK Overview.. 6
1.2 Known Issues...8

2.0 DPDK Requirements..9
2.1 System Requirements... 9
2.2 Software/Firmware Requirements... 9

2.2.1 Updating the NVM with a DPDK Driver... 10

3.0 DPDK Installation and Configuration...11
3.1 System Configuration.. 11
3.2 BIOS Settings...11
3.3 Hugepages Setup..13
3.4 IOMMU..14
3.5 CPU Isolation... 14
3.6 RCU Callbacks.. 15
3.7 Tickless Kernel... 15
3.8 vt.handoff..15
3.9 NUMA Balancing and MCE.. 15
3.10 Active-State Power Management... 15
3.11 High Performance of Small Packets on 100G NIC- Use 16 Bytes Rx Descriptor Size...... 16
3.12 Downloading and Installing the ice Driver...16
3.13 Getting the Latest DPDK Code...17
3.14 Prerequisite Library... 17
3.15 Installing DPDK...20

3.15.1 Installing DPDK Using the Meson Build System (Recommended).................... 20
3.15.2 Setting 16 Bytes Rx Descriptor Size...20

3.16 Linux Drivers..20
3.16.1 Loading the vfio-pci Module.. 21
3.16.2 Binding and Unbinding Network Ports...22

4.0 Virtual Function (VF) Setup with DPDK... 23

5.0 Advanced Features and Debug.. 25
5.1 Q-in-Q Support...25
5.2 Malicious Driver Detection..26
5.3 Receive Side Scaling Configuration.. 27

6.0 Test Applications (pktgen and testpmd)... 28
6.1 Setting Up pktgen Server...28
6.2 Setting Up Testpmd Application...29

6.2.1 Running Testpmd.. 29
6.2.2 Testpmd Runtime Functions..30
6.2.3 Debugging in Testpmd... 31

6.3 Example pktgen Configuration.. 31
6.4 Example Testpmd Configuration.. 33
6.5 Running a Sample Application L3fwd Server... 35

RContents—Intel® Ethernet Controller E810

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
June 2023 Configuration Guide
Doc. No.: 764257, Rev.: 1.1 3

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

6.6 DPDK Test Plans... 37

R Intel® Ethernet Controller E810—Contents

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
Configuration Guide June 2023
4 Doc. No.: 764257, Rev.: 1.1

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

Revision History

Revision Date Comments

1.1 June 16, 2023 Changes include:
• Added 23.03.
• Added new chapter, Advanced Features and Debug.

1.0 March 7, 2023 Initial public release.

RRevision History—Intel® Ethernet Controller E810

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
June 2023 Configuration Guide
Doc. No.: 764257, Rev.: 1.1 5

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

1.0 Introduction

This document is designed to provide instructions for configuring and testing Intel®
Ethernet 800 Series Network Adapters with Data Plane Development Kit (DPDK).

DPDK Overview

DPDK is a set of libraries and drivers that perform fast packet processing. This enables
a user to create optimized performance with packet processing applications.

DPDK bypasses the OS network stack, avoiding the associated latency, and maps
hardware registers to user space. A DPDK-enabled application processes packets
faster by allowing NICs to DMA packets directly into an application's address space
and having the application poll for packets, thereby avoiding the overhead of
interrupts from the NIC.

Figure 1. Packet Processing Kernel Space vs. User Space

1.1

R Intel® Ethernet Controller E810—Introduction

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
Configuration Guide June 2023
6 Doc. No.: 764257, Rev.: 1.1

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

Key components of DPDK include the following:

• Environment Abstraction Layer (EAL) — Provides a generic interface that
hides the environment specifics from the application and libraries.

• Ethernet Poll Mode Driver (PMD) — Designed to work without asynchronous,
interrupt-based signaling mechanisms.

• Memory management — Allocates pools of objects in memory created in huge
page memory space, uses a ring to store free objects, and spreads objects evenly
across DRAM channels to optimize access speed.

• Buffer management — Pre-allocates fixed-size buffers that are stored in
memory pools, significantly reducing the amount of time spent by the operating
system allocating and deallocating buffers.

• Queue management — Replaces spinlocks with safe lockless queues, allowing
different software components to process packets while avoiding unnecessary wait
times.

• Flow classification — Improves throughput by implementing Intel® Streaming
SIMD Extensions (Intel® SSE) to produce a hash based on tuple information,
enabling packets to be placed into flows quickly for processing.

• Packet Forwarding Algorithm Support — Includes Hash (librte_hash) and
Longest Prefix Match (LPM, librte_lpm) libraries to support the corresponding
packet forwarding algorithms.

DPDK is composed of several directories:

• lib - Source code of DPDK libraries

• drivers - Source code of DPDK poll-mode drivers

• app - Source code of DPDK applications (automatic tests)

• examples - Source code of DPDK application examples

• config, buildtools, mk - Framework-related makefiles, scripts, and configuration

Refer to dpdk.org for more details.

RIntroduction—Intel® Ethernet Controller E810

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
June 2023 Configuration Guide
Doc. No.: 764257, Rev.: 1.1 7

Did this document help answer your questions?

https://www.dpdk.org/
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

Known Issues

• With the current ice PF driver, there might not be a way for a trusted DPDK VF to
enable unicast promiscuous without turning on ethtool --priv-flags with
vf-true-promic-support.

• If a VLAN with an Ethertype of 0x9100 is configured to be inserted into the packet
on transmit, and the packet, prior to insertion, contains a VLAN header with an
Ethertype of 0x8100, then the 0x9100 VLAN header is inserted by the device after
the 0x8100 VLAN header. The packet is transmitted by the device with the 0x8100
VLAN header closest to the Ethernet header

• For the Intel® Ethernet 800 Series adapter in 8-port, 10 Gb configuration, the
device might generate errors such as shown in the example below on Linux PF or
VF driver load due to RSS profile allocation. Ports that report this error will
experience RSS failures resulting in some packet types not being properly
distributed across cores.

dmesg: VF add example:

ice_add_rss_cfg failed for VSI:XX, error:ICE_ERR_AQ_ERROR
VF 3 failed opcode 45, retval: -5

DPDK v22.11 testpmd example:

Shutting down port 0...
Closing ports...
iavf_execute_vf_cmd(): No response or return failure (-5) for cmd 46
iavf_add_del_rss_cfg(): Failed to execute command of OP_DEL_RSS_INPUT_CFG

— Workaround: Disable RSS using the --disable-rss flag when starting
DPDK. Afterwards, only enable the specific RSS profiles that are needed.

1.2

R Intel® Ethernet Controller E810—Introduction

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
Configuration Guide June 2023
8 Doc. No.: 764257, Rev.: 1.1

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

2.0 DPDK Requirements

System Requirements

For DPDK system requirements, refer to Section 2 of the following document:

http://doc.dpdk.org/guides/linux_gsg/

Software/Firmware Requirements

• Operating Systems:

— RHEL 8.6

— RHEL 9

— Ubuntu 20.04.5 LTS

— Ubuntu 22.04.1 LTS

— Ubuntu 22.10

— SLES 15 SP4

• Linux Kernel: 5.15.0-46-generic

The following table lists the driver, firmware, and package versions recommended for
use with the supported DPDK version.

Table 1. DPDK Recommended Matching List

DPDK Software
Release

ice Kernel
Driver

iavf
Kernel
Driver

NVM
Version Firmware DDP OS

Package

DDP
Comms
Package

DDP
Wireless

Edge
Package

20.05 25.2 1.0.4 4.0.1 2.00 1.4.1.13 1.3.13.0 1.3.17.0 N/A

20.08 25.3
25.4

1.1.4 4.0.1 2.10 / 2.12
2.15 / 2.14

1.5.1.5/1.5
.1.9

1.3.16.0 1.3.20.0 N/A

20.08 / 20.111 25.5 1.21 4.0.1 2.20 / 2.22 1.5.2.8 1.3.18.0 1.3.22.0 N/A

20.111 / 21.02 25.6 1.3.2 4.0.2 2.30 / 2.32 1.5.3.7 1.3.20.0 1.3.24.0 N/A

26.1 1.4.11 4.1.1 2.40 / 2.42 1.5.4.5 1.3.24.0 1.3.28.0 1.3.4.0

21.021 / 21.05 26.3 1.5.8 4.1.1 2.50 / 2.52 1.5.5.6 1.3.26.0 1.3.30.0 1.3.6.0

21.05 / 21.081 /
21.111

26.4 1.6.4 /
1.6.7

4.2.7 3.00 / 3.02 1.6.0.6 1.3.26.0 1.3.30.0 1.3.6.0

21.11 26.8 1.7.16 4.3.19 3.10 / 3.12 1.6.1.9 1.3.27.0 1.3.31.0 1.3.7.0

21.111 / 22.03 27.1 1.8.3 4.4.2 3.20 / 3.22 1.6.2.9 1.3.28.0 1.3.35.0 1.3.8.0

22.03 / 22.071 27.5 1.9.11 4.5.3 4.00 / 4.02 1.7.0.7 1.3.30.0 1.3.37.0 1.3.10.0

continued...

2.1

2.2

RDPDK Requirements—Intel® Ethernet Controller E810

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
June 2023 Configuration Guide
Doc. No.: 764257, Rev.: 1.1 9

Did this document help answer your questions?

http://doc.dpdk.org/guides/linux_gsg/
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

DPDK Software
Release

ice Kernel
Driver

iavf
Kernel
Driver

NVM
Version Firmware DDP OS

Package

DDP
Comms
Package

DDP
Wireless

Edge
Package

22.071 27.7 1.10.1.2 4.6.1 4.10 / 4.12 1.7.1.7 1.3.30.0 1.3.37.0 1.3.10.0

22.07 / 22.11 /
23.03

28.0 1.11.14 4.8.2 4.20/4.22 1.7.2.4 1.3.30.0 1.3.40.0 1.3.10.0

Note: 1. Compatibility testing (basic use case testing including VF).

Updating the NVM with a DPDK Driver

If all of the following are true:

• You want to update or inventory the device based on the Intel® Ethernet 800
Series.

• You are using the DPDK driver.

• The ice device driver is not bound to any port on the device.

Then you must:

1. Bind the kernel driver to the device.

a. Make sure the ice kernel driver is installed.

b. Use lspci to discover the PCI location of the device port you want to update/
inventory (in <Bus:Device.Function> format (for example, 04:00.0))

c. Bind the port with the kernel driver:

usertools/dpdk-devbind.py -b <i40e|ice> <B:D.F>

2. Download the appropriate version of the NVM Update Utility from the Intel Support
site: https://www.intel.com/content/www/us/en/search.html#q=e810%20nvm
%20update&sort=relevancy

3. Run nvmupdate.

• NVM update example:

nvmupdate -u -l -c nvmupdate.cfg

• NVM inventory example:

nvmupdate -i -l -c nvmupdate.cfg

4. Reboot the system.

5. Restore your initial driver configuration by loading the DPDK driver.

usertools/dpdk-devbind.py -b vfio_pci <B:D.F>

2.2.1

R Intel® Ethernet Controller E810—DPDK Requirements

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
Configuration Guide June 2023
10 Doc. No.: 764257, Rev.: 1.1

Did this document help answer your questions?

https://www.intel.com/content/www/us/en/search.html#q=e810%20nvm%20update&sort=relevancy
https://www.intel.com/content/www/us/en/search.html#q=e810%20nvm%20update&sort=relevancy
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

3.0 DPDK Installation and Configuration

To run a DPDK application, some customization might be required on the target
machine.

For more details, refer Section 2.3 of the following document:

http://doc.dpdk.org/guides/linux_gsg/

NOTE

The configuration below has been tested on Ubuntu OS with kernel 5.15.0-46-generic.

System Configuration

For the best performance, refer to the reference system configuration details listed in
the latest Intel NIC Performance Report hosted on DPDK.org at:

http://core.dpdk.org/perf-reports/

BIOS Settings

Power Management → CPU Power and Performance Policy <Performance>

Intel processors have a power management feature where the system goes in power
savings mode when it is being underutilized. This feature should be turned off to avoid
variance in performance. The system should be configured for maximum performance
(BIOS configuration). The downside is that even when the host system is idle, the
power consumption is not down.

Power and Performance → CPU Power and Perf Policy → Performance
Power and Performance → Workload Configuration→ I/O Sensitive

For maximum performance, low-power processor states (C6, C1 enhanced) should be
disabled:

CPU C-state Disabled

P-States, which are designed to optimize power consumption during code execution,
should be disabled:

CPU P-state Disabled

3.1

3.2

RDPDK Installation and Configuration—Intel® Ethernet Controller E810

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
June 2023 Configuration Guide
Doc. No.: 764257, Rev.: 1.1 11

Did this document help answer your questions?

http://doc.dpdk.org/guides/linux_gsg/
http://core.dpdk.org/perf-reports/
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

or:

Advanced → Power & Performance → CPU C State Control → Package C-State=C0/C1
State
Advanced → Power & Performance → CPU C State Control → C1E=Disabled

Turboboost/Speedstep

Speedstep is a CPU feature that dynamically adjusts the frequency of processor to
meet processing needs, decreasing the frequency under low CPU-load conditions.
Turboboost over-clocks a core when the demand for CPU is high. Turboboost requires
that Speedstep is enabled.

These two configurations could introduce a variance in data plane performance when
there is a burst of packets. For consistency of behavior, these two features should be
disabled.

Enhanced Intel® Speedstep® Tech Disabled
Turbo Boost Disabled

Virtualization Extensions

Intel virtualization extensions, Intel® Virtualization Technology (Intel® VT) and Intel®
Virtualization Technology for Directed I/O (Intel® VT-d), and DMA remapping (DMAR)
must be turned on. VT-d enables IOMMU virtualization capabilities that are required
for PCIe pass-through. Also, interrupt remapping should be enabled so that hardware
interrupts can be remapped to a VM for PCIe pass-through.

Enable these extensions through the platform's BIOS settings.

Intel VT For directed I/O(VT-d) Enabled
Intel Virtualization Technology (VT-x) Enabled

Hyperthreading

Hyperthreading is Intel's simultaneous multi-threading technology For each physical
processor core that is present, the operating system addresses two virtual (logical)
cores and shares the workload between them when possible. Each logical core shares
the resources (L1 and L2 cache, registers) of the physical core. This is controlled by a
setting in the BIOS.

In general, data plane performance suffers when hyperthreading is enabled.
Therefore, the recommendation is to disable it.

Hyperthreading configuration is a BIOS setting, and changing it requires a reboot.

If hyperthreading is enabled, it is still possible to obtain the same performance as with
hyperthreading disabled. To do this, isolate the extra logical cores (see CPU isolation)
and do not assign any threads to them.

Processor Configuration → Hyper-threading → Enabled for Throughput/Disabled for
Latency

R Intel® Ethernet Controller E810—DPDK Installation and Configuration

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
Configuration Guide June 2023
12 Doc. No.: 764257, Rev.: 1.1

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

Hugepages Setup

Hugepage support is required for the large memory pool allocation used for packet
buffers. By using hugepage allocations, performance is increased since fewer pages
are needed, and therefore less Translation Lookaside Buffers (TLBs, high speed
translation caches), which reduce the time it takes to translate a virtual page address
to a physical page address. Without hugepages, high TLB miss rates would occur with
the standard 4K page size, slowing performance.

For 1 GB pages

It is not possible to reserve the hugepage memory after the system has booted. The
size must be specified explicitly and can also be optionally set as the default hugepage
size for the system.

The 1 GB hugepage option can be added in Grub along with IOMMU in kernel
command line, as shown in High Performance of Small Packets on 100G NIC- Use 16
Bytes Rx Descriptor Size.

To reserve 4 GB of hugepage memory in the form of four 1 GB pages, the following
options should be passed to the kernel:

default_hugepagesz=1G hugepagesz=1G hugepages=4

Once the hugepage memory is reserved, to make the memory available for DPDK use,
execute the following:

mkdir /mnt/huge
mount -t hugetlbfs nodev /mnt/huge

For 1 GB pages, the mount point can be made permanent across reboots, by adding
the following line to the /etc/fstab file:

nodev /mnt/huge hugetlbfs pagesize=1GB 0 0

NOTE

There are multiple ways to create hugepages under RHEL 7.x, following is one
example that shows the steps to create four pages of 1 GB:

1. Create a mounting point for huge pages with auto-mount.

cd /mnt
mkdir huge

2. Modify /etc/fstab to include:

nodev /mnt/huge hugetlbfs pagesize=1GB 0 0

3. Modify and update grub to set up hugepages.

/etc/default/grub
GRUB_CMDLINE_LINUX="default_hugepagesz=1G hugepagesz=1G hugepages=4"

3.3

RDPDK Installation and Configuration—Intel® Ethernet Controller E810

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
June 2023 Configuration Guide
Doc. No.: 764257, Rev.: 1.1 13

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

For RHEL:

grub2-mkconfig -o /boot/grub/grub.cfg

For Ubuntu:

Update-grub

4. Reboot the system and check Huge Page allocation.

cat /proc/meminfo | grep HugePages_Total
HugePages_Total: 4
cat /proc/meminfo | grep Hugepagesize
Hugepagesize: 1048576 kB

For 2 MB pages

Hugepages can be allocated after the system has booted. This is done by echoing the
number of hugepages required to a nr_hugepages file in the /sys/devices/ directory.

For a single-node system, the command to use is as follows (assuming that 1024
pages are required):

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
mount -t hugetlbfs nodev /mnt/huge

On a NUMA machine, pages should be allocated explicitly on separate nodes:

mkdir -p /mnt/huge
echo 1024 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/
nr_hugepages
echo 1024 > /sys/devices/system/node/node1/hugepages/hugepages-2048kB/
nr_hugepages
mount -t hugetlbfs nodev /mnt/huge

IOMMU

In addition, to run the DPDK with Intel® VT-d, the iommu=pt kernel parameter must
be used. This results in pass-through of the DMA Remapping (DMAR) lookup in the
host. Also, if INTEL_IOMMU_DEFAULT_ON is not set in the kernel, the
intel_iommu=on kernel parameter must be used as well. This ensures that Intel
IOMMU is initialized as expected.

NOTE

While using iommu=pt is compulsory for igb_uio driver, the vfio-pci driver can work
with both iommu=pt and iommu=on.

CPU Isolation

isolcpus is one of the kernel boot parameters that isolates certain CPUs from kernel
scheduling, which is especially useful if you want to dedicate some CPUs for special
tasks with the least amount or unwanted interruption (but cannot get to 0) in a multi-
core system.

3.4

3.5

R Intel® Ethernet Controller E810—DPDK Installation and Configuration

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
Configuration Guide June 2023
14 Doc. No.: 764257, Rev.: 1.1

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

RCU Callbacks

To eliminate local timer interrupts, RCU callbacks need to be isolated as well. This is
done either in the kernel config, or by the rcu_nocbs grub option.

Tickless Kernel

For high-performance applications, using a tickless kernel can result in improved
performance. The host kernel must have the cores operating in tickless mode, and the
same cores should be dedicated to the application.

The host kernel might have been built with the CONFIG_NO_HZ_FULL_ALL option. If
so, tickless operation happens automatically on any core on which the Linux scheduler
has only one thread to run. To check for this, look for that string in your Linux kernel
config file. This file might be at /boot/<kernel version> (determine your kernel version
with “uname -a”) or at /proc/config.gz.

If the kernel was not built with CONFIG_NO_HZ_FULL, it might still be possible to run
tickless by configuring it in the grub file (see the Grub File section). Specify the same
set of CPUs for both nohz_full and isolcpus.

vt.handoff

vt.handoff (vt = virtualterminal) is a kernel boot parameter unique to Ubuntu, and is
not an upstream kernel boot parameter. Its purpose is to allow the kernel to maintain
the current contents of video memory on a virtual terminal. Therefore, when the
operating system is booting up, when it moves past the boot loader, vt.handoff
allows showing of an aubergine background, with Plymouth displaying a logo and
progress indicator bar on top of this. Once the display manager comes up, it smoothly
replaces this with a login prompt.

NUMA Balancing and MCE

NUMA Balancing inside a kernel automatically optimizes a task scanner for scheduling
on the fly, This should be disabled to get a consistent performance during
benchmarking.

Also, machine check event exceptions logging is disabled.

Active-State Power Management

Active-State Power Management (ASPM) saves power in the PCIe subsystem by
setting a lower power state for PCIe links when the devices to which they connect are
not in use. When ASPM is enabled, device latency increases because of the time
required to transition the link between different power states. Therefore, ASPM
support is disabled here for performance benchmarking.

3.6

3.7

3.8

3.9

3.10

RDPDK Installation and Configuration—Intel® Ethernet Controller E810

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
June 2023 Configuration Guide
Doc. No.: 764257, Rev.: 1.1 15

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

High Performance of Small Packets on 100G NIC- Use 16
Bytes Rx Descriptor Size

ICE PMD supports both 16 and 32 bytes Rx descriptor sizes. The 16 bytes size can
provide high performance at small packet sizes. Configuration of
CONFIG_RTE_LIBRTE_ICE_16BYTE_RX_DESC in config files can be changed to use 16
bytes size Rx descriptors.

More details to set 16 bytes Rx descriptor size in Setting 16 Bytes Rx Descriptor Size.

Downloading and Installing the ice Driver

NOTE

This section can be skipped if only the DPDK driver is being used.

Intel® Ethernet 800 Series Linux Drivers for PF and VF are available from the following
sources:

• http://sourceforge.net/projects/e1000/files/

• https://www.intel.com/content/www/us/en/download-center/home.html

Refer to the Intel® Ethernet Controller E810 Feature Support Matrix for the
recommended driver combinations. For further feature explanation and configuration
instructions, refer to the ice driver README.

1. Download and extract the ice driver.

Run the following commands using sudo.

download ice-<x.x.x>.tar.gz
tar -xzvf ice-<x.x.x.tar.gz
cd ice-<x.x.x>/src/

2. Compile and install the ice driver.

make -j 8
make install
modprobe ice

3. If an issue is encountered when loading the driver, use the following command to
check dmesg for errors from the ice module.

dmesg | grep ice

3.11

3.12

R Intel® Ethernet Controller E810—DPDK Installation and Configuration

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
Configuration Guide June 2023
16 Doc. No.: 764257, Rev.: 1.1

Did this document help answer your questions?

http://sourceforge.net/projects/e1000/files/
https://www.intel.com/content/www/us/en/download-center/home.html
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

Getting the Latest DPDK Code

NOTE

Always refer to the latest user support documentation provided on dpdk.org.

DPDK official releases and LTS versions are available for download from https://
core.dpdk.org/download/.

NOTE

DPDK may also be cloned and downloaded using Git from git://dpdk.org/dpdk or
http://git.dpdk.org/dpdk-stable/.

mkdir /usr/src/dpdk_latest/
cd /usr/src/dpdk_latest/

git clone git://dpdk.org/dpdk
##switch to releases branch to checkout version 22.11
git checkout releases

Prerequisite Library

Refer to dpdk.org for extended requirements details and optional tools. The following
prerequisites include the base requirements for most setup scenarios.

Development Tools:

General development tools such as a supported C compiler are required.

To install:

• For Ubuntu:

apt install build-essential

• For RHEL:

dnf groupinstall “Development Tools”

NUMA:

NUMA is required by most modern machines, but not needed for non-NUMA
architectures.

NOTE

For compiling the NUMA lib, run libtool -version to ensure that the libtool version is
greater than or equal to 2.2. Otherwise, the compilation will fail with errors.

For Ubuntu:

sudo apt-get install libnuma-dev

3.13

3.14

RDPDK Installation and Configuration—Intel® Ethernet Controller E810

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
June 2023 Configuration Guide
Doc. No.: 764257, Rev.: 1.1 17

Did this document help answer your questions?

https://core.dpdk.org/download/
https://core.dpdk.org/download/
git://dpdk.org/dpdk
http://git.dpdk.org/dpdk-stable/
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

For RHEL:

yum install numactl-devel

or:

git clone https://github.com/numactl/numactl.git
cd numactl
./autogen.sh
./configure
make install

The NUMA header files and lib file are generated in the include and lib folders,
respectively, under <numa install dir>.

Python:

For Ubuntu:

apt-get install python3

Create a symlink to it: sudo ln -s /usr/bin/python3 /usr/bin/python

NOTE

A dependency has been added for building DPDK on Linux or FreeBSD: The Python
module pyelftools (version 0.22 or greater), often packaged as python3-pyelftools, is
required.

If not available as a distribution package, it can be installed with:

pip3 install pyelftools

or, if using Ubuntu, with:

apt install python3-elftools

or, download pyelftools from https://pypi.org/project/pyelftools/#files

tar -xzvf pyelftools-0.27.tar.gz
cd pyelftools-0.27
python setup.py install
pip3 install pyelftools

Meson and Ninja:

The Meson and Ninja tools are required to configure the DPDK build.

For Ubuntu:

sudo apt install meson ninja-build

R Intel® Ethernet Controller E810—DPDK Installation and Configuration

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
Configuration Guide June 2023
18 Doc. No.: 764257, Rev.: 1.1

Did this document help answer your questions?

https://pypi.org/project/pyelftools/#files
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

For RHEL:

sudo dnf install meson ninja-build

If MESON is not available as a suitable package, it can also be installed using the
Python 3 pip tool:

sudo apt install python3-pip
pip3 install meson

NOTE

pip3 puts the executable under /usr/local/lib/python3.8/dist-packages, so put that
directory in your PATH.

For example:

PATH="/usr/local/lib/python3.8/dist-packages:$PATH"

NOTE

If the following error is seen: “Requires >=0.47.1 but the version of Meson is 0.45.1”

First, remove meson installed by apt if installed:

sudo apt purge meson -y

Then, install via pip3:

sudo pip3 install meson

Then, make a symlink in bin folder from local bin:

sudo ln -s /usr/local/bin/meson /usr/bin/meson

Now, check:

which meson && meson --version

RDPDK Installation and Configuration—Intel® Ethernet Controller E810

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
June 2023 Configuration Guide
Doc. No.: 764257, Rev.: 1.1 19

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

Installing DPDK

Installing DPDK Using the Meson Build System
(Recommended)

1. Untar DPDK, if downloaded version is the dpdk-22.11.tar.xz tarball.

tar xJf dpdk-22.11.tar.xz
cd dpdk-22.11

2. Run the following set of commands from the top-level DPDK directory:

meson build
cd build

3. Run the following set of commands from the build directory:

ninja
sudo ninja install ldconfig

NOTE

The meson configure option could be used to enable Debug mode:

meson configure -Dbuildtype=debug

Setting 16 Bytes Rx Descriptor Size

For better small packet size performance, setting 16 bytes Rx descriptor is
recommended. It can be set from the top-level DPDK directory:

For an l3fwd application, DPDK meson build settings could be used to set Rx
descriptors to 16:

CC=gcc meson -Dlibdir=lib -Dexamples=l3fwd -Dc_args=-
DRTE_LIBRTE_ICE_16BYTE_RX_DESC --default-library=static x86_64-nativelinuxapp-gcc

Linux Drivers

Linux drivers handle PCI enumeration and link status interrupts in user mode, instead
of being handled by kernel.

To work properly, different PMDs might require different kernel drivers. Depending on
the PMD being used, a corresponding kernel driver should be loaded, and network
ports should be bound to that driver.

• VFIO driver is a robust and secure driver that relies on IOMMU protection.

• UIO is a small kernel module to set up the device, map device memory to user
space, and register interrupts.

3.15

3.15.1

3.15.2

3.16

R Intel® Ethernet Controller E810—DPDK Installation and Configuration

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
Configuration Guide June 2023
20 Doc. No.: 764257, Rev.: 1.1

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

Since DPDK release 1.7 onward provides VFIO support, it is recommended that vfio-
pci be used as the kernel module for DPDK-bound ports in all cases. This is a more
robust and secure driver compared to UIO, relying on IOMMU protection. To make use
of VFIO, the vfio-pci module must be loaded.

If an IOMMU is unavailable, the vfio-pci can be used in no-iommu mode. If, for some
reason, vfio is unavailable, the UIO-based modules, igb_uio and uio_pci_generic may
be used.

NOTE

For UIO module installation instructions, see section 7.4 UIO on the dpdk.org Linux
Drivers page (http://doc.dpdk.org/guides/linux_gsg/linux_drivers.html)

Loading the vfio-pci Module

Load the vfio-pci module with the following command:

modprobe vfio-pci

VFIO kernel is usually present by default in all distributions. If it is not, consult your
distribution’s documentation for installation instructions.

To make use of full VFIO functionality, both kernel and BIOS must support and be
configured to use I/O virtualization (such as Intel® VT-d).

In most cases, specifying iommu=on as kernel parameter should be enough to
configure the Linux kernel to use IOMMU.

NOTE

VFIO no-IOMMU mode:

If there is no IOMMU available on the system, VFIO can still be used, but it must be
loaded with an additional module parameter:

modprobe vfio enable_unsafe_noiommu_mode=1

Alternatively, one can also enable this option in an already loaded kernel module:

echo 1 > /sys/module/vfio/parameters/enable_unsafe_noiommu_mode

After that, VFIO can be used with hardware devices as usual.

Note that it might be required to unload all VFIO-related modules before probing the
module again with the enable_unsafe_noiommu_mode=1 parameter.

Warning: Since no-IOMMU mode forgoes IOMMU protection, it is inherently unsafe.
That said, it does make it possible for the user to keep the degree of device access
and programming that VFIO has, in situations where IOMMU is not available.

3.16.1

RDPDK Installation and Configuration—Intel® Ethernet Controller E810

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
June 2023 Configuration Guide
Doc. No.: 764257, Rev.: 1.1 21

Did this document help answer your questions?

http://doc.dpdk.org/guides/linux_gsg/linux_drivers.html#vfio-noiommu
http://doc.dpdk.org/guides/linux_gsg/linux_drivers.html
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

Binding and Unbinding Network Ports

1. The dpdk-devbind utility may be accessed and run through /usr/local/bin or
through the usertools directory in the top-level DPDK directory:

/usr/local/bin/dpdk-devbind.py

or

./dpdk-stable-22.11.0/usertools/dpdk-devbind.py

To display available devices, run the following command:

./dpdk-devbind.py -s

or

./dpdk-devbind.py –status

2. If a device is in use, it will be listed as *Active*. In this state, the interface cannot
be unbound. To change the state to inactive, bring down the interface. Then, the
port is free to bind to the desired module.

ifdown ethX

or

ip link set dev ethX down

To make the interface available to DPDK, bind it to vfio-pci. In the following steps,
<B:D.F> is the Bus Device Function (BDF) number of the ethX interface. The BDF
number can be found using various Linux commands or the get_config.sh.

Unbind from previous module or driver:

./dpdk-devbind.py -u <B:D.F>

Bind to vfio-pci for use by DPDK:

./dpdk-devbind.py -b vfio-pci <B:D.F>

Or bind to ice for use by kernel driver:

./dpdk-devbind.py -b ice <B:D.F>

3.16.2

R Intel® Ethernet Controller E810—DPDK Installation and Configuration

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
Configuration Guide June 2023
22 Doc. No.: 764257, Rev.: 1.1

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

4.0 Virtual Function (VF) Setup with DPDK

1. Confirm IOMMU and virtualization technologies are enabled in the BIOS and Linux
kernel.

a. In the BIOS, check that Intel® VT and Intel® VT-d are enabled. On certain
servers SR-IOV may need to be enabled in the BIOS as well.

b. Update the kernel boot parameters to enable IOMMU support. IOMMU enables
mapping of virtual memory addresses to physical addresses. The following
arguments turn on iommu and set it to pass-through mode:

intel_iommu=on
iommu=pt

The parameters can be added by editing the /etc/default/grub file, or by
executing a grubby command, shown below:

grubby --args="intel_iommu=on iommu=pt" --update-kernel DEFAULT

c. Reboot the system for the change to take effect.

2. Install the kernel iavf driver for initial VF creation and optional configuration.

tar xzvf iavf-x.x.x
cd iavf-x.x.x/src/

3. Compile and install the iavf driver.

make -j 8
make install
modprobe iavf

4. Create n number of VFs on the chosen interface.

The following command shows 4 VFs are created on eth0.

echo 4 > /sys/class/net/eth0/device/sriov_numvfs

5. Certain configuration can be done with the kernel iavf driver, such as adding MAC
Addresses to the VFs or setting trust mode.

For example, the following commands will first set VF 0 MAC to the shown MAC
address and then enable trusted mode:

ip link set eth0 vf 0 mac 68:05:ca:a6:0a:b1
ip link set eth0 vf 0 trust on

6. Bind the VF interface to DPDK using the vfio-pci module, the same method as
used for PF interfaces.

RVirtual Function (VF) Setup with DPDK—Intel® Ethernet Controller E810

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
June 2023 Configuration Guide
Doc. No.: 764257, Rev.: 1.1 23

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

To do this, use the BDF number, which can be found using various Linux
commands or the get_config.sh.

./dpdk-devbind.py -b vfio-pci <B:D.F>

7. Start the testpmd application on the VF.

The -a EAL option can be used to explicitly point to the VF device. For example:

sudo ./dpdk-testpmd -n 4 -a 18:01.0 -- --rxq=4 --txq=4 -i --forward-mode=mac

8. Debug logging with testpmd is available for the iavf driver.

This can be enabled with the EAL flag --log-level="pmd.net.iavf,debug”.
This will print out debug messages from PMD_INIT_LOG(DEBUG, “message”)
statements in the iavf driver. For example:

sudo ./dpdk-testpmd -n 4 -a 18:01.0 --log-level="pmd.net.iavf,debug" --
--rxq=4 --txq=4 -i --forward-mode=mac

R Intel® Ethernet Controller E810—Virtual Function (VF) Setup with DPDK

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
Configuration Guide June 2023
24 Doc. No.: 764257, Rev.: 1.1

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

5.0 Advanced Features and Debug

Q-in-Q Support

Q-in-Q, also known as double virtual LAN (VLAN) or VLAN stacking, is a standardized,
networking technique that allows a packet to be encapsulated by two or more VLAN
tags. VLAN complies with the IEEE standard 802.1Q, and is a method of segmenting
traffic by adding an additional L2 header to tag Ethernet frames with a given ID. Q-in-
Q adds two headers (or VLAN tags) to an Ethernet packet instead of just one. Q-in-Q
complies with the IEEE 802.1ad specification.

Q-in-Q and single VLAN provide similar benefits like added security through network
segmentation and logical organization of large networks. While VLAN provides
approximately 4K segmentations, the additional tag in Q-in-Q expands this range to
over 16 million separate VLANs.

DPDK supports Q-in-Q on both PF and VF interfaces, used either in the host
environment or in a VM. Because of this flexibility, proper Q-in-Q configuration varies
depending on the environment and the desired outcome. The following commands and
examples are provided as a starting point for exploring this feature.

• To enable Q-in-Q in an active testpmd session, use the following command:

testpmd> vlan set extend on (port_id)

• To set inner and outer TPID for packet filtering on a port, use the following
command:

testpmd> vlan set (inner | outer) tpid (value) (port_id)

VLAN stripping is also available for both inner and outer tags.

• To strip the outer VLAN on Q-in-Q packets use the following command. This
command will strip the VLAN tag on single VLAN packets as well.

testpmd> vlan set strip on (port_id)

• To strip the inner tag from Q-in-Q packets use the following command:

testpmd> vlan set qinq_strip on (port_id)

5.1

RAdvanced Features and Debug—Intel® Ethernet Controller E810

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
June 2023 Configuration Guide
Doc. No.: 764257, Rev.: 1.1 25

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

In the following example, VLAN and Q-in-Q handling are enabled on port 0, and inner
and outer tag filters are configured for different EtherTypes. Stripping of the outer
VLAN tag is enabled on the port as well.

testpmd> vlan set filter on 0
testpmd> vlan set extend on 0
testpmd> vlan set inner tpid 0x8100 0
testpmd> vlan set outer tpid 0x88A8 0
testpmd> vlan set strip on 0

For additional VLAN configuration options with testpmd, see the Testpmd Runtime
Functions page in the dpdk.org documentation:

https://doc.dpdk.org/guides/testpmd_app_ug/testpmd_funcs.html

Malicious Driver Detection

Some Intel® Ethernet devices use Malicious Driver Detection (MDD) to detect
malicious traffic from the VF, and disable Tx/Rx queues or drop the offending packet
until a VF driver reset occurs.

The E810 offers various extended message levels that are enabled using ethtool. One
such example is tx_err. This level allows for additional Tx MDD-related output.
Similarly rx_err can be enabled for Rx MDD-related output.

Enabling and viewing this output is useful when using a DPDK VF with a Linux kernel
PF, that is, an iavf DPDK PMD and a kernel ice driver. If using a DPDK PF driver (such
as, an ice PMD), view the DPDK application logs for MDD event notifications.

Message levels are set using ethtool. To enable tx_err messaging, use the following
command:

ethtool -s ens5f0 msglvl tx_err on

The output will print to dmesg. For example:

[+9.188014] ice 0000:86:00.0: Malicious Driver Detection event 7 on TX queue 113
PF# 0 VF# 0
[+0.000006] ice 0000:86:00.0: Malicious Driver Detection event TX_TCLAN detected
on PF
[+0.000003] ice 0000:86:00.0: Malicious Driver Detection event TX_TCLAN detected
on VF 0
[+0.000003] ice 0000:86:00.0: 1 Tx Malicious Driver Detection events detected on
PF 0 VF 0 MAC 3a:14:8e:da:b0:98.

Devlink health reporting can be used to view additional MDD information:

 devlink health dump show pci/0000:86:00.1 reporter mdd

A capability new to the E810 is the ability to enable and disable automatic VF resets
upon MDD detection. Refer to the kernel driver ice README, section Malicious Driver
Detection (MDD) for VFs, for more details on this feature.

5.2

R Intel® Ethernet Controller E810—Advanced Features and Debug

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
Configuration Guide June 2023
26 Doc. No.: 764257, Rev.: 1.1

Did this document help answer your questions?

https://doc.dpdk.org/guides/testpmd_app_ug/testpmd_funcs.html
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

Receive Side Scaling Configuration

The Receive Side Scaling (RSS) hashing algorithm relies on a combination of different
attributes to calculate the hash value. These attributes include the source and
destination IP addresses, protocol type, and port numbers associated with each
incoming packet. By considering these factors, the algorithm distributes the network
traffic evenly across multiple receive queues, facilitating efficient load balancing and
maximizing the performance of the system. To ensure the accuracy of the RSS hash
calculation and gain a deeper understanding of the process, the following command
can be used:.

testpmd> set verbose 8

This command enables verbose mode in DPDK, providing more detailed output to
observe the calculated hash values for each packet and understand how DPDK
determines the appropriate receive queue for packet distribution.

For more details on RSS configuration and testing, refer to the DPDK.org test plan:

https://doc.dpdk.org/dts/test_plans/index.html

5.3

RAdvanced Features and Debug—Intel® Ethernet Controller E810

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
June 2023 Configuration Guide
Doc. No.: 764257, Rev.: 1.1 27

Did this document help answer your questions?

https://doc.dpdk.org/dts/test_plans/index.html
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

6.0 Test Applications (pktgen and testpmd)

The pktgen application is traffic generator powered by DPDK. It is capable of
generating traffic at wire rate. For more information on the pktgen application, see:

https://pktgen-dpdk.readthedocs.io/en/latest/

Testpmd is another reference application distributed with the DPDK package. Its main
purpose is to forward packets between Ethernet ports on a network interface. The
testpmd application provides a number of different throughput tests and access NIC
hardware features, such as Intel® Flow Director. For more information on the testpmd
application, see:

https://doc.dpdk.org/guides/testpmd_app_ug/index.html

Setting Up pktgen Server

1. Get the latest pktgen application from git repository to the DPDK root directory.

git clone git://dpdk.org/apps/pktgen-dpdk

Or, download from:

http://git.dpdk.org/apps/pktgen-dpdk

2. Download and install lua.

Lua is used in pktgen to script and configure the application and also to plug into
DPDK functions to expose configuration and statistics.

For Ubuntu:

sudo apt-get install liblua5.3-0 liblua5.3-dev libpcap-dev libbsd-dev

For RHEL:

Download lua-5.4.4.tar.gz from https://www.lua.org/download.html, then copy it
to a peer system like /usr/local/src/ and extract it:

tar zxf lua-5.4.4.tar.gz
cd lua-5.4.4/
make linux install

a. Download libpcap-devel from https://pkgs.org/download/libpcap-devel and
install it:

rpm -ivh libpcap-devel*

6.1

R Intel® Ethernet Controller E810—Test Applications (pktgen and testpmd)

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
Configuration Guide June 2023
28 Doc. No.: 764257, Rev.: 1.1

Did this document help answer your questions?

https://pktgen-dpdk.readthedocs.io/en/latest/
https://doc.dpdk.org/guides/testpmd_app_ug/index.html
http://git.dpdk.org/apps/pktgen-dpdk
https://www.lua.org/download.html
https://pkgs.org/download/libpcap-devel
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

3. Install pktgen.

If git clone is used to download pktgen, use:

cd pktgen-dpdk
make

The pktgen application is now under root /pktgen-dpdk/Builddir/app directory:

root@user:/pktgen-dpdk/Builddir/app#./pktgen

Setting Up Testpmd Application

The testpmd application is built automatically when DPDK is installed using Meson, as
described in Installing DPDK Using the Meson Build System (Recommended). Testpmd
may be accessed and run through /usr/local/bin or through the app directory in the
DPDK build directory:

/usr/local/bin/dpdk-testpmd

or

./dpdk-stable-22.11.0/build/app/dpdk-testpmd

NOTE

On Fedora you will need to add /usr/local/lib64 to your ld path; it is not there by
default.

Testpmd should be run with sudo or as the root user.

Running Testpmd

When running testpmd there are two distinct parts to the command-line options –
the first half are the EAL parameters, followed by the testpmd command-line options
as the second half. These sections are separated in the command with a -- separator.

For example, a simple command to start testpmd looks like:

./dpdk-testpmd -a 00:01.0 -- -i

This command explicitly passes in the PCI device located at BDF number 00:01.0
with the -a flag in the EAL section of the command. Then the -i flag in the testpmd
section starts the application in interactive mode.

For more details on the role of EAL, see the DPDK Overview.

6.2

6.2.1

RTest Applications (pktgen and testpmd)—Intel® Ethernet Controller E810

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
June 2023 Configuration Guide
Doc. No.: 764257, Rev.: 1.1 29

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

Common Command-line Options

This section lists several common flags for EAL parameters and testpmd parameters.
These commands are intended to provide a starting place when learning the
application. Several of these flags have more details available on dpdk.org. See
Example Testpmd Configuration for an extended example of running testpmd.

Some common flags for EAL parameters include:

• -a, --allow <[domain:]bus:devid.func>: Add a PCI device in to the list of
devices to probe.

• -n <number of channels>: Set the number of memory channels to use.

• -l <core list>: List of cores to run on, where - is used as a range separator
and , is used as a single number separator.

• --socket-mem <amounts of memory per socket>: Preallocate specified
amounts of memory per socket. The parameter is a comma-separated list of
values.

For a complete list of EAL parameters, see dpdk.org:

https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html

Some common flags for testpmd options include:

• -i, --interactive: Start testpmd with an interactive prompt. See Testpmd
Runtime Functions for more details.

• --rxq=N: Set number of RX queues per port to N.

• --txq=N: Set number of TX queues per port to N.

• --nb-cores=N: Set number of forwarding cores.

• --forward-mode=mode: Set forwarding to a specific mode such as mac, rxonly,
ieee1588, noisy, etc. The default mode is io.

For a complete list of testpmd command-line options, see dpdk.org:

https://doc.dpdk.org/guides/testpmd_app_ug/run_app.html

Testpmd Runtime Functions

When testpmd is started in interactive mode using the -i or --interactive option,
a prompt is displayed that allows for real time configuration, statistic read-outs, and
the ability to start/stop packet forwarding. Many of the testpmd command-line
options can also be accessed as runtime functions.

An extensive number of testpmd runtime functions are available that are broken into
multiple categories. See dpdk.org for a complete list:

https://doc.dpdk.org/guides/testpmd_app_ug/testpmd_funcs.html

6.2.2

R Intel® Ethernet Controller E810—Test Applications (pktgen and testpmd)

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
Configuration Guide June 2023
30 Doc. No.: 764257, Rev.: 1.1

Did this document help answer your questions?

https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html
https://doc.dpdk.org/guides/testpmd_app_ug/run_app.html
https://doc.dpdk.org/guides/testpmd_app_ug/testpmd_funcs.html
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

To help with getting started, here are some examples of common runtime functions:

• set verbose (level): Set the debug verbosity level.

• set fwd (io|mac|macswap|flowgen|rxonly|txonly|csum|icmpecho|
noisy|5tswap|shared-rxq) (""|retry): Set the packet forwarding mode.

• show port (info|summary|stats|xstats|fdir|dcb_tc|cap)
(port_id|all): Display information for a given port or all ports.

• show fwd stats all: View statistics for all ports that were collected beginning
from the time the forwarding engine was started.

• start: Start packet forwarding with current configuration.

• stop: Stop packet forwarding and display accumulated statistics.

Debugging in Testpmd

Debug logging is available in testpmd and can be enabled by an EAL command-line
parameter.

To enable ice PMD debug logging, add the --log-level="pmd.net.ice,debug”
flag to the testpmd EAL parameters. This will print debug messages from
PMD_INIT_LOG(DEBUG, “message”):

sudo ./dpdk-testpmd -a 00:01.0 --log-level=”pmd.net.ice,debug" -- -i

Example pktgen Configuration

This section provides a more complex example of a pktgen command.

This command starts pktgen with these EAL parameters:

• -l <core list>: List of cores to run on, where ‘-‘ is used as a range separator
and ‘,’ is used as a single number separator.

• -n <number of channels>: Set the number of memory channels to use.

• --proc-type: Type of this process.

• --log-level:

• --socket-mem: Memory to allocate on specific sockets (use comma separated
values)

• --file-prefix: Prefix for hugepage filenames

• -a, --allow <[domain:]bus:devid.func>: Add a PCI device into the list of
devices to probe.

For a complete list of EAL parameters, see dpdk.org:

https://pktgen-dpdk.readthedocs.io/en/latest/usage_eal.html

For a complete list of command-line options, see dpdk.org:

https://pktgen-dpdk.readthedocs.io/en/latest/usage_pktgen.html

6.2.3

6.3

RTest Applications (pktgen and testpmd)—Intel® Ethernet Controller E810

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
June 2023 Configuration Guide
Doc. No.: 764257, Rev.: 1.1 31

Did this document help answer your questions?

https://pktgen-dpdk.readthedocs.io/en/latest/usage_eal.html
https://pktgen-dpdk.readthedocs.io/en/latest/usage_pktgen.html
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

1. Example pktgen configuration command:

./pktgen -l 24-32 -n 4 --proc-type auto --log-level 7 --socket- mem=0,1024
--file- prefix pgb2000 -a b2:00.0 -- -N -P -T -m [25-28:29-32].0

2. Pktgen entropy configuration to enable multiple traffic streams with RSS:

Pktgen:/> set 0 proto tcp
Pktgen:/> set 0 size 128
Pktgen:/> set 0 src mac 68:05:ca:a6:0b:1c
Pktgen:/> set 0 dst mac 68:05:ca:a6:0a:b0
Pktgen:/> set 0 src ip 192.168.103.101/24
Pktgen:/> set 0 dst ip 192.168.103.102
Pktgen:/> enable 0 range
Pktgen:/> range 0 proto tcp
Pktgen:/> range 0 size 128 128 128 1
Pktgen:/> range 0 src mac 68:05:ca:a6:0b:1c 68:05:ca:a6:0b:1c
68:05:ca:a6:0b:1c 00:00:00:00:00:01
Pktgen:/> range 0 dst mac 68:05:ca:a6:0a:b0 68:05:ca:a6:0a:b0
68:05:ca:a6:0a:b0 00:00:00:00:00:01
Pktgen:/> range 0 src ip 192.168.103.101 192.168.103.101 192.168.103.101
0.0.0.1
Pktgen:/> range 0 dst ip 192.168.103.102 192.168.103.102 192.168.103.102
0.0.0.1
Pktgen:/> range 0 dst port 2000 2000 2000 1
Pktgen:/> range 0 src port 3000 3000 3016 1
Pktgen:/> start 0

Note: The above configuration can be saved to a file and loaded directly to
the pktgen.
Pktgen:/> save <path-to-file>
Pktgen:/> load <path-to-file>

To view the range config, use the following command:

Pktgen:/> page range

To switch back to packets view, use the following command:

Pktgen:/> page main

Also refer to:

https://pktgen-dpdk.readthedocs.io/en/latest/commands.html#runtime-options-and-
command

R Intel® Ethernet Controller E810—Test Applications (pktgen and testpmd)

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
Configuration Guide June 2023
32 Doc. No.: 764257, Rev.: 1.1

Did this document help answer your questions?

https://pktgen-dpdk.readthedocs.io/en/latest/commands.html#runtime-options-and-command
https://pktgen-dpdk.readthedocs.io/en/latest/commands.html#runtime-options-and-command
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

Example Testpmd Configuration

This section provides a more complex example of a testpmd command.

This command starts testpmd with the following EAL parameters:

• -l 2-11: Run DPDK on cores 2 through 11.

• -n 4: Use 4 memory channels.

• -a 11:00.2: Probe PCI device at BDF number 11:00.2.

• --file-prefix testpmd18000: Run DPDK under the specified prefix
‘testpmd18000’.

• --socket-mem=1024: Pre-allocates 1024 megabytes on socket 0.

• --proc-type=auto: Set the type of the process to auto.

And, the following testpmd parameters:

• --nb-cores=4: Set the number of cores used by the application for forwarding to
4.

• --rxq=4: Set the number of RX queues per port to 4.

• --txq=4: Set the number of TX queues per port to 4.

• -i: Start testpmd in interactive mode.

• --forward-mode=mac: Set the packet forwarding mode to mac, which changes
the source and destination addresses of the packets before forwarding them.

• --eth-peer=0,68:05:ca:c1:c9:29: Set the MAC address of the peer port.

The following is the testpmd output from running the command:

./dpdk-testpmd -l 2-11 -n 4 -a 11:00.2 --file-prefix testpmd18000 --socket-
mem=1024,0 --proc-type=auto -- --nb-cores=4 --rxq=4 --txq=4 -i --forward-mode=mac
--eth-peer=0,68:05:ca:c1:c9:29

EAL: Detected 88 lcore(s)
EAL: Detected 2 NUMA nodes
EAL: Auto-detected process type: PRIMARY
EAL: Multi-process socket /var/run/dpdk/testpmd18000/mp_socket
EAL: Selected IOVA mode 'PA'
EAL: Probing VFIO support...
EAL: PCI device 0000:18:00.0 on NUMA socket 0
EAL: probe driver: 8086:1592 net_ice
Interactive-mode selected
Set mac packet forwarding mode
testpmd: create a new mbuf pool <mbuf_pool_socket_0>: n=219456, size=2176,
socket=0
testpmd: preferred mempool ops selected: ring_mp_mc

Warning! port-topology=paired and odd forward ports number, the last port will
pair with itself.

Configuring Port 0 (socket 0)
Port 0: 68:05:CA:A6:0A:B0
Checking link statuses...
Done

testpmd> start
mac packet forwarding - ports=1 - cores=4 - streams=4 - NUMA support enabled, MP
allocation mode: native
Logical Core 3 (socket 0) forwards packets on 1 streams:

6.4

RTest Applications (pktgen and testpmd)—Intel® Ethernet Controller E810

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
June 2023 Configuration Guide
Doc. No.: 764257, Rev.: 1.1 33

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

 RX P=0/Q=0 (socket 0) -> TX P=0/Q=0 (socket 0) peer=68:05:CA:A6:0B:1C
Logical Core 4 (socket 0) forwards packets on 1 streams:
 RX P=0/Q=1 (socket 0) -> TX P=0/Q=1 (socket 0) peer=68:05:CA:A6:0B:1C
Logical Core 5 (socket 0) forwards packets on 1 streams:
 RX P=0/Q=2 (socket 0) -> TX P=0/Q=2 (socket 0) peer=68:05:CA:A6:0B:1C
Logical Core 6 (socket 0) forwards packets on 1 streams:
 RX P=0/Q=3 (socket 0) -> TX P=0/Q=3 (socket 0) peer=68:05:CA:A6:0B:1C
mac packet forwarding packets/burst=32
nb forwarding cores=4 - nb forwarding ports=1
port 0: RX queue number: 4 Tx queue number: 4
Rx offloads=0x0 Tx offloads=0x10000
RX queue: 0
RX desc=1024 - RX free threshold=32
RX threshold registers: pthresh=8 hthresh=8 wthresh=0
RX Offloads=0x0
TX queue: 0
TX desc=1024 - TX free threshold=32
TX threshold registers: pthresh=32 hthresh=0 wthresh=0
TX offloads=0x10000 - TX RS bit threshold=32

testpmd> show port stats all

 ######################## NIC statistics for port 0 ########################
 RX-packets: 322932478810 RX-missed: 558861443 RX-bytes: 18446743441590657960
 RX-errors: 0
 RX-nombuf: 0
 TX-packets: 302564215177 TX-errors: 0 TX-bytes: 18446743108765253980

 Throughput (since last show)
 Rx-pps: 35183210
 Tx-pps: 32640093
 ##

testpmd> stop
Telling cores to stop...
Waiting for lcores to finish...

 ------- Forward Stats for RX Port= 0/Queue= 0 -> TX Port= 0/Queue= 0 -------
 RX-packets: 155985410964 TX-packets: 146417324571 TX-dropped: 9568086393

 ------- Forward Stats for RX Port= 0/Queue= 1 -> TX Port= 0/Queue= 1 -------
 RX-packets: 6224427006 TX-packets: 4972240065 TX-dropped: 1252186941

 ------- Forward Stats for RX Port= 0/Queue= 2 -> TX Port= 0/Queue= 2 -------
 RX-packets: 4981979331 TX-packets: 4973665526 TX-dropped: 8313805

 ------- Forward Stats for RX Port= 0/Queue= 3 -> TX Port= 0/Queue= 3 -------
 RX-packets: 155943833856 TX-packets: 146389491787 TX-dropped: 9554342069

 ---------------------- Forward statistics for port 0 ----------------------
 RX-packets: 323135651965 RX-dropped: 561082081 RX-total: 323696734046
 TX-packets: 302752721949 TX-dropped: 20382929208 TX-total: 323135651157
 --

 +++++++++++++++ Accumulated forward statistics for all ports+++++++++++++++
 RX-packets: 323135651965 RX-dropped: 561082081 RX-total: 323696734046
 TX-packets: 302752721949 TX-dropped: 20382929208 TX-total: 323135651157
 +++

Done.

R Intel® Ethernet Controller E810—Test Applications (pktgen and testpmd)

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
Configuration Guide June 2023
34 Doc. No.: 764257, Rev.: 1.1

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

Running a Sample Application L3fwd Server

Following is an overview of the Layer 3 forwarding sample application, in which the
forwarding decision is based on information read from the input packet. This is
intended as a quick-start resource. For more information, see the Sample Applications
User Guides at:

https://doc.dpdk.org/guides/sample_app_ug/l3_forward.html

1. To compile a sample application with Meson, use the configure command.

A single application can be compiled by passing in the application’s name.
Alternatively, all sample applications can be compiled by specifying ‘all’. Run the
meson command from the DPDK ‘build’ directory.

Move into build directory
cd dpdk-22.11/build

Compile and build L3 Forwarding Sample Application
meson configure -Dexamples=l3fwd
ninja

2. Run the application from the examples directory under build.

The full path would look like:

./dpdk-22.11/build/examples/dpdk-l3fwd

The following are some usage examples of the application.

4 cores command line option:

./dpdk-l3fwd -l 22,24,26,28 -n 6 -- -p 0x0 --config="(0,0,22),(0,1,24),(0,2,26),
(0,3,28)"

2 cores command line option:

./dpdk-l3fwd/build/l3fwd -l 3-4 -n 4 -a 18:00.0 -- -p 0x1 --parse-ptype --
config="(0,0,3),(0,1,4)" -P

In these commands:

• The -l option enables cores 22,24,26,28.

• The -p option enables port 0,

• The -config option enables one queue on each port and maps each (port,queue)
pair to a specific core. For example, (0,0,22) maps queue 0 from port 0 to lcore
22.

Please review Section 20.3, Running the Application in the Sample Applications User
Guides for a complete explanation of all flag options.

Example l3fwd output:

./dpdk-l3fwd -l 22,24,26,28 -n 6 -- -p 0x0 --config="(0,0,22),(0,1,24),(0,2,26),
(0,3,28)"
EAL: Detected 88 lcore(s)
EAL: Detected 2 NUMA nodes

6.5

RTest Applications (pktgen and testpmd)—Intel® Ethernet Controller E810

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
June 2023 Configuration Guide
Doc. No.: 764257, Rev.: 1.1 35

Did this document help answer your questions?

https://doc.dpdk.org/guides/sample_app_ug/l3_forward.html
https://doc.dpdk.org/guides/sample_app_ug/l3_forward.html#running-the-application
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
EAL: Selected IOVA mode 'PA'
EAL: Probing VFIO support...
EAL: PCI device 0000:00:04.0 on NUMA socket 0
EAL: probe driver: 8086:2021 rawdev_ioat
EAL: PCI device 0000:00:04.1 on NUMA socket 0
EAL: probe driver: 8086:2021 rawdev_ioat
EAL: PCI device 0000:00:04.2 on NUMA socket 0
EAL: probe driver: 8086:2021 rawdev_ioat
EAL: PCI device 0000:00:04.3 on NUMA socket 0
EAL: probe driver: 8086:2021 rawdev_ioat
EAL: PCI device 0000:00:04.4 on NUMA socket 0
EAL: probe driver: 8086:2021 rawdev_ioat
EAL: PCI device 0000:00:04.5 on NUMA socket 0
EAL: probe driver: 8086:2021 rawdev_ioat
EAL: PCI device 0000:00:04.6 on NUMA socket 0
EAL: probe driver: 8086:2021 rawdev_ioat
EAL: PCI device 0000:00:04.7 on NUMA socket 0
EAL: probe driver: 8086:2021 rawdev_ioat
EAL: PCI device 0000:3d:00.0 on NUMA socket 0
EAL: probe driver: 8086:37d2 net_i40e
EAL: PCI device 0000:3d:00.1 on NUMA socket 0
EAL: probe driver: 8086:37d2 net_i40e
EAL: PCI device 0000:80:04.0 on NUMA socket 1
EAL: probe driver: 8086:2021 rawdev_ioat
EAL: PCI device 0000:80:04.1 on NUMA socket 1
EAL: probe driver: 8086:2021 rawdev_ioat
EAL: PCI device 0000:80:04.2 on NUMA socket 1
EAL: probe driver: 8086:2021 rawdev_ioat
EAL: PCI device 0000:80:04.3 on NUMA socket 1
EAL: probe driver: 8086:2021 rawdev_ioat
EAL: PCI device 0000:80:04.4 on NUMA socket 1
EAL: probe driver: 8086:2021 rawdev_ioat
EAL: PCI device 0000:80:04.5 on NUMA socket 1
EAL: probe driver: 8086:2021 rawdev_ioat
EAL: PCI device 0000:80:04.6 on NUMA socket 1
EAL: probe driver: 8086:2021 rawdev_ioat
EAL: PCI device 0000:80:04.7 on NUMA socket 1
EAL: probe driver: 8086:2021 rawdev_ioat
EAL: PCI device 0000:86:00.0 on NUMA socket 1
EAL: probe driver: 8086:10c9 net_e1000_igb
EAL: PCI device 0000:86:00.1 on NUMA socket 1
EAL: probe driver: 8086:10c9 net_e1000_igb
EAL: PCI device 0000:af:00.0 on NUMA socket 1
EAL: probe driver: 8086:1592 net_ice
ice_load_pkg_type(): Active package is: 1.3.28.0, ICE OS Default Package
ice_init_proto_xtr(): Protocol extraction is not supported
LPM or EM none selected, default LPM on
Initializing port 0 ... Creating queues: nb_rxq=4 nb_txq=4... Port 0 modified RSS
hash function based on hardware support,requested:0xa38c configured:0x2288
 Address:68:05:CA:5C:CF:A8, Destination:02:00:00:00:00:00, Allocated mbuf pool on
socket 1
LPM: Adding route 192.18.0.0 / 24 (0)
LPM: Adding route 192.18.1.0 / 24 (1)
LPM: Adding route 192.18.2.0 / 24 (2)
LPM: Adding route 192.18.3.0 / 24 (3)
LPM: Adding route 192.18.4.0 / 24 (4)
LPM: Adding route 192.18.5.0 / 24 (5)
LPM: Adding route 192.18.6.0 / 24 (6)
LPM: Adding route 192.18.7.0 / 24 (7)
LPM: Adding route 2001:200:: / 48 (0)
LPM: Adding route 2001:200:0:0:1:: / 48 (1)
LPM: Adding route 2001:200:0:0:2:: / 48 (2)
LPM: Adding route 2001:200:0:0:3:: / 48 (3)
LPM: Adding route 2001:200:0:0:4:: / 48 (4)
LPM: Adding route 2001:200:0:0:5:: / 48 (5)
LPM: Adding route 2001:200:0:0:6:: / 48 (6)
LPM: Adding route 2001:200:0:0:7:: / 48 (7)
txq=22,0,1 txq=24,1,1 txq=26,2,1 txq=28,3,1

Initializing rx queues on lcore 22 ... rxq=0,0,1

R Intel® Ethernet Controller E810—Test Applications (pktgen and testpmd)

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
Configuration Guide June 2023
36 Doc. No.: 764257, Rev.: 1.1

Did this document help answer your questions?

https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

Initializing rx queues on lcore 24 ... rxq=0,1,1
Initializing rx queues on lcore 26 ... rxq=0,2,1
Initializing rx queues on lcore 28 ... rxq=0,3,1

Checking link
status..
..............done
Port 0 Link Down
L3FWD: entering main loop on lcore 24
L3FWD: -- lcoreid=24 portid=0 rxqueueid=1
L3FWD: entering main loop on lcore 26
L3FWD: -- lcoreid=26 portid=0 rxqueueid=2
L3FWD: entering main loop on lcore 22
L3FWD: -- lcoreid=22 portid=0 rxqueueid=0
L3FWD: entering main loop on lcore 28
L3FWD: -- lcoreid=28 portid=0 rxqueueid=3

DPDK Test Plans

For further use case and configuration examples, see the Test Plans section of
dpdk.org:

https://doc.dpdk.org/dts/test_plans/index.html

6.6

RTest Applications (pktgen and testpmd)—Intel® Ethernet Controller E810

Intel® Ethernet Controller E810 Data Plane Development Kit (DPDK) 22.11/23.03
June 2023 Configuration Guide
Doc. No.: 764257, Rev.: 1.1 37

Did this document help answer your questions?

https://doc.dpdk.org/dts/test_plans/index.html
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=0
https://onsite2.researchintel.com/xsurvey/22JT029/feedback.ashx?did=764257&fid=1

	Contents
	Revision History
	1.0 Introduction
	1.1 DPDK Overview
	1.2 Known Issues

	2.0 DPDK Requirements
	2.1 System Requirements
	2.2 Software/Firmware Requirements
	2.2.1 Updating the NVM with a DPDK Driver

	3.0 DPDK Installation and Configuration
	3.1 System Configuration
	3.2 BIOS Settings
	3.3 Hugepages Setup
	3.4 IOMMU
	3.5 CPU Isolation
	3.6 RCU Callbacks
	3.7 Tickless Kernel
	3.8 vt.handoff
	3.9 NUMA Balancing and MCE
	3.10 Active-State Power Management
	3.11 High Performance of Small Packets on 100G NIC- Use 16 Bytes Rx Descriptor Size
	3.12 Downloading and Installing the ice Driver
	3.13 Getting the Latest DPDK Code
	3.14 Prerequisite Library
	3.15 Installing DPDK
	3.15.1 Installing DPDK Using the Meson Build System (Recommended)
	3.15.2 Setting 16 Bytes Rx Descriptor Size

	3.16 Linux Drivers
	3.16.1 Loading the vfio-pci Module
	3.16.2 Binding and Unbinding Network Ports

	4.0 Virtual Function (VF) Setup with DPDK
	5.0 Advanced Features and Debug
	5.1 Q-in-Q Support
	5.2 Malicious Driver Detection
	5.3 Receive Side Scaling Configuration

	6.0 Test Applications (pktgen and testpmd)
	6.1 Setting Up pktgen Server
	6.2 Setting Up Testpmd Application
	6.2.1 Running Testpmd
	6.2.2 Testpmd Runtime Functions
	6.2.3 Debugging in Testpmd

	6.3 Example pktgen Configuration
	6.4 Example Testpmd Configuration
	6.5 Running a Sample Application L3fwd Server
	6.6 DPDK Test Plans

	Button2:
	Button1:

