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1.0 Introduction 

Modern processors use speculative execution to provide higher performance, more efficient resource 
utilization, and better user experiences. The speculation mechanisms may use various forms of 
predictors to anticipate future program execution and improve performance by having instructions 
execute earlier than their program order. While these predictors are designed to have high accuracy, 
wrong predictions can occur and result in mis-speculation, where a processor first executes instructions 
based on a prediction, and later squashes them to return to correct program execution. An attacker can 
potentially exploit such mis-speculation to reveal sensitive data in a transient execution attack.  

While previous documentation described specific speculative execution vulnerabilities and their 
mitigations, this article consolidates the prior guidance on speculative execution with better 
organization, along with clarifications and additional guidance to help readers navigate this topic. We 
continue to refer to the per-vulnerability guidance documents for more details.  

This consolidated document explains how to effectively manage some common forms of speculation in 
Intel processors, limit the performance impact of mitigations, and avoid mitigation redundancies for the 
features and behaviors included. It also provides an overview of some of the different types of 
speculation on current Intel processors and describes the hardware controls and software-based 
techniques that developers can use to restrict speculation and, where relevant, reduce the ability of 
potential adversaries to infer secret data due to speculation. Intel plans to update this document 
periodically to incorporate new guidance documents as they are released; for example, reflecting 
speculation mechanisms that may be added on future Intel processors. 

This document is organized as follows: Section 2.0 Speculative Execution starts with an introduction to 
speculative execution, describes control-flow and data speculation, and outlines options to restrict 
speculation. Section 3.0 Control-Flow Speculation details control-flow speculation due to indirect and 
conditional branches and techniques to restrict control-flow speculation on Intel processors. Section 
4.0 Data Speculation describes variants of data speculation such as memory disambiguation and 
options to manage data speculation. Section 5.0 Data-Dependent Prefetchers outlines data-dependent 
prefetches. Section 6.0 Additional Software Guidance summarizes the recommendations for restricting 
speculation in common use cases, such as, after a processor enters a higher privilege level. Section 7.0 
Related Intel Security Features and Technologies describes security features and technologies which 
reduce the effectiveness of malicious attacks described in the previous sections.  Section 8.0 CPUID 
Enumeration and Architectural MSRs references the processor enumerations and model-specific 
registers that provide the hardware features and mechanisms described in this document. 

 

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/refined-speculative-execution-terminology.html
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2.0 Speculative Execution  

In order to improve performance, modern processors make predictions about the program’s future 
execution. Processors use these predictions to speculatively execute younger instructions ahead of the 
current instruction pointer. As the processor advances in program execution, it resolves all conditions 
required to determine the correctness of the prediction. If the original predictions were correct, the 
speculatively executed instructions can retire, and their state becomes architecturally visible. If a 
prediction was wrong, the instructions which were speculatively executed based on the misprediction 
must be squashed and do not affect architectural states. These squashed instructions, which were only 
executed speculatively, are called transient instructions. Based on the resolved conditions, the 
processor then resumes with the correct program execution. A more detailed description of speculative 
execution is available in the Refined Speculation Execution Terminology article.  

Processors implement various forms of predictions and speculation which may result in instructions 
being speculatively executed, including:  

• Control-flow speculation involves speculatively executing instructions based on a prediction of 
the program’s control flow. 

o Indirect branch predictors predict the target address of indirect branch instructions1 to 
allow instructions at the predicted target address to be speculatively executed before 
the target address has been resolved.  

o Conditional branch predictors predict the direction of conditional branches to allow 
instructions on the predicted path to be speculatively executed before the condition 
has been resolved.  

• Data speculation involves speculatively executing instructions which depend on the values from 
previous instructions before the previous instructions have been executed. For example, the 
processor may speculatively forward data from a previous load to younger dependent 
instructions before the addresses of all intervening stores are known. 

Speculation can also occur for other reasons, and in particular, processors may speculate that 
architectural or microarchitectural events (for example, exceptions or assists) do not occur. This may 
result in instructions being transiently executed and squashed later by the processor when an event is 
handled2.  

While speculative execution predictors strive to have high accuracy, predictions can be wrong. A 
malicious actor may be able to use mispredictions to perform transient execution attacks, in which case 
a malicious actor may attempt to retrieve secret information from transiently executed instructions 
through an incidental channel.  

 
1 The specific instructions are described in section 3.1.1 Overview of Indirect Branch Predictors. Note 
that the target address of direct branch instructions is also predicted but Intel processors do not allow 
speculative execution at incorrect target addresses that are due to direct branches.  
2 Vulnerabilities such as Rogue Data Cache Load, Rogue System Register Read, L1 Terminal Fault, and 
Lazy FP may allow malicious actors to leverage such speculative execution to bypass existing security 
restrictions and infer secret data on some processors. Refer to the respective technical papers and 
section 9.0 Resources for more details. 

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/refined-speculative-execution-terminology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/rogue-data-cache-load.html#:%7E:text=Rogue%20data%20cache%20load%20exploit%20targets%20a%20processor%E2%80%99s,before%20an%20illegal%20access%20is%20determined%20to%20exist.
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/rogue-system-register-read.html
https://www.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/l1-terminal-fault.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00145.html
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Multiple sources of speculation may affect the same instruction. For example, an indirect branch may be 
affected by both control-flow speculation and data speculation. Control-flow speculation may cause 
the indirect branch to be predicted with a target based on past behavior. Data speculation could later 
affect the indirect branch’s source data and cause it to transiently go to an incorrectly predicted 
location before later redirecting to the correct location.  We use the term attacker-controlled jump 
redirection where a malicious actor controls the speculative branch target (through data speculation), to 
distinguish this from attacker-controlled prediction where a malicious actor controls the predicted 
branch target (through control-flow speculation). 

2.1 Incidental Channels 

There are several sources of incidental channels that may be used to retrieve information from 
transiently executed instructions. An overview of possible incidental channels is provided in the 
incidental channel taxonomy.  

Using such incidental channels, a malicious actor may be able to gain information through observing 
certain states of the system, such as by measuring the microarchitectural properties of the system. 
Unlike buffer overflows and other vulnerability classes, incidental channels do not directly influence the 
execution of the program, nor allow data to be modified or deleted.   

For instance, a cache timing side channel involves an adversary detecting whether a piece of data is 
present in any or a specific level of the processor’s caches, which may be used to infer some other 
related information. One common method to detect whether the data of interest is present in a cache is 
to use timers to measure the latency to access memory at the corresponding address and compare with 
the baseline timing of memory accesses that hit the cache or memory. 

2.2 Restricting Speculative Execution 

System operators have a range of options available to restrict speculation in Intel processors and 
reduce the risk of transient execution attacks. Intel processors provide several controls, such as 
enhanced Indirect Branch Restricted Speculation (IBRS) and Speculative Store Bypass Disable (SSBD), to 
restrict control speculation of indirect branches and to control data speculation, respectively. Section 
3.1.2 Indirect Branch Speculation Control Mechanisms details the indirect branch speculation controls 
available and their usage and Section 4.3 Speculative Store Bypass Control Mechanisms describes 
controls to restrict data speculation.  

Speculation can also be restricted through software-based techniques: For example, software can use a 
technique called retpoline (see Section 3.1.3 Software Techniques for Indirect Speculation Control) to 
restrict indirect branch speculation and use bounds clipping to prevent speculative out-of-bounds array 
accesses following conditional branches (refer to Section 3.2.1 Overview of Bounds Check Bypass).  

More generally, software can insert speculation-stopping barriers at the proper locations as needed to 
prevent a speculative side channel. The LFENCE instruction, or any serializing instruction, can serve as 
such a barrier. The LFENCE instruction and serializing instructions ensure that no later instruction will 
execute, even speculatively, until all prior instructions have completed locally. The LFENCE instruction 
has lower latency than the serializing instructions and thus is recommended when a speculation-
stopping barrier is needed.  

Certain security features with architectural effect can also be effective with respect to speculative 
execution. For example, when Supervisor Mode Access Prevention (SMAP) is enabled, supervisor loads 

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/securing-workloads-against-side-channel-methods.html#inpage-nav-1
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executed with a cleared AC flag will not transiently access memory in user mode pages from CPL0. This 
may prevent an attacker from using user memory for an incidental channel. 



Intel Confidential 

3.0 Control-Flow Speculation 

As highlighted in Section 2.0 Speculative Execution, control-flow speculation occurs when the 
processor speculatively executes instructions based on control flow prediction. The two main sources 
of transient execution related to control-flow speculation on Intel processors are indirect branches and 
conditional branches. In some conditions, certain non-branch instructions may also have speculation in 
the internal flow of their implementation. 

The following section of this document describes control-flow speculation due to indirect branches, 
conditional branches, and other miscellaneous situations, as well as the hardware and software 
mechanisms that can be used to restrict such speculation. 

3.1 Indirect Branches 

3.1.1 Overview of Indirect Branch Predictors 

Intel processors use indirect branch predictors to determine the target address of instructions that are 
to be speculatively executed after a near indirect branch instruction, as enumerated in the table below. 

Table 1. Instructions that use Indirect Branch Predictors 

Branch Type Instruction Opcode 

Near Call Indirect CALL r/m16, CALL r/m32, CALL 
r/m64 

FF /2 

Near Jump Indirect JMP r/m16, JMP r/m32, JMP 
r/m64 

FF /4 

Near Return RET, RET Imm16 C3, C2 Iw 

References in this document to indirect branches are only to near call indirect, near jump indirect and 
near return instructions.  

To make accurate predictions, indirect branch predictors are trained through program execution. 
Specifically, indirect branch predictors learn the target addresses of indirect branch instructions when 
they execute and use them for target prediction of subsequent execution of indirect branch 
instructions. While being accurate for most cases, misprediction may happen and the indirect branch 
predictor may predict the wrong target address, which can result in instructions at an incorrect code 
location being speculatively executed and later squashed.  

Intel processors implement different forms of indirect branch predictors, which could include (but are 
not necessarily limited to):  

• IP-based predictors that predict the indirect branch target address based on the address of the 
branch instruction. 
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• History-based predictors that predict the indirect branch target address based on the history of 
previously executed branch instructions. This allows the processor to predict different targets 
for the same indirect branch depending upon the previous code leading up to the indirect 
branch. For example, this could be based on a Branch History Buffer (BHB) which holds history 
used to select branch targets in these predictors. 

On current Intel processors, an important specific example of a predictor is the Return Stack Buffer 
(RSB) that predicts the targets of near RET instructions based on previous corresponding CALL 
instructions. Each execution of a near CALL instruction with a non-zero displacement adds an entry to 
the RSB that contains the address sequentially following that CALL instruction. The RSB is not used or 
updated by far CALL, far RET, or IRET instructions. 

Note that besides control-flow speculation, such as in indirect branch predictions, data speculation can 
also be the origin of speculative execution in the context of indirect branch instructions. For instance, 
due to memory disambiguation, an indirect jump instruction may load the target address from a 
memory location and speculatively jump to this target address before an older store instruction has 
stored a different target address to that memory location3. 

Branch Target Injection (BTI), Branch History Injection (BHI), and Intra-mode BTI are all 
microarchitectural transient execution attack techniques which involve an adversary influencing the 
target of an indirect branch by training the indirect branch predictors. Intel processors support indirect 
branch speculation control mechanisms which can be used to mitigate such attacks. 

3.1.1.1 Indirect Branch Prediction and Intel® Hyper-Threading Technology (Intel® HT Technology)  

In a processor supporting Intel® Hyper-Threading Technology, a core (or physical processor) may 
include multiple logical processors. On such processors, the logical processors sharing a core may 
share indirect branch predictors. As a result of this sharing, on processors without enhanced IBRS, 
software on one of a core’s logical processors may be able to control the predicted target of an indirect 
branch executed on another logical processor on the same core. This behavior can be disabled using 
the Single Thread Indirect Branch Predictors (STIBP) control described below. 

Such sharing occurs only within a core. Software executing on a logical processor of one core cannot 
control the predicted target of an indirect branch by a logical processor of a different core.  

3.1.2 Indirect Branch Speculation Control Mechanisms 

Intel has developed indirect branch predictor controls, which are interfaces between the processor and 
system software to manage the state of indirect branch predictors.  

All supported Intel processors (when running with up-to-date microcode) provide three indirect branch 
control mechanisms: 

● Indirect Branch Restricted Speculation (IBRS): Restricts indirect branch predictions, which can 
be used by virtual machine manager (VMM) or operating system code to prevent the use of 
predictions from another security domain. Recent processors support enhanced IBRS, which 
can be enabled once and never disabled (always on mode). 

 
3 This is an example of attacker-controlled jump redirection. 

https://www.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/branch-target-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/single-thread-indirect-branch-predictors.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
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● Single Thread Indirect Branch Predictors (STIBP): Prevents indirect branch predictions from 
being controlled by a sibling hyperthread. Processors which support enhanced IBRS always 
have this behavior, regardless of the setting of STIBP. 

● Indirect Branch Predictor Barrier (IBPB): Prevents indirect branch predictions after the barrier 
from being controlled by software executed before the barrier. IBPB also acts as a barrier for 
the Fast Store Forwarding Predictor and Data Dependent Prefetchers (refer to Section 4.1 
Overview of Data Speculation), where relevant. This allows VMM and operating system code to 
provide isolation when switching between guests or userspace applications which execute in 
different security domains. 

Some recent Intel processors also support additional indirect branch control mechanisms which focus 
on specific indirect branch predictors or behaviors. Some examples include the IPRED_DIS_U, 
IPRED_DIS_S, RRSBA_DIS_U, RRSBA_DIS_S and BHI_DIS_S bits in the IA32_SPEC_CTRL MSR. 

System software can use these indirect branch control mechanisms to defend against branch target 
injection attacks. 

3.1.2.1 Predictor Mode 

Intel processors support different modes of operation corresponding to different levels of privilege.  
VMX root operation (for a virtual-machine monitor, or host) is more privileged than VMX non-root 
operation (for a virtual machine, or guest). Within either VMX root operation or VMX non-root operation, 
supervisor mode (CPL < 3) is more privileged than user mode (CPL= 3). 

To prevent inter-mode attacks based on branch target injection, it is important to ensure that less 
privileged software cannot control the branch target prediction in more privileged software. For this 
reason, it is useful to introduce the concept of predictor mode associated with different modes of 
operation as mentioned above. There are four predictor modes: host-supervisor, host-user, guest-
supervisor, and guest-user. 

The guest predictor modes are considered less privileged than the host predictor modes. Similarly, the 
user predictor modes are considered less privileged than the supervisor predictor modes. 

There are operations that may be used to transition between unrelated software components but do 
not change CPL or cause a VMX transition. These operations do not change predictor mode. Examples 
include MOV to CR3, VMPTRLD, EPTP switching (using VM function 0), and GETSEC[SENTER]. 

3.1.2.2 Indirect Branch Restricted Speculation (IBRS) 

Indirect branch restricted speculation (IBRS) is an indirect branch control mechanism that restricts 
speculation of indirect branches. A processor supports IBRS if it enumerates 
CPUID.(EAX=7H,ECX=0):EDX[26] as 1. 

3.1.2.2.1 IBRS: Basic Support 

Processors that support IBRS provide the following guarantees without any enabling by software: 

● The predicted targets of near indirect branches executed in an enclave (a protected container 
defined by Intel® SGX) cannot be controlled by software executing outside the enclave. 

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/single-thread-indirect-branch-predictors.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
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● If the default treatment of system-management interrupts (SMIs) and system management 
mode SMM is active, software executed before a SMI cannot control the predicted targets of 
indirect branches executed in SMM after the SMI. 

● The predicted targets of near indirect branches executed inside a Trust Domain (TD), a virtual 
machine managed by Intel® Trust Domain Extensions (Intel® TDX) module, cannot be controlled 
by software executing outside the TD. 

3.1.2.2.2 IBRS: Support Based on Software Enabling 

IBRS provides a method for critical software to protect their indirect branch predictions. 

If software sets IA32_SPEC_CTRL.IBRS to 1 after a transition to a more privileged predictor mode, 
predicted targets of indirect branches executed in that predictor mode with IA32_SPEC_CTRL.IBRS = 1 
cannot be controlled by software that was executed in a less privileged predictor mode4. Additionally, 
when IA32_SPEC_CTRL.IBRS is set to 1 on any logical processors of that core, the predicted targets of 
indirect branches cannot be controlled by software that executes (or has executed previously) on 
another logical processor of the same core. Therefore, it is not necessary to set bit 1 (STIBP) of the 
IA32_SPEC_CTRL MSR when IBRS is set to 1. 

If IA32_SPEC_CTRL.IBRS is already 1 before a transition to a more privileged predictor mode, some 
processors may allow the predicted targets of indirect branches executed in that predictor mode to be 
controlled by software that executed before the transition. Software can avoid this by using WRMSR on 
the IA32_SPEC_CTRL MSR to set the IBRS bit to 1 after any such transition, regardless of the bit’s 
previous value. It is not necessary to clear the bit first; writing it with a value of 1 after the transition 
suffices, regardless of the bit’s original value. 

Setting IA32_SPEC_CTRL.IBRS to 1 does not suffice to prevent the predicted target of a near return 
from using an RSB entry created in a less privileged predictor mode. Software can avoid this by using an 
RSB overwrite sequence5 following a transition to a more privileged predictor mode. It is not necessary 
to use such a sequence following a transition from user mode to supervisor mode if supervisor-mode 
execution prevention (SMEP) is enabled. SMEP prevents execution of code on user mode pages, even 
speculatively, when in supervisor mode. User mode code can only insert its own return addresses into 
the RSB, not the return addresses of targets on supervisor mode code pages. On processors without 
SMEP where separate page tables are used for the OS and applications, the OS page tables can map 
user code as no-execute. The processor will not speculatively execute instructions from a translation 
marked no-execute. 

Enabling IBRS does not prevent software from controlling the predicted targets of indirect branches of 
unrelated software executed later at the same predictor mode (for example, between two different user 
applications, or two different virtual machines). Such isolation can be ensured through use of IBPB, 
described in Section 3.1.2.4 Indirect Branch Predictor Barrier (IBPB). 

 

4 A transition to a more privileged predictor mode through an INIT# is an exception to this and may not 
be sufficient to prevent the predicted targets of indirect branches executed in the new predictor mode 
from being controlled by software operating in a less privileged predictor mode. 

5 An RSB overwrite sequence is a sequence of instructions that includes 32 more near CALL 
instructions with non-zero displacements than it has near RETs.  

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html#inpage-nav-5-1
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Enabling IBRS on one logical processor of a core with Intel HT Technology may affect branch prediction 
on other logical processors of the same core. For this reason, software should disable IBRS (by clearing 
IA32_SPEC_CTRL.IBRS) prior to entering a sleep state (for example, by executing HLT or MWAIT) and re-
enable IBRS upon wakeup and prior to executing any indirect branch. 

3.1.2.2.3 Enhanced IBRS 

Some processors may enhance IBRS by simplifying software enabling and improving performance.  A 
processor supports enhanced IBRS if RDMSR returns a value of 1 for bit 1 of the 
IA32_ARCH_CAPABILITIES MSR. 

Enhanced IBRS supports an always on model in which IBRS is enabled once (by setting 
IA32_SPEC_CTRL.IBRS) and never disabled. If IA32_SPEC_CTRL.IBRS = 1 on a processor with enhanced 
IBRS, the predicted targets of indirect branches executed cannot be controlled by software executed in 
a less privileged predictor mode or on another logical processor. 

As a result, software operating on a processor with enhanced IBRS need not use WRMSR to set 
IA32_SPEC_CTRL.IBRS after every transition to a more privileged predictor mode. Software can isolate 
predictor modes effectively simply by setting the bit once. Software need not disable enhanced IBRS 
prior to entering a sleep state such as MWAIT or HLT. 

On processors with enhanced IBRS, an RSB overwrite sequence may not suffice to prevent the 
predicted target of a near return from using an RSB entry created in a less privileged predictor mode.  
Software can prevent this by enabling SMEP (for transitions from user mode to supervisor mode) and 
by having IA32_SPEC_CTRL.IBRS set during VM exits. Processors with enhanced IBRS still support the 
usage model where IBRS is set only in the OS/VMM for OSes that enable SMEP. To do this, such 
processors will manage guest behavior such that it cannot control the RSB after a VM exit once IBRS is 
set, even if IBRS was not set at the time of the VM exit. If the guest has cleared IBRS, the hypervisor 
should set IBRS after the VM exit, just as it would do on processors supporting IBRS but not enhanced 
IBRS. As with IBRS, enhanced IBRS does not prevent software from affecting the predicted target of an 
indirect branch executed at the same predictor mode. For such cases, software should use the IBPB 
command, described in Section 3.1.2.4 Indirect Branch Predictor Barrier (IBPB). 

On processors with enhanced IBRS support, Intel recommends that IBRS be set to 1 and left set. The 
traditional IBRS model of setting IBRS only during ring 0 execution is just as secure on processors with 
enhanced IBRS support as it is on processors without enhanced IBRS, but the WRMSRs on ring 
transitions and/or VM exit/entry will cost performance compared to just leaving IBRS set. Again, there is 
no need to use STIBP when IBRS is set. However, IBPB should still be used when switching to a different 
application/guest that does not trust the last application/guest that ran on a particular hardware thread.  

Guests in a VM migration pool that includes hardware without enhanced IBRS may not have 
IA32_ARCH_CAPABILITIES.IBRS_ALL (enhanced IBRS) enumerated to them, and thus may use the 
traditional IBRS usage model of setting IBRS only in ring 0. For performance reasons, once a guest has 
been shown to frequently write IA32_SPEC_CTRL, we do not recommend that the VMM cause a VM exit 
on such WRMSRs. The VMM running on processors that support enhanced IBRS should allow the 
IA32_SPEC_CTRL-writing guest to control guest IA32_SPEC_CTRL. The VMM should thus set IBRS after 
VM exits from such guests to protect itself (or use alternative techniques like retpoline, secret removal, 
or indirect branch removal). 

On processors without enhanced IBRS, Intel recommends using retpoline or setting IBRS only during 
ring 0 and VMM modes. IBPB should be used when switching to a different process/guest that does not 
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trust the last process/guest that ran on a particular hardware thread. For performance reasons, IBRS 
should not be left set during application execution. 

 

3.1.2.3 Single Thread Indirect Branch Predictors (STIBP) 

As noted in Section 3.1.1.1 Indirect Branch Prediction and Intel® Hyper-Threading Technology (Intel® HT 
Technology), the logical processors sharing a core may share indirect branch predictors, allowing one 
logical processor to control the predicted targets of indirect branches by another logical processor of 
the same core.  

Single thread indirect branch predictors (STIBP) is an indirect branch control mechanism that restricts 
the sharing of indirect branch prediction between logical processors on a core. A processor supports 
STIBP if it enumerates CPUID.(EAX=7H,ECX=0):EDX[27] as 1. Setting bit 1 (STIBP) of the 
IA32_SPEC_CTRL MSR on a logical processor prevents the predicted targets of indirect branches on any 
logical processor of that core from being controlled by software that executes (or executed previously) 
on another logical processor of the same core. 

Unlike IBRS and IBPB, STIBP does not affect all branch predictors that contain indirect branch 
predictions. STIBP only affects those branch predictors where software on one hardware thread can 
create a prediction that can then be used by the other hardware thread for indirect branches. This is 
part of what makes STIBP have lower performance overhead than IBRS on some implementations. 

It is not necessary to use IBPB after setting STIBP in order to make the STIBP effective. STIBP provides 
isolation of indirect branch prediction between logical processors on the same core only when it is set. 
In particular, it is not a branch prediction barrier - setting and then unsetting STIBP does not prevent 
indirect branch predictions from being controlled by previously executed code and/or code on other 
logical processors. 

Processes that are particularly security-sensitive may wish to have STIBP be set when they execute to 
prevent their indirect branch predictions from being controlled by another hardware thread on the 
same physical core. On some older Intel® Core-family processors, this comes at significant performance 
cost to both hardware threads due to disabling some indirect branch predictors (as described earlier). 
Because of this, we do not recommend that STIBP be set during all application execution on processors 
that do not support enhanced IBRS. 

Indirect branch predictors are never shared across cores. Thus, the predicted target of an indirect 
branch executed on one core can never be affected by software operating on a different core. It is not 
necessary to set IA32_SPEC_CTRL.STIBP to isolate indirect branch predictions from software operating 
on other cores. 

Many processors do not allow the predicted targets of indirect branches to be controlled by software 
operating on another logical processor, regardless of STIBP. These include processors on which Intel 
Hyper-Threading Technology is not enabled and those that do not share indirect branch predictor 
entries between logical processors. To simplify software enabling and enhance workload migration, 
STIBP may be enumerated (and setting IA32_SPEC_CTRL.STIBP allowed) on such processors.  

A processor may enumerate support for the IA32_SPEC_CTRL MSR (by enumerating 
CPUID.(EAX=7H,ECX=0):EDX[26] as 1) but not for STIBP (CPUID.(EAX=7H,ECX=0):EDX[27] is 
enumerated as 0). On such processors, execution of WRMSR to IA32_SPEC_CTRL ignores the value of bit 
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1 (STIBP) and does not cause a general-protection exception (#GP) if bit 1 of the source operand is set. 
It is expected that this fact will simplify virtualization in some cases. 

As noted in Section 3.1.2.1, Predictor Mode, Intel processors support different modes of operation 
corresponding to different levels of privilege.  VMX root operation (for a virtual-machine monitor, or 
host) is more privileged than VMX non-root operation (for a virtual machine, or guest). Within either 
VMX root operation or VMX non-root operation, supervisor mode (CPL < 3) is more privileged than user 
mode (CPL= 3). 

To prevent inter-mode attacks based on branch target injection, it is important to ensure that less 
privileged software cannot control the branch target prediction in more privileged software. For this 
reason, it is useful to introduce the concept of predictor mode associated with different modes of 
operation as mentioned above. There are four predictor modes: host-supervisor, host-user, guest-
supervisor, and guest-user. 

The guest predictor modes are considered less privileged than the host predictor modes. Similarly, the 
user predictor modes are considered less privileged than the supervisor predictor modes. 

There are operations that may be used to transition between unrelated software components but do 
not change CPL or cause a VMX transition.  These operations do not change predictor mode. Examples 
include MOV to CR3, VMPTRLD, EPTP switching (using VM function 0), and GETSEC[SENTER]. 

Enabling IBRS prevents software operating on one logical processor from controlling the predicted 
targets of indirect branches executed on another logical processor. For that reason, it is not necessary 
to enable STIBP when IBRS is enabled.  

Recent Intel processors, including all processors which support enhanced IBRS, provide this isolation 
for indirect branch predictions between logical processors without the need to set STIBP. 

Enabling STIBP on one logical processor of a core with Intel Hyper-Threading Technology may affect 
branch prediction on other logical processors of the same core. For this reason, on processors which do 
not support enhanced IBRS, software should disable STIBP (by clearing IA32_SPEC_CTRL.STIBP) prior 
to entering a sleep state (for example, by executing HLT or MWAIT) and re-enable STIBP upon wakeup 
and prior to executing any indirect branch. 

 

3.1.2.4 Indirect Branch Predictor Barrier (IBPB) 

The indirect branch predictor barrier (IBPB) is an indirect branch control mechanism that establishes a 
barrier, preventing software that executed before the barrier from controlling the predicted targets of 
indirect branches6 executed after the barrier on the same logical processor. A processor supports IBPB 
if it enumerates CPUID.(EAX=7H,ECX=0):EDX[26] as 1. IBPB can be used to help mitigate Branch Target 
Injection. 

 
6 Note that indirect branches include near call indirect, near jump indirect and near return instructions; 
as documented by the speculative execution side channel mitigations guidance. Because it includes 
near returns, it follows that RSB entries created before an IBPB command cannot control the predicted 
targets of returns executed after the command on the same logical processor. 

https://www.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/branch-target-injection.html
https://www.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/branch-target-injection.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
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The IBPB also provides other domain isolation properties regarding speculative execution, such as for 
the Fast Store Forwarding Predictor and Data Dependent Prefetchers where relevant. 

Unlike IBRS and STIBP, IBPB does not define a new mode of processor operation that controls the 
branch predictors. As a result, it is not enabled by setting a bit in the IA32_SPEC_CTRL MSR. Instead, 
IBPB is an operation that software executes when necessary. 

Software executes an IBPB command by writing the IA32_PRED_CMD MSR to set bit 0 (IBPB). This can 
be done either using the WRMSR instruction or as part of a VMX transition that loads the MSR from an 
MSR-load area. Software that executed before the IBPB command cannot control the predicted targets 
of indirect branches executed after the command on the same logical processor. The IA32_PRED_CMD 
MSR is write-only, and it is not necessary to clear the IBPB bit before writing it with a value of 1. 

IBPB should be used when switching to a different application/guest that does not want its indirect 
branch predictions to be controlled by previous applications/guests that ran on that logical processor in 
the same predictor mode. 

IBPB can be used in conjunction with IBRS to account for cases that IBRS does not cover: 

● As noted in Section 3.1.2.2 Indirect Branch Restricted Speculation (IBRS), IBRS does not prevent 
software from controlling the predicted target of an indirect branch of unrelated software (for 
example, a different user application or a different virtual machine) executed at the same 
predictor mode. Software can aim to prevent such control by executing an IBPB command when 
changing the identity of software operating at a particular predictor mode (for example, when 
changing user applications or virtual machines). 

● Software may choose to clear IA32_SPEC_CTRL.IBRS in certain situations (for example, for 
execution with CPL = 3 in VMX root operation). In such cases, software can use an IBPB 
command on certain transitions (for example, after running an untrusted virtual machine) to 
prevent software that executed earlier from controlling the predicted targets of indirect 
branches executed subsequently with IBRS disabled. 

Note that, on some processors that do not enumerate PBRSB_NO, there is an exception to the IBPB-
established barrier for RSB-based predictions. On these processors, a RET instruction that follows VM 
exit or IBPB without a corresponding CALL instruction may use the linear address following the most 
recent CALL instruction executed prior to the VM exit or IBPB as the RSB prediction (refer to the  Post-
barrier Return Stack Buffer Predictions guidance). In these cases, software can use special code 
sequences (refer to Section 3.1.3.1 Return Stack Buffer stuffing to steer RSB predictions to benign code 
regions that restrict speculation.  

 

3.1.2.5 Other Indirect Branch Predictor Controls 

The BHI_DIS_S indirect predictor control prevents predicted targets of indirect branches executed in 
CPL< 3 from being selected based on branch history from branches executed in CPL3. While set in the 
VMX root (host), it also prevents predicted targets executed in CPL0 (ring 0/root) from being selected 
based on branch history from branches executed in a VMX non-root (guest). It may not prevent 
predicted targets executed in CPL3 of VMX root from being based on branch history for branches 
executed in a VMX non-root (guest).  

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/fast-store-forwarding-predictor.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/data-dependent-prefetcher.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/post-barrier-return-stack-buffer-predictions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/post-barrier-return-stack-buffer-predictions.html
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Enumeration of BHI_NO indicates that, even when BHI_DIS_S is not set, the processor prevents 
predicted targets of indirect branches executed in CPL < 3 from being selected based on branch history 
from branches executed in CPL3, other than RSB-based return predictions. Processors which 
enumerate BHI_NO also always prevent predicted targets executed in VMX root from being selected 
based on branch history from branches executed in VMX non-root (guest) 

On processors that do not enumerate BHI_NO, the history of executed branches before IBPB can 
influence new indirect branch predictions following IBPB through the branch history buffer (BHB). Intel 
is not aware of any production code where this behavior allows a transient execution attack, since IBPB 
isolates indirect branch targets.  

The IPRED_DIS_U (affecting CPL3) and IPRED_DIS_S (affecting CPL < 3) controls, when active, 
prevent transient execution at predicted targets of an indirect near JMP/CALL before the target is 
resolved7. This includes transient execution at past targets of that same branch. Transient execution at 
predicted targets of a near RET prediction will only occur for RSB-based return predictions, or for linear 
address 0. Note that, as previously documented, fall-through speculation to instruction bytes following 
an indirect JMP/CALL or speculation to linear address 0 may still occur.  

When the RRSBA_DIS_S (affecting CPL < 3) and RRSBA_DIS_U (affecting CPL3) indirect predictor 
controls are set, transient execution at predicted targets of a near RET prediction will only occur for 
RSB-based return predictions, or for linear address 0. 

3.1.3 Software Techniques for Indirect Speculation Control 

Besides the hardware-based mechanisms described above, software mechanisms can also be used to 
limit indirect branch speculation where hardware mechanisms are not available. 

For example, indirect branch prediction can be suppressed in some cases by using a software-based 
approach called retpoline, which was developed by Google*. Details of retpoline are described in 
Retpoline: A Branch Target Injection Mitigation.  

3.1.3.1 Return Stack Buffer stuffing 

RSB stuffing (also known as an RSB overwrite sequence) is a software technique to fill the RSB with 
trusted-software-controlled return targets. 

3.1.3.1.1 RSB stuffing on VM exit 

To avoid guest control of the predicted targets of VMM RET instructions after a VM exit, on processors 
without enhanced IBRS support, a VMM can apply RSB stuffing with 32 return targets. RSB stuffing after 
an VM exit is not required on processors which support enhanced IBRS, as described in Section 
3.1.2.2.3 Enhanced IBRS. 

3.1.3.1.2 RSB stuffing to avoid underflow 

Under some circumstances on processors that have RSBA or RRSBA behavior, situations such as a deep 
call stack or imbalanced CALL and RET instructions may result in RSB underflowing and alternate 

 
7 Note that this does not cover attacker-controlled jump redirection, which is described in volume 1, 
section 17.1.3 “Speculative Behavior when CET is Enabled” of the Intel Software Developers Manual. 

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html#inpage-nav-5-1
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
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predictors being used to predict the return address of RET instructions. The properties of both IBRS and 
enhanced IBRS continue to apply to such predictions. 

On processors with RSBA behavior where software is using retpoline rather than IBRS, software may 
wish to apply RSB stuffing to avoid RSB underflow in some cases, as described in Retpoline: A Branch 
Target Injection Mitigation.  

3.1.3.2 Branch History Buffer Control 

To address Branch History Injection, software can use a code sequence to control speculation that 
arises from collisions in the Branch History Buffer (BHB). This code sequence overwrites the branch 
history after domain transitions to prevent the previous domain from influencing BHB-based indirect 
branch prediction in the current domain. As microarchitectural details of the BHB may change in future 
processors, Intel recommends using hardware-based controls, such as, BHI_DIS_S, where available.  

 

3.1.4 Guidance for Managing Indirect Branches  

Software can effectively restrict speculation and protect against speculation-based attacks in use cases 
that have an increased risk of exploitation. This includes mechanisms to avoid speculation in more 
privileged modes being manipulated by less privileged code to reveal sensitive information. It also 
includes mechanisms to avoid such manipulation between applications or between virtual machines.   

3.1.4.1 Operating Systems 

Intel recommends operating systems enable enhanced IBRS (eIBRS) to prevent ring 3 software from 
influencing predictions and speculation in kernel. On older processors, where enhanced IBRS is not 
available, the operating system should use IBRS instead. In addition, operating systems should disable 
unprivileged extended Berkley Packet Filter (eBPF) to prevent unprivileged users from introducing 
potentially harmful code into the kernel domain and misusing it via branch history injection (BHI). 
Operating systems should also keep Supervisor Mode Execution Prevention (SMEP) enabled to prevent 
the kernel from executing and speculating on code from untrusted userspace. 

 

3.1.4.2 VMM 

Intel recommends VMMs enable enhanced IBRS to restrict speculation and prevent accidental data 
leakage. VMMs running on processors that support enhanced IBRS should allow the guest to use 
IA32_SPEC_CTRL and efficiently control the mitigations itself. The VMM should thus set IBRS after VM 
exits from such guests to protect itself. If eIBRS is not available on a processor, VMMs should mitigate 
Branch Target Injection with other techniques to isolate the VMM against its guests. VMMs may also 
wish to apply IBPB when switching between guests, prior to VM entry to the new guest; see Section  
3.1.2.4 Indirect Branch Predictor Barrier (IBPB). See also Section 3.1.3.1.1 (RSB stuffing on VM exit). 

VMMs may also wish to consider mitigating specific vulnerabilities; see the specific guidance for more 
details: 

• On processors affected by Post-Barrier Return Stack Buffer Predictions, the VMM may need to 
execute an additional software sequence on VM exit. 

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html?wapkw=retpoline
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html?wapkw=retpoline
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html#inpage-nav-2-4
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html#inpage-nav-1
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/post-barrier-return-stack-buffer-predictions.html
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• On some processors affected by Indirect Target Selection, any VMM relying on enhanced IBRS’s 
guest/host isolation may need to apply additional software mitigations to mitigate Branch 
Target Injection attacks. 

 

3.1.4.3 Disclosure Gadgets in Software 

Intel recommends adapting software, such as by using bounds clipping or LFENCE, to fix potentially 
exploitable gadgets as they are found. Refer to section 2.2 Restricting Speculative Execution and section 
3.2.4 Software Techniques for Conditional Speculation Control for more information. 

3.1.4.4 System Management Mode (SMM) 
On certain processors from the Skylake generation, System Management Interrupt (SMI) handlers can 
leave the RSB in a state that OS code does not expect. To avoid RSB underflow on return from SMI and 
ensure retpoline implementations in the OS and VMM work properly, on these processors, an SMI 
handler may implement RSB stuffing before returning from System Management Mode (SMM). 

 

3.2 Conditional Branches 

Intel processors use conditional branch predictors to predict the direction of conditional branch 
instructions before their actual execution. This allows the processor to fetch and speculatively execute 
instructions on the predicted execution path after the conditional branch. Speculative execution side 
channels (aka Transient Execution Attacks) that are based around conditional branch prediction are 
classified as Spectre Variant 1. 

 

3.2.1 Overview of Bounds Check Bypass 

Bounds check bypass is a side channel method that takes advantage of the speculative execution that 
may occur following a conditional branch instruction. Specifically, the method is used in situations in 
which the processor is checking whether an input is in bounds (for example, while checking whether the 
index of an array element being read is within acceptable values). The processor may issue operations 
speculatively before the bounds check resolves. If the attacker contrives for these operations to access 
out-of-bounds memory, information may be inferred by the attacker in certain circumstances. 

3.2.1.1 Bounds Check Bypass Store 

One subvariant of this technique, known as bounds check bypass store, is to use speculative stores to 
overwrite younger speculative loads in a way that creates a side channel controlled by a malicious actor.  

Refer to the example bounds check bypass store sequence below: 

int function(unsigned bound, unsigned long user_key) { 

unsigned long data[8]; 

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/indirect-target-selection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/branch-target-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/branch-target-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html#inpage-nav-5-1
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/refined-speculative-execution-terminology.html
https://spectreattack.com/spectre.pdf
https://www.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/bounds-check-bypass.html
file://content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/analyzing-bounds-check-bypass-vulnerabilities.html#inpage-nav-3
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/* bound is trusted and is never more than 8 */ 

for (int i = 0; i < bound; i++){ 

data[i] = user_key; 

} 

          

return 0; 

} 

The example above does not by itself allow a bounds check bypass attack. However, it does allow the 
attack to speculatively modify memory, and therefore could potentially be used to chain attacks. For 
example, it is possible that the above sequence might speculatively overwrite the return address on the 
stack with user_key. This may allow a malicious actor to specify a user_key that is actually the 
instruction pointer of a disclosure gadget that they wish to be speculatively executed. 

The steps below describe how an example attack using this method might occur: 

1. The CPU conditional branch predictor predicts that the loop will iterate 10 iterations, when in 
reality the loop should have only executed 8 times. After the 10th iteration, the predictor will 
resolve, fall through, and execute the following instructions. However, the 9th iteration of the 
loop may speculatively overwrite the return address on the stack. 

2. The CPU decodes the RET and speculatively fetches instructions based on the prediction in the 
return stack buffer (RSB). The CPU may speculatively execute those instructions. 

3. RET loads the value that it believes is at the top of the stack (but which came from the 
speculative store of user_key in step 1) and redirects the instruction pointer to that value. The 
results of any operations speculatively executed in step 2 are discarded. 

4. The disclosure gadget at the instruction pointer of user_key (which was specified by the 
malicious actor) speculatively executes and creates a side channel that can be used to reveal 
data specified by the malicious actor. 

5. The conditional jump that should have ended the loop then executes and redirects the 
instruction pointer to the next instruction after the loop. This discards the speculative store of 
user_key that overwrote the return address on the stack, as well as all other operations 
between step 1 and step 4. 

6. The CPU executes the RET again, and the program continues. 

Where the compiler has spilled variables to the stack, the store can also be used to target those spilled 
values and speculatively modify them to enable another attack to follow. An example of this would be 
by targeting the base address of an array dereference or the limit value. 

SMEP will prevent the attack described above from causing a supervisor RET to speculatively execute 
code in user mode pages. Intel® Control flow Enforcement Technology (Intel® CET) can also help 
prevent speculative execution of instructions at incorrect indirect branch targets. 
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This example can be mitigated either by applying LFENCE before the RET (after the loop ends), by 
using bounds clipping to ensure that store operations do not occur outside of the array’s bounds, even 
speculatively, or by ensuring that incorrect return pointer is detected and that the return does not 
speculatively use the incorrect value.  

A second variant of this method can occur where a user value is being copied into an array, either on the 
stack or adjacent to function pointers. As discussed previously, the processor may speculatively execute 
a loop more times than is actually needed. If this loop moves through memory writing malicious actor-
controlled values, then the malicious actor may be able to speculatively perform a buffer overrun 
attack. 

  int filltable(uint16_t *from) 

  { 

   uint16_t buffer[64]; 

   int i; 

 

   for (i = 0; i < 64; i++) 

    buffer[i] = *from++; 

  } 

 

In some cases, the example above might speculatively copy more bytes than 64 into the array, changing 
the return address speculatively used by the processor so that it instead returns to a user-controlled 
gadget. 

As the execution is speculative, some processors will allow speculative writes to read-only memory and 
will reuse that data speculatively. Therefore, while placing function pointers into write-protected space 
is a good general security mitigation, doing so is not sufficient mitigation in this case. 

3.2.2 Identifying Bounds Check Bypass Vulnerabilities 

The following section examines common instances of bounds check bypass, including the bounds 
check bypass store variant, but should not be considered a comprehensive list. It describes how to 
analyze potential bounds check bypass and bounds check bypass store vulnerabilities found by static 
analysis tools or manual code inspection and presents mitigation techniques that may be used. This 
document does not include any actual code from any real product or open source release, nor does it 
discuss or recommend any specific analysis tools. 

3.2.2.1 Common Attributes for Bounds Check Bypass Vulnerabilities 

Bounds check bypass code sequences have some common features: they generally operate on data 
that is controlled or influenced by a malicious actor, and they all have some kind of side-effect that can 
be observed by the malicious actor. In addition, the processor’s speculative execution sequence 
executes in a way which would be thrown away in a normally retired execution sequence. In bounds 
check bypass store variants, data is speculatively written at locations that would be out of bounds 
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under normal execution. That data is later speculatively used to execute code and cause observable 
side-effects, creating a side channel. 

3.2.2.2 Loads and Stores 

A vulnerable code fragment forming a disclosure gadget is made up of two elements. The first is an 
array or pointer dereference that depends upon an untrusted value, for example, a value from a 
potentially malicious application. The second element is usually a load or store to an address that is 
dependent upon the value loaded by the first element. Refer to Microsoft*’s blog for further details. 

As bounds check bypass is based upon speculation, code can be vulnerable even if that untrusted value 
is correctly tested for bounds before use.  

The classic general example of such a sequence in C is: 

 

if (user_value >= 0 && user_value < LIMIT) { 

       x = table[user_value]; 

       node = entry[x]; 

} else 

       return ERROR; 

 

For such a code sequence to be vulnerable, both elements must be present. Furthermore, the untrusted 
value must be under the malicious actor’s control. 

When the code executes, the processor has to decide if the user_value < LIMIT conditional is true 
or false. It remembers the processor register state at this point and speculates (makes a guess) that 
user_value is below LIMIT and begins executing instructions as if this were true. Once the processor 
realizes it guessed incorrectly, it throws away the computation and returns an error. The attack relies 
upon the fact that before it realizes the guess was incorrect, the processor has read both 
table[user_value], pointing into memory beyond the intended limit, and has read entry[x]. 
When the processor reads entry[x], it may bring in the corresponding cache line from memory into 
the L1 cache. Later, the malicious actor can time accesses to this address to determine whether the 
corresponding cache line is in the L1 data cache. The malicious actor can use this timing to discover the 
value x, which was loaded from a malicious actor-specified location.  

The two components that make up this vulnerable code sequence can be stretched out over a 
considerable distance and through multiple layers of function calls. The processor can speculatively 
execute many instructions—a number sufficient to pass between functions, compilation units, or even 
software exception handlers such as longjmp or throw. The processor may speculate through locked 
operations, and use of volatile will not change the vulnerability of the code being exploited.  

There are several other sequences that may be used to infer information. Anything that tests some 
property of a value and loads or stores according to the result may leak information. Depending upon 
the location of foo and bar, the example below might be able to leak bit 0 of arbitrary data. 

 

https://blogs.technet.microsoft.com/srd/2018/03/15/mitigating-speculative-execution-side-channel-hardware-vulnerabilities/
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if (user_value >= LIMIT) 

  return ERROR; 

 x = table[user_value]; 

 if (x & 1)  

  foo++; 

 else 

  bar++; 

 

When evaluating code sequences for vulnerability to bounds check bypass, the critical question is 
whether different behavior could be observed as a property of x.  

This question can be very challenging to answer from code inspection, especially when looking for any 
specific code pattern. For instance, if a value is passed to a function call, then that function call must be 
inspected to ensure it does not create any observable interactions. Consider the following example: 

if (user_value >= LIMIT) 

  return ERROR; 

 x = lengths[user_value]; 

 if (x) 

  memset(buffer, 0, 64 * x); 

Here, x influences how much memory is cleared by memset() and might allow the malicious actor to 
discern something about the value of x from which cache lines the speculatively executed memset 
touches. 

Remember that conditional execution is not just if, but may also include for and while as well as the 
C ternary (?:) operator and situations where one of the values is used to index an array of function 
pointers. 

3.2.2.3 Typecasting and Indirect Calls 

Typecasting can be a problematic area to analyze and often conceals real examples that can be 
exploited. This is especially challenging in C++ because you are more likely to have function pointers 
embedded in objects and overloaded operators that might behave in type-dependent fashion. 

Two classes of typecasting problems are relevant to bounds check bypass attacks: 

1. Code/data mismatches. Speculation causes “class Foo” code to be speculatively executed on 
“class Bar” data using gadgets supplied with Foo to leak information about Bar. 

2. The type confusion is combined with some observable effect, like the load/store effects 
discussed above. For example, if Foo and Bar are different sizes, a malicious actor might be 
able to learn something about memory past the end of objects[]using something like the 
example below. 
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  type = objects[index]; 

  if (index >= len) 

   return -EINVAL; 

  if (type == TYPE_FOO) 

   memset(ptr, 0, sizeof(Foo)); 

  else 

   memset(ptr, 0, sizeof(Bar)); 

 

Take care when considering any code where a typecast occurs based upon a speculated value. The 
processor might guess the type incorrectly and speculatively execute instructions based on that 
incorrect type. Newer processors that enable Intel® OS Guard, also known as Supervisor-Mode 
Execution Prevention (SMEP), will prevent ring 0 code from speculatively executing ring 3 code. All 
major operating systems (OSes) enable SMEP support by default if the hardware supports it. Older 
processors, however, might speculate the type incorrectly, load data that the processor thinks are 
function pointers, or speculate into lower addresses that might be directly controlled by a malicious 
actor. 

For example: 

 

if (flag & 4) 

  (Foo *)ptr->process(x); 

 else 

  (Bar *)ptr->process(x); 

 

If the Foo and Bar objects are different and have different memory layouts, then the processor will 
speculatively fetch a pointer offset of ptr and branch to it. 

Consider the following example: 

 

int call; /* from user */ 

if (call >= 0 && call < MAX_FUNCTION) 

  function_table[call](a,b,c); 

 

On first analysis this code might seem safe. We reference function_table[call], but call is the 
user’s own, known value. However, during speculative execution, the processor might incorrectly 
speculate through the if statement and speculatively execute invalid addresses. Some of these 
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addresses might be mapped to user pages in memory or might contain values that match suitable 
gadgets for ROP attacks. 

A less obvious variant of this case is switch statements. Many compilers will convert some classes of 
switch statement into jump tables. Refer to the following example code: 

 switch(x) { 

 case 0: return y; 

 case 1: return z; 

 ... 

 default: return -1; 

 } 

 

Code similar to this will often be implemented by the compiler as shown: 

 if (x < 0 || x > 2) return -1; 

 goto  case[x]; 

 

Therefore, when using switch() with an untrusted input, it might be appropriate to place an lfence 
before the switch so that x has been fully resolved before the implicit bounds check. 

3.2.2.4 Speculative Loops 

A final case to consider is loops that speculatively overrun. Consider the following example: 

 

while (++x < limit) { 

 y = u[x]; 

 thing(y); 

} 

 

The processor will speculate the loop condition, and often speculatively execute the next iteration of 
the loop. This is usually fine, but if the loop contains code that reveals the contents of data, then you 
might need to apply mitigations to avoid exposing data beyond the intended location of the loop. This 
means that even if the loop limit is properly protected before the processor enters the loop, unless the 
loop itself is protected, the loop might leak a small amount of data beyond the intended buffer on the 
speculative path. 
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3.2.2.5 Disclosure Gadgets 

In addition to the load and store disclosure gadget referenced above, there may be additional gadgets 
based on the microarchitectural state. For example, using certain functional blocks, such as Intel® 
Advanced Vector Extensions (Intel® AVX), during speculative execution may affect the time it takes to 
subsequently use the block due to factors like the time required to power-up the block. Malicious 
actors can use a disclosure primitive to measure the time it takes to use the block. An example of such a 
gadget is shown below: 

 

if (x > sizeof(table)) 

  return ERROR; 

 If (a[x].op == OP_VECTOR) 

  avx_operation(a[x]); 

 else 

  integer_operation(a[x]); 

 

3.2.3 Conditional Branch Speculation Analysis 

Controlling conditional branch speculation, such as bounds check bypass, is not generally relevant if 
your code doesn’t have secrets that the user shouldn’t be able to access. For example, a simple image 
viewer probably contains no meaningful secrets that should be inaccessible to software it interacts with. 
The user of the software could potentially use bounds check bypass attacks to access the image, but 
they could also just hit the save button.  

On the other hand, an image viewer with support for secure, encrypted content with access authorized 
from a central system might need to care about bounds check bypass because a user may not be 
allowed to save the document in normal ways. While the user can’t save such an image, they can trivially 
photograph the image and send the photo to someone, so protecting the image may be less important. 
However, any keys are likely to be far more sensitive. 

There are also clear cases like operating system kernels, firmware (refer to the Host Firmware 
Speculative Execution Side Channel Mitigation technical paper) and managed runtimes (for example, 
Javascript* in web browsers) where there is both a significant interaction surface between differently 
trusted code, and there are secrets to protect.  

Whether to apply mitigations, and what areas to target has to be part of your general security analysis 
and risk modelling, along with conventional security techniques, and resistance if appropriate to timing 
and other non-speculative side channel attacks. Bounds check bypass mitigations have performance 
impacts, so they should only be used where appropriate. 

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/host-firmware-speculative-side-channel-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/host-firmware-speculative-side-channel-mitigation.html
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3.2.4 Software Techniques for Conditional Speculation Control  

The recommended approach to mitigate bounds check bypass (Spectre v1) is to use bounds clipping, or 
CMOVcc in cases where bounds clipping is not appropriate. Bounds clipping is an effective mitigation in 
constraining speculative execution to prevent a side channel with data dependency on out-of-bounds 
array accesses. Alternative options, such as LFENCE, are described below. 

3.2.4.1 Bounds Clipping 

Software can use instructions, such as CMOVcc, AND, ADC, SBB, and SETcc, to constrain speculative 
execution and prevent bounds check bypass. This approach can avoid stalling the pipeline as LFENCE 
does. CMOVcc/SETcc will not introduce new forms of speculation (for example, they will not predict its 
direction). However, note that other speculation features may affect these instructions (for example, 
memory reads may be affected by memory disambiguation). 

A simple example in C code: 

 

unsigned int user_value; 

 

if (user_value > 255) 

 return ERROR; 

x = table[user_value]; 

 

Can be made safe by instead using the following logic in array indexing: 

volatile unsigned int user_value; 

 

if (user_value > 255) 

 return ERROR; 

x = table[user_value & 255]; 

 

This works for powers of two array lengths or bounds only. In the example above the table array length 
is 256 (2^8), and the valid index should be <= 255. Take care that the compiler used does not optimize 
away the & 255 operation. For other ranges, it’s possible to use CMOVcc, ADC, SBB, SETcc, and similar 
instructions to do verification. 

 

https://www.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/bounds-check-bypass.html
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3.2.4.2 CMOVcc 

The CMOVcc instruction conditionally moves data based on condition codes set by a prior comparison. 
Unlike branch instructions, CMOVcc does not speculatively predict whether the move will be performed; 
it waits until the condition is resolved. This behavior means that CMOVcc is sufficient to mitigate bounds 
check bypass vulnerabilities even in cases where bounds clipping is not applicable. 

The following example demonstrates how to define an inline function wrapper around the CMOVNZ 
(conditional move if not zero) instruction. This wrapper selects between one of two values (if_true 
and if_false) based on a Boolean condition (cond), without using a branch: 

 
static inline uint64_t nospec_select(uint64_t if_true, uint64_t if_false, 
uint8_t cond) { 
    uint64_t result = if_false; 
     
    // GCC/Clang inline assembly syntax 
    __asm__ __volatile__( 
        "test %2, %2\n\t" 
        "cmovnz %1, %0\n\t" 
        : "+r" (result) 
        : "r" (if_true), "r" (cond) 
        : "cc" 
    ); 
     
    return result; 
} 

This mitigation technique can be applied to mitigate other kinds of vulnerabilities exposed by 
conditional branch speculation. The following example demonstrates using CMOVcc to mitigate a 
speculative type confusion gadget involving a tagged union. In dynamically typed systems, a value 
might represent either an integer or a pointer depending on a tag. Without mitigation, speculative 
execution might misinterpret the type and dereference an integer as a pointer: 

#define TYPE_INT    0 
#define TYPE_PTR    1 
 
typedef struct { 
    uint8_t type_tag; 
    uint64_t value; 
} tagged_value_t; 
 
extern uint8_t secret_data[4096]; 
 
void process_tagged_value(tagged_value_t tv) { 
    bool is_pointer = (tv.type_tag == TYPE_PTR); 
    
    // Use CMOVcc to constrain the value: if not a pointer, use NULL 
    uint64_t safe_ptr = nospec_select(tv.value, (uint64_t)NULL, is_pointer); 
 
    // Dereference only if type check passed architecturally 
    if (is_pointer) { 
        uint8_t* ptr = (uint8_t*)safe_ptr; 
        if (ptr != NULL) { 
            uint8_t data = *ptr; 
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            // Process data... 
        } 
    } else {  // tv.type_tag == TYPE_INT 
        // Handle as integer 
        uint64_t integer_value = tv.value; 
        // Process integer... 
    } 
} 

In this example, if the processor speculatively mispredicts that tv.type_tag equals TYPE_PTR when it 
actually equals TYPE_INT, the CMOV instruction ensures that safe_ptr is set to NULL during transient 
execution. This prevents the speculative dereference from accessing memory at an attacker-controlled 
address derived from the integer value, thereby blocking the disclosure gadget. 

The next example uses a CMOVcc wrapper to mitigate a bounds-check bypass gadget.  

    // Perform bounds check 
    uint8_t in_bounds = (user_value >= 0 && user_value < LIMIT); 
 
   // Use CMOVcc to constrain the index: if out of bounds, use 0 instead 
    safe_index = nospec_select((uint64_t)user_value, 0, in_bounds); 
 
    // Access array with constrained index 
    x = array[safe_index]; 
 
    // nospec_select() prevents this operation from leaking x’s value 
    y = dependent_operation[x]; 

    // Return error if bounds check failed architecturally 
    if (!in_bounds) { 
        return ERROR; 
    } 

The CMOVcc mitigation prevents the speculative execution from using an out-of-
bounds user_value to access an array, avoiding leaking secrets through dependent operations. 

 

3.2.4.3 LFENCE 

Where software desires to ensure that a branch is not incorrectly predicted under any circumstance, use 
of the above low-overhead Bounds Check Bypass mitigations may not suffice. For example, CMOVcc 
may speculatively execute based on a condition code predicted by other speculation features (for 
example, memory reads may be affected by memory disambiguation). 

As a last resort in cases where CMOVcc and the other techniques mentioned above cannot be applied, 
software can use the LFENCE instruction, which will mitigate bounds check bypass vulnerabilities as 
well as ensuring that other speculation which may affect the branch direction has been resolved. The 
LFENCE instruction does not execute until all prior instructions have completed locally, and no later 
instruction begins execution until LFENCE completes. This means that LFENCE can have a significantly 
higher performance impact than other mitigations. Most vulnerabilities identified in section 3.2.2 
Identifying Bounds Check Bypass Vulnerabilities can be protected by inserting an LFENCE instruction; 
for example: 
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if (user_value >= LIMIT) 

 return ERROR; 

lfence(); 

x = table[user_value]; 

node = entry[x]; 

 

Where lfence() is a compiler intrinsic or assembler inline that issues an LFENCE instruction and also 
tells the compiler that memory references may not be moved across that boundary. The LFENCE 
ensures that the loads do not occur until the condition has actually been checked. The memory barrier 
prevents the compiler from reordering references around the LFENCE, and thus breaking the 
protection. 

3.2.4.3.1 Placement of LFENCE 

To protect against speculative timing attacks, place the LFENCE instruction after the range check and 
branch, before any code that consumes the checked value, and before the data can be used in a gadget 
that might allow measurement.  

For example: 

 

  if (x > sizeof(table)) 

   return ERROR; 

  lfence(); 

  If (a[x].op == OP_VECTOR) 

   avx_operation(a[x]); 

  else 

   integer_operation(a[x]); 

 

Unless there are specific reasons otherwise, and the code has been carefully analyzed, Intel 
recommends that the lfence is always placed after the range check and before the range checked 
value is consumed by other code, particularly if the code involves conditional branches. 

 

3.2.4.3.2 Interaction with Memory Disambiguation 

Memory disambiguation (as described in section 4.1 Overview of Data Speculation) can theoretically 
impact bounds clipping techniques when they involve a load from memory. In the following example, a 
CMOVG instruction is inserted to prevent a side channel from being created with data from any locations 
beyond the array bounds. 
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CMP RDX, [array_bounds] 

JG out_of_bounds_input 

MOV RCX, 0 

MOV RAX, [RDX + 0x400000] 

CMOVG RAX, RCX 

<Further code that causes cache movement based on RAX value> 

As an example, assume the value at array_bounds is 0x20, but that value was only just stored to 
array_bounds and that the prior value at array_bounds was significantly higher, such as 0xFFFF. 
The processor can speculatively execute the CMP instruction using a value of 0xFFFF for the loaded 
value due to the memory disambiguation mechanism. The instruction will eventually be re-executed 
with the intended array_bounds value of 0x20. This can theoretically cause the above sequence to 
support the creation of a side channel that reveals information about the memory at addresses up to 
0xFFFF instead of constraining it to addresses below 0x20.  

3.2.4.4 Multiple Branches 

When using mitigations, particularly the bounds clipping mitigations, it is important to remember that 
the processor will speculate through multiple branches. Thus, the following code is not safe: 

 

 int *key; 

 int valid = 0; 

 

 if (input < NUM_ENTRIES) { 

  lfence(); 

  key = &table[input]; 

  valid = 1; 

 } 

 …. 

 if (valid) 

  *key = data; 

 

In this example, although the mitigation is applied correctly when the processor speculates that the first 
condition is valid, no protection is applied if the processor takes the out-of-range value and then 
speculates that valid is true on the other path. In this case it will probably expose the contents of a 
random register, although not in an easy to measure fashion. 
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Preinitializing key to NULL or another safe address will also not reliably work, as the compiler can 
eliminate the NULL assignment because it can never be used non-speculatively. In such cases it may be 
more appropriate to merge the two conditional code sections and put the code between them into a 
separate function that is called on both paths. Or you could add volatile to key and assign it to 
NULL—forcing the assignment to occur with volatile, or to add lfence before the final assignment. 

3.2.4.5 Compiler-Based Approaches 

Note that there are also compiler-based approaches that automatically augment software with 
instructions to constrain speculation and can help prevent Bounds Check Bypass, such as Speculative 
Load Hardening (clang) and the /Qspectre option (MSVC).  

Compiler protections against buffer overwrites of return addresses, such as stack canaries, also provide 
some resistance to speculative buffer overruns. In situations where a loop speculatively overwrites the 
return address it will also speculatively trigger the stack protection diverting the speculative flow. 
However, stack canaries alone are not sufficient to protect from bounds check bypass attacks. 

3.2.4.5.1 Microsoft Visual Studio* 2017 mitigations 

The Microsoft Visual Studio* 2017 Visual C++ compiler toolchain includes support for the /Qspectre 
flag, which may automatically add mitigation for some bounds check bypass vulnerabilities. For more 
information and usage guidelines, refer to Microsoft’s public blog and the Visual C++ /Qspectre option 
page for further details. 

3.2.4.5.2 LFENCE in Intel® Fortran Compiler  

You can insert an LFENCE instruction in Fortran applications as shown in the example below. 
Implement the following subroutine, which calls _mm_lfence() intrinsics: 

 

interface 

        subroutine for_lfence() bind (C, name = "_mm_lfence") 

            !DIR$ attributes known_intrinsic, default :: for_lfence 

        end subroutine for_lfence 

    end interface 

   

    if (untrusted_index_from_user .le. iarr1%length) then 

        call for_lfence() 

        ival = iarr1%data(untrusted_index_from_user) 

        index2 = (IAND(ival,1)*z'100') + z'200'    

        if(index2 .le. iarr2%length) 

            ival2 = iarr2%data(index2) 

https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://learn.microsoft.com/en-us/cpp/build/reference/qspectre?view=msvc-170
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre


Intel Confidential 

    endif 

The LFENCE intrinsic is supported in the following Intel compilers: 

● Intel® C++ Compiler 8.0 and later for Windows* OS, Linux* kernel, and macOS*. 

● Intel® Fortran Compiler 14.0 and later for Windows, Linux, and macOS. 

3.2.4.5.3 Compiler-driven Automatic Mitigations 

Across the industry, there is interest in mitigations for bounds check bypass vulnerabilities that are 
provided automatically by compilers. Developers are continuing to evaluate the efficacy, reliability, and 
robustness of these mitigations and to determine whether they are best used in combination with, or in 
lieu of, the more explicit mitigations discussed above. 

3.2.5 Operating System Mitigations 

Where possible, dedicated operating system programming APIs should be used to mitigate bounds 
check bypass instead of using open-coded mitigations. Using the OS-provided APIs will help ensure 
that code can take advantage of new mitigation techniques or optimizations as they become available.  

3.2.5.1 Linux* Kernel 

The current Linux* kernel mitigation approach to bounds check bypass is described in the speculation 
file in the Linux kernel documentation. This file is subject to change as developers and multiple 
processor vendors determine their preferred approaches. 

 barrier_nospec(): on x86 architecture, this issues an LFENCE and provides the compiler with the 
needed memory barriers to perform the mitigation. It can be used as barrier_nospec(), as in the 
examples above. On non-Intel processors, barrier_nospec() either generates the correct barrier 
code for that processor, or does nothing if the processor does not speculate. 

array_index_nospec(index, size): this is an inline that, irrespective of the processor, provides a 
method to safely dereference an array element. Additionally, it returns NULL if the lookup is invalid. This 
allows you to take the many cases where you range check and then check that an entry is present, and 
fold those cases into a single conditional test. 

Thus, we can turn: 

 

if (handle < 32) { 

 x = handle_table[handle]; 

 if (x) { 

  function(x); 

  return 0; 

 } 

} 

https://docs.kernel.org/staging/speculation.html
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return –EINVAL; 

 

Into: 

 

x = array_index_nospec( handle, 32); 

if (x == NULL) 

 return –EINVAL; 

function(*x); 

return 0; 

 

3.2.5.2 Microsoft Windows* OS 

Windows C/C++ developers have a variety of options to assist in mitigating bounds check bypass 
(Spectre variant 1). The best option will depend on the compiler/code generation toolchains you are 
using. Mitigation options include manual and compiler assisted.  

In mixed-mode compiler environments, where object files for the same project are built with different 
toolchains, there are varying degrees of mitigation options available. Developers need to be aware of 
and apply the appropriate mitigations depending on their code composition and appropriate toolchain 
support dependencies. 

3.2.5.2.1 Inline/external assembly 

The Intel® C Compiler and Intel® C++ Compiler provide inline assembly support for 32- and 64-bit 
targets, whereas Microsoft Visual* C++ only provides inline assembly support for 32-bit targets. 
Microsoft Macro Assembler* (MASM) or other external, third-party assemblers may also be used to 
insert LFENCE in assembly code.  

3.2.5.2.2 _mm_lfence() compiler intrinsic 

The Intel C Compiler, the Intel C++ Compiler, and the Microsoft Visual C++ compiler all support 
generating LFENCE instructions for 32- and 64-bit targets using the _mm_lfence() intrinsic. Other 
commodity compilers are likely to support a similar intrinsic. 

The easiest way for Windows developers to gain access to the intrinsic is by including the intrin.h 
header file that is provided by the compilers. Some Windows SDK/WDK headers (for example, winnt.h 
and wdm.h) define the _mm_lfence() intrinsic to avoid inclusion of the compiler intrin.h. It is possible 
that you already have code that locally defines _mm_lfence() as well, or uses an already existing 
definition for the intrinsic.   
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3.2.5.2.3 LFENCE in C/C++ 

You can insert LFENCE instructions in a C/C++ program as shown in the example below: 

 

#include <intrin.h> 

#pragma intrinsic(_mm_lfence) 

  

    if (user_value >= LIMIT) 

    { 

        return STATUS_INSUFFICIENT_RESOURCES; 

    } 

    else 

    {    

        _mm_lfence();   /* manually inserted by developer */ 

        x = table[user_value]; 

        node = entry[x]; 

    } 

 

3.3 Speculation within Instructions 

Similar to conditional branches, certain complex instructions may have speculation happen in the 
internal flow of such instructions which are not branch instructions. One such case is REP string 
instructions which may speculatively access memory locations that they do not architecturally access. 

REP string instructions such as REPE CMPS iterate over memory and terminate when either the size 
specified is reached or an alternative condition, such as inequality of a data word, is met. Due to 
speculation, such REP string instruction may transiently execute the string operation beyond the 
indicated size. While the processor prevents this transient execution from causing architecturally visible 
effects (such as by restoring the state of architectural registers), those mis-speculated transient string 
operations can affect the microarchitectural state (for example, by bringing lines into caches).  

In this way, a REP CMPS or REP SCAS instruction (for example, REPE CMPS m64, m64) may compare 
the contents in memory beyond what was specified. Because those instructions terminate their loop 
based on the data values (for example, non-matching data for REPE CMPS), whether or not the data 
values beyond the indicated size meet the condition may affect the microarchitectural state (for 
example, fewer cache lines may be pulled into a cache if the terminating condition is satisfied).  An 
attacker may be able to monitor how many cache lines beyond the indicated size were cached after 
code in a different security domain executed REP CMPS or REP SCAS. This may allow the attacker to 
infer whether the values in memory adjacent to the buffers being processed satisfy the condition. This 
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would also be true for a software implementation of REP CMPS or REP SCAS that did not include 
bounds check bypass mitigations like LFENCE or masking.  

Contrary to REP CMPS and REP SCAS, the execution of REP MOVS and REP STOS does not include 
comparison operations and thus does not have this behavior. Intel is not aware of any exploits that 
result from speculatively executing REP CMPS and REP SCAS beyond the indicated size. 

 

https://www.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/bounds-check-bypass.html
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4.0 Data Speculation  

4.1 Overview of Data Speculation 

Intel processors implement performance features that allow instructions that depend on the behavior 
of older instructions to speculatively execute before these older instructions have executed:  

• Memory disambiguation predicts whether the address of a memory load overlaps with the yet-
unknown address of a preceding memory store to allow speculative execution of the memory 
load. Misprediction of memory disambiguation can allow for Speculative Store Bypass attacks 
that transiently access and infer stale data in memory (as described in Section 4.2 Speculative 
Store Bypass). 

• Fast store forwarding predictor allows a memory load to speculatively use the data of a 
preceding memory store before all store-to-load forwarding conditions are resolved, for 
example, before a match of the load and store addresses have been resolved.  

• The floating-point unit statically predicts floating-point results to be normal to speculatively 
execute floating-point operations. A microcode assist is triggered to handle 
denormal/subnormal floating-point results. Floating Point Value Injection is a technique to infer 
information using the transiently computed floating-point result before a subnormal floating-
point microcode assist is triggered and the transient result is cleaned up.  

4.2 Speculative Store Bypass 

Many Intel processors use memory disambiguation predictors that allow loads to be executed 
speculatively before it is known whether the load’s address overlaps with a preceding store’s address. 
This may happen if a store’s address is unknown when the load is ready to execute. If the processor 
predicts that the load address will not overlap with the unknown store address, the load may execute 
speculatively. However, if there is indeed an overlap, then the load may consume stale data. When this 
occurs, the processor will re-execute the load to ensure a correct result. 

Through the memory disambiguation predictors, an attacker can cause certain instructions to be 
executed speculatively and then use the effects for side channel analysis. For example, consider the 
following scenario: 

K is a secret asset (for example, a cryptographic key) inside the victim code. The attacker is allowed to 
know the value of M, but not the value of K. X is a variable in memory. Assuming an attacker can find the 
following code in a victim application:  

1. X = &K; // Attacker manages to get variable with address of K 
stored into pointer X 

<at some later point> 

2. X = &M;   // Does a store of address of M to pointer X 

3. Y = Array[*X & 0xFFFF]; // Dereferences address of M which is in 
pointer X in order to 

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/fast-store-forwarding-predictor.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/floating-point-value-injection.html
https://www.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/speculative-store-bypass.html
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          // load from array at index specified by M[15:0] 

When the above code runs, the load from address X that occurs as part of step 3 may execute 
speculatively and, due to memory disambiguation, initially receive a value of address of K instead of the 
address of M. When this value of address of K is dereferenced, the array is speculatively accessed with 
an index of K[15:0] instead of M[15:0]. The CPU will later re-execute the load from address X and 
use M[15:0] as the index into the array. However, the cache movement caused by the earlier 
speculative access to the array may be analyzed by the attacker to infer information about K[15:0]. 

As in the previous example, an attacker may be able to discover “confused deputy” code which may 
allow them to use speculative execution to reveal the value of memory that is not normally accessible 
to them. In a language-based security environment (for example, a managed runtime), where an 
attacker is able to influence the generation of code, an attacker may be able to create such a confused 
deputy. Intel has not currently observed this method in situations where the attacker has to discover 
such an exploitable confused deputy scenario.  

4.3 Speculative Store Bypass Control Mechanisms 

Intel has developed mitigation techniques for speculative store bypass. It can be mitigated by software 
modifications, or if those are not feasible, then the use of Speculative Store Bypass Disable (SSBD), 
which prevents a load from executing speculatively until the addresses of all older stores are known. 
Intel recommends using the below mitigations only for managed runtimes or other situations that use 
language-based security to guard against attacks within an address space. 

4.3.1 Software-Based Mitigations 

Speculative store bypass can be mitigated through numerous software-based approaches. This section 
describes two such software-based mitigations: process isolation and the selective use of LFENCE. 

 

4.3.1.1 Process Isolation  

One approach is to move all secrets into a separate address space from untrusted code. For example, 
creating separate processes for different websites so that secrets of one website are not mapped into 
the same address space as code from a different, possibly malicious, website. Similar techniques can be 
used for other runtime environments that rely on language-based security to run trusted and untrusted 
code within the same process. This may also be useful as part of a defense-in-depth strategy to prevent 
trusted code from being manipulated to create a side channel. Protection Keys can also be valuable in 
providing such isolation. Refer to Section 7.4, Protection Keys, for more information. 

4.3.1.2 Using LFENCE to Control Speculative Load Execution 

Software can insert an LFENCE between a store (for example, the store of address of M in step 2 of 
Section 4.2 Speculative Store Bypass) and the subsequent load (for example, the load that dereferences 
X in step 3 of Section 4.2 Speculative Store Bypass) to prevent the load from executing before the 
previous store’s address is known. The LFENCE can also be inserted between the load and any 
subsequent usage of the data returned which might create a side channel (for example, the access to 
Array in step 3 of Section 4.2 Speculative Store Bypass). Software should not apply this mitigation 
broadly, but instead should only apply it where there is a realistic risk of an exploit; for example, if an 

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
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attacker can control the old value in the memory location, there is a realistic chance of the load 
executing before the store address is known, and there is a disclosure gadget that reveals the contents 
of sensitive memory. 

Other mitigations like inserting register dependencies between a vulnerable load address and the 
corresponding store address may reduce the likelihood of Speculative Store Bypass Attacks being 
successful. 

4.3.2 Speculative Store Bypass Disable (SSBD) 

If the earlier software-based mitigations are not feasible, then employing Speculative Store Bypass 
Disable (SSBD) will mitigate speculative store bypass. 

When SSBD is set, loads will not execute speculatively until the addresses of all older stores are known. 
This ensures that a load does not speculatively consume stale data values due to bypassing an older 
store on the same logical processor. 

4.3.2.1 Basic Support 

Software can disable speculative store bypass on a logical processor by setting IA32_SPEC_CTRL.SSBD 
to 1.  

Both enclave and SMM code will behave as if SSBD is set regardless of the actual value of the MSR bit. 
The processor will ensure that a load within enclave or SMM code does not speculatively consume stale 
data values due to bypassing an older store on the same logical processor. 

4.3.2.2 Software Usage Guideline 

Enabling SSBD can prevent exploits based on speculative store bypass. However, this may reduce 
performance. Intel provides the following recommendations for the use of such a mitigation.  

● Intel recommends software set SSBD for applications and/or execution runtimes relying on 
language-based security mechanisms. Examples include managed runtimes and just-in-time 
translators. If software is not relying on language-based security mechanisms, for example 
because it is using process isolation, then setting SSBD may not be needed.  

● Intel is currently not aware of any practical exploit for OSes or other applications that do not 
rely on language-based security.  Intel encourages these users to consider their particular 
security needs in determining whether to set SSBD outside context of language-based security 
mechanisms. 

These recommendations may be updated in the future. 

On Intel® Core™ and Intel® Xeon® processors that enable Intel® Hyper-Threading Technology and do not 
support enhanced IBRS, setting SSBD on a logical processor may impact the performance of a sibling 
logical processor on the same core. Intel recommends that the SSBD MSR bit be cleared when in an idle 
state on such processors. 

Operating systems should provide an API through which a process can request it be protected by SSBD 
mitigation. 
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VMMs should allow a guest to determine whether to enable SSBD mitigation by providing direct guest 
access to IA32_SPEC_CTRL. 

 

4.4 Fast Store Forwarding Predictor 

Certain Intel processors support a performance feature called Fast Store Forwarding Predictor 
(FSFP).  Based on observing previous behavior, FSFP enables the processor to predict that a store will 
forward data to a younger load and optimize that case.  This optimization may allow the load to 
speculatively execute with data from an older store before all forwarding conditions (like store-load 
address match) have been resolved. If data is incorrectly forwarded to the load, the processor will 
prevent the load from committing to the architectural state and will re-execute the load with the correct 
data.  

4.4.1 Potential for Transient Execution Disclosure Gadgets  
As an effective performance optimization, FSFP predicts store-to-load forwarding with high 
accuracy.  These predictions are based on the observed behavior of previous stores and loads. 
However, misprediction of store-to-load forwarding can happen for specific reasons. For example, 
either dynamically varying behavior of specific store and load instruction instances, or predictor aliasing 
between different instruction instances could cause FSFP to mispredict the correct store-to-load 
forwarding.  

As with other forms of speculation, the transient execution of FSFP store-to-load forwarding has the 
potential to reveal data through a covert channel that would not otherwise be revealed. If a malicious 
actor is able to identify a disclosure gadget in vulnerable victim code and also induce FSFP store-
forwarding speculation as required for the gadget, it may be possible to disclose targeted data 
accessible to the victim with a “confused-deputy” form of attack.  

4.5 Fast Store Forwarding Predictor Controls 

Processors that support FSFP maintain several properties to help mitigate the risk of potential transient 
execution attacks. These properties are intended to enable prediction domain isolation for FSFP, as well 
as provide mechanisms to disable FSFP where desired.  

4.5.1 Cross-Domain and Cross-Thread Training Isolation 

The FSFP domain isolation architecture is analogous to the indirect branch prediction domain isolation 
properties documented for the Indirect Branch Restricted Speculation (IBRS) and Single Thread Indirect 
Branch Predictors (STIBP) mechanisms.  

For processors supporting FSFP, the following domain isolation properties are maintained (regardless 
of IBRS or STIBP enabling):  

• Activity in user mode does not control FSFP prediction in supervisor mode.  

• Activity in Virtual Machine Extensions (VMX) guest (non-root) mode does not control FSFP 
prediction in host (root) mode.  

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/fast-store-forwarding-predictor.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/best-practices/refined-speculative-execution-terminology.html
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• Activity on one logical processor does not control FSFP prediction on another logical 
processor.  

In addition, the Indirect Branch Predictor Barrier (IBPB) described in section 3.1.2.4 additionally serves 
as an FSFP prediction barrier. Activity before the barrier on a logical processor does not control FSFP 
prediction after the barrier.  

Note that FSFP does not affect system management mode (SMM) and Intel® Software Guard Extensions 
(Intel® SGX) enclaves. This is described in more detail below. 

4.5.2 Predictive Forwarding Barriers 

Processors supporting FSFP prevent predictive forwarding of data values of older stores to younger 
loads across certain architectural boundaries. If any of the following occur between an older store and a 
younger load, FSFP will not predictively forward data from that store to that load: 

• LFENCE 

• Change to memory protection key restriction registers PKRU or PKRS 

• Serializing instructions or events 

Also note that no store in one privileged predictor mode can be predictively forwarded to a load from 
another predictor mode. This includes not only mode transitions (such as SYSCALL), but also implicit 
supervisor loads (for example, loads from the global descriptor table (GDT) performed by a segment 
load instruction). 

4.5.3 FSFP Disabled Modes 

When FSFP is disabled, the processor does not speculatively execute loads with a value forwarded from 
a store when the store and load do not have matching addresses.  This FSFP-disabled behavior does 
not intrinsically preclude speculative store bypass. 

Both Speculative Store Bypass (SSB) and FSFP are disabled whenever the IA32_SPEC_CTRL.SSBD (see 
Section 4.3.2 Speculative Store Bypass Disable (SSBD)) MSR bit is set to 1, or inside Intel® SGX enclaves 
or system management mode (SMM)).  All processors that support FSFP also support SSBD. 

In addition to SSBD, a finer-grained control is provided for disabling FSFP without disabling SSB. If 
enumerated by CPUID.(EAX=7,ECX=2).EDX[0], the processor supports setting IA32_SPEC_CTRL.PSFD 
(bit 7). FSFP will be disabled if either SSBD or PSFD are enabled or if in SMM or Intel SGX mode. 

The PSFD bit offset is chosen to align with the Predictive Store Forwarding Disable (PSFD) bit defined 
here by AMD*.   

Going forward, PSFD is expected to be supported on all processors that support FSFP. Some processors 
may require a microcode update to enable PSFD support. Refer to the Fast Store Forwarding Predictor 
document for more details.  

4.5.4 Software Guidance  
In many cases, software environments employing mitigations for Branch Target Injection (Spectre 
variant 2) and Speculative Store Bypass (Spectre variant 4) may require no further changes for FSFP.  

https://www.amd.com/system/files/documents/security-analysis-predictive-store-forwarding.pdf
https://www.amd.com/system/files/documents/security-analysis-predictive-store-forwarding.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/fast-store-forwarding-predictor.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/branch-target-injection.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/speculative-store-bypass.html
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The combination of processor domain isolation, along with software invocation of IBPB on security 
context switches, can help mitigate the risk of cross-domain FSFP training attacks.  
 
Same-domain exposure for FSFP may be similar to that of Speculative Store Bypass. As with 
Speculative Store Bypass, language-based security environments (for example, a managed runtime) 
present the most likely environment where a potential malicious actor may seek to influence the 
generation of code. Mitigation for such environments are similar to those described for Speculative 
Store Bypass. Some options include:   

• Process isolation  

• SSBD  

• Targeted mitigation of specific disclosure gadgets (for example, placing LFENCE between potential 
store/load pairs)  

Using PSFD to disable FSFP may be of interest in specific environments that are concerned with same-
domain FSFP attacks, but which are not concerned about Speculative Store Bypass attacks and where 
the performance impact of SSBD is a concern.   

 

 

https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/speculative-store-bypass.html
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5.0 Data-Dependent Prefetchers 

Besides control and data speculation, Intel processors implement prefetchers that prefetch cache lines 
from memory based on data values previously loaded or prefetched from memory, for example, data-
dependent prefetchers (DDP). While such prefetchers do not create speculative execution paths, they 
may yet allow an attacker to infer information about loaded data values via cache-based side channels.  

Intel processors automatically enforce properties for these prefetchers to mitigate potential security 
concerns, as well as exposing a disable control, as described in the provided DDP documentation.  

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/data-dependent-prefetcher.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/data-dependent-prefetcher.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/data-dependent-prefetcher.html
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6.0 Additional Software Guidance  

Due to Speculative Behavior of SWAPGS and Segment Registers, operating systems that use SWAPGS on 
kernel entry may wish to insert an LFENCE or serializing instruction after any possible usage of SWAPGS 
instruction and before any instruction which uses the GS register, to prevent speculative execution with 
the incorrect GS register. 

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-behavior-swapgs-and-segment-registers.html
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7.0 Related Intel Security Features and Technologies 

There are security features and technologies, either present in existing Intel products or planned for 
future products, which reduce the effectiveness of the attacks mentioned in the previous sections. 

7.1 Intel® OS Guard 

When Intel® OS Guard, also known as Supervisor-Mode Execution Prevention (SMEP), is enabled, the 
operating system will not be allowed to directly execute application code, even speculatively. This 
makes branch target injection attacks on the OS substantially more difficult by forcing the attacker to 
find gadgets within the OS code. It is also more difficult for an application to train OS code to jump to 
an OS gadget. All major operating systems enable SMEP support by default. 

7.2 Execute Disable Bit 

The Execute Disable Bit is a hardware-based security feature that can help reduce system exposure to 
viruses and malicious code. Execute Disable Bit allows the processor to classify areas in memory where 
application code can or cannot execute, even speculatively. This reduces the gadget space, increasing 
the difficulty of branch target injection attacks. All major operating systems enable Execute Disable Bit 
support by default. Applications are encouraged to only mark code pages as executable. 

7.3 Intel® Control flow Enforcement Technology (Intel® CET) 

Intel® Control-Flow Enforcement Technology (Intel® CET) is a feature on recent Intel products to protect 
control-flow integrity against Return-Oriented Programming (ROP) / Call-Oriented Programming (COP) / 
Jump-Oriented Programming (JOP) style attacks. It provides two main capabilities: 

• Shadow stack: A shadow stack is a second independent stack which is used exclusively for control 
transfer operations. When shadow stacks are enabled, RET instructions require that return addresses 
on the data stack match the address on the shadow stack, which can be used to mitigate ROP attacks. 

• Indirect branch tracking (IBT): When IBT is enabled, the processor requires that the instruction at the 
target of indirect JMP or CALL instructions is an ENDBRANCH. Software must be compiled to place the 
ENDBRANCH instruction at valid targets. 

 
Intel CET also applies restrictions to transient execution to constrain speculative control flow. These 
restrictions may be relevant for both control-flow speculation and attacker-controlled jump redirection. 
More details can be found in volume 1 chapter 18 “Control-flow Enforcement Technology (CET)” of the 
IA-32 Intel® Architecture Software Developer’s Manual. 

7.3.1 CET Shadow Stack Speculation Limitations  

When CET Shadow Stack is enabled, the processor will not execute instructions, even speculatively, at 
the loaded target of the return address of a RET instruction if that target differs from the predicted 
target (such as the target predicted by the Return Stack Buffer), and: 

https://software.intel.com/security-software-guidance/insights/related-intel-security-features-technologies
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
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• The RET address values on the data stack and shadow stack do not match; or 
• Those address values may be transient (for example, the values may have been modified by an 

older speculative store). 

7.3.2 Intel CET Indirect Branch Tracking (CET IBT) Speculation Limitations  

When CET IBT is enabled, instruction execution will be limited or blocked, even speculatively, if the next 
instruction is not an ENDBRANCH after an indirect JMP or CALL which sets the IBT tracker state to 
WAIT_FOR_ENDBRANCH. The Tiger Lake implementation of CET limits speculative execution to a small 
number of instructions (less than eight, with no more than five loads) after a missing ENDBRANCH. On 
Alder Lake, Sapphire Rapids, Raptor Lake, and some future processors, the potential speculation 
window at a target that does not start with ENDBRANCH is limited to two instructions (and typically 
fewer) with no more than one load.  

The intended long-term direction, and behavior on some current implementations (including E-core 
only products like Alder Lake-N and Arizona Beach), is to completely block the speculative execution of 
instructions after a missing ENDBRANCH. 

7.4 Protection Keys 

On Intel processors that have both hardware support for mitigating Rogue Data Cache Load 
(IA32_ARCH_CAPABILITIES[RDCL_NO]) and protection keys support (CPUID.7.0.ECX[3]), protection 
keys can limit the data accessible to a piece of software. This can be used to limit the memory 
addresses that could be revealed by a branch target injection or bound check bypass attack. 

7.5 Supervisor-Mode Execution Prevention (SMEP) 

When Intel® OS Guard, also known as Supervisor-Mode Execution Prevention (SMEP), is enabled, the 
operating system will not be allowed to directly execute user-mode code, even speculatively. This 
makes branch target injection attacks on the OS substantially more difficult by forcing the attacker to 
find gadgets within the OS code. All major operating systems enable SMEP support by default. 

7.6 Supervisor-Mode Access Prevention (SMAP) 

SMAP can be used to limit which memory addresses can be used for a cache-based side channel, by 
blocking allocation of an application line. This may make it more difficult for an application to perform 
the attack on the kernel, as it is more challenging for an application to determine whether a kernel line 
is cached than an application line. On Intel processors that have both hardware support for mitigating 
Rogue Data Cache Load (IA32_ARCH_CAPABILITIES[RDCL_NO]) and SMAP support, loads that cause 
a page fault due to SMAP will not speculatively return the loaded data even on a L1D cache hit or 
fill/evict any caches for that address. On processors that have SMAP support but do not enumerate 
RDCL_NO, loads that cause a page fault due to SMAP may speculatively return the loaded data on L1D 
cache hits but will not fill/evict any caches for that address. 

SMAP can also make it more difficult for a malicious user process to exploit disclosure gadgets in the 
kernel. When SMAP is inactive, transient kernel-mode operations may access maliciously crafted data in 
the user process, and then subsequent transient kernel-mode operations may unwittingly use this 
crafted user data to access and expose kernel data through a microarchitectural covert channel. When 
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SMAP is active, the processor prevents kernel-mode operations from accessing user-mode data, and 
therefore also prevents user-mode data from participating in a kernel-mode disclosure gadget. 

7.7 Linear Address Space Separation 

 Linear Address Space Separation (LASS), described in chapter 9 of the Intel® Architecture Instruction 
Set Extensions and Future Features programming reference, prevents user mode code from causing 
page walks and Translation Lookaside Buffer (TLB) fills for supervisor addresses, and (when SMAP is 
enabled and effective) also provides similar limitations for supervisor code attempting to access user 
mode addresses.  

When LASS is not used, such page walks and TLB fills may allow a user mode attacker to infer which 
linear addresses in supervisor space are mapped; which may lead to breaking Kernel Address Space 
Layout Randomization (KASLR). 

LASS can also help reduce the risk of speculative execution associated with other new features. For 
example, when Linear Address Masking (LAM) (described in chapter 6 of the Intel® Architecture 
Instruction Set Extensions and Future Features programming reference) is enabled, addresses that 
would otherwise be non-canonical may be valid pointers after masking is applied, providing an address-
translation covert channel for a wider range of values. Although this is not a vulnerability, it could 
potentially be used as part of other attacks. When LAM is enabled for a user application, enabling LASS 
and SMAP in supervisor code restricts the potential use of this covert channel, acting as a defense-in-
depth mitigation. Intel recommends operating system software enable LASS when possible. 

7.8 Intel® Advanced Performance Extensions (Intel® APX) 

Intel® Advanced Performance Extensions (Intel® APX) introduces a family of instructions called 
CFCMOVcc that do not trigger a fault even when the memory operand is invalid, or when page 
permission checks fail. 

CMOVcc (whether with REX2, EVEX prefix or no prefix) do not suppress memory faults or zero the 
destination register when the condition is false. This differs from CFCMOVcc which will suppress 
memory faults and, when used without NDD, zero the destination register when the condition is false. 

Additionally, the CFCMOVcc, REX2/EVEX CMOVcc, CCMP and CTEST instructions, like non-APX CMOVcc 
and SETcc, will not predict whether the condition is true or false or predict source flags but will instead 
use the direction specified by their source flags, even speculatively. Any new feature that changes this 
(such as by adding conditional direction prediction) would require software to explicitly enable it (for 
example, by using new instructions).  

When CFCMOVcc is executed in an environment other than an Intel SGX enclave and the memory 
access faults, a value of zero may be written transiently to the destination register. When CFCMOVcc is 
executed in an Intel SGX enclave and the memory access faults, data is not written transiently to the 
destination register. This behavior is intended to prevent vulnerabilities similar to LVI zero data, in 
which an Intel SGX enclave could invertedly load malicious data from linear address zero during 
transient execution. Such behavior may present a concern for Intel SGX enclaves since the Intel SGX 
threat model (unlike in other environments) may include a privileged attacker who is able to control the 
mapping of linear address zero. For more information, see Load Value Injection. 

https://cdrdv2-public.intel.com/782879/architecture-instruction-set-extensions-programming-reference.pdf
https://cdrdv2-public.intel.com/782879/architecture-instruction-set-extensions-programming-reference.pdf
https://cdrdv2-public.intel.com/782879/architecture-instruction-set-extensions-programming-reference.pdf
https://cdrdv2-public.intel.com/782879/architecture-instruction-set-extensions-programming-reference.pdf
https://cdrdv2-public.intel.com/782879/architecture-instruction-set-extensions-programming-reference.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/load-value-injection.html
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Do note that almost all instructions, including those discussed here, may be affected by control flow 
speculation (for example, conditional jumps) or data speculation that affect their sources. These new 
instructions (CFCMOVcc, REX2/EVEX CMOVcc, CCMP and CTEST) are expected to be as effective for 
mitigating bound check bypass or avoiding timing side channels in constant time code as existing 
instructions used for these purposes – such as non-APX forms of CMOVcc/SETcc, AND, ADC, or SBB. 
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8.0 CPUID Enumeration and Architectural MSRs 

CPUID Enumeration and Architectural MSRs describes processor support for mitigation mechanisms as 
enumerated using the CPUID instruction and several architectural MSRs. 

 

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/cpuid-enumeration-and-architectural-msrs.html
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9.0 Resources 
• Speculative Execution Side Channel Mitigations 

• Intel Analysis of Speculative Execution Side Channels 

• CPUID Enumeration and Architectural MSRs 

• Refined Speculation Execution Terminology 

• Retpoline: A Branch Target Injection Mitigation 

• Analyzing Potential Bounds Check Bypass Vulnerabilities 

• Host Firmware Speculative Execution Side Channel Mitigations 

• Fast Store Forwarding Predictor 

• Software Security Guidance 

• Intel Security Center  

• Configuring Spectre mitigations in the Linux kernel 

 

 

 

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/analysis-speculative-execution-side-channels.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/cpuid-enumeration-and-architectural-msrs.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/refined-speculative-execution-terminology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/analyzing-bounds-check-bypass-vulnerabilities.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/host-firmware-speculative-side-channel-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/fast-store-forwarding-predictor.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/facts-about-side-channel-analysis-and-intel-products.html
https://docs.kernel.org/admin-guide/hw-vuln/spectre.html
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10.0 Appendix: Summary Table of How Mitigation 
Techniques are Used 

 

Vulnerability Intel Naming Mitigation Techniques 

Spectre v2 Branch Target 
Injection 

IBRS, eIBRS, Retpoline 

Retbleed Return Stack Buffer 
Underflow 

Retpoline+ call Depth Tracking, IBRS 

Native BHI Branch History 
Injection 

BHI_DIS_S, BHB clearing sequence for branch history 
clearing 

Training Solo Indirect Target 
Selection 

Relocating vulnerable indirect branches to safe thunk 

VMSCAPE VMSCAPE IBPB, user space IBRS, BHB clearing sequence for 
branch history clearing 

 

 

 

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/return-stack-buffer-underflow.html#:%7E:text=Branch%20Target%20Injection-,Overview,as%20%E2%80%9CEmpty%20RSB%E2%80%9D%20behavior.
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/indirect-target-selection.html
https://www.intel.com/content/www/us/en/developer/articles/news/more-information-vmscape.html
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