Technology Guide intel

Intel® Data Streaming Accelerator (DSA) -
Accelerating DPDK Vhost

Authors
Jiayu Hu
Cheng Jiang
Xuan Ding
Xingguang He

1 Introduction

VirtlO'is a virtualized interface standard for virtual machines (VMs) to access devices such
as network devices and block devices. A VirtlO instance consists of a backend running on the
host machine, and a frontend, which is present in the guest VM. Data Plane Development Kit
(DPDK) Vhost library?is a VirtlO backend implementation for VirtlO network devices, and it
is widely used in software switches for VMs to receive and transmit packets at high speeds.
Although the DPDK Vhost library is well optimized with various techniques (for example, loop
unrolling and using inline functions to avoid function call overheads), a high proportion of
core cyclesis spent on packet copying when the packet size is large, thus causing Vhost
packet transmit and receive rates to decrease rapidly.

Intel® Data Streaming Accelerator is a high-performance data copy and transformation
accelerator in the 4th Gen Intel® Xeon® Scalable processor (formerly code named Sapphire
Rapids?). Providing high bandwidth and low latency for data movement, itis an ideal
accelerator to accelerate the performance of DPDK Vhost library.

We offload packet copies to Intel Data Streaming Accelerator in the DPDK Vhost library,
where the Vhost core can eliminate copying packets. We also propose an asynchronous
offloading pipeline to enable applications to hide Intel Data Streaming Accelerator copy
latency with higher level functions processed by the core. Our experiments show that Intel
Data Streaming Accelerator can bring considerable packet forwarding rate improvement for
the DPDK Vhost library when the packet size is beyond 256 bytes.

This document is part of the Network Transformation Experience Kits.

Intel Confidential - NDA Required 1

https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits
https://wiki.osdev.org/Virtio
https://doc.dpdk.org/guides/prog_guide/vhost_lib.html
https://en.wikipedia.org/wiki/Sapphire_Rapids

Technology Guide | Intel® Data Streaming Accelerator - Accelerating DPDK Vhost via Intel® DSA Technology Guide

Table of Contents
1 Ta¥ oY [UTo3 uTo o TR OO TP P TP 1
1.1 BT 0 10T o] Co T 1Y OSSPSRV 4
1.2 [Rd 10T aTeT=l BT o1 U a'aT =Y o t= d o o O P T TVSTRT 4
2 L 1YY T OOV 4
2.1 Data Plane Development Kit (DPDK) VNOST ... eeeeeeueeeeeeeseeesesssssssssssesssesssssssssessssssssssssassssssssasssessssesssssssssssssnsssssssssssessasssasees 4
2.2 INTEI® Data STreamMING ACCEIEIATON ...ttt e b s s sttt 6
2.3 [\ X {1V 2= Y4 o o OO T VTP PP STV OT TSPV 6
3 DPDK Vhost With INtel® DSA ACCEIEIatioN ...ttt b s bbb bbb eeaen 6
3.1 L 1Y 1T TP 6
3.2 ViIrtQUEUE GNA INTEIG DS A ...ttt ses s ss s s s s R E e AR AR e AR e Rt R et n s n e 7
3.2.1 Virtqueue and Intel® DSA WoOrk QUEUE MEPPING w..cucuececrreerreersissesssessesessesssessassssesssssssssssseasssessassssssssssssesssssassssssessssessssssssssassssases 7
G I @ T o 1Y [T PP
3.3 DPDK Vhost Asynchronous APIs
34 LY 0T 0 o aToT Y |- OO
LG 2R B =Y o] 1o Y PPV
3.4.2 Packet Sizecenreneirerenerneeereseneenes
3.4.3 BindingIntel® DSA WQs to Cores
4 LY CoT g g YT oL o] I I Y PP 10
4.1 LT 1= Yo o] o 1Y OO n
4.2 LS 0| =PTSRS 12
5 SUMIMIAIY .ttt sttt st e st e s s et s ae s e s aeses s e eaeasE s et e s s et e e e e e aeE e e e e RS A eE e AeEeE A Eae R e A e EaEae A E A Ere A s L e e e A b e e b e A e e A e A e e e aeEeE s EaeReseEseas st nentansneaen 12
APPENIX A SELUP AN RESUILS ...ttt RS R e R bbbt 13
Figures
Figure 1. Enqueue/Dequeue Operation WOIKFIOW ... eessseesssssssssses s sssss s sassssssssssssssssssss s s ssssssssssssssssnsssssassssssssansssnnns 5
Figure 2. Example of Split VIirtQUEUE OPEIatioN ...t isesas e s sssss s eesssssessessssssssssssssasssssessssssssesasassesssssasessssssesssnssssssssssss 5
Figure 3. Core Cycle Distribution in HOST TESTPIMD ...t ses s sessssss s ssessssssssssssssssssssssssssssssessssssassssssssesssssssssssssssssssssnses 6
Figure 4. Design Overview of DPDK Vhost with INtel® DSA ACCEIEIatioN ...ttt e sss s ss s sessssssnseenn 7
Figure 5. ASYNChroNoUS OFffloading PIPEIINE ...t e s e s et 7
Figure 6. Example of Virtqueue and INtel® DSA WQ MaPPING c.ccrreiriureriereeeresreessesssessessssessesssesssessessssesssssssessssssssssssssssssssessssssssssssesssessssses 8
Figure7. Virtqueue with Multiple INtel® DSA WQS EXAMPIEcuriereceriereeeresererreessessesssesssessessssessssesssssssesssssssesssssassssssessssesssssssssssssssssssesenes 8
Figure 8. Example of Using DPDK Vhost ASYNCNIONOUS APIS ... ssssssssess st sess s sessssssssssssessssssessssessssessens 10
Figure 9. Experiment TOPOology.....erreneeneseresreersesseessesensenes

Figure10. Packet Forwarding Rate Comparison

Tables

Table 1. JLIC=15 8011 T Fo T V25T 4
Table 2. [RaS =TT aTeT= T B Yo U [g'a Y=Y o X PP 4
Table 3. [Y LT ==X 1 F= =] = £ n
Table 4. S0 8TV T =3 N E= L (=T ¢ = £ PP n
Table 5. [=ToT o A=Y aTe [=] (@ ST Y= u g TS O TP PP TT 13
Table 6. Test Steps for TestPMD without INtel® DSA ACCEIEIatioN ...ttt 13
Table 7. Test Steps for TestPMD with INtel® DSA ACCEIEIatioN.. ...ttt 14
Table 8. Test Results for TestPMD with and without Intel® DSA ACCElEratioN ... s s senenas 16

Document Revision History

Revision Date Description
001 December 2022 Initial release.

Intel Confidential - NDA Required 3

Technology Guide | Intel® Data Streaming Accelerator - Accelerating DPDK Vhost via Intel® DSA Technology Guide

1.1 Terminology

Tablel. Terminology

Abbreviation Description

API Application Programming Interface
DPDK Data Plane Development Kit

Intel DSA Intel Data Streaming Accelerator
PMD Polling Mode Driver

VM Virtual Machine

WQ Work Queue

DWQ Dedicated Work Queue

1.2 Reference Documentation

Table2. Reference Documents

Reference Source

VirtlO Spec Version 0.95 : ~ irtio- irtio-
VirtlO Spec Version 1.1 : is- irtio/virti irtio-v1.1-

Intel Data Streaming Accelerator : i ing-intel- . ing-

2 Overview

The DPDK Vhost library is a fast VirtlO backend implementation for VirtlO networking devices in user-space. It is widely used
virtual interface in Open vSwitch for packet I/O to VMs. In the following sections of this document, we will use the term “DPDK
Vhost” to refer to the DPDK Vhost library.

2.1 DataPlane DevelopmentKit (DPDK) Vhost

DPDK Vhost consists of a set of control path and data path Application Programming Interfaces (APIs). Control path APIs are
used for mapping VM memory, setting up the host to guest virtqueues, and negotiating features with the VirtlO frontend. Data
path APIs are used to send/receive packets to/from VirtlO frontend, implemented by the two key data plane operations,
enqueue and dequeue, respectively. On enqueue, Vhost transmits packets to the VirtlO frontend by inserting packets into a
virtqueue, and on dequeue, Vhost receives packets from the VirtlO frontend by taking out packets from a virtqueue. Thus, at
least two VirtlO virtqueues are required for bi-directional data transport between Vhost and VirtlO frontend.

One enqueue or dequeue operation can be divided into the following three sub-operations, as shown in Eigure 1.

1. Firstly, available descriptors that describe buffers in VM memory are fetched from the virtqueue. Then, from those
descriptors, the buffer addresses for later packet operations are read. For enqueue, these available descriptors point to
empty buffers used to store packets in future; for dequeue, the available descriptors point to packet buffers sent by
VirtlO frontend.

2. Secondly, packets are copied from the host to the obtained buffers for enqueue, or from the obtained packet buffers to
the host for dequeue.

3. Thirdly, “used” descriptors are written back to the virtqueue and a notification is sent to the VM.

These three sub-operations are performed by the DPDK Vhost core in order. After they are completed, the DPDK Vhost
enqueue or dequeue function returns to the user application and the core can perform higher-level functions for the application.

Intel Confidential - NDA Required 4

https://ozlabs.org/%7Erusty/virtio-spec/virtio-0.9.5.pdf
https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html
https://01.org/blogs/2019/introducing-intel-data-streaming-accelerator

Technology Guide | Intel® Data Streaming Accelerator - Accelerating DPDK Vhost via Intel® DSA Technology Guide

Perform higher
level functions

Write back used
descriptors

Fetch available N
descriptors

1 2 3

enqueue/dequeuei

Figurel. Enqueue/Dequeue Operation Workflow

DPDK Vhost supports two virtqueue formats: split virtqueue and packed virtqueue, which are introduced in VirtlO Spec versions
0.95%and 1.15 respectively. The split virtqueue consists of three parts, a descriptor table, an available ring, and a used ring. Unlike
the split virtqueue, the packed virtqueue merges the three parts of the virtqueue into one and it only contains one descriptor ring
with different descriptor formats. In the following paragraphs, we will use the split virtqueue to demonstrate the workflow of
enqueue/dequeue operation.

A split virtqueue consists of a descriptor table, an available ring, and a used ring. The descriptor table is an array of descriptors
describing packet buffers, and each available/used ring is an index array pointing to descriptors in the descriptor table. The
difference between the available ring and the used ring is that the available ring stores the indices of descriptors available to
Vhost, but the used ring stores indices of descriptors available to the VirtlO frontend. Each ring also has a tail pointer that is used
toindicate where the VirtlO frontend, for avail ring, or Vhost, for used ring, would put the next descriptor index, and the tail
pointer is increased after filling descriptor indices to the ring. The tail pointer is called avail_idx and used_idx for the available ring
and usedring, respectively.

Eigure 2 shows an example of sending four packet buffers by the VirtlO frontend and Vhost dequeue them from the split
virtqueue. The VirtlO frontend stores packet buffer information in the first four descriptors, that is, from index O to index 3 in the
descriptor table. It then fills 0~3 in the available ring and increases avail_idx by four. On the host side, Vhost reads the available
ring to get the four packet buffer addresses, then copies packets from VM memory into host memory. After finishing copying
the four packet buffers, Vhost writes back O~3 to the used ring and increases the used_idx by four to notify the frontend that the
four packet buffers have been received by Vhost.

} Available Ring } Descriptor Table } Used Ring }
| | | |
| | | |
: 0 B Pkt0_addr len0 flag next | 0 }
} 1 S Pkt1_addr len1 flag next DRSS 1 }
| | | |
} 2 - Pkt2_addr len2 flag next DE. 2 }
| | |
} 3 } fffff » Pkt3_addr len3 flag next € 3 }
}avail_idx —>» } €— used_idx |
| | |
I I |
| | |
I I |
I | |
| | |
I I I
| | |
| I I

Figure 2. Example of Split Virtqueue Operation

Intel Confidential - NDA Required 5

https://ozlabs.org/%7Erusty/virtio-spec/virtio-0.9.5.pdf
https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html

Technology Guide | Intel® Data Streaming Accelerator - Accelerating DPDK Vhost via Intel® DSA Technology Guide

2.2 Intel® Data Streaming Accelerator

Intel Data Streaming Accelerator? (Intel DSA) is a high-performance data copy and transformation accelerator that is in 4th Gen
Intel Xeon Scalable processors. Work queues (WQs) are on-device storage to contain descriptors that have been submitted to
device and are used by applications to assign work to the Intel DSA. Batch descriptor allows software to submit multiple work
descriptors using a single work submission operation and can potentially improve overall throughput, especially for small
transfer sizes. In the DPDK Intel DSA driver’, Dedicated Work Queue (DWQ) and Batch descriptor are used.

2.3 Motivation

As an efficient VirtlO backend implementation, DPDK Vhost is widely used in software switches, like Open vSwitch. Although
DPDK Vhost is well optimized with various techniques (for example, loop unroll and inline function), with increasing packet sizes,
packet copying in Vhost starts to limit performance. We use the typical DPDK application TestPMD as a software switch in the
host and it connects to one VM via a Vhost PMD® port. We study the impact of packet copies in the Vhost PMD port to the host
TestPMD. The experiment configuration is the same as that of Section 4.1. By varying the packet size, we measure the packet
forwarding rate for the host TestPMD and the fractions of core cycles spent in switching, virtqueue operation, and packet
copyingin Vhost via Linux Perf.

The results are presented in Eigure 3. We can see that the larger packet size causes a noticeable increase of core cycles spentin
Vhost packet copy. At 1518 bytes, 59% core cycles are spent in Vhost packet copy. We can also see that larger packet size
implies lower packet forwarding rate of TestPMD. This is because the amount of core cycles spent in Vhost packet copying
increases with packet sizes and Vhost packet copy becomes the bottleneckin TestPMD.

100% — — — 8
90% 7 o
80% 5
6 ©O
» 70% &
9 5 &
9 60% I
O o 2
o 50% 4 45
5 3
(@] 40% 3 ®©
X o o
o 2 §
20% =
1 =

10%
0% 0
64 128 256 512 1024 1280 1518
Packet Size (Byte)
Packet Copying mmmm Virtqueue Processing Switching M Others ==@==Packet Forwarding Rate

Figure 3. Core Cycle Distributionin Host TestPMD

3 DPDK Vhost with Intel® DSA Acceleration

3.1 Overview

Figure 4 shows the design overview of DPDK Vhost with Intel DSA acceleration. As discussed in section 2.1, one
enqueue/dequeue operation can be divided into two sub-operations: virtqueue processing and packet copying. Virtqueue
processing is done fast by the core. This is because the descriptor size is small, and the core is efficient at performing
reads/writes on small data. Compared with virtqueue processing, packet copying is more expensive, especially when the packet
size is large. As a result, we offload all packet copies to the Intel DSA (shown in blue arrow) but leave virtqueue operations to the
core (shown in green arrow) for both enqueue and dequeue operations.

Intel Confidential - NDA Required 6

https://01.org/blogs/2019/introducing-intel-data-streaming-accelerator

Technology Guide | Intel® Data Streaming Accelerator - Accelerating DPDK Vhost via Intel® DSA Technology Guide

—>» Packet Copying

VirtlO Front-end [«

Virtqueue

Processing I
virtqueue Intel DSA

Vhost <

Figure 4. Design Overview of DPDK Vhost with Intel® DSA Acceleration

Besides the gain from high Intel DSA data movement bandwidth, we also propose an asynchronous offloading pipeline to enable
applications to hide Intel DSA copy latency with higher level functions. The asynchronous offloading pipeline is shown in Eigure

5.

Core
Check Intel DSA Fetch available
completed packet copies N descriptors and submit L) Perform higher
and write back used packet copies to the Intel level functions
descriptors DSA
Intel DSA Perform packet copies

Figure 5. Asynchronous Offloading Pipeline

First, the core checks that Intel DSA completed packet copies submitted previously and writes back the corresponding used
descriptors to the virtqueue. In this stage, the core does not wait for the Intel DSA to complete all submitted packet copies.
Second, the core submits new packet copies to the Intel DSA after obtaining available descriptors from the virtqueue. Then, the
Intel DSA starts performing copy jobs immediately. In the meanwhile, the core can perform higher level functions for the
application. Packet copying by the Intel DSA and higher level function processed by the core are performed in parallel.
Therefore, the application can hide Intel DSA copy latency with its higher level functions and achieve higher throughput.

3.2 Virtqgueue and Intel® DSA
3.2.1 Virtqueue and Intel® DSA Work Queue Mapping

DPDK Vhost with Intel DSA acceleration supports M: N mapping between virtqueues and Intel DSA WQs. Specifically, one Intel
DSA WQ can be used by multiple virtqueues and one virtqueue can offload copies to multiple Intel DSA WQs at the same time.
Eigure 6 shows an example for the M: N mapping between virtqueue and Intel DSA WQ. WQ2 is shared by virtqueue2,
virtqueue3, and virtqueue4. virtqueue2 uses two Intel DSA WQs at the same time.

Intel Confidential - NDA Required

Technology Guide | Intel® Data Streaming Accelerator - Accelerating DPDK Vhost via Intel® DSA Technology Guide

virtqueue1 virtqueue2 virtqueue3 virtqgueue4
Y
N Intel DSA WQ1 Intel DSA WQ2
offloading copies

Figure 6. Example of Virtqueue and Intel® DSA WQ Mapping
3.2.2 Ordering

Vhost processes descriptors in the order they appear in the virtqueue. However, the Intel DSA might complete copies out of
order, especially when offload copies of a virtqueue to multiple Intel DSA WQs. It could cause packets out-of-order after
dequeue/enqueue and result in severe performance issues for applications.

To guarantee the packet ordering, every virtqueue is assigned with a reordering array to track if packets are completed by the
Intel DSA. After all copies of a packet are completed by the Intel DSA, the corresponding element in the reordering array is
marked with DONE flag. The Vhost core traverses the array and writes descriptors to virtqueue for the packets with DONE flag;
once meets an uncompleted packet, the Vhost core stops writing back descriptors for the one and the subsequent packets.
Therefore, although copies could be completed in any order by the Intel DSA, the reordering array can guarantee the ordering of
packets.

Figure 7 shows how multiple Intel DSA WQs work in the example of section 2.1. After getting the four available descriptorsin
Vhost, the core submits four source and destination address pairs to four Intel DSA WQs (WQO, WQ1, WQ2, and WQ3)
respectively. Currently, pktO, pkt2, and pkt3 are done, but Intel DSA WQ2 does not finish pktl. In the reordering array, the second
elementis not marked with DONE flag, so the core only returns pktO to the user application and writes back index O to the used
ring. After pktlis completed by Intel DSA WQ2, the core will return pktl, pkt2, and pkt3 to the user application and write back the
index 1~3 to the used ring.

} Available Ring } Descriptor Table } Used Ring }
| | | |
| | | |
} 0 I PktO_addr len0 flag next [0 }
| 1 — » Pktl_addr len1 flag next | <« used._idx |
| | I - |
} 2 o » Pkt2_addr len2 flag next } }
I I I I
} 3 } ffffff » Pkt3_addr len3 flag next } }
\avail_idx — } } }
I I I I		
g I Ll I
. Pkt1:
Reordering array PktO: DONE e Pkt2: DONE | Pkt3: DONE

Figure 7. Virtqueue with Multiple Intel® DSA WQs Example

Intel Confidential - NDA Required 8

Technology Guide | Intel® Data Streaming Accelerator - Accelerating DPDK Vhost via Intel® DSA Technology Guide

3.3 DPDK Vhost Asynchronous APls

Compared with software copy, offloading packet copies to the Intel DSA introduces higher latency for enqueue/dequeue
operations. DPDK Vhost provides a set of asynchronous APIs for applications to hide Intel DSA copy latency with the high-level
application logic done by the core.

DPDK Vhost leverages the DPDK dmadev library that is a generic DMA engine library to operate the hardware DMA device. As a
result, besides the Intel DSA, it can support other DMA engines, like Crystal Beach DMA. The dmadev library exposes an Intel
DSAWQ as a DMA device instance with one virtual channel. In the following section, we will use the term “DMA device instance”
and “virtual channel” instead of Intel DSA WQ to demonstrate the use of DPDK Vhost asynchronous APls.

The DPDK Vhost asynchronous APl includes control path and data path APIs. Before starting data path, the control path APl is
used to enable DMA accelerated data path for virtqueues via three steps.

1. Firstly, tell Vhost all DMA device instances and virtual channels that will be used in the data path via
rte_vhost_async_dma_configure().

2. Secondly, notify Vhost to set up environment for the Vhost port that will use DMA accelerated data path via passing
RTE_VHOST_USER_ASYNC_COPY inrte_vhost_driver_register().

3. Thirdly, register the virtqueue that will use DMA accelerated data path to Vhost via calling
rte_vhost_async_channel_register() inside the Vhost callback function vring_state_changed(), when the virtqueue is
enabled. Then user applications can call asynchronous data path APIs on the virtqueue that successfully registers.

Asynchronous data path APls include enqueue and dequeue operations. Transmitting packets to VM via the asynchronous
enqueue APl requires two steps.

1. Firstly, fetch available descriptors from the virtqueue and submit packet copies to a given virtual channel of DMA device
instance via rte_vhost_submit_enqueue_burst(). Then the DMA device starts to copy packets.

2. Secondly, check completed packet copies on the given virtual channel of DMA device instance and write back the
corresponding used descriptors to virtqueue via rte_vhost_poll_enqueue_completed(). Then the VirtlO frontend is
notified of successfully transmitted packets by the DMA device.

The asynchronous enqueue API requires applications to call rte_vhost_poll_enqueue_completed() appropriately; otherwise, the
VirtlO frontend will not receive packets, even if the packets have been copied into the VM memory by the DMA device. In
dequeue, there is only one API, rte_vhost_try_dequeue_burst(). It submits new packet copies to a given virtual channel of DMA
device instance; in addition, it checks completed packet copies on the DMA virtual channel that are submitted previously and
returns transmission completed packets to applications.

When the virtqueue is disabled or the Vhost device is destroyed, the control path API can be used to disable DMA accelerated
data path for the virtqueue via three steps.

1. Firstly, clearin-flight packets in the virtqueue. This can be done by calling rte_vhost_clear_queue() inside the Vhost
callback function destroy_device() or calling rte_vhost_clear_queue_thread_unsafe() inside the Vhost callback
function vring_state_changed().

2. Secondly, unregister the virtqueue from DMA accelerated data path. This can be done by calling
rte_vhost_async_channel_unregister() inside the Vhost callback function destroy_device() or calling
rte_vhost_async_channel_register_thread_unsafe() inside the Vhost callback function vring_state_changed().

3. Thirdly, unconfigure DMA device instances and virtual channels that will not be used in the data path via
rte_vhost_async_dma_unconfigure().

Eigure 8 gives an example of using DPDK Vhost asynchronous APIs.

Intel Confidential - NDA Required 9

Technology Guide | Intel® Data Streaming Accelerator - Accelerating DPDK Vhost via Intel® DSA Technology Guide

__

rte_vhost_async_dma_configure()
Receive packets from NIC €

‘ !

rte_vhost_driver_register(..., . . :
RTE_VHOST USER_ASYNC_COPY) = RSO R G =

'

rte_vhost_poll_enqueue_completed()
and free Mbuf for completed packets

A 4
rte_vhost_async_channel_register()
when virtqueues are enabled

_____________________ o

Data Path Operations

rte_vhost_submit_enqueue_burst() —

rte_vhost_clear_queue() inside

destroy_device() rte_vhost_async_try_dequeue_burst() <

! .

rte_vhost_async_channel unregister()] Process received packets .
inside destroy_device() : '

v

A 4 1

Send processed packets to NIC ~ —

rte_vhost_async_dma_unconfigure()

Figure 8. Example of Using DPDK Vhost Asynchronous APls
3.4 Performance Pillars
3.4.1 Batching

Large batching size can reduce the average Intel DSA work submission cost. DPDK Vhost batches packet copies within one
enqueue/dequeue operation and submits them to the Intel DSA via one Batch descriptor. Therefore, Vhost enqueue/dequeue
burst size usually determines Intel DSA copy batching size.

Typically, DPDK packet burst size is 32. Thus, DPDK Vhost can batch 32 packet copies within one Batch descriptor at least,
which is efficient for Intel DSA data copy. However, in some cases, the packet burst size per Vhost enqueue/dequeue may be
much smaller, which hurts the Vhost performance, especially at small packet sizes.

3.4.2 Packet Size

Offloading packet copies to the Intel DSA can free core cycles for higher level functions, but at a cost of spending extra cycles on
preparing descriptors, ringing doorbell to the Intel DSA and tracking asynchronous offloading status in Vhost. Therefore, for
small packet sizes, like 64 bytes, software copying is more efficient. In this case, Intel DSA offloading cost will be higher than the
gain, and using Intel DSA could result in performance decrease in turn.

3.4.3 BindingIntel®* DSA WQs to Cores

Using Intel DSA WQs inside DPDK Vhost is protected with spinlock, as it is possible that multiple threads operate on the same
Intel DSA WQ and the DPDK dmadev library does not support safe access to the Intel DSA WQ in the multi-core system. When
multiple threads try to use the same Intel DSA WQ simultaneously, the Intel DSA WQ'’s spinlock will force the thread to busy
waiting until acquiring the lock, causing wasting CPU time on useless activities. Binding Intel DSA WQs to cores can avoid
contending for Intel DSA WQs among threads.

4 Performance Tests

We evaluate the performance of Host TestPMD with Intel DSA acceleration and compare it with the baseline Host TestPMD
thatis without Intel DSA acceleration. In all experiments, we assign one physical core to the host TestPMD. In the TestPMD with
Intel DSA acceleration experiments, we use one Intel DSA instance. As this work uses DPDK Intel DSA driver that only supports
the DWQ, we create two DWQs in the used Intel DSA instance. In addition, to use the maximum Intel DSA capability, all four
engines in the Intel DSA instance are used.

Intel Confidential - NDA Required 10

Technology Guide | Intel® Data Streaming Accelerator - Accelerating DPDK Vhost via Intel® DSA Technology Guide

41 TestMethodology

TestPMD

VirtlO Port
Guest
-Vhost PMD
Port
TestPMD
E810-
CQDA2

Traffic
Generator

Host

Figure 9. Experiment Topology

Eigure 9 shows the experiment topology. In host, TestPMD runs in macfwd mode bound with one E810-CQDAZ2 port and one
Vhost PMD port. The two DWQs are assigned to the TX queue and the RX queue in the Vhost PMD port respectively. In guest,
TestPMD runs in macfwd mode bounded with a VirtlO port. The Ixia traffic generator connects to the E810-CQDAZ2 port and
sends TCP/IPv4 packets with an acceptable loss rate of 0.1% for received traffic.

The hardware used in the experiments are listed in Table 3.

Table3. Hardware Materials

CPU Intel(R) Xeon(R) Platinum 8471N @ 1.80GHz 52 CPU cores *1NUMA nodes
Microcode 0x2b0000al

Turbo Off

Hyperthreading Enabled

BIOS Version EGSDCRBI1.5YS.8901.P01.2209200243

Memory 32GB x 8 DIMMs x 1 NUMA nodes @ 4800MHz

Network Adapter 1x Intel® Ethernet Network Adapter ES10-CQDA2100Gb

Network Adapter Firmware 4.00 0x800117e91.3236.0

The software used in the experiments is listed in Table 4.

Table4. Software Materials

Host Operating System Ubuntu 22.04.1LTS

QEMU 7.0.0

Host Kernel 5.15.0-27-generic

Host Compiler GCC11.2.0

Host DPDK 22.11-rc1 (a74b1b25136a), with applying three additional patches®
Guest Operating System Ubuntu22.04.1LTS

Guest Compiler GCC11.2.0

Guest DPDK 22.11-rcl

Guest Kernel 5.15.0-27-generic

Intel Confidential - NDA Required

http://patches.dpdk.org/project/dpdk/patch/20221216020009.70206-1-yuanx.wang@intel.com/
http://patches.dpdk.org/project/dpdk/patch/20221011030803.16746-2-cheng1.jiang@intel.com/
http://patches.dpdk.org/project/dpdk/patch/20221011030803.16746-3-cheng1.jiang@intel.com/

Technology Guide | Intel® Data Streaming Accelerator - Accelerating DPDK Vhost via Intel® DSA Technology Guide

4.2 Results

Eigure 10 shows the packet forwarding rate of host TestPMD with and without Intel DSA acceleration. When the packet size is
beyond 256 bytes, the packet forwarding rate of TestPMD with Intel DSA acceleration is 1.14-2.29 times as fast as the TestPMD
without Intel DSA acceleration. In addition, TestPMD with Intel DSA acceleration achieves fixed packet forwarding rate from
64B to 1518B. With offloading packet copies to the Intel DSA, the host TestPMD only needs to operate the packet header, so the
processing of TestPMD core is independent of packet sizes. In addition, the used Intel DSA bandwidth is less than the Intel DSA
capability on data copy. Therefore, TestPMD with Intel DSA acceleration can achieve fixed packet forwarding rate crossing
different packet sizes.

When packet size is smaller than or equal to 256 bytes, the performance of TestPMD with Intel DSA acceleration is worse. Since
the core is more efficient than the Intel DSA on small copies and the Intel DSA offloading is expensive, Intel DSA offloading
causes performance decrease for the host TestPMD.

8

7

0 I I I I I I I
64 128 256 512

1024 1280 1518

w

Million Packets per Second
N »

[ERN

Packet Size (Byte)

TestPMD without Intel DSA Acceleration B TestPMD with Intel DSA Acceleration

Figure 10. Packet Forwarding Rate Comparison

5 Summary

In this paper we have outlined the design of accelerating DPDK Vhost using Intel DSA and the usage of DPDK Vhost
asynchronous APIs. We have benchmarked the packet forwarding rate with Intel DSA in 4th Gen Intel Xeon Scalable processors.
Offloading packet copies to the Intel DSA brings considerable packet forwarding rate improvement for DPDK Vhost, when the
packet size is beyond 256 bytes.

Intel Confidential - NDA Required 12

Technology Guide | Intel® Data Streaming Accelerator - Accelerating DPDK Vhost via Intel® DSA Technology Guide

Appendix A Setup and Results

The Hardware and Software used in the experiments are in Table 3 and Table 4. Boot and BIOS settings are in Table 5.

Table5. BootandBIOS Settings

Item

Description

Host Boot Settings

GRUB_CMDLINE_LINUX="hugepagesz=1G hugepages=40 isolcpus=1-40,53-92
default_hugepagesz=1G rcu_nocbs=1-40,53-92 nohz_full=1-40,53-92 intel_pstate=disable
processor.max_cstate=1intel_idle.max_cstate=1intel_iommu=on,sm_on iommu=on panic=30
init=/sbin/init net.ifnames=0 nmi_watchdog=0 audit=0 nosoftlockup hpet=disable mce=off tsc=reliable
numa_balancing=disable memory_corruption_check=0 workqueue.power_efficient=false
module_blacklist=ast modprobe.blacklist=ice init_on_alloc=0"

VM Boot Settings

hugepagesz=1G hugepages=4 default_hugepagesz=1G isolcpus=1-2 nohz_full=1-2 rcu_nocbs=1-2

BIOS

CPU C-state Disabled
CPU P-state Disabled
Turbo Disabled

Host Real Time Settings

echo-1> /proc/sys/kernel/sched_rt_period_us
echo -1> /proc/sys/kernel/sched_rt_runtime_us
echo 10 > /proc/sys/vm/stat_interval

echo 0 > /proc/sys/kernel/watchdog_thresh

VM Real Time Settings

echo 0 > /proc/sys/kernel/watchdog
echo 0 > /proc/sys/kernel/nmi_watchdog
echo-1>/proc/sys/kernel/sched_rt_period_us

echo -1> /proc/sys/kernel/sched_rt_runtime_us

Test steps for TestPMD without Intel DSA acceleration and Figure 3 are in Table 6.

Table 6. Test Steps for TestPMD without Intel® DSA Acceleration

Item

Description

Test Configuration

Test tool: IxNetwork 9.00.1915.16

Virtqueue size: 1024, the max size QEMU support
Huge page size: 1GB

VirtlO Mergeable: On

Virtqueue Type: Split Virtqueue

Forward Mode: TestPMD mac forward

Vhost: 1queue Tlogic core

Virtio: 1queue 1logic core

Totally 2 logic cores from 2 physical cores are used.

Flow Configuration

Ether()/IPQ)/TCP(

Test Step

1. Bind one E810-CQDA2 port to vfio-pci.

2. Mount1GB huge pages for the host TestPMD and VM.
mkdir /dev/hugepages
mount -t hugetlbfs -o pagesize=1G nodev /dev/hugepages
mkdir /mnt/huge

mount -t hugetlbfs -o pagesize=1G nodev /mnt/huge

Intel Confidential - NDA Required

Technology Guide | Intel® Data Streaming Accelerator - Accelerating DPDK Vhost via Intel® DSA Technology Guide

3. Launchthe host TestPMD and running in the macfwd mode.

chrt -f 95 ./build/app/dpdk-testpmd -n 8 -1 9-10 --file-prefix=dpdk_vhost --huge-
dir=/dev/hugepages --socket-mem 8192 --vdev 'net_vhost,iface=./vhost-net,queues=1' --
iova=va -- -i --nb-cores=1--txq=1--rxq=1--txd=2048 --rxd=2048

testpmd>set fwd mac
testpmd>start
4. Launch QEMU.

taskset -¢ 11,12,13 /usr/local/gemu-7.0.0/bin/gemu-system-x86_64 -name us-vhost-vm1-cpu
host -enable-kvm -m 8192 -object memory-backend-file,id=mem,size=8192M,mem-
path=/mnt/huge,share=on -numa node,memdev=mem -mem-prealloc -smp cores=2,sockets=1
-drive file=/home/osimg/ubuntu22-04.img -chardev socket,id=char0Q,path=./vhost-net -
monitor unix:/tmp/vm2_monitor.sock,server,nowait -device e1000,netdev=nttsl -netdev
user,id=ntts],hostfwd=tcp:127.0.0.1:6002-:22 -netdev type=vhost-
user,id=mynetl,chardev=char0O,vhostforce -device virtio-net-
pci,mac=52:54:00:00:00:01,netdev=mynet],mrg_rxbuf=on,rx_queue_size=1024,tx_queue_siz
e=1024,csum=off,guest_csum=off host_tso4=off,guest_tso4=off,guest_ecn=off -vnc:10 --
monitor stdio

5. Use QEMU monitor to bind vCPUs with physical processors on host machine.
gemu monitor: info cpus #check pid
taskset-cp 12 xxx #xxxis the pid number
taskset -cp 13 xxx
6. Enterthe VM and bind the VirtlO port to vfio-pci.
modprobe vfio-pci
echo 1> /sys/module/vfio/parameters/enable_unsafe_noiommu_mode
7. Launch TestPMD inthe VM and run it in the macfwd mode.
./build/app/dpdk-testpmd -c Ox3 -n 8 -- -i --nb-cores=1-txq=1--rxq=1--txd=2048 --rxd=2048

testpmd>set fwd mac

testpmd>start

Test steps for TestPMD with Intel DSA acceleration are Table 7.

Table7. Test Steps for TestPMD with Intel® DSA Acceleration

Item

Description

Test Configuration

Test tool: IxNetwork 9.00.1915.16

Virtqueue size: 1024, the max size QEMU support
Huge page size: 1IGB

VirtlO Mergeable: On

Virtqueue Type: Split Virtqueue

Forward Mode: TestPMD mac forward

Vhost: 1queue Tlogic core

Virtio: 1 queue 1logic core

Totally 2 logic cores from 2 physical cores are used.

Flow Configuration

Ether()/IP()/TCP(

Test Step

1. Bind one E810-C port to vfio-pci.
2. Mount1GB hugepage for the host TestPMD and VM.

mkdir /dev/hugepages

mount -t hugetlbfs -o pagesize=1G nodev /dev/hugepages

Intel Confidential - NDA Required 14

Technology Guide | Intel® Data Streaming Accelerator - Accelerating DPDK Vhost via Intel® DSA Technology Guide

mkdir /mnt/huge

mount -t hugetlbfs -o pagesize=1G nodev /mnt/huge

Bind one Intel DSA instance to the idxd driver, then create two Dedicated WQs.
accel-config disable-device dsaO

accel-config config-engine dsa0O/engine0.0 --group-id=0

accel-config config-engine dsaO/engine0.1 --group-id=0

accel-config config-engine dsa0O/engine0.2 --group-id=0

accel-config config-engine dsaO/engine0.3 --group-id=0

accel-config config-wq dsaO/wq0.0 --group-id=0 --mode=dedicated --priority=10 --wqg-size=64
--type=user --name=dpdk_vhost

accel-config config-wq dsaO/wq0.1 --group-id=0 --mode=dedicated --priority=10 --wg-size=64
--type=user --name=dpdk_vhost

accel-config enable-device dsaO

accel-config enable-wq dsaO/wq0.0

accel-config enable-wq dsaO/wqO.1

Launch the host TestPMD and run it in the macfwd mode.

chrt-f 95 ./build/app/dpdk-testpmd -n 8 -1 9-10 --file-prefix=dpdk_vhost --huge-
dir=/dev/hugepages --socket-mem 8192 --vdev 'net_vhost,iface=./vhost-
net,queues=1,dmas=[txq0@wq0.0;rxq0@wq0.1]' --iova=va -- -i --nb-cores=1--txq=1--rxq=1--
txd=2048 --rxd=2048

testpmd>set fwd mac
testpmd>start
Launch QEMU.

taskset -c 11,12,13 /usr/local/gemu-7.0.0/bin/gemu-system-x86_64 -name us-vhost-vm1-cpu
host -enable-kvm -m 8192 -object memory-backend-file,id=mem,size=8192M,mem-
path=/mnt/huge,share=on -numa node,memdev=mem -mem-prealloc -smp cores=2,sockets=1
-drive file=/home/osimg/ubuntu22-04.img -chardev socket,id=char0,path=./vhost-net -
monitor unix:/tmp/vm2_monitor.sock,server,nowait -device e1000,netdev=ntts] -netdev
user,id=ntts],hostfwd=tcp:127.0.0.1:6002-:22 -netdev type=vhost-
user,id=mynetl,chardev=charO,vhostforce -device virtio-net-
pci,mac=52:54:00:00:00:01,netdev=mynetl,mrg_rxbuf=on,rx_queue_size=1024,tx_queue_siz
e=1024,csum=off,guest_csum=off host_tso4=off,guest_tsod=off,guest_ecn=off -vnc:10 --
monitor stdio

Use QEMU monitor to bind vCPUs with physical processors on host machine.

gemu monitor: info cpus #check pid

taskset-cp 12 xxx #xxxis the pid number

taskset -cp 13 xxx

Enter the VM and bind the VirtlO port to vfio-pci.

modprobe vfio-pci

echo 1> /sys/module/vfio/parameters/enable_unsafe_noiommu_mode

Launch TestPMD in the VM and run it in the macfwd mode.

Jbuild/app/dpdk-testpmd -c Ox3 -n 8 -- -i --nb-cores=1--txq=1--rxq=1--txd=2048 --rxd=2048
testpmd>set fwd mac

testpmd>start

Intel Confidential - NDA Required 15

Technology Guide | Intel® Data Streaming Accelerator - Accelerating DPDK Vhost via Intel® DSA Technology Guide

Test results for TestPMD with and without Intel DSA acceleration are in Table 8.

Table8. TestResults for TestPMD with and without Intel® DSA Acceleration

TestPMD without Intel DSA Acceleration TestPMD with Intel DSA Acceleration (Million
(Million Packets per Second) Packets per Second)

64 7.19 4.59

128 7.02 4.64

256 6.44 4.65

512 4.08 4.64

1024 2.67 4.63

1280 2.31 4.62

1518 2.04 4.67

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies may require enabled hardware, software or service activation.
Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

1222/DN/WIT/PDF 758358-001US

Intel Confidential - NDA Required 16

http://www.intel.com/PerformanceIndex

	1 Introduction
	1.1 Terminology
	1.2 Reference Documentation

	2 Overview
	2.1 Data Plane Development Kit (DPDK) Vhost
	2.2 Intel® Data Streaming Accelerator
	2.3 Motivation

	3 DPDK Vhost with Intel® DSA Acceleration
	3.1 Overview
	3.2 Virtqueue and Intel® DSA
	3.2.1 Virtqueue and Intel® DSA Work Queue Mapping
	3.2.2 Ordering

	3.3 DPDK Vhost Asynchronous APIs
	3.4 Performance Pillars
	3.4.1 Batching
	3.4.2 Packet Size
	3.4.3 Binding Intel® DSA WQs to Cores

	4 Performance Tests
	4.1 Test Methodology
	4.2 Results

	5 Summary
	Appendix A Setup and Results

