
Intel® oneAPI Math Kernel Library
for Linux*
Developer Guide

Intel® oneAPI Math Kernel Library- Linux*

Notices and Disclaimers

2022.2

Contents
Notices and Disclaimers... 6
Getting Help and Support... 7
Introducing the Intel® oneAPI Math Kernel Library.............................. 8
Notational Conventions.. 10
Related Information .. 11

Chapter 1: Getting Started
Shared Library Versioning... 12
CMake Config for oneMKL ... 12
Checking Your Installation .. 13
Setting Environment Variables... 14

Scripts to Set Environment Variables ... 14
Modulefiles to Set Environment Variables ... 15
Automating the Process ... 15
Using the CMake Config File.. 16

Compiler Support .. 16
Using Code Examples... 16
Before You Begin Using the Intel® oneAPI Math Kernel Library 17

Chapter 2: Structure of the Intel® oneAPI Math Kernel Library
Architecture Support.. 19
High-level Directory Structure ... 19
Layered Model Concept .. 20

Chapter 3: Linking Your Application with the Intel® oneAPI Math
Kernel Library

Linking Quick Start .. 22
Using the -qmkl Compiler Option... 22
Using the Single Dynamic Library .. 23
Selecting Libraries to Link with.. 23
Using the Link-line Advisor ... 24
Using the Command-line Link Tool ... 24

Linking Examples .. 26
Linking on IA-32 Architecture Systems... 26
Linking on Intel(R) 64 Architecture Systems 27

Linking in Detail .. 28
Listing Libraries on a Link Line .. 28
Dynamically Selecting the Interface and Threading Layer...................... 29
Linking with Interface Libraries ... 30

Using the ILP64 Interface vs. LP64 Interface 30
Linking with Fortran 95 Interface Libraries.................................. 32

Linking with Threading Libraries .. 33
Linking with Computational Libraries.. 35
Linking with Compiler Run-time Libraries.. 36
Linking with System Libraries.. 36

Building Custom Shared Objects.. 36
Using the Custom Shared Object Builder .. 36
Composing a List of Functions .. 38
Specifying Function Names... 38

Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

2

Distributing Your Custom Shared Object ... 39

Chapter 4: Managing Performance and Memory
Improving Performance with Threading .. 40

OpenMP* Threaded Functions and Problems 40
Functions Threaded with Intel® Threading Building Blocks 42
Avoiding Conflicts in the Execution Environment 43
Techniques to Set the Number of Threads... 44
Setting the Number of Threads Using an OpenMP* Environment

Variable ... 44
Changing the Number of OpenMP* Threads at Run Time....................... 45
Using Additional Threading Control .. 47

oneMKL-specific Environment Variables for OpenMP Threading
Control .. 47

MKL_DYNAMIC ... 48
MKL_DOMAIN_NUM_THREADS.. 49
MKL_NUM_STRIPES .. 50
Setting the Environment Variables for Threading Control 51

Calling oneMKL Functions from Multi-threaded Applications................... 52
Using Intel® Hyper-Threading Technology ... 53
Managing Multi-core Performance.. 54
Managing Performance with Heterogeneous Cores 55

Improving Performance for Small Size Problems ... 56
Using MKL_DIRECT_CALL in C Applications ... 56
Using MKL_DIRECT_CALL in Fortran Applications 57
Limitations of the Direct Call .. 57

Other Tips and Techniques to Improve Performance 58
Coding Techniques .. 58
Improving oneMKL Performance on Specific Processors 59
Operating on Denormals .. 59

Using Memory Functions... 59
Memory Leaks in Intel® oneAPI Math Kernel Library 59
Using High-bandwidth Memory with oneMKL 60
Redefining Memory Functions ... 60

Chapter 5: Language-specific Usage Options
Using Language-Specific Interfaces with Intel® oneAPI Math Kernel Library...... 62

Interface Libraries and Modules... 62
Fortran 95 Interfaces to LAPACK and BLAS ... 64
Compiler-dependent Functions and Fortran 90 Modules 64

Mixed-language Programming with the Intel Math Kernel Library 65
Calling LAPACK, BLAS, and CBLAS Routines from C/C++ Language

Environments ... 65
Using Complex Types in C/C++... 66
Calling BLAS Functions that Return the Complex Values in C/C++ Code.. 67

Chapter 6: Obtaining Numerically Reproducible Results
Getting Started with Conditional Numerical Reproducibility 71
Specifying Code Branches... 72
Reproducibility Conditions... 74
Setting the Environment Variable for Conditional Numerical Reproducibility 75
Code Examples ... 75

Chapter 7: Coding Tips
Example of Data Alignment... 78

Contents

3

Using Predefined Preprocessor Symbols for Intel® MKL Version-Dependent
Compilation .. 79

Chapter 8: Managing Output
Using oneMKL Verbose Mode... 81

Version Information Line .. 82
Call Description Line .. 84

Chapter 9: Working with the Intel® oneAPI Math Kernel Library
Cluster Software

Linking with oneMKL Cluster Software .. 88
Setting the Number of OpenMP* Threads.. 89
Using Shared Libraries ... 90
Setting Environment Variables on a Cluster... 90
Interaction with the Message-passing Interface ... 91
Using a Custom Message-Passing Interface... 91
Examples of Linking for Clusters.. 92

Examples for Linking a C Application.. 92
Examples for Linking a Fortran Application.. 93

Chapter 10: Managing Behavior of the Intel® oneAPI Math Kernel
Library with Environment Variables

Managing Behavior of Function Domains with Environment Variables 95
Setting the Default Mode of Vector Math with an Environment Variable... 95
Managing Performance of the Cluster Fourier Transform Functions 96
Managing Invalid Input Checking in LAPACKE Functions........................ 97

Instruction Set Specific Dispatching on Intel® Architectures 98

Chapter 11: Configuring Your Integrated Development
Environment to Link with Intel® oneAPI Math Kernel Library

Configuring the Eclipse* IDE CDT to Link with Intel® oneAPI Math Kernel
Library ... 100

Chapter 12: Intel® oneAPI Math Kernel Library Benchmarks
Intel Optimized LINPACK Benchmark for Linux*... 101

Contents .. 101
Running the Software .. 102
Known Limitations... 103

Intel® Distribution for LINPACK* Benchmark.. 103
Overview ... 103
Contents .. 104
Building the Intel® Distribution for LINPACK* Benchmark for a

Customized MPI Implementation ... 104
Building the Netlib HPL from Source Code... 105
Configuring Parameters.. 105
Ease-of-use Command-line Parameters .. 106
Running the Intel® Distribution for LINPACK* Benchmark.................... 106
Heterogeneous Support in the Intel® Distribution for LINPACK*

Benchmark... 107
Environment Variables ... 109
Improving Performance of Your Cluster .. 110

Intel® Optimized High Performance Conjugate Gradient Benchmark.............. 110
Overview of the Intel Optimized HPCG ... 110
Versions of the Intel Optimized HPCG... 111

Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

4

Getting Started with Intel Optimized HPCG 112
Choosing Best Configuration and Problem Sizes 112

Appendix A: Appendix A: Intel® oneAPI Math Kernel Library
Language Interfaces Support

Language Interfaces Support, by Function Domain..................................... 114
Include Files ... 115

Appendix B: Support for Third-Party Interfaces
FFTW Interface Support ... 117

Appendix C: Appendix C: Directory Structure In Detail
Detailed Structure of the IA-32 Architecture Directories 118

Static Libraries.. 118
Dynamic Libraries ... 119

Detailed Structure of the Intel(R) 64 Architecture Directories 121
Static Libraries.. 121
Dynamic Libraries ... 124

Contents

5

Notices and Disclaimers
Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

The products described may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

Java is a registered trademark of Oracle and/or its affiliates.

 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

6

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Getting Help and Support
Intel provides a support web site that contains a rich repository of self help information, including getting
started tips, known product issues, product errata, license information, user forums, and more. Visit the
Intel® oneAPI Math Kernel Library support website athttp://www.intel.com/software/products/support/.

Getting Help and Support

7

http://www.intel.com/software/products/support/

Introducing the Intel® oneAPI Math
Kernel Library
Intel® oneAPI Math Kernel Library (oneMKL) is a computing math library of highly optimized, extensively
threaded routines for applications that require maximum performance. The library provides Fortran and C
programming language interfaces. oneMKL C language interfaces can be called from applications written in
either C or C++, as well as in any other language that can reference a C interface.

oneMKL provides comprehensive functionality support in these major areas of computation:

• BLAS (level 1, 2, and 3) and LAPACK linear algebra routines, offering vector, vector-matrix, and matrix-
matrix operations.

• ScaLAPACK distributed processing linear algebra routines, as well as the Basic Linear Algebra
Communications Subprograms (BLACS) and the Parallel Basic Linear Algebra Subprograms (PBLAS).

• oneMKL PARDISO (a direct sparse solver based on Parallel Direct Sparse Solver PARDISO*), an iterative
sparse solver, and supporting sparse BLAS (level 1, 2, and 3) routines for solving sparse systems of
equations, as well as a distributed version of oneMKL PARDISO solver provided for use on clusters.

• Fast Fourier transform (FFT) functions in one, two, or three dimensions with support for mixed radices
(not limited to sizes that are powers of 2), as well as distributed versions of these functions provided for
use on clusters.

• Vector Mathematics (VM) routines for optimized mathematical operations on vectors.
• Vector Statistics (VS) routines, which offer high-performance vectorized random number generators

(RNG) for several probability distributions, convolution and correlation routines, and summary statistics
functions.

• Data Fitting Library, which provides capabilities for spline-based approximation of functions, derivatives
and integrals of functions, and search.

• Extended Eigensolver, a shared memory programming (SMP) version of an eigensolver based on the Feast
Eigenvalue Solver.

For details see the Intel® oneAPI Math Kernel Library Developer Reference.

Intel® oneAPI Math Kernel Library (oneMKL) is optimized for performance on Intel processors. oneMKL also
runs on non-Intel x86-compatible processors.

For Windows* and Linux* systems based on Intel® 64 Architecture, oneMKL also includes support for the
Intel® Many Integrated Core Architecture (Intel® MIC Architecture) and provides libraries to help you port
your applications to Intel MIC Architecture.

NOTE
oneMKL provides limited input validation to minimize the performance overheads. It is your
responsibility when using oneMKL to ensure that input data has the required format and does not
contain invalid characters. These can cause unexpected behavior of the library. Examples of the inputs
that may result in unexpected behavior:

• Not-a-number (NaN) and other special floating point values
• Large inputs may lead to accumulator overflow

As the oneMKL API accepts raw pointers, it is your application's responsibility to validate the buffer
sizes before passing them to the library. The library requires subroutine and function parameters to be
valid before being passed. While some oneMKL routines do limited checking of parameter errors, your
application should check for NULL pointers, for example.

 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

8

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Introducing the Intel® oneAPI Math Kernel Library

9

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Notational Conventions
The following term is used in reference to the operating system.

Linux* This term refers to information that is valid on all supported Linux* operating
systems.

The following notations are used to refer to Intel® oneAPI Math Kernel Library directories.

<parent
directory>

The installation directory that includes Intel® oneAPI Math Kernel Library directory;
for example, the directory for Intel® Parallel Studio XE Composer Edition.

<mkl directory> The main directory where Intel® oneAPI Math Kernel Library is installed:

<mkl directory>=<parent directory>/mkl.

Replace this placeholder with the specific pathname in the configuring, linking, and
building instructions.

The following font conventions are used in this document.

Italic Italic is used for emphasis and also indicates document names in body text, for
example:
see Intel® oneAPI Math Kernel Library Developer Reference.

Monospace
lowercase

Indicates filenames, directory names, and pathnames, for example: ./benchmarks/
linpack

Monospace
lowercase mixed
with uppercase

Indicates:
• Commands and command-line options, for example,

icc myprog.c -L$MKLPATH -I$MKLINCLUDE -lmkl -liomp5 -lpthread

• Filenames, directory names, and pathnames, for example,

• C/C++ code fragments, for example,
a = new double [SIZE*SIZE];

UPPERCASE
MONOSPACE

Indicates system variables, for example, $MKLPATH.

Monospace
italic

Indicates a parameter in discussions, for example, lda.

When enclosed in angle brackets, indicates a placeholder for an identifier, an
expression, a string, a symbol, or a value, for example, <mkl directory>.
Substitute one of these items for the placeholder.

[items] Square brackets indicate that the items enclosed in brackets are optional.

{ item | item } Braces indicate that only one of the items listed between braces should be selected.
A vertical bar (|) separates the items.

 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

10

Related Information
To reference how to use the library in your application, use this guide in conjunction with the following
documents:

• The Intel® oneAPI Math Kernel Library Developer Reference, which provides reference information on
routine functionalities, parameter descriptions, interfaces, calling syntaxes, and return values.

• The Intel® oneAPI Math Kernel Library forLinux* OS Release Notes.

Related Information

11

Getting Started 1
Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Shared Library Versioning
Intel® oneAPI Math Kernel Library (oneMKL) adds shared library versioning for all operating systems and
platforms, as opposed to not using any library versioning up to Intel® Math Kernel Library (Intel® MKL) 2020
Update 4.

This new feature:

• Allows applications to work correctly in an environment with multiple oneMKL and/or Intel® MKL packages
installed

• Communicates clearly when incompatible changes are made, and an application should be rebuilt
• Allows you to link against a specific version of shared libraries

The starting version for shared libraries is “1” and any change that break backward compatibility will result in
an increment to this number. Intel expects to make this change as seldom as possible and inform customers
about it at least 24 months in advance.

The product version “2021.1” is now decoupled from the library version, meaning that “2021.2” can ship with
shared libraries versioned as “1”. This means that the libraries shipped in “2021.2” are backward compatible
with libraries shipped in “2021.1”.

Changes to the link-line:

• No changes are required to the link-line because symbolic links are provided with the old names, which
point to the new library that contains the version information on Linux* and MacOS*. The symbolic link
name is also the soname and install_name of that library on Linux and MacOS, respectively.

• For example, libmkl_core.so -> libmkl_core.<version>.so
• For example, libmkl_core.dylib -> libmkl_core.<version>.dylib
• Using -lmkl_core will still work as before, ensuring backward compatibility with Intel® MKL 2020 line-

up (including Intel® Parallel Studio and Intel® System Studio distributions).
• On Windows*, import libraries used in the link-line do not contain any version information, as before, but

point to the new DLL, which contains the version information.

• For example, mkl_core_dll.lib has the same name as before and requires no change to the link-
line. The linker, however, resolves this to the new mkl_core.<version>.dll instead of the older
mkl_core.dll.

CMake Config for oneMKL
If you want to integrate oneMKL into your CMake projects, starting with the Intel® oneAPI Math Kernel
Library (oneMKL) 2021.3 release, MKLConfig.cmake is provided as part of the package and installation.
MKLConfig.cmake supports all oneMKL configurations, compilers, and runtimes, as the oneMKL product
itself. Help/usage is provided in the top section of MKLConfig.cmake.

 1 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

12

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Example

my_test/
 |_ build/ <-- Out-of-source build directory
 |_ CMakeLists.txt <-- User side project's CMakeLists.txt
 |_ app.c <-- Source file that uses oneMKL API

CMakeLists.txt

cmake_minimum_required(VERSION 3.13)
enable_testing()
project(oneMKL_Example LANGUAGES C)
find_package(MKL CONFIG REQUIRED)
#message(STATUS "${MKL_IMPORTED_TARGETS}") #Provides available list of targets based on input
add_executable(myapp app.c)

target_compile_options(myapp PUBLIC $<TARGET_PROPERTY:MKL::MKL,INTERFACE_COMPILE_OPTIONS>)
target_include_directories(myapp PUBLIC
$<TARGET_PROPERTY:MKL::MKL,INTERFACE_INCLUDE_DIRECTORIES>)
target_link_libraries(myapp PUBLIC $<LINK_ONLY:MKL::MKL>)

add_test(NAME mytest COMMAND myapp)
if(MKL_ENV)
 set_tests_properties(mytest PROPERTIES ENVIRONMENT "${MKL_ENV}")
endif()

Command line

Source the compiler and runtime beforehand
build$ cmake .. -DCMAKE_C_COMPILER=icc
build$ cmake --build . && ctest
If MKLConfig.cmake is not located by CMake automatically, its path can be manually specified
by MKL_DIR:
build$ cmake .. -DCMAKE_C_COMPILER=icc -DMKL_DIR=<Full path to MKLConfig.cmake>

NOTE
When the Ninja build system is in use, Ninja 1.10.2+ is required for Fortran support.

Checking Your Installation
After installing the , verify that the library is properly installed and configured:

1. Intel® oneAPI Math Kernel Library installs in the<parent directory> directory.

Check that the subdirectory of <parent directory> referred to as <mkl directory> was created.
2. If you want to keep multiple versions of Intel® oneAPI Math Kernel Library installed on your system,

update your build scripts to point to the correct Intel® oneAPI Math Kernel Library version.
3. Check that the following files appear in the <mkl directory>/env directory:

vars.sh
Use these files to assign Intel® oneAPI Math Kernel Library-specific values to several environment
variables, as explained inSetting Environment Variables.

4. To understand how the Intel® oneAPI Math Kernel Library directories are structured, seeStructure of the
Intel® Math Kernel Library.

5. To make sure that Intel® oneAPI Math Kernel Library runs on your system, launch an Intel® oneAPI Math
Kernel Library example, as explained inUsing Code Examples.

See Also
Notational Conventions

Getting Started 1

13

Setting Environment Variables

See Also
Setting the Number of Threads Using an OpenMP* Environment Variable

Scripts to Set Environment Variables
When the installation of Intel® oneAPI Math Kernel Library for Linux* is complete, set environment variables
using oneAPI setvars.sh. The script will source the INCLUDE, MKLROOT, LD_LIBRARY_PATH, LIBRARY_PATH,
CPATH, NLSPATH, and PKG_CONFIG_PATH.

The scripts accept the oneMKL-specific parameters, explained in the following table:

Setting Specified Required
(Yes/No)

Possible Values Comment

Architecture Yes,
when applicable

intel64

Use of Intel® oneAPI
Math Kernel Library
Fortran modules
precompiled with the
Intel®Fortran
compiler

No mod Supply this
parameter only if you
are using this
compiler.

Programming
interface (LP64 or
ILP64)

No lp64, default

ilp64

For example:

• The command setvars.sh ia32
sets the environment for Intel® oneAPI Math Kernel Library to use the Intel 32 architecture.

• The command setvars.sh intel64 mod ilp64
sets the environment for Intel® oneAPI Math Kernel Library to use the Intel 64 architecture, ILP64
programming interface, and Fotran modules.

• The command setvars.sh intel64 mod
sets the environment for Intel® oneAPI Math Kernel Library to use the Intel 64 architecture, LP64
interface, and Fotran modules.

NOTE
Supply the parameter specifying the architecture first, if it is needed. Values of the other two
parameters can be listed in any order.

See Also
High-level Directory Structure
Intel® oneAPI Math Kernel Library Interface Libraries and Modules
Fortran 95 Interfaces to LAPACK and BLAS
Setting the Number of Threads Using an OpenMP* Environment Variable

 1 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

14

https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-intel-oneapi-base-linux/top/before-you-begin.html

Modulefiles to Set Environment Variables
As an alternative, you can use modulefiles to set the environment on Linux*. When the installation of Intel®
oneAPI Math Kernel Library for Linux* is complete, you need to set some environment variables. First, setup
modulefiles and directories in <oneapi_root>:

$./modulefiles-setup.sh
$module use modulefiles

Load modulefile:
Architecture Command

For Intel® oneAPI Math Kernel Library IA-32
architecture

$module load mkl32/<version>

For Intel® oneAPI Math Kernel Library IA-64
architecture

$module load mkl/<version>

NOTE All existing variables will retain their original values and new values will be prepended to the
following variables: LD_LIBRARY_PATH, LIBRARY_PATH, CPATH, PKG_CONFIG_PATH, NLSPATH,
TBBROOT . Since MKLROOT should contain only one path, it will be set to the new value and any old
value of this variable will be lost.

Unloading the module resets the modified environment variables to their original values and new variables
that were created will be undefined. MKLROOT will be undefined on module unload.

Architecture Command

For Intel® oneAPI Math Kernel Library IA-32
architecture

$module unload mkl32/<version>

For Intel® oneAPI Math Kernel Library IA-64
architecture

$module unload mkl/<version>

Automating the Process of Setting Environment Variables
To automate setting of the INCLUDE, MKLROOT, LD_LIBRARY_PATH, MANPATH, LIBRARY_PATH, CPATH,
and NLSPATH environment variables, add vars.*sh to your shell profile so that each time you login, the
script automatically executes and sets the paths to the appropriate Intel® oneAPI Math Kernel Library
directories. To do this, with a local user account, edit the following files by adding the appropriate script to
the path manipulation section right before exporting variables:

Shell Files Commands

bash ~/.bash_profile,
~/.bash_login
or ~/.profile

setting up oneMKL environment for bash
. <absolute_path_to_installed_oneMKL>/bin
/vars.sh [<arch>] [mod] [lp64|ilp64]

sh ~/.profile # setting up oneMKL environment for sh
. <absolute_path_to_installed_oneMKL>/bin
/vars.sh [<arch>] [mod] [lp64|ilp64]

csh ~/.login # setting up oneMKL environment for sh
. <absolute_path_to_installed_oneMKL>/bin
/vars.csh [<arch>] [mod] [lp64|ilp64]

In the above commands, the architecture parameter <arch> is one of {ia32|intel64|mic}.

Getting Started 1

15

If you have super user permissions, add the same commands to a general-systemfile in/etc/profile(for
bash and sh) or in/etc/csh.login(for csh).

Caution
Before uninstalling Intel® oneAPI Math Kernel Library, remove the above commands from all profile
files where the script execution was added. Otherwise you may experience problems logging in.

See Also
Scripts to Set Environment Variables

Using the CMake Config File
Intel® oneAPI Math Kernel Library (oneMKL) ships with a CMake config file for easy integration of oneMKL into
user-applications that already use CMake. This is a Config-mode file that you can use in find_package()
macros. For different package modes, please refer to find_package CMake documentation.

MKLConfig.cmake is in <MKLROOT>/lib/cmake/mkl. If CMake cannot find it by default, you can specify its
path as -DMKL_DIR=<MKLROOT>/lib/cmake/mkl in the cmake configure command. The top of the file
contains an up-to-date usage comment-block for reference and you can refer to <MKLROOT>/examples/
<type>/CMakeLists.txt for more details about how to consume MKLConfig.cmake in CMake projects.

Compiler Support
Intel® oneAPI Math Kernel Library supports compilers identified in theRelease Notes. However, the library has
been successfully used with other compilers as well.

When building Intel® oneAPI Math Kernel Library code examples for either C or Fortran, you can select a
compiler: Intel®, GNU*, or PGI*.

Intel® oneAPI Math Kernel Library provides a set of include files to simplify program development by
specifying enumerated values and prototypes for the respective functions. Calling Intel® oneAPI Math Kernel
Library functions from your application without an appropriate include file may lead to incorrect behavior of
the functions.

See Also
Intel® oneAPI Math Kernel Library Include Files

Using Code Examples
The Intel® oneAPI Math Kernel Library package includes code examples, located in theexamples subdirectory
of the installation directory. Use the examples to determine:

• Whether Intel® oneAPI Math Kernel Library is working on your system
• How you should call the library
• How to link the library

If an Intel® oneAPI Math Kernel Library component that you selected during installation includes code
examples, these examples are provided in a separate archive. Extract the examples from the archives before
use.

For each component, the examples are grouped in subdirectories mainly by Intel® oneAPI Math Kernel Library
function domains and programming languages. For instance, theblas subdirectory (extracted from the
examples_core archive) contains a makefile to build the BLAS examples and the vmlc subdirectory contains
the makefile to build the C examples for Vector Mathematics functions. Source code for the examples is in
the next-level sources subdirectory.

 1 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

16

https://cmake.org/cmake/help/latest/command/find_package.html

See Also
High-level Directory Structure

What You Need to Know Before You Begin Using the Intel®
oneAPI Math Kernel Library
Target platform Identify the architecture of your target machine:

• IA-32 or compatible
• Intel® 64 or compatible

Reason:Because Intel® oneAPI Math Kernel Library libraries are located in
directories corresponding to your particular architecture (seeArchitecture Support),
you should provide proper paths on your link lines (see Linking Examples).To
configure your development environment for the use with Intel® oneAPI Math Kernel
Library, set your environment variables using the script corresponding to your
architecture (see Scripts to Set Environment Variables Setting Environment Variables
for details).

Mathematical
problem

Identify all Intel® oneAPI Math Kernel Library function domains that you require:
• BLAS
• Sparse BLAS
• LAPACK
• PBLAS
• ScaLAPACK
• Sparse Solver routines
• Parallel Direct Sparse Solvers for Clusters
• Vector Mathematics functions (VM)
• Vector Statistics functions (VS)
• Fourier Transform functions (FFT)
• Cluster FFT
• Trigonometric Transform routines
• Poisson, Laplace, and Helmholtz Solver routines
• Optimization (Trust-Region) Solver routines
• Data Fitting Functions
• Extended Eigensolver Functions

Reason: The function domain you intend to use narrows the search in the Intel®
oneAPI Math Kernel Library Developer Referencefor specific routines you need.
Additionally, if you are using the Intel® oneAPI Math Kernel Library cluster software,
your link line is function-domain specific (seeWorking with the Intel® oneAPI Math
Kernel Library Cluster Software). Coding tips may also depend on the function
domain (see Other Tips and Techniques to Improve Performance).

Programming
language

Intel® oneAPI Math Kernel Library provides support for both Fortran and C/C++
programming. Identify the language interfaces that your function domains support
(see Appendix A: Intel® oneAPI Math Kernel Library Language Interfaces Support).

Reason:Intel® oneAPI Math Kernel Library provides language-specific include files
for each function domain to simplify program development (seeLanguage Interfaces
Support_ by Function Domain).

For a list of language-specific interface libraries and modules and an example how to
generate them, see also Using Language-Specific Interfaces with Intel® oneAPI Math
Kernel Library.

Range of integer
data

If your system is based on the Intel 64 architecture, identify whether your
application performs calculations with large data arrays (of more than 231-1
elements).

Getting Started 1

17

Reason: To operate on large data arrays, you need to select the ILP64 interface,
where integers are 64-bit; otherwise, use the default, LP64, interface, where
integers are 32-bit (see Using the ILP64 Interface vs).

Threading model Identify whether and how your application is threaded:
• Threaded with the Intel compiler
• Threaded with a third-party compiler
• Not threaded

Reason:The compiler you use to thread your application determines which
threading library you should link with your application. For applications threaded
with a third-party compiler you may need to use Intel® oneAPI Math Kernel Library in
the sequential mode (for more information, seeLinking with Threading Libraries).

Number of threads If your application uses an OpenMP* threading run-time library, determine the
number of threads you want Intel® oneAPI Math Kernel Library to use.

Reason:By default, the OpenMP* run-time library sets the number of threads for
Intel® oneAPI Math Kernel Library. If you need a different number, you have to set it
yourself using one of the available mechanisms. For more information, seeImproving
Performance with Threading.

Linking model Decide which linking model is appropriate for linking your application with Intel®
oneAPI Math Kernel Library libraries:
• Static
• Dynamic

Reason: The link line syntax and libraries for static and dynamic linking are
different. For the list of link libraries for static and dynamic models, linking
examples, and other relevant topics, like how to save disk space by creating a
custom dynamic library, see Linking Your Application with the Intel® oneAPI Math
Kernel Library.

MPI used Decide what MPI you will use with the Intel® oneAPI Math Kernel Library cluster
software. You are strongly encouraged to use the latest available version of Intel®
MPI.

Reason: To link your application with ScaLAPACK and/or Cluster FFT, the libraries
corresponding to your particular MPI should be listed on the link line (see Working
with the Intel® oneAPI Math Kernel Library Cluster Software).

 1 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

18

Structure of the Intel® oneAPI
Math Kernel Library 2

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Architecture Support
forLinux* provides architecture-specific implementations for supported platforms. The following table lists the
supported architectures and directories where each architecture-specific implementation is located.

Architecture Location

IA-32 or compatible <mkl directory>/lib/ia32

Intel® 64 or compatible <mkl directory>/lib/intel64

See Also
High-level Directory Structure
Notational Conventions
Detailed Structure of the IA-32 Architecture Directory lib/ia32
Detailed Structure of the Intel® 64 Architecture Directory lib/intel64

High-level Directory Structure
Directory Contents

<mkl directory> Installation directory of the

Subdirectories of<mkl directory>

env Scripts and modulefiles to set environmental variables in the user shell

benchmarks/linpack Shared-memory (SMP) version of the LINPACK benchmark

benchmarks/
mp_linpack

Message-passing interface (MPI) version of the LINPACK benchmark

benchmarks/hpcg Intel® High Performance Conjugate Gradient Benchmark (Intel® HPCG)

examples Source and data files for Intel® oneAPI Math Kernel Library examples.
Provided in archives corresponding to Intel® oneAPI Math Kernel Library
components selected during installation.

include Include files for the library routines and examples

include/ia32 Fortran 95 .mod files for the IA-32 architecture and Intel® Fortran compiler

include/intel64/lp64 Fortran 95 .mod files for the Intel® 64 architecture, Intel Fortran compiler,
and LP64 interface

Structure of the Intel® oneAPI Math Kernel Library 2

19

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Directory Contents

include/intel64/
ilp64

Fortran 95 .mod files for the Intel® 64 architecture, Intel Fortran compiler,
and ILP64 interface

include/fftw Header files for the FFTW2 and FFTW3 interfaces

include/oneapi Header files for DPC++ interfaces.

interfaces/blas95 Fortran 95 interfaces to BLAS and a makefile to build the library

interfaces/
fftw2x_cdft

MPI FFTW 2.x interfaces to the Intel® oneAPI Math Kernel Library Cluster FFT

interfaces/
fftw3x_cdft

MPI FFTW 3.x interfaces to the Intel® oneAPI Math Kernel Library Cluster FFT

interfaces/fftw2xc FFTW 2.x interfaces to the Intel® oneAPI Math Kernel Library FFT (C interface)

interfaces/fftw2xf FFTW 2.x interfaces to the Intel® oneAPI Math Kernel Library FFT (Fortran
interface)

interfaces/fftw3xc FFTW 3.x interfaces to the Intel® oneAPI Math Kernel Library FFT (C interface)

interfaces/fftw3xf FFTW 3.x interfaces to the Intel® oneAPI Math Kernel Library FFT (Fortran
interface)

interfaces/lapack95 Fortran 95 interfaces to LAPACK and a makefile to build the library

interfaces/mklmpi Tool to create a custom MKLMPI wrapper library (BLACS) for use in MKL MPI-
based applications like Cluster Sparse Solver and Scalapack.

lib/ia32 Static libraries and shared objects for the IA-32 architecture

lib/intel64 Static libraries and shared objects for the Intel® 64 architecture

tools Tools and plug-ins

tools/builder Tools for creating custom dynamically linkable libraries

See Also
Notational Conventions
Using Code Examples

Layered Model Concept
Intel® oneAPI Math Kernel Library is structured to support multiple compilers and interfaces, both serial and
multi-threaded modes, different implementations of threading run-time libraries, and a wide range of
processors. Conceptually Intel® oneAPI Math Kernel Library can be divided into distinct parts to support
different interfaces, threading models, and core computations:

1. Interface Layer
2. Threading Layer
3. Computational Layer

You can combine Intel® oneAPI Math Kernel Library libraries to meet your needs by linking with one library in
each part layer-by-layer.

To support threading with different compilers, you also need to use an appropriate threading run-time library
(RTL). These libraries are provided by compilers and are not included in Intel® oneAPI Math Kernel Library.

The following table provides more details of each layer.

 2 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

20

Layer Description

Interface Layer This layer matches compiled code of your application with the threading and/or
computational parts of the library. This layer provides:
• LP64 and ILP64 interfaces.
• Compatibility with compilers that return function values differently.

Threading Layer This layer:
• Provides a way to link threaded Intel® oneAPI Math Kernel Library with supported

compilers.
• Enables you to link with a threaded or sequential mode of the library.

This layer is compiled for different environments (threaded or sequential) and
compilers (from Intel, GNU*,).

Computational
Layer

This layer accommodates multiple architectures through identification of architecture
features and chooses the appropriate binary code at run time.

See Also
Using the ILP64 Interface vs. LP64 Interface
Linking Your Application with the Intel® oneAPI Math Kernel Library
Linking with Threading Libraries

Structure of the Intel® oneAPI Math Kernel Library 2

21

Linking Your Application with
the Intel® oneAPI Math Kernel
Library 3

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Linking Quick Start
provides several options for quick linking of your application, which depend on the way you link:

Using the Intel® Parallel Studio XE Composer Edition compiler see Using the -mkl Compiler Option.

Explicit dynamic linking see Using the Single Dynamic Library for
how to simplify your link line.

Explicitly listing libraries on your link line see Selecting Libraries to Link with for a
summary of the libraries.

Using pkg-config tool to get compilation and link lines see Using pkg-config metadata filesfor a
summary on how to use Intel® oneAPI
Math Kernel Library pkg-config metadata
files.

Using an interactive interface see Using the Link-line Advisor to
determine libraries and options to specify
on your link or compilation line.

Using an internally provided tool see Using the Command-line Link Tool to
determine libraries, options, and
environment variables or even compile and
build your application.

Using the -qmkl Compiler Option
The Intel®Parallel Studio XE Composer Edition compiler supports the following variants of the -qmkl compiler
option:

-qmkl or
-qmkl=parallel

to link with a certain Intel® oneAPI Math Kernel Library threading
layer depending on the threading option provided:

• For -qopenmp the OpenMP threading layer for Intel compilers
• For -tbb the Intel® Threading Building Blocks (Intel® TBB)

threading layer

-qmkl=sequential to link with sequential version of Intel® oneAPI Math Kernel
Library.

-qmkl=cluster to link with Intel® oneAPI Math Kernel Library cluster
components (sequential) that use Intel MPI.

 3 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

22

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex
https://software.intel.com/content/www/us/en/develop/articles/intel-math-kernel-library-intel-mkl-and-pkg-config-tool.html

NOTE
The -qopenmp option has higher priority than -tbbin choosing the Intel® oneAPI Math Kernel Library
threading layer for linking.

For more information on the -qmkl compiler option, see the Intel Compiler User and Reference Guides.

On Intel® 64 architecture systems, for each variant of the -qmkl option, the compiler links your application
using the LP64 interface.

If you specify any variant of the -qmkl compiler option, the compiler automatically includes the Intel® oneAPI
Math Kernel Library libraries. In cases not covered by the option, use the Link-line Advisor or see Linking in
Detail.

See Also
Listing Libraries on a Link Line
Intel® oneAPI DPC++/C++ Compiler Developer Guide and Reference

Intel® Fortran Compiler Classic and Intel® Fortran Compiler Developer Guide and Reference

Using the ILP64 Interface vs. LP64 Interface
Using the Link-line Advisor
Intel® Software Documentation Library for Intel® compiler documentation
 for Intel® compiler documentation

Using the Single Dynamic Library
You can simplify your link line through the use of the Intel® oneAPI Math Kernel Library Single Dynamic
Library (SDL).

To use SDL, place libmkl_rt.so on your link line. For example:

icс application.c -lmkl_rt

SDL enables you to select the interface and threading library for Intel® oneAPI Math Kernel Library at run
time. By default, linking with SDL provides:

• Intel LP64 interface on systems based on the Intel® 64 architecture
• Intel interface on systems based on the IA-32 architecture
• Intel threading

To use other interfaces or change threading preferences, including use of the sequential version of Intel®
oneAPI Math Kernel Library, you need to specify your choices using functions or environment variables as
explained in sectionDynamically Selecting the Interface and Threading Layer.

NOTEIntel® oneAPI Math Kernel Library SDL (mkl_rt) does not support DPC++ APIs. If your
application requires support of Intel® oneAPI Math Kernel Library DPC++ APIs, refer to Intel® oneAPI
Math Kernel Library Link-line Advisor to configure your link command.

Selecting Libraries to Link with
To link with Intel® oneAPI Math Kernel Library:

• Choose one library from the Interface layer and one library from the Threading layer
• Add the only library from the Computational layer and run-time libraries (RTL)

The following table lists Intel® oneAPI Math Kernel Library libraries to link with your application.

Linking Your Application with the Intel® oneAPI Math Kernel Library 3

23

https://software.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/compiler-reference/compiler-options/compiler-option-details/advanced-optimization-options/qmkl-qmkl.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/compiler-options/advanced-optimization-options/qmkl-qmkl.html
https://software.intel.com/content/www/us/en/develop/documentation.html
https://software.intel.com/content/www/us/en/develop/articles/intel-mkl-link-line-advisor.html
https://software.intel.com/content/www/us/en/develop/articles/intel-mkl-link-line-advisor.html

Interface layer Threading layer Computational
layer

RTL

Intel® 64
architecture,
static linking

libmkl_intel_
lp64.a

libmkl_intel_
thread.a

libmkl_core.a libiomp5.so

Intel® 64
architecture,
dynamic linking

libmkl_intel_
lp64.so

libmkl_intel_
thread.so

libmkl_core.
so

libiomp5.so

Intel® Many
Integrated Core
Architecture
(Intel® MIC
Architecture),
static linking

libmkl_intel_
lp64.a

libmkl_intel_
thread.a

libmkl_core.a libiomp5.so

Intel MIC
Architecture,
dynamic linking

libmkl_intel_
lp64.so

libmkl_intel_
thread.so

libmkl_core.so libiomp5.so

The Single Dynamic Library (SDL) automatically links interface, threading, and computational libraries and
thus simplifies linking. The following table lists Intel® oneAPI Math Kernel Library libraries for dynamic linking
using SDL. SeeDynamically Selecting the Interface and Threading Layer for how to set the interface and
threading layers at run time through function calls or environment settings.

SDL RTL

Intel® 64 architecture libmkl_rt.so libiomp5.so††

††Use the Link-line Advisor to check whether you need to explicitly link the libiomp5.so RTL.

For exceptions and alternatives to the libraries listed above, see Linking in Detail.

See Also
Layered Model Concept
Using the Link-line Advisor
Using the -mkl Compiler Option
Working with the Cluster Software

Using the Link-line Advisor
Use the Intel® oneAPI Math Kernel Library Link-line Advisor to determine the libraries and options to specify
on your link or compilation line.

The latest version of the tool is available at Link Line Advisor for Intel® oneAPI Math Kernel Library. The tool
is also available in the documentation directory of the product.

The Advisor requests information about your system and on how you intend to use Intel® oneAPI Math Kernel
Library (link dynamically or statically, use threaded or sequential mode, and so on). The tool automatically
generates the appropriate link line for your application.

See Also
High-level Directory Structure

Using the Command-line Link Tool
Use the command-line Link tool provided by Intel® oneAPI Math Kernel Library to simplify building your
application with Intel® oneAPI Math Kernel Library.

 3 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

24

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html

The tool not only provides the options, libraries, and environment variables to use, but also performs
compilation and building of your application.

The tool mkl_link_tool is installed in the <mkl_directory>/bin/<arch> directory, and supports the
modes described in the following table.

Intel oneMKL Command-line Link Tool Modes
Mode Description Usage Example

Inquiry The tool returns the compiler
options, libraries, or
environment variables
necessary to build and
execute the application.

Get Intel® oneAPI Math
Kernel Library libraries

mkl_link_tool -libs
[Intel oneMKL Link
Tool options]

Get compilation options mkl_link_tool -opts
[Intel oneMKL Link
Tool options]

Get environment
variables for application
executable

mkl_link_tool -env
[Intel oneMKL Link
Tool options]

Compilation The Intel® oneAPI Math
Kernel Library Link Tool builds
the application.

— mkl_link_tool
[options]
<compiler>
[options2] file1
[file2 ...]
where:
• options represents

any number of Link
Tool options

• compiler represents
the compiler name:
ifort, icc (icpc, icl),
cl, gcc (g++),
gfortran, pgcc
(pgcp), pgf77 (pgf90,
pgf95, pgfortran),
mpiic, mpiifort, mpic
(mpic++), mpif77
(mpif90, mpif95),
dpcpp

• options2 represents
any number of
compiler options

Interactive Allows you to go through all
possible Intel® oneAPI Math
Kernel Library Link Tool
supported options. The
output provides libraries,
options, or environment
variables as in the inquiry
mode, or a built application
as in the compilation mode
(depending on what you
specify).

— mkl_link_tool -
interactive

Use the -help option for full help with the Intel® oneAPI Math Kernel Library Link Tool and to show the
defaults for the current system.

Linking Your Application with the Intel® oneAPI Math Kernel Library 3

25

Linking Examples

See Also
Using the Link-line Advisor
Examples for Linking with ScaLAPACK and Cluster FFT

Linking on IA-32 Architecture Systems
The following examples illustrate linking that uses Intel(R) compilers.

Most examples use the .f Fortran source file. C/C++ users should instead specify a .cpp (C++) or .c (C)
file and replace ifort with icc.

In these examples,
MKLPATH=$MKLROOT/lib/ia32_lin,
MKLINCLUDE=$MKLROOT/include.

NOTE
If you successfully completed the Scripts to Set Environment Variables Setting Environment Variables
step of the Getting Started process, you can omit -I$MKLINCLUDE in all the examples and omit
-L$MKLPATH in the examples for dynamic linking.

• Static linking of myprog.f and OpenMP* threadedIntel® oneAPI Math Kernel Library:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE
-Wl,--start-group $MKLPATH/libmkl_intel.a $MKLPATH/libmkl_intel_thread.a $MKLPATH/
libmkl_core.a
-Wl,--end-group -liomp5 -lpthread -lm

• Dynamic linking of myprog.f and OpenMP* threadedIntel® oneAPI Math Kernel Library:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE
-lmkl_intel -lmkl_intel_thread -lmkl_core -liomp5 -lpthread -lm

• Static linking of myprog.f and sequential version of Intel® oneAPI Math Kernel Library:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE
-Wl,--start-group $MKLPATH/libmkl_intel.a $MKLPATH/libmkl_sequential.a $MKLPATH/
libmkl_core.a
-Wl,--end-group -lpthread -lm

• Dynamic linking of myprog.f and sequential version of Intel® oneAPI Math Kernel Library:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE
-lmkl_intel -lmkl_sequential -lmkl_core -lpthread -lm

• Static linking of myprog.f, Fortran BLAS and 95 LAPACK interfaces, and OpenMP* threadedIntel® oneAPI
Math Kernel Library:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE -I$MKLINCLUDE/ia32
-lmkl_lapack95
-Wl,--start-group $MKLPATH/libmkl_intel.a $MKLPATH/libmkl_intel_thread.a $MKLPATH/
libmkl_core.a
-Wl,--end-group
-liomp5 -lpthread -lm

• Static linking of myprog.c and Intel® oneAPI Math Kernel Library threaded with Intel® Threading Building
Blocks (Intel® TBB), provided that the TBBROOT environment variable is defined.

icc myprog.c -I$MKLINCLUDE -Wl,--start-group $MKLPATH/libmkl_intel.a $MKLPATH/
libmkl_tbb_thread.a $MKLPATH/libmkl_core.a -Wl,--end-group -L$TBBROOT/lib/ia32/
gcc.4.8 -ltbb -lstdc++ -lpthread -lm

 3 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

26

• Dynamic linking of myprog.c and Intel® oneAPI Math Kernel Library threaded with Intel® TBB, provided
that the LD_LIBRARY_PATH environment variable contains the path to Intel® TBB library:

icc myprog.c -I$MKLINCLUDE -L$MKLPATH -lmkl_intel -lmkl_tbb_thread -lmkl_core -lstdc
++ -lpthread -lm

See Also
Fortran 95 Interfaces to LAPACK and BLAS
Examples for linking a C application using cluster components
Examples for linking a Fortran application using cluster components
Using the Single Dynamic Library
Linking with System Libraries for specifics of linking with a GNU compiler

Linking on Intel(R) 64 Architecture Systems
The following examples illustrate linking that uses Intel(R) compilers.

Most examples use the .f Fortran source file. C/C++ users should instead specify a .cpp (C++) or .c (C)
file and replace ifort with icc.

In these examples,
MKLPATH=$MKLROOT/lib/intel64_lin,
MKLINCLUDE=$MKLROOT/include.

NOTE
If you successfully completed the Scripts to Set Environment Variables Setting Environment Variables
step of the Getting Started process, you can omit -I$MKLINCLUDE in all the examples and omit
-L$MKLPATH in the examples for dynamic linking.

• Static linking of myprog.f and OpenMP* threadedIntel® oneAPI Math Kernel Library supporting the LP64
interface:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE
-Wl,--start-group $MKLPATH/libmkl_intel_lp64.a $MKLPATH/libmkl_intel_thread.a
$MKLPATH/libmkl_core.a -Wl,--end-group -liomp5 -lpthread -lm

• Dynamic linking of myprog.f and OpenMP* threadedIntel® oneAPI Math Kernel Library supporting the
LP64 interface:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE
-lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core
-liomp5 -lpthread -lm

• Static linking of myprog.f and sequential version of Intel® oneAPI Math Kernel Library supporting the
LP64 interface:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE
-Wl,--start-group $MKLPATH/libmkl_intel_lp64.a $MKLPATH/libmkl_sequential.a
$MKLPATH/libmkl_core.a -Wl,--end-group -lpthread -lm

• Dynamic linking of myprog.f and sequential version of Intel® oneAPI Math Kernel Library supporting the
LP64 interface:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE
-lmkl_intel_lp64 -lmkl_sequential -lmkl_core -lpthread -lm

• Static linking of myprog.f and OpenMP* threadedIntel® oneAPI Math Kernel Library supporting the ILP64
interface:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE
-Wl,--start-group $MKLPATH/libmkl_intel_ilp64.a $MKLPATH/libmkl_intel_thread.a
$MKLPATH/libmkl_core.a -Wl,--end-group -liomp5 -lpthread -lm

Linking Your Application with the Intel® oneAPI Math Kernel Library 3

27

• Dynamic linking of myprog.f and OpenMP* threadedIntel® oneAPI Math Kernel Library supporting the
ILP64 interface:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE
-lmkl_intel_ilp64 -lmkl_intel_thread -lmkl_core -liomp5 -lpthread -lm

• Dynamic linking of user code myprog.f and OpenMP* threadedor sequential Intel® oneAPI Math Kernel
Library(Call appropriate functions or set environment variables to choose threaded or sequential mode
and to set the interface):

ifort myprog.f -lmkl_rt
• Static linking of myprog.f, Fortran BLAS and 95 LAPACK interfaces, and OpenMP* threadedIntel® oneAPI

Math Kernel Library supporting the LP64 interface:

ifort myprog.f -L$MKLPATH -I$MKLINCLUDE -I$MKLINCLUDE/intel64/lp64
-lmkl_lapack95_lp64 -Wl,--start-group $MKLPATH/libmkl_intel_lp64.a $MKLPATH/
libmkl_intel_thread.a
$MKLPATH/libmkl_core.a -Wl,--end-group -liomp5 -lpthread -lm

• Static linking of myprog.c and Intel® oneAPI Math Kernel Library threaded with Intel® Threading Building
Blocks (Intel® TBB), provided that the TBBROOT environment variable is defined:

icc myprog.c -I$MKLINCLUDE -Wl,--start-group $MKLPATH/libmkl_intel_lp64.a $MKLPATH/
libmkl_tbb_thread.a $MKLPATH/libmkl_core.a -Wl,--end-group -L$TBBROOT/lib/intel64/
gcc.4.8 -ltbb -lstdc++ -lpthread -lm

• Dynamic linking of myprog.c and Intel® oneAPI Math Kernel Library threaded with Intel® TBB, provided
that the LD_LIBRARY_PATH environment variable contains the path to Intel® TBB library:

icc myprog.c -I$MKLINCLUDE -L$MKLPATH -lmkl_intel_lp64 -lmkl_tbb_thread -lmkl_core -
lstdc++ -lpthread -lm

See Also
Fortran 95 Interfaces to LAPACK and BLAS
Examples for linking a C application using cluster components
Examples for linking a Fortran application using cluster components
Using the Single Dynamic Library
Linking with System Libraries for specifics of linking with a GNU or PGI compiler

Linking in Detail
This section recommends which libraries to link with depending on your Intel® oneAPI Math Kernel Library
usage scenario and provides details of the linking.

Listing Libraries on a Link Line
To link with Intel® oneAPI Math Kernel Library, specify paths and libraries on the link line as shown below.

NOTE
The syntax below is for dynamic linking. For static linking, replace each library name preceded with "-
l" with the path to the library file. For example, replace -lmkl_core with $MKLPATH/libmkl_core.a,
where $MKLPATH is the appropriate user-defined environment variable.

<files to link>
-L<MKL path>-I<MKL include>
[-I<MKL include>intel64|{ilp64|lp64}}]
[-lmkl_blas{95|95_ilp64|95_lp64}]
[-lmkl_lapack{95|95_ilp64|95_lp64}]

 3 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

28

[<cluster components>]
-lmkl_{intel|intel_ilp64|intel_lp64|intel_sp2dp|gf|gf_ilp64|gf_lp64}
-lmkl_{intel_thread|gnu_thread|pgi_thread|tbb_thread|sequential}
-lmkl_core
[-liomp5] [-lpthread] [-lm] [-ldl] [-ltbb -lstdc++]

In the case of static linking,enclose the cluster components, interface, threading, and computational libraries
in grouping symbols (for example, -Wl,--start-group $MKLPATH/libmkl_cdft_core.a $MKLPATH/
libmkl_blacs_intelmpi_ilp64.a $MKLPATH/libmkl_intel_ilp64.a $MKLPATH/
libmkl_intel_thread.a $MKLPATH/libmkl_core.a -Wl,--end-group).

The order of listing libraries on the link line is essential, except for the libraries enclosed in the grouping
symbols above.

See Also
Using the Link Line Advisor
Linking Examples
Working with the Cluster Software

Dynamically Selecting the Interface and Threading Layer
The Single Dynamic Library (SDL) enables you to dynamically select the interface and threading layer for
Intel® oneAPI Math Kernel Library.

Setting the Interface Layer
To set the interface layer at run time, use the mkl_set_interface_layer function or the
MKL_INTERFACE_LAYER environment variable.

Available interface layers depend on the architecture of your system.

The following table lists available interface layers for Intel® 64 architecture along with the values to be used
to set each layer.

Specifying the Interface Layer for Intel® 64 Architecture

Interface Layer Value of
MKL_INTERFACE_LAYER

Value of the Parameter of
mkl_set_interface_layer

Intel LP64, default LP64 MKL_INTERFACE_LP64

Intel ILP64 ILP64 MKL_INTERFACE_ILP64

GNU* LP64 GNU,LP64 MKL_INTERFACE_LP64+MKL_INTERFACE_GNU

GNU ILP64 GNU,ILP64 MKL_INTERFACE_ILP64+MKL_INTERFACE_GNU

If the mkl_set_interface_layer function is called, the environment variable MKL_INTERFACE_LAYER is
ignored.

See the Intel® oneAPI Math Kernel Library Developer Reference for details of the
mkl_set_interface_layer function.

The following table lists available interface layers for IA-32 architecture along with the values to be used to
set each layer.

Linking Your Application with the Intel® oneAPI Math Kernel Library 3

29

Specifying the Interface Layer for IA-32 Architecture

Interface Layer Value of
MKL_INTERFACE_LAYER

Value of the Parameter of
mkl_set_interface_layer

Intel, default LP64 MKL_INTERFACE_LP64

GNU GNU,LP64
or

GNU

MKL_INTERFACE_LP64+MKL_INTERFACE_GNU
or

MKL_INTERFACE_GNU

Setting the Threading Layer
To set the threading layer at run time, use the mkl_set_threading_layer function or the
MKL_THREADING_LAYER environment variable. The following table lists available threading layers along with
the values to be used to set each layer.

Specifying the Threading Layer

Threading Layer Value of
MKL_THREADING_LAYER

Value of the Parameter of
mkl_set_threading_layer

Intel threading,
default

INTEL MKL_THREADING_INTEL

Sequential mode
of Intel® oneAPI
Math Kernel
Library

SEQUENTIAL MKL_THREADING_SEQUENTIAL

GNU threading† GNU MKL_THREADING_GNU

PGI threading† PGI MKL_THREADING_PGI

Intel TBB
threading

TBB MKL_THREADING_TBB

† Not supported by the SDL for Intel® Many Integrated Core Architecture.

If the mkl_set_threading_layer function is called, the environment variable MKL_THREADING_LAYER is
ignored.

See the Intel® oneAPI Math Kernel Library Developer Reference for details of the
mkl_set_threading_layer function.

See Also
Using the Single Dynamic Library
Layered Model Concept
Directory Structure in Detail

Linking with Interface Libraries

Using the ILP64 Interface vs. LP64 Interface
The Intel® oneAPI Math Kernel Library ILP64 libraries use the 64-bit integer type (necessary for indexing
large arrays, with more than 231-1 elements), whereas the LP64 libraries index arrays with the 32-bit integer
type.

 3 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

30

The LP64 and ILP64 interfaces are implemented in the Interface layer. Link with the following interface
libraries for the LP64 or ILP64 interface, respectively:

• libmkl_intel_lp64.a or libmkl_intel_ilp64.a for static linking
• libmkl_intel_lp64.so or libmkl_intel_ilp64.so for dynamic linking

The ILP64 interface provides for the following:

• Support large data arrays (with more than 231-1 elements)
• Enable compiling your Fortran code with the -i8 compiler option

The LP64 interface provides compatibility with the previous Intel® oneAPI Math Kernel Library versions
because "LP64" is just a new name for the only interface that the Intel® oneAPI Math Kernel Library versions
lower than 9.1 provided. Choose the ILP64 interface if your application uses Intel® oneAPI Math Kernel
Library for calculations with large data arrays or the library may be used so in the future.

On 64-bit platforms, selected domains provide API extensions with the _64 suffix (for example, SGEMM_64)
for supporting large data arrays in the LP64 library. This enables you to mix data types in one application.
The selected domains and APIs include the following:

• BLAS: Fortran-style APIs for C applications and CBLAS APIs with integer arguments
• LAPACK: Fortran-style APIs for C applications and LAPACKE APIs with integer arguments

Intel® oneAPI Math Kernel Library provides the same include directory for the ILP64 and LP64 interfaces.

Compiling for LP64/ILP64
The table below shows how to compile for the ILP64 and LP64 interfaces:

Fortran

Compiling for
ILP64

ifort -i8 -I<mkl directory>/include ...

Compiling for LP64 ifort -I<mkl directory>/include ...

C or C++

Compiling for
ILP64

icc -DMKL_ILP64 -I<mkl directory>/include ...

Compiling for LP64 icc -I<mkl directory>/include ...

Caution
Linking of an application compiled with the -i8 or -DMKL_ILP64 option to the LP64 libraries may
result in unpredictable consequences and erroneous output.

Coding for ILP64
You do not need to change existing code if you are not using the ILP64 interface.

To migrate to ILP64 or write new code for ILP64, use appropriate types for parameters of the Intel® oneAPI
Math Kernel Library functions and subroutines:

Integer Types Fortran C or C++

32-bit integers INTEGER*4 or
INTEGER(KIND=4)

int

Linking Your Application with the Intel® oneAPI Math Kernel Library 3

31

Integer Types Fortran C or C++

Universal integers for ILP64/
LP64:

• 64-bit for ILP64
• 32-bit otherwise

INTEGER
without specifying KIND

MKL_INT

Universal integers for ILP64/
LP64:

• 64-bit integers

INTEGER*8 or
INTEGER(KIND=8)

MKL_INT64

FFT interface integers for ILP64/
LP64

INTEGER
without specifying KIND

MKL_LONG

To determine the type of an integer parameter of a function, use appropriate include files. For functions that
support only a Fortran interface, use the C/C++ include files *.h.

The above table explains which integer parameters of functions become 64-bit and which remain 32-bit for
ILP64. The table applies to most Intel® oneAPI Math Kernel Library functions except some Vector
Mathematics and Vector Statistics functions, which require integer parameters to be 64-bit or 32-bit
regardless of the interface:

• Vector Mathematics: The mode parameter of the functions is 64-bit.
• Random Number Generators (RNG):

All discrete RNG except viRngUniformBits64 are 32-bit.

The viRngUniformBits64 generator function and vslSkipAheadStream service function are 64-bit.
• Summary Statistics: The estimate parameter of the vslsSSCompute/vsldSSCompute function is 64-

bit.

Refer to the Intel® oneAPI Math Kernel Library Developer Reference for more information.

To better understand ILP64 interface details, see also examples.

Limitations
All Intel® oneAPI Math Kernel Library function domains support ILP64 programming but FFTW interfaces to
Intel® oneAPI Math Kernel Library:

• FFTW 2.x wrappers do not support ILP64.
• FFTW 3.x wrappers support ILP64 by a dedicated set of functions plan_guru64.

See Also
High-level Directory Structure
Intel® oneAPI Math Kernel Library Include Files
Language Interfaces Support, by Function Domain
Layered Model Concept
Directory Structure in Detail

Linking with Fortran 95 Interface Libraries
The libmkl_blas95*.a and libmkl_lapack95*.alibraries contain Fortran 95 interfaces for BLAS and
LAPACK, respectively, which are compiler-dependent. In the Intel® oneAPI Math Kernel Library package, they
are prebuilt for the Intel® Fortran compiler. If you are using a different compiler, build these libraries before
using the interface.

 3 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

32

See Also
Fortran 95 Interfaces to LAPACK and BLAS
Compiler-dependent Functions and Fortran 90 Modules

Linking with Threading Libraries
Intel® oneAPI Math Kernel Library threading layer defines how Intel® oneAPI Math Kernel Library functions
utilize multiple computing cores of the system that the application runs on. You must link your application
with one appropriate Intel® oneAPI Math Kernel Library library in this layer, as explained below. Depending on
whether this is a threading or a sequential library, Intel® oneAPI Math Kernel Library runs in a parallel or
sequential mode, respectively.

In the parallel mode, Intel® oneAPI Math Kernel Library utilizes multiple processor cores available on your
system, uses the OpenMP*or Intel TBB threading technology, and requires a proper threading runtime library
(RTL) to be linked with your application. Independently of use of Intel® oneAPI Math Kernel Library, the
application may also require a threading RTL. You should link not more than one threading RTL to your
application. Threading RTLs are provided by your compiler. Intel® oneAPI Math Kernel Library provides several
threading libraries, each dependent on the threading RTL of a certain compiler, and your choice of the Intel®
oneAPI Math Kernel Library threading library must be consistent with the threading RTL that you use in your
application.

The OpenMP RTL of the Intel® compiler is the libiomp5.so library, located under <parent directory>/
compiler/lib. This RTL is compatible with the GNU* compilers (gcc and gfortran). You can find additional
information about the Intel OpenMP RTL at https://www.openmprtl.org.

The Intel TBB RTL of the Intel® compiler is the libtbb.so library, located under <oneAPI ROOT>/tbb/
<version>/lib/<arch>/gcc4.8. You can find additional information about the Intel TBB RTL at https://
www.threadingbuildingblocks.org.

In the sequential mode, Intel® oneAPI Math Kernel Library runs unthreaded code, does not require an
threading RTL, and does not respond to environment variables and functions controlling the number of
threads. Avoid using the library in the sequential mode unless you have a particular reason for that, such as
the following:

• Your application needs a threading RTL that none of Intel® oneAPI Math Kernel Library threading libraries
is compatible with

• Your application is already threaded at a top level, and using parallel Intel® oneAPI Math Kernel Library
only degrades the application performance by interfering with that threading

• Your application is intended to be run on a single thread, like a message-passing interface (MPI)
application

It is critical to link the application with the proper RTL. The table below explains what library in the Intel®
oneAPI Math Kernel Library threading layer and whatthreading RTL you should choose under different
scenarios:

Application Intel® oneAPI Math Kernel Library RTL Required
Uses
OpenMP

Compiled
with Execution Mode Threading Layer

no any compiler parallel Static linking:

libmkl_intel_
thread.a
Dynamic linking:

libmkl_intel_
thread.so

libiomp5.so

no any compiler parallel Static linking:

libmkl_tbb_
thread.a

libtbb.so

Linking Your Application with the Intel® oneAPI Math Kernel Library 3

33

https://www.openmprtl.org
https://www.threadingbuildingblocks.org
https://www.threadingbuildingblocks.org

Application Intel® oneAPI Math Kernel Library RTL Required
Uses
OpenMP

Compiled
with Execution Mode Threading Layer

Dynamic linking:

libmkl_tbb_
thread.so

no any compiler sequential Static linking:

libmkl_
sequential.a
Dynamic linking:

libmkl_
sequential.so

none†

yes Intel compiler parallel Static linking:

libmkl_intel_
thread.a
Dynamic linking:

libmkl_intel_
thread.so

libiomp5.so

yes GNU compiler parallel Recommended!

Static linking:

libmkl_intel_
thread.a
Dynamic linking:

libmkl_intel_
thread.so

libiomp5.so

yes GNU compiler parallel Static linking:

libmkl_gnu_
thread.a
Dynamic linking:

libmkl_gnu_
thread.so

GNU OpenMP RTL

yes PGI*
compiler

parallel Static linking:

libmkl_pgi_
thread.a
Dynamic linking:

libmkl_pgi_
thread.so

PGI OpenMP RTL

yes any other
compiler

parallel Not supported. Use
Intel® oneAPI Math
Kernel Library in the
sequential mode.

† For the sequential mode, add the POSIX threads library (libpthread) to your link line because the
libmkl_sequential.a and libmkl_sequential.so libraries depend on libpthread.

 3 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

34

See Also
Layered Model Concept
Notational Conventions

Linking with Computational Libraries
If you are not using the Intel® oneAPI Math Kernel Library ScaLAPACK and Cluster Fast Fourier Transforms
(FFT), you need to link your application with only one computational library, depending on the linking
method:

Static Linking Dynamic Linking

libmkl_core.a libmkl_core.so

Computational Libraries for Applications that Use ScaLAPACK or Cluster FFT
ScaLAPACK and Cluster FFT require more computational libraries, which may depend on your architecture.

The following table lists computational libraries for IA -32 architecture applications that use ScaLAPACK or
Cluster FFT.

Computational Libraries for IA-32 Architecture

Function domain Static Linking Dynamic Linking

ScaLAPACK † libmkl_scalapack_core.a
libmkl_core.a

libmkl_scalapack_core.so
libmkl_core.so

Cluster Fourier
Transform
Functions†

libmkl_cdft_core.a
libmkl_core.a

libmkl_cdft_core.so
libmkl_core.so

† Also add the library with BLACS routines corresponding to the MPI used.

The following table lists computational libraries for Intel® 64 or Intel® Many Integrated Core Architecture
applications that use ScaLAPACK or Cluster FFT.

Computational Libraries for the Intel® 64 or Intel® Many Integrated Core Architecture

Function domain Static Linking Dynamic Linking

ScaLAPACK, LP64
interface‡

libmkl_scalapack_lp64.a
libmkl_core.a

libmkl_scalapack_lp64.so
libmkl_core.so

ScaLAPACK, ILP64
interface‡

libmkl_scalapack_ilp64.a
libmkl_core.a

libmkl_scalapack_ilp64.so
libmkl_core.so

Cluster Fourier
Transform
Functions‡

libmkl_cdft_core.a
libmkl_core.a

libmkl_cdft_core.so
libmkl_core.so

‡ Also add the library with BLACS routines corresponding to the MPI used.

See Also
Linking with ScaLAPACK and Cluster FFT
Using the Link-line Advisor
Using the ILP64 Interface vs. LP64 Interface

Linking Your Application with the Intel® oneAPI Math Kernel Library 3

35

Linking with Compiler Run-time Libraries
Dynamically link libiomp5 or libtbb library even if you link other libraries statically.

Linking to the libiomp5 statically can be problematic because the more complex your operating environment
or application, the more likely redundant copies of the library are included. This may result in performance
issues (oversubscription of threads) and even incorrect results.

To link libiomp5 or libtbb dynamically, be sure the LD_LIBRARY_PATH environment variable is defined
correctly.

See Also
Scripts to Set Environment Variables
Layered Model Concept

Linking with System Libraries
To use the Intel® oneAPI Math Kernel Library FFT, Trigonometric Transform, or Poisson, Laplace, and
HelmholtzSolver routines, link also the math support system library by adding "-lm" to the link line.

The libiomp5 library relies on the native pthread library for multi-threading. Any time libiomp5 is
required, add -lpthreadto your link line afterwards (the order of listing libraries is important).

The libtbb library relies on the compiler libstdc++ library for C++ support. Any time libtbb is required,
add -lstdc++ to your link line afterwards (the order of listing libraries is important).

NOTE
To link with Intel® oneAPI Math Kernel Library statically using a GNU compiler, link also the system
librarylibdl by adding -ldl to your link line. The Intel compiler always passes -ldl to the linker.

See Also
Linking Examples

Building Custom Shared Objects
Сustom shared objectsreduce the collection of functions available in Intel® oneAPI Math Kernel Library
libraries to those required to solve your particular problems, which helps to save disk space and build your
own dynamic libraries for distribution.

The Intel® oneAPI Math Kernel Library customshared object builder enables you to create a dynamic library
(shared object) containing the selected functions and located in the tools/builder directory. The builder
contains a makefile and a definition file with the list of functions.

NOTE
The objects in Intel® oneAPI Math Kernel Library static libraries are position-independent code (PIC),
which is not typical for static libraries. Therefore, the custom shared object builder can create a shared
object from a subset of Intel® oneAPI Math Kernel Library functions by picking the respective object
files from the static libraries.

Using the Custom Shared Object Builder
To build a custom shared object, use the following command:

 3 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

36

make target [<options>]
The following table lists possible values of target and explains what the command does for each value:

Value Comment
libia32 The builder uses static Intel® oneAPI Math Kernel Library interface, threading, and

core libraries to build a customshared object for the IA-32 architecture.
libintel64 The builder uses static Intel® oneAPI Math Kernel Library interface, threading, and

core libraries to build a customshared object for the Intel® 64 architecture.
soia32 The builder uses the single dynamic library libmkl_rt.so to build a custom shared

object for the IA-32 architecture.
sointel64 The builder uses the single dynamic library libmkl_rt.so to build a custom shared

object for the Intel® 64 architecture.
help The command prints Help on the custom shared object builder

The <options> placeholder stands for the list of parameters that define macros to be used by the makefile.
The following table describes these parameters:

Parameter
[Values]

Description

interface =
{lp64|ilp64} Defines whether to use LP64 or ILP64 programming interfacefor the Intel

64architecture.The default value is lp64.
threading =
{parallel|
sequential}

Defines whether to use the Intel® oneAPI Math Kernel Library in the threaded or
sequential mode. The default value isparallel.

Prallel =
{intel|tbb} Specifies whether to use Intel OpenMP or Intel® oneTBB. The default value isintel.

cluster = {yes|
no} (For libintel64only) Specifies whether Intel® oneAPI Math Kernel Library cluster

components (BLACS, ScaLAPACK and/or CDFT) are needed to build the custom
shared object. The default value isno.

blacs_mpi =
{intelmpi|
msmpi}

Specifies the pre-compiled Intel® oneAPI Math Kernel Library BLACS library to use.
Ignored if'cluster=no'. The default value is intelmpi.

blacs_name =
<lib name> Specifies the name (without extension) of a custom Intel® oneAPI Math Kernel

Library BLACS library to use. Ignored if'cluster=no'. 'blacs_mpi' is ignored if
'blacs_name' was explicitly specified. The default value is
mkl_blacs_<blacs_mpi>_<interface>.

mpi = <lib
name> Specifies the name (without extension) of the MPI library used to build the custom

DLL. Ignored if 'cluster=no'. The default value is impi.
export =
<file name>

Specifies the full name of the file that contains the list of entry-point functions to be
included in the shared object. The default name is user_example_list (no
extension).

name = <so
name>

Specifies the name of the library to be created. By default, the names of the created
library is mkl_custom.so.

xerbla =
<error handler>

Specifies the name of the object file <user_xerbla>.othat contains the error
handler of the user. The makefile adds this error handler to the library for use
instead of the default Intel® oneAPI Math Kernel Library error handlerxerbla. If you
omit this parameter, the native Intel® oneAPI Math Kernel Libraryxerbla is used.
See the description of the xerblafunction in the Intel® oneAPI Math Kernel Library
Developer Reference to develop your own error handler.

Linking Your Application with the Intel® oneAPI Math Kernel Library 3

37

Parameter
[Values]

Description

MKLROOT =
<mkl directory>

Specifies the location of Intel® oneAPI Math Kernel Library libraries used to build the
customshared object. By default, the builder uses the Intel® oneAPI Math Kernel
Library installation directory.

All of the above parameters are optional. However, you must make the system and c-runtime (crt) libraries
and link.exe available by setting the PATH and LIB environment variables appropriately. You can do this in
the following ways:

• Manually
• If you are using the Intel compiler, use the compilervars.sh script with the appropriate 32-bit (x86) or

64-bit (x64 or amd-64) architecture flag.

In the simplest case, the command line is:

make ia32
and the missing options have default values. This command creates the mkl_custom.so library . The
command takes the list of functions from the user_listfile and uses the native Intel® oneAPI Math Kernel
Library error handlerxerbla.

Here is an example of a more complex case:

make intel64 export=my_func_list.txt name=mkl_small xerbla=my_xerbla.o
In this case, the command creates the mkl_small.so library. The command takes the list of functions from
my_func_list.txt file and uses the error handler of the user my_xerbla.o.

See Also
Using the Single Dynamic Library

Composing a List of Functions
To compose a list of functions for a minimal custom shared object needed for your application, you can use
the following procedure:

1. Link your application with installed Intel® oneAPI Math Kernel Library libraries to make sure the
application builds.

2. Remove all Intel® oneAPI Math Kernel Library libraries from the link line and start linking.

Unresolved symbols indicate Intel® oneAPI Math Kernel Library functions that your application uses.
3. Include these functions in the list.

Important
Each time your application starts using more Intel® oneAPI Math Kernel Library functions, update the
list to include the new functions.

See Also
Specifying Function Names

Specifying Function Names
In the file with the list of functions for your custom shared object, adjust function names to the required
interface. For example, for Fortran functions append an underscore character "_" to the names as a suffix:

dgemm_
ddot_
dgetrf_

 3 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

38

For more examples, see domain-specific lists of functions in the <mkl directory>/tools/builder folder.

NOTE
The lists of functions are provided in the <mkl directory>/tools/builder folder merely as
examples. See Composing a List of Functions for how to compose lists of functions for your custom
shared object.

Tip
Names of Fortran-style routines (BLAS, LAPACK, etc.) can be both upper-case or lower-case, with or
without the trailing underscore. For example, these names are equivalent:
BLAS: dgemm, DGEMM, dgemm_, DGEMM_
LAPACK: dgetrf, DGETRF, dgetrf_, DGETRF_.

Properly capitalize names of C support functions in the function list. To do this, follow the guidelines below:

1. In the mkl_service.h include file, look up a #define directive for your function
(mkl_service.h is included in the mkl.h header file).

2. Take the function name from the replacement part of that directive.

For example, the #define directive for the mkl_disable_fast_mm function is
#define mkl_disable_fast_mm MKL_Disable_Fast_MM.

Capitalize the name of this function in the list like this: MKL_Disable_Fast_MM.

For the names of the Fortran support functions, see the tip.

NOTE
If selected functions have several processor-specific versions, the builder automatically includes them
all in the custom library and the dispatcher manages them.

Distributing Your Custom Shared Object
To enable use of your custom shared object in a threaded mode, distribute libiomp5.so along with the
custom shared object.

Linking Your Application with the Intel® oneAPI Math Kernel Library 3

39

Managing Performance and
Memory 4

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Improving Performance with Threading
is extensively parallelized. SeeOpenMP* Threaded Functions and Problems and Functions Threaded with
Intel® Threading Building Blocks for lists of threaded functions and problems that can be threaded.

Intel® oneAPI Math Kernel Library isthread-safe, which means that all Intel® oneAPI Math Kernel Library
functions (except the LAPACK deprecated routine?lacon)work correctly during simultaneous execution by
multiple threads. In particular, any chunk of threaded Intel® oneAPI Math Kernel Library code provides access
for multiple threads to the same shared data, while permitting only one thread at any given time to access a
shared piece of data. Therefore, you can call Intel® oneAPI Math Kernel Library from multiple threads and not
worry about the function instances interfering with each other.

If you are using OpenMP* threading technology, you can use the environment variable OMP_NUM_THREADSto
specify the number of threads or the equivalent OpenMP run-time function calls. Intel® oneAPI Math Kernel
Library also offers variables that are independent of OpenMP, such asMKL_NUM_THREADS, and equivalent
Intel® oneAPI Math Kernel Library functions for thread management. The Intel® oneAPI Math Kernel Library
variables are always inspected first, then the OpenMP variables are examined, and if neither is used, the
OpenMP software chooses the default number of threads.

By default, Intel® oneAPI Math Kernel Library uses the number ofOpenMP threads equal to the number of
physical cores on the system.

If you are using the Intel TBB threading technology, the OpenMP threading controls, such as the
OMP_NUM_THREADS environment variable or MKL_NUM_THREADS function, have no effect. Use the Intel TBB
application programming interface to control the number of threads.

To achieve higher performance, set the number of threads to the number of processors or physical cores, as
summarized in Techniques to Set the Number of Threads.

See Also
Managing Multi-core Performance

OpenMP* Threaded Functions and Problems
The following Intel® oneAPI Math Kernel Library function domains are threaded with the OpenMP*
technology:

• Direct sparse solver.
• LAPACK.

For a list of threaded routines, see LAPACK Routines.
• Level1 and Level2 BLAS.

For a list of threaded routines, see BLAS Level1 and Level2 Routines.
• All Level 3 BLAS and all Sparse BLAS routines except Level 2 Sparse Triangular solvers.
• All Vector Mathematics functions (except service functions).
• FFT.

For a list of FFT transforms that can be threaded, see Threaded FFT Problems.

 4 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

40

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

LAPACK Routines
In this section, ? stands for a precision prefix of each flavor of the respective routine and may have the value
of s, d, c, or z.

The following LAPACK routines are threaded with OpenMP*:

• Linear equations, computational routines:

• Factorization: ?getrf, ?getrfnpi, ?gbtrf, ?potrf, ?pptrf, ?sytrf, ?hetrf, ?sptrf, ?
hptrf

• Solving: ?dttrsb, ?gbtrs, ?gttrs, ?pptrs, ?pbtrs, ?pttrs, ?sytrs, ?sptrs, ?hptrs, ?
tptrs, ?tbtrs

• Orthogonal factorization, computational routines:
?geqrf, ?ormqr, ?unmqr, ?ormlq, ?unmlq, ?ormql, ?unmql, ?ormrq, ?unmrq

• Singular Value Decomposition, computational routines:
?gebrd, ?bdsqr

• Symmetric Eigenvalue Problems, computational routines:
?sytrd, ?hetrd, ?sptrd, ?hptrd, ?steqr, ?stedc.

• Generalized Nonsymmetric Eigenvalue Problems, computational routines:
chgeqz/zhgeqz.

A number of other LAPACK routines, which are based on threaded LAPACK or BLAS routines, make effective
use of OpenMP* parallelism:
?gesv, ?posv, ?gels, ?gesvd, ?syev, ?heev, cgegs/zgegs, cgegv/zgegv, cgges/zgges,
cggesx/zggesx, cggev/zggev, cggevx/zggevx, and so on.

Threaded BLAS Level1 and Level2 Routines
In the following list, ? stands for a precision prefix of each flavor of the respective routine and may have the
value of s, d, c, or z.

The following routines are threaded with OpenMP*:

• Level1 BLAS:
?axpy, ?copy, ?swap, ddot/sdot, cdotc, drot/srot

• Level2 BLAS:
?gemv, ?trsv, ?trmv, dsyr/ssyr, dsyr2/ssyr2, dsymv/ssymv

Threaded FFT Problems
The following characteristics of a specific problem determine whether your FFT computation may be threaded
with OpenMP*:

• rank
• domain
• size/length
• precision (single or double)
• placement (in-place or out-of-place)
• strides
• number of transforms
• layout (for example, interleaved or split layout of complex data)

Most FFT problems are threaded. In particular, computation of multiple transforms in one call (number of
transforms > 1) is threaded. Details of which transforms are threaded follow.

One-dimensional (1D) transforms

1D transforms are threaded in many cases.

Managing Performance and Memory 4

41

1D complex-to-complex (c2c) transforms of size N using interleaved complex data layout are threaded under
the following conditions depending on the architecture:

Architecture Conditions

Intel® 64 N is a power of 2, log2(N) > 9, the transform is double-precision out-of-place, and
input/output strides equal 1.

IA-32 N is a power of 2, log2(N) > 13, and the transform is single-precision.

N is a power of 2, log2(N) > 14, and the transform is double-precision.

Any N is composite, log2(N) > 16, and input/output strides equal 1.

1D complex-to-complex transforms using split-complex layout are not threaded.

Multidimensional transforms

All multidimensional transforms on large-volume data are threaded.

Functions Threaded with Intel® Threading Building Blocks
In this section, ? stands for a precision prefix or suffix of the routine name and may have the value of s, d,
c, or z.

The following Intel® oneAPI Math Kernel Library function domains are threaded with Intel® Threading Building
Blocks (Intel® TBB):

• LAPACK.

For a list of threaded routines, see LAPACK Routines.
• Entire Level3 BLAS.
• Level2 BLAS – ?GEMV.
• Fast Poisson, Laplace, and Helmholtz Solver (Poisson Library).
• All Vector Mathematics functions (except service functions).
• Intel® oneAPI Math Kernel Library PARDISO, a direct sparse solver based on Parallel Direct Sparse Solver

(PARDISO*).

For details, see oneMKL PARDISO Steps.
• Sparse BLAS.

For a list of threaded routines, see Sparse BLAS Routines.

LAPACK Routines
The following LAPACK routines are threaded with Intel TBB:
?geqrf, ?gelqf, ?getrf, ?potrf, ?unmqr*, ?ormqr*, ?unmrq*, ?ormrq*, ?unmlq*, ?ormlq*, ?unmql*,
?ormql*, ?sytrd, ?hetrd, ?syev, ?heev, and ?latrd.

A number of other LAPACK routines, which are based on threaded LAPACK or BLAS routines, make effective
use of Intel TBB threading:
?getrs, ?gesv, ?potrs, ?bdsqr, and ?gels.

oneMKL PARDISO Steps
Intel® oneAPI Math Kernel Library PARDISO is threaded with Intel TBB in the reordering and factorization
steps. However, routines performing the solving step are still called sequentially when using Intel TBB.

Sparse BLAS Routines
The Sparse BLAS inspector-executor application programming interface routines mkl_sparse_?_mv are
threaded with Intel TBB for the general compressed sparse row (CSR) and block sparse row (BSR) formats.

 4 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

42

The following Sparse BLAS inspector-executor application programming routines are threaded with Intel TBB:

• mkl_sparse_?_mv using the general compressed sparse row (CSR) and block sparse row (BSR) matrix
formats.

• mkl_sparse_?_mm using the general CSR sparse matrix format and both row and column major storage
formats for the dense matrix.

Avoiding Conflicts in the Execution Environment
Certain situations can cause conflicts in the execution environment that make the use of threads in Intel®
oneAPI Math Kernel Library problematic. This section briefly discusses why these problems exist and how to
avoid them.

If your program is parallelized by other means than Intel® OpenMP* run-time library (RTL) and Intel TBB
RTL, several calls to Intel® oneAPI Math Kernel Library may operate in a multithreaded mode at the same
time and result in slow performance due to overuse of machine resources.

The following table considers several cases where the conflicts may arise and provides recommendations
depending on your threading model:

Threading model Discussion

You parallelize the program
using the technology other
than Intel OpenMP and Intel
TBB (for example: pthreads
on Linux*).

If more than one thread calls Intel® oneAPI Math Kernel Library, and the
function being called is threaded, it may be important that you turn off
Intel® oneAPI Math Kernel Library threading. Set the number of threads
to one by any of the available means (seeTechniques to Set the Number
of Threads).

You parallelize the program
using OpenMP directives
and/or pragmas and compile
the program using a non-Intel
compiler.

To avoid simultaneous activities of multiple threading RTLs, link the
program against the Intel® oneAPI Math Kernel Library threading library
that matches the compiler you use (see Linking Exampleson how to do
this). If this is not possible, use Intel® oneAPI Math Kernel Library in the
sequential mode. To do this, you should link with the appropriate
threading library:libmkl_sequential.a or libmkl_sequential.so
(see Appendix C: Directory Structure in Detail).

You thread the program using
Intel TBB threading
technology and compile the
program using a non-Intel
compiler.

To avoid simultaneous activities of multiple threading RTLs, link the
program against the Intel® oneAPI Math Kernel Library Intel TBB
threading library and Intel TBB RTL if it matches the compiler you use. If
this is not possible, use Intel® oneAPI Math Kernel Library in the
sequential mode. To do this, link with the appropriate threading
library:libmkl_sequential.a or libmkl_sequential.so (see Appendix
C: Directory Structure in Detail).

You run multiple programs
calling Intel® oneAPI Math
Kernel Library on a
multiprocessor system, for
example, a program
parallelized using a message-
passing interface (MPI).

The threading RTLs from different programs you run may place a large
number of threads on the same processor on the system and therefore
overuse the machine resources. In this case, one of the solutions is to set
the number of threads to one by any of the available means (see
Techniques to Set the Number of Threads). The Intel® Distribution for
LINPACK* Benchmark section discusses another solution for a Hybrid
(OpenMP* + MPI) mode.

Using the mkl_set_num_threads and mkl_domain_set_num_threadsfunctions to control parallelism of
Intel® oneAPI Math Kernel Library from parallel user threads may result in a race condition that impacts the
performance of the application because these functions operate on internal control variables that are global,
that is, apply to all threads. For example, if parallel user threads call these functions to set different numbers
of threads for the same function domain, the number of threads actually set is unpredictable. To avoid this
kind of data races, use themkl_set_num_threads_local function (see the "Support Functions" chapter in
the Intel® oneAPI Math Kernel Library Developer Reference for the function description).

See Also
Using Additional Threading Control

Managing Performance and Memory 4

43

Linking with Compiler Support RTLs

Techniques to Set the Number of Threads
Use the following techniques to specify the number of OpenMP threads to use in Intel® oneAPI Math Kernel
Library:

• Set one of the OpenMP or Intel® oneAPI Math Kernel Library environment variables:

• OMP_NUM_THREADS
• MKL_NUM_THREADS
• MKL_DOMAIN_NUM_THREADS

• Call one of the OpenMP or Intel® oneAPI Math Kernel Library functions:

• omp_set_num_threads()
• mkl_set_num_threads()
• mkl_domain_set_num_threads()
• mkl_set_num_threads_local()

NOTE
A call to the mkl_set_num_threads or mkl_domain_set_num_threadsfunction changes the number
of OpenMP threads available to all in-progress calls (in concurrent threads) and future calls to Intel®
oneAPI Math Kernel Library and may result in slow Intel® oneAPI Math Kernel Library performance
and/or race conditions reported by run-time tools, such as Intel® Inspector.

To avoid such situations, use the mkl_set_num_threads_local function (see the "Support Functions"
section in the Intel® oneAPI Math Kernel Library Developer Reference for the function description).

When choosing the appropriate technique, take into account the following rules:

• The Intel® oneAPI Math Kernel Library threading controls take precedence over the OpenMP controls
because they are inspected first.

• A function call takes precedence over any environment settings. The exception, which is a consequence of
the previous rule, is that a call to the OpenMP subroutine omp_set_num_threads()does not have
precedence over the settings of Intel® oneAPI Math Kernel Library environment variables such
asMKL_NUM_THREADS. See Using Additional Threading Control for more details.

• You cannot change run-time behavior in the course of the run using the environment variables because
they are read only once at the first call to Intel® oneAPI Math Kernel Library.

If you use the Intel TBB threading technology, read the documentation for the tbb::task_scheduler_init
class at https://www.threadingbuildingblocks.org/documentation to find out how to specify the number of
threads.

Setting the Number of Threads Using an OpenMP* Environment Variable
You can set the number of threads using the environment variable OMP_NUM_THREADS. To change the number
of OpenMP threads, use the appropriate command in the command shell in which the program is going to
run, for example:

• For the bash shell, enter:
export OMP_NUM_THREADS=<number of threads to use>

• For the csh or tcsh shell, enter:
setenv OMP_NUM_THREADS <number of threads to use>

See Also
Using Additional Threading Control

 4 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

44

https://www.threadingbuildingblocks.org/documentation

Changing the Number of OpenMP* Threads at Run Time
You cannot change the number of OpenMP threads at run time using environment variables. However, you
can call OpenMP routines to do this. Specifically, the following sample code shows how to change the number
of threads during run time using the omp_set_num_threads() routine. For more options, see also
Techniques to Set the Number of Threads.

The example is provided for both C and Fortran languages. To run the example in C, use the omp.h header
file from the Intel(R) compiler package. If you do not have the Intel compiler but wish to explore the
functionality in the example, use Fortran API for omp_set_num_threads() rather than the C version. For
example, omp_set_num_threads_(&i_one);

// ******* C language *******
#include "omp.h"
#include "mkl.h"
#include <stdio.h>
#define SIZE 1000
int main(int args, char *argv[]){
double *a, *b, *c;
a = (double*)malloc(sizeof(double)*SIZE*SIZE);
b = (double*)malloc(sizeof(double)*SIZE*SIZE);
c = (double*)malloc(sizeof(double)*SIZE*SIZE);
double alpha=1, beta=1;
int m=SIZE, n=SIZE, k=SIZE, lda=SIZE, ldb=SIZE, ldc=SIZE, i=0, j=0;
char transa='n', transb='n';
for(i=0; i<SIZE; i++)
{
 for(j=0; j<SIZE; j++)
 {
 a[i*SIZE+j]= (double)(i+j);
 b[i*SIZE+j]= (double)(i*j);
 c[i*SIZE+j]= (double)0;
 }
}
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
printf("row\ta\tc\n");
for (i=0;i<10;i++)
{
printf("%d:\t%f\t%f\n", i, a[i*SIZE], c[i*SIZE]);
}
omp_set_num_threads(1);
for(i=0; i<SIZE; i++)
{
 for(j=0; j<SIZE; j++)
 {
 a[i*SIZE+j]= (double)(i+j);
 b[i*SIZE+j]= (double)(i*j);
 c[i*SIZE+j]= (double)0;
 }
}
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
printf("row\ta\tc\n");
for (i=0;i<10;i++)
{
printf("%d:\t%f\t%f\n", i, a[i*SIZE], c[i*SIZE]);

Managing Performance and Memory 4

45

}
omp_set_num_threads(2);
for(i=0; i<SIZE; i++)
{
 for(j=0; j<SIZE; j++)
 {
 a[i*SIZE+j]= (double)(i+j);
 b[i*SIZE+j]= (double)(i*j);
 c[i*SIZE+j]= (double)0;
 }
}
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
printf("row\ta\tc\n");
for (i=0;i<10;i++)
{
printf("%d:\t%f\t%f\n", i, a[i*SIZE],
c[i*SIZE]);
}
free (a);
free (b);
free (c);
return 0;
}

// ******* Fortran language *******
PROGRAM DGEMM_DIFF_THREADS
INTEGER N, I, J
PARAMETER (N=100)
REAL*8 A(N,N),B(N,N),C(N,N)
REAL*8 ALPHA, BETA

ALPHA = 1.1
BETA = -1.2
DO I=1,N
 DO J=1,N
 A(I,J) = I+J
 B(I,J) = I*j
 C(I,J) = 0.0
 END DO
END DO
CALL DGEMM('N','N',N,N,N,ALPHA,A,N,B,N,BETA,C,N)
print *,'Row A C'
DO i=1,10
write(*,'(I4,F20.8,F20.8)') I, A(1,I),C(1,I)
END DO
CALL OMP_SET_NUM_THREADS(1);
DO I=1,N
 DO J=1,N
 A(I,J) = I+J
 B(I,J) = I*j
 C(I,J) = 0.0
 END DO
END DO
CALL DGEMM('N','N',N,N,N,ALPHA,A,N,B,N,BETA,C,N)
print *,'Row A C'

 4 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

46

DO i=1,10
write(*,'(I4,F20.8,F20.8)') I, A(1,I),C(1,I)
END DO
CALL OMP_SET_NUM_THREADS(2);
DO I=1,N
 DO J=1,N
 A(I,J) = I+J
 B(I,J) = I*j
 C(I,J) = 0.0
 END DO
END DO
CALL DGEMM('N','N',N,N,N,ALPHA,A,N,B,N,BETA,C,N)
print *,'Row A C'
DO i=1,10
write(*,'(I4,F20.8,F20.8)') I, A(1,I),C(1,I)
END DO
STOP
END

Using Additional Threading Control

oneMKL-specific Environment Variables for OpenMP Threading Control
Intel® oneAPI Math Kernel Library provides environment variables and support functions to control Intel®
oneAPI Math Kernel Library threading independently of OpenMP. The Intel® oneAPI Math Kernel Library-
specific threading controls take precedence over their OpenMP equivalents. Use the Intel® oneAPI Math
Kernel Library-specific threading controls to distribute OpenMP threads between Intel® oneAPI Math Kernel
Library and the rest of your program.

NOTE
Some Intel® oneAPI Math Kernel Library routines may use fewer OpenMP threads than suggested by
the threading controls if either the underlying algorithms do not support the suggested number of
OpenMP threads or the routines perform better with fewer OpenMP threads because of lower OpenMP
overhead and/or better data locality. Set theMKL_DYNAMIC environment variable to FALSE or call
mkl_set_dynamic(0) to use the suggested number of OpenMP threads whenever the algorithms
permit and regardless of OpenMP overhead and data locality.

Section "Number of User Threads" in the "Fourier Transform Functions" chapter of the Intel® oneAPI Math
Kernel Library Developer Referenceshows how the Intel® oneAPI Math Kernel Library threading controls help
to set the number of threads for the FFT computation.

The table below lists the Intel® oneAPI Math Kernel Library environment variables for threading control, their
equivalent functions, and OMP counterparts:

Environment Variable Support Function Comment Equivalent OpenMP*
Environment Variable

MKL_NUM_THREADS mkl_set_num_threads
mkl_set_num_threads
_local

Suggests the number of
OpenMP threads to use.

OMP_NUM_THREADS

Managing Performance and Memory 4

47

Environment Variable Support Function Comment Equivalent OpenMP*
Environment Variable

MKL_DOMAIN_NUM_
THREADS

mkl_domain_set_num_
threads

Suggests the number of
OpenMP threads for a
particular function
domain.

MKL_DYNAMIC mkl_set_dynamic Enables Intel® oneAPI
Math Kernel Library to
dynamically change the
number of OpenMP
threads.

OMP_DYNAMIC

NOTE
Call mkl_set_num_threads()to force Intel® oneAPI Math Kernel Library to use a given number of
OpenMP threads and prevent it from reacting to the environment variablesMKL_NUM_THREADS,
MKL_DOMAIN_NUM_THREADS, and OMP_NUM_THREADS.

The example below shows how to force Intel® oneAPI Math Kernel Library to use one thread:

// ******* C language *******

#include <mkl.h>
...
mkl_set_num_threads (1);

// ******* Fortran language *******
...
call mkl_set_num_threads(1)

See the Intel® oneAPI Math Kernel Library Developer Reference for the detailed description of the threading
control functions, their parameters, calling syntax, and more code examples.

MKL_DYNAMIC
The MKL_DYNAMICenvironment variable enables Intel® oneAPI Math Kernel Library to dynamically change the
number of threads.

The default value of MKL_DYNAMIC is TRUE, regardless of OMP_DYNAMIC, whose default value may be FALSE.

When MKL_DYNAMIC is TRUE,Intel® oneAPI Math Kernel Library may use fewer OpenMP threads than the
maximum number you specify.

For example, MKL_DYNAMIC set to TRUE enables optimal choice of the number of threads in the following
cases:

• If the requested number of threads exceeds the number of physical cores (perhaps because of using the
Intel® Hyper-Threading Technology), Intel® oneAPI Math Kernel Library scales down the number of
OpenMP threads to the number of physical cores.

• If you are able to detect the presence of a message-passing interface (MPI), but cannot determine
whether it has been called in a thread-safe mode, Intel® oneAPI Math Kernel Library runs one OpenMP
thread.

 4 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

48

When MKL_DYNAMIC is FALSE, Intel® oneAPI Math Kernel Library uses the suggested number of OpenMP
threads whenever the underlying algorithms permit.For example, if you attempt to do a size one matrix-
matrix multiply across eight threads, the library may instead choose to use only one thread because it is
impractical to use eight threads in this event.

If Intel® oneAPI Math Kernel Library is called from an OpenMP parallel region in your program, Intel® oneAPI
Math Kernel Library uses only one thread by default. If you want Intel® oneAPI Math Kernel Library to go
parallel in such a call, link your program against an OpenMP threading RTL supported by Intel® oneAPI Math
Kernel Library and set the environment variables:

• OMP_NESTED to TRUE
• OMP_DYNAMIC and MKL_DYNAMIC to FALSE
• MKL_NUM_THREADS to some reasonable value

With these settings, Intel® oneAPI Math Kernel Library usesMKL_NUM_THREADS threads when it is called from
the OpenMP parallel region in your program.

In general, set MKL_DYNAMIC to FALSEonly under circumstances that Intel® oneAPI Math Kernel Library is
unable to detect, for example, to use nested parallelism where the library is already called from a parallel
section.

MKL_DOMAIN_NUM_THREADS
The MKL_DOMAIN_NUM_THREADS environment variable suggests the number of OpenMP threads for a
particular function domain.

MKL_DOMAIN_NUM_THREADS accepts a string value <MKL-env-string>, which must have the following
format:

<MKL-env-string> ::= <MKL-domain-env-string> { <delimiter><MKL-domain-env-string> }
<delimiter> ::= [<space-symbol>*] (<space-symbol> | <comma-symbol> | <semicolon-
symbol> | <colon-symbol>) [<space-symbol>*]
<MKL-domain-env-string> ::= <MKL-domain-env-name><uses><number-of-threads>
<MKL-domain-env-name> ::= MKL_DOMAIN_ALL | MKL_DOMAIN_BLAS | MKL_DOMAIN_FFT |
MKL_DOMAIN_VML | MKL_DOMAIN_PARDISO
<uses> ::= [<space-symbol>*] (<space-symbol> | <equality-sign> | <comma-symbol>)
[<space-symbol>*]
<number-of-threads> ::= <positive-number>
<positive-number> ::= <decimal-positive-number> | <octal-number> | <hexadecimal-number>
In the syntax above, values of <MKL-domain-env-name> indicate function domains as follows:

MKL_DOMAIN_ALL All function domains

MKL_DOMAIN_BLAS BLAS Routines

MKL_DOMAIN_FFT non-cluster Fourier Transform Functions

MKL_DOMAIN_LAPACK LAPACK Routines

MKL_DOMAIN_VML Vector Mathematics (VM)

MKL_DOMAIN_PARDISO Intel® oneAPI Math Kernel Library PARDISO, a direct sparse solver
based on Parallel Direct Sparse Solver (PARDISO*)

For example, you could set the MKL_DOMAIN_NUM_THREADSenvironment variable to any of the following string
variants, in this case, defining three specific domain variables internal to Intel® oneAPI Math Kernel Library:

MKL_DOMAIN_NUM_THREADS="MKL_DOMAIN_ALL=2, MKL_DOMAIN_BLAS=1, MKL_DOMAIN_FFT=4"
MKL_DOMAIN_NUM_THREADS="MKL_DOMAIN_ALL 2 : MKL_DOMAIN_BLAS 1 : MKL_DOMAIN_FFT 4"
MKL_DOMAIN_NUM_THREADS="MKL_DOMAIN_ALL=2 : MKL_DOMAIN_BLAS=1 : MKL_DOMAIN_FFT=4"

Managing Performance and Memory 4

49

MKL_DOMAIN_NUM_THREADS="MKL_DOMAIN_ALL=2; MKL_DOMAIN_BLAS=1; MKL_DOMAIN_FFT=4"
MKL_DOMAIN_NUM_THREADS="MKL_DOMAIN_ALL=2 MKL_DOMAIN_BLAS 1, MKL_DOMAIN_FFT 4"
MKL_DOMAIN_NUM_THREADS="MKL_DOMAIN_ALL,2: MKL_DOMAIN_BLAS 1, MKL_DOMAIN_FFT,4"

NOTE Prepend the appropriate set/export/setenv command for your command shell and operating
system. Refer to Setting the Environment Variables for Threading Control for more details.

The global variables MKL_DOMAIN_ALL, MKL_DOMAIN_BLAS, MKL_DOMAIN_FFT, MKL_DOMAIN_VML, and
MKL_DOMAIN_PARDISO, as well as the interface for the Intel® oneAPI Math Kernel Library threading control
functions, can be found in themkl.h header file.

NOTE You can retrieve the values of the specific domain variables that you have set in your code with
a call to the mkl_get_domain_max_threads(domain_name) function per the Fortran and C interface
with the desired domain variable name.

This table illustrates how values of MKL_DOMAIN_NUM_THREADS are interpreted.

Value of
MKL_DOMAIN_NUM_
THREADS

Interpretation

MKL_DOMAIN_ALL=
4

All parts of Intel® oneAPI Math Kernel Library should try four OpenMP threads. The
actual number of threads may be still different because of theMKL_DYNAMIC setting
or system resource issues. The setting is equivalent to MKL_NUM_THREADS = 4.

MKL_DOMAIN_ALL=
1,
MKL_DOMAIN_BLAS
=4

All parts of Intel® oneAPI Math Kernel Library should try one OpenMP thread, except
for BLAS, which is suggested to try four threads.

MKL_DOMAIN_VML=
2

VM should try two OpenMP threads. The setting affects no other part of Intel®
oneAPI Math Kernel Library.

Be aware that the domain-specific settings take precedence over the overall ones. For example, the
"MKL_DOMAIN_BLAS=4" value of MKL_DOMAIN_NUM_THREADS suggests trying four OpenMP threads for BLAS,
regardless of later setting MKL_NUM_THREADS, and a function call "mkl_domain_set_num_threads (4,
MKL_DOMAIN_BLAS);" suggests the same, regardless of later calls to mkl_set_num_threads().
However, a function call with input "MKL_DOMAIN_ALL", such as "mkl_domain_set_num_threads (4,
MKL_DOMAIN_ALL);" is equivalent to "mkl_set_num_threads(4)", and thus it will be overwritten by later
calls to mkl_set_num_threads. Similarly, the environment setting of MKL_DOMAIN_NUM_THREADS with
"MKL_DOMAIN_ALL=4" will be overwritten with MKL_NUM_THREADS = 2.

Whereas the MKL_DOMAIN_NUM_THREADS environment variable enables you set several variables at once, for
example, "MKL_DOMAIN_BLAS=4,MKL_DOMAIN_FFT=2", the corresponding function does not take string
syntax. So, to do the same with the function calls, you may need to make several calls, which in this
example are as follows:

mkl_domain_set_num_threads (4, MKL_DOMAIN_BLAS);
mkl_domain_set_num_threads (2, MKL_DOMAIN_FFT);

MKL_NUM_STRIPES
The MKL_NUM_STRIPESenvironment variable controls the Intel® oneAPI Math Kernel Library threading
algorithm for?gemm functions. When MKL_NUM_STRIPES is set to a positive integer value nstripes, Intel®
oneAPI Math Kernel Library tries to use a number of partitions equal tonstripes along the leading dimension
of the output matrix.

 4 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

50

https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/top/support-functions/threading-control/mkl-domain-get-max-threads.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/support-functions/threading-control/mkl-domain-get-max-threads.html

The following table explains how the value nstripes of MKL_NUM_STRIPESdefines the partitioning algorithm
used by Intel® oneAPI Math Kernel Library for?gemm output matrix; max_threads_for_mkldenotes the
maximum number of OpenMP threads for Intel® oneAPI Math Kernel Library:

Value of

MKL_NUM_STRIPES
Partitioning Algorithm

1 < nstripes <
(max_threads_for_mkl/
2)

2D partitioning with the number of partitions equal to nstripes:
• Horizontal, for column-major ordering.
• Vertical, for row-major ordering.

nstripes = 1 1D partitioning algorithm along the opposite direction of the leading dimension.

nstripes ≥
(max_threads_for_mkl /
2)

1D partitioning algorithm along the leading dimension.

nstripes < 0 The default Intel® oneAPI Math Kernel Library threading algorithm.

The following figure shows the partitioning of an output matrix for nstripes = 4 and a total number of 8
OpenMP threads for column-major and row-major orderings:

You can use support functions mkl_set_num_stripes and mkl_get_num_stripes to set and query the
number of stripes, respectively.

Setting the Environment Variables for Threading Control
To set the environment variables used for threading control, in the command shell in which the program is
going to run, enter the export or setenv commands, depending on the shell you use.

For a bash shell, use the export commands:

export <VARIABLE NAME>=<value>
For example:

export MKL_NUM_THREADS=4
export MKL_DOMAIN_NUM_THREADS="MKL_DOMAIN_ALL=1, MKL_DOMAIN_BLAS=4"
export MKL_DYNAMIC=FALSE

Managing Performance and Memory 4

51

export MKL_NUM_STRIPES=4
For the csh or tcsh shell, use the setenv commands:

setenv <VARIABLE NAME><value>.

For example:

setenv MKL_NUM_THREADS 4
setenv MKL_DOMAIN_NUM_THREADS "MKL_DOMAIN_ALL=1, MKL_DOMAIN_BLAS=4"
setenv MKL_DYNAMIC FALSE
setenv MKL_NUM_STRIPES 4

Calling oneMKL Functions from Multi-threaded Applications
This section summarizes typical usage models and available options for calling Intel® oneAPI Math Kernel
Library functions from multi-threaded applications. These recommendations apply to any multi-threading
environments: OpenMP*, Intel® Threading Building Blocks,POSIX* threads, and others.

Usage model: disable oneMKL internal threading for the whole application
When used:Intel® oneAPI Math Kernel Library internal threading interferes with application's own threading
or may slow down the application.

Example: the application is threaded at top level, or the application runs concurrently with other
applications.

Options:

• Link statically or dynamically with the sequential library
• Link with the Single Dynamic Library mkl_rt.so and select the sequential library using an environment

variable or a function call:

• Set MKL_THREADING_LAYER=sequential
• Call mkl_set_threading_layer(MKL_THREADING_SEQUENTIAL)‡

Usage model: partition system resources among application threads
When used: application threads are specialized for a particular computation.

Example: one thread solves equations on all cores but one, while another thread running on a single core
updates a database.

Linking Options:

• Link statically or dynamically with a threading library
• Link with the Single Dynamic Library mkl_rt.so and select a threading library using an environment

variable or a function call:

• set MKL_THREADING_LAYER=intel or MKL_THREADING_LAYER=tbb
• call mkl_set_threading_layer(MKL_THREADING_INTEL) or

mkl_set_threading_layer(MKL_THREADING_TBB)
Other Options for OpenMP Threading:

• Set the MKL_NUM_THREADSenvironment variable to a desired number of OpenMP threads for Intel® oneAPI
Math Kernel Library.

• Set the MKL_DOMAIN_NUM_THREADSenvironment variable to a desired number of OpenMP threads for
Intel® oneAPI Math Kernel Library for a particular function domain.

Use if the application threads work with different Intel® oneAPI Math Kernel Library function domains.

 4 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

52

• Call mkl_set_num_threads()
Use to globally set a desired number of OpenMP threads for Intel® oneAPI Math Kernel Library at run time.

• Call mkl_domain_set_num_threads().

Use if at some point application threads start working with different Intel® oneAPI Math Kernel Library
function domains.

• Call mkl_set_num_threads_local().

Use to set the number of OpenMP threads for Intel® oneAPI Math Kernel Library called from a particular
thread.

NOTE
If your application uses OpenMP* threading, you may need to provide additional settings:

• Set the environment variable OMP_NESTED=TRUE, or alternatively call omp_set_nested(1), to
enable OpenMP nested parallelism.

• Set the environment variable MKL_DYNAMIC=FALSE, or alternatively call mkl_set_dynamic(0), to
prevent Intel® oneAPI Math Kernel Library from dynamically reducing the number of OpenMP
threads in nested parallel regions.

‡ For details of the mentioned functions, see the Support Functions section of the Intel® oneAPI Math Kernel
Library Developer Reference, available in the Intel Software Documentation Library.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
Linking with Threading Libraries
Dynamically Selecting the Interface and Threading Layer
oneMKL-specific Environment Variables for OpenMP Threading Control
MKL_DOMAIN_NUM_THREADS
Avoiding Conflicts in the Execution Environment
Intel Software Documentation Library

Using Intel® Hyper-Threading Technology
Intel® Hyper-Threading Technology (Intel® HT Technology) is especially effective when each thread performs
different types of operations and when there are under-utilized resources on the processor. However, Intel®
oneAPI Math Kernel Library fits neither of these criteria because the threaded portions of the library execute
at high efficiencies using most of the available resources and perform identical operations on each thread.
You may obtain higher performance by disabling Intel HT Technology.

If you run with Intel HT Technology enabled, performance may be especially impacted if you run on fewer
threads than physical cores. Moreover, if, for example, there are two threads to every physical core, the
thread scheduler may assign two threads to some cores and ignore the other cores altogether. If you are
using the OpenMP* library of the Intel Compiler, read the respective User Guide on how to best set the
thread affinity interface to avoid this situation. For Intel® oneAPI Math Kernel Library, apply the following
setting:

export KMP_AFFINITY=granularity=fine,compact,1,0

Managing Performance and Memory 4

53

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex
https://software.intel.com/content/www/us/en/develop/documentation.html

If you are using the Intel TBB threading technology, read the documentation on the
tbb::affinity_partitioner class at https://www.threadingbuildingblocks.org/documentation to find out
how to affinitize Intel TBB threads.

Managing Multi-core Performance
You can obtain best performance on systems with multi-core processors by requiring thatthreads do not
migrate from core to core. To do this, bind threads to the CPU cores bysetting an affinity mask to threads.
Use one of the following options:

• OpenMP facilities (if available), for example, theKMP_AFFINITYenvironment variable using the Intel
OpenMP library

• A system function, as explained below
• Intel TBB facilities (if available), for example, the tbb::affinity_partitioner class (for details, see

https://www.threadingbuildingblocks.org/documentation)

Consider the following performance issue:

• The system has two sockets with two cores each, for a total of four cores (CPUs).
• The application sets the number of OpenMP threads to two and calls Intel® oneAPI Math Kernel Library to

perform a Fourier transform. This call takes considerably different amounts of time from run to run.

To resolve this issue, before calling Intel® oneAPI Math Kernel Library, set an affinity mask for each OpenMP
thread using theKMP_AFFINITY environment variable or the sched_setaffinity system function. The
following code example shows how to resolve the issue by setting an affinity mask by operating system
means using the Intel compiler. The code calls the functionsched_setaffinityto bind the threads
tothecoreson different sockets. Then the Intel® oneAPI Math Kernel LibraryFFT functionis called:

#define _GNU_SOURCE //for using the GNU CPU affinity
// (works with the appropriate kernel and glibc)
// Set affinity mask
#include <sched.h>
#include <stdio.h>
#include <unistd.h>
#include <omp.h>
int main(void) {
 int NCPUs = sysconf(_SC_NPROCESSORS_CONF);
 printf("Using thread affinity on %i NCPUs\n", NCPUs);
#pragma omp parallel default(shared)
 {
 cpu_set_t new_mask;
 cpu_set_t was_mask;
 int tid = omp_get_thread_num();

 CPU_ZERO(&new_mask);

 // 2 packages x 2 cores/pkg x 1 threads/core (4 total cores)
 CPU_SET(tid==0 ? 0 : 2, &new_mask);

 if (sched_getaffinity(0, sizeof(was_mask), &was_mask) == -1) {
 printf("Error: sched_getaffinity(%d, sizeof(was_mask), &was_mask)\n", tid);
 }
 if (sched_setaffinity(0, sizeof(new_mask), &new_mask) == -1) {
 printf("Error: sched_setaffinity(%d, sizeof(new_mask), &new_mask)\n", tid);
 }
 printf("tid=%d new_mask=%08X was_mask=%08X\n", tid,
 (unsigned int)(&new_mask), *(unsigned int*)(&was_mask));
 }
 // Call Intel MKL FFT function
 return 0;

 4 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

54

https://www.threadingbuildingblocks.org/documentation
https://www.threadingbuildingblocks.org/documentation

}

Compile the application with the Intel compiler using the following command:

icc test_application.c -openmp
wheretest_application.cis the filename for the application.

Build the application. Run it in two threads, for example, by using the environment variable to set the
number of threads:

env OMP_NUM_THREADS=2 ./a.out
See the Linux Programmer's Manual (in man pages format) for particulars of the
sched_setaffinityfunction used in the above example.

Managing Performance with Heterogeneous Cores
A hybrid architecture offers heterogeneous CPU cores. For example, the 12th Gen Intel® Core™ processor
(Alder Lake) contains two types of cores: Performance-cores (P-cores) and Efficient-cores (E-cores).

Achieving the best performance on a hybrid architecture is harder because load balancing with
heterogeneous cores is more complicated. Therefore, for hybrid architectures like Alder Lake, we recommend
running threads on the P-cores only. This approach might not yield the best performance, but it is simple and
predictable.

To specify P-cores with OpenMP, users can use the environment variable KMP_HW_SUBSET. For a detailed
description of this environment variable, refer to the Intel® C++ Compiler Classic Developer Guide and
Reference. In the case of an Alder Lake processor with eight P-cores, either of the following two commands
can be used for restricting threads to run only on the P-cores:

export KMP_HW_SUBSET=8c:intel_core
—or—

export KMP_HW_SUBSET=8c:eff1
Note that for higher performance, Intel® Hyper-Threading Technology on P-cores must be disabled. You can
achieve this either by changing the BIOS setting or by using KMP_HW_SUBSET to specify P-cores and one-
thread-per-core with the following command:

export KMP_HW_SUBSET=8c:intel_core,1t
—or—

export KMP_HW_SUBSET=8c:eff1,1t
If the user decides to adopt the more difficult approach of running on both P-cores and E-cores to maximize
performance, there are a few aspects to take into consideration:

• Static versus dynamic load balancing
• Problem size
• Number of P-cores and E-cores
• OpenMP versus oneTBB

If there are similar or equal numbers of P-cores and E-cores and if both core types are used, using static load
balancing for splitting the work items is likely to result in lower performance because E-cores will take longer
to complete the work items assigned to them. For large GEMMs and {S,D}GETRF routines, oneMKL has
implemented dynamic load balancing with OpenMP and will automatically select the best load balancing
scheme. For most cases with small or regular problem sizes, static load balancing on P-cores is likely to give
better performance. If the problem size is very large, the overhead of dynamic scheduling is small compared
to overall computation time and dynamic load balancing will make more efficient use of P-cores and E-cores.

Managing Performance and Memory 4

55

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compilation/supported-environment-variables.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compilation/supported-environment-variables.html

If the number of P-cores is much smaller than the number of E-cores, running on all cores may outperform
limiting computations to only P-cores. Additional performance measurements would be needed to determine
the best strategy.

As an alternative to OpenMP, users can also try oneTBB, which might give better results for a given set of
supported operations.

Improving Performance for Small Size Problems
The overhead of calling an Intel® oneAPI Math Kernel Library function for small problem sizes can be
significant when the functionhas a large number of parameters or internally checks parameter errors. To
reduce the performance overhead for these small size problems, the Intel® oneAPI Math Kernel Librarydirect
callfeature works in conjunction with the compiler to preprocess the calling parameters to supported Intel®
oneAPI Math Kernel Library functions and directly call or inline special optimized small-matrix kernels that
bypass error checking.For a list of functions supporting direct call, see Limitations of the Direct Call.

To activate the feature, do the following:

• Compile your C or Fortran code with the preprocessor macro depending on whether a threaded or
sequential mode of Intel® oneAPI Math Kernel Library is required by supplying the compiler option as
explained below:

Intel® oneAPI Math Kernel
Library Mode

Macro Compiler Option

Threaded MKL_DIRECT_CALL -DMKL_DIRECT_CALL

Sequential MKL_DIRECT_CALL_SEQ -DMKL_DIRECT_CALL_SEQ
• For Fortran applications:

• Enable preprocessor by using the -fpp option for Intel® Fortran Compiler.
• Include the Intel® oneAPI Math Kernel Library Fortran include filemkl_direct_call.fi.

Intel® oneAPI Math Kernel Library skips error checking and intermediate function calls if the problem size is
small enough (for example: a call to a function that supports direct call, such asdgemm, with matrix ranks
smaller than 50).

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Using MKL_DIRECT_CALL in C Applications
The following examples of code and link lines show how to activate direct calls to Intel® oneAPI Math Kernel
Library kernels in C applications:

• Include the mkl.h header file:

#include "mkl.h"
int main(void) {

// Call Intel MKL DGEMM

return 0;
}

• For multi-threaded Intel® oneAPI Math Kernel Library, compile withMKL_DIRECT_CALL preprocessor
macro:

icc –DMKL_DIRECT_CALL -std=c99 your_application.c -Wl,--start-group $(MKLROOT)/lib/intel64/
libmkl_intel_lp64.a

 4 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

56

https://www.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/top.html
https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

$(MKLROOT)/lib/intel64/libmkl_core.a
$(MKLROOT)/lib/intel64/libmkl_intel_thread.a -Wl,--end-group -lpthread –lm -openmp -I$(MKLROOT)/
include

• To use Intel® oneAPI Math Kernel Library in the sequential mode, compile withMKL_DIRECT_CALL_SEQ
preprocessor macro:

icc –DMKL_DIRECT_CALL_SEQ -std=c99 your_application.c -Wl,--start-group $(MKLROOT)/lib/intel64/
libmkl_intel_lp64.a
$(MKLROOT)/lib/intel64/libmkl_core.a
$(MKLROOT)/lib/intel64/libmkl_sequential.a -Wl,--end-group -lpthread –lm -I$(MKLROOT)/include

Using MKL_DIRECT_CALL in Fortran Applications
The following examples of code and link lines show how to activate direct calls to Intel® oneAPI Math Kernel
Library kernels in Fortran applications:

• Include mkl_direct_call.fi, to be preprocessed by the Fortran compiler preprocessor

include "mkl_direct_call.fi"
 program DGEMM_MAIN
....
* Call Intel MKL DGEMM
....
 call sub1()
 stop 1
 end

* A subroutine that calls DGEMM
 subroutine sub1
* Call Intel MKL DGEMM

 end
• For multi-threaded Intel® oneAPI Math Kernel Library, compile with-fpp option for Intel Fortran compiler

and with MKL_DIRECT_CALL preprocessor macro:

ifort –DMKL_DIRECT_CALL –fpp your_application.f -Wl,--start-group
$(MKLROOT)/lib/intel64/libmkl_intel_lp64.a
$(MKLROOT)/lib/intel64/libmkl_core.a $(MKLROOT)/lib/intel64/libmkl_intel_thread.a -Wl,--end-group
-lpthread –lm -openmp -I$(MKLROOT)/include

• To use Intel® oneAPI Math Kernel Library in the sequential mode, compile with-fpp option for Intel Fortran
compiler (or with -Mpreprocess for PGI compilers) and with MKL_DIRECT_CALL_SEQ preprocessor
macro:

ifort –DMKL_DIRECT_CALL_SEQ –fpp your_application.f -Wl,--start-group
$(MKLROOT)/lib/intel64/libmkl_intel_lp64.a
$(MKLROOT)/lib/intel64/libmkl_core.a $(MKLROOT)/lib/intel64/libmkl_sequential.a -Wl,--end-group
-lpthread –lm -I$(MKLROOT)/include

Limitations of the Direct Call
Directly calling the Intel® oneAPI Math Kernel Library kernels has the following limitations:

• If the MKL_DIRECT_CALL or MKL_DIRECT_CALL_SEQmacro is used, Intel® oneAPI Math Kernel Library may
skip error checking.

Important
With a limited error checking, you are responsible for checking the correctness of function parameters
to avoid unsafe and incorrect code execution.

Managing Performance and Memory 4

57

• The feature is only available for the following functions:

• BLAS: ?gemm, ?gemm3m, ?syrk, ?trsm, ?axpy, and ?dot
• LAPACK: ?getrf, ?getrs, ?getri, ?potrf, and ?geqrf. (available for C applications only)

• Intel® oneAPI Math Kernel Library Verbose mode, Conditional Numerical Reproducibility, and BLAS95
interfaces are not supported.

• GNU* Fortran compilers are not supported.
• For C applications, you must enable mixing declarations and user code by providing the -std=c99 option

for Intel® compilers.

Other Tips and Techniques to Improve Performance

See Also
Managing Performance of the Cluster Fourier Transform Functions

Coding Techniques
This section discusses coding techniques to improve performance on processors based on supported
architectures.

To improve performance, properly align arrays in your code. Additional conditions can improve performance
for specific function domains.

Data Alignment and Leading Dimensions
To improve performance of your application that calls Intel® oneAPI Math Kernel Library, align your arrays on
64-byte boundaries and ensure that the leading dimensions of the arrays are divisible by 64/element_size,
where element_size is the number of bytes for the matrix elements (4 for single-precision real, 8 for double-
precision real and single-precision complex, and 16 for double-precision complex) . For more details, see
Example of Data Alignment.

For Intel® Xeon Phi™ processor x200 product family, codenamed Knights Landing, align your matrices on
4096-byte boundaries and set the leading dimension to the following integer expression:
(((n * element_size + 511) / 512) * 512 + 64) /element_size,
where n is the matrix dimension along the leading dimension.

LAPACK Packed Routines
The routines with the names that contain the letters HP, OP, PP, SP, TP, UPin the matrix type and
storage position (the second and third letters respectively) operate on the matrices in the packed format (see
LAPACK "Routine Naming Conventions" sections in the Intel® oneAPI Math Kernel Library Developer
Reference). Their functionality is strictly equivalent to the functionality of the unpacked routines with the
names containing the lettersHE, OR, PO, SY, TR, UN in the same positions, but the performance is
significantly lower.

If the memory restriction is not too tight, use an unpacked routine for better performance. In this case, you
need to allocate N2/2 more memory than the memory required by a respective packed routine, where N is
the problem size (the number of equations).

For example, to speed up solving a symmetric eigenproblem with an expert driver, use the unpacked routine:

call dsyevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork,
iwork, ifail, info)

where a is the dimension lda-by-n, which is at least N2 elements,

 4 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

58

instead of the packed routine:

call dspevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork, ifail,
info)

where ap is the dimension N*(N+1)/2.

See Also
Managing Performance of the Cluster Fourier Transform Functions

Improving oneMKL Performance on Specific Processors

Dual-Core Intel® Xeon® Processor 5100 Series
To get the best performance with Intel® oneAPI Math Kernel Library on Dual-Core Intel® Xeon® processor
5100 series systems, enable the Hardware DPL (streaming data) Prefetcher functionality of this processor. To
configure this functionality, use the appropriate BIOS settings, as described in your BIOS documentation.

Operating on Denormals
The IEEE 754-2008 standard, "An IEEE Standard for Binary Floating-Point Arithmetic", defines denormal (or
subnormal) numbers as non-zero numbers smaller than the smallest possible normalized numbers for a
specific floating-point format. Floating-point operations on denormals are slower than on normalized
operands because denormal operands and results are usually handled through a software assist mechanism
rather than directly in hardware. This software processing causes Intel® oneAPI Math Kernel Library functions
that consume denormals to run slower than with normalized floating-point numbers.

You can mitigate this performance issue by setting the appropriate bit fields in the MXCSR floating-point
control register to flush denormals to zero (FTZ) or to replace any denormals loaded from memory with zero
(DAZ). Check your compiler documentation to determine whether it has options to control FTZ and DAZ.
Note that these compiler options may slightly affect accuracy.

Using Memory Functions

Avoiding Memory Leaks in oneMKL
When running, Intel® oneAPI Math Kernel Library (oneMKL) may allocate and deallocate internal buffers to
facilitate better performance. Memory leaks can occur if the Intel® oneAPI Math Kernel Library is unloaded
before freeing the internal buffers.

You can free the internal buffers by calling the mkl_free_buffers() function or, for more granular control,
the mkl_thread_free_buffers() function.

Alternatively, setting the MKL_DISABLE_FAST_MM environment variable to 1 or calling the
mkl_disable_fast_mm() function disables the internal memory manager. Be aware that this change may
negatively impact the performance of some oneMKL functions, especially for small problem sizes.

See Also
Intel Software Documentation Library

Managing Performance and Memory 4

59

https://software.intel.com/content/www/us/en/develop/documentation.html

Using High-bandwidth Memory with oneMKL
To achieve maximum performance, Intel® oneAPI Math Kernel Library may use the memkind library (https://
github.com/memkind/memkind), which enables controlling memory characteristics and partitioning the heap
between different kinds of memory. By default Intel® oneAPI Math Kernel Library memory manager tries to
allocate memory to Multi-Channel Dynamic Random Access Memory (MCDRAM) using the memkind library on
the 2nd generation Intel® Xeon Phi™ product family (for more details of MCDRAM, see https://
software.intel.com/content/www/us/en/develop/articles/mcdram-high-bandwidth-memory-on-knights-
landing-analysis-methods-tools.html). If allocation of memory to MCDRAM is not possible at the moment,
Intel® oneAPI Math Kernel Library memory manager falls back to a regular system allocator.

By default the amount of MCDRAM available for Intel® oneAPI Math Kernel Library is unlimited. To control the
amount of MCDRAM available for Intel® oneAPI Math Kernel Library, do either of the following:

• Call

mkl_set_memory_limit (MKL_MEM_MCDRAM, <limit_in_mbytes>)
• Set the environment variable:

• For the bash shell:

MKL_FAST_MEMORY_LIMIT="<limit_in_mbytes>"
• For a C shell (csh or tcsh):

setenv MKL_FAST_MEMORY_LIMIT "<limit_in_mbytes>"
The setting of the limit affects all Intel® oneAPI Math Kernel Library functions, including user-callable memory
functions such asmkl_malloc. Therefore, if an application calls mkl_malloc, mkl_calloc, or mkl_realloc,
which always tries to allocate memory to MCDRAM, make sure that the limit is sufficient.

If you replace Intel® oneAPI Math Kernel Library memory management functions with your own functions (for
details, see Redefining Memory Functions), Intel® oneAPI Math Kernel Library uses your functions and does
not work with the memkind library directly.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Redefining Memory Functions
In C/C++ programs, you can replace Intel® oneAPI Math Kernel Library memory functions that the library
uses by default with your own functions. To do this, use thememory renaming feature.

Memory Renaming
In addition to the memkind library, Intel® oneAPI Math Kernel Library memory management by default uses
standard C run-time memory functions to allocate or free memory. These functions can be replaced using
memory renaming.

Intel® oneAPI Math Kernel Library accesses the memory functions by pointersi_malloc, i_free,
i_calloc, and i_realloc, which are visible at the application level. You can programmatically redefine
values of these pointers to the addresses of your application's memory management functions.

Redirecting the pointers is the only correct way to use your own set of memory management functions. If
you call your own memory functions without redirecting the pointers, the memory will get managed by two
independent memory management packages, which may cause unexpected memory issues.

 4 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

60

https://github.com/memkind/memkind
https://github.com/memkind/memkind
https://software.intel.com/content/www/us/en/develop/articles/mcdram-high-bandwidth-memory-on-knights-landing-analysis-methods-tools.html
https://software.intel.com/content/www/us/en/develop/articles/mcdram-high-bandwidth-memory-on-knights-landing-analysis-methods-tools.html
https://software.intel.com/content/www/us/en/develop/articles/mcdram-high-bandwidth-memory-on-knights-landing-analysis-methods-tools.html
https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

How to Redefine Memory Functions
To redefine memory functions, use the following procedure:

1. Include the i_malloc.h header file in your code.
This header file contains all declarations required for replacing the memory allocation functions. The
header file also describes how memory allocation can be replaced in those Intel libraries that support
this feature.

2. Redefine values of pointers i_malloc, i_free, i_calloc, and i_reallocprior to the first call to
Intel® oneAPI Math Kernel Library functions, as shown in the following example:

 #include "i_malloc.h"
 . . .
 i_malloc = my_malloc;
 i_calloc = my_calloc;
 i_realloc = my_realloc;
 i_free = my_free;
 . . .
 // Now you may call Intel MKL functions

See Also
Using High-bandwidth Memory with Intel® oneAPI Math Kernel Library

Managing Performance and Memory 4

61

Language-specific Usage
Options 5
The provides broad support for Fortran and C/C++ programming. However, not all functions support both
Fortran and C interfaces. For example, some LAPACK functions have no C interface. You can call such
functions from C using mixed-language programming.

If you want to use LAPACK or BLAS functions that support Fortran 77 in the Fortran 95 environment,
additional effort may be initially required to build compiler-specific interface libraries and modules from the
source code provided with Intel® oneAPI Math Kernel Library.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
Language Interfaces Support, by Function Domain

Using Language-Specific Interfaces with Intel® oneAPI Math
Kernel Library
This section discusses mixed-language programming and the use of language-specific interfaces with Intel®
oneAPI Math Kernel Library.

See also the "FFTW Interface to Intel® oneAPI Math Kernel Library" Appendix in the Intel® oneAPI Math Kernel
Library Developer Reference for details of the FFTW interfaces to Intel® oneAPI Math Kernel Library.

Interface Libraries and Modules
You can create the following interface libraries and modules using the respective makefiles located in the
interfaces directory.

File name Contains

Libraries, in Intel® oneAPI Math Kernel Library architecture-specific directories

libmkl_blas95.1 Fortran 95 wrappers for BLAS (BLAS95) for IA-32 architecture.

libmkl_blas95_ilp64.a1 Fortran 95 wrappers for BLAS (BLAS95) supporting LP64
interface.

libmkl_blas95_lp64.a1 Fortran 95 wrappers for BLAS (BLAS95) supporting ILP64
interface.

libmkl_lapack95.1 Fortran 95 wrappers for LAPACK (LAPACK95) for IA-32
architecture.

libmkl_lapack95_lp64.a1 Fortran 95 wrappers for LAPACK (LAPACK95) supporting LP64
interface.

libmkl_lapack95_ilp64.a1 Fortran 95 wrappers for LAPACK (LAPACK95) supporting ILP64
interface.

 5 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

62

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

File name Contains

libfftw2xc_intel.a1 Interfaces for FFTW version 2.x (C interface for Intel
compilers) to call Intel® oneAPI Math Kernel Library FFT.

libfftw2xc_gnu.a Interfaces for FFTW version 2.x (C interface for GNU
compilers) to call Intel® oneAPI Math Kernel Library FFT.

libfftw2xf_intel.a Interfaces for FFTW version 2.x (Fortran interface for Intel
compilers) to call Intel® oneAPI Math Kernel Library FFT.

libfftw2xf_gnu.a Interfaces for FFTW version 2.x (Fortran interface for GNU
compiler) to call Intel® oneAPI Math Kernel Library FFT.

libfftw3xc_intel.a2 Interfaces for FFTW version 3.x (C interface for Intel compiler)
to call Intel® oneAPI Math Kernel Library FFT.

libfftw3xc_gnu.a Interfaces for FFTW version 3.x (C interface for GNU
compilers) to call Intel® oneAPI Math Kernel Library FFT.

libfftw3xf_intel.a2 Interfaces for FFTW version 3.x (Fortran interface for Intel
compilers) to call Intel® oneAPI Math Kernel Library FFT.

libfftw3xf_gnu.a Interfaces for FFTW version 3.x (Fortran interface for GNU
compilers) to call Intel® oneAPI Math Kernel Library FFT.

libfftw2x_cdft_SINGLE.a Single-precision interfaces for MPI FFTW version 2.x (C
interface) to call Intel® oneAPI Math Kernel Library cluster FFT.

libfftw2x_cdft_DOUBLE.a Double-precision interfaces for MPI FFTW version 2.x (C
interface) to call Intel® oneAPI Math Kernel Library cluster FFT.

libfftw3x_cdft.a Interfaces for MPI FFTW version 3.x (C interface) to call Intel®
oneAPI Math Kernel Library cluster FFT.

libfftw3x_cdft_ilp64.a Interfaces for MPI FFTW version 3.x (C interface) to call Intel®
oneAPI Math Kernel Library cluster FFT supporting the ILP64
interface.

Modules, in architecture- and interface-specific subdirectories of the Intel® oneAPI Math Kernel
Library include directory

blas95.mod1 Fortran 95 interface module for BLAS (BLAS95).

lapack95.mod1 Fortran 95 interface module for LAPACK (LAPACK95).

f95_precision.mod1 Fortran 95 definition of precision parameters for BLAS95 and
LAPACK95.

mkl_service.mod1 Fortran 95 interface module for Intel® oneAPI Math Kernel
Library support functions.

1 Prebuilt for the Intel® Fortran compiler
2FFTW3 interfaces are integrated with Intel® oneAPI Math Kernel Library. Look into<mkl directory>/
interfaces/fftw3x*/makefile for options defining how to build and where to place the standalone library
with the wrappers.

See Also
Fortran 95 Interfaces to LAPACK and BLAS

Language-specific Usage Options 5

63

Fortran 95 Interfaces to LAPACK and BLAS
Fortran 95 interfaces are compiler-dependent. Intel® oneAPI Math Kernel Library provides the interface
libraries and modules precompiled with the Intel® Fortran compiler. Additionally, the Fortran 95 interfaces and
wrappers are delivered as sources. (For more information, seeCompiler-dependent Functions and Fortran 90
Modules). If you are using a different compiler, build the appropriate library and modules with your compiler
and link the library as a user's library:

1. Go to the respective directory <mkl directory>/interfaces/blas95 or <mkl directory>/
interfaces/lapack95

2. Type:

• For the IA 32 architecture, make libia32 INSTALL_DIR =<user_dir>
• make libintel64 [interface=lp64|ilp64] INSTALL_DIR=<user dir>

Important
The parameter INSTALL_DIR is required.

As a result, the required library is built and installed in the <user dir>/lib directory, and the .mod files are
built and installed in the <user dir>/include/<arch>/[/{lp64|ilp64}] directory, where <arch>is
{ia32, intel64} .

By default, the ifort compiler is assumed. You may change the compiler with an additional parameter of
make:
FC=<compiler>.

For example, the command

make libintel64 FC=pgf95 INSTALL_DIR=<userpgf95 dir> interface=lp64
builds the required library and .mod files and installs them in subdirectories of <userpgf95 dir>.

To delete the library from the building directory, type:

• For the IA-32 architecture, make cleania32 INSTALL_DIR=<user_dir>
• make cleanintel64 [interface=lp64|ilp64] INSTALL_DIR=<user dir>
• make clean INSTALL_DIR=<user_dir>

Caution
Even if you have administrative rights, avoid setting INSTALL_DIR=../.. or INSTALL_DIR=<mkl
directory> in a build or clean command above because these settings replace or delete the Intel®
oneAPI Math Kernel Library prebuilt Fortran 95 library and modules.

Compiler-dependent Functions and Fortran 90 Modules
Compiler-dependent functions occur whenever the compiler inserts into the object code function calls that
are resolved in its run-time library (RTL). Linking of such code without the appropriate RTL will result in
undefined symbols. Intel® oneAPI Math Kernel Library has been designed to minimize RTL dependencies.

In cases where RTL dependencies might arise, the functions are delivered as source code and you need to
compile the code with whatever compiler you are using for your application.

In particular, Fortran 90 modules result in the compiler-specific code generation requiring RTL support.
Therefore, Intel® oneAPI Math Kernel Library delivers these modules compiled with the Intel compiler, along
with source code, to be used with different compilers.

 5 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

64

Mixed-language Programming with the Intel Math Kernel
Library
Appendix A Intel® oneAPI Math Kernel Library Language Interfaces Supportlists the programming languages
supported for each Intel® oneAPI Math Kernel Library function domain. However, you can call Intel® oneAPI
Math Kernel Library routines from different language environments.

See also these Knowledge Base articles:

• https://software.intel.com/content/www/us/en/develop/articles/performance-tools-for-software-
developers-how-do-i-use-intel-mkl-with-java.html for how to call Intel® oneAPI Math Kernel Library from
Java* applications.

• https://software.intel.com/content/www/us/en/develop/articles/how-to-use-boost-ublas-with-intel-
mkl.html for how to perform BLAS matrix-matrix multiplication in C++ using Intel® oneAPI Math Kernel
Library substitution of Boost* uBLAS functions.

• https://software.intel.com/content/www/us/en/develop/articles/intel-mkl-and-third-party-applications-
how-to-use-them-together.html for a list of articles describing how to use Intel® oneAPI Math Kernel
Library with third-party libraries and applications.

Calling LAPACK, BLAS, and CBLAS Routines from C/C++ Language Environments
Not all Intel® oneAPI Math Kernel Library function domains support both C and Fortran environments. To use
Intel® oneAPI Math Kernel Library Fortran-style functions in C/C++ environments, you should observe certain
conventions, which are discussed for LAPACK and BLAS in the subsections below.

Caution
Avoid calling BLAS 95/LAPACK 95 from C/C++. Such calls require skills in manipulating the descriptor
of a deferred-shape array, which is the Fortran 90 type. Moreover, BLAS95/LAPACK95 routines contain
links to a Fortran RTL.

LAPACK and BLAS
Because LAPACK and BLAS routines are Fortran-style, when calling them from C-language programs, follow
the Fortran-style calling conventions:

• Pass variables by address, not by value.
Function calls in Example "Calling a Complex BLAS Level 1 Function from C++" and Example "Using
CBLAS Interface Instead of Calling BLAS Directly from C" illustrate this.

• Store your data in Fortran style, that is, column-major rather than row-major order.

With row-major order, adopted in C, the last array index changes most quickly and the first one changes
most slowly when traversing the memory segment where the array is stored. With Fortran-style column-
major order, the last index changes most slowly whereas the first index changes most quickly (as illustrated
by the figure below for a two-dimensional array).

Language-specific Usage Options 5

65

https://software.intel.com/content/www/us/en/develop/articles/performance-tools-for-software-developers-how-do-i-use-intel-mkl-with-java.html
https://software.intel.com/content/www/us/en/develop/articles/performance-tools-for-software-developers-how-do-i-use-intel-mkl-with-java.html
https://software.intel.com/content/www/us/en/develop/articles/how-to-use-boost-ublas-with-intel-mkl.html
https://software.intel.com/content/www/us/en/develop/articles/how-to-use-boost-ublas-with-intel-mkl.html
https://software.intel.com/content/www/us/en/develop/articles/intel-mkl-and-third-party-applications-how-to-use-them-together.html
https://software.intel.com/content/www/us/en/develop/articles/intel-mkl-and-third-party-applications-how-to-use-them-together.html

For example, if a two-dimensional matrix A of size mxn is stored densely in a one-dimensional array B, you
can access a matrix element like this:

A[i][j] = B[i*n+j] in C (i=0, ... , m-1, j=0, ... , -1)

A(i,j) = B((j-1)*m+i) in Fortran (i=1, ... , m, j=1, ... , n).

When calling LAPACK or BLAS routines from C, be aware that because the Fortran language is case-
insensitive, the routine names can be both upper-case or lower-case, with or without the trailing underscore.
For example, the following names are equivalent:

• LAPACK: dgetrf, DGETRF, dgetrf_, and DGETRF_
• BLAS: dgemm, DGEMM, dgemm_, and DGEMM_
See Example "Calling a Complex BLAS Level 1 Function from C++" on how to call BLAS routines from C.

See also the Intel® oneAPI Math Kernel Library Developer Reference for a description of the C interface to
LAPACK functions.

CBLAS
Instead of calling BLAS routines from a C-language program, you can use the CBLAS interface.

CBLAS is a C-style interface to the BLAS routines. You can call CBLAS routines using regular C-style calls. Use
the mkl.h header file with the CBLAS interface. mkl.h includes the mkl_cblas.h header file, which specifies
enumerated values and prototypes of all the functions. It also determines whether the program is being
compiled with a C++ compiler, and if it is, the included file will be correct for use with C++ compilation.
Example "Using CBLAS Interface Instead of Calling BLAS Directly from C" illustrates the use of the CBLAS
interface.

C Interface to LAPACK
Instead of calling LAPACK routines from a C-language program, you can use the C interface to LAPACK
provided by Intel® oneAPI Math Kernel Library.

The C interface to LAPACK is a C-style interface to the LAPACK routines. This interface supports matrices in
row-major and column-major order, which you can define in the first function argument matrix_order. Use
the mkl.h header file with the C interface to LAPACK. mkl.h includes the mkl_lapacke.h header file, which
specifies constants and prototypes of all the functions. It also determines whether the program is being
compiled with a C++ compiler, and if it is, the included file will be correct for use with C++ compilation. You
can find examples of the C interface to LAPACK in the examples/lapackesubdirectory in the Intel® oneAPI
Math Kernel Library installation directory.

Using Complex Types in C/C++
As described in the documentation for the Intel® Fortran Compiler, C/C++ does not directly implement the
Fortran types COMPLEX(4) and COMPLEX(8). However, you can write equivalent structures. The type
COMPLEX(4) consists of two 4-byte floating-point numbers. The first of them is the real-number component,
and the second one is the imaginary-number component. The type COMPLEX(8) is similar to COMPLEX(4)
except that it contains two 8-byte floating-point numbers.

Intel® oneAPI Math Kernel Library provides complex typesMKL_Complex8 and MKL_Complex16, which are
structures equivalent to the Fortran complex types COMPLEX(4) and COMPLEX(8), respectively. The
MKL_Complex8 and MKL_Complex16 types are defined in the mkl_types.h header file. You can use these
types to define complex data. You can also redefine the types with your own types before including the
mkl_types.h header file. The only requirement is that the types must be compatible with the Fortran
complex layout, that is, the complex type must be a pair of real numbers for the values of real and imaginary
parts.

 5 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

66

For example, you can use the following definitions in your C++ code:

#define MKL_Complex8 std::complex<float>
and

#define MKL_Complex16 std::complex<double>
See Example "Calling a Complex BLAS Level 1 Function from C++" for details. You can also define these
types in the command line:

-DMKL_Complex8="std::complex<float>"
-DMKL_Complex16="std::complex<double>"

See Also
Intel® Software Documentation Library for the Intel® Fortran Compiler documentation
 for the Intel® Fortran Compiler documentation

Calling BLAS Functions that Return the Complex Values in C/C++ Code
Complex values that functions return are handled differently in C and Fortran. Because BLAS is Fortran-style,
you need to be careful when handling a call from C to a BLAS function that returns complex values. However,
in addition to normal function calls, Fortran enables calling functions as though they were subroutines, which
provides a mechanism for returning the complex value correctly when the function is called from a C
program. When a Fortran function is called as a subroutine, the return value is the first parameter in the
calling sequence. You can use this feature to call a BLAS function from C.

The following example shows how a call to a Fortran function as a subroutine converts to a call from C and
the hidden parameter result gets exposed:

Normal Fortran function call: result = cdotc(n, x, 1, y, 1)
A call to the function as a subroutine: call cdotc(result, n, x, 1, y, 1)
A call to the function from C: cdotc(&result, &n, x, &one, y, &one)

NOTE
Intel® oneAPI Math Kernel Library has both upper-case and lower-case entry points in the Fortran-style
(case-insensitive) BLAS, with or without the trailing underscore. So, all these names are equivalent
and acceptable:cdotc, CDOTC, cdotc_, and CDOTC_.

The above example shows one of the ways to call several level 1 BLAS functions that return complex values
from your C and C++ applications. An easier way is to use the CBLAS interface. For instance, you can call the
same function using the CBLAS interface as follows:

cblas_cdotc(n, x, 1, y, 1, &result)

NOTE
The complex value comes last on the argument list in this case.

The following examples show use of the Fortran-style BLAS interface from C and C++, as well as the CBLAS
(C language) interface:

• Example "Calling a Complex BLAS Level 1 Function from C"
• Example "Calling a Complex BLAS Level 1 Function from C++"
• Example "Using CBLAS Interface Instead of Calling BLAS Directly from C"

Language-specific Usage Options 5

67

https://software.intel.com/content/www/us/en/develop/documentation.html

Example "Calling a Complex BLAS Level 1 Function from C"
The example below illustrates a call from a C program to the complex BLAS Level 1 function zdotc(). This
function computes the dot product of two double-precision complex vectors.

In this example, the complex dot product is returned in the structure c.

#include "mkl.h"
#define N 5
int main()
{
int n = N, inca = 1, incb = 1, i;
MKL_Complex16 a[N], b[N], c;
for(i = 0; i < n; i++)
{
 a[i].real = (double)i; a[i].imag = (double)i * 2.0;
 b[i].real = (double)(n - i); b[i].imag = (double)i * 2.0;
}
zdotc(&c, &n, a, &inca, b, &incb);
printf("The complex dot product is: (%6.2f, %6.2f)\n", c.real, c.imag);
return 0;
}

In this example, the complex dot product for large data size is returned in the structure c.

#include "mkl.h"
 #define N 5
 int main()
 {
 MKL_INT64 n = N, inca = 1, incb = 1, i;
 MKL_Complex16 a[N], b[N], c;
 for(i = 0; i < n; i++)
 {
 a[i].real = (double)i; a[i].imag = (double)i * 2.0;
 b[i].real = (double)(n - i); b[i].imag = (double)i * 2.0;
 }
 zdotc_64(&c, &n, a, &inca, b, &incb);
 printf("The complex dot product is: (%6.2f, %6.2f)\n", c.real, c.imag);
 return 0;
 }

Example "Calling a Complex BLAS Level 1 Function from C++"
Below is the C++ implementation:

#include <complex>
#include <iostream>
#define MKL_Complex16 std::complex<double>
#include "mkl.h"

#define N 5

int main()
{
 int n, inca = 1, incb = 1, i;
 std::complex<double> a[N], b[N], c;
 n = N;

 for(i = 0; i < n; i++)

 5 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

68

 {
 a[i] = std::complex<double>(i,i*2.0);
 b[i] = std::complex<double>(n-i,i*2.0);
 }
 zdotc(&c, &n, a, &inca, b, &incb);
 std::cout << "The complex dot product is: " << c << std::endl;
 return 0;
}

Example "Using CBLAS Interface Instead of Calling BLAS Directly from C"
This example uses CBLAS:

#include <stdio.h>
#include "mkl.h"
typedef struct{ double re; double im; } complex16;
#define N 5
int main()
{
int n, inca = 1, incb = 1, i;
complex16 a[N], b[N], c;
n = N;
for(i = 0; i < n; i++)
{
 a[i].re = (double)i; a[i].im = (double)i * 2.0;
 b[i].re = (double)(n - i); b[i].im = (double)i * 2.0;
}
cblas_zdotc_sub(n, a, inca, b, incb, &c);
printf("The complex dot product is: (%6.2f, %6.2f)\n", c.re, c.im);
return 0;
}

Language-specific Usage Options 5

69

Obtaining Numerically
Reproducible Results 6
offers functions and environment variables that help you obtain Conditional Numerical Reproducibility (CNR)
of floating-point results when calling the library functions from your application. These new controls enable
Intel® oneAPI Math Kernel Library to run in a special mode, when functions return bitwise reproducible
floating-point results from run to run under the following conditions:

• Calls to Intel® oneAPI Math Kernel Library occur in a single executable
• The number of computational threads used by the library does not change in the run

For a limited set of routines, you can eliminate the second condition by using Intel® oneAPI Math Kernel
Library in strict CNR mode.

It is well known that for general single and double precision IEEE floating-point numbers, the associative
property does not always hold, meaning (a+b)+c may not equal a +(b+c). Let's consider a specific example.
In infinite precision arithmetic 2-63 + 1 + -1 = 2-63. If this same computation is done on a computer using
double precision floating-point numbers, a rounding error is introduced, and the order of operations becomes
important:

(2-63 + 1) + (-1) ≃ 1 + (-1) = 0

versus

2-63 + (1 + (-1)) ≃ 2-63 + 0 = 2-63

This inconsistency in results due to order of operations is precisely what the new functionality addresses.

The application related factors that affect the order of floating-point operations within a single executable
program include selection of a code path based on run-time processor dispatching, alignment of data arrays,
variation in number of threads, threaded algorithms and internal floating-point control settings. You can
control most of these factors by controlling the number of threads and floating-point settings and by taking
steps to align memory when it is allocated (see the Getting Reproducible Results with Intel® MKL knowledge
base article for details). However, run-time dispatching and certain threaded algorithms do not allow users to
make changes that can ensure the same order of operations from run to run.

Intel® oneAPI Math Kernel Library does run-time processor dispatching in order to identify the appropriate
internal code paths to traverse for the Intel® oneAPI Math Kernel Library functions called by the application.
The code paths chosen may differ across a wide range of Intel processors and Intel architecture compatible
processors and may provide differing levels of performance. For example, an Intel® oneAPI Math Kernel
Library function running on an Intel® Pentium® 4 processor may run one code path, while on the latest Intel®
Xeon® processor it will run another code path. This happens because each unique code path has been
optimized to match the features available on the underlying processor. One key way that the new features of
a processor are exposed to the programmer is through the instruction set architecture (ISA). Because of this,
code branches in Intel® oneAPI Math Kernel Library are designated by the latest ISA they use for
optimizations: from the Intel® Streaming SIMD Extensions 2 (Intel® SSE2) to the Intel® Advanced Vector
Extensions2 (Intel® AVX2). The feature-based approach introduces a challenge: if any of the internal floating-
point operations are done in a different order or are re-associated, the computed results may differ.

Dispatching optimized code paths based on the capabilities of the processor on which the code is running is
central to the optimization approach used by Intel® oneAPI Math Kernel Library. So it is natural that
consistent results require some performance trade-offs. If limited to a particular code path, performance of
Intel® oneAPI Math Kernel Library can in some circumstances degrade by more than a half. To understand
this, note that matrix-multiply performance nearly doubled with the introduction of new processors
supporting Intel AVX2 instructions. Even if the code branch is not restricted, performance can degrade by
10-20% because the new functionality restricts algorithms to maintain the order of operations.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

 6 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

70

https://software.intel.com/content/www/us/en/develop/articles/introduction-to-the-conditional-numerical-reproducibility-cnr.html
https://software.intel.com/content/www/us/en/develop/articles/getting-reproducible-results-with-intel-mkl.html
https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Product and Performance Information

Notice revision #20201201

Getting Started with Conditional Numerical Reproducibility
Intel® oneAPI Math Kernel Library offers functions and environment variables to help you get reproducible
results. You can configure Intel® oneAPI Math Kernel Library using functions or environment variables, but
the functions provide more flexibility.

The following specific examples introduce you to the conditional numerical reproducibility.

While these examples recommend aligning input and output data, you can supply unaligned data to Intel®
oneAPI Math Kernel Library functions running in the CNR mode, but refer toReproducibility Conditions for
details related to data alignment.

Intel CPUs supporting Intel AVX2
To ensure Intel® oneAPI Math Kernel Library calls return the same results on every Intel CPU supporting Intel
AVX2 instructions:

1. Make sure that your application uses a fixed number of threads
2. (Recommended) Properly align input and output arrays in Intel® oneAPI Math Kernel Library function

calls
3. Do either of the following:

• Call

mkl_cbwr_set(MKL_CBWR_AVX2)
• Set the environment variable:

export MKL_CBWR = AVX2

NOTE
On non-Intel CPUs and on Intel CPUs that do not support Intel AVX2, this environment setting may
cause results to differ because the AUTO branch is used instead, while the above function call returns
an error and does not enable the CNR mode.

Intel CPUs supporting Intel SSE2
To ensure Intel® oneAPI Math Kernel Library calls return the same results on every Intel CPU supporting Intel
SSE2instructions:

1. Make sure that your application uses a fixed number of threads
2. (Recommended) Properly align input and output arrays in Intel® oneAPI Math Kernel Library function

calls
3. Do either of the following:

• Call

mkl_cbwr_set(MKL_CBWR_SSE2)
• Set the environment variable:

export MKL_CBWR = SSE2

Obtaining Numerically Reproducible Results 6

71

NOTE
On non-Intel CPUs, this environment setting may cause results to differ because the AUTO branch is
used instead, while the above function call returns an error and does not enable the CNR mode.

Intel or Intel compatible CPUs supporting Intel SSE2
On non-Intel CPUs, only the MKL_CBWR_AUTO and MKL_CBWR_COMPATIBLE options are supported for function
calls and only AUTO and COMPATIBLE options for environment settings.

To ensure Intel® oneAPI Math Kernel Library calls return the same results on all Intel or Intel compatible
CPUs supporting Intel SSE2 instructions:

1. Make sure that your application uses a fixed number of threads
2. (Recommended) Properly align input and output arrays in Intel® oneAPI Math Kernel Library function

calls
3. Do either of the following:

• Call

mkl_cbwr_set(MKL_CBWR_COMPATIBLE)
• Set the environment variable:

export MKL_CBWR = COMPATIBLE

NOTE
The special MKL_CBWR_COMPATIBLE/COMPATIBLEoption is provided because Intel and Intel compatible
CPUs have a few instructions, such as approximation instructions rcpps/rsqrtps, that may return
different results. This option ensures that Intel® oneAPI Math Kernel Library does not use these
instructions and forces a single Intel SSE2 only code path to be executed.

Next steps

See Specifying the Code Branches for details of specifying the branch using
environment variables.

See the following sections in the Intel® oneAPI Math Kernel Library Developer Reference:

Support Functions for Conditional Numerical Reproducibility for how to configure the CNR mode of
Intel® oneAPI Math Kernel Library using
functions.

Intel® oneAPI Math Kernel Library PARDISO - Parallel Direct
Sparse Solver Interface

for how to configure the CNR mode for
PARDISO.

See Also
Code Examples

Specifying Code Branches
Intel® oneAPI Math Kernel Library provides a conditional numerical reproducibility (CNR) functionality that
enables you to obtain reproducible results from oneMKL routines. When enabling CNR, you choose a specific
code branch of Intel® oneAPI Math Kernel Library that corresponds to the instruction set architecture (ISA)
that you target. You can specify the code branch and other CNR options using theMKL_CBWR environment
variable.

 6 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

72

• MKL_CBWR="<branch>[,STRICT]" or
• MKL_CBWR="BRANCH=<branch>[,STRICT]"
Use the STRICT flag to enable strict CNR mode. For more information, see Reproducibility Conditions.

The <branch> placeholder specifies the CNR branch with one of the following values:

Value Description

AUTO CNR mode uses the standard ISA-based dispatching model while
ensuring fixed cache sizes, deterministic reductions, and static
scheduling

COMPATIBLE Intel® Streaming SIMD Extensions 2 (Intel® SSE2) without rcpps/
rsqrtps instructions

SSE2 Intel SSE2

SSE3 DEPRECATED. Intel® Streaming SIMD Extensions 3 (Intel® SSE3). This
setting is kept for backward compatibility and is equivalent to SSE2.

SSSE3 Supplemental Streaming SIMD Extensions 3 (SSSE3)

SSE4_2 Intel® Streaming SIMD Extensions 4.2 (Intel® SSE4.2)

AVX Intel® Advanced Vector Extensions (Intel® AVX)

AVX2 Intel® Advanced Vector Extensions 2 (Intel® AVX2)

AVX512 Intel AVX-512 on Intel® Xeon® processors

AVX512_E1 Intel® Advanced Vector Extensions 512 (Intel® AVX-512) with support
for Vector Neural Network Instructions

AVX512_MIC DEPRECATED. Intel® Advanced Vector Extensions 512 (Intel®
AVX-512) on Intel® Xeon Phi™ processors. This setting is kept for
backward compatibility and is equivalent to AVX2.

AVX512_MIC_E1 DEPRECATED. Intel® Advanced Vector Extensions 512 (Intel®
AVX-512) with support for Vector Neural Network Instructions on
Intel® Xeon Phi™ processors. This setting is kept for backward
compatibility and is equivalent to AVX2.

When specifying the CNR branch, be aware of the following:

• Reproducible results are provided under Reproducibility Conditions.
• Settings other than AUTO or COMPATIBLE are available only for Intel processors.
• To get the CNR branch optimized for the processor where your program is currently running, choose the

value of AUTO or call the mkl_cbwr_get_auto_branch function.
• Strict CNR mode is supported only for AVX2, AVX512, AVX512_E1, AVX512_MIC, and AVX512_MIC_E1

branches. You can also use strict CNR mode with the AUTO branch when running on Intel processors that
support one of these instruction set architectures (ISAs).

Setting the MKL_CBWR environment variable or a call to an equivalent mkl_cbwr_set function fixes the code
branch and sets the reproducibility mode.

Obtaining Numerically Reproducible Results 6

73

NOTE

• If the value of the branch is incorrect or your processor or operating system does not support the
specified ISA, CNR ignores this value and uses the AUTO branch without providing any warning
messages.

• Calls to functions that define the behavior of CNR must precede any of the math library functions
that they control.

• Settings specified by the functions take precedence over the settings specified by the environment
variable.

See the Intel® oneAPI Math Kernel Library Developer Reference for how to specify the branches using
functions.

See Also
Getting Started with Conditional Numerical Reproducibility

Reproducibility Conditions
To get reproducible results from run to run, ensure that the number of threads is fixed and constant.
Specifically:

• If you are running your program with OpenMP* parallelization on different processors, explicitly specify
the number of threads.

• To ensure that your application has deterministic behavior with OpenMP* parallelization and does not
adjust the number of threads dynamically at run time, set MKL_DYNAMIC and OMP_DYNAMIC to FALSE. This
is especially needed if you are running your program on different systems.

• If you are running your program with the Intel® Threading Building Blocks parallelization, numerical
reproducibility is not guaranteed.

Strict CNR Mode
In strict CNR mode, oneAPI Math Kernel Library provides bitwise reproducible results for a limited set of
functions and code branches even when the number of threads changes. These routines and branches
support strict CNR mode (64-bit libraries only):

• ?gemm, ?symm, ?hemm, ?trsm and their CBLAS equivalents (cblas_?gemm, cblas_?symm, cblas_?hemm,
and cblas_?trsm).

• Intel® Advanced Vector Extensions 2 (Intel® AVX2) or Intel® Advanced Vector Extensions 512 (Intel®
AVX-512).

When using other routines or CNR branches,oneAPI Math Kernel Library operates in standard (non-strict)
CNR mode, subject to the restrictions described above. Enabling strict CNR mode can reduce performance.

NOTE

• As usual, you should align your data, even in CNR mode, to obtain the best possible performance.
While CNR mode also fully supports unaligned input and output data, the use of it might reduce the
performance of some oneAPI Math Kernel Library functions on earlier Intel processors. Refer to
coding techniques that improve performance for more details.

• Conditional Numerical Reproducibility does not ensure that bitwise-identical NaN values are
generated when the input data contains NaN values.

• If dynamic memory allocation fails on one run but succeeds on another run, you may fail to get
reproducible results between these two runs.

See Also
MKL_DYNAMIC

 6 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

74

https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/top/pblas-routines/pblas-level-3-routines/p-gemm.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/top/pblas-routines/pblas-level-3-routines/p-symm.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/top/pblas-routines/pblas-level-3-routines/p-hemm.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/top/pblas-routines/pblas-level-3-routines/p-trsm.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/blas-and-sparse-blas-routines/blas-routines/blas-level-3-routines/cblas-gemm.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/blas-and-sparse-blas-routines/blas-routines/blas-level-3-routines/cblas-symm.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/blas-and-sparse-blas-routines/blas-routines/blas-level-3-routines/cblas-hemm.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/blas-and-sparse-blas-routines/blas-routines/blas-level-3-routines/cblas-trsm.html

Coding Techniques

Setting the Environment Variable for Conditional
Numerical Reproducibility
The following examples illustrate the use of the MKL_CBWR environment variable. The first command in each
list sets Intel® oneAPI Math Kernel Library to run in the CNR mode based on the default dispatching for your
platform. The other two commandsin each list are equivalent and set the CNR branch to Intel AVX.

For the bash shell:

• export MKL_CBWR="AUTO"
• export MKL_CBWR="AVX"
• export MKL_CBWR="BRANCH=AVX"
For the C shell (csh or tcsh):

• setenv MKL_CBWR "AUTO"
• setenv MKL_CBWR "AVX"
• setenv MKL_CBWR "BRANCH=AVX"

See Also
Specifying Code Branches

Code Examples
The following simple programs show how to obtain reproducible results from run to run of Intel® oneAPI Math
Kernel Library functions. See theIntel® oneAPI Math Kernel Library Developer Reference for more examples.

C Example of CNR

#include <mkl.h>
int main(void) {
 int my_cbwr_branch;
 /* Align all input/output data on 64-byte boundaries */
 /* "for best performance of Intel® oneAPI Math Kernel Library */
 void *darray;
 int darray_size=1000;
 /* Set alignment value in bytes */
 int alignment=64;
 /* Allocate aligned array */
 darray = mkl_malloc (sizeof(double)*darray_size, alignment);
 /* Find the available MKL_CBWR_BRANCH automatically */
 my_cbwr_branch = mkl_cbwr_get_auto_branch();
 /* User code without oneMKL calls */
 /* Piece of the code where CNR of oneMKL is needed */
 /* The performance of oneMKL functions might be reduced for CNR mode */
/* If the "IF" statement below is commented out, Intel® oneAPI Math Kernel Library will run in a
regular mode, */
 /* and data alignment will allow you to get best performance */
 if (mkl_cbwr_set(my_cbwr_branch)) {
 printf("Error in setting MKL_CBWR_BRANCH! Aborting…\n”);
 return;
 }
 /* CNR calls to oneMKL + any other code */
 /* Free the allocated aligned array */
 mkl_free(darray);
}

Obtaining Numerically Reproducible Results 6

75

Fortran Example of CNR

 PROGRAM MAIN
 INCLUDE 'mkl.fi'
 INTEGER*4 MY_CBWR_BRANCH
! Align all input/output data on 64-byte boundaries
! "for best performance of Intel® oneAPI Math Kernel Library
! Declare oneMKL memory allocation routine
#ifdef _IA32
 INTEGER MKL_MALLOC
#else
 INTEGER*8 MKL_MALLOC
#endif
 EXTERNAL MKL_MALLOC, MKL_FREE
 DOUBLE PRECISION DARRAY
 POINTER (P_DARRAY,DARRAY(1))
 INTEGER DARRAY_SIZE
 PARAMETER (DARRAY_SIZE=1000)
! Set alignment value in bytes
 INTEGER ALIGNMENT
 PARAMETER (ALIGNMENT=64)
! Allocate aligned array
 P_DARRAY = MKL_MALLOC (%VAL(8*DARRAY_SIZE), %VAL(ALIGNMENT));
! Find the available MKL_CBWR_BRANCH automatically
 MY_CBWR_BRANCH = MKL_CBWR_GET_AUTO_BRANCH()
! User code without oneMKL calls
! Piece of the code where CNR of oneMKL is needed
! The performance of oneMKL functions may be reduced for CNR mode
! If the "IF" statement below is commented out, Intel® oneAPI Math Kernel Library will run in a
regular mode,
! and data alignment will allow you to get best performance
 IF (MKL_CBWR_SET (MY_CBWR_BRANCH) .NE. MKL_CBWR_SUCCESS) THEN
 PRINT *, 'Error in setting MKL_CBWR_BRANCH! Aborting…'
 RETURN
 ENDIF
! CNR calls to oneMKL + any other code
! Free the allocated aligned array
 CALL MKL_FREE(P_DARRAY)

 END

Use of CNR with Unaligned Data in C

#include <mkl.h>
int main(void) {
 int my_cbwr_branch;
 /* If it is not possible to align all input/output data on 64-byte boundaries */
 /* to achieve performance, use unaligned IO data with possible performance */
 /* penalty */
 /* Using unaligned IO data */
 double *darray;
 int darray_size=1000;
 /* Allocate array, malloc aligns data on 8/16-byte boundary only */
 darray = (double *)malloc (sizeof(double)*darray_size);
 /* Find the available MKL_CBWR_BRANCH automatically */
 my_cbwr_branch = mkl_cbwr_get_auto_branch();
 /* User code without oneMKL calls */
 /* Piece of the code where CNR of oneMKL is needed */
 /* The performance of oneMKL functions might be reduced for CNR mode */

 6 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

76

 /* If the "IF" statement below is commented out, oneMKL will run in a regular mode, */
 /* and you will NOT get best performance without data alignment */
 if (mkl_cbwr_set(my_cbwr_branch)) {
 printf("Error in setting MKL_CBWR_BRANCH! Aborting…\n");
 return;
}
 /* CNR calls to oneMKL + any other code */
 /* Free the allocated array */
 free(darray);

Use of CNR with Unaligned Data in Fortran

 PROGRAM MAIN
 INCLUDE 'mkl.fi'
 INTEGER*4 MY_CBWR_BRANCH
! If it is not possible to align all input/output data on 64-byte boundaries
! to achieve performance, use unaligned IO data with possible performance
! penalty
 DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: DARRAY
 INTEGER DARRAY_SIZE, STATUS
 PARAMETER (DARRAY_SIZE=1000)
! Allocate array with undefined alignment
 ALLOCATE(DARRAY(DARRAY_SIZE));
! Find the available MKL_CBWR_BRANCH automatically
 MY_CBWR_BRANCH = MKL_CBWR_GET_AUTO_BRANCH()
! User code without oneMKL calls
! Piece of the code where CNR of oneMKL is needed
! The performance of oneMKL functions might be reduced for CNR mode
! If the "IF" statement below is commented out, oneMKL will run in a regular mode,
! and you will NOT get best performance without data alignment
 IF (MKL_CBWR_SET(MY_CBWR_BRANCH) .NE. MKL_CBWR_SUCCESS) THEN
 PRINT *, 'Error in setting MKL_CBWR_BRANCH! Aborting…'
 RETURN
 ENDIF
! CNR calls to oneMKL + any other code
! Free the allocated array
 DEALLOCATE(DARRAY)
 END

Obtaining Numerically Reproducible Results 6

77

Coding Tips 7
This section provides coding tips for managing data alignment and version-specific compilation.

See Also
Mixed-language Programming with the Intel® oneAPI Math Kernel Library Tips on language-
specific programming
Managing Performance and Memory Coding tips related to performance improvement and use of
memory functions
Obtaining Numerically Reproducible Results Tips for obtaining numerically reproducible results of
computations

Example of Data Alignment
Needs for best performance with Intel® oneAPI Math Kernel Library or for reproducible results from run to run
of Intel® oneAPI Math Kernel Library functions require alignment of data arrays. The following example shows
how to align an array on 64-byte boundaries. To do this, usemkl_malloc() in place of system provided
memory allocators, as shown in the code example below.

Aligning Addresses on 64-byte Boundaries

 // ******* C language *******
 ...
 #include <stdlib.h>
 #include <mkl.h>
 ...
 void *darray;
 int workspace;
 // Set value of alignment
 int alignment=64;
 ...
 // Allocate aligned workspace
 darray = mkl_malloc(sizeof(double)*workspace, alignment);
 ...
 // call the program using oneMKL
 mkl_app(darray);
 ...
 // Free workspace
 mkl_free(darray);

 ! ******* Fortran language *******
 ...
 ! Set value of alignment
 integer alignment
 parameter (alignment=64)
 ...
 ! Declare oneMKL routines
 #ifdef _IA32
 integer mkl_malloc
 #else

 7 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

78

 integer*8 mkl_malloc
 #endif
 external mkl_malloc, mkl_free, mkl_app
 ...
 double precision darray
 pointer (p_wrk,darray(1))
 integer workspace
 ...
 ! Allocate aligned workspace
 p_wrk = mkl_malloc(%val(8*workspace), %val(alignment))
 ...
 ! call the program using oneMKL
 call mkl_app(darray)
 ...
 ! Free workspace
 call mkl_free(p_wrk)

Using Predefined Preprocessor Symbols for Intel® MKL
Version-Dependent Compilation
Preprocessor symbols (macros) substitute values in a program before it is compiled. The substitution is
performed in the preprocessing phase.

The following preprocessor symbols are available:

Predefined Preprocessor Symbol Description

__INTEL_MKL__ Intel® oneAPI Math Kernel Library major version

__INTEL_MKL_MINOR__ Intel® oneAPI Math Kernel Library minor version

__INTEL_MKL_UPDATE__ Intel® oneAPI Math Kernel Library update number

INTEL_MKL_VERSION Intel® oneAPI Math Kernel Library full version in the
following format:

INTEL_MKL_VERSION =
(__INTEL_MKL__*100+__INTEL_MKL_MINOR__)*100+__I
NTEL_MKL_UPDATE__

These symbols enable conditional compilation of code that uses new features introduced in a particular
version of the library.

To perform conditional compilation:

1. Depending on your compiler, include in your code the file where the macros are defined:

C/C++ compiler: mkl_version.h,

or mkl.h, which includes mkl_version.h

Intel®Fortran compiler: mkl.fi

Any Fortran compiler with enabled
preprocessing:

mkl_version.h
Read the documentation for your compiler for the option that
enables preprocessing.

2. [Optionally] Use the following preprocessor directives to check whether the macro is defined:

• #ifdef, #endif for C/C++
• !DEC$IF DEFINED, !DEC$ENDIF for Fortran

3. Use preprocessor directives for conditional inclusion of code:

Coding Tips 7

79

• #if, #endif for C/C++
• !DEC$IF, !DEC$ENDIF for Fortran

Example

This example shows how to compile a code segment conditionally for a specific version of Intel® oneAPI Math
Kernel Library. In this case, the version is 11.2 Update 4:

Intel®Fortran Compiler:

include "mkl.fi"
!DEC$IF DEFINED INTEL_MKL_VERSION
!DEC$IF INTEL_MKL_VERSION .EQ. 110204
* Code to be conditionally compiled
!DEC$ENDIF
!DEC$ENDIF

C/C++ Compiler. Fortran Compiler with Enabled Preprocessing:

#include "mkl.h"
#ifdef INTEL_MKL_VERSION
#if INTEL_MKL_VERSION == 110204
... Code to be conditionally compiled
#endif
#endif

 7 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

80

Managing Output 8
Using oneMKL Verbose Mode
When building applications that call Intel® oneAPI Math Kernel Library functions, it may be useful to
determine:

• which computational functions are called
• what parameters are passed to them
• how much time is spent to execute the functions
• (for GPU applications) which GPU device the kernel is executed on

You can get an application to print this information to a standard output device by enabling Intel® oneAPI
Math Kernel Library Verbose. Functions that can print this information are referred to as verbose-enabled
functions.

When Verbose mode is active in an Intel® oneAPI Math Kernel Library domain, every call of a verbose-
enabled function finishes with printing a human-readable line describing the call. However, if your application
gets terminated for some reason during the function call, no information for that function will be printed. The
first call to a verbose-enabled function also prints a version information line.

For GPU applications, additional information (one or more GPU information lines) will also be printed by the
first call to a verbose-enabled function, following the version information line which will be printed for the
host CPU. If there is more than one GPU detected, each GPU device will be printed in a separate line.

We have different implementations for verbose with CPU applications and verbose with GPU applications. The
Intel® MKL Verbose mode has 2 modes when used with CPU applications: disabled (default) and enabled. The
Intel® MKL Verbose mode has three modes when used with GPU applications: disabled (default), enabled
without timing, and enabled with synchronous timing.

To change the verbose mode, either set the environment variable MKL_VERBOSE:

CPU application GPU application

Set MKL_VERBOSE to 0 to disable Verbose to disable Verbose

Set MKL_VERBOSE to 1 to enable Verbose to enable Verbose without timing

Set MKL_VERBOSE to 2 to enable Verbose to enable Verbose with synchronous
timing

or call the support function mkl_verbose(int mode):

CPU application GPU application

Call mkl_verbose(0) to disable Verbose to disable Verbose

Call mkl_verbose(1) to enable Verbose to enable Verbose without timing

Call mkl_verbose(2) to enable Verbose to enable Verbose with synchronous
timing

Verbose with CPU Applications
Verbose output will be consisted of version information line and call description lines for CPU.

For CPU applications, you can enable Intel® oneAPI Math Kernel Library Verbose mode in these domains:

• BLAS (and BLAS-like extensions)
• LAPACK
• ScaLAPACK (selected functionality)
• FFT

Managing Output 8

81

Verbose with GPU Applications
The verbose feature is enabled for GPU applications that uses DPC++ API or C/Fortran API with OpenMP
offload. When used with GPU applications, verbose allows the measurement of execution time to be enabled
or disabled with verbose mode. Timing is taken synchronously, so if verbose is enabled with timing, kernel
executions will become synchronous (previous kernel will block later kernels)

Verbose output will be consisted of version information line, GPU information lines, and call description lines
for GPU.

NOTE Timing for GPU applications is reported for overall execution. For selected functionality device
execution time can be also reported if the input queue was created with profiling information.

For GPU applications, you can enable Intel® oneAPI Math Kernel Library Verbose mode in these domains:

• BLAS (and BLAS-like extensions)
• LAPACK
• FFT

For Both CPU and GPU Verbose
Both enabling and disabling of the Verbose mode using the function call takes precedence over the
environment setting. For a full description of the mkl_verbose function, see either the Intel® oneAPI Math
Kernel Library Developer Reference for C or the Intel® oneAPI Math Kernel Library Developer Reference for
Fortran. Both references are available in the Intel® Software Documentation Library.

Intel® oneAPI Math Kernel Library Verbose mode is not a thread-local but a global state. In other words, if an
application changes the mode from multiple threads, the result is undefined.

WARNING
The performance of an application may degrade with the Verbose mode enabled, especially when the
number of calls to verbose-enabled functions is large, because every call to a verbose-enabled
function requires an output operation.

See Also
Intel Software Documentation Library

Version Information Line
In the Intel® oneAPI Math Kernel Library Verbose mode, the first call to a verbose-enabled function prints a
version information line. The line begins with theMKL_VERBOSE character string and uses spaces as
delimiters. The format of the rest of the line may change in a future release.

The following table lists information contained in a version information line and provides available links for
more information:

Information Description Related Links

Intel® oneAPI Math Kernel
Library version.

This information is separated by a comma from the rest
of the line.

Operating system. Possible values:
• Lnx for Linux* OS
• Win for Windows* OS
• OSX for macOS*

 8 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

82

https://sycl.readthedocs.io/en/latest/iface/queue.html#sycl-property-queue-enable-profiling
https://software.intel.com/content/www/us/en/develop/documentation.html

Information Description Related Links

The host CPU frequency.

Intel® oneAPI Math Kernel
Library interface layer
used by the application.

Possible values:
• No value on systems based on the IA-32

architecture.
• lp64 or ilp64 on systems based on the Intel® 64

architecture.

Using the ILP64
Interface vs. LP64
Interface

Intel® oneAPI Math Kernel
Library threading layer
used by the application.

Possible values:

intel_thread, gnu_thread, tbb_thread, or
sequential.

Linking with
Threading Libraries

The following is an example of a version information line:

MKL_VERBOSE Intel(R) MKL 11.2 Beta build 20131126 for Intel(R) 64 architecture Intel(R)
Advanced Vector Extensions (Intel(R) AVX) Enabled Processor, Lnx 3.10GHz lp64
intel_thread

GPU Information Line
In Intel® oneAPI Math Kernel Library Verbose mode for GPU applications, the first call to a verbose-enabled
function prints out the GPU information line or lines for all detected GPU devices, each in a separate line. The
line begins with the MKL_VERBOSE Detected character string and uses spaces as delimiters. The format of
the rest of the line may change in a future release.

Only Intel® GPU is supported.

The following table lists information contained in a GPU information line.

See AlsoCall Description Line for GPU

Information Description

GPU index The index of the GPU device will be printed after the
character string "GPU" (e.g. GPU0, GPU1, GPU2, etc). This
GPU index will be used as a nickname of the device in call
description lines to refer to the device.

Intel® GPU architecture The value can be one of the following:

• Intel(R) Gen9
• Intel(R) Xe_LP
• Intel(R) Xe_HP
• Intel(R) Xe_HPG
• Intel(R) Xe_HPC
• Unknown GPU

Runtime backend The value printed is prefixed with Backend:

Vector Engine number The value printed is prefixed with VE:

Stack number The value printed is prefixed with Stack:

Maximum workgroup size The value printed is prefixed with maxWGsize:

The following is an example of a GPU information line:

MKL_VERBOSE Detected GPU0 Intel(R)_Gen9 Backend:OpenCL VE:72 Stack:1 maxWGsize:256

Managing Output 8

83

Call Description Line

Call Description Line for CPU
In Intel® oneAPI Math Kernel Library Verbose mode, each verbose-enabled function called from your
application prints a call description line. The line begins with the MKL_VERBOSE character string and uses
spaces as delimiters. The format of the rest of the line is subject to change in a future release.

The following table lists information contained in a call description line for Verbose with CPU applications and
provides available links for more information:

Information Description Related Links

The name of the
function.

Although the name printed may differ from the name used in
the source code of the application (for example, the cblas_
prefix of CBLAS functions is not printed), you can easily
recognize the function by the printed name.

Values of the
arguments.

• The values are listed in the order of the formal argument list.
The list directly follows the function name, it is parenthesized
and comma-separated.

• Arrays are printed as addresses (to see the alignment of the
data).

• Integer scalar parameters passed by reference are printed by
value. Zero values are printed for NULL references.

• Character values are printed without quotes.
• For all parameters passed by reference, the values printed

are the values returned by the function. For example, the
printed value of the info parameter of a LAPACK function is
its value after the function execution.

• For verbose-enabled functions in the ScaLAPACK domain, in
addition to the standard input parameters, information about
blocking factors, MPI rank, and process grid is also printed.

Time taken by the
function.

• The time is printed in convenient units (seconds,
milliseconds, and so on), which are explicitly indicated.

• The time may fluctuate from run to run.
• The time printed may occasionally be larger than the time

actually taken by the function call, especially for small
problem sizes and multi-socket machines.To reduce this
effect, bind threads that call Intel® oneAPI Math Kernel
Library to CPU cores by setting an affinity mask.

Managing Multi-
core Performance
for options to set
an affinity mask.

Value of the
MKL_CBWR
environment
variable.

The value printed is prefixed with CNR: Getting Started
with Conditional
Numerical
Reproducibility

Value of the
MKL_DYNAMIC
environment
variable.

The value printed is prefixed with Dyn: MKL_DYNAMIC

 8 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

84

Information Description Related Links

Status of the
Intel® oneAPI
Math Kernel
Librarymemory
manager.

The value printed is prefixed with FastMM: Avoiding Memory
Leaks in
oneMKLfor a
description of the
Intel® oneAPI
Math Kernel
Librarymemory
manager

OpenMP* thread
number of the
calling thread.

The value printed is prefixed with TID:

Values of Intel®
oneAPI Math
Kernel Library
environment
variables defining
the general and
domain-specific
numbers of
threads,
separated by a
comma.

The first value printed is prefixed with NThr: oneMKL-specific
Environment
Variables for
Threading Control

The following is an example of a call description line (with OpenMP threading):

MKL_VERBOSE
DGEMM(n,n,1000,1000,240,0x7ffff708bb30,0x7ff2aea4c000,1000,0x7ff28e92b000,240,0x7ffff70
8bb38,0x7ff28e08d000,1000) 1.66ms CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:16
The following is an example of a call description line (with TBB threading):

MKL_VERBOSE
DGEMM(n,n,1000,1000,240,0x7ffff708bb30,0x7ff2aea4c000,1000,0x7ff28e92b000,240,0x7ffff70
8bb38,0x7ff28e08d000,1000) 1.66ms CNR:OFF Dyn:1 FastMM:1

NOTE For more information about selected threading, refer to Version Information Line.

The following information is not printed because of limitations of Intel® oneAPI Math Kernel Library Verbose
mode:

• Input values of parameters passed by reference if the values were changed by the function.

For example, if a LAPACK function is called with a workspace query, that is, the value of the lwork
parameter equals -1 on input, the call description line prints the result of the query and not -1.

• Return values of functions.

For example, the value returned by the function ilaenv is not printed.
• Floating-point scalars passed by reference.

Managing Output 8

85

Call Description Line for GPU
In Intel® oneAPI Math Kernel Library Verbose mode, each verbose-enabled function called from your
application prints a call description line. The line begins with the MKL_VERBOSE character string and uses
spaces as delimiters. The format of the rest of the line may change in a future release.

The following table lists information contained in a call description line for verbose with GPU applications.

See AlsoGPU Information Line

Information Description

The name of the function Although the name printed may differ from the name used
in the source code of the application, you can easily
recognize the function by the printed name.

The values of the arguments • The values are listed in the order of the formal
argument list. The list directly follows the
function name, and it is parenthesized and
comma-separated.

• Arrays are printed as addresses (to show the
alignment of the data).

• Integer scalar parameters passed by reference
are printed by value. Zero values are printed for
NULL references.

• Character values are printed without quotation
marks.

• For all parameters passed by reference, the
values printed are the values returned by the
function.

Time taken by the function • If verbose is enabled with timing for GPU
applications, kernel executions will become
synchronous (previous kernel will block later
kernels) and the measured time may include
potential data transfers and/or data copies in
host and devices.

• If Verbose is enabled without timing for GPU
applications, time will be printed out as 0.

• The time is printed in convenient units (seconds,
milliseconds, and so on), which are explicitly
indicated.

• The time may fluctuate from run to run.
• The time printed may occasionally be larger than

the time actually taken by the function call,
especially for small problem sizes.

Device index The index of the GPU device on which the kernel is
being executed will be printed after the character
string "GPU" (e.g. GPU0, GPU1, GPU2, etc). Use the
index and refer to the GPU information lines for
more information about the specific device.

If the kernel is executed on the host CPU, this field
will be empty.

 8 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

86

The following is an example of a call description line:

MKL_VERBOSE FFT(dcfi64) 224.30us GPU0

Some Limitations
For GPU applications, the call description lines may be printed out-of-order (the order of the call
description lines printed in the verbose output may not be the order in which the kernels are
submitted in the functions) for the following two cases:

• Verbose is enabled without timing and the kernel executions stay asynchronous.
• The kernel is not executed on one of the GPU devices, but on the host CPU (the device index will

not be printed in this case).

Managing Output 8

87

Working with the Intel® oneAPI
Math Kernel Library Cluster
Software 9
includes distributed memory function domains for use on clusters:

• ScaLAPACK
• Cluster Fourier Transform Functions (Cluster FFT)
• Parallel Direct Sparse Solvers for Clusters (Cluster Sparse Solver)

ScaLAPACK, Cluster FFT, and Cluster Sparse Solver are only provided for the Intel® 64 and Intel® Many
Integrated Core architectures.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
Intel® oneAPI Math Kernel Library Structure
Managing Performance of the Cluster Fourier Transform Functions
Intel® Distribution for LINPACK* Benchmark

Linking with oneMKL Cluster Software
The Intel® oneAPI Math Kernel Library ScaLAPACK, Cluster FFT, and Cluster Sparse Solver support MPI
implementations identified in theIntel® oneAPI Math Kernel Library Release Notes.

To link a program that calls ScaLAPACK, Cluster FFT, or Cluster Sparse Solver, you need to know how to link a
message-passing interface (MPI) application first.

Use mpi scripts to do this. For example, mpicc or mpif77 are C or FORTRAN 77 scripts, respectively, that use
the correct MPI header files. The location of these scripts and the MPI library depends on your MPI
implementation. For example, for the default installation of MPICH3, /opt/mpich/bin/mpicc and /opt/
mpich/bin/mpif90 are the compiler scripts and /opt/mpich/lib/libmpi.a is the MPI library.

Check the documentation that comes with your MPI implementation for implementation-specific details of
linking.

To link with ScaLAPACK, Cluster FFT, and/or Cluster Sparse Solver, use the following general form:

<MPI linker script> <files to link> \
-L <MKL path> [-Wl,--start-group] [<MKL cluster library>] \
<BLACS> <MKL core libraries> [-Wl,--end-group]
where the placeholders stand for paths and libraries as explained in the following table:

<MKL cluster library> One of libraries for ScaLAPACK or Cluster FFT and appropriate
architecture and programming interface (LP64 or ILP64).
Available libraries are listed in Appendix C: Directory Structure
in Detail. For example, for the LP64 interface, it is -
lmkl_scalapack_lp64 or -lmkl_cdft_core. Cluster Sparse
Solver does not require an additional computation library.

 9 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

88

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

<BLACS> The BLACS library corresponding to your architecture,
programming interface (LP64 or ILP64), and MPI used.
Available BLACS libraries are listed in Appendix C: Directory
Structure in Detail. Specifically, choose one of -
lmkl_blacs_intelmpi_lp64 or -
lmkl_blacs_intelmpi_ilp64.

<MKL core libraries> Processor optimized kernels, threading library, and system
library for threading support, linked as described in Listing
Libraries on a Link Line.

<MPI linker script> A linker script that corresponds to the MPI version.

For example, if you are using Intel MPI, want to statically link with ScaLAPACK using the LP64 interface, and
have only one MPI process per core (and thus do not use threading), specify the following linker options:

-L$MKLPATH -I$MKLINCLUDE -Wl,--start-group $MKLPATH/libmkl_scalapack_lp64.a $MKLPATH/
libmkl_blacs_intelmpi_lp64.a $MKLPATH/libmkl_intel_lp64.a $MKLPATH/libmkl_sequential.a
$MKLPATH/libmkl_core.a -static_mpi -Wl,--end-group -lpthread -lm

NOTE
Grouping symbols -Wl,--start-group and -Wl,--end-group are required for static linking.

Tip
Use the Using the Link-line Advisor to quickly choose the appropriate set of <MKL cluster
Library>, <BLACS>, and <MKL core libraries>.

See Also
Linking Your Application with the Intel® oneAPI Math Kernel Library
Examples of Linking for Clusters

Setting the Number of OpenMP* Threads
The OpenMP* run-time library responds to the environment variable OMP_NUM_THREADS. Intel® oneAPI Math
Kernel Library also has other mechanisms to set the number of OpenMP threads, such as
theMKL_NUM_THREADS or MKL_DOMAIN_NUM_THREADS environment variables (see Using Additional Threading
Control).

Make sure that the relevant environment variables have the same and correct values on all the nodes. Intel®
oneAPI Math Kernel Library does not set the default number of OpenMP threads to one, but depends on the
OpenMP libraries used with the compiler to set the default number. For the threading layer based on the Intel
compiler (libmkl_intel_thread.a), this value is the number of CPUs according to the OS.

Caution
Avoid over-prescribing the number of OpenMP threads, which may occur, for instance, when the
number of MPI ranks per node and the number of OpenMP threads per node are both greater than
one. The number of MPI ranks per node multiplied by the number of OpenMP threads per node should
not exceed the number of hardware threads per node.

Working with the Intel® oneAPI Math Kernel Library Cluster Software 9

89

If you are using your login environment to set an environment variable, such as OMP_NUM_THREADS,
remember that changing the value on the head node and then doing your run, as you do on a shared-
memory (SMP) system, does not change the variable on all the nodes because mpirun starts a fresh default
shell on all the nodes. To change the number of OpenMP threads on all the nodes, in .bashrc, add a line at
the top, as follows:

OMP_NUM_THREADS=1; export OMP_NUM_THREADS
You can run multiple CPUs per node using MPICH. To do this, build MPICH to enable multiple CPUs per node.
Be aware that certain MPICH applications may fail to work perfectly in a threaded environment (see the
Known Limitations section in the Release Notes. If you encounter problems with MPICH and setting of the
number of OpenMP threads is greater than one, first try setting the number of threads to one and see
whether the problem persists.

Important
For Cluster Sparse Solver, set the number of OpenMP threads to a number greater than one because
the implementation of the solver only supports a multithreaded algorithm.

See Also
Techniques to Set the Number of Threads

Using Shared Libraries
All needed shared libraries must be visible on all nodes at run time. To achieve this, set the
LD_LIBRARY_PATH environment variable accordingly.

If Intel® oneAPI Math Kernel Library is installed only on one node, link statically when building your Intel®
oneAPI Math Kernel Library applications rather than use shared libraries.

The Intel® compilers or GNU compilers can be used to compile a program that uses Intel® oneAPI Math Kernel
Library. However, make sure that the MPI implementation and compiler match up correctly.

Setting Environment Variables on a Cluster
By default, when you call the MPI launch command mpiexec, the entire launching node environment is
passed to the MPI processes. However, if there are undefined variables or variables that are different from
what is stored in your environment, you can use -env or -genv options with mpiexec. Each of these options
take two arguments- the name and the value of the environment variable to be passed.

-genv NAME1 VALUE1 -genv NAME2 VALUE2
-env NAME VALUE -genv
See these Intel MPI examples on how to set the value of OMP_NUM_THREADS explicitly:

mpiexec -genv OMP_NUM_THREADS 2
mpiexec -n 1 -host first -env OMP_NUM_THREADS 2 test.exe : -n 2 -host second -env
OMP_NUM_THREADS 3 test.exe
See these Intel MPI examples on how to set the value of MKL_BLACS_MPI explicitly:

mpiexec -genv MKL_BLACS_MPI INTELMPI
mpiexec -n 1 -host first -env MKL_BLACS_MPI INTELMPI test.exe : -n 1 -host second -env
MKL_BLACS_MPI INTELMPI test.exe.

 9 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

90

Interaction with the Message-passing Interface
To improve performance of cluster applications, it is critical for Intel® oneAPI Math Kernel Library to use the
optimal number of threads, as well as the correct thread affinity. Usually, the optimal number is the number
of available cores per node divided by the number of MPI processes per node. You can set the number of
threads using one of the available methods, described inTechniques to Set the Number of Threads.

If the number of threads is not set, Intel® oneAPI Math Kernel Library checks whether it runs under MPI
provided by the Intel® MPI Library. If this is true, the following environment variables define Intel® oneAPI
Math Kernel Library threading behavior:

• I_MPI_THREAD_LEVEL
• MKL_MPI_PPN
• I_MPI_NUMBER_OF_MPI_PROCESSES_PER_NODE
• I_MPI_PIN_MAPPING
• OMPI_COMM_WORLD_LOCAL_SIZE
• MPI_LOCALNRANKS
The threading behavior depends on the value of I_MPI_THREAD_LEVEL as follows:

• 0 or undefined.

Intel® oneAPI Math Kernel Library considers that thread support level of Intel MPI Library
isMPI_THREAD_SINGLE and defaults to sequential execution.

• 1, 2, or 3.

This value determines Intel® oneAPI Math Kernel Library conclusion of the thread support level:

• 1 - MPI_THREAD_FUNNELED
• 2 - MPI_THREAD_SERIALIZED
• 3 - MPI_THREAD_MULTIPLE
In all these cases, Intel® oneAPI Math Kernel Library determines the number of MPI processes per node
using the other environment variables listed and defaults to the number of threads equal to the number of
available cores per node divided by the number of MPI processes per node.

Important
Instead of relying on the discussed implicit settings, explicitly set the number of threads for Intel®
oneAPI Math Kernel Library.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
Managing Multi-core Performance

Intel® Software Documentation Library for more information on Intel MPI Library
 for more information on Intel MPI Library

Using a Custom Message-Passing Interface
While different message-passing interface (MPI) libraries are compatible at the application programming
interface (API) level, they are often incompatible at the application binary interface (ABI) level. Therefore,
Intel® oneAPI Math Kernel Library provides a set of prebuilt BLACS libraries that support certain MPI libraries,
but this, however, does not enable use of Intel® oneAPI Math Kernel Library with other MPI libraries. To fill

Working with the Intel® oneAPI Math Kernel Library Cluster Software 9

91

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex
https://software.intel.com/content/www/us/en/develop/documentation.html

this gap, Intel® oneAPI Math Kernel Library also includes the MKL MPI wrapper, which provides an MPI-
independent ABI to Intel® oneAPI Math Kernel Library. The adaptor is provided as source code. To use Intel®
oneAPI Math Kernel Library with an MPI library that is not supported by default, you can use the adapter to
build custom static or dynamic BLACS libraries and use them similarly to the prebuilt libraries.

Building a Custom BLACS Library
The MKL MPI wrapper is located in the <mkl directory>/interfaces/mklmpi directory.

To build a custom BLACS library, from the above directory run the make command.

For example: the command

make libintel64
builds a static custom BLACS library libmkl_blacs_custom_lp64.a using the MPI compiler from the
current shell environment. Look into the <mkl directory>/interfaces/mklmpi/makefile for targets and
variables that define how to build the custom library. In particular, you can specify the compiler through the
MPICC variable.

For more control over the building process, refer to the documentation available through the command

make help

Using a Custom BLACS Library
Use custom BLACS libraries exactly the same way as you use the prebuilt BLACS libraries, but pass the
custom library to the linker. For example, instead of passing the libmkl_blacs_intelmpi_lp64.a library,
pass libmkl_blacs_custom_lp64.a.

See Also
Linking with Intel® oneAPI Math Kernel Library Cluster Software

Examples of Linking for Clusters
This section provides examples of linking with ScaLAPACK, Cluster FFT, and Cluster Sparse Solver.

Note that a binary linked with the Intel® oneAPI Math Kernel Library cluster function domains runs the same
way as any other MPI application (refer to the documentation that comes with your MPI implementation).For
instance, the script mpirun is used in the case of MPICH2 or higher and OpenMPI, and the number of MPI
processes is set by -np. In the case of MPICH2 or higher and Intel MPI, start the daemon before running
your application; the execution is driven by the script mpiexec.

For further linking examples, see the support website for Intel products at https://software.intel.com/
content/www/us/en/develop/support.html.

See Also
Directory Structure in Detail

Examples for Linking a C Application
These examples illustrate linking of an application under the following conditions:

• Main module is in C.
• You are using the Intel® oneAPI DPC++/C++ CompilerIntel® C++ Compiler.
• You are using MPICH2.
• Intel® oneAPI Math Kernel Library functions use LP64 interfaces.
• The PATH environment variable contains a directory with the MPI linker scripts.
• $MKLPATH is a user-defined variable containing <mkl_directory>/lib/intel64_lin.

 9 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

92

https://software.intel.com/content/www/us/en/develop/support.html
https://software.intel.com/content/www/us/en/develop/support.html

To link dynamically with ScaLAPACK for a cluster of systems based on the Intel® 64 architecture, use the
following link line:

mpicc <user files to link> \
 -L$MKLPATH \
 -lmkl_scalapack_lp64 \
 -lmkl_blacs_intelmpi_lp64 \
 -lmkl_intel_lp64 \
 -lmkl_intel_thread -lmkl_core \
 -liomp5 -lpthread
To link statically with Cluster FFT for a cluster of systems based on the Intel® 64 architecture, use the
following link line:

mpicc <user files to link> \
 -Wl,--start-group \
 $MKLPATH/libmkl_cdft_core.a \
 $MKLPATH/libmkl_blacs_intelmpi_lp64.a \
 $MKLPATH/libmkl_intel_lp64.a \
 $MKLPATH/libmkl_intel_thread.a \
 $MKLPATH/libmkl_core.a \
 -Wl,--end-group \
 -liomp5 -lpthread
To link dynamically with Cluster Sparse Solver for a cluster of systems based on the Intel® 64 architecture,
use the following link line:

mpicc <user files to link> \
 -L$MKLPATH \
 -lmkl_blacs_intelmpi_lp64 \
 -lmkl_intel_lp64 \
 -lmkl_intel_thread -lmkl_core \
 -liomp5 -lpthread

See Also
Linking with oneMKL Cluster Software
Using the Link-line Advisor

Examples for Linking a Fortran Application
These examples illustrate linking of an application under the following conditions:

• Main module is in Fortran.
• You are using the Intel® Fortran Compiler.
• You are using the Intel MPI library.
• Intel® oneAPI Math Kernel Library functions use LP64 interfaces.
• The PATH environment variable contains a directory with the MPI linker scripts.
• $MKLPATH is a user-defined variable containing <mkl_directory>/lib/intel64_lin.

To link dynamically with ScaLAPACK for a cluster of systems based on the Intel® 64 architecture, use the
following link line:

mpiifort <user files to link> \
 -L$MKLPATH \
 -lmkl_scalapack_lp64 \
 -lmkl_blacs_intelmpi_lp64 \
 -lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core \

Working with the Intel® oneAPI Math Kernel Library Cluster Software 9

93

 -liomp5 -lpthread
To link statically with Cluster FFT for a cluster of systems based on the Intel® 64 architecture, use the
following link line:

mpiifort <user files to link> \
 -Wl,--start-group \
 $MKLPATH/libmkl_cdft_core.a \
 $MKLPATH/libmkl_blacs_intelmpi_lp64.a \
 $MKLPATH/libmkl_intel_lp64.a \
 $MKLPATH/libmkl_intel_thread.a \
 $MKLPATH/libmkl_core.a \
 -Wl,--end-group \
 -liomp5 -lpthread
To link statically with Cluster Sparse Solver for a cluster of systems based on the Intel® 64 architecture, use
the following link line:

mpiifort <user files to link> \
 -Wl,--start-group \
 $MKLPATH/libmkl_blacs_intelmpi_lp64.a \
 $MKLPATH/libmkl_intel_lp64.a \
 $MKLPATH/libmkl_intel_thread.a \
 $MKLPATH/libmkl_core.a \
 -Wl,--end-group \
 -liomp5 -lpthread

See Also
Linking with oneMKL Cluster Software
Using the Link-line Advisor

 9 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

94

Managing Behavior of the Intel®
oneAPI Math Kernel Library with
Environment Variables 10
See Also
Intel® oneAPI Math Kernel Library-specific Environment Variables for Threading Control

Specifying the Code Branches
 for how to use an environment variable to specify the code branch for Conditional Numerical Reproducibility

Using Intel® oneAPI Math Kernel Library Verbose Mode
 for how to use an environment variable to set the verbose mode

Managing Behavior of Function Domains with Environment
Variables

Setting the Default Mode of Vector Math with an Environment Variable
enables overriding the default setting of the Vector Mathematics (VM) global mode using theMKL_VML_MODE
environment variable.

Because the mode is set or can be changed in different ways, their precedence determines the actual mode
used. The settings and function calls that set or change the VM mode are listed below, with the precedence
growing from lowest to highest:

1. The default setting
2. The MKL_VML_MODE environment variable
3. A call vmlSetMode function
4. A call to any VM function other than a service function

For more details, see the Vector Mathematical Functions section in the Intel® oneAPI Math Kernel Library
Developer Reference and the description of the vmlSetMode function in particular.

To set the MKL_VML_MODE environment variable, use the following command in your command shell:

• For the bash shell:

export MKL_VML_MODE=<mode-string>
• For a C shell (csh or tcsh):

setenv MKL_VML_MODE <mode-string>
In these commands, <mode-string> controls error handling behavior and computation accuracy, consists of
one or several comma-separated values of the mode parameter listed in the table below, and meets these
requirements:

• Not more than one accuracy control value is permitted
• Any combination of error control values except VML_ERRMODE_DEFAULT is permitted
• No denormalized numbers control values are permitted

Values of the mode Parameter
Value of mode Description

Accuracy Control
VML_HA high accuracy versions of VM functions

Managing Behavior of the Intel® oneAPI Math Kernel Library with Environment Variables 10

95

Value of mode Description

VML_LA low accuracy versions of VM functions

VML_EP enhanced performance accuracy versions of VM functions
Denormalized Numbers Handling Control
VML_FTZDAZ_ON Faster processing of denormalized inputs is enabled.

VML_FTZDAZ_OFF Faster processing of denormalized inputs is disabled.

VML_FTZDAZ_CURRENT Keep the current CPU settings for denormalized inputs.
Error Mode Control
VML_ERRMODE_IGNORE On computation error, VM Error status is updated, but otherwise no

action is set. Cannot be combined with other VML_ERRMODE
settings.

VML_ERRMODE_NOERR On computation error, VM Error status is not updated and no action is
set. Cannot be combined with other VML_ERRMODE settings.

VML_ERRMODE_STDERR On error, the error text information is written to stderr.

VML_ERRMODE_EXCEPT On error, an exception is raised.

VML_ERRMODE_CALLBACK On error, an additional error handler function is called.

VML_ERRMODE_DEFAULT On error, an exception is raised and an additional error handler
function is called.

These commands provide an example of valid settings for the MKL_VML_MODE environment variable in your
command shell:

• For the bash shell:

export MKL_VML_MODE=VML_LA,VML_ERRMODE_ERRNO,VML_ERRMODE_STDERR
• For a C shell (csh or tcsh):

setenv MKL_VML_MODE VML_LA,VML_ERRMODE_ERRNO,VML_ERRMODE_STDERR

NOTE
VM ignores the MKL_VML_MODE environment variable in the case of incorrect or misspelled settings of
mode.

Managing Performance of the Cluster Fourier Transform Functions
Performance of Intel® oneAPI Math Kernel Library Cluster FFT (CFFT) in different applications mainly depends
on the cluster configuration, performance of message-passing interface (MPI) communications, and
configuration of the run. Note that MPI communications usually take approximately 70% of the overall CFFT
compute time.For more flexibility of control over time-consuming aspects of CFFT algorithms, Intel® oneAPI
Math Kernel Library provides theMKL_CDFT environment variable to set special values that affect CFFT
performance. To improve performance of your application that intensively calls CFFT, you can use the
environment variable to set optimal values for you cluster, application, MPI, and so on.

The MKL_CDFT environment variable has the following syntax, explained in the table below:

MKL_CDFT=option1[=value1],option2[=value2],…,optionN[=valueN]

Important
While this table explains the settings that usually improve performance under certain conditions, the
actual performance highly depends on the configuration of your cluster. Therefore, experiment with the
listed values to speed up your computations.

 10 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

96

Option Possible
Values

Description

alltoallv 0 (default) Configures CFFT to use the standard MPI_Alltoallv function to
perform global transpositions.

1 Configures CFFT to use a series of calls to MPI_Isend and MPI_Irecv
instead of the MPI_Alltoallv function.

4 Configures CFFT to merge global transposition with data movements
in the local memory. CFFT performs global transpositions by calling
MPI_Isend and MPI_Irecv in this case.

Use this value in a hybrid case (MPI + OpenMP), especially when the
number of processes per node equals one.

wo_omatcopy 0 Configures CFFT to perform local FFT and local transpositions
separately.

CFFT usually performs faster with this value than with wo_omatcopy
= 1 if the configuration parameter DFTI_TRANSPOSE has the value of
DFTI_ALLOW. See the Intel® oneAPI Math Kernel Library Developer
Reference for details.

1 Configures CFFT to merge local FFT calls with local transpositions.

CFFT usually performs faster with this value than with wo_omatcopy
= 0 if DFTI_TRANSPOSE has the value of DFTI_NONE.

-1 (default) Enables CFFT to decide which of the two above values to use
depending on the value of DFTI_TRANSPOSE.

enable_soi Not applicable A flag that enables low-communication Segment Of Interest FFT (SOI
FFT) algorithm for one-dimensional complex-to-complex CFFT, which
requires fewer MPI communications than the standard nine-step (or
six-step) algorithm.

Caution
While using fewer MPI communications, the SOI FFT algorithm incurs a
minor loss of precision (about one decimal digit).

The following example illustrates usage of the environment variable assuming the bash shell:

export MKL_CDFT=wo_omatcopy=1,alltoallv=4,enable_soi
mpirun –ppn 2 –n 16 ./mkl_cdft_app

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Managing Invalid Input Checking in LAPACKE Functions
The high-level interface includes an optional, on by default, NaN check on all matrix inputs before calling any
LAPACK routine. This option affects all routines. If an input matrix contains any NaNs, the input parameter
corresponding to this matrix is flagged with a return value error. For example, if the fifth parameter is found
to contain a NaN, the routine returns the value, -5. The middle-level interface does not contain the NaN
check.

Managing Behavior of the Intel® oneAPI Math Kernel Library with Environment Variables 10

97

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

NaN checking on matrix input can be expensive. By default, NaN checking is turned on. LAPACKE provides a
way to set it through the environment variable:

• Setting environment variable LAPACKE_NANCHECK to 0 turns OFF NaN-checking
• Setting environment variable LAPACKE_NANCHECK to 1 turns ON NaN-checking

The other way is the call the LAPACKE_set_nancheck function; see the Developer Reference for C's LAPACK
Auxiliary Routines section for more information.

Note that the NaN-checking flag value set by the call to LAPACKE_set_nancheck always has higher priority
than the environment variable, LAPACKE_NANCHECK.

Instruction Set Specific Dispatching on Intel® Architectures
Intel® oneAPI Math Kernel Library automatically queries and then dispatches the code path supported on your
Intel® processor to the optimal instruction set architecture (ISA) by default. The MKL_ENABLE_INSTRUCTIONS
environment variable or the mkl_enable_instructions support function enables you to dispatch to an ISA-
specific code path of your choice. For example, you can run the Intel® Advanced Vector Extensions (Intel®
AVX) code path on an Intel processor based on Intel® Advanced Vector Extensions 2 (Intel® AVX2). This
feature is not available on non-Intel processors.

In some cases Intel® oneAPI Math Kernel Library also provides support for upcoming architectures ahead of
hardware availability, but the library does not automatically dispatch the code path specific to an upcoming
ISA by default. If for your exploratory work you need to enable an ISA for an Intel processor that is not yet
released or if you are working in a simulated environment, you can use theMKL_ENABLE_INSTRUCTIONS
environment variable or mkl_enable_instructions support function.

The following table lists possible values of MKL_ENABLE_INSTRUCTIONS alongside the corresponding ISA
supported by a given processor. MKL_ENABLE_INSTRUCTIONSdispatches to the default ISA if the ISA
requested is not supported on the particular Intel processor. For example, if you request to run the Intel
AVX512 code path on a processor based on Intel AVX2, Intel® oneAPI Math Kernel Library runs the Intel AVX2
code path. The table also explains whether the ISA is dispatched by default on the processor that supports
this ISA.

Value of
MKL_ENABLE_INSTRUCTIONS

ISA Dispatched by
Default

AVX512 Intel® Advanced Vector Extensions (Intel®
AVX-512) for systems based on Intel® Xeon®
processors

Yes

AVX512_E1 Intel® Advanced Vector Extensions (Intel®
AVX-512) with support for Vector Neural
Network Instructions.

Yes

AVX512_E2 ICX: Intel® Advanced Vector Extensions (Intel®
AVX-512) enabled processors.

Yes

AVX512_E3 Intel® Advanced Vector Extensions 512 (Intel®
AVX-512) with support of Vector Neural
Network Instructions supporting BF16 enabled
processors.

Yes

AVX512_E4 Intel® Advanced Vector Extensions 512 (Intel®
AVX-512) with Intel® Deep Learning Boost
(Intel® DL Boost) and bfloat16 support and
Intel® Advanced Matrix Extensions (Intel® AMX)
with bfloat16 and 8-bit integer support.

Yes

AVX2 Intel® AVX2 Yes

 10 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

98

https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/scalapack-routines/scalapack-auxiliary-routines.html
https://software.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-c/top/scalapack-routines/scalapack-auxiliary-routines.html

Value of
MKL_ENABLE_INSTRUCTIONS

ISA Dispatched by
Default

AVX2_E1 Intel® Advanced Vector Extensions 2 (Intel®
AVX2) with support for Intel® Deep Learning
Boost (Intel® DL Boost).

Yes

AVX Intel® AVX Yes

For more details about the mkl_enable_instructions function, including the argument values, see the
Intel® oneAPI Math Kernel Library Developer Reference.

For example:

• To turn on automatic CPU-based dispatching of Intel AVX-512 with support of Intel DL Boost, bfloat16,
Intel AMX with bfloat16 and 8-bit integer, and FP16 instruction, do one of the following:

• Call

mkl_enable_instructions(AVX512_E4)
• Set the environment variable:

• For the bash shell:

export MKL_ENABLE_INSTRUCTIONS=AVX512_E4
• For a C shell (csh or tcsh):

setenv MKL_ENABLE_INSTRUCTIONS AVX512_E4
• To configure the library not to dispatch more recent architectures than Intel AVX2, do one of the

following:

• Call

mkl_enable_instructions(MKL_ENABLE_AVX2)
• Set the environment variable:

• For the bash shell:

export MKL_ENABLE_INSTRUCTIONS=AVX2
• For a C shell (csh or tcsh):

setenv MKL_ENABLE_INSTRUCTIONS AVX2

NOTE
Settings specified by the mkl_enable_instructions function take precedence over the settings
specified by the MKL_ENABLE_INSTRUCTIONS environment variable.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Managing Behavior of the Intel® oneAPI Math Kernel Library with Environment Variables 10

99

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Configuring Your Integrated
Development Environment to
Link with Intel® oneAPI Math
Kernel Library 11
Configuring the Eclipse* IDE CDT to Link with oneMKL
This section explains how to configure the Eclipse* Integrated Development Environment (IDE) C/C++
Development Tools (CDT) to link with .

Tip
After configuring your CDT, you can benefit from the Eclipse-provided code assist feature. See
Code/Context Assist description in the CDT Help for details.

To configure your Eclipse IDE CDT to link with Intel® oneAPI Math Kernel Library, you need to perform the
steps explained below. The specific instructions for performing these steps depend on your version of the
CDT and on the tool-chain/compiler integration. Refer to the CDT Help for more details.

To configure your Eclipse IDE CDT, do the following:

1. Open Project Properties for your project.
2. Add the Intel® oneAPI Math Kernel Library include path, that is,<mkl directory>/include, to the

project's include paths.
3. Add the Intel® oneAPI Math Kernel Library library path for the target architecture to the project's library

paths. For example, for the Intel® 64 architecture, add<mkl directory>/lib/intel64_lin.
4. Specify the names of the Intel® oneAPI Math Kernel Library libraries to link with your application. For

example, you may need the following libraries:mkl_intel_lp64, mkl_intel_thread, mkl_core, and
iomp5.

NOTE
Because compilers typically require library names rather than file names, omit the "lib" prefix and "a"
or "so" extension.

See Also
Intel® oneAPI Math Kernel Library Libraries to Link with
Linking in Detail

 11 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

100

Intel® oneAPI Math Kernel
Library Benchmarks 12

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Intel Optimized LINPACK Benchmark for Linux*
Intel Optimized LINPACK Benchmark for Linux* is a generalization of the LINPACK 1000 benchmark. It solves
a dense (real*8) system of linear equations (Ax=b), measures the amount of time it takes to factor and
solve the system, converts that time into a performance rate, and tests the results for accuracy. The
generalization is in the number of equations (N) it can solve, which is not limited to 1000. It uses partial
pivoting to assure the accuracy of the results.

Do not use this benchmark to report LINPACK 100 performance because that is a compiled-code only
benchmark. This is a shared-memory (SMP) implementation which runs on a single platform. Do not confuse
this benchmark with:

• Intel® Distribution for LINPACK* Benchmark, which is a distributed memory version of the same
benchmark.

• LINPACK, the library, which has been expanded upon by the LAPACK library.

Intel provides optimized versions of the LINPACK benchmarks to help you obtain high LINPACK benchmark
results on your genuine Intel processor systems more easily than with the High Performance Linpack (HPL)
benchmark.

Additional information on this software, as well as on other Intel® software performance products, is available
at https://software.intel.com/content/www/us/en/develop/tools.html.

Acknowledgement
This product includes software developed at the University of Tennessee, Knoxville, Innovative Computing
Laboratories.

Contents of the Intel® Optimized LINPACK Benchmark
The Intel Optimized LINPACK Benchmark for Linux* contains the following files, located in the ./
benchmarks/linpack/subdirectory of the directory:

File in ./benchmarks/linpack/ Description

xlinpack_xeon32 The 32-bit program executable for a system based on Intel®
Xeon® processor or Intel® Xeon® processor MP with or without
Intel® Streaming SIMD Extensions 3 (SSE3).

xlinpack_xeon64 The 64-bit program executable for a system with Intel Xeon
processor using Intel® 64 architecture.

runme_xeon32 A sample shell script for executing a pre-determined problem set
for xlinpack_xeon32.

Intel® oneAPI Math Kernel Library Benchmarks 12

101

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex
https://software.intel.com/content/www/us/en/develop/tools.html

File in ./benchmarks/linpack/ Description

runme_xeon64 A sample shell script for executing a pre-determined problem set
for xlinpack_xeon64.

lininput_xeon32 Input file for a pre-determined problem for the runme_xeon32
script.

lininput_xeon64 Input file for a pre-determined problem for the runme_xeon64
script.

help.lpk Simple help file.

xhelp.lpk Extended help file.

These files are not available immediately after installation and appear as a result of execution of an
appropriate runme script.

lin_xeon32.txt Result of the runme_xeon32 script execution.

lin_xeon64.txt Result of the runme_xeon64 script execution.

See Also
High-level Directory Structure

Running the Software
To obtain results for the pre-determined sample problem sizes on a given system, type:

./runme_xeon32

./runme_xeon64
To run the software for other problem sizes, see the extended help included with the program. You can view
extended help by running the program executable with the -e option:

./xlinpack_xeon32-e

./xlinpack_xeon64 -e
The pre-defined data input files lininput_xeon32, lininput_xeon64, are examples. Different systems
have different numbers of processors or amounts of memory and therefore require new input files. The
extended help can give insight into proper ways to change the sample input files.

Each input file requires the following minimum amount of memory:

lininput_xeon32 2 GB

lininput_xeon64 16 GB

If the system has less memory than the above sample data input requires, you may need to edit or create
your own data input files, as explained in the extended help.

The Intel Optimized LINPACK Benchmark determines the optimal number of OpenMP threads to use. To run a
different number, you can set the OMP_NUM_THREADS or MKL_NUM_THREADS environment variable inside a
sample script. If you run the Intel Optimized LINPACK Benchmark without setting the number of threads, it
defaults to the number of physical cores.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

 12 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

102

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

Product and Performance Information

Notice revision #20201201

Known Limitations of the Intel® Optimized LINPACK Benchmark
The following limitations are known for the Intel Optimized LINPACK Benchmark for Linux*:

• Intel Optimized LINPACK Benchmark supports only OpenMP threading
• Intel Optimized LINPACK Benchmark is threaded to effectively use multiple processors. So, in multi-

processor systems, best performance will be obtained with the Intel® Hyper-Threading Technology turned
off, which ensures that the operating system assigns threads to physical processors only.

• If an incomplete data input file is given, the binaries may either hang or fault. See the sample data input
files and/or the extended help for insight into creating a correct data input file.

Intel® Distribution for LINPACK* Benchmark

Overview of the Intel® Distribution for LINPACK* Benchmark
The Intel® Distribution for LINPACK* Benchmark is based on modifications and additions to High-Performance
LINPACK (HPL) (http://www.netlib.org/benchmark/hpl/) from Innovative Computing Laboratories (ICL) at the
University of Tennessee, Knoxville. The Intel® Distribution for LINPACK Benchmark can be used for TOP500
runs (see http://www.top500.org) and for benchmarking your cluster. To use the benchmark you need to be
familiar with HPL usage. The Intel® Distribution for LINPACK Benchmark provides some enhancements
designed to make the HPL usage more convenient and to use Intel® Message-Passing Interface (MPI) settings
to improve performance.

The Intel® Distribution for LINPACK Benchmark measures the amount of time it takes to factor and solve a
random dense system of linear equations (Ax=b) in real*8 precision, converts that time into a performance
rate, and tests the results for accuracy. The benchmark uses random number generation and full row pivoting
to ensure the accuracy of the results.

Intel provides optimized versions of the LINPACK benchmarks to help you obtain high LINPACK benchmark
results on your systems based on genuine Intel processors more easily than with the standard HPL
benchmark. The prebuilt binaries require Intel® MPI library be installed on the cluster. The run-time version of
Intel MPI library is free and can be downloaded from https://www.software.intel.com/content/www/us/en/
develop/tools.html .

The Intel package includes software developed at the University of Tennessee, Knoxville, ICL, and neither the
University nor ICL endorse or promote this product. Although HPL is redistributable under certain conditions,
this particular package is subject to the license.

Intel® oneAPI Math Kernel Library provides prebuilt binaries that are linked against Intel MPI libraries either
statically or dynamically. In addition, binaries linked with a customized MPI implementation can be created
using the Intel® oneAPI Math Kernel Library MPI wrappers.

NOTE
Performance of statically and dynamically linked prebuilt binaries may be different. The performance of
both depends on the version of Intel MPI you are using. You can build binaries statically or dynamically
linked against a particular version of Intel MPI by yourself.

HPL code is homogeneous by nature: it requires that each MPI process runs in an environment with similar
CPU and memory constraints. The Intel® Distribution for LINPACK Benchmark supports heterogeneity,
meaning that the data distribution can be balanced to the performance requirements of each node, provided
that there is enough memory on that node to support additional work. For information on how to configure
Intel® oneAPI Math Kernel Library to use the internode heterogeneity, seeHeterogeneous Support in the
Intel® Distribution for LINPACK Benchmark.

Intel® oneAPI Math Kernel Library Benchmarks 12

103

http://www.netlib.org/benchmark/hpl
http://www.top500.org
https://software.intel.com/content/www/us/en/develop/tools.html
https://software.intel.com/content/www/us/en/develop/tools.html

Contents of the Intel® Distribution for LINPACK* Benchmark
The Intel® Distribution for LINPACK Benchmark includes prebuilt binaries linked with Intel® MPI library. For a
customized MPI implementation, tools are also included to build a binary using Intel® oneAPI Math Kernel
Library MPI wrappers. All the files are located in the./benchmarks/mp_linpack/subdirectory of the Intel®
oneAPI Math Kernel Library directory.

File in <mkl directory>/benchmarks/
mp_linpack/

Contents

COPYRIGHT Original Netlib HPL copyright document.

readme.txt Information about the files provided.

Prebuilt executables for performance testing

xhpl_intel64_dynamic Prebuilt binary for the Intel® 64 architecture dynamically linked
against Intel MPI library‡.

Run scripts and an input file example

runme_intel64_dynamic Sample run script for the Intel® 64 architecture and binary
dynamically linked against Intel MPI library.

runme_intel64_prv Script that sets HPL environment variables. It is called by
runme_intel64_dynamic.

HPL.dat Example of an HPL configuration file.

Prebuilt libraries and utilities for building with a customized MPI implementation

libhpl_intel64.a Library file required to build Intel® Distribution for LINPACK
Benchmark for the Intel® 64 architecture with a customized
MPI implementation.

HPL_main.c Source code required to build Intel® Distribution for LINPACK
Benchmark for the Intel® 64 architecture with a customized
MPI implementation.

build.sh Build script for creating Intel® Distribution for LINPACK
Benchmark for the Intel® 64 architecture with a customized
MPI implementation.

‡For a list of supported versions of the Intel MPI Library, see system requirements in the Intel® oneAPI Math
Kernel Library Release Notes.

See Also
High-level Directory Structure

Building the Intel® Distribution for LINPACK* Benchmark for a Customized MPI
Implementation
The Intel® Distribution for LINPACK Benchmark contains a sample build script build.sh. If you are using a
customized MPI implementation, this script builds a binary using Intel® oneAPI Math Kernel Library MPI
wrappers. To build the binary, follow these steps:

1. Specify the location of Intel® oneAPI Math Kernel Library to be used (MKLROOT)
2. Set up your MPI environment
3. Run the script build.sh

 12 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

104

See Also
Contents of the Intel® Distribution for LINPACK Benchmark

Building the Netlib HPL from Source Code
The source code for Intel® Distribution for LINPACK* Benchmark is not provided. However, you can download
reference Netlib HPL source code from http://www.netlib.org/benchmark/hpl/ . To build the HPL:

1. Download and extract the source code.
2. Copy the makefile:

$> cp setup/Make.Linux_Intel64 .
3. Edit Make.Linux_Intel64 as appropriate
4. Build the HPL binary:

$> make arch=Linux_Intel64
5. Check that the built binary is available in the bin/Linux_Intel64 directory.

NOTE
The Intel® Distribution for LINPACK Benchmark may contain additional optimizations compared to the
reference Netlib HPL implementation.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
Contents of the Intel® Distribution for LINPACK Benchmark

Configuring Parameters
The most significant parameters in HPL.dat are P, Q, NB, and N. Specify them as follows:

• P and Q - the number of rows and columns in the process grid, respectively.

P*Q must be the number of MPI processes that HPL is using.

Choose P≤Q.
• NB - the block size of the data distribution.

The table below shows recommended values of NB for different Intel® processors:

Processor NB

Intel® Xeon® Processor X56*/E56*/E7-*/E7*/X7* (codenamed Nehalem or Westmere) 256

Intel Xeon Processor E26*/E26* v2 (codenamed Sandy Bridge or Ivy Bridge) 256

Intel Xeon Processor E26* v3/E26* v4 (codenamed Haswell or Broadwell) 192
Intel® Core™ i3/i5/i7-6* Processor (codenamed Skylake Client) 192

Intel® Xeon Phi™ Processor 72* (codenamed Knights Landing) 336

Intel Xeon Processor supporting Intel® Advanced Vector Extensions 512 (Intel® AVX-512)
instructions (codenamed Skylake Server)

384

• N - the problem size:

Intel® oneAPI Math Kernel Library Benchmarks 12

105

http://www.netlib.org/benchmark/hpl/
https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

• For homogeneous runs, choose N divisible by NB*LCM(P,Q), where LCM is the least common multiple
of the two numbers.

• For heterogeneous runs, see Heterogeneous Support in the Intel® Distribution for LINPACK*
Benchmark for how to choose N.

NOTE
Increasing N usually increases performance, but the size of N is bounded by memory. In general, you
can compute the memory required to store the matrix (which does not count internal buffers) as
8*N*N/(P*Q) bytes, where N is the problem size and P and Q are the process grids in HPL.dat. A
general rule of thumb is to choose a problem size that fills 80% of memory.

Ease-of-use Command-line Parameters
The Intel® Distribution for LINPACK* Benchmark supports command-line parameters for HPL that help you to
avoid making small changes in the HPL.dat input file every time you do a new run.

Placeholders in this command line illustrate these parameters:

./xhpl -n <problem size> -m <memory size in Mbytes> -b <block size> -p <grid row dimn>
-q <grid column dimn>
You can also use command-line parameters with the sample runme scripts. For example:

./runme_intel64_dynamic -m <memory size in Mbytes> -b <block size> -p <grid row dimn> -
q <grid column dimn>
For more command-line parameters, see Heterogeneous Support in the Intel® Distribution for LINPACK
Benchmark.

If you want to run for N=10000 on a 1x3 grid, execute this command, provided that the other parameters in
HPL.dat and the script are correct:

./runme_intel64_dynamic -n 10000 -p 1 -q 3
By using the m parameter you can scale by the memory size instead of the problem size. The m parameter
only refers to the size of the matrix storage. Therefore, to use matrices that fit in 50000 Mbytes with
NB=256 on 16 nodes, adjust the script to set the total number of MPI processes to 16 and execute this
command:

./runme_intel64_dynamic -m 50000 -b 256 -p 4 -q 4

Running the Intel® Distribution for LINPACK* Benchmark
To run the Intel® Distribution for LINPACK Benchmark on multiple nodes or on one node with multiple MPI
processes, you need to use MPI and either modify HPL.dat or use Ease-of-use Command-line Parameters.
The following example describes how to run the dynamically-linked prebuilt Intel® Distribution for LINPACK
Benchmark binary using the script provided. To run other binaries, adjust the steps accordingly; specifically,
change line 58 of runme_intel64_dynamic to point to the appropriate binary.

1. Load the necessary environment variables for the Intel MPI Library and Intel® compiler:

<compiler directory>/env/vars.sh
<mpi directory>/env/vars.sh

2. In HPL.dat, set the problem size N to 10000. Because this setting is for a test run, the problem size
should be small.

3. For better performance, enable non-uniform memory access (NUMA) on your system and configure to
run an MPI process for each NUMA socket as explained below.

 12 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

106

NOTE
High-bandwidth Multi-Channel Dynamic Random Access Memory (MCDRAM) on the second-generation
Intel® Xeon® Phi processors may appear to be a NUMA node. However, because there are no CPUs on
this node, do not run an MPI process for it.

• Refer to your BIOS settings to enable NUMA on your system.
• Set the following variables at the top of the runme_intel64_dynamic script according to your

cluster configuration:

MPI_PROC_NUM The total number of MPI processes.

MPI_PER_NODE The number of MPI processes per each cluster node.

• In the HPL.dat file, set the parameters Ps and Qs so that Ps * Qs equals the number of MPI
processes. For example, for 2 processes, set Ps to 1 and Qs to 2. Alternatively, leave the HPL.dat
file as is and launch with -p and -q command-line parameters.

4. Execute runme_intel64_dynamic script:

./runme_intel64_dynamic
5. Rerun the test increasing the size of the problem until the matrix size uses about 80% of the available

memory. To do this, either modify Ns in line 6 of HPL.dat or use the -n command-line parameter:

• For 16 GB: 40000 Ns
• For 32 GB: 56000 Ns
• For 64 GB: 83000 Ns

See Also
Notational Conventions
Building the Intel® Distribution for LINPACK Benchmark for a Customized MPI Implementation
Building the Netlib HPL from Source Code
Using High-bandwidth Memory with Intel® oneAPI Math Kernel Library

Heterogeneous Support in the Intel® Distribution for LINPACK* Benchmark
Intel® Distribution for LINPACK Benchmark achieves heterogeneous support by distributing the matrix data
unequally between the nodes. The heterogeneous factor command-line parameter f controls the amount of
work to be assigned to the more powerful nodes, while the command-line parameter c controls the number
of process columns for the faster nodes:

./xhpl –n <problem size> –b <block size> –p <grid row dimn> –q <grid column dimn> –f
<heterogeneous factor> –c <number of faster processor columns>
If the heterogeneous factor is 2.5, roughly 2.5 times the work will be put on the more powerful nodes. The
more work you put on the more powerful nodes, the more memory you might be wasting on the other nodes
if all nodes have equal amount of memory. If your cluster includes many different types of nodes, you may
need multiple heterogeneous factors.

Let P be the number of rows and Q the number of columns in your processor grid (PxQ). The work must be
homogeneous within each processor column because vertical operations, such as pivoting or panel
factorization, are synchronizing operations. When there are two different types of nodes, use MPI to process
all the faster nodes first and make sure the "PMAP process mapping" (line 9) of HPL.dat is set to 1 for
Column-major mapping. Because all the nodes must be the same within a process column, the number of
faster nodes must always be a multiple of P, and you can specify the faster nodes by setting the number of
process columns C for the faster nodes with the c command-line parameter. The -f 1.0 -c 0 setting
corresponds to the default homogeneous behavior.

To understand how to choose the problem size N for a heterogeneous run, first consider a homogeneous
system, where you might choose N as follows:

N ~= sqrt(Memory Utilization * P * Q * Memory Size in Bytes / 8)

Intel® oneAPI Math Kernel Library Benchmarks 12

107

Memory Utilization is usually around 0.8 for homogeneous Intel® Xeon® processor systems. On a
heterogeneous system, you may apply a different formula for N for each set of nodes that are the same and
then choose the minimum N over all sets. Suppose you have a cluster with only one heterogeneous factor F
and the number of processor columns (out of the total Q) in the group with that heterogeneous factor equal
to C. That group contains P*C nodes. First compute the sum of the parts: S =F*P*C + P*(Q-C). Note that on
a homogeneous system S=P*Q,F=1, and C=Q. Take N as

N ~= sqrt(Memory Utilization * P * Q * ((F*P*C)/S) * Memory Size in Bytes / 8)

or simply scale down the value of N for the homogeneous system by sqrt(F*P*C/S).

Example
Suppose the cluster has 100 nodes each having 64 GB of memory, and 20 of the nodes are 2.7 times as
powerful as the other 80. Run one MPI process per node for a total of 100 MPI processes. Assume a square
processor grid P=Q=10, which conveniently divides up the faster nodes evenly. Normally, the HPL
documentation recommends choosing a matrix size that consumes 80 percent of available memory. If N is
the size of the matrix, the matrix consumes 8N^2/(P*Q) bytes. So a homogeneous run might look like:

./xhpl –n 820000 –b 256 –p 10 –q 10
If you redistribute the matrix and run the heterogeneous Intel® Distribution for LINPACK Benchmark, you can
take advantage of the faster nodes. But because some of the nodes will contain 2.7 times as much data as
the other nodes, you must shrink the problem size (unless the faster nodes also happen to have 2.7 times as
much memory). Instead of 0.8*64GB*100 total memory size, we have only 0.8*64GB*20 + 0.8*64GB/
2.7*80 total memory size, which is less than half the original space. So the problem size in this case would
be 526000. Because P=10 and there are 20 faster nodes, two processor columns are faster. If you arrange
MPI to send these nodes first to the application, the command line looks like:

./xhpl –n 526000 –b 1024 –p 10 –q 10 –f 2.7 –c 2
The m parameter may be misleading for heterogeneous calculations because it calculates the problem size
assuming all the nodes have the same amount of data.

Warning
The number of faster nodes must be C*P. If the number of faster nodes is not divisible by P, you
might not be able to take advantage of the extra performance potential by giving the faster nodes
extra work.

While it suffices to simply provide f and c command-line parameters if you need only one heterogeneous
factor, you must add lines to the HPL.dat input to support multiple heterogeneous factors. For the above
example (two processor columns have nodes that are 2.7 times faster), instead of passing f and c
command-line parameters you can modify the HPL.dat input file by adding these two lines to the end:

1 number of heterogeneous factors
0 1 2.7 [start_column, stop_column, heterogeneous factor for that range]

NOTE
Numbering of processor columns starts at 0. The start and stopping numbers must be between 0 and
Q-1 (inclusive).

If instead there are three different types of nodes in a cluster and you need at least two heterogeneous
factors, change the number in the first row above from 1 to 2 and follow that line with two lines specifying
the start column, stopping column, and heterogeneous factor.

When choosing parameters for heterogeneous support in HPL.dat, primarily focus on the most powerful
nodes. The larger the heterogeneous factor, the more balanced the cluster may be from a performance
viewpoint, but the more imbalanced from a memory viewpoint. At some point, further performance balancing

 12 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

108

might affect the memory too much. If this is the case, try to reduce any changes done for the faster nodes
(such as in block sizes). Experiment with values in HPL.dat carefully because wrong values may greatly
hinder performance.

When tuning on a heterogeneous cluster, do not immediately attempt a heterogeneous run, but do the
following:

1. Break the cluster down into multiple homogeneous clusters.
2. Make heterogeneous adjustments for performance balancing. For instance, if you have two different

sets of nodes where one is three times as powerful as the other, it must do three times the work.
3. Figure out the approximate size of the problem (per node) that you can run on each piece.
4. Do some homogeneous runs with those problem sizes per node and the final block size needed for the

heterogeneous run and find the best parameters.
5. Use these parameters for an initial heterogeneous run.

Environment Variables
The table below lists Intel® oneAPI Math Kernel Library environment variables to control runs of the Intel
Distribution for LINPACK Benchmark.

Environment Variable Description Value

HPL_LARGEPAGE Defines the memory mapping to be
used for the Intel® Xeon® processor.

0 or 1:
• 0 - normal memory

mapping, default.
• 1 - memory mapping with

large pages (2 MB per
page mapping). It may
increase performance.

HPL_LOG Controls the level of detail for the
HPL output.

An integer ranging from 0 to
2:
• 0 - no log is displayed.
• 1 - only one root node

displays a log, exactly the
same as the ASYOUGO
option provides.

• 2 - the most detailed log is
displayed. All P root nodes
in the processor column
that owns the current
column block display a log.

HPL_HOST_CORE, HPL_HOST_NODE Specifies cores or Non-Uniform
Memory Access (NUMA) nodes to
be used.

HPL_HOST_NODE requires NUMA
mode to be enabled. You can check
whether it is enabled by the
numactl –-hardware command.

The default behavior is auto-
detection of the core or NUMA
node.

A list of integers ranging from
0 to the largest number of a
core or NUMA node in the
cluster and separated as
explained in example 3.

HPL_SWAPWIDTH Specifies width for each swap
operation.

16 or 24. The default is 24.

You can set Intel Distribution for LINPACK Benchmark environment variables using the PMI_RANK and
PMI_SIZE environment variables of the Intel MPI library, and you can create a shell script to automate the
process.

Intel® oneAPI Math Kernel Library Benchmarks 12

109

Examples of Environment Settings

Settings Behavior of the Intel Distribution for LINPACK
Benchmark

1 Nothing specified All Intel® Xeon® processors in the cluster are used.

2 HPL_MIC_DEVICE=0,2

HPL_HOST_CORE=1-3,8-10

Intel® Xeon® processor cores 1,2,3,8,9, and 10 are used.

3 HPL_HOST_NODE=1 Only Intel® Xeon® processor cores on NUMA node 1 are used.

Improving Performance of Your Cluster
To improve cluster performance, follow these steps, provided all required software is installed on each node:

1. Reboot all nodes.
2. Ensure all nodes are in identical conditions and no zombie processes are left running from prior HPL

runs. To do this, run single-node Stream and Intel® Distribution for LINPACK Benchmark on every node.
Ensure results are within 10% of each other (problem size must be large enough depending on memory
size and CPU speed). Investigate nodes with low performance for hardware/software problems.

3. Check that your cluster interconnects are working. Run a test over the complete cluster using an MPI
test for bandwidth and latency, such as one found in the Intel® MPI Benchmarks package.

4. Run an Intel® Distribution for LINPACK Benchmark on pairs of two or four nodes and ensure results are
within 10% of each other. The problem size must be large enough depending on the memory size and
CPU speed.

5. Run a small problem size over the complete cluster to ensure correctness.
6. Increase the problem size and run the real test load.
7. In case of problems go back to step 2.

Before making a heterogeneous run, always run its homogeneous equivalent first.

See Also
Heterogeneous Support in the Intel® Distribution for LINPACK* Benchmark

Intel® Optimized High Performance Conjugate Gradient
Benchmark

Overview of the Intel Optimized HPCG
The Intel® Optimized High Performance Conjugate Gradient Benchmark (Intel® Optimized HPCG) provides an
implementation of the HPCG benchmark (http://hpcg-benchmark.org) optimized for Intel® Xeon® processors
and Intel® Xeon Phi™ processors with Intel® Advanced Vector Extensions (Intel® AVX), Intel® Advanced Vector
Extensions 2 (Intel® AVX2), Intel® Advanced Vector Extensions 512 (Intel® AVX-512) support. The HPCG
Benchmark is intended to complement the High Performance LINPACK benchmark used in the TOP500
(http://www.top500.org) system ranking by providing a metric that better aligns with a broader set of
important cluster applications.

The HPCG benchmark implementation is based on a 3-dimensional (3D) regular 27-point discretization of an
elliptic partial differential equation. The implementation calls a 3D domain to fill a 3D virtual process grid for
all the available MPI ranks. HPCG uses the preconditioned conjugate gradient method (CG) to solve the
intermediate systems of equations and incorporates a local and symmetric Gauss-Seidel preconditioning step
that requires a triangular forward solve and a backward solve. A synthetic multi-grid V-cycle is used on each
preconditioning step to make the benchmark better fit real-world applications. HPCG implements matrix
multiplication locally, with an initial halo exchange between neighboring processes. The benchmark exhibits
irregular accesses to memory and fine-grain recursive computations that dominate many scientific workloads
(for details, see http://www.sandia.gov/~maherou/docs/HPCG-Benchmark.pdf).

 12 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

110

http://hpcg-benchmark.org
http://www.top500.org
http://www.sandia.gov/~maherou/docs/HPCG-Benchmark.pdf

The Intel® Optimized HPCG contains source code of the HPCG v3.0 reference implementation with necessary
modifications to include:

• Intel® architecture optimizations
• Prebuilt benchmark executables that link to

• Inspector-executor Sparse BLAS kernels for sparse matrix-vector multiplication (SpMV)

• Sparse triangular solve (TRSV)

• Symmetric Gauss-Seidel smoother (SYMGS)

that are optimized for Intel AVX, Intel AVX2, and Intel AVX-512 instruction sets. For the Intel AVX-512
instruction set, there are separate versions that target Intel® Xeon® Scalable processors and Intel® Xeon® Phi
processors. Use this package to evaluate the performance of distributed-memory systems based on any
generation of the Intel® Xeon® processor E3, Intel® Xeon® processor E5, Intel® Xeon® processor E7, Intel®
Xeon® Scalable processor family, and Intel Xeon PhiTM processor families.

The Intel® oneAPI Math Kernel Library Inspector-executor Sparse BLAS kernels SpMV, TRSV, and SYMGS are
implemented using an inspector-executor model. The inspection step chooses the best algorithm for the
input matrix and converts the matrix to a special internal representation to achieve high performance at the
execution step.

Versions of the Intel Optimized HPCG
The Intel Optimized HPCG package includes prebuilt HPCG benchmark for Intel MPI 5.1 or higher. All the files
of the benchmark are located in the ./benchmarks/hpcgsubdirectory of the Intel® oneAPI Math Kernel
Library directory. These versions of the benchmark are available:

File in ./benchmarks/
hpcg/bin

Description

xhpcg_avx The Intel AVX optimized version of the benchmark, optimized for systems
based on the first and the second generations of Intel® Xeon® processor E3
family, Intel® Xeon® processor E5 family, or Intel® Xeon® processor E7 family.

xhpcg_avx2 The Intel AVX2 optimized version of the benchmark, optimized for systems
based on the third and later generations of the Intel® Xeon® processor E3
family, Intel® Xeon® processor E5 family, Intel® Xeon® processor E7 family, and
future Intel processors with Intel AVX2 support. Running the Intel AVX
optimized version of the benchmark on an Intel AVX2 enabled system produces
non-optimal performance. The Intel AVX2 optimized version of the benchmark
does not run on systems that do not support Intel AVX2.

xhpcg_knl The Intel® Xeon® Phi processor (formerly Knights Landing) optimized version of
the benchmark is designed for systems based on Intel® Xeon® Phi processors
with Intel AVX-512 support. Running the Intel AVX or AVX2 optimized versions
of the benchmark on an Intel AVX-512 enabled system produces non-optimal
performance. The Intel® Xeon® Phi processor optimized version of the
benchmark does not run on systems that do not support Intel AVX-512.

xhpcg_skx The Intel® Xeon® Scalable processor (formerly Skylake) optimized version of
the benchmark is designed for systems based on Intel® Xeon® Scalable
processors and future Intel processors with Intel AVX-512 support. Running the
Intel AVX or AVX2 optimized versions of the benchmark on an Intel AVX-512
enabled system produces non-optimal performance. The Intel® Xeon® Scalable
processor optimized version of the benchmark does not run on systems that do
not support Intel AVX-512.

hpcg.dat HPCG benchmark input file.

Intel® oneAPI Math Kernel Library Benchmarks 12

111

The Intel Optimized HPCG package also includes the source code necessary to build these versions of the
benchmark for other MPI implementations, such as MPICH2, or Open MPI: Intel AVX optimized version and
Intel AVX2 optimized version, and Intel AVX-512 optimized version. Build instructions are available in the
QUICKSTART file included with the package.

See Also
High-level Directory Structure

Getting Started with Intel Optimized HPCG
To start working with the benchmark,

1. On a cluster file system, unpack the Intel Optimized HPCG package to a directory accessible by all
nodes. Read and accept the license as indicated in the readme.txt file included in the package.

2. Change the directory to hpcg/bin.
3. Determine the prebuilt version of the benchmark that is best for your system or follow QUICKSTART

instructions to build a version of the benchmark for your MPI implementation.
4. Ensure that Intel® oneAPI Math Kernel Library, Intel C/C++ Compiler and MPI run-time environments

have been set properly. You can do this using the scriptsvars.sh, compilervars.sh, and mpivars.sh
that are included in those distributions.

5. Run the chosen version of the benchmark.

• The Intel AVX and Intel AVX2 optimized versions perform best with one MPI process per socket and
one OpenMP* thread per core skipping simultaneous multithreading (SMT) threads: set the affinity
as KMP_AFFINITY=granularity=fine,compact,1,0. Specifically, for a 128-node cluster with two
Intel® Xeon® Processor E5-2697 v4 per node, run the executable as follows:

#> mpiexec.hydra -n
256 -ppn 2 env OMP_NUM_THREADS=18
KMP_AFFINITY=granularity=fine,compact,1,0
./bin/xhpcg_avx2 -n192

• The Intel® Xeon® Phi processor optimized version performs best with four MPI processes per
processor and two threads for each processor core, with SMT turned on. Specifically, for a 128-node
cluster with one Intel® Xeon® Phi processor 7250 per node, run the executable in this manner:

#> mpiexec.hydra -n
512 -ppn 2 env OMP_NUM_THREADS=34
KMP_AFFINITY=granularity=fine,compact,1,0
./bin/xhpcg_knl -n160

6. When the benchmark completes execution, which usually takes a few minutes, find the YAML file with
official results in the current directory. The performance rating of the benchmarked system is in the last
section of the file:

HPCG result is VALID with a GFLOP/s rating of: [GFLOP/s]

Choosing Best Configuration and Problem Sizes
The performance of the Intel Optimized HPCG depends on many system parameters including (but not
limited to) the hardware configuration of the host and MPI implementation used. To get the best performance
for a specific system configuration, choose a combination of these parameters:

• The number of MPI processes per host and OpenMPI threads per process
• Local problem size

On Intel® Xeon® processor-based clusters, use the Intel AVX, Intel AVX2, or Intel AVX-512 optimized version
of the benchmark depending on the supported instruction set and run one MPI process per CPU socket and
one OpenMP* thread per physical CPU core skipping SMT threads.

On systems based on Intel® Xeon® Phi processors, use the Intel AVX-512 optimized version with four MPI
processes per processor. Set the number of OpenMP threads to two for each processor core, with SMT turned
on. For example, on Intel® Xeon® Phi processor 7250 which has 68 cores, each MPI process should run 34
OpenMP threads.

 12 Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

112

For best performance, use the problem size that is large enough to better utilize available cores, but not too
large, so that all tasks fit the available memory.

Intel® oneAPI Math Kernel Library Benchmarks 12

113

Intel® oneAPI Math Kernel Library
Language Interfaces Support A
See Also
Mixed-language Programming with Intel® oneAPI Math Kernel Library

Language Interfaces Support, by Function Domain
The following table shows language interfaces that provides for each function domain. However, Intel®
oneAPI Math Kernel Library routines can be called from other languages using mixed-language programming.
SeeMixed-language Programming with the Intel Math Kernel Library for an example of how to call Fortran
routines from C/C++.

Function Domain Fortran int
erface

C/C++
interface

Basic Linear Algebra Subprograms (BLAS) Yes through
CBLAS

BLAS-like extension transposition routines Yes Yes

Sparse BLAS Level 1 Yes through
CBLAS

Sparse BLAS Level 2 and 3 Yes Yes

LAPACK routines for solving systems of linear equations Yes Yes

LAPACK routines for solving least-squares problems, eigenvalue and singular
value problems, and Sylvester's equations

Yes Yes

Auxiliary and utility LAPACK routines Yes Yes

Parallel Basic Linear Algebra Subprograms (PBLAS) Yes

ScaLAPACK Yes †

Direct Sparse Solvers/
Intel® oneAPI Math Kernel Library PARDISO, a direct sparse solver based on
Parallel Direct Sparse Solver (PARDISO*)

Yes Yes

Parallel Direct Sparse Solvers for Clusters Yes Yes

Other Direct and Iterative Sparse Solver routines Yes Yes

Vector Mathematics (VM) Yes Yes

Vector Statistics (VS) Yes Yes

Fast Fourier Transforms (FFT) Yes Yes

Cluster FFT Yes Yes

Trigonometric Transforms Yes Yes

Fast Poisson, Laplace, and Helmholtz Solver (Poisson Library) Yes Yes

Optimization (Trust-Region) Solver Yes Yes

 A Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

114

Function Domain Fortran int
erface

C/C++
interface

Data Fitting Yes Yes

Extended Eigensolver Yes Yes

Support functions (including memory allocation) Yes Yes

† Supported using a mixed language programming call. See Include Files for the respective header file.

Include Files
The table below lists Intel® oneAPI Math Kernel Library include files.

Function Domain/
Purpose

Fortran Include Files C/C++ Include Files

All function domains mkl.fi mkl.h

BLACS mkl_blacs.h‡‡

BLAS blas.f90
mkl_blas.fi†

mkl_blas.h‡

BLAS-like Extension Transposition
Routines

mkl_trans.fi† mkl_trans.h‡

CBLAS Interface to BLAS mkl_cblas.h‡

Sparse BLAS mkl_spblas.fi† mkl_spblas.h‡

LAPACK lapack.f90
mkl_lapack.fi†

mkl_lapack.h‡

C Interface to LAPACK mkl_lapacke.h‡

PBLAS mkl_pblas.h‡‡

ScaLAPACK mkl_scalapack.h‡‡

Intel® oneAPI Math Kernel Library
PARDISO

mkl_pardiso.f90
mkl_pardiso.fi†

mkl_pardiso.h‡

Parallel Direct Sparse Solvers for
Clusters

mkl_cluster_
sparse_solver.f90

mkl_cluster_
sparse_solver.h‡

Direct Sparse Solver (DSS) mkl_dss.f90
mkl_dss.fi†

mkl_dss.h‡

 RCI Iterative Solvers

 ILU Factorization

mkl_rci.f90
mkl_rci.fi†

mkl_rci.h‡

Optimization Solver mkl_rci.f90
mkl_rci.fi†

mkl_rci.h‡

Vector Mathematics mkl_vml.90
mkl_vml.fi†

mkl_vml.h‡

Vector Statistics mkl_vsl.f90
mkl_vsl.fi†

mkl_vsl.h‡

Intel® oneAPI Math Kernel Library Language Interfaces Support A

115

Function Domain/
Purpose

Fortran Include Files C/C++ Include Files

Fast Fourier Transforms mkl_dfti.f90 mkl_dfti.h‡

Cluster Fast Fourier Transforms mkl_cdft.f90 mkl_cdft.h‡‡

Partial Differential Equations Support

 Trigonometric Transforms mkl_trig_transforms.f90 mkl_trig_transform.h‡

 Poisson Solvers mkl_poisson.f90 mkl_poisson.h‡

Data Fitting mkl_df.f90 mkl_df.h‡

Extended Eigensolver mkl_solvers_ee.fi† mkl_solvers_ee.h‡

Support functions mkl_service.f90
mkl_service.fi†

mkl_service.h‡

Declarations for replacing memory
allocation functions. See Redefining
Memory Functions for details.

i_malloc.h

Auxiliary macros to determine the
version of Intel® oneAPI Math Kernel
Library at compile time.

mkl_version mkl_version‡

† You can use the mkl.fi include file in your code instead.
‡ You can include the mkl.h header file in your code instead.
‡‡ Also include the mkl.h header file in your code.

See Also
Language Interfaces Support, by Function Domain

 A Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

116

Support for Third-Party Interfaces B
FFTW Interface Support
offers two collections of wrappers for the FFTW interface (www.fftw.org). The wrappers are the
superstructure of FFTW to be used for calling the Intel® oneAPI Math Kernel Library Fourier transform
functions. These collections correspond to the FFTW versions 2.x and 3.x and the Intel® oneAPI Math Kernel
Library versions 7.0 and later.

These wrappers enable using Intel® oneAPI Math Kernel Library Fourier transforms to improve the
performance of programs that use FFTW without changing the program source code. See the "FFTW Interface
to Intel® oneAPI Math Kernel Library" appendix in the Intel® oneAPI Math Kernel Library Developer Reference
for details on the use of the wrappers.

Important
For ease of use, the FFTW3 interface is also integrated in Intel® oneAPI Math Kernel Library.

Caution
The FFTW2 and FFTW3 interfaces are not compatible with each other. Avoid linking to both of them. If
you must do so, first modify the wrapper source code for FFTW2:

1. Change every instance of fftw_destroy_plan in the fftw2xc interface to
fftw2_destroy_plan.

2. Change all the corresponding file names accordingly.
3. Rebuild the pertinent libraries.

Support for Third-Party Interfaces B

117

Directory Structure in Detail C
Tables in this section show contents of the architecture-specific directories.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

See Also
High-level Directory Structure
Using Language-Specific Interfaces with Intel® oneAPI Math Kernel Library

Intel® oneAPI Math Kernel Library Benchmarks

Detailed Structure of the IA-32 Architecture Directories

Static Libraries in the lib/ia32_lin Directory
Some of the libraries in this directory are optional. However, some optional libraries are installed by default,
while the rest are not. To get those libraries that are not installed by default, explicitly select the specified
optional component during installation.

File Contents Optional Component

Name Installed by
Default

Interface Layer

libmkl_intel.a Interface library for the
Intel compilers. Also use
for other supported
compilers that do not
have a specialized Intel®
oneAPI Math Kernel
Library interface library.

libmkl_blas95.a Fortran 95 interface
library for BLAS for the
Intel® Fortran compiler.

Fortran 95
interfaces for BLAS
and LAPACK

Yes

libmkl_lapack95.a Fortran 95 interface
library for LAPACK for
the Intel Fortran
compiler.

Fortran 95
interfaces for BLAS
and LAPACK

Yes

libmkl_gf.a Interface library for the
GNU* Fortran compiler.

GNU* Compiler
Collection support

Yes

Threading Layer

 C Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

118

https://www.intel.com/PerformanceIndex
https://www.intel.com/PerformanceIndex

File Contents Optional Component

Name Installed by
Default

libmkl_intel_thread.a OpenMP threading
library for the Intel
compilers

libmkl_tbb_thread.a Intel® Threading
Building Blocks (Intel®
TBB) threading library
for the Intel compilers

Intel TBB
threading support

Yes

libmkl_gnu_thread.a OpenMP threading
library for the GNU
Fortran and C compilers

GNU* Compiler
Collection support

Yes

libmkl_sequential.a Sequential library

Computational Layer

libmkl_core.a Kernel library for the
IA-32 architecture

Dynamic Libraries in the lib/ia32_lin Directory
Some of the libraries in this directory are optional. However, some optional libraries are installed by default,
while the rest are not. To get those libraries that are not installed by default, explicitly select the specified
optional component during installation.

File Contents Optional Component

Name Installed by
Default

libmkl_rt.so Single Dynamic Library

Interface Layer

libmkl_intel.so Interface library for the
Intel compilers. Also use
for other supported
compilers that do not
have a specialized Intel®
oneAPI Math Kernel
Library interface library.

libmkl_gf.so Interface library for the
GNU Fortran compiler

GNU* Compiler
Collection support

Yes

Threading Layer

libmkl_intel_thread.so OpenMP threading
library for the Intel
compilers

libmkl_tbb_thread.so Intel TBB threading
library for the Intel
compilers

Intel TBB
threading support

Yes

Directory Structure in Detail C

119

File Contents Optional Component

Name Installed by
Default

libmkl_gnu_thread.so OpenMP threading
library for the GNU
Fortran and C compilers

GNU* Compiler
Collection support

Yes

libmkl_sequential.so Sequential library

Computational Layer

libmkl_core.so Library dispatcher for
dynamic load of
processor-specific kernel
library

libmkl_p4.so Pentium® 4 processor
kernel library

libmkl_p4m.so Kernel library for Intel®
Supplemental Streaming
SIMD Extensions 3
(Intel® SSSE3) enabled
processors

libmkl_p4m3.so Kernel library for Intel®
Streaming SIMD
Extensions 4.2 (Intel®
SSE4.2) enabled
processors

libmkl_avx.so Kernel library for Intel®
Advanced Vector
Extensions (Intel® AVX)
enabled processors

libmkl_avx2.so Kernel library for Intel®
Advanced Vector
Extensions 2 (Intel®
AVX2) enabled
processors

libmkl_avx512.so Kernel library for Intel®
Advanced Vector
Extensions 512 (Intel®
AVX-512) enabled
processors

libmkl_vml_p4.so Vector Mathematics
(VM)/Vector Statistics
(VS)/Data Fitting (DF)
part of Pentium® 4
processor kernel

libmkl_vml_p4m.so VM/VS/DF for Intel®
SSSE3 enabled
processors

 C Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

120

File Contents Optional Component

Name Installed by
Default

libmkl_vml_p4m2.so VM/VS/DF for 45nm Hi-
k Intel® Core™2 and
Intel® Xeon® processor
families

libmkl_vml_p4m3.so VM/VS/DF for Intel®
SSE4.2 enabled
processors

libmkl_vml_avx.so VM/VS/DF optimized for
Intel® AVX enabled
processors

libmkl_vml_avx2.so VM/VS/DF optimized for
Intel® AVX2 enabled
processors

libmkl_vml_avx512.so VM/VS/DF optimized for
Intel® AVX-512 enabled
processors

libmkl_vml_ia.so VM/VS/DF default kernel
for newer Intel®
architecture processors

libmkl_vml_cmpt.so VM/VS/DF library for
conditional numerical
reproducibility

Message Catalogs

locale/en_US/mkl_msg.cat Catalog of messages in
English

locale/ja_JP/mkl_msg.cat Catalog of Intel® oneAPI
Math Kernel Library
messages in Japanese.
Available only if Intel®
oneAPI Math Kernel
Library provides
Japanese localization.
Please see the Release
Notes for this
information.

Detailed Structure of the Intel® 64 Architecture Directories

Static Libraries in the lib/intel64_lin Directory
Some of the libraries in this directory are optional. However, some optional libraries are installed by default,
while the rest are not. To get those libraries that are not installed by default, explicitly select the specified
optional component during installation.

Directory Structure in Detail C

121

File Contents Optional Component

Name Installed by
Default

mkl_sycl.a DPC++ library for the
Intel DPC++ compilers

Interface Layer

libmkl_intel_lp64.a LP64 interface library for
the Intel compilers. Also
use for other supported
compilers that do not
have a specialized Intel®
oneAPI Math Kernel
Library interface library

libmkl_intel_ilp64.a ILP64 interface library
for the Intel compilers.
Also use for other
supported compilers
that do not have a
specialized Intel® oneAPI
Math Kernel Library
interface library

libmkl_blas95_lp64.a Fortran 95 interface
library for BLAS for the
Intel® Fortran compiler.
Supports the LP64
interface

Fortran 95
interfaces for BLAS
and LAPACK

Yes

libmkl_blas95_ilp64.a Fortran 95 interface
library for BLAS for the
Intel® Fortran compiler.
Supports the ILP64
interface

Fortran 95
interfaces for BLAS
and LAPACK

Yes

libmkl_lapack95_lp64.a Fortran 95 interface
library for LAPACK for
the Intel® Fortran
compiler. Supports the
LP64 interface

Fortran 95
interfaces for BLAS
and LAPACK

Yes

libmkl_lapack95_ilp64.a Fortran 95 interface
library for LAPACK for
the Intel® Fortran
compiler. Supports the
ILP64 interface

Fortran 95
interfaces for BLAS
and LAPACK

Yes

libmkl_gf_lp64.a LP64 interface library for
the GNU Fortran
compilers

GNU* Compiler
Collection support

Yes

libmkl_gf_ilp64.a ILP64 interface library
for the GNU Fortran
compilers

GNU* Compiler
Collection support

Yes

Threading Layer

 C Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

122

File Contents Optional Component

Name Installed by
Default

libmkl_intel_thread.a OpenMP threading
library for the Intel
compilers

libmkl_tbb_thread.a Intel TBB threading
library for the Intel
compilers

Intel TBB
threading support

Yes

libmkl_gnu_thread.a OpenMP threading
library for the GNU
Fortran and C compilers

GNU* Compiler
Collection support

Yes

libmkl_pgi_thread.a OpenMP threading
library for the PGI
compiler

PGI* Compiler
support

libmkl_sequential.a Sequential library

Computational Layer

libmkl_core.a Kernel library for the
Intel® 64 architecture

Cluster Libraries

libmkl_scalapack_lp64.a ScaLAPACK routine
library supporting the
LP64 interface

Cluster support

libmkl_scalapack_ilp64.a ScaLAPACK routine
library supporting the
ILP64 interface

Cluster support

libmkl_cdft_core.a Cluster version of FFT
functions.

Cluster support

libmkl_blacs_intelmpi_lp64.a LP64 version of BLACS
routines for Intel® MPI
Library and MPICH2 or
higher.

Cluster support

libmkl_blacs_intelmpi_ilp64.a ILP64 version of BLACS
routines for Intel MPI
Library and MPICH2 or
higher.

Cluster support

libmkl_blacs_openmpi_lp64.a LP64 version of BLACS
routines supporting
Open MPI.

Cluster support

libmkl_blacs_openmpi_ilp64.a ILP64 version of BLACS
routines supporting
Open MPI.

Cluster support

Directory Structure in Detail C

123

Dynamic Libraries in the lib/intel64_lin Directory
Some of the libraries in this directory are optional. However, some optional libraries are installed by default,
while the rest are not. To get those libraries that are not installed by default, explicitly select the specified
optional component during installation.

File Contents Optional Component

Name Installed by
Default

mkl_sycl.so DPC++ library for the
Intel DPC++ compilers

libmkl_rt.so Single Dynamic Library

Interface Layer

libmkl_intel_lp64.so LP64 interface library for
the Intel compilers. Also
use for other supported
compilers that do not
have a specialized Intel®
oneAPI Math Kernel
Library interface library

libmkl_intel_ilp64.so ILP64 interface library
for the Intel compilers.
Also use for other
supported compilers
that do not have a
specialized Intel® oneAPI
Math Kernel Library
interface library

libmkl_gf_lp64.so LP64 interface library for
the GNU Fortran
compilers

GNU* Compiler
Collection support

Yes

libmkl_gf_ilp64.so ILP64 interface library
for the GNU Fortran
compilers

GNU* Compiler
Collection support

Yes

Threading Layer

libmkl_intel_thread.so OpenMP threading
library for the Intel
compilers

libmkl_tbb_thread.so Intel TBB threading
library for the Intel
compilers

Intel TBB
threading support

Yes

libmkl_gnu_thread.so OpenMP threading
library for the GNU
Fortran and C compilers

GNU* Compiler
Collection support

Yes

libmkl_pgi_thread.so OpenMP threading
library for the PGI*
compiler

PGI* Compiler
support

libmkl_sequential.so Sequential library

 C Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

124

File Contents Optional Component

Name Installed by
Default

Computational Layer

libmkl_core.so Library dispatcher for
dynamic load of
processor-specific kernel

libmkl_def.so Default kernel library

libmkl_mc.so Kernel library for Intel®
Supplemental Streaming
SIMD Extensions 3
(Intel® SSSE3) enabled
processors

libmkl_mc3.so Kernel library for Intel®
Streaming SIMD
Extensions 4.2 (Intel®
SSE4.2) enabled
processors

libmkl_avx.so Kernel library for Intel®
Advanced Vector
Extensions (Intel® AVX)
enabled processors

libmkl_avx2.so Kernel library for Intel®
Advanced Vector
Extensions 2 (Intel®
AVX2) enabled
processors

libmkl_avx512.so Kernel library for
dispatching Intel®
Advanced Vector
Extensions 512 (Intel®
AVX-512) on Intel®
Xeon® processors

libmkl_avx512_mic.so Kernel library for
dispatching Intel®
Advanced Vector
Extensions 512 (Intel®
AVX-512) on Intel® Xeon
Phi™ processors

libmkl_vml_def.so Vector Mathematics
(VM)/Vector Statistics
(VS)/Data Fitting (DF)
part of default kernels

libmkl_vml_mc.so VM/VS/DF for Intel®
SSSE3 enabled
processors

Directory Structure in Detail C

125

File Contents Optional Component

Name Installed by
Default

libmkl_vml_mc2.so VM/VS/DF for 45nm Hi-
k Intel® Core™2 and
Intel® Xeon® processor
families

libmkl_vml_mc3.so VM/VS/DF for Intel®
SSE4.2 enabled
processors

libmkl_vml_avx.so VM/VS/DF optimized for
Intel® AVX enabled
processors

libmkl_vml_avx2.so VM/VS/DF optimized for
Intel® AVX2 enabled
processors

libmkl_vml_avx512.so VM/VS/DF optimized for
Intel® AVX-512 on Intel®
Xeon® processors

libmkl_vml_avx512_mic.so VM/VS/DF optimized for
Intel® AVX-512 on Intel®
Xeon Phi™ processors

libmkl_vml_cmpt.so VM/VS/DF library for
conditional numerical
reproducibility

Cluster Libraries

libmkl_scalapack_lp64.so ScaLAPACK routine
library supporting the
LP64 interface

Cluster support

libmkl_scalapack_ilp64.so ScaLAPACK routine
library supporting the
ILP64 interface

Cluster support

libmkl_cdft_core.so Cluster version of FFT
functions.

Cluster support

libmkl_blacs_intelmpi_lp64.so LP64 version of BLACS
routines for Intel® MPI
Library and MPICH2 or
higher.

Cluster support

libmkl_blacs_intelmpi_ilp64.so ILP64 version of BLACS
routines for Intel MPI
Library and MPICH2 or
higher.

Cluster support

libmkl_blacs_openmpi_lp64.so LP64 version of BLACS
routines for Open MPI.

Cluster support

libmkl_blacs_openmpi_ilp64.so ILP64 version of BLACS
routines for Open MPI.

Cluster support

 C Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

126

File Contents Optional Component

Name Installed by
Default

Message Catalogs

locale/en_US/mkl_msg.cat Catalog of messages in
English

locale/ja_JP/mkl_msg.cat Catalog of Intel® oneAPI
Math Kernel Library
messages in Japanese.
Available only if Intel®
oneAPI Math Kernel
Library provides
Japanese localization.
Please see the Release
Notes for this
information.

Directory Structure in Detail C

127

Index
A
affinity mask 54
aligning data, example 78
architecture support 19

B
BLAS

calling routines from C 65
Fortran 95 interface to 64
OpenMP* threaded routines 40

C
C interface to LAPACK, use of 65
C, calling LAPACK, BLAS, CBLAS from 65
C/C++, Intel(R) MKL complex types 66
calling

BLAS functions from C 67
CBLAS interface from C 67
complex BLAS Level 1 function from C 67
complex BLAS Level 1 function from C++ 67
Fortran-style routines from C 65

CBLAS interface, use of 65
Cluster FFT

environment variable for 96, 97
linking with 88
managing performance of 96, 97

cluster software, Intel(R) MKL 88
cluster software, linking with

commands 88
linking examples 92

Cluster Sparse Solver, linking with 88
code examples, use of 16
coding

data alignment 78
techniques to improve performance 58

compilation, Intel(R) MKL version-dependent 79
compiler run-time libraries, linking with 36
compiler-dependent function 64
complex types in C and C++, Intel(R) MKL 66
computation results, consistency 70
computational libraries, linking with 35
conditional compilation 79
configuring Eclipse* CDT 100
consistent results 70
conventions, notational 10
custom shared object

building 36
composing list of functions 38
specifying function names 38

D
data alignment, example 78
denormal number, performance 59
direct call, to Intel(R) Math Kernel Library computational
kernels 56

directory structure
high-level 19
in-detail

dispatch Intel(R) architectures, configure with an
environment variable 98
dispatch, new Intel(R) architectures, enable with an
environment variable 98

E
Eclipse* CDT

configuring 100
Enter index keyword 22
environment variables

for threading control 47
setting for specific architecture and programming
interface 14, 15
to control dispatching for Intel(R) architectures 98
to control threading algorithm for ?gemm 50
to enable dispatching of new architectures 98
to manage behavior of function domains 95
to manage behavior of Intel(R) Math Kernel Library
with 95
to manage performance of cluster FFT 96

examples, linking
for cluster software 92
general 26

F
FFT interface

OpenMP* threaded problems 40
FFTW interface support 117
Fortran 95 interface libraries 32
function call information, enable printing 81

H
header files, Intel(R) MKL 115
heterogeneity

of Intel(R) Distribution for LINPACK* Benchmark 103
heterogeneous cluster

support by Intel(R) Distribution for LINPACK*
Benchmark for Clusters 107

heterogeneous cores 55
high-bandwidth memory, use in Intel(R) Math Kernel
Library 60
HT technology, configuration tip 53

I
ILP64 programming, support for 30
improve performance, for matrices of small sizes 56
include files, Intel(R) MKL 115
information, for function call , enable printing 81
installation, checking 12, 13
Intel(R) Distribution for LINPACK* Benchmark

heterogeneity of 103

Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

128

Intel(R) Distribution for LINPACK* Benchmark for Clusters
heterogeneous support 107

Intel(R) Hyper-Threading Technology, configuration tip 53
Intel(R) Optimized High Performance Conjugate Gradient

Benchmark
getting started 112
overview 110

Intel® Threading Building Blocks, functions threaded with 42
interface

Fortran 95, libraries 32
LP64 and ILP64, use of 30

interface libraries and modules, Intel(R) MKL 62
interface libraries, linking with 30

K
kernel, in Intel(R) Math Kernel Library, direct call to 56

L
language interfaces support 114
language-specific interfaces

interface libraries and modules 62
LAPACK

C interface to, use of 65
calling routines from C 65
Fortran 95 interface to 64
OpenMP* threaded routines 40
performance of packed routines 58

layers, Intel(R) MKL structure 20
libraries to link with

computational 35
interface 30
run-time 36
system libraries 36
threading 33

link tool, command line 24
link-line syntax 28
linking examples

cluster software 92
general 26

linking with
compiler run-time libraries 36
computational libraries 35
interface libraries 30
system libraries 36
threading libraries 33

linking, quick start 22
linking, Web-based advisor 24
LINPACK benchmark 101

M
memory functions, redefining 60
memory management 59
memory renaming 60
memory, high-bandwidth, use in Intel(R) Math Kernel
Library 60
message-passing interface

custom, usage 91
Intel(R) Math Kernel Library interaction with 91

mixed-language programming 65
module, Fortran 95 64
MPI

custom, usage 91
Intel(R) Math Kernel Library interaction with 91

multi-core performance 54

N
notational conventions 10
number of threads

changing at run time 45
changing with OpenMP* environment variable 44
Intel(R) MKL choice, particular cases 48
setting for cluster 89
techniques to set 44

numerically reproducible results 70

O
OpenMP* threaded functions 40
OpenMP* threaded problems 40

P
parallel performance 43
parallelism, of Intel(R) MKL 40
performance

heterogeneous cores 55
multi-core 54
with denormals 59
with subnormals 59

performance improvement, for matrices of small sizes 56
performance, of Intel(R) MKL, improve on specific
processors 59

R
results, consistent, obtaining 70
results, numerically reproducible, obtaining 70

S
ScaLAPACK, linking with 88
SDL 23, 29
Single Dynamic Library 23, 29
structure

high-level 19
in-detail
model 20

support, technical 7
supported architectures 19
syntax, link-line 28
system libraries, linking with 36

T
technical support 7
thread safety, of Intel(R) MKL 40
threaded functions, with Intel® Threading Building Blocks 42
threading control, Intel(R) MKL-specific 47
threading libraries, linking with 33

U
unstable output, getting rid of 70

Index

129

V
Vector Mathematics

default mode, setting with environment variable 95
environment variable to set default mode 95

verbose mode, of Intel(R) MKL 81

Intel® oneAPI Math Kernel Libraryfor Linux* Developer Guide

130

	Contents
	Notices and Disclaimers
	Getting Help and Support
	Introducing the Intel® oneAPI Math Kernel Library
	Notational Conventions
	Related Information
	Getting Started
	Shared Library Versioning
	CMake Config for oneMKL
	Checking Your Installation
	Setting Environment Variables
	Scripts to Set Environment Variables
	Modulefiles to Set Environment Variables
	Automating the Process
	Using the CMake Config File

	Compiler Support
	Using Code Examples
	Before You Begin Using the Intel® oneAPI Math Kernel Library

	Structure of the Intel® oneAPI Math Kernel Library
	Architecture Support
	High-level Directory Structure
	Layered Model Concept

	Linking Your Application with the Intel® oneAPI Math Kernel Library
	Linking Quick Start
	Using the -qmkl Compiler Option
	Using the Single Dynamic Library
	Selecting Libraries to Link with
	Using the Link-line Advisor
	Using the Command-line Link Tool

	Linking Examples
	Linking on IA-32 Architecture Systems
	Linking on Intel(R) 64 Architecture Systems

	Linking in Detail
	Listing Libraries on a Link Line
	Dynamically Selecting the Interface and Threading Layer
	Linking with Interface Libraries
	Using the ILP64 Interface vs. LP64 Interface
	Linking with Fortran 95 Interface Libraries

	Linking with Threading Libraries
	Linking with Computational Libraries
	Linking with Compiler Run-time Libraries
	Linking with System Libraries

	Building Custom Shared Objects
	Using the Custom Shared Object Builder
	Composing a List of Functions
	Specifying Function Names
	Distributing Your Custom Shared Object

	Managing Performance and Memory
	Improving Performance with Threading
	OpenMP* Threaded Functions and Problems
	Functions Threaded with Intel® Threading Building Blocks
	Avoiding Conflicts in the Execution Environment
	Techniques to Set the Number of Threads
	Setting the Number of Threads Using an OpenMP* Environment Variable
	Changing the Number of OpenMP* Threads at Run Time
	Using Additional Threading Control
	oneMKL-specific Environment Variables for OpenMP Threading Control
	MKL_DYNAMIC
	MKL_DOMAIN_NUM_THREADS
	MKL_NUM_STRIPES
	Setting the Environment Variables for Threading Control

	Calling oneMKL Functions from Multi-threaded Applications
	Using Intel® Hyper-Threading Technology
	Managing Multi-core Performance
	Managing Performance with Heterogeneous Cores

	Improving Performance for Small Size Problems
	Using MKL_DIRECT_CALL in C Applications
	Using MKL_DIRECT_CALL in Fortran Applications
	Limitations of the Direct Call

	Other Tips and Techniques to Improve Performance
	Coding Techniques
	Improving oneMKL Performance on Specific Processors
	Operating on Denormals

	Using Memory Functions
	Memory Leaks in Intel® oneAPI Math Kernel Library
	Using High-bandwidth Memory with oneMKL
	Redefining Memory Functions

	Language-specific Usage Options
	Using Language-Specific Interfaces with Intel® oneAPI Math Kernel Library
	Interface Libraries and Modules
	Fortran 95 Interfaces to LAPACK and BLAS
	Compiler-dependent Functions and Fortran 90 Modules

	Mixed-language Programming with the Intel Math Kernel Library
	Calling LAPACK, BLAS, and CBLAS Routines from C/C++ Language Environments
	Using Complex Types in C/C++
	Calling BLAS Functions that Return the Complex Values in C/C++ Code

	Obtaining Numerically Reproducible Results
	Getting Started with Conditional Numerical Reproducibility
	Specifying Code Branches
	Reproducibility Conditions
	Setting the Environment Variable for Conditional Numerical Reproducibility
	Code Examples

	Coding Tips
	Example of Data Alignment
	Using Predefined Preprocessor Symbols for Intel® MKL Version-Dependent Compilation

	Managing Output
	Using oneMKL Verbose Mode
	Version Information Line
	Call Description Line

	Working with the Intel® oneAPI Math Kernel Library Cluster Software
	Linking with oneMKL Cluster Software
	Setting the Number of OpenMP* Threads
	Using Shared Libraries
	Setting Environment Variables on a Cluster
	Interaction with the Message-passing Interface
	Using a Custom Message-Passing Interface
	Examples of Linking for Clusters
	Examples for Linking a C Application
	Examples for Linking a Fortran Application

	Managing Behavior of the Intel® oneAPI Math Kernel Library with Environment Variables
	Managing Behavior of Function Domains with Environment Variables
	Setting the Default Mode of Vector Math with an Environment Variable
	Managing Performance of the Cluster Fourier Transform Functions
	Managing Invalid Input Checking in LAPACKE Functions

	Instruction Set Specific Dispatching on Intel® Architectures

	Configuring Your Integrated Development Environment to Link with Intel® oneAPI Math Kernel Library
	Configuring the Eclipse* IDE CDT to Link with Intel® oneAPI Math Kernel Library

	Intel® oneAPI Math Kernel Library Benchmarks
	Intel Optimized LINPACK Benchmark for Linux*
	Contents
	Running the Software
	Known Limitations

	Intel® Distribution for LINPACK* Benchmark
	Overview
	Contents
	Building the Intel® Distribution for LINPACK* Benchmark for a Customized MPI Implementation
	Building the Netlib HPL from Source Code
	Configuring Parameters
	Ease-of-use Command-line Parameters
	Running the Intel® Distribution for LINPACK* Benchmark
	Heterogeneous Support in the Intel® Distribution for LINPACK* Benchmark
	Environment Variables
	Improving Performance of Your Cluster

	Intel® Optimized High Performance Conjugate Gradient Benchmark
	Overview of the Intel Optimized HPCG
	Versions of the Intel Optimized HPCG
	Getting Started with Intel Optimized HPCG
	Choosing Best Configuration and Problem Sizes

	Appendix A: Intel® oneAPI Math Kernel Library Language Interfaces Support
	Language Interfaces Support, by Function Domain
	Include Files

	Support for Third-Party Interfaces
	FFTW Interface Support

	Appendix C: Directory Structure In Detail
	Detailed Structure of the IA-32 Architecture Directories
	Static Libraries
	Dynamic Libraries

	Detailed Structure of the Intel(R) 64 Architecture Directories
	Static Libraries
	Dynamic Libraries

	Index

