intel

Architecture Specification: Intel® Trust Domain
Extensions (Intel® TDX) Module

344425-005US
February 2023

Copyright © 2023 Intel Corporation. All rights reserved.

10

15

20

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

Notices and Disclaimers

|II

Intel Corporation (“Intel”) provides these materials as-is, with no express or implied warranties.

All products, dates, and figures specified are preliminary, based on current expectations, and are subject to change
without notice. Intel does not guarantee the availability of these interfaces in any future product. Contact your Intel
representative to obtain the latest Intel product specifications and roadmaps.

The products described might contain design defects or errors known as errata, which might cause the product to
deviate from published specifications. Current, characterized errata are available on request.

Intel technologies might require enabled hardware, software, or service activation. Some results have been estimated
or simulated. Your costs and results might vary.

No product or component can be absolutely secure.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent
claim thereafter drafted that includes the subject matter disclosed herein.

No license (express, implied, by estoppel, or otherwise) to any intellectual-property rights is granted by this document.

This document contains information on products, services and/or processes in development. All information provided
here is subject to change without notice.

Copies of documents that have an order number and are referenced in this document or other Intel literature may be
obtained by calling 1-800-548-4725 or by visiting http://www.intel.com/design/literature.htm.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands might be claimed as the property of others.

February 2023 . Page 2 of 323

Introduction and Overview

Section 1:

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm.

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

Table of Contents

SECTION 1: INTRODUCTION AND OVERVIEW.cccooinuneeeiiiiiisssssnneenssnnsanss 13
I Y ¢ Yo YUk d o TESJE 0 T Y1 U T 41T 1 | N 14
1.1, S5COPE Of thiS DOCUMENL ...ttt ettt s e st e st e st e st e st e sateesneesaneesanee s 14
1.2, DOCUMENTE OFGOINUZATIONoveeiiiieiiiiieeeie ettt ettt ettt et e s ettt e st e e e st esaane e e snsnesssnneessanns 14
i A € [0 X1 Yo T PSP PPUPPPPPP 14
1.4. INOTGLION .ottt ettt ettt et et et et et et et et et et et eteeea et e e e s etesaterseasaseaaearararararaes 17
1.4.1. Requirement and Definition COmMMItMENt LEVEISccccveeieiuiiie ettt e et e e vre e e are e 17
T 0 =7 -1 o =X J SR 18
1.5.1. T =Y I U o] [ol 3o Yol T3 o =T o1 {3 PR UPPRRt 18
1.5.2. INTEI TDX PUBIIC DOCUMEBNES ...eeiiiieiieiitiiieee e ettt e ee ettt e e e e e ettt e e e e e e e seeastaeeeeeesesansaaseaeeeessnnsssseaaeeeasnnses 18

2. Overview of Intel® Trust DOMain EXTENSIONS......cccceiiiirieriiisiniiiisssnisiisseiiissnesissssssssssssssssssssssssssssssssssssssasssssssans 19
D B 1 =T I D) Q1 [oTe (V] = N Lol o - USRS 19
2.1.1. Boot-Time Configuration and Intel TDX Module LOadingcoocuieeiiiiieieiiie et ee e evee e e sivee e 19
2.1.2. Intel TDX Module Initialization, Enumeration and Configurationcceeccviiiiiiieeecciee e 19
2.2, GUESE TD Life CYCIE QVEIVIEWcoc.eeeeeeeeieeeeee ettt e ettt ette e e sttt e e et e e e et e e e e tsaaaeastsaaeetssaaassasasasssesenssees 20
2.2.1. LRI DN 2T 1] o P RS SP 20
2.2.2. LU=y I =T ol U o o RS 20
2.2.3. Guest TD Management during itS RUN-TIME......ccciiiiiiiiieiiieeiee ettt sttt s e sbe e s b e earee e 20
2.3. Intel TDX Operation Modes aNnd TIANSILIONScceecuueeeeeiuireesiiieessieeeeetteeestee e sttt e e sstteesssteesssssesesssaeassnsaees 21
2.4. Guest TD Private MEmMOry PrOTECLIONcoccueiiveuiiiieiiie ettt ettt et st e sttt e e st e s eannes 22
2.4.1. Y/ [T aqToT VAl S aTol 4V o] o] o I T TP PP PPPPPPPPPPN 22
2.4.2. Yo o [T N = Ya T = 4 o o SR SUUPRRt 22
2.5. GUESTE TD SEALE PrOLECTLION ...eeeeeeeeeeeeeeseeesese s ese s et et e sese s e s e s e s e s s s e s s s s sssesssssssssesesssssssesssasesasssssesssssssssssssssssssssesssesssees 23
2.6, INE@I TDX [fO MOUEI........ooceeeeeeeereeeieeereeeeete et ettt ettt et e e et e et e et e teeeae e s e aa e e aaeess e seebeeasaessaessesssesseasaesseassenes 23
2.7. MeaSUIremMENt ANA ALLESTALION.........ccccueeeeeeeieeeeeee e et e e et e e ettt e e e sttt e e e teeestteaesasteasasteaesasseaassssesssasssessansenaens 24
2.8. Intel TDX Managed CONIOl STIUCTUIESccc.ueeeeeeieeeeciieeeeeie e e etee e s stte e e ette e s e te e e sttt e e ssattaesasteasssseaesssaeaessaees 24
R [1=T B D) @ T 1d=T (o (ol =0l ol V[Lo [¢ KSR 25
2.9.1. Host-Side (SEAMCALL Leaf) INterface FUNCLIONS.........eiiiiiiie et ettt ee et e e e e e e eare e e eeavaeeeebaeeeenes 25
2.9.2. Guest-Side (TDCALL Leaf) INnterface FUNCLIONSuiiieiiii it ettt et e et eevae e e e av e e e et e e eeanes 27

3. SOFtWArE USE CASES......ccceeerererrrrssnnsnnnnnns 28
G2 B [1=T I D) Q1Y [o e (V] L=l N Lo o -SSR 28
3.1.1. Intel TDX Module Platform-Scope INitialization..........ocoicieeieiiere it e e e e 28
3.1.2. Intel TDX Module Shutdown and UPAatecceccuiiiiiciiee et ettes ettt e stee e st e e e saae e e snaaeeesnneeeeenes 28
3.2 TD BUII .ottt ettt e et e e bt e et e e bt e e bt e e ht e e bteenste e baeenane et 29
3.3. D (0 I =N 31
3.3.1. Private Memory ManagemeNnt. ... 31
3.3.1.1. Dynamic Page Addition (Shared to Private CONVEIrSION)ccccueevuierieeniieeiieesieesieesreeseeesieeeseeeenaneas 31
3.3.1.2. Dynamic Page Removal (Private to Shared CONVErsSioN)......ccccvevieeiieeniieenieenieesieesveesseeseeeseeesanes 31
3.3.1.3. Page Promotion (Mapping IMEIEE) ...cccueeeeiiiieeeiee ettt eesttee s e sete e e s tee e e st e e s s neeeesnseeeesstaeesenseeeesnnneenn 33
3.3.1.4. Page Demotion (Mapping SPIL) cocuuee et e ee et e e ee e e s e e e e snta e e eennneeesnneeean 34
3.3.1.5. GPA RANEE UNDBIOCK. ... iiiiiiii ettt e e e e e e e e eee e e snae e e e sntaeeesnaneesnneeaesnseeenanns 35
3.3.2. (CTOT=E] D =T ol U o o PP PPPPRPRE 35
3.3.2.1. TD VCPU First-Time INVOCAtION ...ccciiiiiiiic e, 35
3.3.2.2. TD VCPU Entry, Exit on TDG.VP.VMCALL and Re-ENtry.......ccoovouiiiiiiiiiiieiiiee ettt 36
3.3.2.3. TD VCPU Entry, Exit on Asynchronous Event and Re-ENtryccccovcuieiieiiiiiiniiee et 36
3.3.2.4. [CUTE A To [U Tq ot o T SRS 37

February 2023 . Page 3 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

3.3.2.5. TD VCPU Rescheduling (Migration t0 ANOTNEr LP)......cccueiiiieiieiiiie e erieesiee e sve e sveesiae e sae e 38

3.4. TD DESEIUCTION ..ottt ettt e e e et e e e s ettt e e e s e n et e e e e e s sssnneeeeeesannnnneeeeenaaas 39
4. Host VMM Programming ConSiderationsccccvviiiiiiiiiiiiiiiiiiiiiiiiiiiissnes 41
3 N 10) Q1Y 1o Yo (V] = N} =Ty ol -2 SRS 41
4.1.1. TDMR Configuration and INitialization...........coociir e e et e e e arr e e e ranre e e sareeean 41
4.2. Memory Encryption K€y MONAGEMENTceoviuieiiiiiiiieiiiie sttt ettt e ettt st st e et essasnes 41
.30 TD LIFECYCI .ottt ettt ettt et ettt et e et e et e et e e naee e 41
4.3.1. TD CONFIGUIAtION 1.ttt et e bt e s bt e e bt e s b et e bt e s b e e e bt e s b e e eabeesabeeeneenares 41
4.4, Memory MANAGEMENT.........cocccuiiiiiiiiiiiiiiiiiee ettt e ettt e e et ettt e s e s e ssasstaaesessannes 41
44.1. MeEMOIY INTEEIILY PrOtECION oo 41
4.4.2.) (=TT I =1 T PP OP PSRRI 41
4.5, Off-TD DEDBUG ...coonvveeeieeiieeit ettt st st s e st ettt s e st e st s s ba e s seesabaessessabaesseasabeasaseesabeesaseesastaenseeensaesnsesenss 42
4.6. Memory Integrity Protection and Machine Check HaNAINGcooceeeveimiieeeseieiiieieeeeeeee e 42
0/ Y, I o [[0 (o [A Yolol XX J U RO UPUPRRPURE 42
4.8. CONCUITEINCY ..ottt ettt ettt e e e s e bbb e e e s e s a et et e s e st et e s e s esssnanneeeess 42
4.9. TDX Interface FUNCtions COMPIELION SEALUScocveeeeeerieeeieeeeeeee ettt sttt st saee st saee e 42
4.10. Latency of TDX Module INterface FUNCLIONS.............ccueeeeeuveeeeeieeeesiieeeeeieeeecteaeesaaeeassaseessaasessssaeassseaeesssees 42
4.11. FOrWard COMPALIDIIITYveeeeeeiieeeiee et e et ee e ettt e e ettt e e ettt e e e e e e e e aata e e e ttaaeeatsesensssaaesssssaeassseaesssees 42
110, RESEIVEA BilS..ueiiiiiiiiiiiiiieeeeiiee ettt ettt e sttt e e ettt e s e b bt e e sbb e e e e sa bt e e s e bt e e e saanteeeaabbeeeenbeeeseanneeesbreeean 42
0 01 U][o o} T ={ VT =1 [[P UR 43

5. Guest TD Programming Considerations.........cccceeiiiiiiiiiiiiiiiiiiiiiiiiiiiississes 44
5.1. Run-Time Environment ENUMEIQLIONcccoeeveieeeieieeeeeeeeeee ettt ettt ettt e et e e et et et eeeaetaseseeeseeesesessssssssssseenes 44
5.2 MemOry MONGGEMENTccccooveeeeeieiiiiieeeeee ettt ettt ettt ettt et et et et et et et et et et et et et e e e e e e eaeraaaaaes 44
5.2.1. Private VS. Shared GPA ittt st e e e sttt e s s bt e e e s abte e s s bbeeesaabeeesabeeesabaeeeaans 44
5.2.2. Dynamic Private Memory Allocation and REMOVAluiviiiiiiiiiiiiie e e 44
5.2.3. Page MapPPiNg SiZ& AWAIENESS . .cccciieieie it 44
5.2.4. N T =Te 1Y/ =T o Vo VU PUUPRRE 44
5.3. CPU VIItUGHIZOTION ...ttt sttt ettt e et e st e et e st e e st e sabeaenseeebneenseeenns 44
5.3.1. INTEIAL STATE 1.ttt ettt et s e et e st e et b e e et s bt e b e s bt e e bt e s be e e nee s bae e neenares 44
5.3.2. CPU Modes, Allowed Instructions and Allowed Operations..........ccvecveieieieeeeriieeeeiiee e eereeeesveeeseseeee e esnees 44
5.3.3. HVE HANAIEE ettt ettt e ettt e st e e s bt e e e e abe e e s abbe e e sabbeeeesabaeesaabbaeesabbeeeeanbaeesaans 45
5.3.4. L) L= o U] o] £ T PP P PP 45
5.3.4.1. AAPIC ACCESS .eeeeeeeiiiet ettt e e ettt e e e e ettt et e s e aa bttt e e e e e s us b e et e e e e e e s s bbb et e e e e e s s bbb eeeeeeesanrnbeeeeeeesannnnraeeeas 45
5.3.4.2. CrOSS-VCPU [Pttt ettt ettt e e e s ettt e e e e e s et e et e e e e e e saanebe e et eeeseannbebeeeeeseaannreneeeeeeenn 45
5.3.5. TiIME STAMP COUNTET (TSC) curieiiiieiieeetee et e et e et e st eete e st eeebee s beeeaeesateeenseesataeaaseesntaeanseeensaeesaesnsaeenseennses 45
B 1 o T=1 ol SR 45
NG 1Y/ 1-1 o o [[o I Vol =X JO OO PP PRSP PPUUPTPPPPPPPIN 45
5.6. Side Channel AttACK MILIGQTIONccccvveeeeeiieeeetieeeecee ettt e e et e e e ettt e e e et ta e e s steaessseaesasseeassasseasasssesasasseaesnsees 45
5.6.1. [CT=T o T=T o IO O P PR POPRTOPTPRR 45
5.6.2. Zero-Step Attack NOTIfICAtION ..oiiiii e e e et e e e e e s e b tr e e e e e e seesanrbaseeaeeeesanees 45
5.7. (000 1ol 14 4 =14 Loy AT U TSP TPSPPP 45
5.8. TDX Interface FUNCtiONS COMPIETION SEATUSc..eeeeeiiieeeeiieeeeeee e e cte e ettt e e et a e sttt e e s stteesssteaessssesesaseeaesnnees 46
I R oY 4o [o M@oYy gV o L] <] 15 SR 46
5.9.1. RESEIVET BitS.cuuteiieiieiiiiiiieeiee sttt sttt sa e st e st e st esa b e e e beesabe e sabeesabeesabee s beeeabeesabeesbeesabaeeneesares 46
SECTION 2: INTEL TDX MODULE ARCHITECTURE SPECIFICATIONcccooiviumrrniiinissssnnennssisssssssnssensssssssssssssesssssssssssnnsnnns 47

February 2023 . Page 4 of 323

Introduction and Overview

Section 1:

10

15

20

25

30

35

40

45

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

6.

Intel TDX Module Lifecycle: Enumeration, Initialization and Shutdowncccceviiiiiiiiiiiiiinininnniinnnnnnn, 48
6.1. OVBIVIBW ...ttt ettt e ettt e e e ettt e e e et e e e e e s st e e e e e s st e e e e e s e sstnneeeeeeensnnnnneeeens 48
6.1.1. Initialization and ConfigUration FIOWcuuiiiiiiiii et e e et e e s st e e e e raae e e snaaeeeansseaeanes 48
6.1.2. Intel TDX Module Lifecycle State Machingooociiee it e e et e e s are e e s areeeeaes 48
6.1.3. Platform Compatibility and Configuration Checkingcvvveiiiiiiiiiiii e 50
6.1.3.1. OVEIVIBW ..ttt ettt ettt e e e e e ettt et e e e s e s aa b ettt eeeeesaaa bbbt e eeeeesaaaanbbaeeaeesaaanbateeeeesesanbnnaeaeaeennn 50
6.1.3.2. CPU CONFIGUIATION .ccieiiii ettt et e st e e st e e e st e e s s baeeesabeeesnasaeeesnbbeeesnnseeesnnsees 50
6.1.3.3. MSR SampPling aNd ChECKSvviiieiiiiiciiee ettt st e e st e s s aee e e sbae e e s sabaeesssaaeesnneeenn 50
6.1.3.4. CPUID Sampling, Checks and ENUMEration.......ccoccuiiiiiiieriiiiieeeeiiee ettt e e e e s 50
6.1.4. Physical Memory Configuration OVEIVIEW.......ccceiiiiiiieeiiieniieesieeeriee st sree st e ssieessbaessreessbaessaeesbaeenaeesanes 50
6.1.4.1. Intel TDX ISA Background: Convertible Memory Ranges (CMRS)covvueerieiniienieenieenieenieesieenieees 50
6.1.4.2. TDMRs and PAMT Arrays CONfiSUIationcccuuiiiieiiiiiiieciie ettt sttt naee s 51

6.2. Intel TDX Module Initialization INTEIACEcocueeiuieeiiiiieeeee ettt s 53
6.2.1. Global Initialization: TDH.SYS.INIT ...eiiiieiiiieee ettt et e et srate e e s s e e e s sabee e sabaeessabeeesssnseeesnanees 53
6.2.2. LP-Scope Initialization: TDH.SYS.LP.INIT ...oiiiiiiiiiiiiiiee sttt srtte ettt e e st e e site e e s sbae e s ssaaeeesasaeessnbeeesnans 53
6.2.3. EnNuMEration: TDH.SYS.INFOooiiiiiiiiiei ettt ettt e e e s ettt et e e e s ettt e e e e e sessanreeaeeeeeesaannes 53
6.2.4. Global Configuration: TDH.SYS.CONFIGueiiiiiiie ettt et e e ettt e ee e e sive e e e et e e e e ara e e sabaeessataeesensaeesnnees 53
6.2.5. Package-Scope Key Configuration: TDH.SYS.KEY.CONFIG.........ccociieeiiiiiieeeiieeecieeeecttee e siree e evveeeeevveeeeaes 53
6.3. TDMR GNA PAMT INFEIQIZATION ..ottt ettt s e sie st esate e st e sataesataessteesasaesatessasaesasessasesnases 54
6.4. INte] TDX MOGUIE SRHULAOWN ...ttt ettt st s e st e st e st esase e s teastessbsesasaesnbaessessabeesaseen 54
6.4.1. Shutdown Initiated by the Host VMM (as Part of Module Update)c.cceeeeviieeeieeiieeciee e 54
6.4.2. Shutdown Initiated by @ Fatal ErrOr....oo.ii it st sttt s 54
Memory Encryption Key ManagemeEnt.........ccciiiiiiiinniiiiiiiiiimmmniiiiiiiimmmmsssiiimmmmssiiimssmsssssiimsssssssssssssssssssssses 55

Y N 0]] [-Tol V=X TP 55
7.2. Background: HKID SPACE PAItitiONiNgc.eeeeeuereeiiieeeessieeeeeieeeesiteeeessvtaesseaasstsssaeastssaesssssaessssesasssssesessssees 55
2 B C-3VA Y Lo Ta o o T=T g Y= 0 T e 1 o) =SSP 56
7.4. Combined KeYy MANAGEMENT SEALEuuvveeeeeeeeeeeeee e eeeeeett e e e e ettt e e e e e e s ettt ateeeesesasseeaaeessasssssnaaassessnsses 57
7.5, Key MANQAGEMENT SEQUENCESccceeveeeeeeeieeeieieeeieieeeeeeeeee ettt ettt ettt ettt et et et et et et et eeesaaaseaaseseteeeeeeeseeeeeseeseeraserees 58
7.5.1. Intel TDX Module Initialization: Setting an Ephemeral Key and Reserving an HKID for Intel TDX Data 58
7.5.2. TD Creation, Keys Assignment and ConfigUrationcc.ceeeieeiiiiieiieniieeee et 58
7.5.3. TD Keys Reclamation, TLB and Cache FIUSHuuiiiiiei et e raar e e 59
TD Non-Memory State (Metadata) and Control StrUCLUIESeeseessssnsssssssnsnnnnnns 60
8.1. OVBIVIBW ...ttt ettt et e ettt e e o2ttt e e e 2 ettt e e e 2 e e s et e e e e e e aassseeaaaeeanastsnneeeeaeaanssnneeeens 60
8.1.1. Opaque vs. Shared Control STrUCLUIES.........uviiiiiei e e s e e e e e s brr e e e e e e sennnraeeeas 60
8.1.2. NYeloT oo K @fo] g 4 o] IN) 4 8 Lot { U] o <1 SRR 60
8.2. TD-5COPE CONEIOI SEIUCLUIESvveeeeieeeeee et eeee et e ettt e e et e e ettt a e e e atte e e s steasssseaesassteaesasseassassenesnnstnssnnsees 60
8.2.1. TDR (Trust DOM@IN ROOL) .eeeeuviiiieiieieecieie ettt ettt e ettt eeette e eeae e e e eeaaeeeeeateeeeeaseeeeesseeesentaeeeennsreeeeseeesensseeenn 61
8.2.2. TDCS (Trust DOMain CONTIOl STFUCTUIE) ..ooouvveeiieieee ettt et ete e eeetre e e eeaaeeeeetreeeeenreeeeennreeeeaneeeen 61
8.3. TD VCPU-Scope Control Structures and Management FUNCEIONScoccuueeeecueeersiieeesiiieeeeiieeessiieeeesiiee e 61
8.3.1. Trust Domain Virtual Processor STate (TDVPS)ccicuiiiciieiiiiieieeiiieesieesiee et e st e esteesbeesveestaeesseesnbaeenseesnnes 61
8.3.1.1. Physical View of TDVPS: TDVPR/TDVPXviiiiiieiieeiecteete et e eteesteesteeteetesaesaaesteesreesseesesnsesasessnesseens 62
8.3.1.2. LOGICAl VIEW OFf TDVPS ...cniiiiiiteeiee sttt ettt ettt ettt te e sttt sa e e s bt e sabeesbte e sabeesabeesabeesateesabeennnees 62
8.3.2. Non-Protected Control Structures: Shared EPT and VMCS Auxiliary Control Structuresccccceecvveenee 63
8.4. TD Non-Memory State (Metadata) ACCESS FUNCLIONSccueeeueienieesiiiesieesiiteee st ste ettt ste st sieenanes 63
8.5. Concurrency Restrictions GNA ENFOICEMENTccc.ueeeeeeeeeeeiieeeeeieeesee e ettt eeeatta e e sstea e ettt e esaseaesssesaessssanananes 63
TD Life Cycle ManagemeNt.........ceeeeeeeeeeeeeeeeeeeeeeeeeememssesssnssnsssnsnnnnnns 64
9.1, TD Life CYCl@ SEALE MOCRINEcccveesieeeiiesieeete st eite s te et e s tte ettt e s tte e tae s taeeste e s tsasssaasstassstasastaenssaeassesnssaeans 64
9.2. DR O =To 14 Lo g B Y=To [V =1 Lo =N 64

February 2023 . Page 5 of 323

Introduction and Overview

Section 1:

10

15

20

25

30

35

40

45

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

9.3. VCPU Creation and INitialiZAtion SEQUENCE................eeeeeeeeeeeeeeiee e eeeeeeeee e e e e ettt e e e e e et ettt e e e e e sesssssasaaaeseasinsses 65
9.4. F O =T Lo [IR =Te [V =] Lol -2 R 66
10. Physical Memory ManagemENt..........eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessseessssesssnssssnnsssnnnnnnns 67
10.1. Trust Domain Memory Regions (TDMRs) and Physical Address Metadata Tables (PAMTS).........ccccccveeeuvenn. 67
10.2. TDIMR DEEGUIS ..ottt ettt ettt ettt ettt et s e et e ettt et e st e e st e e bt e e st e eattessta e st e s steensteessseensteesaseenases 67
10.3. PAMIT DOUGUIS......eeeeneieeeeiiee ettt et eet et e e et e s e e e sttt e e st e e s aust e e e sstteassastaessasseaesaassessaastaasasseaesnnsaessssseas 67
F0.3.0. PAMT ENTIY ittt ettt ettt e e e ettt et e e e s ettt et e e e s e aab et e e eeeeesaanbebeeeeeeesaan bbb aeaeeeesanbsbaaeeeeesannnreeaeas 67
10.3.2. PAMT BlIOCKS QN0 PAMT AITAYS ..eeiiiiireiriureeerirteeenteeeesseeeesaseeessseeesssssesessseeesssssessssssessssssessssssesssssssessnssees 68
10.3.3. PAMT Hierarchy @nd PAge TYPES ...cccueeriieiriierieeeieesieeette st e st sb e et e st e ste e st e e s bt e sabeesaseesabeesaneesabeesaseesas 69
10.4. VYo [o 1Yo I g} Vi [ote Ll 2o o =2 SR 70
10.4.1. Preventing Cache LiNE ANASINGcocueriiiiiiieiiiieeieesiee ettt et e st st esbe e sbeesabeesbeesabaesabeesabaesaseesabaesaneenas 70
10.4.2. Adding Pages not Mapped t0 the GUEST TDcccciiieieiiie e ertee et etre e st e e e e era e e e ranr e e e s breeeesteeeennees 70
10.4.3. Adding Pages and Mapping to the GUEST TD’S GPAc.ciiiiiiiii ittt e 70
10.5. ReCIAIMING PRYSICOI PAGESccuueeeneeieiieee ettt ettt ettt ettt ettt et e e sate e bt e enaeeenaseenaeeenns 70
10.5.1. Required Cache Flush and Initialization by the HOSt VMMccociiiiiiiiiiiiciieeee et 70
10.5.2. Reclaiming Pages not Mapped 0 the GUESE TDc.c.eieiieriiirieenieeeiee sttt sttt st st e esnee e 71
10.5.3. Reclaiming TD Pages in TD_TEARDOWN Statecccceiriieriiiriiieesieesiieesieesiteesteessseesbeessessseessseessessssessns 71
10.5.4. Reclaiming Physical Pages as Part of TD Private Memory Management.........ccceeeecveeeeciieeesciveeeesieee e 71
11. TD Private Memory ManagemeNntce.ciiiiiiiieeeeiiiiiiiieeenssiisieiineesnsssssssssssesnnssssssssssssnnssssssssssssnnssssssssssssnnnnssssss 72
11.1. OVBIVIBW ...ttt ettt e ettt e e e ettt e e e ettt e e e 2 ettt e e e e e ts ittt e e e aesasssnneeaeeenssnnnneeeens 72
11.2. SECUIE EPT ENTIY oottt e ettt e ettt e e e s aeeteeeseaas 73
O B © V= VT PP P P PPPP PP 73
11.2.2. SEPT ENtry State DidagramiS . ..o cuuiei ittt ettt sttt st e e s e s e sr e e e smne e e s sne e e s enneeesnnees 73
11.3. EPT WK oottt ettt ettt ettt ettt et e et e et e et a s ate et e s st e e bt e e astaeabtesnseaenstaenanaenssaenanaenss 74
11.4. SECUIE EPT INAUCEA TD EXITS.....eeeeaiieeeiiee ettt et e e et s e e et e e st e e e sabbeeessastaessasanaenssesennane 75
11.5. RY=1olV [0 o W T Lo [V Lol = I 3 ol =T o1 [0 £ PPN 75
11.6. SECUIE EPT CONCUITEINCY cvvvvvveveieeeeeieieieseeesesesesesesestsssssessassessssssssssssssssssasssssssstssssatatasssassterstatstatatststsrststersrararnn 75
11.7. [k gele [Vlotn (oo de I N g ol ([Lo (SRR 76
11.8. Secure EPT Build and Update: TDH.MEM.SEPT.ADD............ooeeeuieeeeciieeeeiieeeeciieeesteaesssieaesasnsassissessssssesasnnes 76
11.9. Adding TD Private Pages during TD Build Time: TDH.MEM.PAGE.ADDcccccvemveescuienieeencieencieenieeneeenanes 78
11.10. Dynamically Adding TD PriVAte POAQEScuueieeeeeieiiieieeeeeeeiiteeteeeeeesitteaaaaeeesststessaassessssssssaassessssssssesaaaesias 78
11.10.1. OVEBIVIBW ettt ettt e e ettt e e e ettt e e e e e seaae b et et e e e e e s a s b e et eeee e e s asbe e e eeeeeesansnbeeeeeeesaannnreeneaeesesannnen 78
11.10.2. Page Addition by the Host VMM: TDH.MEM.PAGE.AUGccooiiiiiiiiiiiiee e ccirrreee e scivtree e e s ennnaeeees 79
11.10.3. Page Acceptance by the Guest TD: TDG.MEM.PAGE.ACCEPTccooiiiiiiieee et eecinree e 80

5 100010 25 21 R B =YY ol 4 T 1 o] o RO PRSP RPP SR PPRPROPPI 80
11.10.3.2. TDG.MEM.PAGE.ACCEPT CONCUITENCY ..uuuuuuuuuuunuunnnnunnnnnnnnnnnnnananasannnsannsannnsasnnnnannnananannsannssnnnnnnnnnnnsnnnnns 81
11.11. Page Merge: TDH.MEM.PAGE.PROMOTEcocouemueeiieeeieesieesieesieesieesteesiseesteassessseesisessasesssessseenseees 82
11.12. Page Split: TDH.MEM.PAGE.DEMOTEooviueeiiieeieesieesieesteesieestee st e steesiseesteassessasaesaseesaseessessseessess 83
11.13. Relocating TD Private Pages: TDH.MEM.PAGE.RELOCATEuuuuieeeeeeeeeeeeeeeecieeaaeeeeetttaeeaaaaeeessasssanaaaeaas 84
11.14. Removing TD Private Pages: TDH.MEM.PAGE.REMOVE............uuuuuuuuiuiuieiiiiisiniainisusissssssssssssnssssnnsnnnnnnnnnnnn. 85
11.15. Removing a Secure EPT Page: TDH.MEM.SEPT.REMOVE............uuuuuuuuuuuiuieiiiuinininsississssssnsssnsnsssnsnnnnnnnnnnnnnnnnn 85
11.16. Unblocking a GPA Range: TDH.MEM.RANGE.UNBLOCKcccceceirveeriieessiiescieessieesiieesieesseesieesssesssseesisees 86
12, TD VICPU ..iiiuneetiiiiiiissinneeesisissssssnsessesssssssssssnnssssssssssssssnnnnes 87
12.1. VICPU TIANSIEIONS ..ottt et e et e et e e st e e et e s st e e sasneeaessaeesansseaesnneeeannnneeennns 87
12.1.1. Initial TD Entry, Asynchronous TD Exit and Subsequent TD ENTryccccoeveveeeiviiee e 87

February 2023 . Page 6 of 323

Introduction and Overview

Section 1:

10

15

20

25

30

35

40

45

50

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

12.1.2. Synchronous TD Exit and SUbSeqUENt TD ENTIYcccccuuiiiiieeieeciieiee ettt e e ee st e e e e e e eeanra e e e e e e e e anraeaeas 88
00 T T V@ o W I Yoo V71 V] =Y o Y =Tl o 11 PSR 88
12.2. TD VCPU TLB Address SPace IAdeNtifier (ASID)uueeeuueeeeeeieeeeeieeeiee e ettteeeeetttaesitaaaestaaassssssaesssssaasssrenaens 89
0 S I I N B I 0 Y0 0 oY T = 3N 89
12.2.2. INVEPT by the Host VMM for Managing the Shared EPTccccvieieiiiii ittt e 90
12.3. VICPU-EOLP ASSOCIATLION. .. .uuceeeeeeeeitieeeeeeeeeiteeeeeeeeettteeee e e e eetatta e e e e e eeaattaaeee s s e s astaaesssssssassaeeessssssssaaaesesssesssnans 90
12.3.1. NON-COhEreNt CAChiNGcoueiiiiiiiie ettt sttt st e et e s b e sbeesabeeeaneesabeesaneesas 90
12.3.2. Intel TDX Functions for VCPU-LP Association and Dis-ASSOCIAtiONuueeerrruuenrunuininininnsnnnnnnnnnnnnnnnns 90
7200 T8 TR o1 =T oY 0 o F= L Vol = @0 T 0 Y o [T =Y (o] KT 91
13. CPU Virtualization (Non-Root Mode OPeration).......c.ccccccceevceereriiiiicssssnneeseissessssnneessssssssssnsnsessssssssssnnssassssssssnns 92
13.1. LT Lo TR (o 1 (=2 SRRSOt 92
G 0t 0 R O 17T V1= Y USSP 92
13.1.2. INitial STAate Of GUEST TD GPRSuuuuuiuiuiiiiiiiiiiiiiiiiiiitiiriraereaaaaaaa—a—————————————————————ana.—aanaaasasssasnsssnssssnnssnsnnnnns 92
1 T 0 T 1 11 =1 I = = o 2 92
13.1.4. Initial State Of SEEMENT REGISTEIS . ..uiiiiiiii ettt et e e e st e e s te e e saree e e sabaeeeenaseeesnnnees 93
T T T 11 = 1AY==l o 1YL 2 93
13.2. Guest TD Run Time Environment ENUMEIGQLIONccuevuuueeeeeeeeeiiieeeeeeeetaiteeeeeeeettaieeeaesesessiseeeaesssssnniianeaes 93
13.3. CPU MOAE RESEIICHIONSeeeeeeeeeeeseeeeeeeeeseeeeeeeeesesese s et eeeseseeeseseseseeesesesesesesasesesasasasesesesesesesesesesesesesesesesnsesesesesens 94
13.4. INSEIUCTIONS RESEIICTIONS c.cevvvvveeeeeeeeeeee e e e ettt te e e e et ettt e e e e et ettt teee e e e e e saaaaeeaeesasssnaesesssssssnnaessessssnnnnaaeessesses 94
13.4.1. Unconditionally BIOCked INSTFUCLIONSeiiiiuiiieiiiiie ettt ettt e et e et e e st e e e e tra e e saaeeeesabaeeeesseeeennees 94
13.4.1.1. Instructions that Cause a #UD UNconditionallyccceeviieiiiiiieriniieccec e 94
13.4.1.2. Instructions that Cause a #HVE UNconditionallyccueeeeiiiiiiiiieieniie s 94
13.4.1.3. Instructions that Cause a #UD or #VE Depending on Feature Enabling...........cccceeecviriinieciieeniennns 95
13.4.1.4. Other Cases of Unconditionally Blocked INSTrUCLIONSeevveiriieiiieniie et sree e sveesree s 95
13.4.2. Conditionally BIOCKEd INSTFUCTIONSeeiiiiiiiiiiieecciiee ettt e et e e e rtte e e s ettee e e stb e e e etta e e sabaeeesabaeeeessaesennees 95
T T O d o [Tl 3ol =T o A o o W = 1Y YU PS 95
13.5. | =t g Lo [te B l=te LV =N Y= SOOIt 95
13.5.1. Allowed Extended FEatures CONTIOlocccuiieiiii ittt e eeeetrre e e e e e eetrre e e e e e e e e tnraeeeeeesennanrreeeas 95
13.5.2. EXtENdEd STAt@ ISOIAION ..vvviiiiii ettt e e e e e e et a e e e e e e e e seabrbaeeeeeeeentnsbeeeeessenanrreeens 95
13.5.3. Extended Features EXECULION CONTIOL.......ccccuiiiiiiiiieiiieeee et e e eeeetrr e e e eeeeatrrr e e e e e e eetnaeeeeeeesenanrreeeas 95
13.6. (0 T o (o T o [T 1o USSR 98
71 70t S 1 {0 OO ERRRRRRRR 98
T Y0 R 1 ¥ OO 98
13.7. F1Y Y 2tz L T Lo | To O U UUUROE 98
0 TR © YT o 1L 98
13.8. CPUID ViFTUGLZATION.ccceeeeeeeeeeeeeeeeee e e eeeteeeee e e ee ettt e e e e e e et a e e e ee st aeaeeesssssasaaaseeesaassssaaaseessssssseneeas 99
13.8.1. CPUID Configuration by the HOSt VIMIIMccouiiiiiiiiieiiee sttt sttt sttt st st st esane e sareesaneeea 99
13.8.2. Unconditional #VE for all CPUID Leaves and SUD-LEAVES.........ccueeeeeieeiiiireeeee ettt eeinreee e e 99
13.9. Interrupt Handling and APIC VirtUQLIZAION..............uuuieeeeeeeieeeiee e eeesectttee e eeeeestteea e e e e eesitvtaaaaeeeesssssaneaaaeeaas 100
B TR T T VAT U 1 Y o [1V, [Yo LT 100
13.9.2. Virtual APIC ACCESS DY GUEST TD ...uuiiiiiiiieiiiiiiieee e ceciitt e e e ettt e e e e e s et e e e e e e seabataeeeeeesennsataeesaaeeensnnraaneas 100
13.9.3. Implicit APIC Write #VE
I S o1 Yo I o] =T o U o SRR
13.9.5. Pending Virtual Interrupt Delivery INdiCationcooeciiiiiciie et ee e e e e seae e eaes 102
13.9.6. CrOSS-TD-VCPU IPl...ccciiicuerieeieeeeeiiitereee e e eeeebtee e e e e eeseabaaeeeeeeesettasaeeeeeesessbsbaeeeeeesesasasaeseeeesanssbaaeseeesensnrannes 102
I T A Vi o AT\ 1LY/ LI =Tt o o F USSP 102
13.10. Virtu@lization EXCEPLION (HVE)......ocuueeeeeeeeeeeeeeeeeeee et e et e ettt e et e e ettt e e e et a e e atsaaeettsaaeeetsesaeatsssenassnas 102
13.10.1. Virtualization EXception INformation ... e e e e eare e 103
13.10.2. H#VE Injection by the CPU due to EPT ViIOlatioNnsceieiiieiiiiiiiee ettt e 104
13.10.3. HVE Injected by the INtel TDX MOTUIE ...ccceeiiriieeeeceee ettt e st e e st re e e e ate e e e snaeeeesneaeeeenes 104
13.11. Secure and Shared Extended PAGe TADIES (EPTS)......c..eueeeeceeeeeeeieeeeeee et eesttaesetta e s sseeaesasteaessnsaaasssaneens 104
13.11.1. GPAW-REIATE EPT ViOIatiONS .eviiiiiieiitiiiiee ettt ettt e ee ettt e e e e e e eeaaba e e e e e e eesnnbaaeeeeeeesenssraereeeenan 104

February 2023 . Page 7 of 323

Introduction and Overview

Section 1:

10

15

20

25

30

35

40

45

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

13.11.2. EPT Violation MUtated iNtO HVE.......cooiiiiiiiiee ettt ettt st e e s st e e e s abe e e ssaraeessaeeeean 104
13.12. Prevention of TD-INAUCEA DENiQI Of SEIVICEc.vvueeeeeeeeeieeeecee ettt e e ettt e e e etea e e staeaeeestaaassssaaessaeeeas 104
13.12.1. Bus Lock Detection by the TD OScooiiiiiiiiiiriieeiee sttt re e sbe e sbe e sbe e sateesabeesabeesabaesabeesas 104
13.12.2. Impact of MSR_TEST_CTRL (MSR OX33) ..c.uuterieeriienieesiieenieesreesiseesbeesseesbeessseessbeesseesaseesnsesssessseenns 105
13.12.3. BUS LOCK TD EXIT .veeeuveeriiieeieeiiiesieesieestee st e steesibeesiteesabeesabeesabaesabeesabeesaseesabaesaseesabeesaseesasassnseesasaesseesns 105
13.12.4. [\ oy {Tor=TdTo T D N =3 AT PRPTP 105
13.13. Time StAMP COUNTEE (TSC) ..ooeveeeeeiesteeeeeeee et e st e et e st e ettt e s ute e et e st e e st e sseeastaasasaesssaasaseaaasassssansseassesnnses 105
13.13.1. TSC VIIUAIIZAtION .eeeeeeeiiee e et e e st e e e st e s s ate e e sbbeeeesabbeeesasteeesnnsaeesnnbeeesnnns 105
13.13.2. LSOl LT |11 T PRSPPI 106
13.14. SUPEIVISOr ProteCtion KEYS (PKS)......uue oo eeeeeeeeeeeeee ettt e ettt e e ettt e e et tea e et ta e e e taaaesastaaeeaasaaasaatsaasessssaassasanaaas 106
13.15. Intel® Total Memory Encryption (Intel® TME) and Multi-Key Total Memory Encryption (MKTME).............. 106
13.15.1. TIMIE ViIrtU@lIZATION ..eieeieeite ettt ettt e sa e e sae e e sa b e e saae e sabeesateesabeesabeesabaesabeesabaesaneenas 106
13.15.2. MKTME VIrUGHIIZAtION oottt ettt e e e e e s st e e sata e e s sabaeeessbaeesnasneessnnneeean 106
13.16. Virtualization of Machine Check Capabilities and CONLIOIScoooueeveeenoeeeniieiiieiieseese e 107
13.17. Transactional Synchronization EXtENSIONS (TSX)ueecueeeeeeieeeeeeesieeeieesteeseeestteesseeestaaesaaesasesasessaasssaens 107
13.18. Other Changes in TDX NON-ROOt MOGE.............cocoueerueesieesieesieeeieeseeeit sttt ettt ettt et et sse e 107
13.18.1. O] OO O PP SOUPUSOT 107
13.18.2. LI 1 31 =SSP 107
13.18.3. YWY = oo T o (] 4 = O OO PPRPPPRPP 108
14. Measurement and AEeSTAtioNeeeeeeeeeeeemimmiiimmiiieeieieiieeiieieeiieieeeeeeeeeeeeeeasesesssssssssssssssassssssssassssssssssssssssssnnns 109
14.1. TD MEASUIEIMENT ..o ettt e et tee e e e e e ettt e e e e e e etataae s e e e e e tasaaesaeeeaasssaassaaasssssnnsssaessssssnnanasaenenes 109
14.1.1. MRTD: Build-Time Measurement REZISTEIc.cueiruiiiiiiiiieiite ettt sttt sttt 109
14.1.2. RTMR: Run-Time Measurement REGISTEIScciiriiiiiiiiiiiiiee e e e s e s 109
14.2. TD Measurement and Configuration REPOITING...........cccueeecveeeeeeieeeeeiieeeesiteeeesteeeesiteaaessssaeesseseeessssaesssees 109
14.3. TD MeEQSUIremMENt QUOTINGuuuuuuuuiuiuiuseisissasssnssnssnns 110
14.3.1. Intel SGX-Based AtteStationcciuiiiiiiiiiiie ettt ettt e e st e s et e e e sbe e e e s sabe e e seabeeeesaabeeeesbaeeeeans 110
14.4. QUOTE SIGNUNG KEY ..eeeeeeeeeeeeeeetesetetesetesese s e s s se s s s s s s s e s s s s sesssssssesssssesssssssssssssssssesasasasssssssssssssssssesssssssssssesesessss 111
14.5. L2 t=Tole 1Y =T o TSRS 111
15. I/O SUPPOIT c.eeeiieceeeeeeereeeeeesseeeeeesseeeesesseesesssseessssaseasassssessssssesssssassessssasessessnsssssssseesessasesssssasesssssnsesesssnsessssanaae 113
15.1. OVBIVIBW ...ttt ettt ettt e et e st e ettt e et e e st e e et e st e e sttt e s ettt e s anneassasneesannnneesanneas 113
15.2. Lo T A LA AN L 143 I O TR 113
15.3. MMIO Emulation and EMUIGEEA DEVICEScc...eeeeeuieieiiiieeeeiite ettt ettt site e e st esisteeesisea e e 113
15.4. Direct Device Assignment (DDA) AN SRIOVcoueeeeeeeeeeeeeee e eeteeetea e es e e e s teaeeetsaeesiasaeessaaananes 113
15.5. TIOMMU — DMA REMAPPING .cccoeeeeeeeieieieieeeeeeeeee ettt ettt ettt ettt et e e et et et et et et et et et e e e e e e eeesesasstasasassssssssesasaees 113
15.6. Shared Virtual MEMOIY (SVIMI)uee et etee ettt et ettt e e a e st e et e s te e e ta e eataesssaesseaessaassessaseasseasases 114
16. Debug and Profiling ArChit@CTUIEeeessessnssnsssnnnns 115
16.1. (0 R D 0 T=1 T o SR 115
L16.1.1. OVEIVIEW c.neeiiieiiiieee ettt e ettt e e sttt e sttt e s ettt e st e e s aabe e e s enee e e s ns e e e e sabe e e s e s be e e sanseeeesaneeeeenbeeesannneessnneeesanranesanns 115
16.1.2. Generic DEDBUG HANAIINGceiii ittt e e e et e e e e e e e et e e e e e e e seeaataeseeeeeeannnraaneas 115
16.1.2.1. CONEEXE SWILCR oot e e et e s sttt e e sttt e e s sabaeeseabeeesabeeean 115
16.1.2.2. 1A32_DEBUGCTL MSR Virtu@liZationcccueeeeriiiiiiiiee ettt stte ettt e e e sbae e s ate e e sareee s 115
16.1.3. Debug Feature-Specific HANAIINGooo ittt e e et e e s eae e e snae e e e snsaeeeenns 116
16.2. ON-TD Performance MONIEOIINGcceecuueeeeeeiieeeieeeeseeeeette e et te e e sttt e e et aessateeasasteassasseasssssesassssesesnsees 117
16.2.1. OVEIVIBW c.neeiiieiiiieee ettt e ettt e e sttt e sttt e s ettt e st e e s aabe e e s e s re e e s as e e e e sabe e e s eanre e e samseeeesaneeeeenseeesannneeesanneeesanraeesann 117
16.2.2. Performance MONITOMING IMISRSviiiieiireciiee e ctee e ettt e e eee e e s tae e e et eeesasee e e sneeeeansteeessnnseeesnseeessnseeennnns 117
16.2.3. Performance Monitoring INterrupts (PIVIIS)cooueii ettt ettt e e e e e e te e e e e ate e e e aaaeeeetaeaeeans 118

February 2023 . Page 8 of 323

Introduction and Overview

Section 1:

10

15

20

25

30

35

40

45

50

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US
16.3. OFf-TD DEDUG ..ottt et e et e e e e et e s e es e et s s sse s s eet s s ees s ess s ene s sensesaseesenn 118
16.3.1. Modifying Debuggable TD’s State, Controls and MEmMOIYcccueeieiiiieeeiiee et e e sre e e sraeeeeaes 119
16.3.2. Preventing Guest TD COrruption Of DRS.......civuiiiiiirieeiiienieesieesiee st esseesbeesreesbeesbeesabeesseesabaesseesanes 119
16.4. Uncore Performance Monitoring INterrupts (UNCOIre PMIS)...........uueeeeuveieeeieeeeciieeeeieeesiaeaessveeeescvvaaesvanas 119
17. Memory Integrity Protection and Machine Check Handlingeesesssssssnnnes 120
17.1. OVBIVIBW ...ttt ettt e ettt e e e ettt et e e e s e aas ettt e e e e e s stst e ee e e e e s sbsbteeaeeesaassbbeneaeeeeannsnes 120
17.2. TDX Memory Integrity Protection BACKGIOUNGc.coocueieiueiiiiiieiiieieeeee ettt 120
17.2.1. Cryptographic Integrity (Ci) vs. Logical Integrity (Li), MAC and TD OWNEIceccveevreeeireerieeeieeesieeeaee s 120
17.2.2. MAC and TD Owner Bit Update on MemOory WILESuviiiriieeiiieeeerieeeeeiree e sireeessiee e ssvre e seaeeessbeeesnans 120
17.2.3. Memory Reads: Integrity and TD Owner Bit Checks, Poison Generation and Poison Consumption 121
17.2.4. Memory Writes: No Integrity nor TD OwWner Bit CheckScovvviiriieiiiiieriie et 123
17.3. Machine Check Architecture (MCA) BACKGIOUNGc..vueeeeueieeeiieeeesiieeeeet e escteaeaiteaesstsaaesiaaasesseneennns 123
17.3.1. Uncorrected Maching CheCK ErTOr......ouuiiiiiiiee ettt e ettt stre e sate e e ssateeessasee e e sbaeeessnbaeesnans 123
17.3.2. Corrected Machine Check INterrupt (CIMCI)ceiiieeiieiiiecieesree et et e e e ste e et esree st e ebaeeseeebaeeseeenees 123
17.3.3. Machine Check System Management Interrupt (MSMI)ccooierierienieieeeneeeeee e 123
17.3.4. Local Machine Check EVENT (LIMICE)cccuiiiiieeiieiieeeieesteeetee e e ete e s teeeve e steeenveesataeenseesnteeenseesnsaesnseeensns 123
17.4. Recommended MCA Platform Configuration fOr TDXcceccueeeecueeeesiieeeeiieeesiieeeesseeeesieaaesissasesisesananns 123
17.5. Handling Machine Check Events during GUEst TD OPEIatioNeeeversveeseersveriieessivessiesssisesssesssisesssees 124
17.5.1. Machine Check Events Delivered as an #MC Exception (Recommended).......ccccevcrverieeriiienneenneeeneennnns 124
17.5.2. Machine Check Events Delivered as an MSMI (Not Recommended)ccocvvvrveeriiirnieeniiieeneesniee e 125
17.5.3. LMCE Disabled (NOt RECOMMENTAEA)uviiiieeeeieiieieeeeree ettt ettt eete e eeetee e e eetveeeeeteeeeeareeeeetseeeeereeeeenns 125
17.5.4. Machine Check Events Delivered @s @ CIMIClcoouuiiiiiee ettt e ettt e e e e aarree e e e e e e nnraaeeas 125
17.6. Handling MCE during Intel TDX MoOdUIE OPEIratioNccceeeveeesieeeieeeiiiieieeeieeeee sttt siee e 126
18. Side Channel Attack Mitigation Mechanismscccccviiiiiiiiiiiiii e 127
18.1. Checking CPU Vulnerabilities t0 KNOWN ATEACKSccccuveeeeeiieeeeiieeeesiieeeeteeeesteeaeeetvaaeestaaaesrasaeesssesennses 127
18.2. Branch Prediction Side Channel Attacks Mitigation Mech@niSmSccoceueiencuieeensieeeesiieeesieeeesiee e 127
18.3. Single-Step and Zero-Step Attacks Mitigation MECRANISMSccccuvvevieeeeeeciiiieieeeeeecccteeeeeeeescsrereaaae e 127
20 N0t I 1= ol o1) { o] o PP PPPTPPR 127
18.3.2. HOSt VMM EXPECLEA BENAVION ...eiiiiiiiieciiei ettt e sttt e s et e e s st e e e s e e e e enteeesennaeeesnseeaesnseeenanns 127
18.3.3. Guest TD Interface and Expected Guest TD OPeration........ccceeceeerieeriieeniieeniieeeiieesiee e sreeeeeesbeeesnee s 128
19. General Aspects of the Intel TDX Interface FUNCLIONS.......ccccviiiiiiiiiiininininininiinssnsssssssssssssssssssssssssssssssssssnns 129
19.1. Concurrency Restrictions ANd ENfOICEMENToeeeccuveeeeeiieeeeieeeeeeteeeeeteeeesteeeeeesaaeeetaaaeesrasaeesasasenssns 129
19.1.1. EXplicit CONCUITENCY RESTIICTIONSuiiiieiiiie ettt ettt e et e st e e st e e e s sabe e e seabbe e e sbbeeessabaeeenans 129
19.1.2. Implicit CONCUITENCY RESEIICHIONS . ..veiieeiiiieeiiee ettt ettt st e e st e e seabbe e e sbbeeessabaeeenans 129

S TR T 1 - [0 1-F- T o] o 1P PUPT PP 130
19.2. Memory and ReSOUICE OPEIANGS ACCESSceeeuueeeeiuieeesiiieeeeeiitessiieeesssteaesssteessisteassssseassssssssssssnesssssesssnnes 130
B T B ©) V= Vo1 PP PRSP 130
19.2.0.1. ACCESS SEMANTICS cioieeeeiiriieeeieieitreteeeeeseieteeesesssasberaeeeeessassaraeeaeessasssteeatesssassssssnneessssssssssnseesssesnnnnes 130
19.2.1.2, EXPIICIT VS. IMPIICIE ACCESS .neteeeieiiiie ittt ettt e st e e et e e s sttt e s sbaeeessabaeesesbeeesnbeeeas 131
19.2.1.3. Memory Operand Address SPeCifiCationcccueiiiiiiriiiiiii it e s 131

e T B O |V [T o g T oV Y/ o TIPS PP PSP RUPPPUPUPPPON 131
19.2.1.5. Actual Memory Access VS. Memory REFEIENCE.......cuuiiivciiie e 131

S 0 Y T U o o = TV 1= o S 132
19.3. Register Operands and CPU StAte CONVENTION.............ceeccuueeeeeieeeescieeessieeeesteeaesisteaessiseaessssseaesisseessssesannnes 132
19.3.1. Overview: Regular vs. Transition Leaf FUNCLIONScccueiiiiiiir i 132
19.3.2. Interface Function CompPletion StAtusScc.uviiieiiiiiiieee et e e e e e s e saat e e e e e e s e eanaaaaeeas 132
19.3.2.1. Least Detailed Level: SUCCESS/WarNING/EITOrccuviiiueeeiieeeeeeieeeeteeeeteeeeee et e eveeetveeeaveesareeeareenanes 133
19.3.2.2. Medium Detailed Level: Class and ReCOVErabilitycccceeeiiiiiiiiieiiiiiee e 133
19.3.2.3. MOSE DEETQIIEA LEVEI ...ttt ettt et e et e e st e e e sbae e e s st beesssbaeesnbeeens 133
19.3.3. Other CPU State CONVENTION......ciiiiiiieeeciie e ettt e st e e et e e et e e e stee e e e e teeessseeeesseeeeassseeesansseeesssseeessseesnnnns 134
February 2023 Page 9 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

19.3.4. Transition Cases: TD ENtry and EXit.......coocoiiiiieiiiiiiiiiiiee ettt e et e e e e e et e e e e e e e e enneaaeeas 134
19.3.4.1. TD ENTry: TDH.VP.ENTER ..cii ittt ettt e e e e e sttt e e e e e s s eaat e e e e e e s e e snabaeeeeessessssnnneaeesessnnnes 134
19.3.4.2. TD Synchronous EXit: TDG.VP.VIMICALLcccutiiriieriiiiiriieeiiiteniiessiteesitessieeesitessiteesasessaaeesasesssseesasesssenes 134

19.4. 1Y [e To [o e Y A Yoto X X0 [1 =d [ol - USRS 135

S T 5 N 1o 4 o Yo [§ T £ o TR OO SPR 135

19.4.2. Metadata Fields and EIEMENTSuuuuuueiiiiiiiiii bbb s sasssssssssasssssasssssssssssnsnsnssnnnsnnnn 135

19.4.3. Arrays Of Metadata FIElAScccuuiiiiiiieiiii ettt e e s sare e s st e e e sabe e e s abe e e sabeeessnbaeeenans 135

19.5. Latency of the Intel TDX INterface FUNCLIONScccuveeeeiuveeeesiiieesiiieeessiieee ettt e esitaeessiteeesssseeessneessssseaesnans 136
SECTION 3: INTEL TDX APPLICATION BINARY INTERFACE (ABI) REFERENCEcccceettiiiiiieiiieeeeeneeeeeeeeeeeeeeeeeeeeseeeeneennns 137
20. ABI Reference: CPU Virtualization Tablescccceiieeeiiiiemiiiieeiiiieeieiieeeierteeeiereeeseresnssersssssesssnssesensssessssssessnnsns 138

20.1. ISR VIITEUGHIZOTION ..ottt ettt e e e e e ettt e e e e esabaa b e e s eesestassaesaeesessasssseesseenas 138

20.2. CPUID ViFTUGLIZATION.cccoeeeveeeieeeeeeeiiiee ettt ee e ettt e e e et ee st e e e e e sttt e s e eessstsssaaaseeessasssssssssesessssses 141
21. ABI Reference: CONSTANTSccceeeeeiiiiiiiieeeeeiieittteeeneeesseeeteeessnsssssssssesssssssssssssesssssssssssssessssnsssssssssssssnnsssssssessnnnnes 150

21.1. Interface Function COmMPIEetion SEALUS COUEScccuueeeecreeeeeiieeeeiieeeesieeeeeite e e staeesstteaesssteeessaeesssssesensnns 150

21.1.1. Function Completion Status Code Classes (BitS 47:40)cccceeiiierieeeiiiesieeieeeseesseeeseeesreeesreeeseaeesseeeens 150

21.1.2. Function ComPpletion STatus COUEScuiiiiiiiiiiriiieeeeiiiee e siee e setee e e st e e e e ae e s ssaeeeesbaeeesnsseeesnnseeeesnsseeenn 150

21.1.3. Function Completion Status OPerand IDS........ccceeeiuiieeeiiieeeeiiee e eereeeesiteeeeetteeessbeeeessveeeesssaeeesssseesnsseeens 153

22, ABI Reference: Data TYPES cucciiiiiiiiiiiiiiiiiiiiiiiisssnsnnens 155

22.1. BASIC CrYPLO TYPES oottt ettt ettt et et et et et et et et et et et et et et eeatesetataaeraeaaararaaaraaaaaes 155

22.2. O e T L LA = R B T N 155

3 T N I 32U I T 155

R R () N |V 156

22.2.3. CPUID_VALUES......otti ittt ettt eeite e e stee e ettt e seaate e e sataeeeesateeesessteee s ssaaeeasbaeesansseeesasseaeeassaeeeasseeesanseeessnsseeann 156

D S 1 B o 2 2V Y 1Y PR UPUPN 157

22.3. Physical Memory ManNQGEMENT TYPESueeueeeeeeiiieeeeeeeeesiieeeeeeeessesstteaaeeessssstsesaaeeesssssssssaaesessssssssssaseessas 158

D T B o o (VA ToF | I - 1= LI 2T UPU SRRt 158

22.4. TD Private Memory Management Data TYpPeS: SECUIE EPTuuuuuuuuvuuuvuvuiiininsssusssssssssssssssssssssssssssssnnnnnnnn 159

22,41, SECUIE EPT LEVEIS ...vveiiie ittt ettt e e e e et e e e e e s e eaab b e e e e e e eesaabaeeeeeesesasbaeseeeeeenaasraseeeeeeenantes 159

22.4.2. Secure EPT Entry Information as Returned by TDX Module FUNCLIONS.......c.ccceivieriiiinieniiieeeeieeeee e 159
22.4.2.1. Returned Secure EPT ENtry CONTENT ..cuuviiiiiiieiciie e ceitee e cee ettt e st e e e e e s eaaa e e e snaeeeennneeeennnnes 159
22.4.2.2, Additional Returned Secure EPT INfOrmationccocvvveiiiiiiiiiiiieiiec ettt 160

22.5. TD ENEIY QNGO EXIt TYPOS...uveeeieeeeeeteeeiee e eeeeette e e e e ettt e e e e e e e ettt e e e e e eetataasaaaeeeaastssssaaaaeassssssesaaeessssssssnneeas 161

22.5.1. Extended EXit QUAlIfiICatION ..u.uiiiiiiiiiiiiiee ettt e e e s e e r e e e e e e sabbrreeeeeeenanres 161

22.6. Measurement Nd ALEESEALION TYPES........uueeeeeeeeeiieeieeeeeeseceeee e e e e esctateaaeeesssstssseeaaeeessssssesaaeeeessssssssesaseeaias 161

D T T 61 = U)V N SRR 161

22.6.2. TDREPORT _STRUCTttiiiiiiiieietieeestteeeetteeesetteeestaeeeessteeeeesteeessseaeesssaeesansseeesanseaeesnsaeesansseeesanseeeesnseneen 161

22.6.3. REPORTMACSTRUCT (REFEIENCE) ..evveeeetreee ettt eeettee e tee e e etee e e et e e eeaseeeeetaeeeensseeeeenaeeeeensreeenn 162

22.6.4. REPORTTYPE (REEIENCE) . uuuturiiiiiieiiiieieee e ee ettt ee e e e e eeetrre e e e e eesestaaeeeeeeesessabsaeeeeeesessssraeeeeeseesastssseeeesennntes 163

22.6.5. TDINFO _STRUCT .utttiiiiiiiiiiiittiee e e e eccittt et e e e e e s tttte e e e e e e setbataeeaaaesaasaataesaaessasassaeseaaesaaasstasssaessesastaaseaeesesnanses 163

22.7. Configuration, Enumeration and INitiQliZAtioN TYPES..........eeeeeeeeeeureeieeeeeeiiiieeieeeeeesceitteeaeeeeeesiseaaaaeeeesieses 164

22.7.1. CPUID _CONFIG.....uttiiiieeieeiciitttee e e e ettt e e e e e ettt e e e e e e sebbaaeeaeeesaassaaaesaaeesasassaesaaaesaaasstasseaessesanstassaaassennanses 164

22.7.2. TDSYSINFO _STRUCT .eiiiiiiiicititieeeeeeretitrteeeeeeseiteteeeeesessstseaeesesssasssssaaetesssasssssssesesssasssssssesessssssssssseeessessnnes 164

Dy A T € 2 S 11 1 PP PUPRPN 167

D A S 10 |V 1 G 1 V] L PSPPSR PUPRPRN 167

22.8. 1Y L= e o o e I A Yotol =X X Y =X USRS 168

22.8.1. MD_FIELD_ID: Metadata Field Identifieruueeeiiiiiiiieec et e e et e e e e e e 168

22.8.2. TDR and TDCS Metadata FIelds......cccoiiiiiiiiiiiiiei e 169

22.8.3. TDVPS Metadata Field COUBS....cciiiiiiiiiiiiiiiie et 169

February 2023 . Page 10 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

23. ABI Reference: Control SErUCIUIESccciviiiiiiiiiiiiiiiiiiiiiiiisssnnns 171
23.1. TD-5COPE CONLIOI SEIUCLUIESvveeeeeeeeeeeeeeee e et e e et e e et e e e et e e e et e e et aaeassteaeesseaaesassaasessesansnsssaenansnes 171
23.1.1. How to Read the TDR and TDCS TAbIESccocuiiiiiiiieecciee ettt e e et e e e ate e e s enae e e e seaeee s 171

D2 70 0 D - SO PP PP OO 171
23.1.3. TGS ciiiitieite ettt ettt ettt ettt ettt ettt e h e bt e b e e e be e e b te e be e e b ae e be e e b te e be e e bt e e be e e bee e bae e be e e beeebeeebaeeaeeeabes 172
23.2. TDVPS: VCPU-SC0PE CONLIOI SEIUCTLUIEoeoeeeeeiiie ettt e sttt s it e s taa e s sastaaestteesssasnaassasseas 174
23.2. 0. OVEBIVIEW i ettt ettt et e et e aeaaaaaaaaaaaaaaaaas 174
23.2.2. How to Read the TDVPS (including TD VIMCS) TabIES ...cccutivueiiiiieiieiiieesieeesieseseeeee e et e e esvae e e 175
23.2.2.1. VMM Access using TDH.VP.RD and TDH.VP.WRcoccuiiiiiiiiieieiiieecitee e siteeeesiree e sveee s svaeesssane e e ssanes 175
23.2.2.2. Text HIIIIZNTING .o.veiiiiiiieeee ettt sttt e st sa e e bt e sba e s sbe e s baeebeesabas 175
23.2.3. TDVPS (eXCIUAING TD VIMICS) ..uvtiiiiiiiiieiiieeitttesite sttt site sttt ssitesbesssatesbeessaeesbaessaesabaessaesabeesnseessaesnseesnses 176
23.2.4. TD VIMICS ..ottt ettt ettt ettt ettt ettt ettt et e b et e b e ettt e ate ettt e bt e s be e e bt e s abe e e abeesabeesbee s bae e bee e beeenbeeebaeebeeeabes 179
232,41, TD VIVICS GUESTE STAte AICa .eeeiiieiiiiiiiiei e ettt ettt e e e ettt et e e e s et e et e e e e s e senbeeeeeeeeesensnnaeaeeeesan 180
23.2.4.2. TD VIVICS HOSE STAtE A@A ..eeieiiiiiiiiiiiiee e ettt ettt e e e s ettt e e e s ettt e e e s e s enbeteeeeeeesensnnaeaeeeesas 182
23.2.4.3. TD VMCS VM-EXecution CONtrol FIElSc.ueiiiiiiiiiiiee ettt e s e e s e et e e 182
23.2.4.4. TD VMCS VM-EXit CONLrOl FIEIASiiiieiiieiiiiieeeitee ettt st e et saee e e st e e s s aae e e e anes 190
23.2.4.5. TD VMCS VM-ENtry CONrol FIEIAS ...covuveirieeiiieiieesieeetee sttt sttt ettt sae e st e sbeesans 191
23.2.4.6. TD VMCS VM-EXit INformation FIEIAS.......cccciiiieiiiieeciiee ettt e rtvee e e vae e e et e e e ta e e 192

24, ABI Reference: INterface FUNCLIONSccccciiiiiiiiiiiiiiiiiciiicsirrsnrsss s s s se ssssssssssssssssssnssnnnnnnnns 194
24.1. How to Read the Interface FUNCLION DEfINITIONSccccuveeeeeiieieeeiieeeesieeeesteeeeeaaeeesseeeeetveaessasaeessesenanns 194
24.2. Host-Side (SEAMUCALL) INTEIFACE FUNCLIONSveeeueeecrieeetieestieeeieesiteeetteesteaesteesstaasaseassteasasessaseassesssseassseas 194
D2 % 2 Y =¥\ Y, [N W I T T Tt o T (@0 4T 4 Vo) 1 SRR 194
24.2.2. TDH.MEM.PAGE.ADD LEAT ...uueiiiiiieiiiiiiee ettt e ettt e e e e e etre e e e e e e e e atbaeeeeeesesnnraeeeeeeeeesnsasseeeesesnnses 197
24.2.3. TDH.MEM.PAGE.AUG LEATiiiiiiiieiiiierieeitt ettt ettt et sttt e st e st e s baesabaesbaesbaeenbeesbaeeseeennes 200
24.2.4. TDH.MEM.PAGE.DEMOTE LEAT ...cctiiiiiiiieiititeiie ettt site sttt ettt s site st sia e st e s saaesbaesbeesabaesbaesbaeenseesnnes 203
24.2.5. TDH.MEM.PAGE.PROMOTE LEAF....ciiiiiiiieiiiiiiieiittt sttt este sttt sste st e e saba e s aeesbaesbeesbaeenseesnnes 206
24.2.6. TDH.MEM.PAGE.RELOCATE LEAT....ttiiiiiiieiitit ettt sttt ettt sttt st sba e st e sbeesbaeeseeennes 209
24.2.7. TDH.MEM.PAGE.REMOVE LEAT ... ittt ettt e e e et r e e e e e e e e s aabaeeeeeeeesnntaseeeeeeennnnens 212
24.2.8. TDH.MEM.RANGE.BLOCK LEATcueecuiieiieeitiieitie ettt e stte ettt e see s tee e steeestaeesaaeetaesseesntaeesaeentaeensneesaeeneeeanes 215
24.2.9. TDH.MEM.RANGE.UNBLOCK LEAT...ccciiiiieectiieitiecciteertte ettt see et estae st e e saae et e eveesataeeaaeenbaeeseesnsaeennneennes 218
24.2.10. TDH.MEIMLRD LEAT . uiiitiiiiitiiie ettt ettt ettt ettt e e sae e e s e teesaae e sateesaaeesateesaseesateesaseesasaesnseenns 221
24.2.11. TDH.MEM.SEPT.ADD LEAT ..iiutieiiiiiiiie ittt ettt ettt erteesitsesite et s e sateestee e satessaae e saaeesaaeesateessaeesnbaesaseesnsaesnseesns 224
24.2.12. TDH.MEM.SEPT.RD LEAT...c ittt ettt e e st e e e et e e e s bt e e e e s abaeeeenstaeeennbaeasentaeaeanes 227
24.2.13. TDH.MEM.SEPT.REMOVE LEATeiiiuiiiiiiiiieeiit ittt steesite st site e s te e saae e siae e saae e sateesaaeesateesaseesabaesaneesns 230
24.2.14., TDH.MEM.TRACK LEAT ... eeiieiiiiiitiiee ettt et e et e e st e e e st e e e s aee e e saaeeeesntaeesansseeesnnseeeennsseesanes 233
24.2.15. TDH.MEIMLWR LEAT «eiiiiie ettt ettt et ettt e e st e e e st e e s e ate e e sbaeeeesntaeeeensseeesnnseeasnnseeesanes 235
24.2.16. TDH.MNG.ADDCX LEAT ...eiiiiiiieeiciiee ettt cetee sttt e e et e e et e e st e e e st e e s s aeeeesnteeeesstaeesasseeesnnseeessnsseesanns 238
24.2.17. TDH.MNG.CREATE LEAF .. ciiiciiiiiitiiee ettt cetes sttt e e ettt e et e e st e e e st e e s e aeeeesnteeeesstaeesansseessnnseeeennsseesanes 240
24.2.18. TDH.IMNG.INIT LEAT 1ot itieeiiieiieeiet ettt ettt e s e ste e e st e e sat e e sateesaaeesateesaaeesabeesaseesaseesaseesasaesnseesns 242
24.2.19. TDH.MNG.KEY.CONFIG LEAF...iiitiiiiiieiiiii ettt sttt ste et site st e ste e saae e siaeesaae e sateesaaeesaseesaseesnsaesaseesns 244
24.2.20. TDH.MNG.KEY.FREEID LEATeeitiiiiiieeiiit ettt sttt site e site e site e site e site e saae e siteesaae e sateesaaeesateesaseesnsaesaseenns 246
24.2.21. TDH.MNG.KEY.RECLAIMID LEAT ...ecteeeiiieciieeit ettt ettt e stteestte e saeesaae e saaeesaaeesataesnaeesasaesaseesnsaesnseesns 248
24.2.22. TDH.IMING.RD LEATF .uetiiiiiiiiieiiie sttt ettt e sttt e e et e et e e st e e e sa b e e e e aeeeesnaeeeesnsaeeeansseeesnnseeeennsseesanns 249
24.2.23. TDH.MNG.VPFLUSHDONE LEAT .. .eeiiiiiiiieieiee sttt et tee et e e e setee e s s e e e st e e e e st e e eennaeeesnnnneeennseeeeanes 251
24.2.24, TDH.IMNG.WR LEAF ..ottt ettt ettt et sat e e st e e saae e s abeesate e sabeesabeesabeesabeesabaesaneesas 253
24.2.25. TDH.MR.EXTEND LEAT eeeeiiieiiiie ettt ettt e et e e e e e et a e e e e e s e s a b bt e e e e e e e seenabtaeeeaeeeennnnteeneas 255
24.2.26. TDH.MRL.FINALIZE LEAT .ottt ettt e e ettt e e e e e st b e e e e e e s e e e b e e e e e e eeeeenabtaeeeaeeeeennntaeneas 256
24.2.27. TDH.PHYMEM.CACHE.WB LEAT ...ceiiiieiiieiei ettt ettt e e e e sttt e e e e e e e aa e e e e e e e e e e enantaeneas 259
24.2.28. TDH.PHYMEM.PAGE.RDIMID LEAT ...ttt ettt e e e e sttt e e e e e e e aaaa e e e e e e s e enantaeeeas 261
24.2.29. TDH.PHYMEM.PAGE.RECLAIM LEATtiieieiiee ettt et e st e e st e e et e e e eaeae e e snaeeeenntaeeeenes 263
24.2.30. TDH.PHYMEM.PAGE.WBINVD LEAFutiiiieiiii e cieee et e tte st e e e ste e s ate e st e e e sn e e sennae e e snneeeennnaeeeanns 266
24.2.31. TDH.SYS.CONFIG LEAT ... ettiitieeiit ettt ettt ettt ettt et e sba e e sate e sat e e sabe e sabeesabeesabeesabaesaneesas 268
24.2.32. TDH.SYS.INFO LEAT ..ottt ettt e e e e ettt e e e e e s e et b e e e e e e s esaataaaeeaeaeseaastaeeeaaseennstreneas 271
24.2.33. I B AT VT B =T | U UUR 273
24.2.34, TDH.SYS.KEY.CONFIG LEAT.....eiii ettt ettt ettt e e e st e e e e tte e e e tbeeeesabaeeeeasteeeeanbeaaeantaeaeanes 276
24.2.35. TDH.SYS.LP.INIT LEAT ..ttt ettt e ettt e et e e e ettt e e e e abaeeeetbeeeetbeeaeastaeaeasseesenssaaaeanteeaeanes 278
24.2.36. TDH.SYS.LP.SHUTDOWN LEAT ... etiiieciiieieiee e ctteee et e st e e s tvee s e st e e s e aee e e snteeeasntaeesenneesesnnneeeesnseeenanns 281

February 2023 . Page 11 of 323

Introduction and Overview

Section 1:

10

15

Intel® TDX Module Spec

Section 1: Introduction and Overview

344425-005US

24.2.37.
24.2.38.
24.2.39.
24.2.40.
24.2.41.
24.2.42.
24.2.43.
24.2.44.

24.3. Guest-Side (TDCALL) Interface Functions
TDCALL INStruction (COMMON)uuieeeiiiieeeiee e cireeeecire e ee e e e eree e e str e e e enre e e snneeas
TDG.MEM.PAGE.ACCEPT LEAf....iiiieiiereieie ettt ee e see e ns
TDG.MR.REPORT LEATtieeiiciieciesteereerie ettt ens
TDG.MR.RTMR.EXTEND LEaF....uteiieiiieiiiieeee ettt e e e e
TDG.VIMLRD LEAT... .ttt et e e e e e e eaaa e e e e e e e e eannees
TDG.VMWR LEAT ...ttt e e e e e e eaaar e e e e e e eannees
TDG.VP.CPUIDVE.SET LEAf ...ttt et e e e
TDG.VP.INFO LEAT ..eeciieieciece sttt ettt ettt ae e e s aeesaeeaesnne e
TDG.VP.VEINFO.GET LEAT...oiiiiiiecieceece ettt

TDG.VP.VMCALL LEAF ..ttt ns

24.3.1.
24.3.2.
24.3.3.
24.3.4.
24.3.5.
24.3.6.
24.3.7.
24.3.8.
24.3.9.
24.3.10.

TDH.SYS.TDMRLINIT LEAF ..eieeieiiieeiee sttt
TDH.VP.ADDCX LEAS ..eeetiriieiie ettt e
TDH.VP.CREATE LEAT ..ottt
TDH.VP.ENTER LEATiiiiiiieiie ettt
TDH.VP.FLUSH LEAT .ttt s
TDH.VP.INIT Leaf ..c.oiiiiiiiiiiii e
TDH.VP.RD Leaf ...coiiiiiiiiiiiiii it
TDH.VP.WR L ..ttt

February 2023

Page 12 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec

Section 1: Introduction and Overview

344425-005US

SECTION 1:

INTRODUCTION AND OVERVIEW

February 2023

Page 13 of 323

Section 1: Introduction and Overview

Intel® TDX Module Spec

Section 1: Introduction and Overview 344425-005US

1. About this Document

1.1.

Scope of this Document

This document describes the architecture and the external Application Binary Interface (ABI) of the Intel® Trust Domain
Extensions (Intel® TDX) module, implemented using the Intel TDX Instruction Set Architecture (ISA) extensions, for

5 confidential execution of Trust Domains in an untrusted hosted cloud environment.
This document is a work in progress and is subject to change based on customer feedback and internal analysis. This
document does not imply any product commitment from Intel to anything in terms of features and/or behaviors.
Note: The contents of this document are accurate to the best of Intel’s knowledge as of the date of publication, though
Intel does not represent that such information will remain as described indefinitely in light of future research
10 and design implementations. Intel does not commit to update this document in real time when such changes
occur.
1.2. Document Organization
The document has the following main sections:
e Section 1 contains an introduction to the document and an overview of the Intel TDX module.
15 e Section 2 contains the Intel TDX module architecture specification.
e Section 3 is an Application Binary Interface (ABI) function reference for the Intel TDX module.
1.3. Glossary
Table 1.1: Intel TDX Glossary
Acronym | Full Name New | Description
for
TDX
ABI Application No A programming interface defined at the binary level (i.e., instruction opcode and
Binary CPU registers). The Intel TDX module interface is specified as an ABI.
Interface
ACM Authenticated No A code module that is designed to be loaded, verified and executed by the CPU in
Code Module on-chip memory (CRAM).
N/A Accessible No Memory whose content is readable and/or writeable (e.g., TD private memory is
(Memory) accessible to the guest TD).
N/A Addressable No Memory that can be referred to by its address. The content of addressable
(Memory) memory might not necessarily be accessible (e.g., TDCS is not accessible to the
host VMM).
CMR Convertible Yes A range of physical memory configured by BIOS and verified by MCHECK. MCHECK
Memory Range verification is intended to help ensure that a CMR may be used to hold TDX
memory pages encrypted with a private HKID.
N/A Enlightened OS | No A TD OS is considered enlightened if it is aware that it is running as a TD (see
Paravirtualization).
EPxE Extended No The CPU’s cache of EPT intermediate translations (as opposed to TLB, which
Paging caches full LA or GPA to HPA translations).
Structures
Cache
GPA Guest Physical | No An address viewed as a physical address, from a guest VM’s point of view. A GPA
Address is subject to further translation (by EPT) to produce an HPA.

February 2023

Page 14 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec

Section 1: Introduction and Overview 344425-005US

Acronym | Full Name New | Description

for
TDX
N/A Hidden No A resource or a data structure that is not directly addressable by software (except
the Intel TDX module).
HKID Host Key ID Yes When MKTME is activated, HKID is a key identifier for an encryption key used by
one or more memory controllers on the platform.
N/A Host VMM Yes The VMM that serves as a host to guest TDs. The term “host” is used to
differentiate between the “host VMM” and future VMMs that may be nested
within TDs.
HPA Host Physical No A physical address at the host VMM level. This is the actual physical address used
Address by the hardware (e.g., caches). See also PA.

KET Key Encryption | Yes A table held by each MKTME encryption engine, intended for holding encryption
Table key information, indexed by HKID.

KOT Key Ownership | Yes An internal, hidden table held by the Intel TDX module, intended for controlling
Table the assignment of HKIDs to TDs.
MBz Must Be Zero No Normally used to indicate that reserved fields must contain 0.
MKTME Multi-Key TME | No This SoC capability adds support to the TME to allow software to use one or more
separate keys for encryption of volatile or persistent memory encryption. When
used with TDX, it can provide confidentiality via separate keys for memory used by
TDs. MKTME can be used with and without TDX extensions.?
MRTD Measurement | Yes The SHA-384 measurement of a TD accumulated during TD build.
of Trust
Domain

PA Physical No The physical address used by the hardware (e.g., caches). See also HPA.
Address

PAMT Physical Yes An internal, hidden data structure used by the Intel TDX module, which is intended
Address to hold the metadata of physical pages.
Metadata
Table

PV Para- No A virtualization technique where the VM can be aware it is being virtualized (as
Virtualization opposed to running directly on hardware).

RTMR Run-Time Yes A SHA-384 measurement register that can be updated during TD run-time.
Measurement
Register

SEAM Secure Yes See TDX ISA.
Arbitration
Mode

SEAMLDR | SEAM Loader Yes An ACM intended to load the Intel TDX module.

SEAMRR SEAM Range Yes A range register used by the BIOS to help configure the SEAM memory range,
Register where the Intel TDX module is loaded and executed.

11n this document, the term “MK-TME” is used to mean both the feature and the encryption engine itself.

February 2023

Page 15 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec

Section 1: Introduction and Overview 344425-005US

Acronym | Full Name New | Description
for
TDX
SEPT Secure EPT Yes An Extended Page Table for GPA-to-HPA translation of TD private HPA. A Secure
EPT is designed to be encrypted with the TD’s ephemeral private key. SEPT pages
are allocated by the host VMM via Intel TDX functions, but their content is
intended to be hidden and is not architectural.
Intel® Intel® No An Intel CPU mode and ISA extensions that support operation and management of
SGX Software Intel® SGX enclaves.
Guard
Extensions
SoC System on No A whole system, including cores, uncore, interconnects etc., packaged as a single
Chip device.
SPA System No The physical address used by the hardware (e.g., caches). See also HPA.
Physical
Address
D Trust Domain Yes Trust Domains (TDs) are designed to be hardware isolated Virtual Machines (VMs)
deployed using Intel® Trust Domain Extensions (Intel® TDX).
TD OS Trust Domain Yes The guest operating system that runs in a TD.
Operating
System
N/A TD Private Yes TD Private Memory is designed to hold TD private content, encrypted by the CPU
Memory using the TD ephemeral key.
(Access)
N/A TD Shared Yes TD Shared memory is designed to hold content accessible to the TD and the host
Memory software (and/or other TDs). TD shared memory may be encrypted using MKTME
(Access) keys managed by the VMM.
TDCS Trust Domain Yes Multi-page control structure for a TD. TDCS pages are allocated by the host VMM
Control via Intel TDX functions, but their content is intended to be non-architectural and
Structure not directly accessible to software.
TDCX Trust Domain Yes 4KB physical pages that are intended to hold parts of a TDCS.
Control
Extension
TDR Trust Domain Yes The root control structure for a TD. The TDR page is allocated by the host VMM
Root via Intel TDX functions, but its content is intended to be non-architectural and not
directly accessible to software.
TDMR Trust Domain Yes A range of memory, configured by the host VMM, that is covered by PAMT and is
Memory Range intended to hold TD private memory and TD control structures.
TDVPS Trust Domain Yes A multi-page structure for holding a TD Virtual CPU (VCPU) state. TDVPS pages are
Virtual allocated by the host VMM via Intel TDX functions, but their content is intended to
Processor be non-architectural and not directly accessible to software.
State
TDVPR Trust Domain Yes A 4KB physical page that is intended to be the root (first) page of a TDVPS.

Virtual
Processor Root

February 2023

Page 16 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec

Section 1: Introduction and Overview 344425-005US

Acronym | Full Name New | Description

for
TDX

TDVPX Trust Domain Yes 4KB physical pages that are intended to be the non-root pages of a TDVPS.
Virtual
Processor
Extension

Intel® Intel® Trust Yes An architecture, based on the TDX Instruction Set Architecture (ISA) extensions

TDX Domain and the Intel TDX module, which supports operation and management of Trust
Extensions Domains.

TDX ISA Intel® TDX Yes Intel CPU Instruction Set Architecture (ISA) extensions that support the Intel TDX
Instruction Set module: an isolated software module that facilitates the operation and
Architecture management of Trust Domains.

TME Intel® Total No A memory encryption/decryption engine using an ephemeral platform key
Memory designed to encrypt memory contents exposed externally from the SoC.
Encryption

XFAM Extended Yes A mask of CPU extended features (in XCRO format) that the TD is allowed to use.
Features
Allowed Mask

1.4. Notation

This section describes the notation used in this document.

1.4.1. Requirement and Definition Commitment Levels

When specifying requirements or definitions, the level of commitment is specified following the convention of RFC 2119:
Key words for use in RFCs to indicate Requirement Levels, as described in the following table:

Table 1.2: Requirement and Definition Commitment Levels

Keyword

Description

Must

“Must”, "Required" or "Shall" means that the definition is an absolute requirement of the
specification.

Must Not

“Must Not” or "Shall Not" means that the definition is an absolute prohibition of the
specification.

Should

“Should”, or the adjective "Recommended", means that there may exist valid reasons in
particular circumstances to ignore a particular item, but the full implications must be
understood and carefully weighed before choosing a different course.

Should Not

“Should Not”, or the phrase "Not Recommended" means that there may exist valid reasons in
particular circumstances when the particular behavior is acceptable or even useful, but the full
implications should be understood, and the case must be carefully weighed before
implementing any behavior described with this label.

May

“May”, or the adjective "Optional", means that an item is discretionary. An implementation
may choose to include the item, while another may omit the same item, because of various
reasons.

February 2023

Page 17 of 323

Introduction and Overview

Section 1:

https://www.ietf.org/rfc/rfc2119.txt
https://www.ietf.org/rfc/rfc2119.txt

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

1.5, References

1.5.1. Intel Public Documents

Table 1.3: Intel Public Documents

Reference Document Version & Date

Intel SDM Intel® 64 and 1A-32 Architectures 325462-072US,
Software Developer’s Manual May 2020

ISA Extensions Intel® Architecture 319433-040,
Instruction Set Extensions and Future Features June 2020

Programming Reference

Error Reporting RAS Integration and Validation Guide for the Intel Xeon April 2015
through EMCA2 Processor — Error Reporting through EMCA Gen 2
Software Security Intel Software Security Guidance Website

Guidance Website

1.5.2. Intel TDX Public Documents

Table 1.4: Intel TDX Public Documents

Introduction and Overview

Reference Document Version & Date

TDX Whitepaper Intel® Trust Domain Extensions (Intel® TDX) Whitepaper August 2021

TDX CPU Spec Intel® CPU Architectural Extensions Specification May 2021

GHCI Spec Intel® TDX Guest-Hypervisor Communication Interface December 2022

TDX Loader Spec Intel® TDX Loader Interface Specification March 2022

TDX VF Spec Intel® TDX Virtual Firmware Design Guide December 2022
MKTMEi Spec Intel® Architecture Memory Integrity Specification Rev. 1.0, March 2020

Section 1:

February 2023 . Page 18 of 323

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://www.intel.com/content/dam/develop/external/us/en/documents/emca2-integration-validation-guide-556978.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/emca2-integration-validation-guide-556978.pdf
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/overview.html
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://cdrdv2.intel.com/v1/dl/getContent/733582
https://cdrdv2.intel.com/v1/dl/getContent/726790
https://cdrdv2.intel.com/v1/dl/getContent/733584
https://cdrdv2.intel.com/v1/dl/getContent/733585

10

15

20

25

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

2. Overview of Intel® Trust Domain Extensions

Intel® Trust Domain Extensions (Intel® TDX) refers to an Intel technology that extends Virtual Machines Extensions (VMX)
and Multi-Key Total Memory Encryption (MKTME) with a new kind of virtual machine guest called a Trust Domain (TD).
A TD runs in a CPU mode that is designed to protect the confidentiality of its memory contents and its CPU state from
any other software, including the hosting Virtual Machine Monitor (VMM), unless explicitly shared by the TD itself.

The TDX solution is built using a combination of Intel® Virtual Machine Extensions (VMX) and Multi-Key Total Memory
Encryption (MK-TME), as extended by the Intel® Trust Domain Extensions Instruction Set Architecture (Intel TDX ISA).
An attested software module called the Intel TDX module is designed to implement the TDX architecture.

The platform is managed by a TDX-aware host VMM. As shown in Figure 2.1 below, a host VMM can launch and manage
both guest TDs and legacy guest VMs. The host VMM maintains all legacy functionality from the legacy VMs’ perspective;
it is restricted only with regard to the TDs it manages.

Host VMM managed access Intel TDX module managed access control,
control, enhanced with MK-TME

/ leveraging MK-TME and Secure EPT x

Legacy VM Legacy VM Trust Domain Trust Domain
Aoplications Aoolicati Unmodified Unmodified
pplicati pplications Applications Applications
. . Unmodified Unmodified
Drivers Drivers . .
Drivers Drivers
TDX- TDX-
0S oS Enlightened Enlightened
oS oS
| t] t
Intel TDX Intel TDX
Guest-Side Interface Guest-Side Interface
— ¥ — i
Intel TDX Intel TDX Module
TDX-Aware Host VMM +— Host-Side = L
Interface Running in SEAM Root Mode
(|
I

Platform (Cores, Caches, Devices etc.)

Figure 2.1: Intel® Trust Domain Extension Components Overview

2.1. Intel TDX Module Lifecycle

2.1.1. Boot-Time Configuration and Intel TDX Module Loading

1. BIOS should configure the SEAMRR registers and prepares a table of Convertible Memory Regions (CMRs) — memory
regions that can hold TD-private memory pages.

2. BIOS should then initiate MCHECK (as part of a uCode patch load) by WRMSR(0x79). MCHECK is designed to check
the correct configuration of SEAMRR and CMRs and store the information in a well-known location in SEAMRR.

3. The host VMM can then load the Intel TDX module using the SEAMLDR ACM.

2.1.2. Intel TDX Module Initialization, Enumeration and Configuration

1. After loading the Intel TDX module, the host VMM should call the TDH.SYS.INIT function to globally initialize the
module.

2. The host VMM should then call the TDH.SYS.LP.INIT function on each logical processor. TDH.SYS.LP.INIT is intended
to initialize the module within the scope of the Logical Processor (LP).

3. The host VMM should then call the TDH.SYS.INFO function to enumerate the Intel TDX module functionality and
parameters, and retrieve the trusted platform topology and CMR information as previously checked by MCHECK.

February 2023 Page 19 of 323

Introduction and Overview

Section 1:

10

15

20

25

30

35

40

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

4. Based on the above, the host VMM should then decide on a set of Trust Domain Memory Regions (TDMRs). TDMR
is a region of convertible memory that may contain some reserved sub-regions.

5. The host VMM should then call the TDH.SYS.CONFIG function and pass TDMR information with other configuration
information. TDH.SYS.CONFIG is intended to check the configuration information vs. the Intel TDX module’s trusted
internal data.

6. The host VMM should then call the TDH.SYS.KEY.CONFIG function per package. TDH.SYS.KEY.CONFIG is intended to
configure a CPU-generated random key that is used as the Intel TDX module’s global private key.

7. The host VMM should then use the TDH.SYS.TDMR.INIT function to initialize the TDMRs and their associated control
structures.

The Intel TDX modaule lifecycle is detailed in Chapter 6.

2.2. Guest TD Life Cycle Overview

2.2.1. Guest TD Build

The host VMM can create a new guest TD by allocating and initializing a TD Root (TDR) control structure using the
TDH.MNG.CREATE function. As an input to TDH.MNG.CREATE, the host VMM assigns the TD with a memory protection
key identifier, also known as a Host Key ID (HKID). The HKID can be used by the CPU to tag memory accesses done by the
TD and by the multi-key total memory encryption engines (MKTMEs) to select the encryption/decryption keys — the keys
themselves are designed to not be exposed to the host VMM. The VMM should then program the HKID and encryption
key into the MKTME encryption engines using the TDH.MNG.KEY.CONFIG function on each package.

Once the TD is assigned a key, the host VMM can build the TD Control Structure (TDCS) by adding control structure pages,
using the TDH.MNG.ADDCX function, and initialize using the TDH.MNG.INIT function. It can then build the Secure EPT
tree using the TDH.MEM.SEPT.ADD function and add the initial set of TD-private pages using the TDH.MEM.PAGE.ADD
function. These pages typically contain Virtual BIOS code and data along with some clear pages for stacks and heap.
Most of the guest TD code and data is dynamically loaded at a later stage. The guest TD can extend run-time
measurement registers, designed to be securely maintained by the Intel TDX module, for the added contents using the
TDH.MR.EXTEND function.

The host VMM can then create and initialize TD Virtual CPUs (VCPUs). After creating each VCPU using the TDH.VP.CREATE
function, the VMM allocates a set of pages to hold the VCPU state (in a structure called TDVPS) using the TDH.VP.ADDCX
function. The host VMM can then initialize the VCPU using the TDH.VP.INIT function.

After the initial set of pages is added and extended, the VMM can finalize the TD measurement using the
TDH.MR.FINALIZE function.

2.2.2. Guest TD Execution

The host VMM may enter the TD (launch the TD for the first time, or resume a previously intercepted TD execution) using
the TDH.VP.ENTER function. The Intel TDX module is designed to load CPU state from the TDVPS structure and perform
VM entry to go into TDX non-root mode.

When TD exit is triggered, the Intel TDX module is designed to save CPU state into the TDVPS structure, load the CPU
state saved on TD entry, and switch back to TDX root mode (SEAMRET) at the instruction following SEAMCALL. The VMM
can then inspect the TD exit information in General Purpose Registers (GPRs).

2.2.3. Guest TD Management during its Run-Time

During TD lifetime, the VMM might need to dynamically control the TD and manage the resources assigned to it. The
Intel TDX module provides the VMM with functions to support scenarios such as:

Adding and removing TD pages.

Changing page mapping sizes.

e Reclaiming the HKIDs from a TD, and assigning them to another TD.
Destroying an existing TD.

February 2023 . Page 20 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

2.3. Intel TDX Operation Modes and Transitions

The Intel TDX module is designed to provide two main new logical modes of operation built upon the new SEAM root
and non-root CPU modes added to the Intel VMX architecture: TDX Root Mode, and TDX Non-Root Mode. Figure 2.2
below shows the Intel TDX logical modes and transitions (in red) on top of the CPU architectural modes.

SMM

Legacy VMX ! SEAM

;: TDX Non-Root

|
|
|
|
|
|
|
|
|

|
: |
1
Parallel VM Legacy VM I : VMX
" | Non-Root
|
i' '
__ j__TDb_ _ =5 B D
-—== _:\\\Entry I
SEAMCALE X\ |
Parallel VMM : VMX
I
I Root
|
N
Opt-in SMM e e e e D _TTDExit SN
Opt-out SMM
Out of
VMX
5
Figure 2.2: Overview of Intel TDX Modes & Transitions based on VMX and SEAM Modes and Transitions
The following table adds more details.
Table 2.1: Overview of Intel TDX Modes
Intel TDX Intel VMX Mode | SEAM Mode Description
Logical Mode
TDX Root VMX Root Non-SEAM TDX root mode is mostly identical to the legacy VMX root operation
(mostly), mode. It is generally used for host VMM operation.
SEAM .(during Host-side Intel TDX functions, triggered by SEAMCALL, are provided
host-side !ntel by the Intel TDX module. Logically, host-side functions run in TDX
TDX functions root mode, though the CPU’s SEAM mode is on.
execution)

February 2023 . Page 21 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec

Section 1:

Introduction and Overview 344425-005US

Intel TDX Intel VMX Mode | SEAM Mode Description
Logical Mode
TDX VMX Non-Root SEAM TDX non-root mode is used for TD guest operation. TDX non-root
Non-Root (mostly), operation is similar to legacy VMX non-root operation, with
VMX Root changes and restrictions to better ensure that no other software or
(during guest- hardware has direct visibility of the TD memory and state.
side Intel TDX

flows execution)

The changes in TDX non-root mode vs. legacy VMX non-root
operation are implemented by:

e The CPU running in SEAM non-root mode. This modifies the
address translation to support Secure EPT and usage of private

HKIDs, and it also modifies the VMX operation (entry, exit,
etc.).

e The Intel TDX module, acting as the root VMM for the guest
TD, using VMX and SEAM to virtualize the CPU behavior and
emulate the required TDX non-root behavior.

the Intel TDX module. Logically, guest-side functions run in TDX
non-root mode, though the CPU runs VMX root mode.

TDX non-root operation is described in Chapter 13.

Guest-side Intel TDX flows, triggered by a VM Exit, are provided by

10

15

20

25

Intel TDX transitions between TDX root operation and TDX non-root operation include TD Entries, from TDX root to TDX
non-root mode, and TD Exits from TDX non-root to TDX root mode. A TD Exit might be asynchronous, triggered by some
external event (e.g., external interrupt or SMI) or an exception, or it might be synchronous, triggered by a
TDCALL(TDG.VP.VMCALL) function.

2.4. Guest TD Private Memory Protection

2.4.1. Memory Encryption

The Intel TDX module helps protect guest TD private memory using memory encryption and integrity protection as
enabled by the CPU’s MKTME and TDX ISA features. The Intel TDX module adds key management functionality to help
enforce its security objectives.

Memory encryption is designed to be performed by encryption engines that reside at each memory controller. An
encryption engine holds a table of encryption keys, known as the Key Encryption Table (KET). An encryption key is
selected for each memory transaction based on a Host Key Identifier (HKID) that should be provided with the transaction.

In the first generation of MKTME, HKID is “stolen” from the physical address by allocating a configurable number of bits
from the top of the physical address. TDX ISA is designed to further partition the HKID space into shared HKIDs for legacy
MKTME accesses and private HKIDs for SEAM-mode-only accesses. Future generations might choose to express HKID
differently.

During TDX non-root operation, memory accesses can be qualified as either shared or private, based on the value of a
new SHARED bit in the Guest Physical Address (GPA). Shared accesses are intended to behave as legacy memory accesses
and use the upper bits of the host physical address as an HKID, which must be from the range allocated to legacy MKTME.
Private accesses use the guest TD’s private HKID.

The host-side Intel TDX functions help provide the means for the host VMM to manage HKID assignment to guest TDs,
configure the memory encryption engines, etc., while better assuring proper operation to help maintain the TDX’s
security objectives. By design, the host VMM does not have access to the encryption keys.

Key management is described in Chapter 6.

2.4.2. Address Translation

Guest Physical Address (GPA) space is divided into private and shared sub-spaces, determined by the SHARED bit of GPA.

As designed, the CPU translates shared GPAs using the Shared EPT, which resides in host VMM memory. The Shared EPT
is directly managed by the host VMM —the same as with legacy VMX.

February 2023 Page 22 of 323

Introduction and Overview

Section 1:

10

15

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

As designed, the CPU translates private GPAs using a separate Secure EPT. The Secure EPT pages are encrypted and
integrity-protected with the TD’s ephemeral private key. The Secure EPT is not intended to be directly accessible by any
software other than the Intel TDX module, nor by any devices. Secure EPT can be managed indirectly by the host VMM,
using Intel TDX functions. The Intel TDX module helps ensure that the Secure EPT security properties are kept. At the
end of translation, the CPU sets the HKID bits in the HPA to the TD’s assigned HKID.

TD private memory management is described in Chapter 11.

TDO /{ Guest Physical Address }

Private GPA Space
— Memory encrypted with a
CR3 Private Code/data ‘ TD private key

—[Private Code/data ‘

}—4 Shared Data ‘

lGuest Physical Address (GPA)

Shared GPA Space
— Memory encrypted with a
key shared with VMM

Ll

CPU PMH
. ‘ HPA Space
TD Privat .
Hl?l\s . GPA.SHARED . Physical Memory
Physical Pages
No Address +
YeSl HKID

[
Shared Extended Extended
Page Tables Page Tables
(Shared EPT) (Secure EPT)

Figure 2.3: Secure EPT Concept
2.5. Guest TD State Protection

Intel TDX helps protect the confidentiality and integrity of a guest TD and the state of its Virtual CPUs (VCPUs) with the
following mechanisms:

Protected Control TD-scope and TD VCPU-scope control structures, which hold guest TD metadata and TD VCPU

Structures state, are not directly accessible to any software (besides the Intel TDX module) or devices. As
designed, the control structures are encrypted and integrity-protected with a private key, and
managed by Intel TDX functions. TD control structures are described in Chapter 8.

VCPU State on TD On asynchronous TD exits, which happen due to exceptions or external events, the CPU state is
Transitions saved to the VCPU control structures, and a synthetic state is loaded into the CPU registers. On
the following TD Entry, the CPU state is restored from the protected control structures.

On synchronous TD-initiated exit, using the TDCALL(TDG.VP.VMCALL) function, selected GPR
and XMM state can be passed as-is to the host VMM. On the following TD entry, that state can
be passed back as-is to the guest TD.

2.6. Intel TDX I/0 Model

The TD guest can use the following I/0 models:

e Paravirtualized devices
e Paravirtualized devices with MMIO emulation
e Direct assignment of devices to a TD

February 2023 . Page 23 of 323

Introduction and Overview

Section 1:

10

15

20

25

30

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

The Intel TDX architecture does not provide specific mechanisms for trusted 1/O. Any integrity or confidentiality
protection of data submitted to or received from physical or emulated devices must be done by the guest software using

cryptography.
Intel TDX I/O is detailed in Chapter 15.

2.7. Measurement and Attestation

As designed, during TD launch, the initial contents and configuration of the TD are recorded by the Intel TDX module. In
addition, run-time measurement registers can be used by the guest TD software, e.g., to measure a boot process. At run-
time, the Intel TDX module reuses the Intel® Software Guard Extensions (Intel® SGX) attestation infrastructure to provide
support for attesting to these measurements as described below.

Intel TDX attestation is intended to be used in two phases:

1. Software within the guest TD can use the TDCALL(TDG.MR.REPORT) function to request the Intel TDX module to
generate an integrity-protected TDREPORT structure. The Intel TDX ISA provides support for enabling the Intel TDX
module to create this structure that includes the TD’s measurements, the Intel TDX module’s measurements, and a
value provided by the guest TD software. This will typically be an asymmetric key that the attestation verifier can
use to establish a secure channel or protect sensitive data to be sent to the TD software.

2. An Intel SGX Quoting Enclave, written specifically to support quoting Intel TDX TDs, uses a new ENCLU instruction
leaf, EVERIFYREPORT2, to help check the integrity of the TDG.MR.REPORT. If it passes, the Quoting Enclave can use
a certified quote signing key to sign a quote containing the guest TD’s measurements and the additional data being
quoted.

The Quoting Enclave can run anywhere on the platform where Intel SGX is supported.

Note: Running Intel SGX enclaves within a guest TD is not supported.

1) TDREPORT 1 2) EVERIFYTDREPORT2
(TDCALL Leaf) TDREPORT (Instruction)

(MAC) ([
MAC Key % MAC Key

Trust Domain TD Quoting Enclave -

Figure 2.4: TD Attestation

TD measurement and attestation is described in Chapter 14.
2.8. Intel TDX Managed Control Structures

As designed, the Intel TDX module holds and manages a set of control structures that are not directly accessible to
software (except the Intel TDX module itself). The controls structures are encrypted with private keys and HKIDs, and
their content is only accessible in SEAM mode. Most control structures are addressable by the host VMM, which is
responsible for allocating the memory to hold them.

The Intel TDX module uses control structures to help manage TD-private memory, transitions into and out of TDX non-
root operation (TD entries and TD exits), as well as processor behavior in TDX non-root operation.

Table 2.2: TDX-Managed Control Structures Overview

Scope Name Meaning Description
Platform KOT Key Ownership Designed to control private HKID assignment. KOT is internal to
Table the Intel TDX module, intended not to be directly accessible to

any other software.

PAMT Physical Address The PAMT is designed to hold metadata of each page in a Trust
Metadata Table Domain Memory Range (TDMR). It controls assignment of
physical pages to guest TDs, etc. The PAMT is intended not to
be directly accessible to software. It resides in memory
allocated by the host VMM on TDX initialization.

February 2023 . Page 24 of 323

Introduction and Overview

Section 1:

10

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US
Scope Name Meaning Description
Guest TD TDR Trust Domain The TDR is intended to be the root control structure of a guest
Root TD. It controls the key management and build/teardown
process. The TDR is not intended to be directly accessible to
software. It resides in memory allocated by the host VMM, via
Intel TDX interface functions.
TDCS Trust Domain The TDCS is intended to control the operation of a guest TD as a

Control Structure

whole. The TDCS is not intended to be directly accessible to
software. It resides in memory allocated by the host VMM, via
Intel TDX interface functions.

SEPT Secure EPT The TDX-managed Extended Page Table (EPT) tree, used to help
securely manage address translation for the TD private pages.
The SEPT is not intended to be directly accessible to software.
SEPT pages reside in memory allocated by the host VMM via
Intel TDX interface functions.
Guest TD TDVPS Trust Domain The TDVPS helps control the operation and hold the state of a
VCPU Virtual Processor | guest TD virtual processor. It holds the TD VMCS and its
State auxiliary structures as well as other non-VMX control and state

fields. The TDVPS is not intended to be directly accessible to
software. It resides in memory allocated by the host VMM, via
Intel TDX interface functions.

Intel TDX control structures are described in Chapter 8.

2.9. Intel TDX Interface Functions

The Intel TDX module implements functions that are triggered by executing two TDX instructions:

SEAMCALL The instruction used by the host VMM to invoke host-side TDX interface functions. The desired interface
function is selected by an input operand (leaf number, in RAX). Host-side interface function names start
with TDH (Trust Domain Host).

TDCALL The instruction used by the guest TD software (in TDX non-root mode) to invoke guest-side TDX functions.
The desired interface function is selected by an input operand (leaf number, in RAX). Guest-side interface
function names start with TDG (Trust Domain Guest).

2.9.1. Host-Side (SEAMCALL Leaf) Interface Functions

Table 2.3: Host-Side (SEAMCALL Leaf) Interface Functions for Intel TDX Module Management

Interface Function Name Leaf Description

Number
TDH.SYS.CONFIG 45 Globally configure the Intel TDX module
TDH.SYS.INFO 32 Get Intel TDX module information
TDH.SYS.INIT 33 Globally initialize the Intel TDX module
TDH.SYS.KEY.CONFIG 31 Configure the Intel TDX global private key on the current

package

TDH.SYS.LP.INIT 35 Initialize the Intel TDX module per logical processor
TDH.SYS.LP.SHUTDOWN 44 Shutdown the Intel TDX module on the current LP
TDH.SYS.TDMR.INIT 36 Partially initialize a Trust Domain Memory Region (TDMR)

February 2023

Page 25 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec

Section 1: Introduction and Overview 344425-005US

Table 2.4: Host-Side (SEAMCALL Leaf) Interface Functions for TD Management

Interface Function Name Leaf Description

Number
TDH.MNG.ADDCX 1 Add a control structure page to a TD
TDH.MNG.CREATE 9 Create a guest TD and its TDR root page
TDH.MNG.INIT 21 Initialize per-TD control structures
TDH.MNG.KEY.CONFIG 8 Configure the TD private key on a single package
TDH.MNG.KEY.FREEID 20 Mark the guest TD’s HKID as free
TDH.MNG.KEY.RECLAIMID 27 Does nothing; provided for backward compatibility
TDH.MNG.RD 11 Read a TD-scope metadata field
TDH.MNG.VPFLUSHDONE 19 Check all of a guest TD’s VCPUs have been flushed by

TDH.VP.FLUSH

TDH.MNG.WR 13 Write a TD-scope metadata field

Table 2.5: VCPU-Scope Host-Side (SEAMCALL Leaf) Interface Functions

Interface Function Name Leaf Description
Number
TDH.VP.ADDCX 4 Add a control structure page to a TD VCPU
TDH.VP.CREATE 10 Create a guest TD VCPU and its TDVPR root page
TDH.VP.ENTER 0 Enter TDX non-root operation
TDH.VP.FLUSH 18 Flush the address translation caches and cached TD VMCS
associated with a TD VCPU
TDH.VP.INIT 22 Initialize the per-VCPU control structures
TDH.VP.RD 26 Read a VCPU-scope metadata field
TDH.VP.WR 43 Write a VCPU-scope metadata field

Table 2.6: Host-Side (SEAMCALL Leaf) Interface Functions for Physical Memory Management

Interface Function Name Leaf Description
Number
TDH.PHYMEM.CACHE.WB 40 Write back the contents of the cache on a package
TDH.PHYMEM.PAGE.RDMD 24 Read the metadata of a page in a TDMR
TDH.PHYMEM.PAGE.RECLAIM 28 Reclaim a physical memory page owned by a TD (i.e., TD
private page, Secure EPT page or a control structure page)
TDH.PHYMEM.PAGE.WBINVD 41 Write back and invalidate all cache lines associated with the

specified memory page and HKID

Table 2.7: Host-Side (SEAMCALL Leaf) Interface Functions for TD Private Memory Management

Interface Function Name Leaf Description

Number
TDH.MEM.PAGE.ADD 2 Add a 4KB private page to a TD during TD build time
TDH.MEM.PAGE.AUG 6 Dynamically add a 4KB private page to an initialized TD

February 2023

Page 26 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec

Section 1: Introduction and Overview

344425-005US

Interface Function Name Leaf Description
Number
TDH.MEM.PAGE.DEMOTE 15 Split a 2MB or a 1GB private TD page mapping into 512 4KB
or 2MB page mappings respectively
TDH.MEM.PAGE.PROMOTE 23 Merge 512 consecutive 4KB or 2MB private TD page
mappings into one 2MB or 1GB page mapping respectively
TDH.MEM.PAGE.RELOCATE 5 Relocate a 4KB mapped page from its HPA to another
TDH.MEM.PAGE.REMOVE 29 Remove a private page from a guest TD
TDH.MEM.RANGE.BLOCK 7 Block a TD private GPA range
TDH.MEM.RANGE.UNBLOCK 39 Remove the blocking of a TD private GPA range
TDH.MEM.RD 12 Read from private memory of a debuggable guest TD
TDH.MEM.SEPT.ADD 3 Add and map a 4KB Secure EPT page toa TD
TDH.MEM.SEPT.RD 25 Read a Secure EPT entry
TDH.MEM.SEPT.REMOVE 30 Remove a Secure EPT page from a TD
TDH.MEM.TRACK 38 Increment the TD’s TLB tracking counter
TDH.MEM.WR 14 Write to private memory of a debuggable guest TD

Table 2.8: Host-Side (SEAMCALL Leaf) Interface Functions for TD Measurement and Attestation

Interface Function Name Leaf Description

Number
TDH.MR.EXTEND 16 Extend the guest TD measurement register during TD build
TDH.MR.FINALIZE 17 Finalize the guest TD measurement register

2.9.2. Guest-Side (TDCALL Leaf) Interface Functions

Table 2.9: Guest-Side (TDCALL Leaf) Interface Functions

Interface Function Name Leaf Description

Number
TDG.MEM.PAGE.ACCEPT 6 Accept a pending private page into the TD
TDG.MR.REPORT 4 Creates a cryptographic report of the TD
TDG.MR.RTMR.EXTEND 2 Extend a TD run-time measurement register.
TDG.VP.CPUIDVE.SET 5 Control delivery of #VE on CPUID instruction execution
TDG.VP.INFO 1 Get TD execution environment information
TDG.VM.RD 7 Read a TD-scope metadata field
TDG.VM.WR 8 Write a TD-scope metadata field
TDG.VP.VEINFO.GET 3 Get Virtualization Exception Information for the recent #VE

exception

TDG.VP.VMCALL 0 Call a host VM service

Intel TDX interface function details are described in Chapter 24.

February 2023

Page 27 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec

Section 1: Introduction and Overview

344425-005US

3. Software Use Cases

This chapter summarizes the software use cases (also known as software flows) used with the Intel TDX module.

3.1.

3.1.1.

Intel TDX Module Lifecycle

Intel TDX Module Platform-Scope Initialization

5 This sequence is intended to be used by the host VMM to initialize the Intel TDX module at the platform scope.

Table 3.1: Typical Intel TDX Module Platform-Scope Initialization Sequence

Phase Intel TDX Function Scope Execute On Description
Boot 1| N/A Platform | Each core BIOS configures Convertible Memory Regions
(CMRs); MCHECK checks them and securely
stores the information.
Intel TDX 2 | N/A Platform | Any one LP 0S/VMM launches the SEAMLDR ACM, which
Module loads the Intel TDX module.
Loading
Intel TDX 3 | TDH.SYS.INIT Platform | Any one LP Perform global initialization of the Intel TDX
Module module.
Initialization
4 | TDH.SYS.LP.INIT LP Each LP Perform LP-scope, core-scope and package-scope
initialization, checking and configuration of the
platform and the Intel TDX module.
Enumeration 5 | TDH.SYS.INFO Platform | Any LP Retrieve Intel TDX module information and
and convertible memory (CMR) information.
Configuration
B 6 | TDH.SYS.CONFIG Platform | Any one LP Configure the Intel TDX module with TDMR and
PAMT setup.
7 | N/A Package | Each Package | If any MODIFIED cache lines may exist for the
PAMT ranges, flush them to memory using, e.g.,
WBINVD.
8 | TDH.SYS.KEY.CONFIG | Package | Each Package | Configure the Intel TDX global private key used

for encrypting PAMT and TDR on the hardware
(other TD-scope control structures are encrypted
with their respective TD’s ephemeral private
keys).

At this point any Intel TDX

function may be executed on any LP.

Memory
Initialization

9 | TDH.SYS.TDMR.INIT
(multiple)

Platform

One or more
LPs

Called multiple times to gradually initialize the
PAMT structure for each TDMR.

Once each 1GB block of TDMR has been initialized by TDH.SYS.TDMR.INIT, it can be used to hold TD-

private pages.

3.1.2.

Intel TDX Module Shutdown and Update

This sequence is intended to be used by the host VMM to gracefully shut down the Intel TDX module and then load a
10 new module. All guest TDs’ context and memory are lost.

Table 3.2: Typical Intel TDX Module Shutdown and Update Sequence

Phase

Intel TDX Function

Scope

Execute On

Description

Shutdown

TDH.SYS.LP.SHUTDOWN

LP

Each LP

Mark the current LP as being shut down and
prevent further SEAMCALLs.

February 2023

Page 28 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec Section 1: Introduction and Overview

344425-005US

Phase Intel TDX Function Scope Execute On Description
Update 2 | N/A LP Selected LP 0OS/VMM executes VMXOFF and sends INIT
signal to all other LPs.
3 | N/A LP Other LPs LP enters INIT state.
4 | N/A LP Selected LP 0OS/VMM launches the SEAMLDR ACM in UPDATE

scenario. SEAMLDR checks shutdown on all LPs
and loads a new Intel TDX module.

At this point, the initialization sequence continues in the same way as described in 3.1.1 above.

3.2. TD Build

The following sequence is intended to be used by the host VMM to build a TD.

Table 3.3: Typical TD Build Sequence

Step

Description

SEAMCALL Leaf
Functions

A | TD Creation 1

The host VMM finds/allocates a free HKID for the new TD.

and Key
Resource
Assignment

The host VMM allocates a 4K page for the TDR in TDMR. If any
MODIFIED cache lines may exist for this page, the host VMM flushes
them to memory using, e.g., CLFLUSHOPT or
TDH.PHYMEM.PAGE.WBINVD.

The host VMM creates the new TD by calling the TDH.MNG.CREATE
function (passing HPA of the TDR page). This initializes the target TDR

page.

The TD host VMM configures the MKTME hardware with the TD’s
private key by calling the TDH.MNG.KEY.CONFIG function on each
package.

At this point, the TD private memory is accessible. The VMM can use
Intel TDX interface functions to create control structures and TD private
pages as described below.

TDH.MNG.CREATE
TDH.MNG.KEY.CONFIG

B | TDCS 1
Memory
Allocation
and TD
Initialization

The host VMM allocates multiple 4KB TDCX pages for TDCS. The
number of required TDCX pages is enumerated by TDH.SYS.INFO. If any
MODIFIED cache lines may exist for these pages, the host VMM flushes
them to memory using, e.g., CLFLUSHOPT or
TDH.PHYMEM.PAGE.WBINVD.

For each TDCX page, the host VMM calls the TDH.MNG.ADDCX function
(passing HPA of TDCX) to add the page to the TD.

The host VMM builds a TD_PARAMS structure. For example, the TD
configuration parameters can be obtained from a TD manifest supplied
by the TD owner.

The host VMM calls the TDH.MNG.INIT function (passing the
TD_PARAMS structure) to initialize the TD.

TDH.MNG.ADDCX
TDH.MNG.INIT

The host VMM allocates target pages for the VCPU’s TDVPR and TDVPX
pages in TDMR in the context of a TD. The number of required TDVPX
pages is enumerated by TDH.SYS.INFO. If any MODIFIED cache lines
may exist for these pages, the host VMM flushes them to memory
using, e.g., CLFLUSHOPT or TDH.PHYMEM.PAGE.WBINVD.

TDH.VP.CREATE
TDH.VP.ADDCX
TDH.VP.INIT
TDH.VP.WR

February 2023

Page 29 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec Section 1: Introduction and Overview

344425-005US

Step Description SEAMCALL Leaf
Functions

Virtual The host VMM creates a new TD virtual CPU by calling the

Processor TDH.VP.CREATE function (passing the HPA of the new TDVPR page and

Creation and
Configuration
(Executed per
each VCPU)

its owner TDR page).

For each TDVPX page, the host VMM calls the TDH.VP.ADDCX function
(passing the HPA of the new TDVPX page and its parent TDVPR page).

The host VMM initializes the TD VCPU by calling the TDH.VP.INIT
function (passing the HPA of its TDVPR page). It also passes a single 64b
parameter that is later passed to the VBIOS in the initial value of RCX.
This parameter can be used as a pointer to a configuration structure in
shared memory.

The host VMM allocates Shared EPT for each VP.

The host VMM uses the TDH.VP.WR function to write to the TD VMCS
Shared EPTP field.

The host VMM may modify a few TD VMCS execution control fields
using TDH.VP.WR.

TD Boot
Memory
Setup

The host VMM loads the TD boot image to its memory. The boot image
contains code and data pages that typically include a virtual BIOS, OS
boot loader, configuration, etc.

The host VMM builds the TD Secure EPT by allocating physical pages
and calling the TDH.MEM.SEPT.ADD function multiple times. If any
MODIFIED cache lines may exist for these pages, the host VMM flushes
them to memory using, e.g., CLFLUSHOPT or
TDH.PHYMEM.PAGE.WBINVD.

The host VMM allocates the initial set of physical pages for the TD boot
image and maps them into host address space. If any MODIFIED cache
lines may exist for these pages, the host VMM flushes them to memory
using, e.g., CLFLUSHOPT or TDH.PHYMEM.PAGE.WBINVD.

For each TD page:

1. The host VMM specifies a TDR as a parameter and calls the
TDH.MEM.PAGE.ADD function. It copies the contents from the TD
image page into the target TD page which is encrypted with the TD
ephemeral key. TDH.MEM.PAGE.ADD also extends the TD
measurement with the page GPA.

2. The host VMM extends the TD measurement with the contents of
the new page by calling the TDH.MR.EXTEND function on each 256-
byte chunk of the new TD page.

TDH.MEM.SEPT.ADD
TDH.MEM.PAGE.ADD
TDH.MR.EXTEND

D
Measurement
Finalization

The host VMM calls the TDH.MR.FINALIZE function, which finalizes the
TD measurement.

At this point, the TD is finalized.

e |ts measurement cannot be modified anymore (except the run-time
measurement registers).

e TD VCPUs can be entered using SEAMCALL(TDH.VP.ENTER).

TDH.MR.FINALIZE

February 2023

Page 30 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US
3.3. TD Run Time

3.3.1. Private Memory Management

3.3.1.1. Dynamic Page Addition (Shared to Private Conversion)

The following sequence is intended to be used by the host VMM to dynamically add a page to a guest TD.

Intel TDX
Module

I

Request GPA Range Allocation

Guest TD

TDG.VP.VMCALL | |

I
¢ TD Exit I |
| |
TDH.MEM.SEPT.ADD(TDR, GPA, level) | |
I Build S-EPT tree as required [
e — j:l I
I I
I I
TDH.MEM.PAGE.AUG(TDR, GPA) |
I Add one or more 4KB pages as requested I
- ———————————————— |
I I
TDH.VP.ENTER | I
| Return TDVMCALL output ’ [
I VM entry Db
I I
I I
| TDG.MEM.PAGE.ACCEPT(GPA)
| For every 4KB page that was added |
I et >
I I
5 I I
Figure 3.1: Typical Dynamic Page Addition Sequence
Table 3.4: Typical Dynamic Page Addition (Shared to Private Conversion) Sequence
Phase Side | Intel TDX Function Scope | Execute | Description
On
Allocation 1|TD TDG.VP.VMCALL TD Any LP Optional software protocol: Request
Request GPA range allocation.
Page 2 | VMM | TDH.MEM.SEPT.ADD TD Any LP If required, update the Secure EPT.
Addition
3 | VMM | TDH.MEM.PAGE.AUG TD Any LP Add one or more new 4KB or 2MB
(multiple) private pages.
At this point, the new page is pending acceptance by the guest TD and cannot be accessed by it yet.
4 | VMM | TDH.VP.ENTER TD Any LP Optional software protocol: Return
TDG.VP.VMCALL result.
Page 5| TD TDG.MEM.PAGE.ACCEPT TD Any LP | Accept the new pending page(s).
Acceptance (multiple) Content of each page is zeroed out.
At this point, the new page can be accessed by the guest TD.
10 3.3.1.2. Dynamic Page Removal (Private to Shared Conversion)

The following sequence is intended to be used by the host VMM to dynamically remove a page from a guest TD.

February 2023

Page 31 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

Intel TDX
Module

|
TDG.VP.VMCALL |_|
Release GPA Range
[]4—7TD Exit (TDVMCALL)

TDH.VP.ENTER
Return TDG.VP.VMCALL output
! VM Entry |
TLB Tracking Seq uence) |
| | TDH.MEM.RANGE.BLOCK(TDR, GPA, level) |
For every page to be removed
I
I

Guest TD

J_< __________________

VM Exit (external interrupt)
147TD Exit (external interrupt)ﬁ
[<
—TDH.VP.ENTER—E‘
| VM Entry T

| |
}
TDH.MEM.PAGE.REMOVE(TDR, GPA, level) |
I For every page to be removed
1l =
I
I
TDH.PHYMEM.PAGE.WBINVD(HPA, HKID)
I For every page, beforeitis re-allocated to any s/w
|
Figure 3.2: Typical Dynamic Page Removal Sequence
Table 3.5: Typical Dynamic Page Removal (Private to Shared Conversion) Sequence
Phase Side Intel TDX Function or CPU Scope Execute | Description
Instruction On
Ballooning 1 | TD TDG.VP.VMCALL TD Any LP Optional software protocol: Release
Notification GPA range.
2 VMM | TDH.VP.ENTER TD Any LP Optional software protocol: Return
TDG.VP.VMCALL result.
TLB 3 | VMM | TDH.MEM.RANGE.BLOCK TD Any LP Block private pages from further address
Tracking (multiple) translation.
Sequence
4 | VMM | TDH.MEM.TRACK TD Any one | Increment the TD’s TLB epoch.
LP
5 VMM | N/A TD Multiple | Send an IPI, causing TD exit on any
LPs remote LP associated with a VCPU.
Subsequent TDH.VP.ENTER will flush
TLB.
Page 6 VMM | TDH.MEM.PAGE.REMOVE TD Any LP Clear Secure EPT entry, and mark the
Removal (multiple) physical page as free.

February 2023 . Page 32 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec

Section 1: Introduction and Overview

344425-005US

Phase Side Intel TDX Function or CPU Scope Execute | Description
Instruction On
Cache Before re-allocating any of the removed pages to any use, the host VMM should ensure none of the cache
Flushing & lines of the removed pages are in the MODIFIED state to avoid corruption due to cache line aliasing. This is
Content Init | done using one of the following methods:
7a | VMM | TDH.PHYMEM.PAGE.WBINVD TD Any one | Flush the cache lines of the removed
(multiple) LP page(s).
7b | VMM | WBNOINVD Platform | One LP Globally write back all caches.
per
package?
7c | VMM | WBINVD Platform | One LP Globally write back and invalidate all
per caches.
package?
8 | VMM | MOVDIR64B Page Any LP Initialize the physical page content for
use with a new shared HKID.
3.3.1.3. Page Promotion (Mapping Merge)

Page size promotion is intended to be used by the host VMM to merge 512 pages mapped as 4KB or 2MB into a single
page mapped as 2MB or 1GB, respectively. It is detailed in 11.11.

Intel TDX
Module

Guest TD

TLB Tracking Sequence (not detailed here))

TDH.MEM.PAGE.PROMOTE(TDR, GPA, level)
J_< __________________

TDH.PHYMEM.PAGE.WBINVD(HPA, HKID)

For the removed S-EPT page, before itis

re-allocated to any s/w

Figure 3.3: Typical Page Promotion Sequence

2 Some CPUs may require running WBNOINVD per core.

3 Some CPUs may require running WBINVD per core.

February 2023

Page 33 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec

Section 1: Introduction and Overview

344425-005US

Table 3.6: Typical Page Promotion (Mapping Merge) Sequence

Phase Intel TDX Function or CPU Scope Execute On Description
Instruction
TLB TDH.MEM.RANGE.BLOCK TD Any LP Block the GPA range to be merged from
Tracking further address translation.
Sequence
TDH.MEM.TRACK TD Any one LP Increment the TD’s TLB epoch.
N/A TD Multiple LPs Send an IPI, causing TD exit on any remote
LP associated with a VCPU. Subsequent
TDH.VP.ENTER will flush TLB.
Promotion TDH.MEM.PAGE.PROMOTE TD Any LP Merge small pages in the GPA range into a
large page.
Cache TDH.PHYMEM.PAGE.WBINVD | TD Any LP Flush the removed Secure EPT page’s cache
Flushing & lines.
Content
Init MOVDIR64B Page Any LP Initialize the physical page content for use
with a new shared HKID.
3.3.1.4. Page Demotion (Mapping Split)

Page size demotion is intended to be used by the host VMM to split a page mapped as 1GB or 2MB into 512 pages mapped
5 as 2MB or 4KB, respectively. It is detailed in 11.12.

Intel TDX
Module

Guest TD

TLB Tracking Sequence (not detailed here))

TDH.MEM.PAGE.DEMOTE(

TDR, GPA, level, new S-EPT page)

Figure 3.4: Typical Page Demotion Sequence

Table 3.7: Typical Page Demotion (Mapping Split) Sequence

Phase Intel TDX Function Scope Execute On Description
TLB TDH.MEM.RANGE.BLOCK TD Any LP Block private large page from further
Tracking address translation.
Sequence
TDH.MEM.TRACK TD Any one LP Increment the TD’s TLB epoch.
N/A TD Multiple LPs Send an IPI, causing TD exit on any
remote LP associated with a VCPU.
Subsequent TDH.VP.ENTER will flush
TLB.
Demotion 4 | TDH.MEM.PAGE.DEMOTE TD Any LP Split the large page into multiple small
pages.

10

February 2023

Page 34 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec

Section 1: Introduction and Overview

344425-005US

3.3.1.5.

GPA Range Unblock

GPA range unblock is intended to be used when a range has been blocked, for example, for page removal, but the host
VMM decides to cancel the operation.

Intel TDX
Module

Guest TD

TLB Tracking Sequence (not detailed here))

|JT<_

TDH.MEM.RANGE.UNBLOCK(TDR, GPA, Ievel)—tlj

Figure 3.5: Typical GPA Range Unblock Sequence

Table 3.8: Typical GPA Range Unblock Sequence

Phase Intel TDX Function Scope Execute On Description
TLB TDH.MEM.RANGE.BLOCK TD Any LP Block private GPA range from further address
Tracking (multiple) translation.
Sequence
TDH.MEM.TRACK TD Any one LP Increment the TD’s TLB epoch.
N/A TD Multiple LPs Send an IPI, causing TD exit on any remote LP
associated with a VCPU. Subsequent
TDH.VP.ENTER will flush TLB.
Unblocking TDH.MEM.RANGE.UNBLOCK | TD Any LP Remove the private GPA range blocking.
3.3.2. Guest TD Execution
3.3.2.1. TD VCPU First-Time Invocation
Table 3.9: Typical TD VCPU First-Time Invocation Sequence
Phase Side | Intel TDX Scope Execute | Description
Function On

Entering TD 1| VMM | N/A LP LP x Save VMM LP state not preserved across TD Entry
VCPU (First to TD exit.
Time)

2 | VMM | TDH.VP.ENTER VCPU/LP | LP x Restore initial LP state, as set by TDH.VP.INIT, from

TDVPS and enter TDX non-root mode.

TD VCPU TD software (VBIOS) starts execution in 32-bit protected mode with no paging.
Initial
Execution 31D N/A VCPU/LP | LP x TD software parses initial information in GPR,

builds page tables and switches to 64-bit mode.

TD software (VBIOS) now executes in 64-bit mode.

Enumeration

4

TD

TDG.VP.INFO

VCPU/LP

LP x

TD software retrieves basic TD and execution
environment information.

February 2023

Page 35 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec

Section 1: Introduction and Overview

344425-005US

Phase Side | Intel TDX Scope Execute | Description
Function On
5| TD TDG.MR.REPORT | VCPU/LP | LP x TD software retrieves additional TD information.
TD continues execution in TDX non-root mode.
3.3.2.2, TD VCPU Entry, Exit on TDG.VP.VMCALL and Re-Entry
Table 3.10: Typical TD Entry, Exit on TDG.VP.VMCALL and Re-Entry Sequence
Phase Side | Intel TDX Scope Execute | Description
Function On
TD Entry 1| VMM | N/A LP LP x Save VMM LP state not preserved across TD Entry
to TD exit.
2 | VMM | TDH.VP.ENTER VCPU/LP | LP x Restore LP state from TDVPS and enter TDX non-
root mode.
TD executes in TDX non-root mode.
Software 3| TD TDG.VP.VMCALL | VCPU/LP | LP x Exit TDX non-root mode, save LP state to TDVPS,
Protocol over and set synthetic state (except most GPRs and all
TDG.VP.VMCALL XMMs).
4 | VMM | N/A LP LP x Optionally: Restore VMM LP state saved before
TDH.VP.ENTER.
5| VMM | N/A LP LP x Perform TDG.VP.VMCALL function, as determined
by the TD-VMM software contract (out of the
scope for this document).
6 | VMM | N/A LP LP x Save VMM LP state not preserved across TD Entry
to TD exit.
7 | VMM | TDH.VP.ENTER VCPU/LP | LP x Restore LP state from TDVPS (except most GPRs
and all XMMs), and enter TDX non-root mode.
8| TD N/A VCPU/LP | LP x Parse TDG.VP.VMCALL output operands as
determined by TD — VMM software contract.

TD Execution

TD continues execution in TDX non-root mode.

5 3.3.2.3. TD VCPU Entry, Exit on Asynchronous Event and Re-Entry
Table 3.11: Typical TD Entry, Exit on Asynchronous Event and Re-Entry Sequence
Phase Side Intel TDX Scope Execute | Description
Function On
TD Entry 1| VMM | N/A LP LP x Save LP state not preserved across TD Entry to TD exit.
2 | VMM | TDH.VP.ENTER | VCPU/LP | LP x Restore LP state from TDVPS, and enter TDX non-root
mode.
TD executes in TDX non-root mode.
February 2023 Page 36 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec

Section 1: Introduction and Overview

344425-005US

Phase Side | Intel TDX Scope Execute | Description
Function On
Async. TD 3|TD N/A VCPU/LP | LP x Asynchronous event (interrupt, exception, EPT
Exit and Re- violation, etc.) causes TD exit. Save LP state to TDVPS,
Entry and set synthetic state.
4 | VMM | N/A LP LP x Restore any required LP state saved by the VMM
before TDH.VP.ENTER.
5| VMM | N/A LP LP x Handle the asynchronous event.
6 | VMM | N/A LP LP x Save VMM LP state not preserved across TD Entry to
TD exit.
7 | VMM | TDH.VP.ENTER | VCPU/LP | LP x Restore LP state from TDVPS and enter TDX non-root
mode.
D TD continues execution in TDX non-root mode.
Execution
3.3.2.4. Guest-Side Functions

fTD G.MR.REPORT:
Async. TD Exit (EPT Violation)

Intel TDX
Module
T

Guest TD

’J-riTDG,M R.REPORT

T VM entry

TDH.VP.ENTER—},J-‘

T VM entry
I

Figure 3.6: Typical Guest-Side Function Sequences

g

5
Table 3.12: Typical Guest-Side Functions Sequences
Case Side Intel TDX Scope Execute | Description
Function On

Guest-Side | TD executes in TDX non-root mode
Function
Returns to 1|TD TDG.MR.REPORT | VCPU/LP | LPx The guest TD VM exits to the Intel TDX module, which
Guest TD handles the guest-side function and re-enters the TD.

TD continues execution in TDX non-root mode
Guest-Side 2| TD TDG.MR.REPORT | VCPU/LP | LP x The guest TD exits to the Intel TDX module, which
Function handles the guest-side function, but an asynchronous
Causes event (e.g., EPT violation, etc.) causes TD exit.
Async. TD
Exit 3 | VMM | N/A LP LP x Optional: The host VMM restores the VMM LP state

saved before TDH.VP.ENTER.
4 | VMM | N/A LP LP x The host VMM handles the asynchronous event.
February 2023 Page 37 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec

Section 1: Introduction and Overview

344425-005US

Case Side | Intel TDX Scope Execute | Description
Function On

5| VMM | N/A LP LP x The host VMM saves any VMM LP state not preserved
across TD Entry to TD exit.

6 | VMM | TDH.VP.ENTER VCPU/LP | LP x The Intel TDX module restores LP state from TDVPS
and enters TDX non-root mode.

TD continues execution in TDX non-root mode.

3.3.2.5. TD VCPU Rescheduling (Migration to Another LP)

The Intel TDX module is designed to allow a TD VCPU to be associated with at most one LP at any time. The host VMM
must explicitly break this association in order to migrate the VCPU to another LP.

Table 3.13: Typical VCPU Migration to Another LP Sequence

Phase Intel TDX Scope Execute On Description
Function

Old 1 | Any VCPU-specific | VCPU Oold LP Any VCPU-specific SEAMCALL leaf (e.g., TDH.VP.INIT,
VCPUDLP SEAMCALL leaf TDH.VP.ENTER, TDH.VP.RD, etc.) creates an
Association association between the current LP and the VCPU.
Breaking 2 | TDH.VP.FLUSH VCPU Old LP Break the VCPU-LP association: flush the VCPU’s TD
Old VMCS to TDVPS memory and flush the VCPU’s TLB
VCPUDLP ASID.
Association

At this point the VCPU is not associated with any LP.
New 3 | Any VCPU-specific | VCPU New LP Create a new VCPU-LP association.
VCPU>LP SEAMCALL leaf
Association

February 2023

Page 38 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec Section 1: Introduction and Overview

344425-005US

3.4. TD Destruction

The following sequence is intended to be used by the host VMM to destroy a TD and reclaim all its resources.

Intel TDX
Guest TD
|
I
I
I IPI
VM Exit (external interrupt)
—€—— 7D Exit (external interrupt) ————)
¥ |
I I
TDH.VP.FLUSH(TDVPR) I
On all LPs associated with the TD |
< --—-——-——-———"—"—"—"—"—"—"—"———— |
< ——————— = |
I I
I I
TDH.M NG.VPFLUSHDONE(TDR)—tD |
I<: —————————————————— |
I I
I I
TDH.PHYMEM.CACHE.WB(START) I
I
<4 —————— Interrupted— — — — — — — |
I I
I I
TDH.PHYMEM.CACHE.WB(RESUM E)—j] |
G+ —-——————— Success= — — — — — — — I :
| |
Figure 3.7: Typical TD Destruction Sequence Step A: Stopping and Flushing Out
Intel TDX
Guest TD
Module
| |
I
I
-0 I
f f
loop) [[
I I
For each private page, S-EPT page and control structure page except TDR |
I
TDH.PHYMEM.PAGE.RECLAIM (Page HPA) |
1l - I
I I
I I
I I
I I
I TDH.PHYMEM.PAGE.RECLAlM(TDR)—tD |
1l - I
I I
I I
I TDH.PHYMEM.PAGE.WBINVD(TDR, HKlD)—t:] :
i i
Figure 3.8: Typical TD Destruction Sequence Step B: Resource Reclamation
February 2023 Page 39 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec Section 1: Introduction and Overview

344425-005US

Table 3.14: Typical TD Destruction Sequence

Step

Description

SEAMCALL Leaf Functions

TD Stopping
and Flushing
Out

The host VMM selects a TD to destroy. It sends a virtual
interrupt to the TD to shut down gracefully.

The host VMM broadcasts inter-processor interrupts (IPIs) and
must ensure TD exit on all logical processors.

The host VMM calls the TDH.VP.FLUSH function on all LPs
associated with a TD VCPU to flush the TLBs and cached TD VMCS
associated with a TD VCPU on those LPs.

The host VMM calls the TDH.MNG.VPFLUSHDONE function. It
checks that above step executed for all the TD’s VCPUs are
associated with an LP.

The host VMM calls the TDH.PHYMEM.CACHE.WB function on
each package to write back to memory the TD contents from all
caches.

TDH.PHYMEM.CACHE.WB is interruptible by external events. The
host VMM should restart it if it indicates it was interrupted, until
successfully completed.

At this point, no address translations or cache lines may exist for
this TD except for the TDR page.

TDH.VP.FLUSH
TDH.MNG.VPFLUSHDONE
TDH.PHYMEM.CACHE.WB

Resource
Reclamation

The host VMM calls the TDH.MNG.KEY.FREEID function. It marks
the HKID used by the TD as available for other TDs.

For each physical page in TDMR allocated to the TD (TD private
pages, Secure EPT pages, and control structures except TDR), the
host VMM calls the TDH.PHYMEM.PAGE.RECLAIM function to
mark the page as free and initializes its content using
MOVDIR64B.

The host VMM calls the TDH.PHYMEM.PAGE.RECLAIM function to
mark the TDR page as free. The function checks that all other TD
physical pages have been reclaimed before.

Before allocating the reclaimed TDR physical page to any use, the
host VMM calls TDH.PHYMEM.PAGE.WBINVD to flush its cache
lines and initializes its content using MOVDIR64B.

TDH.MNG.KEY.FREEID
TDH.PHYMEM.PAGE.RECLAIM
TDH.PHYMEM.PAGE.WBINVD

February 2023

Page 40 of 323

Introduction and Overview

Section 1:

10

15

20

25

30

35

40

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

4. Host VMM Programming Considerations

This chapter provides an overview from the host VMM'’s writer perspective. For the purpose of this discussion, “host
VMM” includes the VMM/Hypervisor, OS and any other applicable software.

4.1. TDX Module Lifecycle

4.1.1. TDMR Configuration and Initialization

TDMR initialization may be a long operation, done by multiple calls to TDH.SYS.TDMR.INIT. The TDX module allows TD
private memory to be allocated from TDMR regions that have already been initialized, while TDMR initialization
continues. This is intended to enable quick startup to TDs after TDX module initialization.

4.2, Memory Encryption Key Management

The key configuration interface functions TDH.SYS.KEY.CONFIG and TDH.MNG.KEY.CONFIG use the PCONFIG instruction
and may fail with a TDX_OPERAND_BUSY or a TDX_KEY_GENERATION_FAILED status due to other activity on the
platform. The host VMM should retry the operation in this case.

4.3. TD Lifecycle

4.3.1. TD Configuration

A guest TD is configured by a set of parameters provided in the TD_PARAMS input structure to TDH.MNG.INIT. CPU
features available to the TD are controlled by the ATTRIBUTES and XFAM fields. In addition, some features are controlled
by configuring their applicable CPUID fields in the CPUID_CONFIG structure.

CPUID fields available for configuration are enumerated by TDH.SYS.INFO. Newer TDX module versions may add
configurable fields that are currently not configurable. For forward compatibility, the host VMM should use the following
policy: If a CPUID bit is enumerated as configurable, and the VMM was not designed to configure that bit, the VMM
should set the configuration for that bit to 1.

4.4. Memory Management

4.4.1. Memory Integrity Protection

Before assigning a memory page as TD private memory or a TDX control structure, the host VMM should ensure that
no cache lines associated with that page are in a modified state. This can be done using TDH.PHYMEM.PAGE.WBINVD
or, if the page has not been used as a TD private page, with CLFLUSHOPT. Failing to do so may result in a memory
corruption and an integrity error when the memory is later read.

If a memory page has been assigned as TD private memory or a TDX control structure, the host VMM must prevent
any software (besides the assigned TD) from writing to that memory page. E.g., the host VMM must not map that
memory page in a paging structure as writable. Failing to do so may result in a memory corruption and an integrity
error when the memory is later read.

e The host VMM should prevent and software from reading memory that may have an integrity error. If that memory
is to be used for other purposes than TD private memory or a TDX control structure, the host VMM should initialize
it using MOVDIR64B. Failing to do so may lead to an MCE.

If a memory page had been assigned as TD private memory or a TDX control structure and then reclaimed, the host
VMM should ensure cache flush and initialization as described in 10.5.1.

For further details, see Ch. 17.

4.4.2. Shared EPT

e The host VMM should configure the Shared EPTP for each TD VCPU, using TDH.VP.WR.
e To invalidate TLB entries for the TD’s Shared EPT, the host VMM must use INVEPT specifying the TD’s EPTP, not its
Shared EPTP. The host VMM can obtain the value of EPTP from the TD VMCS using TDH.VP.RD. See 12.2.2 for details.

February 2023 . Page 41 of 323

Introduction and Overview

Section 1:

10

15

20

25

30

35

40

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

4.5, Off-TD Debug

When a TD is debuggable (ATTRIBUTES.DEBUG is 1), many of the TD state and control metadata is writable by a debugger
running in the host VMM context. It is the responsibility of the debugger to ensure that written values are valid. In some
cases, e.g., MSR values which are architecturally invalid, may later cause a fatal error when the TDX module attempt to
load those values to the CPU.

4.6. Memory Integrity Protection and Machine Check Handling

e TDX memory protection is based on integrity violation detection during read by the TD. There is no write protection
for TD private memory. The host VMM should never write to TD private memory — this will lead to an integrity error
when the TD attempts to read this memory.

e The host VMM should implement the recommended methods configuring MCA and for handling MCE in a TD context,
as described in 17.4 and 17.5.1.

e The host VMM should not attempt to read memory that has been poisoned (e.g., due to integrity error). This will
cause an MCE in the VMM context.

4.7. Metadata Access

TDX provides the host VMM with the ability to read and write multiple metadata fields. These are used to monitor and
control guest TDs. Metadata fields are provided for a TD as a whole and for each TD VCPUs. Host VMM access to TD
metadata fields depends on whether the TD is debuggable or not, as configured by its ATTRIBUTES’ DEBUG bit. For
details, see the description of TDH.MNG.RD/WR and TDH.VP.RD/WR in 24.3. For a list of metadata fields accessible by
host VMM, see 23.1.

4.8. Concurrency

TDX host-side interface functions implement concurrency enforcement on access to resources that may be concurrently
accessed by multiple software threads running on multiple LPs. TDX interface functions never wait on a resource; if the
resource is busy, they immediately return with a TDX_OPERAND_BUSY indication. In such case, the host VMM is expected
to retry to operation. Mechanisms such as backoff or other are up to the host VMM software.

For details, see 19.1 and the description of each interface function in 24.3.
4.9. TDX Interface Functions Completion Status

All TDX interface functions return a completion status in the same format. In many cases, guest TD software may not
need to completely parse the status; instead, it may deduce the information at a less detailed level. This has the
advantage of being more independent of possible future change of details.

Specifically:

e The ERROR bit (63) is a general indication of an error.

e The NON_RECOVERABLE bit (62) is a general indication of whether the software should retry the operation in case
of error.

e RESERVED bits must be ignored.

For details, see 19.3.2, the list of status codes in 21.1 and the description of each interface function in 24.3.
4.10. Latency of TDX Module Interface Functions

Some host-side interface functions may have longer than normal latency. See 19.5 for details.

4.11. Forward Compatibility

4.11.1. Reserved Bits

Many TDX data structure include reserved bits. To allow for forward compatibility with future versions of TDX, guest TD
software should treat reserved bits as follows:

February 2023 . Page 42 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec Section 1: Introduction and Overview

344425-005US

e When provided as input to TDX, guest TD software should always set reserved bits to 0.
e When reading as output of TDX, guest TD software should always ignore reserved bits.

4.11.2. CPUID Configuration

See the discussion in 4.3.1 above.

February 2023

Page 43 of 323

Introduction and Overview

Section 1:

10

15

20

25

30

35

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

5. Guest TD Programming Considerations

This chapter provides an overview from the guest TD’s writer perspective. For the purpose of this discussion, “guest TD”
includes Virtual BIOS, TD OS and any other software running in the guest TD context.

5.1. Run-Time Environment Enumeration

Software can detect whether it is running as a guest TD, and get some basic TDX-specific information, using the algorithm
described in 13.2. It can then use normal CPUID and RDMSR based operations to enumerate the capabilities provided by
its virtual environment. It may also use TDG.MR.REPORT to read additional information; see 14.2 for details.

5.2. Memory Management

5.2.1. Private vs. Shared GPA

Guest TD software should be aware of GPAW, which indicates the position of SHARED bit in the GPA. This is enumerated
by TDG.VP.INFO.

5.2.2. Dynamic Private Memory Allocation and Removal

Guest TD software is involved in dynamic memory management. A memory page allocated to a guest TD by the host
VMM is held in a PENDING state until it is explicitly accepted by the guest TD, using TDG.MEM.PAGE.ACCEPT. Contrary
to that, TDX allows the host VMM may remove TD private page at any time.

To help ensure private memory security, a guest TD must keep track of its private memory (whether added during TD
build or added and accepted during TD run time). A TD must never accept a TD private memory page that it known it
already owns.

To support the above, private page removal by the host VMM should only be done after coordinating with the guest TD.
This can be done using a software protocol over TDG.VP.VMCALL; TDX is not directly involved.

For details, see 11.10.

5.2.3. Page Mapping Size Awareness

When accepting a dynamically allocated page, the guest TD specifies the page mapping size (4KB or 2MB). If a mapping
size of 2MB is requested, but the requested GPA is mapped as 4KB, an error code is returned. For details, see 11.10.

5.2.4. Shared Memory

Shared memory is managed by the host VMM; TDX is not involved.

e Guest TD software should not trust anything in shared memory.
e Executable code and paging structures can’t be place in shared memory. Trying to do so will result in a #PF when
attempting to use.

5.3. CPU Virtualization

5.3.1. Initial State

The initial state of a TD virtual CPU is different from the architectural reset state. For details, see 13.1
5.3.2. CPU Modes, Allowed Instructions and Allowed Operations
There are some restrictions on the CPU modes allowed when running in a TD. For details, see 13.3.

There are restrictions on execution of some instructions when running in a TD. For details, see 13.4.

There are other restrictions, e.g., on task switching when running in a TD. For details, see Ch. 13.

February 2023 . Page 44 of 323

Introduction and Overview

Section 1:

10

15

20

25

30

35

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

5.3.3. #VE Handler

A guest TD should implement a #VE handler, to handle the TDX extended #VE cases. Handling of #VE may include
emulating instruction functionality, communicating with the host VMM to retrieve (untrusted) information etc.

The #VE handler should call TDG.VP.VEINFO.GET to retrieve the VE_INFO structure as soon as possible. It should not use
any operation that may result in a #VE before that. VE_INFO is held by TDX until retrieved, and an additional #VE will
result in a #DF.

For details, see 13.10.

5.3.4. Interrupts

5.3.4.1. APIC Access

A guest TD may only use x2APIC mode (MSR based) access to its virtual APIC. Only a subset of the APIC registers is
available to the TD. Multiple APIC accesses and other operations (such as SENDUIPI) result in a #VE. For details, see 13.9

5.3.4.2. Cross-VCPU IPI

TDX does not provide a mechanism for a TD to perform cross-VCPU IPl. A TD may request the host VMM to do this. See
13.9.6.

5.3.5. Time Stamp Counter (TSC)

TDX provides a trusted virtual TSC to the guest TDs. TSC value is monotonously incrementing, starting from 0 on TD
initialization by the host VMM. The deviation between virtual TSC values read by each VCPU is small.

A guest TD should disable mechanisms that are used in non-trusted environment, which attempt to synchronize TSC
between VCPUs, and should not revert to using untrusted time mechanisms.

5.4. Hypercalls

To directly call the host VMM, TDX provides TDG.VP.VMCALL. This interface function serves as a two-way channel; details
are up to the software protocol. Intel standardizes TDX hypercall with the [TDX GHCI Spec].

5.5, Metadata Access

TDX provides the guest TD with the ability to read and write a small number of metadata fields, e.g., to control its own
operation. For details, see the description of TDG.VM.RD and TDG.VM.WR in 24.3. For a list of metadata fields accessible
by guest TDs, see 23.1.

5.6. Side Channel Attack Mitigation

5.6.1. General

Guest TD software should implement side channel attack mitigation as any software. For further details, see the [Intel
Software Security Guidance Website].

5.6.2. Zero-Step Attack Notification

TDX implements a mitigation to help prevent zero-step and single-step attacks. A guest TD is expected to follow proper
dynamic memory management behavior (as described above). The TD may register to get notified if a zero-step attack
is suspected. This is described in 18.3.3.

5.7. Concurrency

TDX guest-side interface functions implement concurrency enforcement on access to resources that may be shared
between a TD VCPU and other VCPUs or other entities. TDX interface functions never wait on a resource; if the resource
is busy, they immediately return with a TDX_OPERAND_BUSY indication. In such case, the guest TD is expected to retry
to operation. Mechanisms such as backoff or other are up to the TD software.

February 2023 . Page 45 of 323

Introduction and Overview

Section 1:

https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/overview.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/overview.html

10

15

Intel® TDX Module Spec Section 1: Introduction and Overview 344425-005US

For details, see 19.1 and the description of each interface function in 24.3.
5.8. TDX Interface Functions Completion Status

All TDX interface functions return a completion status in the same format. In many cases, guest TD software may not
need to completely parse the status; instead, it may deduce the information at a less detailed level. This has the
advantage of being more independent of possible future change of details.

Specifically:

e The ERROR bit (63) is a general indication of an error.

e The NON_RECOVERABLE bit (62) is a general indication of whether the software should retry the operation in case
of error.

e RESERVED bits must be ignored.

For details, see 19.3.2, the list of status codes in 21.1 and the description of each interface function in 24.3.

5.9. Forward Compatibility

5.9.1. Reserved Bits

Many TDX data structure include reserved bits. To allow for forward compatibility with future versions of TDX, guest TD
software should treat reserved bits as follows:

e When provided as input to TDX, guest TD software should always set reserved bits to 0.
e When reading as output of TDX, guest TD software should always ignore reserved bits.

February 2023 . Page 46 of 323

Introduction and Overview

Section 1:

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

SECTION 2:

INTEL TDX MODULE ARCHITECTURE SPECIFICATION

February 2023 . Page 47 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec

Section 2: Intel TDX Module Architecture Specification

344425-005US

6. Intel TDX Module Lifecycle: Enumeration, Initialization and Shutdown

This chapter discusses the design of the Intel TDX module life cycle: how its capabilities are enumerated by the host
VMM, how it is initialized, how it is configured and how it is shut down.

6.1.

6.1.1.

Overview

Initialization and Configuration Flow

The Intel TDX module initialization and configuration typically happens as described below:

Table 6.1: Typical Intel TDX Module Enumeration, Initialization and Configuration Sequence

Step Intel TDX Function Description

1 | CMR Configuration N/A BIOS configures convertible memory regions (CMRs);

& Checking MCHECK checks them and securely stores the information.

2 | Intel TDX Module N/A 0S/VMM launches the SEAMLDR ACM which loads the Intel

Loading TDX module.

3 | Global Initialization | TDH.SYS.INIT The host VMM calls TDH.SYS.INIT once. This function
performs global initialization of the Intel TDX module.

4 | LP Initialization TDH.SYS.LP.INIT The host VMM calls TDH.SYS.LP.INIT once on each logical

(each LP) processor. This function performs LP-scope, core-scope
and package-scope initialization, checking and
configuration of the platform and the Intel TDX module.

5 | Enumeration TDH.SYS.INFO The host VMM calls TDH.SYS.INFO to retrieve Intel TDX
module information and convertible memory (CMR)
information.

6 | Global Configuration | TDH.SYS.CONFIG The host VMM calls TDH.SYS.CONFIG once, providing a set
of configuration parameters including a table of TDMRs.
This function performs global configuration of the Intel TDX
module.

7 | Cache Flush N/A The host VMM flushes any MODIFIED cache lines that may
exist for the PAMT ranges, using, e.g., WBINVD on each
package.

8 | Key Configuration TDH.SYS.KEY.CONFIG | The host VMM calls TDH.SYS.KEY.CONFIG once on each

(each package) package. This function configures the Intel TDX global
private key on the hardware.

9 | Intel TDX module is Any Once TDH.SYS.KEY.CONFIG has executed successfully on all

available packages, any Intel TDX function may be executed on any
LP.
10 | TDMR and PAMT TDH.SYS.TDMR.INIT | The host VMM calls TDH.SYS.TDMR.INIT in a loop, gradually
Initialization (multiple) initializing the PAMT structure for each TDMR.
11 | Memory is available | Any Once each 1GB block of TDMR has been initialized by
TDH.SYS.TDMR.INIT, it can be used to hold TD-private
pages.

Section 2: Intel TDX Module Architecture Specification

6.1.2. Intel TDX Module Lifecycle State Machine

10 The Intel TDX lifecycle state machine helps track the module’s life cycle through the initialization sequence and shutdown.

February 2023 Page 48 of 323

Intel® TDX Module Spec

Section 2: Intel TDX Module Architecture Specification

344425-005US

TDH.SYS.LP.
SHUTDOWN

Intel TDX module is
pending global
initalization

TDH.SYS.LP.INIT

A

TDH.SYS.KEY.CONFIG
[Non-last package]

SYSINIT_DONE

Intel TDX module
global initialization

TDH.SYS.INIT— done

TDH.SYS.INFO
[LPinitialized]
(\
SYSCONFIG_DONE
Intel TDX module
TDH.SYS.CONFIG global configuration
— [All LPs > done
initialized]
J \. /

TDH.SYS.LP.SHUTDOWN

TDH.SYS.LP.SHUTDOWN

Intel TDX module
has been shut down. |

TDH.SYS.KEY.CONFIG
[Last package]
TDH.SYS.LP.SHUTDOWN

Intel TDX module is
ready

< TDH.SYS.LP.SHUTDOWN L

All other
SEAMCALL
leaf functions

Figure 6.1: Intel TDX Module Lifecycle State Machine

Table 6.2: Intel TDX Module Lifecycle States

TDH.SYS.TDMR.INIT

State Name

Description

Allowed SEAMCALL Leaf Functions

SYSINIT_PENDING

TDH.SYS.INIT has not been called yet.

TDH.SYS.INIT
TDH.SYS.SHTDOWNLP

SYSINIT_DONE

TDH.SYS.INIT has completed
successfully. TDH.SYS.LP.INIT must be
called on each LP.

TDH.SYS.LP.INIT

TDH.SYS.INFO (if current LP has been
initialized)

TDH.SYS.CONFIG (if all LPs have been
initialized)

TDH.SYS.SHTDOWNLP

SYSCONFIG_DONE

TDH.SYS.CONFIG has completed
successfully. TDH.MNG.KEY.CONFIG
must be called on each package.

TDH.SYS.KEY.CONFIG
TDH.SYS.INFO
TDH.SYS.SHTDOWNLP

SYS_READY

The Intel TDX module is ready for use.

Any

SYS_SHUTDOWN

Shutdown operation has been initiated
by TDH.SYS.LP.SHUTDOWN. No new
host-side interface functions can be
called.

TDH.SYS.SHTDOWNLP (once per LP)

February 2023

Page 49 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

6.1.3. Platform Compatibility and Configuration Checking

6.1.3.1. Overview

The Intel TDX module is built assuming a certain set of core and platform features. Most platform configuration required
to support the Intel TDX module is checked by MCHECK. However, some configuration is designed to be checked by the
Intel TDX module. During the initialization process, the Intel TDX module is designed to check that the platform on which
it is running is compatible with this core and platform feature set and/or that the same set of features is provided across
the platform. Some of the checks are done per core, and some are done per package. Most of the details are part of the
Intel TDX module detailed design.

6.1.3.2. CPU Configuration

During platform boot, MCHECK verifies all logical CPUs to ensure they meet TDX’s security and certain functionality
requirements, and MCHECK passes the following CPU configuration information to the NP-SEAMLDR, P-SEAMLDR and
the TDX Module:

e Total number of logical processors in the platform.
e Total number of installed packages in the platform.
e Atable of per-package CPU family, model and stepping etc. identification, as enumerated by CPUID(1).EAX.

The above information is static and does not change after platform boot and MCHECK run.

Note: TDXdoesn’t supportadding or removing CPUs from TDX security perimeter, as checked by MCHECK. BIOS should
prevent CPUs from being hot-added or hot-removed after platform boots.

The TDX module performs additional checks of the CPU’s configuration and supported features, by reading MSRs and
CPUID information as described in the following sections.

6.1.3.3. MSR Sampling and Checks

TDH.SYS.INIT reads and checks the contents of some MSRs. In many cases, the MSR value read by TDH.SYS.INIT is also
checked for consistency (i.e., having the same values) by TDH.SYS.LP.INIT. In other cases, TDH.SYS.LP.INIT may perform
additional checks.

6.1.3.4. CPUID Sampling, Checks and Enumeration

Note: CPUID virtualization is described in 13.8.

The TDH.SYS.INIT and TDH.SYS.LP.INIT functions sample CPUID leaf and sub-leaf return values. This is intended to check
compatibility with the Intel TDX module and with any guest TD operation. If any of these checks fail, Intel TDX module
initialization is designed to fail.

The TDH.SYS.INFO function may be called by the host VMM to enumerate the directly configurable and allowable CPUID
fields, using the TDSYSINFO_STRUCT described in 22.7.1.

6.1.4. Physical Memory Configuration Overview

Configuration of the physical memory available to the Intel TDX module (TDMRs) and its associated metadata (PAMT
arrays) is done using the TDH.SYS.CONFIG function.

6.1.4.1. Intel TDX ISA Background: Convertible Memory Ranges (CMRs)

A 4KB memory page is defined as convertible if it can be used to hold an Intel TDX private memory page or any Intel TDX
control structure pages while helping guarantee Intel TDX security properties (i.e., if it can be converted from a Shared
page to a Private page).

Convertible Memory Ranges (CMRs) are defined as contiguous convertible physical address ranges, declared by BIOS.
CMRs are checked by MCHECK during platform boot to help ensure their configuration matches TDX security. All memory
within each CMR must be convertible and must be present when checked by MCHECK during platform boot. CMRs are
static and do not change after platform boot and checking by MCHECK.

Note: The above definition implies that TDX does not support hot-plugin or hot-removal of convertible memory. BIOS
should prevent hot-removal of convertible memory after platform boot.

February 2023 . Page 50 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

CMRs have the following characteristics:

e CMR configuration is "soft" — no hardware range registers are used.

e Each CMR defines a single contiguous physical address range.

e All the memory within each CMR is convertible, and it must comply with the rules checked by MCHECK.

e Each CMR has its own size. CMR size is a multiple of 4KB, and it is not required to be a power of two.

e CMRs cannot overlap with each other.

e CMRs must reside within the effective physical address range of the platform (after taking into account the most
significant PA bits stolen for Key IDs).

e CMRs are configured at platform scope (no separate configuration per package).

e The maximum number of CMRs is implementation specific. It is not explicitly enumerated; it is deduced from
Family/Model/Stepping information provided by CPUID.
o The maximum number of CMRs is 32.

e CMRs are available on systems with TDX ISA capabilities as enumerated by the IA32_MTRRCAP.SEAMRR bit.

e CMR configuration is checked by MCHECK and cannot be modified afterwards.

MCHECK stores the CMR table in a pre-defined location in SEAMRR’s SEAMCFG region so it can be read later and trusted
by the Intel TDX module.

6.1.4.2. TDMRs and PAMT Arrays Configuration

TDMRs and PAMTs are described in 10.1. This section provides an overview of their configuration and their relationships
to CMRs.

6.1.4.2.1. Background: Reserved Areas within TDMRs

As described in 10.1, the Intel TDX module physical memory management is done using PAMT Blocks — each holding the
metadata of a 1GB block of TDMR. This implies that TDMR granularity must be 1GB.

However, there is a requirement for the host VMM to be able to allocate memory at granularities smaller than 1GB. This
is especially important in systems that have a relatively small amount of memory.

To support the two requirements above, the Intel TDX module’s design allows arbitrary reserved areas within TDMRs.
Reserved areas are still covered by PAMT. However, during initialization their respective PAMT entries are marked with
a PT_RSVD page type, so pages in reserved areas are not used by the Intel TDX module for allocating privately encrypted
memory pages (but they can be used for PAMT areas, see below).

Only the non-reserved parts of a TDMR are required to be inside CMRs.

6.1.4.2.2. Background: Three PAMT Areas

As described in 10.1, a logical PAMT Block is composed of 1 PAMT_1G entry, 512 PAMT_2M entries and 5122 PAMT_4K
entries. Thus, the overall size of a PAMT Block, and as a result of the whole PAMT, is not a power of 2.

However, the host VMM may only be able to allocate memory buffers for PAMT in sizes that are a power of 2.

To enable this, buffers for PAMT_1G entries, PAMT_2M entries and PAMT_4K entries are allocated separately. As a
result, if the host VMM allocates a TDMR whose size is a power of 2, its three respective PAMT areas will also have sizes
that are a power of 2.

PAMT areas are required to be inside CMRs because PAMT is encrypted with a private HKID.

February 2023 . Page 51 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

Physical Memory Space

PAMT_1G 1
PAMT 2M 1

1GB-Aligned
Reserved

TDMR 2
CMR 3 Available

1GB-Aligned

TDMR 1 Available

Reserved

***** - 1GB-Aligned

| PAMT_1G 0 |

PAMT_2M 0
PAMT_4KO0

CMR 2

1GB-Aligned
Available

PAMT_1G 2
CMR 1 PAMT_4K 1

Reserved

TDMR O Available

CMR O [PAMT 2M2 |
| PAMT 4K2 |

Reserved

1GB-Aligned
Figure 6.2: Example of Convertible Memory Ranges (CMRs) vs. Trust Domain Memory Regions (TDMRs)

6.1.4.2.3. Configuration Rules
In addition to the rules described in 10.1, the following rules apply to TDMR configuration as related to CMRs:

e Any non-reserved 4KB page within a TDMR must be convertible —i.e., it must be within a CMR.
e Reserved areas within a TDMR need not be within a CMR.

Three PAMT areas must be configured for each TMDR — one for each physical page size controlled by PAMT:

e Area for PAMT_4K entries
e Area for PAMT_2M entries
e Area for PAMT_1G entries

PAMT areas have the following attributes:

e A PAMT area size is directly proportional to the TDMR with which it is associated. The size ratio is enumerated by
TDH.SYS.INFO.

e A PAMT area must reside in convertible memory —i.e., each PAMT area page must be a CMR page.

e PAMT areas must not overlap with TDMR non-reserved areas; however, they may reside within TDMR reserved areas
(as long as these are convertible).

e PAMT areas must not overlap with each other.

February 2023 . Page 52 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

6.2. Intel TDX Module Initialization Interface

6.2.1. Global Initialization: TDH.SYS.INIT

TDH.SYS.INIT is intended to globally initialize the Intel TDX module. It works as follows:

1. Initialize Intel TDX module global data.

2. Sample and check platform features that need to be checked for platform-wide compatibility — i.e., the Intel TDX
module supports several options, but they must be the same across platform. These are later checked on each LP.

3. Sample and check the platform configuration on the current LP. For example, TDH.SYS.INIT samples SMRR and
SMRR2, checks they are locked and do not overlap any CMR, and stores their values to be checked later on each LP.

4. Set the system state to SYSINIT_DONE.

For a detailed description of TDH.SYS.INIT, see 24.2.33.

6.2.2. LP-Scope Initialization: TDH.SYS.LP.INIT

TDH.SYS.LP.INIT is intended to perform LP-scope, core-scope and package-scope initialization of the Intel TDX module. It
can be called only after TDH.SYS.INIT completes successfully, and it can run concurrently on multiple LPs. At a high level,
TDH.SYS.LP.INIT works as follows:

1. Do aglobal EPT flush (INVEPT type 2).

2. Initialize Intel TDX module LP-scope data.

3. Check features and configuration compatibility and uniformity — once per LP, core or package, depending on the
scope of the checked feature or configuration:
3.1. Check features compatibility with the Intel TDX module.
3.2. Check configuration uniformity.

For a detailed description of TDH.SYS.LP.INIT, see 24.2.33.

6.2.3. Enumeration: TDH.SYS.INFO
Once an LP has been initialized, the host VMM can call TDH.SYS.INFO on that LP to help enumerate the Intel TDX module
capabilities and platform configuration.

e Intel TDX module capabilities are enumerated in the returned TDSYSINFO_STRUCT (see 22.7.1).
e Convertible Memory Ranges (CMRs), as previously set by BIOS and checked by MCHECK, are enumerated in the
returned CMR_INFO table (see 22.7.3).

For a detailed description of TDH.SYS.INFO, see 24.2.32.

6.2.4. Global Configuration: TDH.SYS.CONFIG
After performing global and LP-scope initialization, the host VMM can call TDH.SYS.CONFIG to globally configure the Intel
TDX module, providing the following information:

e TDMR and PAMT Table, where each entry contains a TDMR base address, size and corresponding PAMT reserved
area base address and size. The table format (TDMR_INFO) is described in 22.7.4. Refer to 10.1 for definition of
TDMREs.

e The HKID to be used by the Intel TDX module for its global private key, used for encrypting PAMT and TDRs.

For a detailed description of TDH.SYS.CONFIG, see 24.2.31.

6.2.5. Package-Scope Key Configuration: TDH.SYS.KEY.CONFIG

After performing global configuration, the host VMM calls TDH.SYS.KEY.CONFIG to perform package-scope configuration
of the Intel TDX module’s global private key on the hardware.

For a detailed description of TDH.SYS.KEY.CONFIG, see 24.2.32.

February 2023 . Page 53 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

6.3. TDMR and PAMT Initialization

TDMR and PAMT initialization procedure is designed to be performed during VMM run-time, after VMM boot. The host
VMM should be able to work normally while initialization takes place, at any time using memory that has already been
initialized. At a high level, TDMR initialization has the following characteristics:

e Initialization is performed gradually.

e Initialization function TDH.SYS.TDMR.INIT adheres to the latency rules of most Intel TDX functions —i.e., they take
no more than a predefined number of clock cycles.

e Initialization function TDH.SYS.TDMR.INIT can run concurrently on multiple LPs if each concurrent flow initializes a
different TDMR.

e After each 1GB page of a TDMR has been initialized, that 1GB page becomes available for use by any Intel TDX
function that creates a private TD page or a control structure page —e.g., TDH.MEM.PAGE.ADD, TDH.VP.ADDCX, etc.

For each TDMR, the VMM should execute a loop of TDH.SYS.TDMR.INIT providing the TDMR start address (at 1GB
granularity) as an input.

TDH.SYS.TDMR.INIT initializes an (implementation-defined) number of PAMT entries. The maximum number of PAMT
entries to be initialized is designed to avoid latency issues. Initialization uses direct writes (MOVDIR64B).

Once the PAMT for each 1GB block of TDMR has been fully initialized, TDH.SYS.TDMR.INIT marks that 1GB block as ready
for use; that means 4KB pages in this 1GB block may be converted to private pages —e.g., by TDH.MEM.PAGE.ADD. This
can be done concurrently with adding and initializing other TDMRs.

For a detailed description of TDH.SYS.TDMR.INIT, see 24.2.37.

6.4. Intel TDX Module Shutdown

6.4.1. Shutdown Initiated by the Host VMM (as Part of Module Update)

The host VMM can initiate Intel TDX module shutdown at any time by calling the TDH.SYS.LP.SHUTDOWN function. This
is intended for use as part of reloading the Intel TDX module without going through a warm or cold reset sequence.
TDH.SYS.LP.SHUTDOWN is designed to set state variables to block all SEAMCALLs on the current LP and all SEAMCALL leaf
functions except TDH.SYS.LP.SHUTDOWN on the other LPs. SEAMLDR, when instructed to reload a new Intel TDX module
image, can check that TDH.SYS.SHUTDOWN has been executed on all LPs.

6.4.2. Shutdown Initiated by a Fatal Error

By design, fatal errors during Intel TDX module execution cause an immediate SEAM shutdown. Subsequent SEAMCALLs
on any LP fail with a VMfaillnvalid indication (RFLAGS.CF set to 1). This situation can only be recovered by a platform
reset.

February 2023 . Page 54 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

7. Memory Encryption Key Management

7.1 Objectives

The main goal of Intel TDX key management is to enable the VMM to perform the following:

e Manage HKID space as a limited platform resource, assigning HKIDs to TDs and reclaiming them as required.
e Enable the Intel TDX module to use a global ephemeral key for encrypting its data (e.g., PAMT).
e Enable each TD to use its own ephemeral key.

The Intel TDX interface functions are designed to provide the required building blocks and help ensure that software
cannot perform operations that are not compliant with TDX security objectives, as follows:

1. Help ensure that only HKID values that have been configured for TDX private memory encryption keys can be
assigned to TDs, and that those HKID values cannot be used by non-TD software or devices.

2. Prevent assignment of the same HKID to more than one TD.

3. At the time an HKID is assigned to a TD, there must be no modified cache lines — at any level, for any core, on any
package — for that HKID. All such cache lines that may have held modified data have been written to memory (if
required). Note that this requirement applies only to TDX private HKID and not to legacy MKTME HKIDs.

4. TD memory may be accessed, and the TD may run, only when the following conditions are met:

4.1. An HKID has been assigned for the TD’s ephemeral key.
4.2. The encryption key has been configured for all the TD’s ephemeral HKID, on all crypto engines, on all packages.

7.2. Background: HKID Space Partitioning

Since the same MKTME encryption engines and the same set of encryption keys are used for legacy MKTME operation
and for TDX operation, TDX ISA enables the enumeration and partitioning of the activated HKID space between the two
technologies. As designed, the encryption keys and their associated HKIDs are divided into three ranges, as shown in
Table 7.1 below. The values of NUM_MKID_KEYS and NUM_TDX_PRIV_KEYS are read from the
IA32_MKTME_KEYID_PARTITIONING MSR (0x87).

Private HKIDs and private keys are designed to be fully controlled by the Intel TDX module and are the subject of this
chapter.

Table 7.1: HKID Space Partitioning

HKID Key
0 Legacy TME key, shared
1 Legacy MKTME key #1
Shared
HKIDs 2 Legacy MKTME key #2
NUM_MKID_KEYS Last legacy MKTME key
NUM_MKID_KEYS + 1 Private key of a specific TD
NUM_MKID_KEYS + 2 Private key of a specific TD
Private . ioe
HKIDs NUM_MKID_KEYS + 3 Private key of a specific TD
NUM_MKID_KEYS + NUM_TDX_PRIV_KIDS | Private key of a specific TD

February 2023 . Page 55 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec

Section 2: Intel TDX Module Architecture Specification 344425-005US

7.3. Key Management Tables

The CPU and the Intel TDX module maintain several tables for key management. No table is intended to be directly
accessible by software; the tables are used by the Intel TDX functions. The tables help the Intel TDX module track the
proper operation of the software and help achieve the Intel TDX security objectives.

Table 7.2: Key Management Tables

Table Scope Description Reference
Key Encryption Package | KET is an abstraction of the CPU micro-architectural hardware table for
Table (KET) configuring the memory encryption engines. The KET is indexed by HKID.
All crypto engines on a package are configured the same way.
KET is part of the legacy MKTME architecture. Intel TDX ISA partitions KET
to shared and private ranges, as described in 7.2 above.
e AKET entry in private HKIDs range is configured per package by the
host VMM using the SEAMCALL(TDH.MNG.KEY.CONFIG) function.
e AKET entry in the shared HKID range is configured by software per
package directly, using the PCONFIG instruction.
KeyID Ownership | Platform | KOT is an Intel TDX module hidden table for managing the TDX HKIDs
Table (KOT) inventory. It is used for assigning HKIDs to TDs, revoking HKIDs from TDs
and controlling cache flush.
KOT is indexed by HKID.
TD Key D TD-scope key management fields are held in TDR. They include the key 23.1.2
Management state, ephemeral private HKID and key information, and a bitmap for
Fields tracking key configuration.

Figure 7.1 below provides an abstract, high-level picture of how the tables are related. Detailed discussion is provided in
the following sections.

February 2023

Page 56 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec

Section 2: Intel TDX Module Architecture Specification

344425-005US

VCPU-Scope Private KeylD

TD-Scope Key Information
In TDR

In TD VMCS
CPU uses this value to setup h/w on TD entry

Package-Scope
Key Encryption Tables (KET)
In each crypto engine, per memory
controller, multiple per package

HKID Key
0 TME Key
1 MKTME Key

TDX Key (N/A)
11 TDX Key (N/A)

64 TDX Key (N/A)

Lifecycle State
D1
Global-Scope KeylD Ownership Table (KOT)
Internal to the Intel TDX module
HKID State
TD-Scope Key Information
In TDR 0 N/A
Lifecycle State 1 N/A
TD 2
TD-Scope Key Information
In TDR /
Lifecycle State HKID
TD3
TD_BLOCKED 9
Figure 7.1: Overview of the Key Management State at TD-Scope, LP-Scope, Package-Scope and Global-Scope
74. Combined Key Management State
Key management state is composed of two state variables:
5 e Per-HKID KOT Entry State is designed to control how the inventory of private HKIDs is managed using the KOT.
e Per-TD Life Cycle State is designed, among other things, to control how TD keys are configured on the hardware and
the process of shutting down a TD.
The combined key management state is intended to affect whether the TD private memory is accessible, whether its
contents may be cached, whether private GPA-to-HPA address translations are allowed and whether such translations
10 may be cached.

Table 7.3 below lists the designed combined key management state values and their meaning. Figure 7.2 below shows a
simplified diagram of the combined key state. Refer also to the key management sequences described in 7.5.

Table 7.3: Combined TD Key Management States

TD Life Cycle State KOT Entry (HKID)

Private Memory

S-EPT

Comments

State Access Translations
New Cached | New Cached
N/A HKID_FREE No No No No HKID not assigned to TD
TD_HKID_ASSIGNED HKID_ASSIGNED No No No No TD private key not configured

TD_KEYS_CONFIGURED

TD_BLOCKED HKID_FLUSHED No TD No No TD private memory access is
blocked, TD may not run
TD_TEARDOWN N/A (HKID_FREE) No No No No TD has no HKID

N/A HKID_RESERVED

February 2023

Page 57 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

TDH.MNG.KEY.CONFIG TDH.VP.ENTER
[non-last package] TDH.VP.FLUSH

TD doesn't exist

TD build and
execution

TD private key not
configured

TDH.MNG.KEY.CONFIG
[last package]

[
1
[
L TDH.MNG.CREATE

I
[
I
I
I
I
I

TDH.PHYMEM.PAGE.RECLAIM(TDR)

TDH.MNG.VPFLUSHDONE

HKID_FLUSHED

TD_BLOCKED

TD has no HKID TD may not run, TD
private memory

access blocked

TDH.MNG.KEY.FREEID—

A

TDH.PHYMEM.PAGE.RECLAIM

(non-TDR) TDH.PHYMEM.CACHE.W

Figure 7.2: Simplified Combined TD Key Management State Diagram

Chapter 9.1 discusses TD life cycle management and zooms-in into the TD_KEYS_CONFIGURED state, detailing its

5 secondary sub-states that control TD operation.

7.5. Key Management Sequences

7.5.1. Intel TDX Module Initialization: Setting an Ephemeral Key and Reserving an HKID for Intel TDX Data

This sequence is described as part of the Intel TDX module initialization sequence in 6.1.1.

7.5.2. TD Creation, Keys Assignment and Configuration

10 This sequence is intended to be used by the host VMM to create a new TD, select HKIDs from the global pool in KOT and

assign them to the TD, and configure the TD keys on the hardware.
Refer also to the software flow discussion in 3.2.

Table 7.4: Typical TD Creation, Keys Assignment and Configuration (TD-Scope and KOT-Scope) Sequence

Intel TDX Function Scope Execute On Description
1 | TDH.MNG.CREATE TD One LP Assign the TD’s private HKID.
2 | TDH.MNG.KEY.CONFIG | TD Each package Configure the TD’s random ephemeral key on the
and each TD package.
key

February 2023 . Page 58 of 323

Section 2: Intel TDX Module Architecture Specification

10

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

7.5.3. TD Keys Reclamation, TLB and Cache Flush
This sequence is intended to be used by the host VMM to reclaim the HKIDs assigned to a TD and return them to the
global pool in KOT. At the end of this sequence, the HKIDs should be free to be assigned to another TD.

The cache flush operation is long. Since it is designed to run at global scope and is decoupled from any TD, the host VMM
may choose to implement it in a lazy fashion, i.e., wait until a certain number of HKIDs in the KOT pool become
RECLAIMED. This is especially important since TDH.PHYMEM.CACHE.WB operates on all cache lines regardless of HKID.

To avoid long latencies, TDH.PHYMEM.CACHE.WB is designed to be interruptible. The host VMM is expected to repeat
the execution of this instruction until it returns a success indication.

Refer also to the software flow discussion in 3.4.

Table 7.5: Typical TD Keys Reclamation, TLB and Cache Flush (TD-Scope and KOT-Scope) Sequence

Intel TDX Function Scope Execute On Description

1%}

As a preparation, the host VMM avoids any VCPU-specific SEAMCALL function (i.e., TDH.VP.ENTER, TDH.VP.INIT,
TDH.VP.RD and TDH.VP.WR) and waits until no VCPU is running.

1 | TDH.VP.FLUSH TD One each LP Flush the VCPU’s TD VMCS to TDVPS memory, and
VCPU associated flush the VCPU’s TLB ASID.
with a TD
VCPU
2 | TDH.MNG.VPFLUSHDONE | TD, KOT | One LP Check all the VCPUs have been flushed.
3 | TDH.PHYMEM.CACHE.WB | KOT Each package Write back cache hierarchy, at least for the HKIDs
or core* marked as TLB_FLUSHED. The instruction

execution time is long; it is interruptible by
external events and may be restarted until
completed.

4 | TDH.MNG.KEY.FREEID TD, KOT | One LP Mark the TD’s HKID as FREE.

4 Enumerated by CPU during Intel TDX module initialization, see 6.1.3.4.

February 2023 . Page 59 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

8. TD Non-Memory State (Metadata) and Control Structures

This chapter discusses the guest TD control structures that hold non-memory state (metadata) and how they are intended
to be used during the TD life cycle.

8.1. Overview

Opaque (Intel TDX Module Opaque (TD Private HKID): Shared:
Global Private HKID): VMM Allocated, Intel TDX Module Managed VMM-Managed, Shared HKID
VMM Allocated,

| |
| |
| |
Intel TDX Module Managed, TD-scope o
I TD-scope I
TD-scope 3 B SEPT Page N
I | TDCX Page |
TDR Page [+~ I Fo
o |
H TDCS Secure EPT Tree | VCPU-scope* * VMM may
I S maintain a single
1 | copy per TD, shared
VCPU-scope !
I P ' Shared by all VCPUs
: : rrrrrrrrrrrrrr EPT
Tree
I TDVPRPage || Tpypx Page 1
i I VCPU-scope*
| | .
: TDVPS : VMCS Aucxiliary
I I Control Structures
: : VCPU-scope* ‘
| |
I VCPU-scope [Shared
I ! EPT
| |
Tree
I TDVPR Page I TDVPX Page | *
R I VCPU-scope
: TDVPS : VMCS Auxiliary
I I Control Structures

5 T
Figure 8.1: Guest TD Control Structures Overview

All guest TD control structures reside in memory pages that are allocated by the host VMM from the pre-configured
TDMRs. Guest TD control structure pages are addressable by the host VMM.

8.1.1. Opaque vs. Shared Control Structures

10 Control structures are divided to two classes:

o Shared control structures are intended to be directly managed by the host VMM and are encrypted with a shared
HKID. The Intel TDX module architecture only describes the shared control structures that might directly impact its
operation. The host VMM may hold additional control structures.
e Opaque control structures are not intended to be directly accessible to any software (except the Intel TDX module)
15 or DMA. They are intended to be managed via Intel TDX module functions. Generally speaking, the host VMM is not
aware of the exact format of opaque control structures. Opaque control structures’ memory pages are intended to
be encrypted with a private HKID.

8.1.2. Scope of Control Structures

Guest TD control structures have two possible scopes:

20 e TD-scope control structures are intended to apply for a guest TD as a whole.
e TD VCPU-scope control structures are intended to apply for a single virtual CPU of a guest TD.

8.2. TD-Scope Control Structures

TD-scope control structures include TDR and TDCS, discussed below, and Secure EPT, discussed in Chapter 11.

February 2023 . Page 60 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

8.2.1. TDR (Trust Domain Root)

TDR is the root control structure of a guest TD. As designed, TDR is encrypted using the Intel TDX global private HKID. It
holds a minimal set of state variables that enable guest TD control even during times when the TD’s private HKID is not
known, or when the TD’s key management state does not permit access to memory encrypted using the TD’s private key.

TDR occupies a single 4KB naturally aligned page of memory. It is designed to be the first TD page to be allocated and
the last to be removed. Its physical address serves as a unique identifier of the TD, as long as any TD page or control
structure resides in memory.

At a high level, TDR holds the following information:

e Fields designed to control guest TD build and teardown process.
e Fields designed to manage memory encryption keys.

8.2.2. TDCS (Trust Domain Control Structure)

TDCS is the main control structure of a guest TD. As designed, TDCS is encrypted using the guest TD’s ephemeral private
key. TDCS is a multi-page logical structure composed of multiple TDCX physical pages.

At a high level, TDCS holds the following information:

e Fields designed to control the TD operation as a whole (e.g., a counter of the number of VCPUs currently running).

e Fields designed to control the TD’s execution control (debuggability, CPU features available to the TD, etc.).

e Fields related to TD measurement.

e EPTP: as designed, a pointer (HPA) to the TD’s secure EPT root page and EPT attributes.

e MSR bitmaps, designed to be used by all the TD’s VCPUs.

e Asdesigned, the secure EPT root page.

e A page filled with zeros, designed to be used in cases where the Intel TDX module needs a read-only constant-0 page
encrypted with the TD’s private key.

8.3. TD VCPU-Scope Control Structures and Management Functions

8.3.1. Trust Domain Virtual Processor State (TDVPS)

Trust Domain Virtual Processor State (TDVPS) is the root control structure of a TD VCPU. It helps the Intel TDX module
control the operation of the VCPU, and holds the VCPU state while the VCPU is not running. TDVPS is a single logical
control structure composed of multiple physical 4KB pages.

February 2023 . Page 61 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

Management Fields
(mapped to TDVPR
page) | .-

TD VCPU State

|

I |

I |
D VCPU | :

I |

I |

r——————" TDVPX Page

e GPRs
e CRs, DRs, MSRs
e Extended State

TD VMCS Auxiliary Info

e Virtual APIC Page

e VEInfo ==~ TDVPX Page

TD VMCS
(not mapped in linear
address space)

———————— TDVPX Page

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
m—————— TDVPX Page :
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Logical View Physical View
Figure 8.2: High Level Logical and Physical View of TDVPS

8.3.1.1. Physical View of TDVPS: TDVPR/TDVPX

TDVPS is designed to be opaque to software and DMA access, accessible only by using the Intel TDX module functions.
From the VMM perspective, TDVPS is composed of multiple 4KB pages, where each page may reside in arbitrary locations
in convertible memory.

Trust Domain Virtual Processor Root (TDVPR) is the 4KB root page of TDVPS. Its physical address serves as a unique
identifier of the VCPU (as long as it resides in memory).

Trust Domain Virtual Processor eXtension (TDVPX) 4KB pages extend TDVPR to help provide enough physical space for
the logical TDVPS structure.

The TDVPR and TDVPX pages are designed to be encrypted with the TD’s ephemeral private key. They are addressable
by the host VMM, which is responsible for allocating memory to hold them.

The required number of 4KB TDVPR/TDVPX pages in TDVPS is enumerated to the VMM by the TDH.SYS.INFO function
(see 6.2.3).

8.3.1.2. Logical View of TDVPS

Logically, TDVPS is organized as a single large data structure. At a high level, it is composed of the following parts:

VMX (with TDX ISA Extensions) Standard Control Structures

e TDVMCS
e TD VMCS auxiliary structures, such as virtual APIC page, virtualization exception information, etc. Note that MSR
bitmaps are held as part of TDCS because they are meant to have the same value for all VCPUs of the same TD.

The TDX design does not require some of the VMX control structures (notably, the Shared EPT) to be protected. They are
described below.

Proprietary Fields

e TD VCPU Management fields designed to manage the operation of the VCPU
e TD VCPU State fields designed to hold most of the VPCU state (except state that is saved to the TD VMCS) when the
VCPU is not running

TDVPS organization and format are detailed in 23.2.

February 2023 . Page 62 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

8.3.2. Non-Protected Control Structures: Shared EPT and VMCS Auxiliary Control Structures

Several VMX control structures are directly managed and accessed by the host VMM. These control structures are
pointed to by fields in the TD VMCS. The Intel TDX module checks that the pointers conform to the shared-access HPA
semantics (see 19.2.1.1).

Non-protected control structures include:

e Shared EPT tree
e Posted interrupt descriptor

8.4. TD Non-Memory State (Metadata) Access Functions

A set of interface functions is provided to enable host VMM and guest TD access to TD non-memory state (metadata).
These functions employ metadata abstraction, using field code to abstract the actual control structure format. The
generic metadata access interface mechanisms are described in 19.4.

Table 8.1: TD Non-Memory State (Metadata) Access Functions

Side Scope | Control Structures Intel TDX
Functions

Host VMM (SEAMCALL) TD TDR and TDCS TDH.MNG.RD
TDH.MNG.WR

VCPU | TDVPS (including TD VMCS) | TDH.VP.RD

TDH.VP.WR

Guest TD (TDCALL) TD TDR and TDCS TDG.VM.RD
TDG.VM.WR

Access to control structure fields using the provided interface functions (down to the bit granularity, if required) depends
on whether the TD is debuggable (ATTRIBUTES.DEBUG bit is 1) or not.

In many cases, control structure field access means more than just reading or writing the field content. For example:

e When a field that contains an HPA is written, its value is checked not to overlap the SEAMRR range.

e In some cases, there may be inter-dependency between fields. When such fields are written, multiple checks may
need to be done and some actions may need to be taken.

e For some fields, the internal format and/or value may be different than what is visible externally.

8.5. Concurrency Restrictions and Enforcement

A general description of concurrency restriction is provided in 19.1.

Normally, exclusive or shared access is acquired, if needed, for the typically short duration of function flows. A TD VCPU
execution is an exception case. Shared access to TDCS and TDVPS is acquired on TD Entry and released on TD Exit. This
implies that SEAMCALL(TDH.VP.ENTER) function, all TDCALL functions, and asynchronous TD Exit have implicit shared
access to TDCS and TDVPS.

This mechanism helps protect running VCPUs against concurrent functions that may try to change their governing control
structures.

February 2023 . Page 63 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

9. TD Life Cycle Management

This chapter discusses guest TD life cycle management.
9.1. TD Life Cycle State Machine

The TD Life Cycle state machine controls the overall TD build, run-time and destruction process. It operatesin conjunction
5 with the HKID state machine, as described in 7.4. Figure 9.1 below the TD life cycle state diagram.

TDH.VP.CREATE

TDH.MNG.CREATE TDH.MNG.ADDCX: TDH.VP.ADDCX
TDH.VP.INIT
[uniNmALzED) (INmAuzED
TD private key not TDCS memory TD memory allocation
TDH.MNG.KEY.CONFIG | configured TDH.MNG.KEY.CONFIG _|allocation and measurement, TDH.MEM.SEPT.ADD
[non-last [last package] TDH.MNG.INIT- VCPU creation TDH.MEM.PAGE.ADD
package] TDH.MR.EXTEND

TDH.MNG.VPFLUSHDONE

TDH.MR.FINALIZE
TDH.MNG.VPFLUSHDONE

TD_BLOCKED

TD private memory TD is runnable
access is getting
blocked, and caches
are getting flushed

TDH.MNG.KEY.FREEID

TD has no HKID

TDH.PHYMEM.PAGE.RECLAIM
[non-TDR]

TDH.PHYMEM.PAGE.RECLAIM[TDR]

Figure 9.1: High-Level TD Life Cycle State Diagram
9.2. TD Creation Sequence

The following sequence is intended to be used by the host VMM to create a new TD. Note that only the general aspects
10 of TD creation are described here. Other aspects, such as key management, are described in other chapters.

Refer also to the software flow discussion in 3.2.

February 2023 . Page 64 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec

Section 2: Intel TDX Module Architecture Specification 344425-005US

Table 9.1: Typical TD Creation Sequence

Intel TDX Function

Inputs

Description

1 | N/A

N/A

If any MODIFIED cache lines may exist for the
physical pages to be written below (TDR, TDCS,
Secure EPT root page), flush them to memory
using, e.g., CLFLUSH (possibly on multiple LPs).
This is required to avoid corruption due to cache
line aliasing.

2 | TDH.MNG.CREATE

TDR page PA

Create the TDR and generate the TD’s random
ephemeral key.

3 | Multiple

See 7.5.2

Assign an HKID, and configure the TD’s random
ephemeral key on all packages, as described in
7.5.2.

4 | TDH.MNG.ADDCX
(multiple)

e Owner TDR PA
e TDCX page PA

Run multiple times to add the required number of
TDCX pages.

5 | TDH.MNG.INIT

e Owner TDR PA

e TDinitialization parameters

Initialize the TD state in TDR and TDCS.

At this point the TD is initialized. Private memory pages can be added as described in Chapter 11. VCPUs can be
created and initialized as described below.

9.3. VCPU Creation and Initialization Sequence

VCPU creation and initialization is only allowed during TD build time.

The following sequence is intended to be used by the host VMM to create a new TD VCPU. After this sequence is done,
the TD VCPU may be entered on an LP (assuming other conditions are met).

Refer also to the software flow discussion in 3.2.

Table 9.2: Typical TD VCPU Creation and Initialization Sequence

Intel TDX Function

Inputs

Description

1 | N/A

N/A

If any MODIFIED cache lines may exist for the
physical pages to be written below (TDVPR,
TDVPX), flush them to memory (e.g., using
CLFLUSH — possibly on multiple LPs). This is
required to avoid corruption from cache line
aliasing.

2 | TDH.VP.CREATE

e TDVPR page PA
e Owner TDR PA

Create the VCPU and its TDVPR page.

3 | TDH.VP.ADDCX
(multiple)

e TDVPX page PA
e Parent TDVPR PA

Run multiple times to add the required number of
TDVPX pages as an extension to a parent TDVPR.

4 | TDH.VP.INIT

e TDVPR PA
e VMM-provided identifier

Initialize the VCPU state.

February 2023

Page 65 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

Intel TDX Function Inputs Description

TDH.VP.WR e TDVPR page PA The host VMM typically writes one or more of the
e Field code following TD VCPU’s VMCS controls:
e New field value e Shared EPTP
e Write mask e Posted-interrupts descriptor address, posted-

interrupts notification vector and process
posted interrupt

e bus-lock detection

e notification exiting and notify window

9.4. TD Teardown Sequence

The following sequence is intended to be used by the host VMM to tear down a TD. Note that only the general aspects
of TD teardown are described here. Other aspects, such as key management, are described in other chapters. See also
the discussion of physical page reclamation in 10.5.

Refer also to the software flow discussion in 3.4.

Table 9.3: Typical TD Teardown Sequence

Intel TDX Function Inputs Description

1 | Multiple See 7.5.3 Reclaim the HKID, and flush TLB and cache,
as described in 7.5.3.

2 | TDH.PHYMEM.PAGE.RECLAIM | TD page or control structure Remove all TD private pages and control

(multiple) PA §tructure pages, and mark them as PT_NDA
in the PAMT.
3 | TDH.PHYMEM.PAGE.RECLAIM | TDR PA Remove the TDR page, and mark it as
PT_NDA in the PAMT.
4 | TDH.PHYMEM.PAGE.WBINVD | TDR PA Flush MODIFIED cache lines: this is required

to avoid corruption due to cache line
aliasing. Note that all cache lines for all
other TD pages must have been flushed
before the TDR page was reclaimed.

February 2023 . Page 66 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

10.Physical Memory Management

This chapter describes how the Intel TDX module manages memory as a set of physical pages.
10.1. Trust Domain Memory Regions (TDMRs) and Physical Address Metadata Tables (PAMTs)

Trust Domain Memory Region (TDMR) is defined as a range of convertible memory pages. TDMRs are set by the host
VMM, based on the CMR information previously checked by MCHECK.

Each TDMR is defined as controlled by a (logically) single Physical Address Metadata Table (PAMT). The PAMT structure
is discussed in 10.3 below. PAMT tables reside in VMM-allocated memory, and they are designed to be encrypted with
the Intel TDX global private HKID. The required size of PAMT memory, as a function of TDMR size, is enumerated to the
VMM by TDH.SYS.INFO.

Typically, after the host VMM initializes the Intel TDX module (TDH.SYS.INIT and TDH.SYS.LP.INIT), it configures the TDMRs
and their respective PAMTs using TDH.SYS.CONFIG. It then would gradually initialize the TDMRs using
TDH.SYS.TDMR.INIT. For a detailed description of the typical Intel TDX module initialization and configuration sequence,
see Chapter 6.

10.2. TDMR Details

The following list includes definitions of the characteristics of a TDMR:

e TDMR configuration is "soft" — no hardware range registers are used.

e Each TDMR defines a single physical address range.

e Each TDMR has its own size which must be a multiple of 1GB. TDMR size is not required to be a power of two.

e A TDMR must be aligned on 1GB.

e TDMRs cannot overlap with each other.

e TDMRs may contain reserved areas. This effectively allows the host VMM to flexibly configure TDMRs based on the
VMM'’s own consideration of system memory allocation — without being impacted by the 1GB granularity of the
TDMR size.

o Areserved area must be aligned on 4KB, and its size must be a multiple of 4KB.
o The number of reserved areas that may be configured per TDMR is enumerated by TDH.SYS.INFO.

e TDMR memory, except for reserved areas, must be convertible as checked by MCHECK (i.e., every TDMR page must
reside within a CMR).

e There is no requirement for TMDRs to cover all CMRs.

e TDMRs are configured at platform scope (no separate configuration per package).

e The maximum number of TDMRs is Intel TDX module implementation specific. It is enumerated to the host VMM
using the SEAMCALL(TDH.SYS.INFO) function, as described below.

10.3. PAMT Details

The Physical Address Metadata Table (PAMT) is designed to track the metadata of every physical page in TDMR. A page
metadata include page type, page size, assignment to a TD, and other attributes.

The PAMT is used by the Intel TDX module to help enforce the following properties:
Page Attributes A physical page in TDMR has a well-defined set of attributes, such as page type and page size.
Single TD Assignment A physical page in TDMR can be assigned to at most one TD.

Secure EPT Consistency The page size of any private TD page, mapped in Secure EPT, matches its page size attribute in
PAMT.

10.3.1. PAMT Entry

Note: The description below is provided at a high level. Implementation details may differ.

A PAMT entry is designed to hold metadata for a single physical page. The page size may be 4KB, 2MB or 1GB depending
on the PAMT level (see 10.3.2 below).

February 2023 . Page 67 of 323

Section 2: Intel TDX Module Architecture Specification

10

Intel® TDX Module Spec

Section 2: Intel TDX Module Architecture Specification

344425-005US

Table 10.1: High-Level View of a PAMT Entry

Field Description

PT PT indicates the type of page intended to be associated with this PAMT
entry. See Table 10.3 below for details.

OWNER OWNER is designed to contain bits 51:12 of the physical address of the
TD’s TDR page.
This field can be applicable in all cases when a page is assigned to the
Intel TDX module at this PAMT level or at a higher level. See Table 10.3
below for details.

BEPOCH By design, the value of TDCS.TD_EPOCH as sampled by
TDH.MEM.RANGE.BLOCK
This field is intended to be applicable only if PT is PT_REG or PT_EPT. See
11.7 for a detailed discussion.

10.3.2. PAMT Blocks and PAMT Arrays

For each 1GB of TDMR physical memory, there is a corresponding PAMT Block. A PAMT Block is logically arranged in a
three-level tree structure of PAMT Entries, as shown in Figure 10.1 below. Levels 0 through 2 (PAMT_4K, PAMT_2M and

PAMT_1G) correspond to 4KB, 2MB and 1GB physical TDMR pages, respectively.

Physically, for each TDMR the design includes three arrays of PAMT entries, one for each PAMT level. This aims to simplify
VMM memory allocation. A logical PAMT Block has one entry from the PAMT_1G array, 512 entries from the PAMT_2M

array, and 5122 entries from the PAMT_4K array.

Level 2 Level 1 Level O

PAMT_1G PAMT_2M PAMT_4K
0x00000000 | O | 0x00000000 | O 0x00000000 | 0 |
~ 0x00200000 | 1 h 3 1
Ox3FE00000™ | 511 "\ 0x001FF000. [511 |
\ '0x00200000 [512 |
', 0x003FF000 [1,023 ‘
Ox3\Fl\EOOOOO | 261,632 |
OX3FFFF000 | 262,143 |

Figure 10.1: Typical Example of a PAMT Block Hierarchy for a 1GB TDMR Block
February 2023 Page 68 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

10.3.3. PAMT Hierarchy and Page Types

Table 10.2 below describes the PAMT page types:

Table 10.2: PAMT Page Types

Page Type PAMT Associated TDX Description
Level Page
PT_NDA Any Depending on PT | The physical page is Not Directly Assigned to the Intel
at higher PAMT TDX module at this size (4K, 2M or 1G) and PAMT level.
level, if any This page may be part of a larger page that is assigned
to the Intel TDX module at a higher level, or this page
may contain smaller pages that are assigned to the Intel
TDX module at lower levels. See Table 10.3 below for
details.

PT_RSVD PAMT_4K None The physical page is reserved for non-TDX usage. The
Intel TDX module will not allow converting this page to
any other page type. The page can be used by the host
VMM for any purpose.

PT_RSVD is used for implementing reserved areas within
TDMRs. See 6.1.4.2.1 for details.

PT_REG Any TD private page The physical page at this PAMT level (4K, 2M or 1G)
holds TD private memory and is mapped in the guest TD
GPA space by the Secure EPT.

PT_TDR PAMT_4K TDR TDR control structure page

PT_TDCX PAMT_4K | TDCX One physical page of the multi-page TDCS control
structure

PT_TDVPR PAMT_4K | TDVPR Root page of the multi-page TDVPS control structure

PT_TDVPX PAMT_4K | TDVPX Non-root page of the multi-page TDVPS control
structure

PT_EPT PAMT_4K Secure EPT Secure EPT page

Table 10.3 below shows the page type (PT) of PAMT entries at the three levels of hierarchy, depending on whether the
page is assigned to the Intel TDX module manages the page, whether the page is mapped in secure EPT, and the mapping

size.

Table 10.3: PAMT Hierarchy and Page Types

Intel TDX Module Management PAMT Entry Page Type

Assigned | Physical GPA Mapping Size | PAMT_1G (Level 2) PAMT_2M (Level 1) PAMT_4K (Level 0)

to TDX? | Page Size | (Secure EPT Level)

No 4KB N/A PT_NDA PT_NDA PT_RSVD

No 4KB N/A PT_NDA PT_NDA PT_NDA

Yes 4KB None PT_NDA PT_NDA PT_TDR, PT_TDCX,
PT_TDVPR,
PT_TDVPX, PT_EPT

Yes 4KB 4KB (Level 0) PT_NDA PT_NDA PT_REG

Yes 2MB 2MB (Level 1) PT_NDA PT_REG PT_NDA

Yes 1GB 1GB (Level 2) PT_REG PT_NDA PT_NDA

February 2023 Page 69 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

Note the following:

e A 4KB page is considered free (i.e., not assigned to TDX) if its PAMT.PT at all three PAMT levels is PT_NDA. Any
function that attempts to assigns an HPA to TDX (e.g., TDH.MEM.PAGE.ADD) is designed to check this.

e Inall other cases, PAMT.PT is different than PT_NDA in only one of the three PAMT levels.

e When a page is mapped by Secure EPT at 4KB, 2MB or 1GB GPA mapping size, it is managed by the Intel TDX module
as a physical page of the same size. Secure EPT is described in Chapter 11.

e PT_RSVD pages cannot be used by the Intel TDX module. They are used for implementing reserved areas within
TDMRs. See 6.1.4.2.1 for details.

10.4. Adding Physical Pages

10.4.1. Preventing Cache Line Aliasing

Before adding a physical page, the host VMM is responsible for making sure no MODIFIED cache lines exist for that page.
The host VMM can flush cache lines to memory — e.g., using CLFLUSH (only for pages containing data encrypted with a
shared HKID — the VMM cannot directly use an HPA with a private HKID), or TDH.PHYMEM.PAGE.WBINVD (for pages
containing data encrypted with any HKID, as long as the page is within a TDMR). Flushing cache lines to memory is
required to avoid corruption due to cache line aliasing.

10.4.2. Adding Pages not Mapped to the Guest TD

By design, TD control structure pages TDR, TDCX, TDVPR and TDVPX are not mapped to the guest TD’s GPA space, and
they are only managed using their HPA. The functions TDH.MNG.CREATE, TDH.MNG.ADDCX, TDH.VP.CREATE and
TDH.VP.ADDCX are designed to add 4KB control structure pages PT_TDR, PT_TDCX, PT_TDVPR and PT_TDVPX,
respectively. The overall process is described in 9.2 and 9.3.

10.4.3. Adding Pages and Mapping to the Guest TD’s GPA

The following page types are associated with a guest TD’s GPA:

e Guest TD private pages
e Secure EPT pages are mapped to the guest TD’s GPA space.

Those pages are added given their HPA and the required GPA. The functions TDH.MEM.PAGE.ADD and
TDH.MEM.PAGE.AUG add a 4KB PT_REG page, and the functions TDH.MEM.SEPT.ADD and TDH.MEM.PAGE.DEMOTE add
a 4KB PT_EPT page. TD private memory management functions are described in Chapter 11. This section describes only
their physical page management aspects.

10.5. Reclaiming Physical Pages

10.5.1. Required Cache Flush and Initialization by the Host VMM

Once a physical page is reclaimed from a TD, it should be free for use by the host VMM for any purpose, provided that
the operations described below are done.

Cache Flush

To help avoid stability issues caused by cache line aliasing, the host VMM should also ensure that no cache lines
associated with the removed page are in a Modified state, before the page is reused for any purpose.

e During the TD’s lifetime, this can be done by calling TDH.PHYMEM.PAGE.WBINVD.

e If the TD has been torn down and is in the in TD_TEARDOWN state, cache has already been flushed by
TDH.PHYSMEM.CACHE.WB as part of the teardown sequence, so no further operation is required — except for the
TDR page as descried below.

Page Initialization

Before the physical page is used for anything except TD private memory page or TDX control structure page, the host
VMM should initialize it using MOVDIR64B. This helps ensure that no content encrypted with a private HKID remains for
that physical page, which may result in an integrity violation or TD bit mismatch detection when later being read using a
shared HKID. For details, see Ch. 17.

February 2023 . Page 70 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

If the page is to be used as a new TD private memory page or TDX control structure page, this initialization is not required
since the TDX module will initialize the page.

10.5.2. Reclaiming Pages not Mapped to the Guest TD

There are two cases where pages are not considered as mapped to the guest TD:

e Control structure pages are not mapped to the guest TD.
e In TD_TEARDOWN state, as described below, no mapping is in effect.

10.5.3. Reclaiming TD Pages in TD_TEARDOWN State

As part of the TD teardown process, the VMM needs to put the TD into a TD_TEARDOWN state, as described in 9.3. This
is a non-recoverable state where TD keys have been reclaimed, all address translations and caches have been flushed,
and the TD private memory and control structures (except TDR) are no longer accessible.

By design, in the TD_TEARDOWN state, all TD pages are effectively unmapped. Secure EPT is not accessible, and no GPA-
to-HPA mapping can be used. The host VMM must treat all the TD private pages and control structure pages as physical
memory and reclaim them using the TDH.PHYMEM.PAGE.RECLAIM function in any order, as long as the TDR page is the
last one to be reclaimed.

For TDR page, the intention is for the host VMM to call TDH.PHYMEM.PAGE.WBINVD after calling
TDH.PHYMEM.PAGE.RECLAIM. This is required to avoid corruption due to cache line aliasing because the TDR page has
still been accessed and modified, even when the TD was in TD_TEARDOWN state.

10.5.4. Reclaiming Physical Pages as Part of TD Private Memory Management

Functions such as TDH.MEM.PAGE.REMOVE and TDH.MEM.PAGE.PROMOTE are designed to remove TD private pages
and Secure EPT pages, respectively. By design, they first make sure the pages are no longer accessible using a GPA, then
they mark the physical page as free. This is described in Chapter 11; this section only highlights the physical page
reclamation.

February 2023 . Page 71 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

11.TD Private Memory Management

This chapter described how the Intel TDX module helps manage TD private memory and guest-physical address (GPA)
translation.

11.1. Overview
Intel TDX ISA introduced the concept of private GPA vs. shared GPA, depending on the GPA.SHARED bit. In SEAM non-

root mode, the controlling VMCS has two EPT pointer fields:

e The legacy EPT pointer is used for translating the guest TD’s memory accesses using a private GPA (i.e.,
GPA.SHARED ==0).

e A new Shared EPT pointer is used for translating the guest TD’s memory accesses using shared GPAs (i.e.,
GPA.SHARED ==1).

A new GPAW execution control determines the position of the SHARED bit in the GPA, and a new HKID execution control
defines the HKID used for accessing TD private memory.
Private GPA Space

TDO /{ Guest Physical Address }
— Memory encrypted with a

CR3 Private Code/data TD private key

T Private Code/data ‘

}—+ Shared Data ‘

lGuest Physical Address (GPA)

Shared GPA Space
— Memory encrypted with a
key shared with VMM

Lt

CPU PMH
. HPA Space
TD Privat —) ;
Hl?l\s c GPA.SHARED) Physical Memory
Physical Pages
No Address +
YeSl HKID

[—
Shared Extended Extended
Page Tables Page Tables
(Shared EPT) (Secure EPT)

Figure 11.1: Secure EPT Concept

The Intel TDX module maintains a single Secure EPT structure per TD. Secure EPT pages are designed to be opaque; they
reside in ordinary memory, and they are encrypted and integrity-protected with the TD’s ephemeral private key. The
Intel TDX module does not map Secure EPT pages to the guest TD GPA space. Thus, Secure EPT is effectively not accessible
by any software besides the Intel TDX module, nor by any devices. Any such access using shared HKID to Secure EPT can
lead to data corruption that triggers integrity check failure leading to a machine check fault.

Secure EPT is intended to be managed indirectly by the host VMM using Intel TDX functions. The Intel TDX module helps
ensure that the Secure EPT is managed correctly.

The CPU translates shared GPAs using the Shared EPT which resides in host VMM memory. The translation uses a shared
HKID, and it is directly managed by the host VMM, just as with legacy VMX.

February 2023 . Page 72 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

11.2. Secure EPT Entry

11.2.1. Overview

From the CPU perspective, Secure EPT has the same structure as a legacy VMX EPT. To encode additional entry state,
the Intel TDX module is designed to use two of the entry bits which are defined as available to software (not used by the
CPU) when the entry is non-present. For a detailed definition of the Secure EPT structure, see 22.4.

Secure EPT entry is opaque; the host VMM may not access it directly. The host VMM may read a Secure EPT entry
information using the TDH.MEM.SEPT.RD interface function. In addition, multiple other interface functions return the
same information in case of an error that is related to a Secure EPT entry.

Table 11.1: Secure EPT Entry State High Level Description

Secure EPT Entry State Present Mapped Description

(RWX !=0) | (HPA Valid)
SEPT_FREE No No Secure EPT entry does not map a GPA range.
SEPT_PRESENT Yes Yes Secure EPT entry maps a private GPA range which is

accessible by the guest TD.

SEPT_BLOCKED No Yes Secure EPT entry maps a private GPA range, but new
address translations to that range are blocked.

SEPT_PENDING No Yes Secure EPT entry maps a 4KB or a 2MB page that has
been dynamically added to the guest TD using
TDH.MEM.PAGE.AUG and is pending acceptance by
the guest TD using TDG.MEM.PAGE.ACCEPT. This
page is not yet accessible by the guest TD.

SEPT_PENDING_BLOCKED | No Yes Secure EPT entry is both pending and blocked.

11.2.2. SEPT Entry State Diagrams

The figures below show state diagrams for the memory management operation for a leaf and a non-leaf SEPT entry.

February 2023 . Page 73 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

TDH.MEM.PAGE.PROMOTE TDH.MEM.PAGE.DEMOTE [TD is paused] /
[512 MAPPED entries] / _——_————— Entry becomes non-leaf, @ -—————————
Entry becomes leaf, MAPPED : MAPPED
- |
From Non-Leaf | TDH.MEM.PAGE.DEMOTE /
Entry State
Diagram | Entry becomes non-leaf,
J I MAPPED
|
To Non-Leaf
BLOCKED Entry State
TDH.MEM.PAGE.DEMOTE / TDH.MEM.RANGE. Diagram
New leaf, MAPPED > Page is mapped and BLOCK *| Page is mapped but
accessible to guest new translations are
D blocked
TDH.MEM.PAGE.ADD—— l—DH-MEM.RANGE.__|
UNBLOCK TDH.MEM.PAGE.PROMOTE
p|__|_J —
7'y
| |
< A A
SEPT entry is not < | \—TDH.MEM.PAGE.REMOVE
mapped to a physical | - |_ _ _ TDH.MEM.PAGE.PROMOTE_
page | [TD is paused]
__TDH.MEM.PAGE.REMOVE_ _: TDG.MEM.PAGE.
[TDis paused] | ACCEPT
PENDING PENDING_BLOCKED
TDH.MEM.RANGE.
TDH.MEM.PAGE.AUG > Page is pending guest BLOCK Page is pending but
TD acceptance guest TD acceptance
is blocked
TDH.MEM.PAGE.DEMOTE / TDH.MEM.RANGE.
‘ New leaf, PENDING ’ UNBLOCK To Non-Leaf
Entry State
;'—/ Diagram

|

| TDH.MEM.PAGE.DEMOTE /

| Entry becomes non-leaf,

: PRESENT

|

rPee TDH.MEM.PAGE.DEMOTE [TD is paused] / _
Entry becomes non-leaf, PRESENT

Figure 11.2: Secure EPT Leaf Entry Partial State Diagram

TOH.MEM.PAGEDEMOTE/ TDH.MEM.P?r?tinRe(ZoMn(q);El[e'l;l? spaused)/
Entry becomes non-leaf, MAPPED MAPPED

From Leaf Entry
State Diagram

TDH.MEM.PAGE.PROMOTE /
Entry becomes leaf,
MAPPED

To Leaf Entry

BLOCKED f
TDH.MEM.RANGE. State Diagram
SEPT entry is not SEPT page is mapped BLOCK SEPT page is mapped
mapped to a physical and new SEPT walks but new SEPT walks
page TDH.MEM.SEPT.ADD to GPArange are to GPArange are
permitted TDH.MEM.RANGE. blocked
UNBLOCK
—
A f
| |
|
o TDH.MEM.SEPT.REMOVE _ |
[TDis paused]
TDH.MEM.SEPT.REMOVE
5 Figure 11.3: Secure EPT Non-Leaf Entry Partial State Diagram

11.3. EPT Walk

Host-side (SEAMCALL) Intel TDX functions that manage TD private memory usually accept GPA and Level parameters.
They perform a Secure EPT walk which locates the target Secure EPT entry.

If the Secure EPT walk is completed successfully, the Intel TDX function may operate on the located Secure EPT entry.
10 Otherwise, the function typically returns the last visited EPT entry and its level to the host VMM.

February 2023 . Page 74 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Spec

Section 2: Intel TDX Module Architecture Specification

344425-005US

Guest-side (TDCALL) Intel TDX functions typically perform an EPT walk similar to the EPT walk done by the CPU. Only the
GPA is provided as an input, and the function may walk the Shared EPT or the Secure EPT, depending on the specific
function and the GPA’s SHARED bit.

11.4.

Secure EPT Induced TD Exits

Guest TD memory access to a non-present private GPA causes an asynchronous TD exit with an EPT Violation exit reason.
As discussed in 11.2 above, a non-present GPA is any private GPA for which there is either no Secure EPT entry, or the
Secure EPT entry is not in the SEPT_PRESENT state.

Secure EPT-induced TD exits may also be triggered during a guest-side local flow, performing some function on behalf of
the guest TD, and executed by the Intel TDX module.

On EPT violation TD exit, VM exit information is provided to the host VMM. This helps the VMM analyze the reason for
the EPT violation and take proper action.

Table 11.2: EPT Violation TD Exit Cases and Possible Host VMM Actions

Reason

May be Indicated by

Possible Host VMM Action

Page is not mapped
to the TD GPA
space

Exit qualification bits 6:3 are 0.

The host VMM knowns, based on its
internal data, that either the page
or a Secure EPT page that maps it
has not been allocated to the TD.

The host VMM may use this as a trigger for
dynamic memory allocation
(TDH.MEM.PAGE.AUG) or for a post-copy
migration import (see [TD Migration Spec]).

Page or GPA range
is BLOCKED

Exit qualification bits 6:3 are 0.

The host VMM knowns, based on its
internal data, that the page or a
Secure EPT page that maps it has
been blocked.

The host VMM may resume the TD
(TDH.VP.ENTER), possibly after taking some
action (e.g., TDH.MEM.PAGE.PROMOTE) for which
the page has been blocked.

Page is PENDING

Exit qualification bits 6:3 are 0.

The host VMM knowns, based on its
internal data, that the page has
been assigned to the TD using
TDH.MEM.PAGE.AUG.

This happens only if the TD’s
ATTRIBUTES.SEPT_VE_DISABLE is set to 1. The
VMM may resume the TD.

By design, since secure EPT is fully controlled by the TDX module, an EPT misconfiguration on a private GPA indicates a
TDX module bug and is handled as a fatal error.

11.5.

Secure EPT Induced Exceptions

If the TD’s ATTRIBUTES.SEPT_VE_DISABLE is 0, guest TD memory access to a private GPA for which the Secure EPT entry
state is PENDING causes a #VE.

Guest TD memory access with any GPA bit higher than the SHARED bit set to 1 causes a #PF exception. See 13.11.1.

11.6.

Secure EPT Concurrency

Secure EPT concurrency rules are designed to support the expected usage and yet be as simple as possible.

Host-Side (SEAMCALL) Functions:

e Functions that manage Secure EPT acquire exclusive access to the whole Secure EPT tree of the target TD.

e In specific cases where a Secure EPT entry update may collide with a concurrent update done by the guest TD, such
host-side functions update the Secure EPT entry as a transaction, using atomic compare and exchange operations.

e TDH.MEM.SEPT.RD acquire shared access to the whole Secure EPT tree of the target TD to help prevent changes to
the tree while they execute.

e Other functions that only read Secure EPT for GPA-to-HPA translation (e.g., TDH.MR.EXTEND) acquire shared access
to the whole Secure EPT tree of the target TD to help prevent changes to the tree while they execute.

February 2023

Page 75 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

Guest-Side (TDCALL) Functions
Guest-side functions emulate the CPU’s top-down EPT walk operation.

e Guest-side functions have no concurrency restrictions on the whole Secure EPT tree.

e Guest-side functions that need to update a Secure EPT entry (currently, only TDG.MEM.PAGE.ACCEPT) acquire an
exclusive lock on that entry. This lock is only checked by other similar guest-side functions, but not by host-side
functions. Thus, Secure EPT entry update is done as a transaction, using atomic compare and exchange operation.

11.7. Introduction to TLB Tracking

The goal of TLB tracking is to be able to prove (when needed) that no logical processor holds any cached Secure EPT
address translations to a given TD private GPA range. TLB tracking is required when removing a mapped TD private page
(TDH.MEM.PAGE.REMOVE) or when changing the page mapping size (TDH.MEM.PAGE.PROMOTE), etc.

GPA Range TLB Tracking Sequence

This sequence is intended to be used by the host VMM to help guarantee no EPT TLB entries exist to a set of GPA ranges.

Intel TDX

Module Guest TD

TDH.MEM.RANGE.BLOCK(TDR, GPA, level)
|
e — — —
I TDH.M EM.TRACK(TDR)4:|:|
J_< __________________

IPI

VM Exit (external interrupt)
[rTD Exit (external interrupt)

—— TDH.VP.ENTER
[VM Entry ?—‘-h

Figure 11.4: Typical TLB Tracking Sequence
The sequence typically includes five steps:

1. Execute TDH.MEM.RANGE.BLOCK on each GPA range, blocking subsequent creation of TLB translation to that range.
Note that cached translations may still exist at this stage.

2. Execute TDH.MEM.TRACK, advancing the TD’s epoch counter.

3. Send an Inter-Processor Interrupt (IPl) to each Remote Logical Processor (RLP) on which any of the TD’s VCPUs is
currently scheduled.

4. Upon receiving the IPIl, each RLP will TD exit to the host VMM.

When each of the TD VCPUs has been inactive at least once following TDH.MEM.TRACK, the target GPA ranges are
considered tracked. Even though some LPs may still hold TLB entries to the target GPA ranges, the following TD entry to
each of the TD VCPUs is designed to flush them.

Note: If the host VMM counts the number of active VCPUs, and following TDH.MEM.TRACK this number is 0, the host
VMM may skip the IPIs — all VCPUs are already considered tracked.

5. Normally, the host VMM on each RLP will treat the TD exit as spurious and will immediately re-enter the TD.
11.8. Secure EPT Build and Update: TDH.MEM.SEPT.ADD

The host VMM can use the TDH.MEM.SEPT.ADD function to add a Secure EPT page to a guest TD. TDH.MEM.SEPT.ADD
inputs are:

e Target TD, identified by its TDR HPA

February 2023 . Page 76 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

e Destination physical page for the new Secure EPT table
e Mapping information: GPA and EPT level

At a high level, TDH.MEM.SEPT.ADD works as follows:

1. Check the TD keys are configured.

2. Check the destination physical page is marked as free in the PAMT.

3. Perform a Secure EPT walk to locate the Secure EPT non-leaf entry which will become the parent entry that maps
the new Secure EPT page. To help prevent re-maps, TDH.MEM.SEPT.ADD checks the mapping does not already exist,
else it aborts the operation.

4. Initialize the target page to zero using the target TD’s private HKID and direct writes (MOVDIR64B).

5. Update the parent Secure EPT entry to map the page as SEPT_PRESENT.

6. Update the page’s PAMT entry with the PT_EPT page type and the TDR PA as the OWNER.

The Secure EPT’s root page (EPML4 or EPMLS5, depending on whether the host VMM uses 4-level or 5-level EPT) does not
need to be explicitly added. It is created during TD initialization (TDH.MNG.INIT) and is stored as part of TDCS. On each
VCPU initialization, TDH.VP.INIT copies the address of the Secure EPT root page to the VCPU’s TD VMCS'’s EPTP field
clearing the HKID bits to 0°.

The following example illustrates the build process of a 4-level Secure EPT hierarchy:

1. The host VMM calls TDH.MNG.CREATE(TDR_PA = TDRo) to create the TD.

2. The host VMM calls TDH.MNG.ADDCX(TDR_PA = TDRo, DST_PA = TDCX_PAGE_PA) multiple times to allocate pages
for TDCS. One of those pages will be used to host the Secure EPT root page Do.

3. Host VMM calls TDH.MNG.INIT(TDR_PA = TDRo) to initialize the TD and set an EPML4 page in one of the previously
added TDCX pages as the Secure EPT root page. This updates TDCS.EPTP.

4. TDH.VP.INIT of each VPCU copies TDCS.EPTP to the TD VMCS’s EPTP field.

5. Host VMM calls TDH.MEM.SEPT.ADD(TDR_PA = TDRo, DST_PA = D1, GPA = Gy, LVL= 3) to add an EPDPT page.

6. Host VMM calls TDH.MEM.SEPT.ADD(TDR_PA = TDRo, DST_PA = D, GPA = Go, LVL= 2) to add an EPD page.

7. Host VMM calls TDH.MEM.SEPT.ADD(TDR_PA = TDRo, DST_PA = D3, GPA = Go, LVL= 1) to add an EPT page.

Step 3 TDCS
LR S Step 5 Step 6 Step 7
EPTP = Do TDH.MEM.SEPT.ADD TDH.MEM.SEPTADD TDH.MEM.SEPT.ADD
Step 4 EPML4 EPDPT EPD EPT
TDH.VP.INIT
PA =D3
TD VMCS PA = D2 SEPT_PRESENT
PA = D1 SEPT_PRESENT
EPTP = Do SEPT_PRESENT ||

PAMT Entry for D,

PAMT Entry for D,

PAMT Entry for D,

PAMT Entry for D,

OWNER =TDR,
PT = PT_TDCX

OWNER = TDR,
PT = PT_EPT

OWNER = TDR,
PT = PT_EPT

OWNER = TDR,
PT = PT_EPT

Figure 11.5: Typical Secure EPT Hierarchy Build Process

To help avoid stability issues caused by cache line aliasing, the VMM should ensure that no cache lines associated with
the added physical SEPT page are in a Modified state, before calling TDH.MEM.PAGE.AUG. This is typically done by calling
TDH.PHYMEM.PAGE.WBINVD.

5 The CPU adds the TD’s private HKID on EPT walks. Having HKID as O allows the host VMM to use INVEPT, for managing the usage of
shared EPT which shares the ASID with the TD’s secure EPT (see [@).

February 2023 Page 77 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

11.9. Adding TD Private Pages during TD Build Time: TDH.MEM.PAGE.ADD

Adding TD private pages with arbitrary content is allowed only during TD build time (before TDH.MR.FINALIZE). The host
VMM adds and maps 4KB private pages to a guest TD using TDH.MEM.PAGE.ADD with the following inputs:

Target TD, identified by its TDR physical address
e Source page physical address

Destination page physical address

e Destination page GPA

At a high level, TDH.MEM.PAGE.ADD works as follows:

1. Check the TD has not been initialized.

Check the TD keys are configured.

Check the destination physical page is marked as free in the PAMT.

Perform a pseudo Secure EPT walk to locate the parent Secure EPT leaf entry that is going to map the new TD private
page. To help prevent re-maps, TDH.MEM.PAGE.ADD checks the mapping does not already exist, else it aborts the
operation.

Copy the source page to the destination page using the target TD’s private HKID and direct writes (MOVDIR64B).
Update the previously located parent Secure EPT leaf entry to map the page as SEPT_PRESENT.

Update the TD measurement with the new page GPA (as described in 14.1.1).

Update the PAMT entry with the PT_REG page type and the TDR PA as the OWNER.

pwnN

© N,

TDH.MEM.PAGE.ADD

\ 4

EPML4 EPDPT EPD EPT New 4KB TD Private
Page
PA =D3
PA=D2 SEPT_PRESENT PA = D4
PA=D1 SEPT_PRESENT SEPT_PRESENT
SEPT_PRESENT

PAMT Entry for D,

PAMT Entry for Dy

PAMT Entry for D,

PAMT Entry for Dy

PAMT Entry for D,

OWNER = TDR,
PT = PT_EPT

OWNER = TDR,
PT = PT_EPT

OWNER = TDR,
PT = PT_EPT

OWNER = TDR,
PT = PT_EPT

OWNER = TDR,
PT = PT_REG

Figure 11.6: Typical Sequence for Adding a TD Private Page during TD Build Time

To help avoid stability issues caused by cache line aliasing, the VMM should ensure that no cache lines associated with
the added physical page are in a Modified state, before calling TDH.MEM.PAGE.AUG. This is typically done by calling
TDH.PHYMEM.PAGE.WBINVD.

11.10. Dynamically Adding TD Private Pages

11.10.1. Overview

Dynamically adding TD private pages after the guest TD has been initialized is typically done as a three-step process:

e The host VMM can update Secure EPT using TDH.MEM.SEPT.ADD and TDH.MEM.SEPT.REMOVE.

e The host VMM adds and maps a 4KB or a 2MB TD private page using TDH.MEM.PAGE.AUG. This page is not
measured. The Secure EPT entry state for that added page is SEPT_PENDING.

e The guest TD must accept the page before it can access it, using TDG.MEM.PAGE.ACCEPT. The page content is zeroed
out.

This process is designed to help prevent attacks where the host VMM could remove arbitrary pages from the guest TD’s
GPA space (using TDH.MEM.PAGE.REMOVE) and replace them with zeroed-out pages.

February 2023 Page 78 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

A guest TD attempt to access a page that has been dynamically added by TDH.MEM.PAGE.AUG but has not yet been
accepted by TDH.MEM.PAGE.ACCEPT results in a #VE exception.

Refer also to the software flow described in 3.3.1.1.

11.10.2. Page Addition by the Host VMM: TDH.MEM.PAGE.AUG

The host VMM can add and map 4KB and 2MB private pages to a guest TD in a non-present and pending state using
TDH.MEM.PAGE.AUG, with the following inputs:

e Target TD, identified by its TDR physical address
e Destination page physical address
e Destination page GPA

At a high level, TDH.MEM.PAGE.AUG works as follows:

1. Check the TD keys are configured.

Check the TD has been initialized by TDH.MNG.INIT.

Check the destination physical page is marked as free in the PAMT.

Perform a pseudo Secure EPT walk to locate the parent Secure EPT leaf entry that is going to map the new TD private
page. To help prevent re-maps, TDH.MEM.PAGE.AUG checks the mapping does not already exist, else it aborts the
operation.

5. Update the previously located parent Secure EPT leaf entry to map the page as SEPT_PENDING.

6. Update the PAMT entry with the PT_REG page type and the TDR PA as the OWNER.

Bl N

Note that TDH.MEM.PAGE.AUG does not need to access the destination page itself; the page is initialized later on by
TDG.MEM.PAGE.ACCEPT.

TDH.MEM.PAGE.AUG
(2MB)

\ 4

New 2VBTD | - | -
PrivatePage. * . * .
{Non-Initlakizéd)® «
EPML4 EPDPT EPD
2o0ofofofot: TDH.MEM.PAGE.AUG
PA = D3 I R R (4KB)
SEPT_PENDING | | x
PA=D2 | | = @000 | - +
PA = D1 SEPT_PRESENT PA =Da EPT New KB TD'Private
SEPT_PRESENT SEPT_PRESENT Faze o
= ((Non:Inifialized). = ©
PA = D5 i Lt
SEPT_PENDING | | 0t e
i
1 o t
2MB PAMT Entry for Dy
PAMT Entry for D, PAMT Entry for D, PAMT Entry for D, OWNER =TDR,
PT = PT_REG
OWNER = TDR, OWNER = TDR, OWNER = TDR, AT Entreor D .
PT = PT_EPT PT = PT_EPT PT = PT_EPT ntry for D, 4KB PAMT Entry for Dy
OWNER = TDR, OWNER = TDR,
PT = PT_EPT PT = PT_REG

Figure 11.7: Host VMM Adding a 4KB or a 2MB TD Private Page

February 2023 . Page 79 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec

Section 2: Intel TDX Module Architecture Specification

344425-005US

To help avoid stability issues caused by cache line aliasing, the VMM should ensure that no cache lines associated with
the added physical page are in a Modified state, before calling TDH.MEM.PAGE.AUG. This can be done be calling
TDH.PHYMEM.PAGE.WBINVD.

11.10.3. Page Acceptance by the Guest TD: TDG.MEM.PAGE.ACCEPT

5 11.10.3.1.

Description

The guest TD can accept a dynamically added 4KB or 2MB page using TDG.MEM.PAGE.ACCEPT with the page GPA and

size inputs.

At a high level, TDG.MEM.PAGE.ACCEPT works as follows:

1. Perform a Secure EPT walk to locate the parent Secure EPT leaf entry that maps the TD private page, and handle the
10 walk results as described in the table below.

Table 11.3: TDG.MEM.PAGE.ACCEPT SEPT Walk Cases

SEPT Walk Terminal Entry

TDG.MEM.PAGE.ACCEPT

Typical Software Handling

Level Leaf or State Operation
Non-Leaf
Higher Leaf SEPT_PRESENT (e.g., 2MB Return a status code indicating a Option 1: This is OK, the host
than PTE present for a 4KB success, with a warning that the VMM did not use the memory
requested request). page is already present and released by the TD.
mapped at a level higher than Option 2: This is a guest bug; the
requested. status code helps debugging it.
Other than SEPT_PRESENT | TD exit with EPT violation The host VMM demotes the page
(e.g., 2MB PTE pending for | indicating the error SEPT entry to match the requested accept
a 4KB request). level and state, and the guest- size.
requested accept level. See
22.5.1.

Non-Leaf Other than SEPT_PRESENT | TD exit with EPT violation This may be used as a guest TD

(incl. (e.g. blocked PDE for a 4KB | indicating the error SEPT entry request from the host VMM to

SEPT_FREE) | request). level and state, and the guest- add a page. The host VMM adds

B requested accept level. See SEPT pages (TDH.MEM.SEPT.ADD)
22.5.1. and the requested page
(TDH.MEM.PAGE.AUG), and
resumes the guest.
Same as Non-Leaf SEPT_FREE TD exit with EPT violation This may be used as a guest TD
requested | (incl. indicating the error SEPT entry request from the host VMM to

SEPT_FREE) level and state, and the guest- add a page. The hosts VMM adds
requested accept level. See the requested page
22.5.1. (TDH.MEM.PAGE.AUG) and

resumes the guest.
Other than SEPT_FREE Return a status code indicating a The guest falls back to accept the
(e.g., requested 2MB entry | size mismatch error. range using 4K size.
is mapped to a EPT page
instead of being a leaf)

Leaf SEPT_PRESENT Return a status code indicating a Option 1: This is OK, the host
success, with a warning that the VMM did not use the memory
page is already present. released by the TD.

Option 2: This is a guest bug; the
status code helps debugging it.
February 2023 Page 80 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec

Section 2: Intel TDX Module Architecture Specification

344425-005US

SEPT Walk Terminal Entry

Level

Leaf or
Non-Leaf

State

Operation

TDG.MEM.PAGE.ACCEPT

Typical Software Handling

SEPT_BLOCKED or
SEPT_PENDING_BLOCKED

22.5.1.

TD exit with EPT violation
indicating the error SEPT entry
level and state, and the guest-
requested accept level. See

The host VMM resolves the
blocking (e.g., completes the
memory management operation
that required blocking) and
resumes the guest.

SEPT_PENDING

Complete the operation as
described below.

Success

10

15

20

If passed:

Note:

2. If all the above checks pass, loop until done or interrupted:

2.1

(MOVDIR64B).

2.2.
2.3.

Since initializing a 2MB page may take a long time, TDG.MEM.PAGE.ACCEPT is interruptible and resumable.

Initialize the next 4KB chunk of the page to zero using the target TD’s private HKID and direct writes

If the whole page has been initialized, update the parent Secure EPT entry to set its state to SEPT_PRESENT.
Else, if there is a pending interrupt, resume the guest TD without updating RIP and any GPR. The CPU may

handle the interrupt, causing a TD exit. When the TD is resumed, TDH.MEM.PAGE.ACCEPT will re-invoked.

TDG.MEM.PAGE.ACCEPT

(2MB)

\ 4

2MB TD Private
Page
(Initialized to 0)

EPML4

PA = D1
SEPT_PRESENT

EPDPT

EPD

PA = D2

PA = D3
SEPT_PRESENT

TDG.MEM.PAGE.ACCEPT
(4KB)

[f

\ 4

SEPT_PRESENT

PA = D4
SEPT_PRESENT

EPT

11.10.3.2.

Guest-Side

4KB TD Private Page
(Initialized to 0)

PA =Ds
SEPT_PRESENT

1

Figure 11.8: Guest TD Accepting a 4KB or 2MB Pending TD Private Page

TDG.MEM.PAGE.ACCEPT Concurrency

TDG.MEM.PAGE.ACCEPT prevents the guest TD from concurrently accepting the same page by multiple threads.
TDG.MEM.PAGE.ACCEPT may also encounter a concurrent host-side operation, such as TDH.MEM.RANGE.BLOCK, that
attempts to update the same Secure EPT entry. In such cases, an error is returned to the guest TD, indicating that the
Secure EPT entry is busy.

Host-Side

TDG.MEM.PAGE.ACCEPT does not prevent host-side operation, such as TDH.MEM.RANGE.BLOCK, from concurrently
modifying the Secure EPT entry. TDG.MEM.PAGE.ACCEPT updates the entry using a locked compare and exchange

February 2023

Page 81 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

operation. If the update failed, a TD Exit is caused, with an EPT Violation exit reason and an indication that the violation
is due to TDG.MEM.PAGE.ACCEPT. For details, see the TDH.VP.ENTER definition in 24.2.31.

11.11. Page Merge: TDH.MEM.PAGE.PROMOTE

The host VMM can merge the mapping of 512 consecutive 4KB or 2MB pages to a single 2MB or 1GB page, respectively.
To do that, the host VMM should first perform the TLB tracking protocol on the large (2MB or 1GB) GPA range.

The host VMM should first call TDH.MEM.RANGE.BLOCK which operates on the EPT page for the large range (EPT for
2MB, EPD for 1GB). TDH.MEM.RANGE.BLOCK marks the parent EPT entry for that EPT page as SEPT_BLOCKED and
records the TD epoch in the PAMT entry of the EPT page. Figure 11.9 below shows the situation after
TDH.MEM.RANGE.BLOCK blocked a 2MB GPA range.

EPT 512 Consecutive 4KB TD Private Pages

EPD PA =X i 2MB Range
SEPT_PRESENT @ PA X

4KB TD Private Page
@ PAX

4KB TD Private Page
@ PA X +511*4K

SEPT_BLOCKED [+

SEPT_PRESENT

i PA = X + 511*4K

PAMT_4K Entry PAMT_4K Entry PAMT_2M Entry 512 Consecutive PAMT_4K Entries
OWNER = TDR, Ol\x\'_EET: ETF'?TRO OWNER = TDR, OWNER = TDR,
PT =PT_EPT - - PT =PT_NODE PT=PT R
- BEPOCH set - - OWNER = TDR,
PT = PT_REG
PAMT 2MB Sub-Block

Figure 11.9: Typical State after Blocking a Range of 512 Consecutive 4KB TD Private Pages

Typically, the host VMM then calls TDH.MEM.TRACK and performs a round of IPls. After that, there should be no active
address translation to the large (2MB or 1GB) GPA range.

The actual merge is done by TDH.MEM.PAGE.PROMOTE which has the following inputs:

e The large range GPA
e The large page level (2MB or 1GB)

At a high level, TDH.MEM.PAGE.PROMOTE works as follows:

1. Check the TLB tracking condition for the large range GPA (i.e., the EPT or EPD page for that range).
2. Check that all 512 entries of that EPT or EPD page are in the SEPT_PRESENT state and point to leaf pages whose
physical address is contiguous within the same 2MB or 1GB range.

If all checks pass, TDH.MEM.PAGE.PROMOTE does the following:

1. Mark all the PAMT_4K or PAMT_2M entries of the small leaf pages (4KB or 2MB, respectively) as PT_NDA.

2. Mark the PAMT_2M or PAMT_1G entry of the merged large (2MB or 1GB, respectively) pages as PT_REG.

3. Set the parent EPT entry to point to the merged large page, and mark it as present.

4. Mark the original EPT or EPD page’s PAMT entry as PT_NDA, effectively removing this for any use by the host VMM.

The host VMM should flush the former EPT or EPD physical page’s cache lines and initialize its content before it is reused,
as described in 10.5.1.

Figure 11.10 below shows a typical 2MB merged page after TDH.MEM.PAGE.PROMOTE.

February 2023 . Page 82 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

EPD i Former EPT i 2MB TD Private 15 4KB Unmapped E

; E Page i Page mmene M =
! : @ PAX E @PAX 1 4KB Unmapped !
SEPT_PRESENT 5 5 | Page 5
— ' ' ' @ PA X +511*4K
"""""""""""""""""""""" (e | |

PAMT_4K Entry PAMT_4K Entry PAMT_2M Entry 512 Consecutive PAMT_4K Entries
OWNER =TDR, OWNER = N/A OWNER =TDR, OWNER = I}I/A___E _______________
PT = PT_EPT PT = PT_FREE PT = PT_REG ' PT = PT_FP:
! . OWNER = N/A .
""" ~__ 1 PT=PT_FREE
PAMT 2MB Sub-Block [

Figure 11.10: Typical State of a 2MB TD Private Page after TDH.MEM.PAGE.PROMOTE

Refer also to the software flow described in 3.3.1.3.
11.12. Page Split: TDH.MEM.PAGE.DEMOTE

The host VMM can split the mapping of a single 2MB or 1GB page to 512 consecutive 4KB or 2MB pages, respectively. To
do that, the host VMM should first perform the TLB tracking protocol on the large (2MB or 1GB) page.

The host VMM should first call TDH.MEM.RANGE.BLOCK on the large page. TDH.MEM.RANGE.BLOCK marks the parent
EPT entry for that page as SEPT_BLOCKED and records the TD epoch in the PAMT entry of the page. Figure 11.11 below
shows the typical situation after TDH.MEM.RANGE.BLOCK blocked a 1GB large page.

EPDPT 1GB TD Private Page 2MB Unmapped i
@ PAX Page = ______ Moo |
@ PA X 2MB Unmapped
Page

SEPT_BLOCKED @ PAX +511%2M

I
S

i S—
PAMT_4K Entry PAMT_1G Entry 512 Consecutive PAMT_2M Entries
OWNER = TDR, OF\,AT”\iE;T:;EDGR" | OWNER=N/A | T
PT = PT EPT = i PT=PT_NC i
- BEPOCH set i i OWNER=N/A
TEITTTTTY PT=PT_NODE |
PAMT 1GB Block e :

Figure 11.11: Typical State after Blocking a 1GB Page

Typically, the host VMM then calls TDH.MEM.TRACK and performs a round of IPIs. After that, there should be no active
address translation to the large (2MB or 1GB) page.

The actual split is done by TDH.MEM.PAGE.DEMOTE which has the following inputs:

e The large page GPA
e The large page level (2MB or 1GB)

Section 2: Intel TDX Module Architecture Specification

February 2023 . Page 83 of 323

10

15

20

25

30

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

e The physical address of a free page that will be used for a new EPT or EPD page
At a high level, TDH.MEM.PAGE.DEMOTE works as follows:

1. Check the TLB tracking condition for the large page.
2. Check that the physical page for the new EPT or EPD is marked as free in the PAMT.

If all checks pass, TDH.MEM.PAGE.DEMOTE does the following:

3. Mark the PAMT_2M or PAMT_1G entry of the large (2MB or 1GB respectively) page as PT_NDA.

Mark all the PAMT_4K or PAMT_2M entries of the small (4KB or 2MB respectively) consecutive leaf pages as PT_REG.
Initialize the new EPT or EPD page with 512 EPT entries pointing to the 512 consecutive leaf pages.

Mark the new EPT or EPD page’s PAMT entry as PT_EPT.

Set the parent EPT entry to point to the new EPT or EPD page.

No vk

Figure 11.12 below shows the typical state of a 1GB GPA range after TDH.MEM.PAGE.DEMOTE.

EPD 512 Consecutive 2MB TD Private Pages
EPDPT PA = X | 1GB Range i | 2MB TD Private
SEPT_PRESENT ! @PAX 1| Page
d E E @ PAX 2MB TD Private
H] Page
SEPT_PRESENT i i @ PAX+511*2M
PA=X+511%2M | ||
SEPT_PRESENT E.,__.;.----------------E
PAMT_4K Entry PAMT_4K Entry PAMT_1G Entry 512 Consecutive PAMT_2M Entries
OWNER =TDR, OWNER =TDR, OWNER = N/A OWNER =TDR,
PT = PT_EPT PT = PT_EPT PT = PT_NODE PT=PT_R
OWNER =TDR,
PT =PT_REG

PAMT 1GB Block

Figure 11.12: Typical State of a 1GB TD Private Range after TDH.MEM.PAGE.DEMOTE
TDH.MEM.PAGE.DEMOTE supports demotion of PENDING pages.

Refer also to the software flow described in 3.3.1.4.
11.13. Relocating TD Private Pages: TDH.MEM.PAGE.RELOCATE

The host VMM can relocate a 4KB TD private page to another HPA using TDH.MEM.PAGE.RELOCATE. This is useful for,
e.g., physical address space de-fragmentation. The host VMM must first perform the TLB tracking protocol on the page.

The host VMM should first call TDH.MEM.RANGE.BLOCK on the target page. TDH.MEM.RANGE.BLOCK marks the parent
EPT entry for that page as SEPT_BLOCKED (if it was SEPT_PRESENT) or SEPT_PENDING_BLOCKED (if it was
SEPT_PENDING) and records the TD epoch in the PAMT entry of the page.

Typically, the host VMM then calls TDH.MEM.TRACK and performs a round of IPls. After that, there should be no active
address translation to target page.

The actual relocation is done by TDH.MEM.PAGE.RELOCATE which has the following inputs:

e The page GPA
e The target HPA to which the page will be relocated

At a high level, TDH.MEM.PAGE.RELOCATE works as follows:

1. Check the TD keys are configured.
2. Check the TD has been initialized.
3. Check the target physical page is marked as free in the PAMT.

February 2023 . Page 84 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

45

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

4. Perform a pseudo Secure EPT walk to locate the parent Secure EPT leaf entry that maps the TD private page. Check
that the entry has been blocked and get the current HPA.
5. Check the TLB tracking condition for the page.

If all checks pass, TDH.MEM.PAGE.RELOCATE does the following:

6. Copy the current physical page to the target physical page using direct writes (MOVDIR64B).

7. Mark the PAMT entry of the old physical page as PT_NDA.

8. Mark the PAMT entry of the target page as PT_REG.

9. Update the Secure EPT entry with the new physical page HPA. Set its state to SEPT_PRESENT or SEPT_PENDING
depending on whether its previous state was SEPT_BLOCKED or SEPT_PENDING_BLOCKED, respectively.

The host VMM should flush the old physical page’s cache lines and initialize its content before it is reused, as described
in 10.5.1.

11.14. Removing TD Private Pages: TDH.MEM.PAGE.REMOVE

The host VMM can remove TD private pages using TDH.MEM.PAGE.REMOVE, freeing them for any use. 4KB, 2MB and
1MB pages can be removed — no demotion is required for large pages. The host VMM should first perform the TLB
tracking protocol on the page.

The host VMM should first call TDH.MEM.RANGE.BLOCK on the target page. TDH.MEM.RANGE.BLOCK marks the parent
EPT entry for that page as SEPT_BLOCKED (if it was SEPT_PRESENT) or SEPT_PENDING_BLOCKED (if it was
SEPT_PENDING) and records the TD epoch in the PAMT entry of the page.

Typically, the host VMM then calls TDH.MEM.TRACK and performs a round of IPIs. After that, there should be no active
address translation to target page.

The actual removal is done by TDH.MEM.PAGE.REMOVE which has the following inputs:

e The page GPA
e The page level (4KB, 2MB or 1GB)

At a high level, TDH.MEM.PAGE.REMOVE works as follows:

1. Check the TLB tracking condition for the page.
2. Check that the mapping size of the page fits the input parameter.

If all checks pass, TDH.MEM.PAGE.REMOVE does the following:

3. Mark the EPT entry for the target page as SEPT_FREE.
4. Mark the PAMT entry of the page as PT_NDA.

The host VMM should flush the physical page’s cache lines and initialize its content before it is reused, as described in
10.5.1.

Refer also to the software flow described in 3.3.1.2.
11.15. Removing a Secure EPT Page: TDH.MEM.SEPT.REMOVE

The host VMM can remove a Secure EPT page using TDH.MEM.SEPT.REMOVE, freeing it for any use, provided all its
entries are SEPT_FREE. The host VMM should first perform the TLB tracking protocol on the page.

The host VMM should first call TDH.MEM.RANGE.BLOCK on the Secure EPT page. TDH.MEM.RANGE.BLOCK marks the
parent EPT entry for that page as SEPT_BLOCKED and records the TD epoch in the PAMT entry of the page.

Typically, the host VMM then calls TDH.MEM.TRACK and performs a round of IPls. After that, there should be no active
address translation to GPA range presented by the Secure EPT page to be removed.

The actual removal is done by TDH.MEM.SEPT.REMOVE which has the following inputs:

e The Secure EPT page GPA
e The EPT level

At a high level, TDH.MEM.SEPT.REMOVE works as follows:

1. Check the TLB tracking condition for the page.
2. Check that the mapping size of the page fits the input parameter.
3. Check that all 512 entries of the Secure EPT page are PT_NDA.

February 2023 . Page 85 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

If all checks pass, TDH.MEM.SEPT.REMOVE does the following:

4. Mark the EPT entry for the Secure EPT page as SEPT_FREE.
5. Mark the PAMT entry of the Secure EPT page as PT_NDA.

The host VMM should flush the former SEPT physical page’s cache lines and initialize its content before it is reused, as
described in 10.5.1.

11.16. Unblocking a GPA Range: TDH.MEM.RANGE.UNBLOCK

The host VMM can unblock previously blocked TD private GPA ranges using TDH.MEM.RANGE.UNBLOCK, returning them
to their original state. 4KB, 2MB and 1MB GPA ranges can be unblocked.

The host VMM should first complete the TLB tracking protocol on the GPA range. It typically calls TDH.MEM.TRACK and
performs a round of IPls. After that, there should be no active address translation to target page.

The actual unblocking is done by TDH.MEM.RANGE.UNBLOCK which has the following inputs:

e The GPA
e The GPA range level (4KB, 2MB or 1GB)

At a high level, TDH.MEM.RANGE.UNBLOCK works as follows:

1. Check the TLB tracking condition for the GPA range.
2. Check that the mapping size of the GPA range fits the input parameter.

If all checks pass, TDH.MEM.RANGE.UNBLOCK does the following:

3. Mark the EPT entry for the target GPA as SEPT_PRESENT (if it was SEPT_BLOCKED) or SEPT_PENDING (if it was
SEPT_PENDING_BLOCKED).

Refer also to the software flow described in 3.3.1.5.

February 2023 . Page 86 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec

Section 2: Intel TDX Module Architecture Specification

344425-005US

VMX Root Mode————»'«—VMX Non

12.TD VCPU
This chapter discusses multiple items related to TD VCPUs.
12.1. VCPU Transitions
Legacy VMX }
= > SEAM Mode >
(non-SEAM) Mode | T
|
\ TDX Non-Root Mode v
\ . VCPU B
| (Logical) s
| | =
} I e | Trap-Like E%
| Instruction —— VM Exit !
} VM Entry—> Next Instruction =r_ 1+ | ike
} / I o I VM Exit
I I
‘ . .
|
|
____________________ I o LN
|
DS et Mode | VMLAUNCH/ VM Exit
(Logical) | LP-Scope VMRESUME Entry Point
| State (incl.
| SEAM VMCS) Restore TD State
: foniows e
} TDH.VP.ENTER (Selecte / Handler
| (after XMM)
[TDG.VP.VMCALL) /
| Normal TDG.VP.VMCALL
‘ Async
} SEAMCALL TDH.VP.ENTER Restore all o
‘ Entry (Normal) TD State
Point from TDVPS
| | } Other
I e o0 I ‘
I '/ ! Save TD State to
SEAMCALL | Host-Side TDVPS TDVPS and Init Save all TD State
Next Instruction | API Function (incl. (Selected GPR/ to TDVPS & Init
. ,\ | <_J TD VMCS) XMM)
! ! <\ /
N SEAMRET |« /

Host VMM

10

12.1.1.

On the initial TD entry to a TD VCPU, the TDX module restores the initial TD VCPU state from TDVPS (including TD VMCS).

Following a successful TDH.VP.ENTER, asynchronous TD exit may happen as a result of events such as interrupts, EPT
violations etc. In such case, the TDX module saves the TD VCPU state into TDVPS (including TD VMCS). Most of the host
VMM VCPU state that may have been used by the TD is initialized. For a detailed description of VMM state following

Intel TDX Module

TDH.VP.ENTER, see 24.2.40.

On the subsequent TD entry following an asynchronous TD exit, the TDX module restores the TD VCPU state from TDVPS

Figure 12.1: TD VCPU Transitions Overview

Initial TD Entry, Asynchronous TD Exit and Subsequent TD Entry

(including TD VMCS). The host VMM does not impact the VCPU state.

February 2023

Page 87 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec

Section 2: Intel TDX Module Architecture Specification

344425-005US

TD VCPU
VM VM
exit entry
1. Examine exit reason, decide . Save selected host VMM CPU
on async TD exit state
TDX 2. Save non-VMCS CPU state in . Associate VCPU
Module TDVPS . Restore non-VMCS CPU state
3. Init or restore host VMM from TDVPS
CPU state . VMLAUNCH/VMRESUME

SEAMRET

12.1.2. Synchronous TD Exit and Subsequent TD Entry

Figure 12.2: Example of Asynchronous TD Exit and TD Resumption

TDG.VP.VMCALL provides a channel for the guest TD to communicate with the host VMM.

5 The guest TD can initiate a synchronous TD exit by invoking TDG.VP.VMCALL. The RCX input parameter of selects the
GPRs (from RBX, RDX, RBP, RDI, RSI and R8 through R15) and XMM registers whose value is passed through to the host
VMM as the output of TDH.VP.ENTER. RCX itself is passed as-is to the output of TDH.VP.ENTER. Other CPU state
components, including GPRs and XMM registers not selected by RCX, are saved in TDVPS and set to fixed values.

On the subsequent TDH.VP.ENTER, the RCX value that was used for TDG.VP.VMCALL selects the GPRs (from RBX, RDX,
10 RBP, RDI, RSl and R8 through R15) and XMM registers whose value is passed through to the guest TD. Other CPU state
components, including GPRs and XMM registers not selected by RCX, are restored from RCX.
For details, see the TDH.VP.ENTER definition in 24.2.40 and TDG.VP.VMCALL in 24.3.10.
TD VCPU Pl;epare ° TDG.VP.VMCALL
equest Response
VM
{, exit
1. Examine exit reason, decide 1. Save selected host VMM CPU
on synchronous TD exit state
TDX 2. Save non-VMCS CPU state in 2. Associate VCPU
Module TDVPS, pass through 3. Restore non-VMCS CPU state
selected GPRs and XMMs from TDVPS, pass through
3. Init or restore host VMM selected GPRs and XMMs

15

20

CPU state 4. VMLAUNCH/VMRESUME

SEAMRET

Figure 12.3: Example of Synchronous TD Exit and TD Resumption

12.1.3. VCPU Activity State Machine

The VCPU activity state machine, controlled by TDVPS.STATE as shown in Table 12.1 below and shown in Figure 12.4
below, helps ensure the following:

e A VCPU can be entered only when its logical TDVPS control structure, composed of TDVPR and TDVPX pages, is
available in memory and has been initialized.

e AVCPU can be entered only if its state is consistent (no non-recoverable TD exit happened).

e TD entry is done properly, depending on whether it is the first entry or on the last TD exit type.

February 2023 Page 88 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec

Section 2: Intel TDX Module Architecture Specification

344425-005US

Table 12.1: TDVPS.STATE Definition

State Name

Description

VCPU_UNINITIALIZED

VCPU has not been initialized yet by TDH.VP.INIT.

VCPU_READY

This is a super-state with 2 sub-states. In this super-state, VCPU can

be entered.

VCPU_READY_ASYNC Last TD exit was due to an asynchronous event (non-TDG.VP.VMCALL).
VCPU state has been fully saved on TD exit and will be restored on the

next TD entry.

VCPU_READY_TDVMCALL | Last TD exit was due to a TDG.VP.VMCALL. On the next TD entry, most
GPR and all XMM state will be forwarded to the guest TD from the

host VMM.

VCPU_ACTIVE VCPU is active (TDX non-root mode) on some LP.

VCPU is disabled.

VCPU_DISABLED

TD Entry and TD Exit transitions normally toggle between the VCPU_READY super-state and the VCPU_ACTIVE state,
except when a non-recoverable VCPU TD Exit (due to a Triple Fault) transitions to a VCPU_DISABLED state.

1 VCPU_READY)

TD VCPU may be entered

TDH.VP.CREATE

(VCPU_READY_ASYNC]

—TDH.VP.ENTER:

TD VCPU has not been Last TD exit was due to an TD VCPU running on an LP TD VCPU is disabled

S TD Exit
initialized asynchronous event (non- bl
TDH.VP.INIT+ TDG.VP.VMCALL)) [non-recoveral
TD Exit VCPU state]

- [non-
TDG.VP.VMCALL]

\\TDH.VP.ADDCXAI

(VCPU_READY_TDVMCALL\

TDH.VP.ENTER

Last TD exit wasdue to a
TDG.VP.VMCALL

TD Exit
[TDG.VP.VMCALL]

A

(. J

Figure 12.4: VCPU Activity State Machine

12.2. TD VCPU TLB Address Space Identifier (ASID)

Non-root mode cached address translations are tagged with unique Address Space Identifiers (ASIDs). The goal of TD
ASIDs is to reduce the need to flush TLB entries on TD Entry and TD Exit due the associated performance costs as a result
10 of the flushing.

12.2.1. TD ASID Components

Table 12.2 below shows a high-level view of the components of the TD ASID. The exact structure is micro-architectural.

February 2023 Page 89 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

Table 12.2: TD ASID

Field Size Description and TDX Usage
(Bits)
SEAM 1 This is an implicit bit 16 of VPID not directly visible to software. It is set to 1 by the

CPU in SEAM mode. This bit prevents overlap with legacy (non-TDX) ASIDs.

VPID 16 Set by the Intel TDX module to VCPU_INDEX, a unique index of a VCPU in a TD, plus 1
(since VCPU_INDEX starts with 0 which is not a value VPID number for non-root
mode)

EPTP 40 Bits [51:12] of the EPTP, which for a TD points to the Secure EPT root — HKID bits are
cleared to 0

Note that EPTP is unique per TD and is used as an ASID component for both Secure
EPT and Shared EPT translations caching.

PCID 16 Same as legacy PCID

12.2.2. INVEPT by the Host VMM for Managing the Shared EPT

The same ASID based on the TD’s EPTP is used for caching both secure and shared EPT translations (remember: EPTP is
5 the HPA of the secure EPT root page). Thus, to flush shared EPT translations, the host VMM uses INVEPT specifying the
TD’s EPTP, not its Shared EPTP. The host VMM can obtain the value of EPTP from the TD VMCS using TDH.VP.RD.

An alternative method the host VMM may use is to do TLB tracking similar to how it’s done for Secure EPT, i.e., execute
TDH.MEM.TRACK and a round of IPI. Contrary to Secure EPT, this is not enforced by the TDX module.

12.3. VCPU-to-LP Association

10 12.3.1. Non-Coherent Caching

Some TD VCPU state is non-coherently cached. This includes:

e Address translations (TLB/PxE entries) must be explicitly flushed in case they may be stale.
e TDVMCS is cached by the CPU. VMX architecture requires making a VMCS current by VMPTRLD before using it with
most VMX instructions, and then explicitly writing it to memory and making it non-current by VMCLEAR before the
15 VMCS memory image can be handled (e.g., by making it current on another LP).

This non-coherent caching implies that some explicit and/or implicit operations are done to help guarantee correctness.
This is described in the following sections.

12.3.2. Intel TDX Functions for VCPU-LP Association and Dis-Association

TDH.VP.CREATE

TDH.VP.ENTER TDH.VP.ENTER
on LP1 TDH.VP.INIT TDH.VP.INIT on LP2
X on LP1 . on LP2
e LP1's current/working e VCPUx VMCS is not LP2's current/working
VMCS is VCPU x VMCS current/working VMCS VMCS is VCPU x VMCS
e Cached address TDH.VP.ENTER on any LP TDH.VP.ENTER e Cached address
translations & paging onLP1 e No VCPU x cached on LP2 translations & paging
structures may exist Any other address translations & Any other structures may exist
[|e TD'sHKID maynotbe VCPU-specific paging structures on VCPU-specific TD's HKID may not be
Any other | freed interface function any LP interface function freed) Any other
VCPU-specific 7'y on LP1 7'y 7 on LP2 7'y VCPU-specific
interface function interface function
on LP1 on LP2
B — ‘——TDH.VP.FLUSH——— ‘—— TDH.VP.FLUSH——— e
20 Figure 12.5: VCPU Association State Machine

February 2023 . Page 90 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

The following Intel TDX module mechanisms are designed to help ensure correct and secure operation:

TD VCPU to LP association is many-to-one. A TD VCPU can be associated with at most one LP at any given time. An
LP may be associated with multiple VCPUs.

VCPU to LP association is implicitly done by any VCPU-specific SEAMCALL flow, including TDH.VP.ENTER. Those flows
check that the VCPU is either already associated with the current LP or is not associated with any LP.

If the host VMM wishes to associate a VCPU with another LP, it must explicitly flush the VCPU state on the LP currently
associated with it using TDH.VP.FLUSH. This function performs TD ASID, and extended paging structure (EPxE) caches
TLB flush and VMCLEAR. For details, see 24.2.25.

If the VMM wishes to reclaim the TD’s private HKID, thus making the TDVPS memory inaccessible, it must explicitly
flush the VCPU state on the LP currently associated with it. This is described in 7.4.

12.3.3. Performance Considerations

Migrating VCPUs between LPs is costly. As described above, it involves flushing address translation caches, paging
structure caches and VMCS cache. The host VMM should minimize that for best performance.

Address translation and paging structure caches are flushed at TD-scope on the current LP. This flushing impacts the
(possibly non-typical) case where multiple VCPUs of the same TD are associated with a single LP.

February 2023 . Page 91 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

13.CPU Virtualization (Non-Root Mode Operation)

This chapter describes how the Intel TDX module virtualizes the CPU to a guest TD.
13.1. Initial State

Intel SDM, Vol. 3,9.1.1 Processor State after Reset
13.1.1. Overview

As designed, most of the TD VCPU initial state is the same as the processor architectural state after INIT. However, there
are some differences:

e The TD VCPU starts its life in protected (32-bit) non-paged mode, not in real mode. It is allowed only to switch to
64b mode. This impacts the initial state of segment registers, CRs and MSRs. Mode restrictions in TDX non-root
mode are described in 13.1.

e ThelA32_EFER MSR is initialized to support the CPU modes described in 13.1.

e The initial values of some GPRs provide some basic information to the guest TD as described in 13.1.2 below. This
information should be sufficient for the vBIOS to set up paging tables and switch as soon as possible to 64b mode,
where it can use the TDCALL leaf functions.

See also the TDVPS fields and TD VMCS guest state area in 23.2.

13.1.2. |Initial State of Guest TD GPRs

As designed, the following initial state is different than the architectural INIT state:

Table 13.1: Initial Values of GPRs Different from their Architectural INIT Values

Register | Bits Initial Value

RBX 5:0 GPAW, the effective GPA width (in bits) for this TD (do not confuse with MAXPA) —
SHARED bit is at GPA bit GPAW-1

Only GPAW values 48 and 52 are possible.

63:6 Reserved: setto 0

RCX, R8 63:0 | The value of RCX and R8 is provided as an input to TDH.VP.INIT (the same value in both
GPRs). No checking is done on this value; the intention is for vBIOS to read RCX
immediately after the first TDH.VP.ENTER, and use the RCX value appropriately as set by
software convention.

RDX 31:0 Set to the virtualized Family/Model/Stepping returned by CPUID(1).EAX. The value is
calculated by TDH.SYS.INIT as to have the minimum Stepping ID across all packages.

63:32 | Reserved: setto 0

RSI 31:0 | Virtual CPU index, starting from 0 and allocated sequentially on each successful
TDH.VP.INIT

63:32 | Reserved: setto 0

RIP 63:0 | Set to OXFFFFFFFO (i.e., 4GB - 16B)

13.1.3. |Initial State of CRs

As designed, the following initial state is different than the architectural INIT state:

e CROis initialized to 0x0021 — bits PE (0) and NE (5) are set to 1, and all other bits are cleared to 0. See 13.6.1 for
details.

e CR4is initialized to 0x2040 — bits MCE (6) and VMXE (13) are set to 1, and all other bits are cleared to 0. Note that
the virtualized value of VMXE is 0, due to the setting of the TD VMCS “CR4 guest/host mask” and “CR4 read shadow”
controls. See 13.6.2 for details.

February 2023 . Page 92 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

13.1.4. |Initial State of Segment Registers

As designed, the following initial state is different than the architectural INIT state:

e CS, DS, ES, FS, GS and SS are initialized with a base of 0 and limit of OxFFFFFFFF.
e LDTR, TR and GDTR are initialized with a base of 0 and limit of OxFFFF.
5 e |IDTRis initialized as invalid (limit of 0).

13.1.5. |Initial State of MSRs

As designed, the following initial state is different than the architectural INIT state:

e |A32_EFER is initialized to 0x901 — SCE (bit 0), LME (bit 8) and NXE (bit 11) are set to 1, and all other bits are
cleared to 0.

10 13.2. Guest TD Run Time Environment Enumeration

Guest software can be designed to run either as a TD, as a legacy virtual machine, or directly on the CPU, based on
enumeration of its run-time environment. Figure 13.1 below shows a typical flow used by guest software.

CPUID(0) Legend

Legacy |:|

Y
N
Non-Intel TDX |:|
Y
v

v

A

Get vendor ID (EBX:EDX:ECX)

G CPUID(0x21, 0x0) and max sub-leaf (EAX)

Y
Not Para- | 0
Virtualized
1

CPUID(0).EAX >= 0x21

Vendor ID ==
“IntelTDX " ?

> Not Intel TDX

\
'

L : TDCALL(TDG.VP.INFO) | Enumerate TD configuration

Figure 13.1: Typical Run-Time Environment Enumeration by a Guest TD

15 CPUID leaf 0x21 emulation is done by the Intel TDX module. Sub-leaf O returns the values shown below. Other sub-
leaves return 0 in EAX/EBX/ECX/EDX.

Table 13.2: TDX Enumeration by CPUID(0x21,0)

GPR | Value (Hex) Description

EAX 0x00000000 Maximum sub-leaf number

EBX | Ox65746E49 “Inte”

ECX | 0x20202020 “ “

EDX | 0x5844546C “1TDX”

Once the guest software discovers that it runs as a TD, it can use TDG.VP.INFO to get basic information.

February 2023 . Page 93 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Spec

Section 2: Intel TDX Module Architecture Specification 344425-005US

13.3. CPU Mode Restrictions

Intel SDM, Vol. 3, 2.2
Intel SDM, Vol. 3, 9.8.5
Intel SDM, Vol. 3, 11.5.1
Intel SDM, Vol. 3, 24.6.6

A TD OS running in TDX non-root mode is required to be a 64-bit OS. The Intel TDX module helps enforce this with the

Modes of Operation

Initializing 1A-32e Mode

Cache Control Registers and Bits

Guest/Host Masks and Read Shadows for CRO and CR4

restrictions described below.

Table 13.3: CPU Mode Restrictions in TDX Non-Root Mode

Restriction

Description

CPU and Paging
Modes

In TDX non-root mode, the CPU is allowed to run in the following modes:
e Protected mode (32-bit) with no paging (CR0.PG == 0)

e |A-32e mode with 4-level or 5-level paging (CRO.PG == 1), with the sub-modes
controlled by CS.L:

o0 64-bit mode
o Compatibility (32-bit) mode

To achieve this, CRO.PE and IA32_EFER.LME are enforced to 1, as described in the
following sections.

Execute Disable

When running in IA-32e mode, the PT Execute Disable bit (63) is always enabled.
To achieve this, IA32_EFER.NXE is enforced to 1, as described in the following sections.

Caching is Always
Enabled

The guest TD runs in Normal Cache Mode.

To achieve this, CR0.CD and CRO.NW are enforced to 0, as described in the following
sections.

13.4. Instructions Restrictions

The Intel TDX module is designed to block certain instructions from executing in TDX non-root mode. Execution of those

instructions results in a VM exit to the Intel TDX module, which then injects an exception to the guest TD. This exception
can be #UD, a #GP(0) or, in case where no Intel64 architectural exception can be used, a #VE (described in 13.10).

13.4.1. Unconditionally Blocked Instructions

13.4.1.1. Instructions that Cause a #UD Unconditionally

e ENCLS, ENCLV

e Most VMX instructions: INVEPT, INVVPID, VMCLEAR, VMFUNC, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD,
VMRESUME, VMWRITE, VMXOFF, VMXON

e RSM
e GETSEC

e SEAMCALL, SEAMRET

13.4.1.2. Instructions that Cause a #VE Unconditionally

e String I/O (INS*, OUTS*), IN, OUT

e HLT

e MONITOR, MWAIT
e WBINVD, INVD

e VMCALL

February 2023

Page 94 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

13.4.1.3. Instructions that Cause a #UD or #VE Depending on Feature Enabling

e PCONFIG (see 13.15)

13.4.1.4. Other Cases of Unconditionally Blocked Instructions

e Guest TD execution of ENQCMD results in a #GP(0).
e Guest TD execution of ENQCMDS when CPL is O results in a #UD. Otherwise, it results in a #GP(0).

13.4.2. Conditionally Blocked Instructions

Execution of some instructions may be conditionally blocked, depending on which CPU features are configured and
available for the TD, as described in the following sections.

13.4.3. Other Exception Cases

In many cases, instructions are not blocked but yet may cause exceptions due to other conditions. For example, following
is a very partial list:

e CPUID may cause a #VE if the CPUID leaf and sub-leaf are not virtualized by the TDX module.
e RDMSR and WRMSR may cause a #GP(0) if an MSR is virtualized as non-existing, or a #VE if an MSR is not virtualized.

See the following sections for details.
13.5. Extended Feature Set

Intel SDM, Vol. 1, 13 Managing State Using the XSAVE Feature Set
Intel SDM, Vol. 3, 13 System Programming for Instruction Set Extensions and Processor Extended State

13.5.1. Allowed Extended Features Control

At the guest TD scope, TDCS.XFAM (Extended Features Allowed Mask) is provided as an input during guest TD build
process. XFAM is a 64b mask, using the state-component bitmap format used by extended state ISA (XSAVE, XRSTOR,
XCRO, IA32_XSS etc.), which specifies the set of extended features the TD is allowed to use.

XFAM is checked to be compliant with the set of extended features supported by the CPU, as enumerated by CPUID and
the allowed bit combinations, as shown in Table 13.4 below.

13.5.2. Extended State Isolation

The Intel TDX module helps ensure that any guest TD extended state is saved and isolated from the host VMM across TD
exit and entry. It is the VMM'’s responsibility to save its own extended state across TD entry and exit.

e Before TDH.VP.ENTER, the host VMM should save (e.g., using XSAVES) any extended state that the guest TD VCPU is
allowed to use (per XFAM) and the host VMM expects to need after TDH.VP.ENTER is complete.

e The TDH.VP.ENTER function loads the extended state that the TD VCPU is allowed to use, per XFAM, from the VCPU’s
TDVPS. An exception to this is when TDH.VP.ENTER follows a previous TDG.VP.VMCALL —in the case TDH.VP.ENTER
does not load the XMM state (corresponding to XFAM bit 1) from TDVPS, but passes it directly from the host VMM.

e On an asynchronous TD exit, the Intel TDX module saves the extended state that the TD VCPU was allowed to use,
per XFAM, to the VCPU’s TDVPS. It then clears the extended state.

e OnTDG.VP.VMCALL, the Intel TDX module works similarly, but it selectively does not clear some of the XMM register
state (corresponding to XFAM bit 1). That XMM state is passed directly to the host VMM.

e On completion of TDH.VP.ENTER (following TD exit), the VMM may restore any extended state that it saved before
TDH.VP.ENTER.

13.5.3. Extended Features Execution Control

The Intel TDX module is designed to prohibit the guest TD from using any extended feature not allowed by XFAM. Many
extended state features are controlled by XCRO and IA32_XSS MSR. Other features are controlled by CR4 or by specific
MSRs.

February 2023 . Page 95 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

XCRO and On XSETBV, which attempts to write to XCRO, and on WRMSR of IA32_XSS, the TDX module emulates
1A32_XSS MSR the architectural behavior of the CPU. The following cases cause a #GP(0):

e The new value is not natively valid for XCRO or IA32_XSS (it sets reserved bits, sets bits for
features not recognized by the Intel TDX module, or uses illegal bit combinations).

e The new value has any bits set that are not allowed by XFAM.

CR4 On MOV to CR4, the guest TD attempts to set bits not allowed according to XFAM will cause a #GP(0).

Other MSRs The guest TD attempts to write or read certain MSRs that are not enabled according to XFAM can
cause a #GP(0) or a #VE, as described below.

The following table describes how a guest TD executes each of the extended features.

Table 13.4: Extended Features Enumeration and Execution Control

Bits U/S | Feature Enumeration® XFAM | Description
Value
0 u FP Always available 1 Always enabled
1 u SSE Always available 1 Always enabled
2 u AVX CPUID(0xD,0x0).EAX[2] Oor1l Execution is directly controlled by XCRO.

CPUID(0x7,0x0).EBX[2]
CPUID(0x7,0x0).ECX[10:9]
CPUID(0x7,0x1).EAX[5]
CPUID(OXD, 0x2).*

4:3 U MPX CPUID(0xD,0x0).EAX[4:3] 00 MPX is being deprecated.
CPUID(0x7,0x0).EBX[14]
CPUID(0xD, 0x3).*
CPUID(0xD, Ox4).*

7:5 U AVX512 CPUID(0xD,0x0).EAX[7:5] 000 or | Execution is directly controlled by XCRO. AVX512

CPU|D(0X7,0X0).EBX[31230, 111 may be enabled onIy if AVX is enabled — i.e.,
28:26, 21, 17:16] XFAM[7:5] may be set to 111 only when XFAM[2] is
set to 1.

CPUID(0x7,0x0).ECX[14,
12:11, 6, 1]

CPUID(0x7,0x0).EDX[8]
CPUID(0x7,0x1).EAX[5]
CPUID(OXD, Ox5).*
CPUID(OXD, Ox6).*
CPUID(0XD, 0x7).*

8 S PT (RTIT) | CPUID(0OxD,0x1).ECX[8] Oor1l Execution is controlled by IA32_RTIT_CTL. If PTis
CPUID(0x7,0x0).EBX[25] enabled by XFAM, the guest TD is allowed access to
all IA32_RTIT_* MSRs. Otherwise, any access causes

CPUID(0x14).*
CPUID(0xD, 0x8).*

#GP(0).

6 An extended feature controlled by bits N:M is available if all bits in the range N:M returned by CPUID are set to 1.

February 2023 . Page 96 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec

Section 2: Intel TDX Module Architecture Specification

344425-005US

Bits U/S | Feature Enumeration® XFAM | Description
Value
9 u PK CPUID(0xD,0x0).EAX[9] Oor1l Execution is controlled by CR4.PKE (bit 22). If PK is
CPUID(0xD, 0x9).* disabled by XFAM, the guest TD is disallowed from
setting CR4.PKE. An attempt to set this bit causes a
#GP(0).
10 S ENQCMD | CPUID(0xD,0x1).ECX[10] 0 Execution is controlled by IA32_PASID MSR.
(PASID) | cPUID(OXD, OxA).* There is no direct 1/O from guest TDs. ENQCMD and
ENQCMDS from the guest TD are not supported and
cause a #UD or #GP(0) (see 13.4.1.4). Access to
IA32_PASID causes a #GP(0).
12:11 | S CET CPUID(0xD,0x1).ECX[12:11] | 00 or Execution is controlled by CR4.CET (bit 23). If CET is
CPUID(0XD, OxB).* 11 disabled by XFAM, the guest TD is disallowed from
CPUID(0XD, OXC).* setting CR4.CET. An attempt to set this bit causes a
#GP(0).
13 S HDC CPUID(0xD,0x1).ECX[13] 0 Hardware Duty Cycle is controlled by package-scope
CPUID(OXD, OxD).* IA32_PKG_HDC_CTL and LP-scope IA32_PM_CTL1
MSRs.
HDC is disabled. Any guest TD access to the above
MSRs causes a #VE.
14 S ULl CPUID(0xD,0x1).ECX[14] Oor1l Execution is controlled by CR4.UINTR (bit 25). If ULI
CPUID(0x7,0x0).EDX[5] is disabled by XFAM, then:
CPUID(OxD, OXE).* e The guest TD is disallowed from setting CR4.ULI.
An attempt to set this bit causes a #GP(0).
e The guest TD is disallowed access to all
IA32_UINTR_* MSRs. Any access causes a
#GP(0).
15 S LBR CPUID(0xD,0x1).ECX[15] Oor1l Execution is controlled by IA32_LBR_CTL. If LBR is
CPUID(0x7,0x0).EDX[19] disabled by XFAM, the guest TD is disallowed access
*
CPUID(OXD, OxF).* to all IA32_LBR_* MSRs. Any access causes a #GP(0).
CPUID(0x1C).*
16 S HWP CPUID(0xD,0x1).ECX[16] 0 Execution of Hardware-Controlled Performance State
CPUID(0xD, 0x10).* is controlled by IA32_HWP MSRs.
This feature is disabled. Access to any of the above
MSRs causes a #VE.
18:17 | U AMX CPUID(0xD,0x0).EAX[18:17] | 00 or Advanced Matrix Extensions (AMX) is directly
11 controlled by XCRO.

CPUID(0xD, Ox11).*
CPUID(0xD, 0x12).*

February 2023

Page 97 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

13.6. CR Handling

13.6.1. CRO

Intel SDM, Vol. 3, 2.5 Control Registers

Intel SDM, Vol. 3, 23.8 Restrictions on VMX Operation

Intel SDM, Vol. 3, 24.6.6 Guest/Host Masks and Read Shadows for CRO and CR4

Intel SDM, Vol. 3, 25.6 Unrestricted Guests
313029028 1918 1716 15 654 3210
PIC(H A W N(E|T|E|M|P
G|D (W M| [P elTls|m|ple| CRO

Figure 13.2: CRO

From the guest TD's point of view, as virtualized by the Intel TDX module, CRO bits PE (0) and NE (5) are always set to 1,
and bits NW (29) and CD (30) are always cleared to 0.

Guest TD writes to CRO are handled by the Intel TDX module as follows:

e Writes to CRO that are architecturally illegal (such as attempts to set bits that must be 0), or writes to CRO that set
architecturally illegal bit combinations, result in a #GP(0).

e Writes to CRO that are architecturally illegal, but not permitted by the TDX architecture (such as clearing CR0.CD)
result in a #VE.

e Other writes are allowed.

13.6.2. CR4
Intel SDM, Vol. 3, 24.6.6 Guest/Host Masks and Read Shadows for CRO and CR4

If a CPU feature is not enabled for the guest TD, the guest TD’s attempt to set the corresponding CR4 bit can result in a
#GP(0):

1. Depending on the TD’s XFAM, guest TD modification of CR4 bits PKE (22), CET (23) and UINTR (25) is prevented. Any
guest TD attempt to change those bits results in a #GP(0).

2. Ifthe TD’s ATTRIBUTES.KL is O, guest TD attempts to set bit KL (19) results in a #GP(0).

3. Ifthe TD’s ATTRIBUTES.PKS is 0, guest TD attempts to set bit PKS (24) results in a #GP(0). See 13.14 below.

In addition, any guest TD attempts to modify any of the architecturally reserved CR4 bits, or to set architectural-illegal bit
combinations, can result in a #GP(0).

From the guest TD'’s point of view, the following bits are virtualized as fixed by Intel TDX module. Guest TD attempts to
modify their values result in a #VE:

e CR4 bit MCE (6) is fixed to 1.
e CRA4 bits VMXE (13) and SMXE (14) are fixed to 0.

13.7. MSR Handling

13.7.1. Overview

From the guest TD’s point of view, as virtualized by the Intel TDX module, MSRs are divided into the following categories:

e MBSRs that are context-switched on TD entry and exit — guest TD access to such MSRs may be full, partial or none
e MBSRs that are not context-switched, but guest TD access is read-only
e MSRs that are not context-switched, and are inaccessible to the guest TD

MSR behavior can be either fixed or dependent on the TD configuration via the XFAM, ATTRIBUTES and CPUID
configuration parameters. The host VMM has no direct interface to configure specific MSR behavior (e.g., it cannot set
a specific MSR to TD exit on write). Instead, guest TD access violations to MSRs can cause a #GP(0) in most cases where
the MSR is enumerated as inaccessible by the Intel TDX module via CPUID virtualization. In other cases, guest TD access

February 2023 . Page 98 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

violations to MSRs can cause a #VE. A guest TD that wishes to access an MSR that is not allowed by the Intel TDX module
should do so via explicit requests from the host VMM using TDCALL(TDG.VP.VMCALL).

A detailed list of MSR virtualization is provided in 20.1.

13.8. CPUID Virtualization

13.8.1. CPUID Configuration by the Host VMM
For some CPUID leaves and sub-leaves, the virtualized bit fields of CPUID return values (in guest EAX/EBX/ECX/EDX) are
configurable by the host VMM. For such cases, the Intel TDX module architecture defines two virtualization types:
Table 13.5: Host VMM Configurable CPUID Field Virtualization

CPUID Field Description Comments

Virtualization

As Bit fields for which the host VMM

Configured configures the value seen by the guest TD.

Configuration is done on TDH.MNG.INIT.

As Bit fields for which the host VMM If a CPUID bit enumerates a CPU feature, and the

Configured (if | configures the value such that the guest feature is natively supported, then the feature can

Native) TD either sees their native value or a either be allowed by the host VMM, or it will be
value of 0. Configuration is done on effectively deprecated for the guest TD.
TDH.MNG.INIT.

The above CPUID fields can be specified by the host VMM at guest TD initialization time TDH.MNG.INIT using the
TD_PARAMS input structure of TDH.MNG.INIT. TDH.MNG.INIT is described in 24.2.17, and its input TD_PARAMS
structure is described in 22.2. Configuration is further classified as follows:

Table 13.6: CPUID Configuration by the TD_PARAMS Input of TDH.MNG.INIT

TD_PARAMS Section | Description

CPUID_CONFIG Bit fields configurable directly based on a configuration table
XFAM Bit fields configurable based on the guest TD’s XFAM
XFAM control of extended features virtualization is described in 13.5.
ATTRIBUTES Bit fields configurable based on the guest TD’s ATTRIBUTES
Other Bits fields configurable based on some other field of TD_PARAMS

A detailed list of CPUID virtualization is provided in 20.2. For any valid CPUID leaf / sub-leaf combination that is not listed,
the Intel TDX module injects a #VE.

The host VMM should always consult the list of directly configurable CPUID leaves and sub-leaves, as enumerated by
TDH.SYS.INFO, described in 6.1.3.4.

13.8.2. Unconditional #VE for all CPUID Leaves and Sub-Leaves

The guest TD may use the TDG.VP.CPUIDVE.SET to toggle on or off the unconditional injection of #VE on all CPUID leaves
and sub-leaves. That can be done in supervisor mode (CPL == 0) and/or user mode (CPL > 0). For example, this enables
the TD OS to control CPUID as seen by drivers or by user-level code. TDG.VP.CPUIDVE.SET is described in 24.3.7.

February 2023 . Page 99 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

13.9. Interrupt Handling and APIC Virtualization

Intel SDM, Vol. 3, 24.6.8 Controls for APIC Virtualization
Intel SDM, Vol. 3, 29 APIC Virtualization and Virtual Interrupts

13.9.1. Virtual APIC Mode

e Guest TDs must use virtualized x2APIC mode. xAPIC mode (using memory mapped APIC access) is not allowed.
e Guest TD attempts to RDMSR or WRMSR the IA32_APIC_BASE MSR cause a #VE to the guest TD. The guest TD cannot
disable the APIC.

13.9.2. Virtual APIC Access by Guest TD
Intel SDM, Vol. 3, 29.5 Virtualizing MSR-Based APIC Access

Guest TDs are allowed access to a subset of the virtual APIC registers, which are virtualized by the CPU as described in
[Intel SDM, Vol. 3, 29.5]. Access to other registers can cause a #VE. The guest TD is expected to use a software protocol
over TDG.VP.VMCALL to request such operations from the host VMM.

DATAJADDR
A
HVE Version Register = EOI Register
- ask Priority Register
Current Count VAPIC Access
Register
¥ Processor Priority
Initial Count 4 B
#VE Register = Ll ?::Jn
Divide Configuration y oo
Register — 5 To
Prioritizer EXTINT CPU
Local Vector Table N Core
C o Timer |
In-Service Register (ISR)
LINTO/ — > Lol ~
Interrupts 0,1 < = Interrupt Request Register (IRR) VAPIC Access
Perf. Mon
Performance = -
;:‘l’;i;::glh > Monitoring Counters’ » Trigger Mode Register (TMR)
H#VE Thermal ‘ A
< Sensor > Thermal Sensor? Vec{3:0) Register
(Internal & TMR Bit Select
Interrupt)
- Error Arb. 1D \ector
e Register’ Decode
Error Status > Local Acceptance
Register Interrupts Logic
A pest Mode
& Vector
To
APIC ID Protocol » (PU
Register Translation Logic |'3‘|P141I' Core
Logical Destination SMI
HVE Rengter B Interrupt Command
Destination Format B Register (ICR)
Register
= Y #VE \J
Spurious Vector Processor System Bus®
Register
Figure 13.3: Virtual APIC Access by Guest TD
Table 13.7: x2APIC MSRs Access
MSR Range MSR Name(s) Description Operation
0x802 IA32_X2APIC_APICID APIC ID #VE
0x803 IA32_X2APIC_VERSION APIC version #VE
0x80D IA32_X2APIC_LDR Local destination H#VE
register
0x80F IA32_X2APIC_SIVR Spurious interrupt vector | #VE

Section 2: Intel TDX Module Architecture Specification

February 2023 . Page 100 of 323

10

15

20

Intel® TDX Module Spec

Section 2: Intel TDX Module Architecture Specification

344425-005US

MSR Range MSR Name(s) Description Operation
0x828 IA32_X2APIC_ESR Error status #VE
0x830 IA32_X2APIC_ICR Interrupt command #VE
0x82F, 0x837-0x832, Ox83A IA32_X2APIC_LVT_* Local vector table H#VE
registers
0x838, 0x839, 0x83E IA32_X2APIC_*_COUNT, | APIC timer registers #VE
IA32_X2APIC_DCR
0x801-0x800, 0x807-0x804, Reserved #GP(0)

0x82E-0x829, 0x831, Ox8FF-0x840

Other MSR in the range Ox8FF-
0x800

Access to VAPIC page (see
[Intel SDM, Vol. 3, 29.5])

13.9.3. Implicit APIC Write #VE

The following guest operations result in an APIC write VM exit to the TDX module. The VM exit is trap-like, i.e., it happens
after the instruction has been executed:

e WRMSR of IA32_X2APIC_SELF_IPI with EAX[7:4] set to 0, i.e., an interrupt vector value smaller than 16.
e Executing SENDUIPI to send a user-level interrupt.

In all such cases, the TDX module injects a #VE exception back to the guest TD, with the exit reason indicating an APIC
write and bits 11:0 of the exit qualification set to the page offset of the write access.

13.9.4. Posted Interrupts

Intel SDM, Vol. 3, 29.6

Posted-Interrupt Processing

Non-NMl interrupt injection into the guest TD by the host VMM or the IOMMU can be done through the posted-interrupt
mechanism. If there are pending interrupts in the posted-interrupt descriptor (PID), the VMM can post a self IPI with the

notify vector prior to TD entry.

e The posted-interrupt descriptor (PID) resides in a shared page, directly accessible by the host VMM. The VMM must
set the TD VMCS'’s “posted-interrupt descriptor address” control (using the TDH.VP.WR function) to the PA and
shared HKID of the posted-interrupt descriptor.

e The host VMM must set the TD VMCS’s “posted-interrupt notification vector” control using the TDH.VP.WR function.

e To post pending interrupts in the PID, the host VMM can generate a self IPl with the notification vector prior to TD

entry.

When a posted-interrupt notification vector is recognized in TDX non-root mode, the CPU processes the posted-interrupt
descriptor as described in the [Intel SDM].

If needed, the guest TD may use a software protocol over TDCALL(TDG.VP.VMCALL) to ask the VMM to stop interrupt

delivery through the PID.

February 2023

Page 101 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

Posted interrupt
vector PV handling

Interrupt
Guest TD A A Handler
i Notification VM entry
i Interrupt (RFLAGS.IF = 1)
i vector NV
Intel
TDX H
Module : A

Figure 13.4: Typical Sequence for Posted Interrupt Injection to the Current LP

13.9.5. Pending Virtual Interrupt Delivery Indication

The host VMM can detect whether there is a pending virtual interrupt delivery to a VCPU, using TDH.VP.RD to read the
VCPU_STATE_DETAILS TDVPS field.

The typical use case is when the guest TD VCPU indicates to the host VMM, using TDG.VP.VMCALL, that it has no work to
do and can be halted. The guest TD is expected to pass an “interrupt blocked” flag. The guest TD is expected to set this
flag to O if and only if RFLAGS.IF is 1 or the TDCALL instruction that invokes TDG.VP.VMCALL immediately follows an STI
instruction. If the “interrupt blocked” flag is 0, the host VMM can determine whether to re-schedule the guest TD VCPU
based on VCPU_STATE_DETAILS.

For further details, see the TDVPS definition in 23.2.3.

13.9.6. Cross-TD-VCPU IPI

To perform a cross-VCPU IPI, the guest TD ILP should request an operation from the host VMM using TDG.VP.VMCALL.
The VMM can then inject an interrupt into the guest TD’s RLPs using the posted interrupt mechanism, as described in
13.9.4 above. This is an untrusted operation; thus, the TD needs to track its completion.

13.9.7. Virtual NMI Injection

The host VMM can request the Intel TDX module to inject an NMI into a guest TD VCPU using the TDH.VP.WR function,
by setting the PEND_NMI TDVPS field to 1. This can be done only when the VCPU is not active (a VCPU can be associated
with at most one LP). Following that, the host VMM can call TDH.VP.ENTER to run the VCPU; the Intel TDX module will
attempt to inject the NMI as soon as possible.

The host VMM can use TDH.VP.RD to read PEND_NMI and get the status of NMI injection. A value of 0 indicates that
NMI has been injected into the guest TD VCPU. The host VMM also may choose to clear PEND_NMI before it is injected.
13.10. Virtualization Exception (#VE)

Intel SDM, Vol. 3, 24.9.4 Information for VM Exits Due to Instruction Execution
Intel SDM, Vol. 3, 25.5.6 Virtualization Exceptions
Intel SDM, Vol. 3, 27.2.5 Information for VM Exits Due to Instruction Execution

The Intel TDX module extends the VMX architectural usage of #VE to para-virtualize memory address translation. It
injects #VE into the guest TD in multiple cases where an operation is not allowed by TDX, but an architectural exception

February 2023 . Page 102 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

(e.g., #GP(0)) is not applicable. Such cases include disallowed instruction executions, disallowed MSR accesses, many
CPUID leaves, etc.

The intended usage is for the TDX-enlightened guest TD OS to have a #VE handler. By analyzing the #VE information, the
handler would be able to virtualize the requested operation for non-enlightened parts of the guest TD — e.g. drivers and

5 applications.
13.10.1. Virtualization Exception Information
The virtualization-exception information area (VE_INFO) is maintained as part of TDVPS. It is not intended to be directly
accessible to the guest TD. Instead, the information can be retrieved using the TDG.VP.VEINFO.GET function (see 24.3.7).
This is a simple way to help ensure the availability and privacy of this area.

10 Table 13.8: Virtualization Exception Information Area (VE_INFO), based on [Intel SDM, Vol. 3, Table 24-1]

Section Field Offset | Size Description

(Bytes) | (Bytes)

Architectural EXIT_REASON 0 4 The value that would have been saved into the VMCS as an
exit reason if a VM exit had occurred instead of the
virtualization exception.

VALID 4 4 0 indicates that VE_INFO has no valid contents.

The CPU and the Intel TDX module will not update VE_INFO if
VALID is not 0.

After updating VE_INFO, the CPU and the Intel TDX module
write OXFFFFFFFF to the VALID field.

EXIT_ 8 8 The value that would have been saved into the VMCS as an

QUALIFICATION exit qualification if a VM exit had occurred instead of the
virtualization exception.

GLA 16 8 The value that would have been saved into the VMCS as a
guest-linear address if a VM exit had occurred instead of the
virtualization exception.

GPA 24 8 The value that would have been saved into the VMCS as a
guest-physical address if a VM exit had occurred instead of
the virtualization exception.

EPTP_INDEX 32 2 The current value of the EPTP index VM-execution control

Non- INSTRUCTION_ Non- 4 The 32-bit value that would have been saved into the VMCS as

Architectural LENGTH arch. VM-exit instruction length if a legacy VM exit had occurred

(EXIT_REASON is instead of the virtualization exception.

not EPT INSTRUCTION_ | Non- | 4 The 32-bit value that would have been saved into the VMCS as

Violation) INFORMATION arch. VM-exit instruction information if a legacy VM exit had
occurred instead of the virtualization exception.

The architectural section format for VE_INFO is as defined in the [Intel SDM], and it is used directly by the CPU when it
injects a #VE (see 13.10.2 below). VE_INFO can also be used for #VE injected by the Intel TDX module. Some VE_INFO
fields are applicable only for some exit reasons.

15 VE_INFQO’s non-architectural section is only applicable for TDX-extended #VE (injected by the TDX module), where
EXIT_REASON is not EPT violation (48). It should be ignored for EPT violations converted by the CPU to #VE. See below
for details.

VE_INFO.VALID is initialized to 0, and it is set to OXFFFFFFFF when a #VE is injected to the guest TD. When handling a
H#VE, the guest TD retrieves the #VE information using the TDG.VP.VEINFO.GET function (see 24.3.7).
20 TDG.VP.VEINFO.GET checks that VE_INFO.VALID is OXxFFFFFFFF. After reading the information, it sets VE_INFO.VALID to

0.

February 2023 . Page 103 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

13.10.2. #VE Injection by the CPU due to EPT Violations

#VE is enabled unconditionally for TDX non-root operation. The Intel TDX module sets the TD VMCS EPT-violation #VE
VM-execution control to 1.

For shared memory accesses (i.e., when GPA.SHARED == 1), as with legacy VMX, the VMM can choose which pages are
eligible for #VE mutation based on the value of the Shared EPTE bit 63.

For private memory accesses (GPA.SHARED == 0), an EPT Violation causes a TD Exit in most cases, except when the Secure
EPT entry state is SEPT_PENDING (an exception to this is described in 13.11.1 below). If ATTRIBUTES.SEPT_VE_DISABLE
is 0, the Intel TDX module sets the Secure EPT entry’s Suppress VE bit (63) to 0 if the entry’s state is SEPT_PENDING. It
sets that bit to 1 for all other entry states.

13.10.3. #VE Injected by the Intel TDX Module

#VE may be injected by the Intel TDX module in several cases:

e Emulation of the architectural #VE injection on EPT violation, done by a guest-side Intel TDX module flow that
performs an EPT walk.

e As aresult of guest TD execution of a disallowed instruction (see 13.4 above), a disallowed MSR access (see 13.7
above), or CPUID virtualization (see 13.8 above).

e A notification to the guest TD about anomalous behavior (e.g., too many EPT violations reported on the same TD
VCPU instruction without making progress). This kind of #VE is raised only if the guest TD enabled the specific
notification (using TDG.VM.WR to write the TDCS.NOTIFY_ENABLES field) and when a #VE can be injected. See 18.3
for details.

If, when attempting to inject a #VE, the Intel TDX module discovers that the guest TD has not yet retrieved the information
for a previous #VE (i.e., VE_INFO.VALID is not 0), the TDX module injects a #DF into the guest TD to indicate a #VE overrun.

13.11. Secure and Shared Extended Page Tables (EPTs)

EPT is enabled in TDX non-root mode. TDX non-root mode uses two EPTs: Secure EPT, and Shared EPT.

EPT level is the same for both Secure and Shared EPT. If the guest TD’s GPA width is greater than 48 bits (TDCS.GPAW is
1), then 5-level EPT trees are used. Otherwise, 4-level EPT trees can be used.

For further Secure EPT details, refer to Chapter 11.

EPT violations and misconfigurations generally cause a TD Exit, except for the cases described below.

13.11.1. GPAW-Relate EPT Violations

GPA bits higher than the SHARED bit are considered reserved and must be 0. Address translation with any of the reserved
bits set to 1 cause a #PF with PFEC (Page Fault Error Code) RSVD bit set.

13.11.2. EPT Violation Mutated into #VE

An EPT violation is converted into #VE in the following cases:

e For Secure EPT, if the EPT entry state is SEPT_PENDING.
e For Shared EPT, if the EPT entry has been configured by host VMM deliver EPT violations to the guest TD as #VE
exceptions for usages such as MMIO, as described in 13.10 above.

13.12. Prevention of TD-Induced Denial of Service

VMs, including TDs, can exploit Intel ISA characteristics to cause performance and functional Denial of Service (DOS) to
the VMM. The Intel architecture has several mechanisms that help prevent such DOS cases. This section describes how
those mechanisms are used in the context of TDX.

13.12.1. Bus Lock Detection by the TD OS

The guest TD OS can enable debug exception traps due to bus locks by setting IA32_DEBUGCTL.BUS_LOCK_DETECT bit
(2), which is disabled by default. When enabled, the feature works identically to how it functions in legacy VMX non-root
mode or in non-VMX mode. The IA32_DEBUGCTL MSR and DR6 are part of the state that is saved and restored on VM

February 2023 . Page 104 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

45

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

exit and VM entry, respectively. If the delivery of #DB was pre-empted by a trap-like VM exit, then the pending debug
exceptions (including due to BUS_LOCK_DETECT if pending) are saved in TD VMCS and restored on subsequent VM Entry.
For fault-like VM Exit due to conditions such as EPT violation and EPT misconfiguration that are encountered during
execution of an instruction, there is no pending debug exception recorded, including the bus lock debug exception.

13.12.2. Impact of MSR_TEST_CTRL (MSR 0x33)

The host VMM can set bits in MSR_TEST_CTRL (MSR 0x33) to cause exceptions in VMs (including TDs) in case of bus locks:

e Bit 28 (UC_LOCK_DISABLE): If set to 1, a UC load lock will trigger a #GP(0) fault.
e Bit 29 (SPLIT_LOCK_DISABLE): If set to 1, a split lock will trigger an #AC fault.

MSR 0x33 is not virtualizable; it is a core-scope MSR and may be modified by the host VMM on one SMT thread while
another SMT thread is running a TD VCPU. The TDX module does not allow a guest TD to access this MSR (a #VE is
generated).

To avoid any security issues, a correctly written TD OS should always be ready to handle #AC and #GP(0) faults if the TD
software might cause UC locks or split locks.

13.12.3. Bus Lock TD Exit

Bus lock TD exit is disabled by default. The host VMM can enable the TD VMCS “bus-lock detection” VM execution control
using the TDH.VP.WR function.

Bus Lock VM Exit Reason (74)

If “bus-lock detection” is enabled, then if the processor detects that one or more bus locks were caused by the instruction
that was executed, then the processor generates a bus lock VM exit (exit reason 74). This VM exit is trap-like, i.e., it is
delivered following the execution of that instruction that caused it. The Intel TDX module then completes a TD exit with
the exit information provided in the VM exit.

Bus Lock Detected Bit (26) in VM Exit Reason

If delivery of bus lock VM exit was pre-empted by a higher priority VM exit (e.g., EPT Misconfiguration, EPT Violation,
etc.), then the processor sets a “bus lock detected” notification bit (bit 26) in the exit reason. The Intel TDX module
reflects this bit to the host VMM on TD exit.

13.12.4. Notification TD Exit

Notification TD exit is disabled by default. The host VMM can write the TD VCMS “notify window” and “notification
exiting” execution controls using the TDH.VP.WR function. If enabled and configured, then if the processor detects a no-
commit case, the processor causes a notification VM exit (exit reason 75) which the Intel TDX module converts to the TD
exit.

The conditions that cause a notification TD exit are the same as those in legacy VMX non-root mode. An example of such
a case is the nested #AC exception. If an #AC exception occurs during the delivery of a previous #AC exception, then the
CPU may get into an endless loop of #AC without responding to external events.

Bit 0 (VM context invalid) of the exit qualification indicates whether the guest TD context is corrupted and not valid in
the TD VMCS. If this bit is set to 1, then it is a non-recoverable situation; thus, the Intel TDX module marks the TD as
disabled to help prevent further TD entry. If no TD context corruption occurred (exit qualification bit O is cleared to 0),
then the TD may be resumed normally.

13.13. Time Stamp Counter (TSC)

Intel SDM, Vol. 3, 10.5.4.1 TSC-Deadline Mode
Intel SDM, Vol. 3, 24.6.5 Time-Stamp Counter Offset and Multiplier
Intel SDM, Vol. 3, 25.3 Changes to Instruction Behavior in VMX Non-Root Operation

13.13.1. TSC Virtualization

For virtual time stamp counter (TSC) values read by guest TDs, the Intel TDX module is designed to achieve the following:

e Virtual TSC values are consistent among all the TD’s VCPUs at the level supported by the CPU, see below.
e The virtual TSC value for any single VCPU is monotonously incrementing (except roll over from 2%-1 to 0).

February 2023 . Page 105 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

45

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

e The virtual TSC frequency is determined by TD configuration.
The host VMM is required to do the following:

e Setup the same IA32_TSC_ADJUST values on all LPs before initializing the Intel TDX module.
e Make sure IA32_TSC_ADJUST is not modified from its initial value before calling SEAMCALL.

The Intel TDX module checks the above as part of TDH.VP.ENTER and any other SEAMCALL leaf function that reads TSC.
The virtualized TSC is designed to have the following characteristics:

e The virtual TSC frequency is specified by the host VMM as an input to TDH.MNG.INIT in units of 25MHz — it can be
between 4 and 400 (corresponding to a range of 100MHz to 10GHz).

The virtual TSC starts counting from 0 at TDH.MNG.INIT time.

TSC parameters are enumerated to the guest TD by CPUID(0x15).

Guest TDs are not allowed to modify the TSC. WRMSR attempts of IA32_TIME_STAMP_COUNTER result in a #VE.
Guest TDs are not allowed to access IA32_TSC_ADJUST because its value is meaningless to them. WRMSR or RDMSR
attempts result in a #VE.

RDTSCP is supported. This instruction returns the contents of the IA32_TSC_AUX MSR in RCX. the Intel TDX module
allows the guest TD to access that MSR and context-switches it on TD entry and exit as part of the VCPU state in
TDVPS.

13.13.2. TSC Deadline

Guest TDs are not allowed to access the 1A32_TSC_DEADLINE MSR directly. Virtualization of 1A32_TSC_DEADLINE
depends on the virtual value of CPUID(1).EXC[24] bit (TSC Deadline). The host VMM may configure (as an input to
TDH.MNG.INIT) virtual CPUID(1).EXC[24] to be a constant O or allow it to be 1 if the CPU’s native value is 1.

e If the virtual value of CPUID(1).EXC[24] is O, IA32_TSC_DEADLINE is virtualized as non-existent. WRMSR or RDMSR
attempts result in a #GP(0).

e If the virtual value of CPUID(1).EXC[24] is 1, WRMSR or RDMSR attempts result in a #VE. This enables the TD’s #VE
handler to para-virtualize the TSC deadline functionality, e.g., by requesting an (untrusted) service from the host
VMM.

13.14. Supervisor Protection Keys (PKS)
By design, guest TD usage of Supervisor Protection Keys (PKS) is controlled by the ATTRIBUTES.PKS bit (see 22.2.1). When

PKS is supported by the CPU and ATTRIBUTES.PKS is set to 1, the following features are available to the guest TD:

e CPUID virtualization enumerates PKS availability to the guest TD.
e Guest TDs may enable PKS by setting CR4.PKS flag.
e Guest TDs may access the PKS state using the IA32_PKRS MSR.

13.15. Intel® Total Memory Encryption (Intel® TME) and Multi-Key Total Memory Encryption
(MKTME)

Guest TDs may not directly use the Intel TME and MKTME MSRs and the PCONFIG instruction. The Intel TDX module
supports para-virtualization of this ISA, as described below.

13.15.1. TME Virtualization

TME is enumerated by CPUID(0x7, 0x0).ECX[13]. The host VMM can configure the virtualization of this bit as enabled or
disabled on TDH.MNG.INIT. If enabled, then a guest TD access to the IA32_TME_* MSRs (0x981 — 0x984) causes a #VE,
allowing the guest TD’s #VE handler to emulate the desired operation. Else, guest TD access to those MSRs causes a
#GP(0).

13.15.2. MKTME Virtualization
MKTME is enumerated by CPUID(0x7, 0x0).EDX[18]. The host VMM can configure the virtualization of this bit as enabled

or disabled on TDH.MNG.INIT. If enabled, then the following operations cause a #VE (e.g., the guest TD #VE handler can
then communicate with the host VMM over TDG.VP.VMCALL to request the desired operation):

e Guest TD access to the IA32_MKTME_PARTITIONING MSR (0x87)

February 2023 . Page 106 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

e PCONFIG execution by the guest TD
If the host VMM configured CPUID(0x7, 0x0).EDX[18] virtualized value as 0, then:

e Guest TD access to the IA32_MKTME_PARTITIONING MSR (0x87) causes a #GP(0).
e PCONFIG execution by the guest TD causes a #UD.

13.16. Virtualization of Machine Check Capabilities and Controls

Although the guest TD is not allowed to handle machine check event, the following virtualization is used in order to allow
possible pare-virtualization behavior, e.g., future handling of MCE by the TD.

e The values of CPUID(1).EDX[7] (MCE) and CPUID(1).EDX[14] (MCA), as seen by the guest TD, are 1.

e The value of CR4[6] (MCE), as seen by the guest TD, is 1. Guest TD attempt to set this bit to 0 results in a #VE.

e Guest TD accesses to MSRs 0x179 (IA32_MCG_CAP), MSRs 0x17A, 0x17B, 0x4DO0 (IA32_MCG_*), MSRs 0x281 through
0x29D (IA32_MCx_CTL2) and MSRs 0x400 through 0x473 (IA32_MCx_*) result in a #VE.

13.17. Transactional Synchronization Extensions (TSX)

Intel SDM, Vol. 1, 16 Programming with Intel TSX

The host VMM can enable TSX for a TD by configuring the following CPUID bits as enabled in the TD_PARAMS input to
TDH.MNG.INIT:

e CPUID(7,0).EBX[4] (HLE)
e CPUID(7,0).EBX[11] (RTM)

The virtual values of the above bits, as seen by the guest TD, are the bitwise AND of the real values enumerated by the
CPU and of the configuration values. To enable TSX for guest TDs, TDX requires the following conditions to be true:

e The virtual values of the HLE and the RTM bits are the same, either 0 or 1.
e The CPU supports the IA32_TSX_CTRL MSR (as enumerated by IA32_ARCH_CAPABILITIES[7]).

Note: If the real value of the HLE bit and the RTM bit are different, the host VMM must configure both virtual values
as 0.

If TSX is enabled for the guest TD:

e |A32_TSX_CTRL is accessible by the TD.
e On TD exit, IA32_TSX_CTRL is set to 0. The host VMM is responsible for restoring this MSR to its desired value, if
applicable.

If TSX is disabled for the guest TD:

e CPUID(7,0).EBX bits 4 and 11 are virtualized as 0.

e |A32_TSX_CTRLis virtualized as non-existent: 1A32_ARCH_CAPABILITIES bit 7 is virtualized as 0, and TD access results
in a #GP(0).

e IfIA32_TSX_CTRL is supported by the CPU, XBEGIN instruction execution by the TD always aborts with EAX code 0.

13.18. Other Changes in TDX Non-Root Mode

13.18.1. CET
Intel SDM, Vol. 1, 17.2.3 Supervisor Shadow Stack Token

Guest TDs should execute CPUID(7,1) and use the CET_SSS bit value returned in EDX[18] as an indication of whether
supervisor shadow stack can be enabled. The TDX module virtualizes CPUID(7,1).EDX[18] as 0 if certain supervisor
shadow-stack pushes might cause VM exits, indicating to the guest TD that it should refrain from enabling supervisor
shadow stack. For details, see the [Intel SDM].

13.18.2. Tasking

Any task switch results in a VM exit to the Intel TDX module (this is a fixed-1 exit) which then performs a TD exit to the
host VMM.

February 2023 . Page 107 of 323

Section 2: Intel TDX Module Architecture Specification

10

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

The VMM is expected not to reenter the TD VCPU since this case is non-recoverable; the instruction that caused the task
switch (CALL, JMP or IRET) will re-execute and cause another VM exit. If the task switch was incidental to an exception
delivery, then the VM entry following TDH.VP.ENTER will reattempt the delivery and cause another task switch VM exit.
The expected response from the VMM is to terminate this TD.

13.18.3. PAUSE-Loop Exiting
Intel SDM, Vol. 3, 25.1.3 Instructions That Cause VM Exits Conditionally

The host VMM can only set the guest TD’s “PAUSE-loop exiting” VM-execution control if the guest TD runs in debug mode
(ATTRIBUTES.DEBUG is 1).

“PAUSE-loop exiting” allows the VMM to request an exit if the guest (in ring 0) executes PAUSE in a loop (e.g., busy-wait).
This is intended to help avoid cases where a guest thread loops, waiting for another thread that is not currently scheduled
by the VMM. However, modern enlightened guests use a VMM-provided service (hypercall) instead of PAUSE loops —
this is the expected usage for Intel TDX.

February 2023 . Page 108 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

14.Measurement and Attestation

14.1. TD Measurement

TDs have two types of measurement registers:
e MRTD helps provide static measurement of the TD build process and the initial contents of the TD.

e RTMRis an array of general-purpose measurement registers made available to the TD software to enable measuring
additional logic and data loaded into the TD at run-time.

All TD measurements are reflected in TD attestations.

14.1.1. MRTD: Build-Time Measurement Register

The Intel TDX module measures the TD during the build process. The measurement register TDCS.MRTD is a SHA384
digest of the build process, designed as follows:

e TDH.MNG.INIT begins the process by initializing the digest.

e TDH.MEM.PAGE.ADD adds a TD private page to the TD and inserts its properties (GPA) into the MRTD digest
calculation.

e Control structure pages (TDR, TDCX, TDVPR and TDVPX) and Secure EPT pages are not measured.

e For pages whose data contribute to the TD, that data should be included in the TD measurement via
TDH.MR.EXTEND. TDH.MR.EXTEND inserts the data contained in those pages and its GPA, in 256-byte chunks, into
the digest calculation. If a page will be wiped and initialized by TD code, the loader may opt not to measure the
initial contents of the page with TDH.MR.EXTEND.

e The measurement is then completed by TDH.MR.FINALIZE. Once completed, further TDH.MEM.PAGE.ADDs or
TDEXTENDs will fail.

MRTD extension by GPA uses a 128B buffer which includes the GPA and the leaf function name for uniqueness.

14.1.2. RTMR: Run-Time Measurement Registers

The RTMR array is initialized to zero on build, and it can be extended at run-time by the guest TD using the
TDCALL(TDG.MR.RTMR.EXTEND) leaf. The syntax of the RTMR registers is designed to be similar to that of TPM PCRs,
where a register’s value after TDG.MR.RTMR.EXTEND(index=i, value=x) is:

RTMR[i] = SHA384(RTMR[i] || x);
Four RTMR registers are provided.

Typical expected usage is for TPM emulation during guest TD OS secure boot by the VBIOS.
14.2. TD Measurement and Configuration Reporting

TD attestation is initiated from inside the TD by calling TDG.MR.REPORT and specifying a REPORTDATA value.
TDG.MR.REPORT creates a TDREPORT_STRUCT structure containing the TD measurements, initial configuration of the TD
that was locked at finalization (TDH.MR.FINALIZE), the Intel TDX module measurements, and the REPORTDATA value.
TDREPORT_STRUCT structure is detailed in 22.6, and TDG.MR.REPORT is detailed in 24.3.3.

TDREPORT_STRUCT is HMAC ed using an HMAC key that is designed to be accessible only to the CPU. This helps protect
the integrity of the structure and, by design, can only be verified on the local platform via the SGX
ENCLU(EVERIFYREPORT?2) instruction. By design, TDREPORT_STRUCT cannot be verified off platform; it first must be
converted into signed Quotes, as described in 14.3 below.

February 2023 . Page 109 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

TDREPORT_STRUCT
TEE_TCB_INFO

MRSEAM
MRSEAMSIGNER
TEE_TCB_SVNs

SHA384

ATTRIBUTES REPORTMACSTRUCT

TYPE = TDX
CPUSVN

» TEE_TCB_INFO_HASH
» TD_INFO_HASH
REPORTDATA

MAC

TDINFO_STRUCT

ATTRIBUTES

XFAM

MRTD
MRCONFIGID
MROWNER
MROWNERCONFIG
RTMRO

RTMR1

RTMR2

RTMR3

A 4

Quote

SHA384

v

Figure 14.1: TDX Measurement Reporting

TD configuration is reported by the ATTRIBUTES and the XFAM fields of TDREPORT_STRUCT. Some of the ATTRIBUTES
bits (currently, only DEBUG) indicate that the TD is untrusted. Some other ATTRIBUTES bits (e.g., PKS) and some XFAM
bits (e.g., bits 11 and 12 that control CET) indicate features that may impact TD security but are not considered as
impacting TD trust. As a rule, CPU features that the TD can use to harden itself against attack, but are configurable by
the host VMM, are included in ATTRIBUTES or in XFAM. For details, see the ATTRIBUTES and XFAM definitions in 22.2.

The MRCONFIGID, MROWNER and MROWNERCONFIGID fields are part of the TD configuration. These field are intended
for use by software; they are provided as-is in the TDREPORT_STRUCT.

14.3. TD Measurement Quoting

To create a remotely verifiable attestation, the TDREPORT_STRUCT should be converted into a Quote signed by a certified
Quote signing key.

14.3.1. Intel SGX-Based Attestation

The Intel SGX attestation architecture is designed to provide facilities for multiple Quoting Enclaves from multiple
providers. This is intended to allow the host to instantiate a Quoting Enclave for Intel SGX attestations and another
Quoting Enclave for TD attestation without interference — i.e., each provider can supply its own quoting enclave, and
the quoting enclave for Intel SGX and for Intel TDX may be separate; the design does not require the quoting enclave to
run inside the TD.

February 2023 . Page 110 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

Host or Dom O Trust Domain
TD Quoting Enclave
Quote
(Signed)
(@ @)]
TDREPORT TDREPORT Data
O (SEAM Report (SEAM Report [¢
Attest Key + TD Info) ‘ + TD Info)
v
TDG.MR.REPORT
Host VMM T
REPORT Intel TDX
(MACed)
7Y Module
v
"
CPU EVERIFYREPORT Instruction
Instruction SEAM o
Measurements MAC Key

Figure 14.2: High-Level View of the Intel SGX-Based TD Attestation
Quote generation using a quoting enclave is typically performed as follows:

1. Guest TD invokes the TDCALL(TDG.MR.REPORT) function.

2. The Intel TDX module uses the SEAMREPORT instruction to create MAC'ed TDREPORT_STRUCT with the Intel TDX
module measurements from CPU and TD measurements from TDCS.

3. Guest TD uses TDCALL(TDG.VP.VMCALL) to request that TDREPORT_STRUCT be converted into Quote.

4. The TD Quoting enclave uses EVERIFYREPORT2 to check the TDREPORT_STRUCT. This allows the Quoting Enclave to
check the report without requiring direct access to the CPU’s HMAC key. Once the integrity of the
TDREPORT_STRUCT has been verified, the TD Quoting Enclave signs the TDREPORT_STRUCT body with an ECDSA 384
signing key.

14.4. Quote Signing Key

The Intel SGX infrastructure provides primitives and a certificate infrastructure to allow Quoting Enclaves to certify their
own Quoting Keys. The Intel SGX Provisioning Certification Enclave (PCE) uses an Intel-Certified ECDSA-256 signing key
to issue certificates to Quoting Enclaves for their attestation keys. Intel offers a service to allow third parties to download
these certificates.

Typically, on first launch, the TD Quoting Enclave generates a random ECDSA 384-bit quoting key. It then contacts the
Provisioning Certification Enclave which uses its signing key to sign the new quoting key’s public key.

Note that the TD Quoting Enclave uses an ECDSA 384 bit key, while the PCE certifies it with an ECDSA-256 key. This is
due to limitations of the SPR platform.

14.5. TCB Recovery

The Intel TDX architecture has several levels of TCB:

e CPUHW level, which includes microcode patch, ACMs and PFAT
e Intel TDX module software
e Attestation Enclaves which include the TD Quoting Enclave and Provisioning Certification Enclave

February 2023 . Page 111 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

The TCB Recovery story is different for each level. The existing SGX TCB Recovery model for CPU level items applies in
the same way with TDX and SGX. The model requires a restart of the platform to take effect. The Intel TDX module can
be unloaded and reloaded to reflect an upgraded Intel TDX module. The enclaves can be upgraded at run-time, but if the
PCE is upgraded, the design requires a new certificate to be downloaded.

February 2023 . Page 112 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

15.1/0 Support

This chapter specifies the Intel TDX I/O model.
15.1. Overview

Intel TDX architecture does not prescribe a specific software convention to perform I/O from the guest TD. Guest TD
providers have many choices to provide I/0 to the guest. The common I/O models are emulated devices, para-virtualized
devices, SRIOV devices and Direct Device assignments. Guest TD providers can choose to offer the combinations of I/0
models based on the workload and use case. To virtualize MMIO, the following options can be utilized:

e Para-Virtualized Drivers can replace MMIO accesses with TDG.VP.VMCALL to invoke VMM provided MMIO
emulation functions.

e MMIO Emulation by #VE Handlers can use non-para-virtualized drivers in the guest TD, with the emulation
performed by the #VE handler. EPT and #VE mechanisms can be used to reflect violations to the #VE handler in
the guest TD on access to virtual MMIO ranges. These violations can invoke VMM-provided MMIO emulation
functions through TDG.VP.VMCALL. In this model, the #VE handler is expected to emulate the faulting instruction
in the guest TD.

15.2. Paravirtualized I/0

Para-virtualization (e.g., using virtio APIs in KVM, etc.) helps provide a mechanism for the guest TD to use devices on the
host machine that are owned and managed by the VMM. The guest TD drivers can use the TDG.VP.VMCALL function to
invoke the functions provided by the VMM to perform 1/0. The TD drivers must ensure that the data buffers passed
to/from functions invoked using TDG.VP.VMCALL are placed in the TD’s shared memory space.

15.3. MMIO Emulation and Emulated Devices

An alternate technique that the guest TD may employ to invoke VMM functions for 1/0 is to emulate MMIO access from
legacy device drivers. To support this use model, the VMM may enable reflection of EPT violation to emulated MMIO
guest physical addresses as virtualization exceptions (#VE), as described in 13.10. A #VE exception handler in the guest
TD OS can emulate the instruction causing the #VE, and as part of the emulation, it can invoke the 1/0 functions provided
by the VMM using TDCALL(TDG.VP.VMCALL). Similar to the paravirtualized /O model, the TD software must ensure that
the data buffers passed to/from functions invoked using TDG.VP.VMCALL are placed in the TD’s shared memory space.

15.4. Direct Device Assignment (DDA) and SRIOV

The VMM may assign devices directly to the guest TD. The addresses mapping the MMIO resources of such devices must
be mapped in the shared memory space of the TD. When submitting data buffers to these devices, the guest TD must
locate the data buffers in shared memory such that the directly assigned device can move data in/out of such buffers
using DMA. The data buffers placed in shared memory should be programmed in IOMMU page tables.

The SRIOV virtual function devices assigned to guest TD also follow the DDA guidelines stated above with respect to
MMIO and data buffers. The control plane of the virtual function would use the soft or hard mechanism to configure the
virtual functions:

e The soft mechanism would use para-virtualization to configure the virtual function.
e The hard mechanism would use hardware mailboxes accessed using MMIO in the shared memory region.

15.5. IOMMU - DMA Remapping

The IOMMU uses the VT-d remapping tables to translate GPA in the DMA from device to an HPA. The VT-d remapping
tables will reflect the mapping of memory used by I/0 devices in the guest TD. The programming of the VT-d remapping
tables and management will be done by the VMM.

Only shared GPA memory should be mapped in the VT-d tables:

e If the result of the translation results in a physical address with a TD private key ID, then the IOMMU will abort the
transaction and report a VT-d DMA remapping failure.

February 2023 . Page 113 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

e Ifthe GPA in the transaction that is input to the IOMMU is private (SHARED bit is 0), then the IOMMU may abort the
transaction and report a VT-d DMA remapping failure, even if the translated physical address is with a non-private
HKID. This is intended to support debug wherein a TD or VMM could program a bad GPA into the device.

15.6. Shared Virtual Memory (SVM)

Shared Virtual Memory enables applications to access buffers directly accessed by the devices. The VT-d tables help
provide the mechanism to map application buffers using the first-level and second-level page tables to provide
applications access to the same memory accessed by devices.

SVM should be avoided because VT-d tables can only map shared memory.

February 2023 . Page 114 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

16.Debug and Profiling Architecture

The Intel TDX module debug architecture includes the following debug facilities:
On-TD Debug: Facilities for debugging a guest TD using software that runs inside the TD

Off-TD Debug: Facilities for debugging a guest TD, configured in debug mode, using software that runs outside the TD
16.1. On-TD Debug

Intel SDM, Vol. 3, 17 Debug, Branch Profile, TSC and Intel Resource Director Technology (Intel RDT) Features
16.1.1. Overview

On-TD debug is the normal mode used to debug guest TD software. A debug agent resides inside the guest TD, and it can
interact with external entities (e.g., a debugger) via standard I/O interfaces. The Intel TDX module is designed to virtualize
and isolate TD debug capabilities from the host VMM and other guest TDs or legacy VMs. On-TD debug can be used for
production or debug TDs —i.e., regardless of the guest TD’s ATTRIBUTES.DEBUG state.

Guest TDs are allowed to use almost all architectural debug features supported by the processor, e.g.:

e Single stepping

e Code, data and I/O breakpoints
e INT3

e Bus lock detection

e DR access detection

e TSX debug

However, the TDX architecture does not allow guest TDs to toggle IA32_DEBUGCTL uncore PMI enabling bit (13).
Guest TDs are allowed to use almost all architectural tracing features, e.g.:

e LBR (if allowed by the TD’s XFAM, see 13.5)
e PT(if allowed by the TD’s XFAM, see 13.5)
e BTS

However, the TDX architecture does not allow guest TDs to use BTM.

16.1.2. Generic Debug Handling

16.1.2.1. Context Switch

By design, the Intel TDX module context-switches all debug/tracing state that the guest TD is allowed to use.

e DRO-3, DR6 and IA32_DS_AREA MSR are context-switched in TDH.VP.ENTER and TD exit flows.

e RFLAGS, IA32_DEBUGCTL MSR and DR7 are saved and cleared on VM exits from the guest TD and restored on VM
entry to the guest TD.

e Pending debug traps are natively saved on VM exits from the guest TD and reloaded on VM entries using the TD
VMCS PDE field.

16.1.2.2. IA32_DEBUGCTL MSR Virtualization
Intel SDM, Vol. 3, 17.4.1 IA32_DEBUGCTL MSR

By design, IA32_DEBUGCTL access by the guest TD is restricted as follows:

e Guest TD attempts to set any of the architecturally-reserved bits 63:15 and 5:2 result in a #GP(0).
e Guest TD attempts to set TDX-disallowed values result in a #VE. This includes the following cases:
o Enable Uncore PMI by setting bit 13 to 1 (see 16.4 below).
o Enable BTM by setting bits 7:6 to Ox1 (see details in 16.1.3 below).
e Uncore PMl is virtualized as disabled; bit 13 is read as 0 (see 16.4 below).

February 2023 . Page 115 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec

Section 2: Intel TDX Module Architecture Specification

344425-005US

16.1.3. Debug Feature-Specific Handling

The following table discusses how specific debug features are handled.

Table 16.1: Debug Feature-Specific Handling

Debug Feature

How the Feature is Controlled

Handling

Hardware
Breakpoints

e DR7, DRO-3 and DR6

No special handling: DRs are context-switched.

General Detect

e DR7 bit 13 (GD)

No special handling: DR7 is context-switched.

TSX Debug

e DR7bit 11 (RTM)
e IA32_DEBUGCTL bit 15 (RTM)

No special handling: DR7 and IA32_DEBUGCTL are
context-switched.

Single Stepping

e RFLAGS bits 18 (Trap Flag) and

16 (Resume Flag)
e |A32_DEBUGCTL bit 1 (BTF)

No special handling: RFLAGS and IA32_DEBUGCTL are
context-switched.

Bus-Lock e |A32_DEBUGCTL bit 2 No special handling: IA32_DEBUGCTL is context-
Detection (BUS_LOCK_DETECT) switched.
Software None No special handling: software breakpoints are stateless.

Breakpoints (INT1,
INT3)

Branch Trace
Message (BTM)

e |A32 DEBUGCTL bits 6 (TR)
and 7 (BTS)

Not allowed: when a guest TD attempts to set
IA32_DEBUGCTL[7:6] to 0x1, the Intel TDX module injects
a #VE (see 16.1.2 above).

In debug mode (ATTRIBUTES.DEBUG == 1), the host VMM
is allowed to activate BTM by setting the above bits to
0x1.

Branch Trace Store
(BTS)

e IA32_DEBUGCTL bits 6 (TR), 7
(BTS), 8 (BTINT), 9
(BTS_OFF_0S) and 10
(BTS_OFF_USR)

No special handling: IA32_DEBUGCTL and 1A32_DS_AREA
are context-switched.

Notes:

e The guest TD can configure BTS to raise PMI on buffer
overflow (by setting BTINT = 1). However, since PMIs
are virtualized by the host VMM, the guest TD should
be ready to handle spurious, delayed and dropped
PMls. See Perfmon discussion in 16.2 below.

e BTS may allow the guest TD to hang the machine if
BTS record generation causes a #PF or a #GP(0),
because the act of getting to the exception handler
may deliver another BTS. It is highly recommended
that the host VMM enables notification TD exit, as
described in 13.12.4.

Processor Trace
(PT)

e 1A32_RTIT_CONTROL

e Requires VMM's consent on
TD initialization by setting
TD_PARAMS.XFAM([8] to 1

PT state handling as part of the extended feature set
state is discussed in 13.5.

Architectural Last
Branch Records
(LBRs)

e |A32_LBR_CONTROL
e Requires VMM's consent on

TD initialization by setting
TD_PARAMS.XFAM[15] to 1

LBR state handling as part of the extended feature set
state is discussed in 13.5.

Non-Architectural
LBRs

e 1A32_DEBUGCTL bit O (LBR)

Guest TD attempt to set IA32_DEBUGCTL[O] is ignored by
the CPU.

February 2023

Page 116 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

16.2. On-TD Performance Monitoring

Intel SDM, Vol. 3, 18 Performance Monitoring
16.2.1. Overview

The host VMM controls whether a guest TD can use the performance monitoring ISA using the TD’s
ATTRIBUTES.PERFMON bit — part of the TD_PARAMS input to TDH.MNG.INIT (see 22.2.1).

By design, if a guest TD is allowed to use performance monitoring:

e The guest TD enumerates native Perfmon capabilities via CPUID leaf Ox0A.

e The guest TD is allowed to use all Perfmon ISA. This includes the RDPMC instruction and the Perfmon MSRs (see
16.2.2 below).

e Perfmon state is context-switched by the Intel TDX module across TD entry and exit transitions.

Context-switching the Perfmon state has a performance impact. TD entry and exit latencies are longer than when a guest
TD is not allowed to use Perfmon.

By design, if a guest TD is not allowed to use performance monitoring:

e The guest TD enumerates no Perfmon capabilities. CPUID leaf Ox0A returns all Os.
e Theguest TD is not allowed to use Perfmon ISA.
e Perfmon state is not context-switched across TD entry and exit transitions.

Regardless of Perfmon enabling, per the design:

e |A32_DS_AREA MSR is context-switched across TD entry and exit transitions.

e Counter freeze control (IA32_DEBUGCTL bit 12) is context-switched across TD entry and exit transitions.

e The uncore PMI enable bit (IA32_DEBUGCTL bit 13) is preserved during SEAM mode execution, including Intel TDX
module and guest TD execution. This bit is virtualized to the guest TD as 0, and the TD is prevented from setting it.
See 16.4 below for details.

See also 16.1 above.
The Intel TDX module is designed to support performance monitoring as implemented on the GLC core:

e Architectural performance monitoring version 5, described in [Intel SDM, Vol. 3, 18.2.5)
Exactly 8 performance monitoring counters (IA32_PMCO through IA32_PMC7)

Exactly 4 fixed counters (IA32_FIXED_CTRO through IA32_FIXED_CTR3)

e Some non-architectural MSRs (see 16.2.2 below)

16.2.2. Performance Monitoring MSRs

Perfmon uses the following MSRs:

Table 16.2: Performance Monitoring MSRs

MSR

Comments

Enumeration

Reference

1A32_PMCx

multiple MSRs

CPUID(OX0A).EAX[15:8]

The Intel TDX module requires the CPU to
support 8 counters.

I1A32_PERFEVTSELX

multiple MSRs

CPUID(OX0A).EAX[15:8]

MSR_OFFCORE_RSPx

2 MSRs, model-
specific

IA32_FIXED_CTRx

multiple MSRs

IA32_FIXED_CTRx is supported if

(x < CPUID(0x0A).EDX[4:0]) or if
(CPUID(0Ox0A).ECX[x] == 1).

The Intel TDX module requires the CPU to
support counters 0 through 3.

[Intel SDM,
Vol. 3,
18.2.5.2]

IA32_PERF_METRICS

February 2023

Page 117 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Spec

Section 2: Intel TDX Module Architecture Specification

344425-005US

MSR Comments Enumeration Reference

IA32_PERF_CAPABILITIES

IA32_FIXED_CTR_CTRL

IA32_PERF_GLOBAL_STATUS

IA32_PERF_GLOBAL_CTRL

IA32_PERF_GLOBAL_STATUS_RESET

IA32_PERF_GLOBAL_STATUS_SET

IA32_PERF_GLOBAL_INUSE

IA32_PEBS_ENABLE model-specific

MSR_PEBS_DATA_CFG model-specific

MSR_PEBS_LD_LAT model-specific

MSR_PEBS_FRONTEND model-specific

IA32_A_PMCx multiple MSRs CPUID(Ox0A).EAX[15:8], [Intel SDM,
IA32_PERF_CAPABILITIES[13] Vol. 3,
The Intel TDX module requires the CPU to 18.2.6]
support 8 counters.

MBSR virtualization is described in 13.7.

16.2.3. Performance Monitoring Interrupts (PMls)

By design, when a guest TD is allowed to use Perfmon, it can also configure the counters to raise PMI on overflow. When
such a TD counter overflows, the physical interrupt or an NMI configured by the host VMM into the local APIC is delivered.
This interrupt or NMI causes a VM exit, and it is delivered as a TD exit to the host VMM. The host VMM is then expected
to inject the PMI into the guest TD, either as a virtual interrupt using the posted interrupt mechanism (see 13.9.4), or as
virtual NMI using the NMl injection interface (see 13.9.6).

Since the host VMM is not trusted, the guest TD must be ready to handle spurious, delayed or dropped PMls. Thus, it is
recommended for the guest TD to use PEBS instead of PMIs in order to record TD state at counter overflows.

Uncore PMlIs are discussed in 16.4 below.

16.3. Off-TD Debug

A guest TD is defined as debuggable if its ATTRIBUTES.DEBUG bit is 1. In this mode, the host VMM can use Intel TDX
functions to read and modify TD VCPU state and TD private memory, which is not accessible when the TD is non-
debuggable.

A debuggable TD is, by nature, untrusted. Since the TD’s ATTRIBUTES are included in the TDREPORT_STRUCT, the TD’s
debuggability state is visible to any third party to which the TD attests.

The applicable Intel TDX functions are listed in Table 16.3 below. Note that some of the functions can access non-secret
guest TD state regardless of the DEBUG attribute. The lists of state information that can be read and/or written in non-
DEBUG and in DEBUG modes are detailed in the referenced sections.

Table 16.3: Off-TD Debug Interface

Intel TDX Function ATTRIBUTES.DEBUG =0 ATTRIBUTES.DEBUG = 1 References

TDH.MNG.RD/ Access non-secret TD-scope Access secret and non-secret 23.1, 24.2.22,

TDH.MNG.WR state in TDR and TDCS. TD-scope state in TDR and 24.2.23
TDCS.

TDH.MEM.SEPT.RD Read Secure EPT entry Read Secure EPT entry 24.2.12

February 2023 Page 118 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

Intel TDX Function ATTRIBUTES.DEBUG =0 ATTRIBUTES.DEBUG =1 References
TDH.VP.RD/ Access non-secret TD VCPU Access secret and non-secret 23.2
TDH.VP.WR state in TDVPS (including TD TD VCPU state in TDVPS
VMCS) (including TD VMCS).
TDH.MEM.WR/ N/A Access TD-private memory. 24.2.25,
TDH.MEM.RD 24.2.25
TDH.PHYMEM.PAGE.RDMD | Read page metadata (PAMT Read page metadata (PAMT 24.2.28
information) information).

16.3.1. Modifying Debuggable TD’s State, Controls and Memory

When the TD is debuggable, the off-TD debugger can:

e Read and modify TDVMCS fields that contain guest state, VM entry load controls, VM exit save controls, and VM
execution controls.

e Read and modify TDVPS fields that contain additional TD VCPU'’s state (e.g. extended register state).

e Read and modify a per-VCPU copy of the TD’s extended feature mask (XFAM), such that more extended register state
would be saved to TDVPS on TD exit and restore from TDVPS on TD entry.

This may cause the next VM entry into the TD VCPU to fail due to bad guest state. It may also generate VM exits that
wouldn’t have happened otherwise (e.g., VM exit due to a #PF within the TD). In non-debuggable TD such VM exits are
not expected, and thus treated as fatal TDX module error and lead to shutdown. In debuggable TDs, however, such VM
exits are expected and cause TD exit.

Specifically, the TDX module handling of TD VM exits is extended as follows:

1. If this TD VM exit might happen on non-debuggable TDs:
1.1. Do "standard" handling (may result a TD exit).
1.2. If an exception is pending to be injected into the TD:
1.2.1. If the TD is debuggable and its exception bitmap is programmed to intercept that exception:
1.2.1.1. TD exit to the VMM, as if the exception has been raised during TD execution.
1.3. Resume the TD (may inject an exception).
2. Else (an unexpected VM exit happened):
2.1. Ifthe TD is debuggable then TD exit.
2.2. Else handle this as a fatal error.

In any case, the security of other guest TDs running in production mode is not impacted.

16.3.2. Preventing Guest TD Corruption of DRs

The host-side debugger may need to have full control over guest DRs to help prevent their corruption by the guest TD.
To do so, the debugger can do the following:

e Use TDH.VP.WR to set the TD VMCS GUEST_DR?7 field’s Global Detect bit.

e Set the TD VMCS exception bitmap execution control to intercept debug exceptions.

16.4. Uncore Performance Monitoring Interrupts (Uncore PMls)

By design, neither the Intel TDX module itself not its guest TDs are allowed to use Uncore PMlIs. The state of
IA32_DEBUGCTL MSR bit 13 (ENABLE_UNCORE_PMI) is preserved across SEAMCALL, SEAM root and non-root mode and
SEAMRET, except for very short time periods immediately after SEAMCALL and VM exit.

February 2023 . Page 119 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

17.Memory Integrity Protection and Machine Check Handling

17.1. Overview

The Intel TDX module’s memory integrity protection and machine check handling are designed to answer address the
following security objectives:

e Corruption of TD private data or Intel TDX module memory must be detectable before the decrypted corrupted data
are consumed by the guest TD or by the Intel TDX module.

e To help improve resistance to brute force attacks, software must not be able to repeatedly cause memory integrity
violations during Intel TDX module or guest TD operation. When an integrity violation is detected, the affected guest
TD and the key corresponding to its affected HKID must become unusable for normal operation of the TD —i.e., the
TD may only be torn down.

e Anysoftware except guest TD or TDX module must not be able to speculatively or non-speculatively access TD private
memory, to detect if a prior corruption attempt was successful in finding an integrity collision or failed and received
zero-data.

As a best effort, the TDX module is designed to enable limiting the impact of memory integrity violations in a guest TD
context to that guest TD, i.e., requiring only that guest TD to be torn down. However, there are cases where memory
integrity violations result in an unbreakable shutdown of the LP.

17.2. TDX Memory Integrity Protection Background

17.2.1. Cryptographic Integrity (Ci) vs. Logical Integrity (Li), MAC and TD Owner

TDX architecture aims to provide resiliency against confidentiality and integrity attacks by software. Towards this goal,
the TDX architecture helps enforce the enabling of memory integrity for all private HKIDs. It supports two memory
integrity modes that can be configured on the platform:

Cryptographic Integrity (Ci) Memory content is encrypted and protected by a MAC and a TD Owner bit.
Logical Integrity (Li) Memory content is encrypted and protected by a TD Owner bit.

In both Ci and Li modes, the memory controllers store a 1-bit TD Owner metadata each cache. The TD Owner bit is set
to 1 for writes with a private HKID and is cleared to O for writes with a shared HKID. The TD Owner bit is covered by ECC.

When Ci mode is enabled, the CPU’s memory controllers compute a 28-bit integrity check value (MAC) for the data (cache
line) during writes, and store the MAC with the memory as meta-data. The MAC is calculated over the components
described in the table below. The MAC is covered by ECC.

Table 17.1: Components for MAC Calculation (Ci Mode)

Component Description

Ciphertext Data 512 bits of data being written to memory.

Encryption Tweak | 128-bit encryption tweak, generated by encrypting the physical address with the 128-bit
per-HKID ephemeral AES-XTS tweak key. The tweak key is generated on key
configuration (TDH.SYS.KEY.CONFIG and TDH.MNG.KEY.CONFIG).

TD Owner Bit Indicates that the data was written using a private HKID.

MAC Key 128-bit MAC key, generated by hardware on platform initialization, when BIOS
configures the IA32_TME_ACTIVATE MSR.

17.2.2. MAC and TD Owner Bit Update on Memory Writes

The MAC and the TD Owner bit are updated on memory writes by the memory controller per the following criteria:

e If memory write is for a private HKID, the TD Owner bit is set, and integrity information (MAC) is computed and
stored as meta-data along with ciphertext in memory.

e Else (write is for a shared HKID), the TD Owner bit is clear, and based on the key configuration, integrity information
(MAC) may be stored along with ciphertext in memory.

February 2023 . Page 120 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

The state diagram below shows the TD Owner bit state changes due to memory state changes.

TDX module converts from
shared HKID to private HKID
(write using private HKID)

Write using TD or TDX module
shared HKID write using private
HKID

Host VMM converts from private
HKID to shared HKID
(write using shared HKID)

Figure 17.1: TD Owner Bit Setting on Write

17.2.3. Memory Reads: Integrity and TD Owner Bit Checks, Poison Generation and Poison Consumption

Checks on memory reads depend on whether Cryptographic Integrity (Ci) is enabled on the platform, or Logical Integrity
(Li) is used. This is shown in the tables below.

e When the memory read transaction uses a private HKID, TD Owner bit mismatch and/or integrity check failure (for
Ci) result in a new poison generation. An all-0 data is returned, with a poison indication.

e The poison indication is sticky; it is stored back to memory. Subsequent read transactions that read a previously
poisoned memory line return a poison indication regardless of the TD Owner bit or integrity checks. A sticky poison
indication is cleared when the whole memory line is written; the correct way to do so is by using the MOVDIR64B
instruction.

e Anyreads of TD private data (TD Owner is 1) done outside SEAM mode (i.e., with a shared HKID) return all-0. This is
intended to prevent the host VMM from testing malicious ciphertext for a MAC collision, since the VMM wiill
deterministically see zeroed data in the cache for speculative accesses, which on subsequent non-speculative
accesses will cause a machine check event. No new poison indication is returned; however, a previous poison
indication that has been stored in memory may be returned.

Table 17.2: Checks on Memory Reads in Ci Mode

HKID Integrity | TD Integrity | Returned New Comments
Type Enabled | Owner | Check Data Poison
for HKID | Bit
Private | Yes 0 N/A 0 Poison TD bit mismatch failure may be triggered

if the memory was previously written
using a shared HKID.

1 Pass Decrypted | None If the memory line has been previously
data poisoned, the read transaction may return
a poison.
1 Fail 0 Poison Integrity check failure may be triggered if

the memory was previously written using
a different encryption key.

Shared | Yes 0 Pass Decrypted | None If the memory line has been previously
data poisoned, the read transaction may return
a poison.

February 2023 . Page 121 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US
HKID Integrity | TD Integrity | Returned New Comments
Type Enabled | Owner | Check Data Poison

for HKID | Bit

0 Fail 0 Poison Integrity check failure may be triggered if
the memory was previously written using
a different encryption key.

1 N/A 0 Poison TD bit mismatch failure may be triggered
if the memory was previously written
using a private HKID.

Shared | No 0 N/A Decrypted | None If the memory line has been previously
data poisoned, the read transaction may return
a poison.

1 N/A 0 None If the memory line has been previously
poisoned, the read transaction may return
a poison.

Table 17.3: Checks on Memory Reads in Li Mode
HKID Integrity | TD Integrity | Returned | New Comments
Type Enabled | Owner | Check Data Poison
for HKID | Bit
Private | No 0 N/A 0 Poison TD bit mismatch failure may be triggered
if the memory was previously written
using a shared HKID.
1 N/A Decrypted | None If the memory line has been previously
data poisoned, the read transaction may return
a poison.
Shared | No 0 N/A Decrypted | None If the memory line has been previously
data poisoned, the read transaction may return
a poison.

1 N/A 0 None If the memory line has been previously
poisoned, the read transaction may return
a poison.

Memory integrity errors that result in poison generation are logged by the memory controller as UCNA (uncorrected no-

action required) UCR errors which are signaled via CMCI (if CMCl is enabled) or CSMI (if enabled).

On a subsequent consumption (read) of the poisoned data by software, there are two possible scenarios:

Section 2: Intel TDX Module Architecture Specification

Machine Check: In most cases, the core determines that the execution can continue, and it treats poison with

10

15

Unbreakable Shutdown:

fault-like exception semantics signaled as an MCE (Machine Check Exception) or MSMI
(Machine-check System Management Interrupt).

Handling of machine check events (MCE or MSMI) when executing in a guest TD (in SEAM non-
root mode) and in the Intel TDX module (in SEAM root mode) is described in the following
sections.

In some cases, the core determines that execution cannot continue (e.g., long pCode flows),
and it goes into an unbreakable shutdown.

An unbreakable shutdown that happens while running in SEAM mode, either in a guest TD or
in the TDX module, globally marks TDX as disabled — all subsequent SEAMCALL invocations on
any logical processor of the platform lead to a VMfaillnvalid error.

February 2023

Page 122 of 323

10

15

20

25

30

35

40

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

17.2.4. Memory Writes: No Integrity nor TD Owner Bit Checks

The TD Owner bit is not checked on memory writes. Itis the responsibility of the host VMM to prevent writing to memory
that has been assigned as TD private memory. Failing to do so will result in a memory corruption; such corruption will be
detected when the guest TD or the TDX module attempts to read that memory, as described above.

The host VMM should always initialize memory that has been used with a private HKID (i.e., TD private memory and TDX
control structures), and is about to be used with a shared HKID, using a full line write. The correct way to do so is by
using the MOVDIR64B instruction. This helps ensure that the TD Owner bit and any stored poison indication are cleared.

17.3. Machine Check Architecture (MCA) Background

Intel SDM, Vol. 3, 15 Machine-Check Architecture

The machine-check architecture (MCA) provides a mechanism for detecting and reporting hardware (machine) errors.
These include system bus errors, ECC errors, parity errors, cache errors and TLB errors. MCA consists of a set of model-
specific registers (MSRs) that are used to set up machine checking, and it includes additional banks of MSRs used for
recording errors that are detected.

17.3.1. Uncorrected Machine Check Error

The processor signals the detection of an uncorrected machine-check error by generating a machine-check exception
(MCE), which is a fault-like exception. An MCA enhancement supports software recovery from certain uncorrected
recoverable machine check errors. Poisoned cache line consumption by the guest TD is considered such an error. The
machine-check exception handler is expected to be implemented in the VMM.

17.3.2. Corrected Machine Check Interrupt (CMCI)
Intel SDM, Vol. 3, 15.5 Corrected Machine Check Error Interrupt
Processors on which TDX will be supported can also report information on corrected machine-check errors and deliver a

programmable interrupt for software to respond to MC errors —referred to as corrected machine-check interrupt (CMCI).

CMCl is delivered as a normal interrupt. If delivered during guest TD operation, this interrupt causes a VM exit, and Intel
TDX module performs a TD exit to the host VMM. If delivered during Intel TDX module operation, this interrupt remains
pending until either SEAMRET to the host VMM or until VM entry to a guest TD.

17.3.3. Machine Check System Management Interrupt (MSMI)

MSMI is part of the Enhanced Machine Check Architecture, Gen. 2 (EMCA2). With EMCA2 enabled, each machine check
bank can be configured to assert SMI instead of MCE or CMCI. This is intended to allow the SMM handler to correct the
error when possible. For details, see [Error Reporting through EMCA2].

17.3.4. Local Machine Check Event (LMCE)
Intel SDM, Vol. 3, 15.3.1.5 Enabling Local Machine Check

When system software has enabled LMCE, then hardware will determine if a particular error can be delivered only to a
single logical processor, instead of being broadcast to all logical processors. This is the recommended configuration for
TDX.

17.4. Recommended MCA Platform Configuration for TDX

The following platform MCA configuration is recommended for TDX:

e LMCE should be enabled, so that machine check events that happen in the scope of a certain logical processor are
delivered only to that logical processor.

e EMCA?2 should be disabled on core MC banks (IFU and DCU), so that the host VMM can handle memory integrity
errors by tearing down a single TD, instead of shutting down the whole platform.

The following sections provide additional details.

February 2023 . Page 123 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

17.5. Handling Machine Check Events during Guest TD Operation

17.5.1. Machine Check Events Delivered as an #MC Exception (Recommended)

If EMCAZ2 is not enabled on the core MC banks (IFU and DCU), the machine check event is delivered as an #MC exception.
With LMCE enabled, the MCE is delivered only to the logical processor that consumed the poisoned cache line.

The Intel TDX module configures the MCE events when they occur in a TD guest to cause a VM exit to the Intel TDX
module. This includes the following cases:

e MCE during guest TD operation
e MCE during a successful VM entry to a guest TD
e MCE during a failed VM exit, where normally execution would remain in the guest TD

The Intel TDX module implements this as follows:

e The Intel TDX module enforces guest TD CR4.MCE to 1.
e The Intel TDX module sets bit 18 (MC) of the TD VMCS Exception Bitmap to 1.

On VM exit, if the exit reason is Exception or NMI (0), the Intel TDX module reads the TD VMCS’ VM-exit interruption
information to determine if the VM exit was caused by a #MC (18). If so, the Intel TDX module puts the TD in a FATAL
state, preventing further TD entries. The TDX module then completes the TD exit flow. The TDH.VP.ENTER outputs
indicate the status as TDX_NON_RECOVERABLE_TD_FATAL and provides the exit reason, exit qualification and exit
interruption information.

Note: The TDX module does not analyze the MCE to determine its source — whether it's a memory integrity violation
or some other event.

Based on the TDH.VM.ENTER outputs (exit reason etc.), the host VMM is expected to understand that a Machine Check
event happened, and that the TD should be torn down.

The host VMM can reclaim memory assigned to TDs in a FATAL state using the normal TD teardown flow (TDH.VP.FLUSH,
TDH.MNG.VPFLUSHDONE, TDH.PHYMEM.CACHE.WB, TDH.MNG.KEY.FREEID, TDH.PHYMEM.PAGE.RECLAIM).

The host VMM should not attempt to read the poisoned memory locations. Doing so may result in a poison consumption
and an MCE in the VMM context (see 17.2.3 above). Before the reclaimed (and possibly poisoned) TD pages are reused,
they should be initialized using MOVDIR64B. If such a page is allocated to another TD, this is done by the TDX module. If
the page is to be used for other purposes, the host VMM should itself initialize the page using MOVDIR64B.

Integrity violation
detected, causing machine
check event

Read attempt

TD VCPU from TD
Private Page

VM
exit

1. Examine exit reason (0: Exception
or NMI)

. Examine interruption information
(vector 18: #MC)

3. Mark TD as FATAL

TDX 2
Module

-_- TD exit

TD Teardown

Figure 17.2: Example of Handling an MCE in a TD Context

February 2023 . Page 124 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

17.5.2. Machine Check Events Delivered as an MSMI (Not Recommended)

If EMCAZ2 is enabled on the core MC banks (IFU and DCU), the machine check event is delivered as an MSMI. With LMCE
enabled, the MSMI is delivered only to the logical processor that consumed the poisoned cache line.

Contrary to non-TDX operation, an SMI that occurs in a TD guest does not immediately invoke the SMM handler. Instead,
an SMI causes a VM exit to the Intel TDX module and remains pending.

On VM exit, if the exit reason is Other SMI (6), the Intel TDX module reads the TD VMCS’ exit qualification bit 0 to
determine if the VM exit was caused by a Machine Check that was mutated into an SMI. If so, the Intel TDX module puts
the TD in a FATAL state, preventing further TD entries. The TDX module then completes the TD exit flow. The
TDH.VP.ENTER outputs indicate the status as TDX_NON_RECOVERABLE_TD_FATAL and provides the exit reason and exit
qualification.

Note: The TDX module does not analyze the MCE to determine its source — whether it's a memory integrity violation
or some other event.

Once TD exit has completed and the CPU is no longer in SEAM mode, the pending SMI event is taken and the platform’s
SMM handler is invoked. On RSM, the SMM handler injects an #MC to the host VMM.

The host VMM needs to understand that the reported machine check event happened during TD execution and may be
handled by tearing down the TD. However, this may not be simple to implement. Thus, EMCA2 enabling on the core
MC banks is not recommended for TDX.

Integrity violation
detected, causing MSMI

event
Read attempt
TD VCPU from TD
Private Page
VM
exit
1. Examine exit reason (6: Other SMI)
TDX 2. Examine exit qualification (bit 0: 1)
el 3. Mark TD as FATAL
SMM RSM #MC handler may be
entry unaware of the TD exit
information and unable to
determine cause
SMM Handle SMI
Handler

Figure 17.3: Example of Handling an MSMI in a TD Context

17.5.3. LMCE Disabled (Not Recommended)
If LMCE is disabled, then an MCE or MSMI is broadcast to all logical processors on the platform. Any TD that happens to
be running will be put in a FATAL state.

Note: The TDX module does not check the MCE details. Any MCE that causes a VM exit from a guest TD is considered
fatal to that TD.

17.5.4. Machine Check Events Delivered as a CMCI

CMCl is treated as a normal interrupt, causing an asynchronous TD exit; there’s no special handling.

On VM exit, if the exit reason is Exception or NMI (0), the Intel TDX module reads the TD VMCS’ VM-exit interruption
information to determine if the VM exit was caused by a #MC (18). If not, the Intel TDX module completes the TD exit

February 2023 . Page 125 of 323

Section 2: Intel TDX Module Architecture Specification

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

flow. The TDH.VP.ENTER outputs indicate the status as TDX_SUCCESS and provides the exit reason, exit qualification and
exit interruption information.

Based on the TDH.VM.ENTER outputs, the host VMM is expected to process the CMCl interrupt.
17.6. Handling MCE during Intel TDX Module Operation
Any machine check event that occurs during Intel TDX module operation (in SEAM root mode) forces an unbreakable

shutdown on a current LP. Shutdown also globally marks TDX as disabled — all subsequent SEAMCALL invocations on any
logical processor of the platform lead to a VMfaillnvalid error.

February 2023 . Page 126 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

40

45

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

18.Side Channel Attack Mitigation Mechanisms

18.1. Checking CPU Vulnerabilities to Known Attacks

On TDX module initialization (TDH.SYS.INIT and TDH.SYS.LP.INIT), the TDX module reads the 1A32_ARCH_CAPABILITIES
MSR to check that the following bits are set, indicating that the CPU is not vulnerable to a list of known attacks:

e Bit0(RDCL_NO)

e Bit1(IBRS_ALL)

e Bit 3 (SKIP_L1DFL_VMENTRY)
e Bit5(MDS_NO)

e Bit6 (IF_PSCHANGE_MC_NO)
e Bit8(TAA_NO)

18.2. Branch Prediction Side Channel Attacks Mitigation Mechanisms

Branch predictions cached by the CPU before entering a guest TD should not impact the behavior of that TD. The Intel
TDX module helps ensure that by applying CPU mechanisms to isolate the branch predictions of each guest TD from
branch predication done outside its execution.

18.3. Single-Step and Zero-Step Attacks Mitigation Mechanisms

18.3.1. Description

Single-step attacks, zero-step attacks and EPT fault attacks are techniques that provide an adversary with access to a class
of powerful, low-noise side channel attacks. They do so by exploiting control over hardware such as fine resolution APIC
timers, and using TDX module memory management interface functions.

e Single-Step Attacks involve timing pin-based events such as interrupts, NMI, SMI and INIT to interrupt the guest TD
execution after every instruction executed in the guest TD. This allows the attacker to examine the state of the
machine following each instruction execution in interesting regions of code, and use side channels to leak
information used by that region of code.

e EPT Fault Attacks involve causing EPT violations or EPT misconfigurations to infer the control flow of execution inside
a guest TD. Such control flow inference coupled with other side channel techniques, such as branch shadowing, can
be used as a side channel to leak information from the guest TD.

e Zero-Step Attacks involve using an EPT fault on targeted instructions in a guest TD with an intent to glean side
channel information from speculative execution past the faulting instruction. Such instructions are called “replay
anchors”, as every resumption of the TD execution leads to the same EPT fault and thus the same speculative
execution with the same stimulus to be replayed repeatedly, such that noise in side-channel observation of that
speculative execution can be reduced.

The Intel TDX module provides mechanisms to help assist in mitigating single and zero step attacks. For single step
attacks, the TDX module detects when a TD VCPU gets interrupted soon (~4K cycles) after it was entered, and continues
to provide execution opportunities to the TD VCPU for a small random number of instructions before the interruption is
delivered to the host VMM. For zero step attacks, the Intel TDX module counts Secure EPT faults. After a pre-determined
number of such EPT violations occur on the same instruction, the TDX module starts tracking the GPAs that caused Secure
EPT faults and fails further host VMM attempts to enter the TD VCPU unless previously faulting private GPAs are properly
mapped in the Secure EPT.

18.3.2. Host VMM Expected Behavior

No change is required to the host VMM’s normal memory management behavior:

e The host VMM should block (TDH.MEM.RANGE.BLOCK) TD private pages and remove them
(TDH.MEM.PAGE.REMOVE) only after the guest TD has explicitly relinquished the ownership of that page through a
software protocol between the VMM and the TD. Such a protocol is implemented by the balloon driver mechanism
employed by guest Linux kernel to allow the host VMM to overcommit a guest VM assigned memory.

e The host VMM can block TD private pages and perform the following GPA-to-HPA mapping updates without
coordination with the guest TD:

o Physical page relocation (TDH.MEM.PAGE.RELOCATE)

February 2023 . Page 127 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

o Mapping merge or split (TDH.MEM.PAGE.PROMOTE, TDH.MEM.PAGE.DEMOTE)
o Unblock (TDH.MEM.RANGE.UNBLOCK)

A guest TD VCPU attempt to access such pages while they are blocked results in an EPT violation TD exit. A well-
behaved host VMM should not re-enter the TD until the mapping operation is done. Failing to do so will immediately
result in another EPT violation and the TD VCPU won’t make any progress.

18.3.3. Guest TD Interface and Expected Guest TD Operation

The TDX module provides the guest TD with a notification facility, by which the guest TD can get notified when excessive
Secure EPT violations are raised by the same TD instruction. This mechanism allows the guest TD to employ its own
policies. The guest TD enables this notification by setting bit 0 of TDCS.NOTIFY_ENABLES field, using TDG.VM.WR. When
this bit is set, the Intel TDX module raises #VE exception when more than a pre-determined number of Secure EPT
violations are detected on the same instruction, with #VE information containing EPT violation details. This allows the
guest TD to implement its advanced defenses beyond the basic defense done by the TDX module.

As part of its normal memory management behavior, the guest TD should track its GPA space allocation and should only
accept (TDG.MEM.PAGE.ACCEPT) PENDING pages that it expects to be added (TDH.MEM.PAGE.AUG) by the host VMM.
Failing to do so would make the TD vulnerable to attacks, e.g., the host VMM could zero-out a page by removing it and
adding a new one at the same GPA.

Thus, when the guest TD attempts to access a page and a #VE is raised indicating an EPT violation, the expected guest
TD’s #VE handler behavior is as follows:

e Ifthis page is not known to the guest TD as owned by it, i.e., it was not added at TD build time (TDH.MEM.PAGE.ADD)
and has not been added dynamically (TDH.MEM.PAGE.AUG) and accepted (TDG.MEM.PAGE.ACCEPT), the guest TD
can accept this page normally.

e Otherwise, this may indicate an attack and the guest TD can employ its own policy. For example, the guest TD may
halt if this page is one of the pages expected to be resident when a security critical workload is executing, or signal
the current running application so that the application would employ application-specific defenses.

The guest TD’s #VE handler, as well as its virtual NMI handler, should not have any secrets that are susceptible to leakage.

The Intel TDX module does not provide protection against attacks when accessing shared pages. The guest TD should
treat shared memory access as communicating with a potential attacker, and not do any secure processing while
accessing to shared memory.

February 2023 . Page 128 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

19.General Aspects of the Intel TDX Interface Functions

19.1. Concurrency Restrictions and Enforcement

19.1.1. Explicit Concurrency Restrictions

Intel TDX functions may specify concurrency restrictions on accessing one or more resources, as described below. In
most cases, the restriction applies for the duration of the instruction execution. However, in some cases, the restriction
applies for a longer duration. For example, TDH.VP.ENTER requires shared access to the TD-scope logical control
structures TDR and TDCS, and it also requires shared access to TDVPS — the VCPU-scope logical control structure which
applies during TDX non-root operation through TD Exit.

Table 19.1: Concurrency Restrictions of Intel TDX Functions or Flows

Concurrency | Description Examples
Restriction
Exclusive During the period when an LP has an exclusive access | ¢ TDH.VP.CREATE requires an
Access to a certain resource, any attempt by another LP to exclusive access to the TDVPR
concurrently execute an instruction that requires page.
either an exclusive or a shared access to the same
resource will fail.
Shared During the period when an LP has a shared accesstoa | ¢ TDH.VP.CREATE requires a shared

Access certain resource, any attempt by another LP to
concurrently execute an instruction that requires an
exclusive access to the same resource will fail. No
such restriction exists on another LP that attempts to
concurrently execute an instruction that requires a
shared access.

access to the TDR page.

e TDH.PHYMEM.CACHE.WB requires
a shared access to the KOT.

Software is expected to comply with the specified concurrency restrictions. The Intel TDX module helps enforce them
(using internal locks) for proper TDX operation.

Table 19.2: Concurrency Restrictions Cross-Table

Logical Processor Y
Concurrency | Exclusive Shared None
Restriction
Logical Exclusive Not Allowed | Not Allowed | Allowed
Processor
X Shared Not Allowed | Allowed Allowed
None Allowed Allowed Allowed

Intel TDX functions do not wait on a resource that requires an exclusive or a shared access. If the resource is busy, the
function fails immediately.

19.1.2. Implicit Concurrency Restrictions

In some cases, Intel TDX functions and whole flows (e.g., TD Entry through TD Exit) may have implicit exclusive or shared
access to resources. This means that the access restriction is implied by the architecture, but no direct enforcement is
made by the flow itself.

An important case is TDX non-root mode. TDH.VP.ENTER acquires shared locks on the TD’s TDR and TDCS control
structures and on the VCPU’s TDVPS control structure. These shared locks are released only on TD exit. Thus, during all
the time the LP is in the logical TDX non-root mode, including during TDCALL leaf functions, the LP has implicit shared
access to TDVPS, TDR and TDCS.

February 2023 Page 129 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

19.1.3. Transactions

In some cases, Intel TDX module flows update some state as a transaction. They first read the current state, then do
some calculations and eventually attempt to update the state using an atomic operation (e.g., LOCK CMPXCHG) to check
that the state has not changed and set its new value. If that check fails, an Intel TDX module interface function may fail
with a TDX_OPERAND_BUSY status.

19.2. Memory and Resource Operands Access

Intel SDM, Vol. 3, 11.5.2
Intel SDM, Vol. 3, 11.11
Intel SDM, Vol. 3, 11.12

Precedence of Cache Controls
Memory Type Range Registers (MTRRSs)
Page Attribute Table (PAT)

19.2.1. Overview

In this section, we discuss Intel TDX functions” memory and resource operands access from the following perspectives:

e Access semantics (shared, private, opaque and hidden)

Explicit vs. implicit accesses

Operand address specification (host-physical address, guest-physical address)
Actual memory access (read or write) vs. memory reference

19.2.1.1. Access Semantics

Access semantics, as used in this document, convey the intended purpose of the access. Intel TDX functions are designed
to use one of the following access semantics when accessing their memory and/or platform resource parameters:

Table 19.3: Access Semantics Definition

the range 0 to MAX_MKTME_HKIDS - 1). This is mostly
used for memory parameters accessed by the VMM.

Access Description Intel TDX Module Usage
Semantics
Shared Memory is accessed using one of the shared HKIDs (in e Source page of

TDH.MEM.PAGE.ADD

Memory operands of TDCALL leaf
functions

operand to software or devices.

Private The memory is mapped in the TD’s private GPA space. TD private pages
Memory accessed using the target TD’s private HKID (in Secure EPT pages
the range MAX_MKTME_HKIDS - 1 to MAX_HKIDS - 1).
Such memory pages can be mapped in the TD’s private
GPA space.
Opaque Memory is addressable by the host VMM, but its content TDR
is not directly accessible to software or devices. Memory TDCX
is encrypted using either the Intel TDX global private key TDVPR
(for TDR) or the TD’s ephemeral private key (for other
control structures). TDVPX
Hidden Access is to an Intel TDX module internal resource. That KOT
resource is not directly addressable as a memory WBT

Note that on guest-side (TDCALL) functions, shared vs. private semantics is determined by the GPA provided as an
operand to the function. A specific TDCALL leaf function may or may not impose a private or a shared access — e.g.,
TDG.MEM.PAGE.ACCEPT requires a private GPA, while TDG.MR.REPORT may work with either a private GPA or a shared
GPA.

February 2023 Page 130 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

19.2.1.2. Explicit vs. Implicit Access

An explicit memory access is defined as an access where the memory location is provided as explicit operand to an Intel
TDX function. The address may be provided directly in a GPR or indirectly via some address field in a software-accessible
memory data structure.

The HKID for accessing the memory can be inferred by the instruction — implicitly or explicitly from the explicitly provided
access.

An implicit memory access is defined as an access to a platform physical memory address, or to some other resource,
that is not passed as an operand of an instruction (either directly or indirectly) but is implied by use of the Intel TDX
function. TDX architecture helps guarantee that an implicit access is performed correctly, or a proper error action is
taken.

19.2.1.3. Memory Operand Address Specification

Host-side Intel TDX functions (SEAMCALL leaf functions) memory operands are specified using their host-physical address
(HPA), their guest-physical address (GPA), or when a GPA-to-HPA mapping is done (e.g., TDH.MEM.PAGE.ADD) by both
HPA and GPA.

In most cases, HPA for private or opaque access semantics must specified with all HKID bits set to 0.

Guest-side Intel TDX functions (TDCALL leaf functions) memory operands are specified using their guest-physical address
(GPA).

19.2.1.4. Memory Type

19.2.1.4.1. Memory Type for Private and Opaque Accesses

The memory type for private and opaque access semantics, which use a private HKID, is WB.

19.2.1.4.2. Memory Type for Shared Accesses
Intel SDM, Vol. 3, 28.2.7.2 Memory Type Used for Translated Guest-Physical Addresses

The memory type for shared access semantics, which use a shared HKID, is determined as described below. Note that
this is different from the way memory type is determined by the hardware during non-root mode operation. Rather, it
is a best-effort approximation that is designed to still allow the host VMM some control over memory type.

e For shared access during host-side (SEAMCALL) flows, the memory type is determined by MTRRs.
e For shared access during guest-side flows (VM exit from the guest TD), the memory type is determined by a
combination of the Shared EPT and MTRRs.
o If the memory type determined during Shared EPT walk is WB, then the effective memory type for the access is
determined by MTRRs.
o Else, the effective memory type for the access is UC.

19.2.1.5. Actual Memory Access vs. Memory Reference

In some cases, Intel TDX functions only reference memory —i.e., use its address, but no actual access is done.

In other cases, Intel TDX functions access the memory —i.e., perform read or write (but not execute) operations.

February 2023 . Page 131 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Spec

Section 2: Intel TDX Module Architecture Specification

344425-005US

19.2.1.6. Summary Table
Table 19.4: Memory Access Summary
Explicit/ | Intel TDX Access Address | HKID Derivation Memory Example
Implicit | Function Semantics | Operand Type
Explicit Host-Side Shared HPA Derived HPA From MTRR | SRCPAGE operand of
(SEAMCALL operand’s HKID TDH.MEM.PAGE.ADD
Leaf) bits
Private HPA TD’s HKID WB Target page of
TDH.PHYMEM.PAGE.RECLAIM
GPA TD’s HKID WB CHUNK operand of
TDH.MR.EXTEND
HPA and | TD’s HKID WB Target page of
GPA TDH.MEM.PAGE.ADD
Opaque HPA TD’s HKID or Intel | WB TDVPR operand of
TDX global HKID TDADDVPR
Guest-Side | Shared GPA From Shared EPT | From REPORTDATA operand of
(TDCALL Shared EPT | TDG.MR.REPORT
Leaf) and MTRR
Private GPA TD’s HKID WB Target page of
TDG.MEM.PAGE.ACCEPT
Implicit | All Private/ N/A TD’s HKID or Intel | WB TDCS access by
Opaque TDX global HKID TDH.VP.ENTER
Hidden N/A N/A N/A KOT access by
TDH.MNG.KEY.CONFIG

19.3. Register Operands and CPU State Convention

VM-Exit Information Fields
VMX Basic Exit Reasons

Intel SDM, Vol. 3, 24.9
Intel SDM, Vol. 3, App. C

19.3.1. Overview: Regular vs. Transition Leaf Functions

Intel TDX functions can be divided into transition functions and non-transition functions.

The non-transition functions are where SEAMCALL and TDCALL leaf functions behave as emulated CPU instructions from
the perspective of the host VMM and the guest TD, respectively. In those cases, the meaning of input and output register
operands is straightforward — similar to CPU instructions.

Transition cases are SEAMCALL(TDH.VP.ENTER) and TDCALL(TDG.VP.VMCALL) leaf functions, where a full cycle (until start
of the next instruction) includes TD transitions to the guest TD or host VMM, respectively, and back to the host VMM or
guest TD, respectively. In those cases, we look at the functions from the point of view of the caller. The meaning of input
and output register operands is more complicated.

Both cases are explained in the following sections and in the function reference sections.

19.3.2. Interface Function Completion Status

Intel TDX function completion status is returned in RAX. The status is structured to provide as many details to software
about error conditions as practically possible. At the same time, the status enables software to ignore details that it does
not need. Software may parse the completion status at three detail levels, as described below.

February 2023 Page 132 of 323

Section 2: Intel TDX Module Architecture Specification

10

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

19.3.2.1. Least Detailed Level: Success/Warning/Error

At this simplest level, software can differentiate among three cases:

Table 19.5: Intel TDX Interface Functions Completion Status in RAX at the Least Detailed Level

RAX Meaning Description

0 Success Function completed successfully

>0 Informational / | Function completed successfully, but with some informational
(0x00000000_00000001 Warning or warning code — e.g., TDH.PHYMEM.PAGE.RECLAIM of a TDCX
— OX7FFFFFFF_FFFFFFFF) page that is already not VALID

<0 Error Function aborted due to some error

(0x80000000_00000000

— OXFFFFFFFF_FFFFFFFF)

19.3.2.2. Medium Detailed Level: Class and Recoverability

At this level, software can understand the following information:
Class: The class of error or warning — e.g., Resource Busy

Recoverability Hint: Whether the function can be retried after some conditions have been corrected — e.g., if some
resource was busy due to a concurrency error, retrying the function may succeed.

19.3.2.3. Most Detailed Level

At this level, software can understand more details of an error that happened —e.g., if TDH.VP.ADDCX fails, software may
understand if it is due to a wrong number of TDVPX pages or due to the VCPU already being initialized.

Table 19.6: Intel TDX Interface Functions Completion in RAX at the Most Detailed Level

Bits Name Description

63 ERROR Interface function aborted due to error.

0: Indicates that the function completed successfully — possibly with some
warnings.

1: Indicates that the function aborted due to some error.

62 NON_RECOVERABLE | Recoverability hint — applicable only when ERROR is 1.

0: Indicates that the function may possibly be retried after some conditions
have been corrected.

1. Indicates that the error is probably not recoverable.

61:48 | RESERVED Reserved —set to 0

47:40 | CLASS Class of the function completion status

39:32 | DETAILS_L1 Details of the function completion status

31:.0 DETAILS_L2 Additional details of the function completion status — e.g., includes:

e Implicit or explicit operand identifier
e CPUID leaf or sub-leaf

e MSR index

e VMCS field code

e VM exit reason

February 2023 . Page 133 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

Bits Name Description

e CMRindex
e TDMR index

Refer to 21.1 for a list of function completion codes.

19.3.3. Other CPU State Convention

All Intel TDX functions except TDH.VP.ENTER are designed to preserve the CPU state not explicitly defined as output.

TDH.VP.ENTER is a special case. In addition to explicit output operands discussed in 19.3.4 below, TDH.VP.ENTER is not
designed to preserve the extended CPU state that the TD may use according to TDCS.XFAM.

The host VMM is expected to save any state it needs before calling TDH.VP.ENTER. Details are provided in the
TDH.VP.ENTER leaf function definition (see 24.2.31).

19.3.4. Transition Cases: TD Entry and Exit

19.3.4.1. TD Entry: TDH.VP.ENTER

Transfer of Host VMM State to TD Guest

By design, in the case of a TDH.VP.ENTER leaf function that follows a previous TDG.VP.VMCALL, the RCX input parameter
of the previous TDG.VP.VMCALL is used as a bitmap. It selects the GPRs (from RBX, RDX, RBP, RDI, RSI and R8 through
R15) and XMM registers whose value is transferred to the guest TD as-is. RAX is set to 0. See the TDG.VP.VMCALL
description in 24.3.10.

The rest of the CPU state is restored from the TD VCPU state as saved on TDG.VP.VMCALL.

Output State (Back to the Host VMM)

On completion of TDH.VP.ENTER, a success — indicated by the ERROR bit (RAX[63]) being 0 — means that TD Entry into
the TD guest was successful. The TD guest ran for some time and then exited to the Intel TDX module. That exit can be
due to execution of TDG.VP.VMCAL) or due to an asynchronous exit (e.g., an EPT Violation). The Intel TDX module then
executes SEAMRET, transferring control to the instruction following TDH.VP.ENTER. In this case, the DETAILS field
(RAX[31:0]) format is designed to be the same as the VMX Exit reason.

If the completion of TDH.VP.ENTER (i.e., exit from the TD guest) was due to TDCALL(TDG.VP.VMCALL), then the RCX input
parameter of TDG.VP.VMCALL is designed to be used as a bitmap. It selects the GPRs (from RBX, RDX, RBP, RDI, RSI and
R8 through R15) and XMM registers whose value is passed to the host VMM as the output of TDH.VP.ENTER. RCX itself
is passed as-is to the output of TDH.VP.ENTER, and RAX[31:0] indicates the VMCALL exit reason (see below). See the
TDG.VP.VMCALL description in 24.3.10.

If the completion of TDH.VP.ENTER was due to another reason, then other VMX-like Exit Information fields are provided
in other GPRs. Details are provided in the TDH.VP.ENTER leaf function definition (see 24.2.31).

By design, any GPRs and extended states that do not return values as described above are set to synthetic values. If the
VMM uses any of them, it must explicitly save them before TDH.VP.ENTER and restore them afterward.

19.3.4.2. TD Synchronous Exit: TDG.VP.VMCALL

Transfer of TD Guest State to Host VMM

In the case of a TDG.VP.VMCALL leaf function, the RCX input parameter of TDG.VP.VMCALL is designed to be used as a
bitmap. It selects the GPRs (from RBX, RDX, RBP, RDI, RSl and R8 through R15) and XMM registers whose value is passed
to the host VMM as the output of TDH.VP.ENTER. RCX itself is passed as-is to the output of TDH.VP.ENTER.

RAX provides TDH.VP.ENTER completion status (see above). All other CPU state components, including GPRs and XMM
registers not selected by RCX, are saved in TDVPS and set to fixed values (see 23.2). The value of RCX itself is also saved
to TDVPS.

February 2023 . Page 134 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

25

30

35

Intel® TDX Module Spec Section 2: Intel TDX Module Architecture Specification 344425-005US

Output State (Back to the Guest TD)

On completion of TDG.VP.VMCALL, a success — indicated by the ERROR bit (RAX[63]) being 0 — means that a SEAMRET
into the VMM was successful. The VMM ran for some and then executed TDH.VP.ENTER successfully (possibly on another
LP). The Intel TDX module executed VMRESUME successfully, transferring control to the instruction following TDCALL.

In this case, the RCX input parameter of TDG.VP.VMCALL is designed to be used as a bitmap. It selects the GPRs (from
RBX, RDX, RBP, RDI, RSI and R8 through R15) and XMM registers whose value reflects their state as input to
TDH.VP.ENTER. All other CPU states, including GPRs and XMM registers not selected by RCX, are restored from TDVPS.

19.4. Metadata Access Interface

19.4.1. Introduction

Metadata access interface is the architecture that allows representing TDX metadata, i.e., TD non-memory state and TDX
module control state, in a way that is independent of the way it is stored. It does this by hiding the memory format of
TDX control structures and allowing abstraction of data, as follows:

e The actual fields stored in the TD control structures may be different than their abstracted representation.

e Access to a TD metadata field may trigger some operation. E.g., writing the TD VMCS’s “posted-interrupt descriptor
address” control triggers the verification of related control and may enable posted interrupt handling.

e TD metadata fields may be completely virtual, i.e., there may be no actual control structure fields represented by
them.

Metadata abstraction is used in the following cases:

e Read and write of TDR, TDCS and TDVPS control structures by the host VMM using the SEAMCALL functions
TDH.MNG.RD, TDH.MNG.WR, TDH.VP.RD and TDH.VP.WR

e Read and write of TDCS control structure by the guest TD using the following TDCALL functions TDG.VM.RD and
TDG.VM.WR

19.4.2. Metadata Fields and Elements

Metadata fields are identified by field identifiers (MD_FIELD_ID). A field identifier contains a FIELD_CODE and other
information — for a detailed description see 22.8 and MD_FIELD_ID values are defined in tables provided in Ch. 23.
Metadata fields size may be up to 128 bytes.

For the purpose of metadata abstraction interface, fields are divided into multiple field elements; the size of each
element can be 1, 2, 4 or 8 bytes. Elements in a field have consecutive field codes, incremented by 1 or 2 as encoded in
by the field identifier’s INC_SIZE.

Figure 19.1 below shows an example of a SHA384 fields (e.g., TDCS.MRCONFIGID), whose size is 48B. When access using
the metadata access functions, this field is divided into six 8-byte elements.

Element O Element 1 Element 2 Element 3 Element 4 Element 5
FIELD_CODE X X+1 X+2 X+3 X+4 X+5
Content Bytes 7:0 Bytes 15:8 Bytes 23:16 Bytes 31:24 Bytes 39:32 Bytes 47:40

Figure 19.1: Example of a 48 Byte TDCS.MRCONFIGID Field Composed of Six 8 Byte Elements
A detailed definition of a field identifier is provided in 22.8.

19.4.3. Arrays of Metadata Fields

Metadata fields can be organized in arrays. Figure 19.2 below shows an example of an array of 4 fields, each composed
of 1 element. In this case, fields in the array have consecutive field codes, incremented by 1 or 2 as encoded in by the
field identifier’s INC_SIZE field.

February 2023 Page 135 of 323

Section 2: Intel TDX Module Architecture Specification

10

15

20

Intel® TDX Module Spec

Section 2: Intel TDX Module Architecture Specification 344425-005US

Array Field Content
Index Code

0 X+0 Array[0]
1 X+1 Array[1]
2 X+2 Array[2]
3 X+3 Array[3]

Figure 19.2: Example of an Array of 4 Single-Element Fields

Figure 19.3 below shows an example where each field is composed of multiple elements. TDCS.RTMR is such a case. The
base FIELD_ID of each field in the array is incremented by the number of elements in each field, multiplied by 1 or 2 as
encoded in by the field identifier’s INC_SIZE field.

Array|Base Element 0’s |Element 1’s |Element2’s |Element3’s |Element4’s |Element5’s
Index|FIELD_ID |FIELD_ID FIELD_ID FIELD_ID FIELD_ID FIELD_ID FIELD_ID

0 X+0 X+0 X+1 X+2 X+3 X+4 X+5

1 X+6 X+6 X+7 X+8 X+9 X+10 X+11

2 X+12 X+12 X+13 X+14 X+15 X+ 16 X+ 17

3 X+ 18 X+ 18 X+19 X+20 X+21 X+22 X+ 23

Figure 19.3: Example of an Array of Four 48 Byte TDCS.RTMR Fields, Each Composed of 6 Elements

19.5. Latency of the Intel TDX Interface Functions

The Intel TDX module runs with interrupts disabled (including NMI and SMI). To support proper system responsiveness,
most TDX module interface functions are designed to have a short latency. However, there are infrequent cases where
the latency of some interface functions may be longer than normal, as listed below.

Host-side interface functions that are invoked a limited number of times during TDX module lifecycle. The interface
functions below are known to have longer than normal latencies:

o TDH.SYS.INIT

o TDH.SYS.LP.INIT

o TDH.SYS.KEY.CONFIG

Host-side interface functions that are invoked a limited number of times during TD . The interface functions below
are known to have longer than normal latencies:

o TDH.MNG.KEY.CONFIG

o TDH.MNG.INIT

o TDH.VP.INIT

TDH.VP.ENTER may have a long latency if the single/zero step attack mitigation (described in 18.3) is activated due
to a suspected attack.

February 2023

Page 136 of 323

Section 2: Intel TDX Module Architecture Specification

10

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

SECTION 3:

INTEL TDX APPLICATION BINARY INTERFACE (ABI)
REFERENCE

This section serves as a detailed reference for the Intel TDX module ABI. This includes:

CPU virtualization tables
Constants

Data types

Variables

Control structures
functions

The reference contains software-visible details. It also contains some internal details at a level required for understanding
the architecture.

February 2023 . Page 137 of 323

Section 3: Intel TDX Application Binary Interface (ABI) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

20.ABI Reference: CPU Virtualization Tables

20.1.

MSR Virtualization

Table 20.2 below describes how the Intel TDX module virtualizes MSRs to guest TDs. The table uses a notation that is
described in Table 20.1 below.

5 Table 20.1: MSR Virtualization Notation Definition
Text Virtualization
Native Direct read or write from/to CPU
Inject_GP(condition) TDX Module injects a #GP(0) if condition is true,
else reads from CPU or write to CPU:
if (condition)
#GP(0)
else
Native
Inject_GP_or_VE(condition) | TDX Module injects a #GP(0) if condition is true,
else it injects a #VE:
if (condition)
#GP(0)
else
#VE
For MSRs that are not listed in the table, the Intel TDX module injects a #VE on both RDMSR and WRMSR by the guest
TD.
Note: The table below provides a high-level overview of MSR virtualization. Implementation details may differ.
10 Table 20.2: MSR Virtualization
MSR Index Range (Hex) MSR Virtualization
First (Hex) Last (Hex) Size MSR Architectural Name On RDMSR On WRMSR
(Hex)
0x0010 0x0010 0x1 | IA32_TIME_STAMP_COUNTER Native HVE
0x0048 0x0048 Ox1 | IA32_SPEC_CTRL Native Native
0x0049 0x0049 0x1 | IA32_PRED_CMD Native Native
0x0087 0x0087 0x1 | IA32_MKTME_PARTITIONING Inject_GP_or_VE (™virt. Inject_GP_or_VE (~virt.
CPUID(7,0).EDX[18]) CPUID(7,0).EDX[18])
0x008C 0x008F 0x4 | 1A32_SGXLEPUBKEYHASHx #GP(0) #GP(0)
0x0098 0x0098 0x1 | MSR_WBINVDP #GP(0) #GP(0)
0x0099 0x0099 0x1 | MSR_WBNOINVDP #GP(0) #GP(0)
0x009A 0x009A 0x1 | MSR_INTR_PENDING #GP(0) #GP(0)
0x009B 0x009B 0x1 | 1IA32_SMM_MONITOR_CTL #GP(0) #GP(0)
0x009E 0x009E 0x1 | 1A32_SMBASE #GP(0) #GP(0)
0x00C1 0x00C8 0x8 | IA32_PMCx Inject_GP(~PERFMON) Inject_GP(~PERFMON)
0x00E1 0x00E1 0x1 | 1A32_UMWAIT_CONTROL Inject_GP(~virt. CPUID(7,0).ECX[5]) Inject_GP(~virt. CPUID(7,0).ECX[5])
0x010A 0x010A 0x1 | IA32_ARCH_CAPABILITIES Bit 16 (reserved) = 0 Native
Bit 17 (FB_CLEAR) = 0
Bit 18 (FB_CLEAR_CTRL)=0
Bit 19 (RRSBA) = 1
Bit 20 (BHI_NO) =0
Bit 21 (XAPIC_DISABLE_STATUS) = 0
Bit 22 (reserved) =0
Bit 23 (OVERCLOCKING_STATUS) = 0
Bit 24 (PBRSB_NO) =0
Bits 63:25 (reserved) =0
Other bits = value read on TDX
module init
0x010B 0x010B 0x1 | IA32_FLUSH_CMD Native Native
0x0122 0x0122 Ox1 | IA32_TSX_CTRL Inject_GP(~virt. TSX enabled) Inject_GP(~virt. TSX enabled)
0x0174 0x0174 0x1 | IA32_SYSENTER_CS Native Native
0x0175 0x0175 Ox1 | IA32_SYSENTER_ESP Native Native
0x0176 0x0176 Ox1 | IA32_SYSENTER_EIP Native Native
0x0186 0x018D 0x8 | 1A32_PERFEVTSELx Inject_GP(~PERFMON) Inject_GP(~PERFMON)
February 2023 Page 138 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

MSR Index Range (Hex) MSR Virtualization
First (Hex) Last (Hex) Size MSR Architectural Name On RDMSR On WRMSR
(Hex)
0x01A0 0x01A0 Ox1 | IA32_MISC_ENABLE if “PERFMON HVE
RDMSR current value
Indicate Perfmon and PEBS
are unavailable:
Bit7=0
Bit12=1
else
Native
0x01A6 0x01A7 0x2 | MSR_OFFCORE_RSPx Inject_GP(~PERFMON) Inject_GP(~PERFMON)
0x01C4 0x01C4 Ox1 | IA32_XFD Inject_GP(~(virt. Inject_GP(~(virt.
CPUID(0xD,0x1).EAX[4])) CPUID(0xD,0x1).EAX[4]))
0x01C5 0x01C5 0x1 | IA32_XFD_ERR Inject_GP(~(virt. Inject_GP(~(virt.
CPUID(0xD,0x1).EAX[4])) CPUID(0xD,0x1).EAX[4]))
0x01D9 0x01D9 Ox1 | IA32_DEBUGCTL Clear ENABLE_UNCORE_PMI (bit 13) #GP if illegal, #VE if value is not
supported for TD
0x01F8 0x01F8 0x1 | 1A32_PLATFORM_DCA_CAP Inject_GP_or_VE(~virt. Inject_GP_or_VE(~virt.
CPUID(0x1).ECX[18]) CPUID(0x1).ECX[18])
0x01F9 0x01F9 0x1 | 1A32_CPU_DCA_CAP Inject_GP_or_VE(~virt. Inject_GP_or_VE(~virt.
CPUID(0x1).ECX[18]) CPUID(0x1).ECX[18])
O0x01FA 0x01FA Ox1 | IA32_DCA_O_CAP Inject_GP_or_VE(~virt. Inject_GP_or_VE(~virt.
CPUID(0x1).ECX[18]) CPUID(0x1).ECX[18])
0x0276 0x0276 Ox1 | MSR_SLAM_ENABLE #GP(0) #GP(0)
0x0277 0x0277 Ox1 | IA32_PAT Native Native
0x0309 0x030C 0x4 | 1A32_FIXED_CTRx Inject_GP(~PERFMON) Inject_GP(~PERFMON)
0x0329 0x0329 0x1 | I1A32_PERF_METRICS Inject_GP(~PERFMON) Inject_GP(~PERFMON)
0x0345 0x0345 Ox1 | IA32_PERF_CAPABILITIES if “PERFMON Inject_GP(~“PERFMON)
return 0
else if “XFAM[8]
clear bit 16
else
Native
0x038D 0x038D 0x1 | 1A32_FIXED_CTR_CTRL Inject_GP(~PERFMON) Inject_GP(~PERFMON)
0x038E 0x038E 0Ox1 | 1A32_PERF_GLOBAL_STATUS Inject_GP(~PERFMON) Inject_GP(~PERFMON)
0x038F 0x038F 0Ox1 | 1A32_PERF_GLOBAL CTRL Inject_GP(~PERFMON) Inject_GP(~PERFMON)
0x0390 0x0390 0x1 | IA32_PERF_GLOBAL_STATUS_RESET Inject_GP(~PERFMON) Inject_GP(~PERFMON)
0x0391 0x0391 0x1 | I1A32_PERF_GLOBAL_STATUS_SET Inject_GP(~PERFMON) Inject_GP(~PERFMON)
0x0392 0x0392 Ox1 | IA32_PERF_GLOBAL_INUSE Inject_GP(~*PERFMON) Inject_GP(~*PERFMON)
0x03F1 0x03F1 Ox1 | 1A32_PEBS_ENABLE Inject_GP(~PERFMON) Inject_GP(~PERFMON)
0x03F2 0x03F2 0x1 | MSR_PEBS_DATA_CFG Inject_GP(~PERFMON) Inject_GP(~PERFMON)
0x03F6 0x03F6 0x1 | MSR_PEBS_LD_LAT Inject_GP(~PERFMON) Inject_GP(~PERFMON)
0x03F7 0x03F7 0x1 | MSR_PEBS_FRONTEND Inject_GP(~PERFMON) Inject_GP(~PERFMON)
0x0480 0x0480 0x1 | 1A32_VMX_BASIC #GP(0) #GP(0)
0x0481 0x0481 0x1 | 1A32_VMX_PINBASED_CTLS #GP(0) #GP(0)
0x0482 0x0482 0x1 | 1A32_VMX_PROCBASED_CTLS #GP(0) #GP(0)
0x0483 0x0483 0x1 | 1A32_VMX_EXIT_CTLS #GP(0) #GP(0)
0x0484 0x0484 0x1 | 1A32_VMX_ENTRY_CTLS #GP(0) #GP(0)
0x0485 0x0485 0x1 | 1A32_VMX_MISC #GP(0) #GP(0)
0x0486 0x0486 0x1 | 1A32_VMX_CRO_FIXEDO #GP(0) #GP(0)
0x0487 0x0487 0x1 | 1A32_VMX_CRO_FIXED1 #GP(0) #GP(0)
0x0488 0x0488 0x1 | 1A32_VMX_CR4_FIXEDO #GP(0) #GP(0)
0x0489 0x0489 0x1 | 1A32_VMX_CR4_FIXED1 #GP(0) #GP(0)
0x048A 0x048A 0x1 | 1A32_VMX_VMCS_ENUM #GP(0) #GP(0)
0x048B 0x0488B 0x1 | IA32_VMX_PROCBASED_CTLS2 #GP(0) #GP(0)
0x048C 0x048C 0x1 | IA32_VMX_EPT_VPID_CAP #GP(0) #GP(0)
0x048D 0x048D 0x1 | 1A32_VMX_TRUE_PINBASED_CTLS #GP(0) #GP(0)
0x048E 0x048E 0x1 | 1A32_VMX_TRUE_PROCBASED_CTLS #GP(0) #GP(0)
0x048F 0x048F 0x1 | IA32_VMX_TRUE_EXIT_CTLS #GP(0) #GP(0)
0x0490 0x0490 0x1 | IA32_VMX_TRUE_ENTRY_CTLS #GP(0) #GP(0)
0x0491 0x0491 0x1 | 1A32_VMX_VMFUNC #GP(0) #GP(0)
0x0492 0x0492 0x1 | 1A32_VMX_PROCBASED_CTLS3 #GP(0) #GP(0)
0x04C1 0x04C8 0x8 | IA32_A_PMCx Inject_GP(~PERFMON) Inject_GP(~PERFMON)
0x0500 0x0500 0x1 | 1A32_SGX_SVN_STATUS #GP(0) #GP(0)
0x0560 0x0560 0x1 | IA32_RTIT_OUTPUT_BASE Inject_GP(~XFAM[8]) Inject_GP(~XFAM[8])
0x0561 0x0561 0x1 | 1A32_RTIT_OUTPUT_MASK_PTRS Inject_GP(~XFAM[8]) Inject_GP(~XFAMI8])
0x0570 0x0570 0x1 | IA32_RTIT_CTL Inject_GP(~XFAM[8]) Inject_GP(~XFAMI8])
0x0571 0x0571 0x1 | IA32_RTIT_STATUS Inject_GP(~XFAM[8]) Inject_GP(~XFAM[8])
0x0572 0x0572 0x1 | IA32_RTIT_CR3_MATCH Inject_GP(~XFAM[8]) Inject_GP(~XFAM[8])
0x0580 0x0580 0x1 | IA32_RTIT_ADDRO_A Inject_GP(~XFAM[8]) Inject_GP(~XFAM(8])

February 2023

Page 139 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

MSR Index Range (Hex)

MSR Virtualization

First (Hex) Last (Hex) Size MSR Architectural Name On RDMSR On WRMSR
(Hex)
0x0581 0x0581 0x1 | IA32_RTIT_ADDRO_B Inject_GP(~XFAM[8]) Inject_GP(~XFAM[8])
0x0582 0x0582 0x1 | IA32_RTIT_ADDR1_A Inject_GP(~XFAM[8]) Inject_GP(~XFAM(8])
0x0583 0x0583 0x1 | IA32_RTIT_ADDR1_B Inject_GP(~XFAM[8]) Inject_GP(~XFAM(8])
0x0584 0x0584 0x1 | IA32_RTIT_ADDR2_A Inject_GP(~XFAM[8]) Inject_GP(~XFAM[8])
0x0585 0x0585 0x1 | IA32_RTIT_ADDR2_B Inject_GP(~XFAM[8]) Inject_GP(~XFAM[8])
0x0586 0x0586 0x1 | IA32_RTIT_ADDR3_A Inject_GP(~XFAM[8]) Inject_GP(~XFAM(8])
0x0587 0x0587 0x1 | IA32_RTIT_ADDR3_B Inject_GP(~XFAM[8]) Inject_GP(~XFAM(8])
0x0600 0x0600 Ox1 | IA32_DS_AREA Native Native
0x06A0 0x06A0 0x1 | IA32_U_CET Inject_GP(~(XFAM[11] | XFAM[12])) | Inject_GP(~(XFAM[11] | XFAM[12]))
0x06A2 0x06A2 0x1 | IA32_S_CET Inject_GP(~(XFAM[11] | XFAM[12])) | Inject_GP(~(XFAM[11] | XFAM[12]))
0x06A4 0x06A4 0x1 | IA32_PLO_SSP Inject_GP(~(XFAM[11] | XFAM[12])) Inject_GP(~(XFAM[11] | XFAM[12]))
0x06A5 0x06A5 Ox1 | IA32_PL1_SSP Inject_GP(~(XFAM[11] | XFAM[12])) Inject_GP(~(XFAM[11] | XFAM[12]))
0x06A6 0x06A6 0x1 | IA32_PL2_SSP Inject_GP(~(XFAM[11] | XFAM[12])) | Inject_GP(~(XFAM[11] | XFAM[12]))
0x06A7 0x06A7 0x1 | IA32_PL3_SSP Inject_GP(~(XFAM[11] | XFAM[12])) | Inject_GP(~(XFAM[11] | XFAM[12]))
0x06A8 0x06A8 0x1 | IA32_INTERRUPT_SSP_TABLE_ADDR Inject_GP(~(XFAM[11] | XFAM[12])) Inject_GP(~(XFAM[11] | XFAM[12]))
0x06EO0 0x06EOQ Ox1 | IA32_TSC_DEADLINE inject_GP_or_VE(~virt. inject_GP_or_VE(~virt.
CPUID(0x1).ECX[24]) CPUID(0x1).ECX[24])
Ox06E1 0x06E1 0x1 | 1A32_PKRS Inject_GP(~PKS) Inject_GP(~PKS)
0x0800 0x0801 0x2 | Reserved for xAPIC MSRs #GP(0) #GP(0)
0x0804 0x0807 0x4 | Reserved for xAPIC MSRs #GP(0) #GP(0)
0x0808 0x0808 Ox1 | IA32_X2APIC_TPR Native Native
0x0809 0x0809 0x1 | Reserved for xAPIC MSRs Native Native
0x080A 0x080A Ox1 | IA32_X2APIC_PPR Native Native
0x080B 0x080B 0x1 | IA32_X2APIC_EOI Native Native
0x080C 0x080C 0x1 | Reserved for xAPIC MSRs Native Native
0x080E 0x080E 0x1 | Reserved for xAPIC MSRs Native Native
0x0810 0x0817 0x8 | IA32_X2APIC_ISRx Native Native
0x0818 0x081F 0x8 | IA32_X2APIC_TMRx Native Native
0x0820 0x0827 0x8 | IA32_X2APIC_IRRx Native Native
0x0829 0x082E 0x6 | Reserved for xAPIC MSRs #GP(0) #GP(0)
0x0831 0x0831 0x1 | Reserved for xAPIC MSRs #GP(0) #GP(0)
0x083F 0x083F 0x1 | IA32_X2APIC_SELF_IPI Native Native
0x0840 0x087F 0x40 | Reserved for xAPIC MSRs #GP(0) #GP(0)
0x0880 0x08BF 0x40 | Reserved for xAPIC MSRs #GP(0) #GP(0)
0x08C0 0x08FF 0x40 | Reserved for xAPIC MSRs #GP(0) #GP(0)
0x0981 0x0981 0x1 | 1A32_TME_CAPABILITY Inject_GP_or_VE (~virt. Inject_GP_or_VE (~virt.
CPUID(7,0).ECX[13]) CPUID(7,0).ECX[13])
0x0982 0x0982 0x1 | IA32_TME_ACTIVATE Inject_GP_or_VE (™virt. Inject_GP_or_VE (~virt.
CPUID(7,0).ECX[13]) CPUID(7,0).ECX[13])
0x0983 0x0983 0x1 | IA32_TME_EXCLUDE_MASK Inject_GP_or_VE (™virt. Inject_GP_or_VE (~virt.
CPUID(7,0).ECX[13]) CPUID(7,0).ECX[13])
0x0984 0x0984 0x1 | 1A32_TME_EXCLUDE_BASE Inject_GP_or_VE (~virt. Inject_GP_or_VE (~virt.
CPUID(7,0).ECX[13]) CPUID(7,0).ECX[13])
0x0985 0x0985 0x1 | IA32_UINTR_RR Inject_GP(~XFAM[14]) Inject_GP(~XFAM[14])
0x0986 0x0986 0x1 | IA32_UINTR_HANDLER Inject_GP(~XFAM[14]) Inject_GP(~XFAM[14])
0x0987 0x0987 0x1 | IA32_UINTR_STACKADJUST Inject_GP(~XFAM[14]) Inject_GP(~XFAM[14])
0x0988 0x0988 0x1 | IA32_UINTR_MISC Inject_GP(~XFAM[14]) Inject_GP(~XFAM[14])
0x0989 0x0989 0x1 | IA32_UINTR_PD Inject_GP(~XFAM[14]) Inject_GP(~XFAM[14])
0x098A 0x098A 0x1 | IA32_UINTR_TT Inject_GP(~XFAM[14]) Inject_GP(~XFAM[14])
0x0C80 0x0C80 0x1 | IA32_DEBUG_INTERFACE Native HVE
0x0D90 0x0D90 0x1 | 1A32_BNDCFGS #GP(0) #GP(0)
0x0D93 0x0D93 0x1 | 1A32_PASID #GP(0) #GP(0)
0xODAO 0xODAO 0x1 | IA32_XSS Native if illegal or does not match XFAM
#GP(0)
else
Write to CPU
0x1200 Ox12FF | 0x100 | IA32_LBR_INFO Inject_GP(~XFAM[15]) Inject_GP(~XFAM[15])
0x14CE 0x14CE 0x1 | 1A32_LBR_CTL Inject_GP(~XFAM[15]) Inject_GP(~XFAM[15])
0x14CF 0x14CF 0x1 | I1A32_LBR_DEPTH Inject_GP(~XFAM[15]) Inject_GP(~XFAM([15])
0x1500 O0x15FF | 0x100 | IA32_LBR_FROM_IP Inject_GP(~XFAM[15]) Inject_GP(~XFAM([15])
0x1600 Ox16FF | 0x100 | IA32_LBR_TO_IP Inject_GP(~XFAM[15]) Inject_GP(~XFAM[15])
0xC0000080 | 0xC0000080 Ox1 | IA32_EFER Native HVE
0xC0000081 | 0xCO000081 0x1 | IA32_STAR Native Native
0xC0000082 | 0xCO000082 0x1 | IA32_LSTAR Native Native
0xC0000084 | 0xC0000084 0x1 | IA32_FMASK Native Native
0xC0000100 | 0xC0000100 0x1 | IA32_FSBASE Native Native
0xC0000101 | 0xC0000101 0x1 | 1A32_GSBASE Native Native

February 2023

Page 140 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

MSR Index Range (Hex) MSR Virtualization
First (Hex) Last (Hex) Size MSR Architectural Name On RDMSR On WRMSR
(Hex)
0xC0000102 | 0xC0000102 Ox1 | IA32_KERNEL_GS_BASE Native Native
0xC0000103 | 0xC0000103 Ox1 | IA32_TSC_AUX Native Native
20.2. CPUID Virtualization

Table 20.4 below describes how the Intel TDX module virtualizes CPUID to guest TDs. Note the following:

5 °

The “Configuration by TDH.MNG.INIT” column details which section of the TD_PARAMS structure is used for

configuring how each CPUID bit field is virtualized.

e The “Virtualization” column uses a notation defined in Table 20.3 below.

e Ifthe guest TD executes CPUID with a valid leaf / sub-leaf number combination that is not listed in the table, the Intel
TDX module injects a #VE.

10 e The host VMM should always consult the list of CPUID leaves and sub-leaves configured by
TD_PARAMS.CPUID_CONFIG, as enumerated by TDH.SYS.INFO, described in 6.1.3.4.
Table 20.3: CPUID Virtualization Notation Definition
CPUID Bit Field Meaning Virtualization

Virtualization

Details

As Configured

Virtual bit field value reflects the host VMM configuration.

As Configured (if
Native)

If the native bit field value returned by executing CPUID is 0, then the
virtual bit field value is 0. Else, the virtual bit field value reflects the host

VMM configuration.

Calculated Bit field is calculated by the Intel TDX module. Calculation method

Fixed The virtual bit field value is fixed. Bit field value

Native The virtual bit field value reflects the native value returned by executing

CPUID.
Note: The table below provides a high-level overview of CPUID virtualization. Implementation details may differ.
15 Table 20.4: CPUID Virtualization Overview
CPUID Field Configuration by TDH.MNG.INIT Virtualization
Reg. |MSB |LSB |Field |Field Name TD_PARAMS Configuration Virtualization Type Virtualization Details
Size Section Details
Leaf Ox0
EAX 31 0 32 [MaxIndex N/A Fixed 0x21
EBX 31 0 32|Genu N/A Native
ECX 31 0 32 | ntel N/A Native
EDX 31 0 32|inel N/A Native
Leaf Ox1
EAX 3 0 4 | Stepping ID N/A Calculated Min. of all packages
EAX 7 4 4| Model ID N/A Native
EAX 11 8 4| Family ID N/A Native
EAX 13 12 2 | Processor Type N/A Native
EAX 15 14 2 |Reserved_15_14 N/A Fixed 0x0
EAX 19 16 4| Extended Model ID N/A Native
EAX 27 20 8| Extended Family ID N/A Native
EAX 31 28 4|Reserved_31_28 N/A Fixed 0x0
EBX 7 0 8|Brand Index N/A Native
EBX 15 8 8| CLFLUSH Line Size N/A Fixed 0x8
EBX 23 16 8| Maximum Addressable IDs CPUID_CONFIG As Configured
EBX 31 24 8| Initial APIC ID N/A Calculated TDVPS.VCPU_INDEX[7:0]
ECX 0 0 1|SSE3 N/A Native
ECX 1 1 1|PCLMULQDQ N/A Native
ECX 2 2 1|DTES64 N/A Native
ECX 3 3 1|MONITOR CPUID_CONFIG As Configured (if Native)
February 2023 Page 141 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

CPUID Field Configuration by TDH.MNG.INIT Virtualization
Reg. |MSB |LSB |Field |Field Name TD_PARAMS Configuration Virtualization Type Virtualization Details
Size Section Details
ECX 4 4 1|DS-CPL N/A Native
ECX 5 5 1({VMX N/A Fixed 0x0
ECX 6 6 1|(SMX N/A Fixed 0x0
ECX 7 7 1|EST CPUID_CONFIG As Configured (if Native)
ECX 8 8 1(Tm2 CPUID_CONFIG As Configured (if Native)
ECX 9 9 1[SSSE3 N/A Native
ECX 10 10 1|CNXT-ID CPUID_CONFIG As Configured (if Native)
ECX 11 11 1|SDBG CPUID_CONFIG As Configured (if Native)
ECX 12 12 1|FMA XFAM XFAM[2] As Configured (if Native)
ECX 13 13 1|CMPXCHG16B N/A Fixed Ox1
ECX 14 14 1|xTPR Update Control CPUID_CONFIG As Configured (if Native)
ECX 15 15 1|PDCM N/A Fixed Ox1
ECX 16 16 1|Reserved_16 N/A Fixed 0x0
ECX 17 17 1|PCID N/A Native
ECX 18| 18 1|DCA CPUID_CONFIG As Configured (if Native)
ECX 19 19 1(SSE4_1 N/A Native
ECX 20 20 1|SSE4_2 N/A Native
ECX 21| 21 1|x2APIC N/A Fixed Ox1
ECX 22| 22 1|MOVBE N/A Native
ECX 23 23 1|{POPCNT N/A Native
ECX 24 24 1|TSC-Deadline CPUID_CONFIG As Configured (if Native)
ECX 25| 25 1|AESNI N/A Fixed Ox1
ECX 26| 26 1| XSAVE N/A Fixed Ox1
ECX 27 27 1| OSXSAVE N/A Calculated CR4.0SXSAVE
ECX 28| 28 1|AVX XFAM XFAM[2] As Configured (if Native)
ECX 29| 29 1|F16C XFAM XFAM[2] As Configured (if Native)
ECX 30| 30 1|RDRAND N/A Fixed Ox1
ECX 31 31 1|Reserved_31 N/A Fixed Ox1
EDX 0 0 1(FPU N/A Native
EDX 1 1 1|VME N/A Native
EDX 2 2 1|DE N/A Native
EDX 3 3 1|PSE N/A Native
EDX 4 4 1(TSC N/A Native
EDX 5 5 1|MSR N/A Fixed Ox1
EDX 6 6 1|PAE N/A Fixed Ox1
EDX 7 7 1|MCE N/A Fixed Ox1
EDX 8 8 1[CX8 N/A Native
EDX 9 9 1|APIC N/A Fixed Ox1
EDX 10 10 1|Reserved_10 N/A Fixed 0x0
EDX 11 11 1|SEP N/A Native
EDX 12 12 1|MTRR N/A Fixed Ox1
EDX 13 13 1|PGE N/A Native
EDX 14 14 1{MCA N/A Fixed Ox1
EDX 15 15 1{cMOoV N/A Native
EDX 16| 16 1|PAT N/A Native
EDX 17 17 1|PSE-36 N/A Native
EDX 18 18 1|PSN CPUID_CONFIG As Configured (if Native)
EDX 19 19 1|CLFSH N/A Fixed Ox1
EDX 20 20 1|Reserved_20 N/A Fixed 0x0
EDX 21| 21 1|DS N/A Fixed Ox1
EDX 22 22 1|ACPI CPUID_CONFIG As Configured (if Native)
EDX 23 23 1| MMX N/A Native
EDX 24 24 1|FXSR N/A Native
EDX 25 25 1|SSE N/A Native
EDX 26 26 1|SSE2 N/A Native
EDX 27| 27 1[SS N/A Native
EDX 28| 28 1|HTT CPUID_CONFIG As Configured (if Native)
EDX 29 29 1|T™M CPUID_CONFIG As Configured (if Native)
EDX 30| 30 1|Reserved_30 N/A Fixed 0x0
EDX 31 31 1|PBE CPUID_CONFIG As Configured (if Native)
Leaf Ox3
EAX 31 0 32 |Reserved N/A Fixed 0x0
EBX 31 0 32 |Reserved N/A Fixed 0x0
ECX 31 0 32 |Reserved N/A Fixed 0x0
EDX 31 0| 32|Reserved N/A Fixed 0x0
Leaf 0x4 / Sub-Leaf 0x0
EAX 4 0 5| Type CPUID_CONFIG As Configured
EAX 7 5 3| Level CPUID_CONFIG As Configured

February 2023

Page 142 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

CPUID Field Configuration by TDH.MNG.INIT Virtualization
Reg. |MSB |LSB |Field |Field Name TD_PARAMS Configuration Virtualization Type Virtualization Details
Size Section Details

EAX 8 8 1| Self Initializing CPUID_CONFIG As Configured
EAX 9 9 1| Fully Associative CPUID_CONFIG As Configured
EAX 13 10 4 |Reserved CPUID_CONFIG As Configured
EAX 25 14 12 | Addressable IDs Sharing this Cache CPUID_CONFIG As Configured
EAX 31 26 6| Addressable IDs for Cores in Package CPUID_CONFIG As Configured
EBX 11 0| 12|L N/A Native
EBX 21 12 10| P CPUID_CONFIG As Configured
EBX 31 22 10|W CPUID_CONFIG As Configured
ECX 31 0 32| Number of Sets CPUID_CONFIG As Configured
EDX 0 0 1|WBINVD CPUID_CONFIG As Configured
EDX 1 1 1| Cache Inclusiveness CPUID_CONFIG As Configured
EDX 2 2 1|Reserved_31_2 CPUID_CONFIG As Configured
EDX 31 3| 29|0 CPUID_CONFIG As Configured

Leaf 0x4 / Sub-Leaf Ox1
EAX 4 0 5| Type CPUID_CONFIG As Configured
EAX 7 5 3| Level CPUID_CONFIG As Configured
EAX 8 8 1| Self Initializing CPUID_CONFIG As Configured
EAX 9 9 1| Fully Associative CPUID_CONFIG As Configured
EAX 13 10 4 |Reserved CPUID_CONFIG As Configured
EAX 25 14 12 | Addressable IDs Sharing this Cache CPUID_CONFIG As Configured
EAX 31 26 6| Addressable IDs for Cores in Package CPUID_CONFIG As Configured
EBX 11 0| 12|L N/A Native
EBX 21 12 10|P CPUID_CONFIG As Configured
EBX 31 22 10|W CPUID_CONFIG As Configured
ECX 31 0 32| Number of Sets CPUID_CONFIG As Configured
EDX 0 0 1|WBINVD CPUID_CONFIG As Configured
EDX 1 1 1| Cache Inclusiveness CPUID_CONFIG As Configured
EDX 2 2 1|Reserved_31_2 CPUID_CONFIG As Configured
EDX 31 3 29(0 CPUID_CONFIG As Configured

Leaf 0x4 / Sub-Leaf O0x2
EAX 4 0 5| Type CPUID_CONFIG As Configured
EAX 7 5 3| Level CPUID_CONFIG As Configured
EAX 8 8 1| Self Initializing CPUID_CONFIG As Configured
EAX 9 9 1| Fully Associative CPUID_CONFIG As Configured
EAX 13 10 4|Reserved_13_10 CPUID_CONFIG As Configured
EAX 25 14 12 | Addressable IDs Sharing this Cache CPUID_CONFIG As Configured
EAX 31 26 6| Addressable IDs for Cores in Package CPUID_CONFIG As Configured
EBX 11 0 12|L N/A Native
EBX 21 12 10| P CPUID_CONFIG As Configured
EBX 31| 22 10|W CPUID_CONFIG As Configured
ECX 31 0 32| Number of Sets CPUID_CONFIG As Configured
EDX 0 0 1|(WBINVD CPUID_CONFIG As Configured
EDX 1 1 1| Cache Inclusiveness CPUID_CONFIG As Configured
EDX 2 2 1|Reserved_31_2 CPUID_CONFIG As Configured
EDX 31 3 29|0 CPUID_CONFIG As Configured

Leaf 0x4 / Sub-Leaf 0x3
EAX 4 0 5| Type CPUID_CONFIG As Configured
EAX 7 5 3| Level CPUID_CONFIG As Configured
EAX 8 8 1| Self Initializing CPUID_CONFIG As Configured
EAX 9 9 1| Fully Associative CPUID_CONFIG As Configured
EAX 13 10 4|Reserved_13_10 CPUID_CONFIG As Configured
EAX 25 14 12 | Addressable IDs Sharing this Cache CPUID_CONFIG As Configured
EAX 31 26 6| Addressable IDs for Cores in Package CPUID_CONFIG As Configured
EBX 11 0 12|L N/A Native
EBX 21 12 10| P CPUID_CONFIG As Configured
EBX 31 22 10|W CPUID_CONFIG As Configured
ECX 31 0 32 |Number of Sets CPUID_CONFIG As Configured
EDX 0 0 1|WBINVD CPUID_CONFIG As Configured
EDX 1 1 1| Cache Inclusiveness CPUID_CONFIG As Configured
EDX 2 2 1| Complex cache indexing CPUID_CONFIG As Configured
EDX 31 3 29| Reserved_31_3 CPUID_CONFIG As Configured

Leaf 0x4 / Sub-Leaf Ox4
EAX 4 0 5| Type N/A Fixed 0x0
EAX 7 5 3| Level N/A Fixed 0x0
EAX 8 8 1| Self Initializing N/A Fixed 0x0
EAX 9 9 1| Fully Associative N/A Fixed 0x0
EAX 13 10 4 |Reserved N/A Fixed 0x0
EAX 25 14 12 | Addressable IDs Sharing this Cache N/A Fixed 0x0

February 2023

Page 143 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

CPUID Field Configuration by TDH.MNG.INIT Virtualization
Reg. |MSB |LSB |Field |Field Name TD_PARAMS Configuration Virtualization Type Virtualization Details
Size Section Details
EAX 31 26 6| Addressable IDs for Cores in Package N/A Fixed 0x0
EBX 11 0 12|L N/A Fixed 0x0
EBX 21 12 10| P N/A Fixed 0x0
EBX 31 22 10|W N/A Fixed 0x0
ECX 31 0 32 [Number of Sets N/A Fixed 0x0
EDX 0 0 1|WBINVD N/A Fixed 0x0
EDX 1 1 1| Cache Inclusiveness N/A Fixed 0x0
EDX 2 2 1| Complex Cache Indexing N/A Fixed 0x0
EDX 31 3 29 | Reserved N/A Fixed 0x0
Leaf 0x7 / Sub-Leaf 0x0
EAX 31 0 32| Max Sub-Leaf number N/A Fixed 0x2
EBX 0 0 1|FSGSBASE N/A Fixed Ox1
EBX 1 1 1[IA32_TSC_ADJUST N/A Fixed 0x0
EBX 2 2 1[SGX N/A Fixed 0x0
EBX 3 3 1|(BMI1 CPUID_CONFIG As Configured (if Native)
EBX 4 4 1|HLE CPUID_CONFIG As Configured (if Native)
EBX 5 5 1|AVX2 XFAM XFAM[2] As Configured (if Native)
EBX 6 6 1|FDP_EXCPTN_ONLY N/A Native
EBX 7 7 1[SMEP N/A Native
EBX 8 8 1(BMI2 CPUID_CONFIG As Configured (if Native)
EBX 9 9 1|Enhanced REP MOVSB/STOSB N/A Native
EBX 10| 10 1|INVPCID N/A Native
EBX 11 11 1|RTM CPUID_CONFIG As Configured (if Native)
EBX 12| 12 1|PQM CPUID_CONFIG As Configured (if Native)
EBX 13 13 1|FCS/FDS Deprecation N/A Native
EBX 14 14 1|{MPX N/A Fixed 0x0
EBX 15 15 1| Cache QoS Enforcement CPUID_CONFIG As Configured (if Native)
EBX 16| 16 1|AVX512F XFAM XFAM([7:5] As Configured (if Native)
EBX 17| 17 1|AvX512DQ XFAM XFAM([7:5] As Configured (if Native)
EBX 18 18 1|RDSEED N/A Fixed Ox1
EBX 19 19 1|ADCX/ADOX CPUID_CONFIG As Configured (if Native)
EBX 20| 20 1|[SMAP/CLAC/STAC N/A Fixed Ox1
EBX 21| 21 1|AVX512_IFMA XFAM XFAM[7:5] As Configured (if Native)
EBX 22 22 1|{PCOMMIT N/A Fixed 0x0
EBX 23 23 1|CLFLUSHOPT N/A Fixed Ox1
EBX 24| 24 1|(CLWB N/A Fixed Ox1
EBX 25 25 1|RTIT XFAM XFAM[8] As Configured (if Native)
EBX 26 26 1|AVX512PF XFAM XFAM[7:5] As Configured (if Native)
EBX 27 27 1|AVX512ER XFAM XFAM[7:5] As Configured (if Native)
EBX 28 28 1|AVX512CD XFAM XFAM[7:5] As Configured (if Native)
EBX 29| 29 1[SHA N/A Fixed Ox1
EBX 30 30 1[{AVX512BW XFAM XFAM[7:5] As Configured (if Native)
EBX 31 31 1|AVX512VL XFAM XFAM[7:5] As Configured (if Native)
ECX 0 0 1|PREFETCHWT1 N/A Native
ECX 1 1 1|AVX512VBMI XFAM XFAM[7:5] As Configured (if Native)
ECX 2 2 1|UMIP N/A Native
ECX 3 3 1|PKU XFAM XFAM[9] As Configured (if Native)
ECX 4 4 1|OSPKE N/A Calculated CR4.PKE
ECX 5 5 1| MONITORX/MWAITX CPUID_CONFIG As Configured (if Native)
ECX 6 6 1|AVX512_VBMI2 XFAM XFAM[7:5] As Configured (if Native)
ECX 7 7 1| CET Shadow Stack XFAM XFAM[12:11] As Configured (if Native)
ECX 8 8 1|GFNI N/A Native
ECX 9 9 1|VAES XFAM XFAM[2] As Configured (if Native)
ECX 10 10 1|VPCLMULQDQ XFAM XFAM[2] As Configured (if Native)
ECX 11 11 1|AVX512_VNNI XFAM XFAM([7:5] As Configured (if Native)
ECX 12 12 1[AVX512_BITALG XFAM XFAM([7:5] As Configured (if Native)
ECX 13 13 1|TME CPUID_CONFIG As Configured (if Native)
ECX 14 14 1|AVX512_VPOPCNTDQ XFAM XFAM[7:5] As Configured (if Native)
ECX 15 15 1|(FZM N/A Fixed 0x0
ECX 16 16 1|57 bit Address Support N/A Native
ECX 21 17 5| MAWAU for MPX N/A Fixed 0x0
ECX 22 22 1|(RDPID N/A Native
ECX 23 23 1|KL_ENABLED ATTRIBUTES KL As Configured (if Native)
ECX 24| 24 1|BUSLOCK N/A Fixed Ox1
ECX 25| 25 1|CLDEMOTE N/A Native
ECX 26| 26 1|Reserved_26 N/A Native
ECX 27 27 1| MOVDIRI N/A Native
ECX 28 28 1|MOVDIR64B N/A Fixed 0x1

February 2023

Page 144 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

CPUID Field Configuration by TDH.MNG.INIT Virtualization
Reg. |MSB |LSB |Field |Field Name TD_PARAMS Configuration Virtualization Type Virtualization Details
Size Section Details
ECX 29 29 1[ENQCMD N/A Fixed 0x0
ECX 30 30 1(SGX_LC N/A Fixed 0x0
ECX 31 31 1|PKS ATTRIBUTES PKS As Configured (if Native)
EDX 0 0 1|Reserved_0 N/A Fixed 0x0
EDX 1 1 1|Reserved_1 N/A Fixed 0x0
EDX 2 2 1|AVX512_4VNNIW XFAM XFAM([7:5] As Configured (if Native)
EDX 3 3 1|AVX512_4FMAPS XFAM XFAM[7:5] As Configured (if Native)
EDX 4 4 1| Fast Short REP MOV N/A Native
EDX 5 5 1|uLl XFAM XFAM[14] As Configured (if Native)
EDX 6 6 1|Reserved_6 N/A Fixed 0x0
EDX 7 7 1|Reserved_7 N/A Fixed 0x0
EDX 8 8 1|{AVX512_VP2INTERSECT XFAM XFAM[7:5] As Configured (if Native)
EDX 9 9 1|Reserved_9 N/A Fixed 0x0
EDX 10 10 1| MD_CLEAR supported N/A Native
EDX 11 11 1|Reserved_11 N/A Fixed 0x0
EDX 12 12 1|Reserved_12 N/A Fixed 0x0
EDX 13 13 1|Reserved_13 N/A Fixed 0x0
EDX 14| 14 1|SERIALIZE Inst N/A Native
EDX 15 15 1|Hetero Part N/A Native
EDX 16 16 1| TSXLDTRK N/A Native
EDX 17 17 1|Reserved_17 N/A Fixed 0x0
EDX 18| 18 1|PCONFIG CPUID_CONFIG As Configured (if Native)
EDX 19 19 1| Architectural LBR support XFAM XFAM[15] As Configured (if Native)
EDX 20 20 1|ceT XFAM XFAM[12:11] As Configured (if Native)
EDX 21 21 1|Reserved_21 N/A Fixed 0x0
EDX 22 22 1|TMUL_AMX-BF16 XFAM XFAM[18:17] As Configured (if Native)
EDX 23| 23 1|FP16 XFAM XFAM([7:5] As Configured (if Native)
EDX 24| 24 1| TMUL_AMX-TILE XFAM XFAM[18:17] As Configured (if Native)
EDX 25 25 1| TMUL_AMX-INT8 XFAM XFAM[18:17] As Configured (if Native)
EDX 26 26 1|IBRS (indirect branch restricted speculation) N/A Fixed Ox1
EDX 27| 27 1|STIBP (single thread indirect branch predictors) | N/A Native
EDX 28| 28 1|L1D_FLUSH. I1A32_FLUSH_CMD support. N/A Native
EDX 29 29 1(1A32_ARCH_CAPABILITIES Support N/A Fixed Ox1
EDX 30 30 1(1A32_CORE_CAPABILITIES Present N/A Fixed Ox1
EDX 31 31 1|SSBD (Speculative Store Bypass Disable) N/A Fixed Ox1
Leaf 0x7 / Sub-Leaf Ox1
EAX 2 0 3| Reserved_3_0 N/A Fixed 0x0
EAX 3 3 1|Reserved_4 N/A Fixed 0x0
EAX 4 4 1|VEX VNNI XFAM XFAM[2] As Configured (if Native)
EAX 5 5 1|AVX512_BF16 XFAM XFAM[7:5] As Configured (if Native)
EAX 6 6 1|Reserved_6 N/A Fixed 0x0
EAX 7 7 1|Reserved_7 N/A Fixed 0x0
EAX 8 8 1|Reserved_8 N/A Fixed 0x0
EAX 9 9 1|Reserved_9 N/A Fixed 0x0
EAX 10 10 1|Fast Zero-Length MOVSB N/A Native
EAX 11 11 1 |Fast Short STOSB N/A Native
EAX 12 12 1| Fast short CMPSB/SCASB N/A Native
EAX 21 13 9|Reserved_21_13 N/A Fixed 0x0
EAX 22| 22 1|HRESET N/A Fixed 0x0
EAX 23 23 1|Reserved_23 N/A Fixed 0x0
EAX 24 24 1|Reserved_24 N/A Fixed 0x0
EAX 31 25 7 |Reserved_31_25 N/A Fixed 0x0
EBX 31 0 32 |Reserved N/A Fixed 0x0
ECX 31 0 32 |Reserved N/A Fixed 0x0
EDX 31 0 32 |Reserved N/A Fixed 0x0
Leaf Ox8
EAX 31 0 32 |Reserved N/A Fixed 0x0
EBX 31 0 32 |Reserved N/A Fixed 0x0
ECX 31 0 32 |Reserved N/A Fixed 0x0
EDX 31 0 32 |Reserved N/A Fixed 0x0
Leaf Oxa
EAX 7 0 8 | Version ATTRIBUTES PERFMON As Configured (if Native)
EAX 15 8 8 | Number of GP Counters ATTRIBUTES PERFMON As Configured (if Native)
EAX 23 16 8 | Width of GP Counters ATTRIBUTES PERFMON As Configured (if Native)
EAX 31| 24 8 | Length of EBX Vector ATTRIBUTES PERFMON As Configured (if Native)
EBX 0 0 1| Core Cycles Not Available ATTRIBUTES PERFMON As Configured (if Native)
EBX 1 1 1|Instructions Retired Not Available ATTRIBUTES PERFMON As Configured (if Native)
EBX 2 2 1| Reference Cycles Not Available ATTRIBUTES PERFMON As Configured (if Native)

February 2023

Page 145 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

CPUID Field Configuration by TDH.MNG.INIT Virtualization
Reg. |MSB |LSB |Field |Field Name TD_PARAMS Configuration Virtualization Type Virtualization Details
Size Section Details
EBX 3 3 1| Last-Level Cache References Not Available ATTRIBUTES PERFMON As Configured (if Native)
EBX 4 4 1| Last-Level Cache Misses Not Available ATTRIBUTES PERFMON As Configured (if Native)
EBX 5 5 1|Branch Instruction Retired Not Available ATTRIBUTES PERFMON As Configured (if Native)
EBX 6 6 1|Branch Mispredict Retired Not Available ATTRIBUTES PERFMON As Configured (if Native)
EBX 31 7 25| Reserved ATTRIBUTES PERFMON As Configured (if Native)
ECX 3 0 4 | Fixed Counter Support ATTRIBUTES PERFMON As Configured (if Native)
ECX 31 4 28 | Reserved ATTRIBUTES PERFMON As Configured (if Native)
EDX 4 0 5| Number of Fixed-Function Counters ATTRIBUTES PERFMON As Configured (if Native)
EDX 12 5 8| Width of Fixed-Function Counters ATTRIBUTES PERFMON As Configured (if Native)
EDX 13 13 1|Reserved_13 ATTRIBUTES PERFMON As Configured (if Native)
EDX 14 14 1|Reserved_14 ATTRIBUTES PERFMON As Configured (if Native)
EDX 15 15 1|AnyThread Deprecation ATTRIBUTES PERFMON As Configured (if Native)
EDX 16 16 1| TopDown Support ATTRIBUTES PERFMON As Configured (if Native)
EDX 23 17 7 |Reserved_23_17 ATTRIBUTES PERFMON As Configured (if Native)
EDX 31 24 8| Bit Vector Length ATTRIBUTES PERFMON As Configured (if Native)
Leaf Oxd / Sub-Leaf 0x0
EAX 0 0 1(X87 N/A Fixed Ox1
EAX 1 1 1|SSE N/A Fixed Ox1
EAX 2 2 1|AVX256 XFAM XFAM[2] As Configured (if Native)
EAX 3 3 1|PL_BNDREGS N/A Fixed 0x0
EAX 4 4 1|PL_BNDCFS N/A Fixed 0x0
EAX 5 5 1| KMASK XFAM XFAM([7:5] As Configured (if Native)
EAX 6 6 1|AVX3 ZMM 15:0 XFAM XFAM([7:5] As Configured (if Native)
EAX 7 7 1|AVX3 ZMM 31:18 XFAM XFAM([7:5] As Configured (if Native)
EAX 8 8 1|Reserved_8 N/A Fixed 0x0
EAX 9 9 1|PKRU XFAM XFAM[9] As Configured (if Native)
EAX 16 10 7 |Reserved_16_10 N/A Fixed 0x0
EAX 17 17 1|AMX - XTILECFG XFAM XFAM[18:17] As Configured (if Native)
EAX 18 18 1|AMX - XTILEDATA XFAM XFAM[18:17] As Configured (if Native)
EAX 31 19 13| Reserved_31_19 N/A Fixed 0x0
EBX 31 0 32| Max Bytes for Enabled Features N/A Calculated Native
ECX 31 0 32 | Max Bytes for Supported Features XFAM As Configured
EDX 31 0 32| Reserved N/A Fixed 0x0
Leaf Oxd / Sub-Leaf Ox1
EAX 0 0 1|Supports XSAVEOPT N/A Fixed Ox1
EAX 1 1 1|Supports XSAVEC and compacted XRSTOR N/A Fixed Ox1
EAX 2 2 1|Supports XGETBV with ECX =1 N/A Native
EAX 3 3 1|Supports XSAVES/XRSTORS and IA32_XSS N/A Fixed Ox1
EAX 4 4 1| XFD support XFAM As Configured
EAX 31 5 27 | Reserved N/A Fixed 0x0
EBX 31 0 32 | Max Bytes for Enabled Features N/A Calculated Native
ECX 7 0 8|reserved_7_0 N/A Fixed 0x0
ECX 8 8 1[XSS_RTIT XFAM XFAM[8] As Configured (if Native)
ECX 9 9 1|reserved_9 N/A Fixed 0x0
ECX 10| 10 1|PASID N/A Fixed 0x0
ECX 11 11 1|U_CET XFAM XFAM[12:11] As Configured (if Native)
ECX 12| 12 1|s_CET XFAM XFAM[12:11] As Configured (if Native)
ECX 13 13 1|{HDC N/A Fixed 0x0
ECX 14 14 1| ULI/UNIT XFAM XFAM[14] As Configured (if Native)
ECX 15 15 1|XSS_ARCH_LBRS XFAM XFAM[15] As Configured (if Native)
ECX 16 16 1|HWP Request N/A Fixed 0x0
ECX 31 17 15|Reserved_31_17 N/A Fixed 0x0
EDX 31 0 32 |Reserved N/A Fixed 0x0
Leaf Oxd / Sub-Leaves 0x2-0x12
EAX 31 0 32|Size XFAM XFAM[n] As Configured (if Native)
EBX 31 0 32| Offset XFAM XFAM[n] As Configured (if Native)
ECX 0 0 1|1A32_XSS XFAM XFAM[n] As Configured (if Native)
ECX 1 1 1|0 XFAM XFAM[n] As Configured (if Native)
ECX 31 2 30|0 XFAM XFAM[n] As Configured (if Native)
EDX 31 0 32| Reserved XFAM XFAM[n] As Configured (if Native)
Leaf Oxe
EAX 31 0 32 |Reserved N/A Fixed 0x0
EBX 31 0 32 |Reserved N/A Fixed 0x0
ECX 31 0 32 |Reserved N/A Fixed 0x0
EDX 31 0| 32|Reserved N/A Fixed 0x0
Leaf Ox11
EAX 31 0 32 |Reserved N/A Fixed 0x0
EBX 31 0 32 |Reserved N/A Fixed 0x0

February 2023

Page 146 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

CPUID Field Configuration by TDH.MNG.INIT Virtualization
Reg. |MSB |LSB |Field |Field Name TD_PARAMS Configuration Virtualization Type Virtualization Details
Size Section Details

ECX 31 0 32 |Reserved N/A Fixed 0x0

EDX 31 0 32| Reserved N/A Fixed 0x0
Leaf Ox12

EAX 31 0 32| Reserved N/A Fixed 0x0

EBX 31 0 32 |Reserved N/A Fixed 0x0

ECX 31 0 32 |Reserved N/A Fixed 0x0

EDX 31 0 32| Reserved N/A Fixed 0x0
Leaf 0x13

EAX 31 0 32 |Reserved N/A Fixed 0x0

EBX 31 0 32 |Reserved N/A Fixed 0x0

ECX 31 0 32| Reserved N/A Fixed 0x0

EDX 31 0 32| Reserved N/A Fixed 0x0
Leaf 0x14 / Sub-Leaf 0x0

EAX 31 0 32| Max Valid Subleaf XFAM XFAM[8] As Configured (if Native)

EBX 0 0 1| CR3 Filtering XFAM XFAM[8] As Configured (if Native)

EBX 1 1 1| Cycle Accurate Mode XFAM XFAM[8] As Configured (if Native)

EBX 2 2 1|IP Filtering XFAM XFAM[8] As Configured (if Native)

EBX 3 3 1| MSRs Preserved Across Warm Reset XFAM XFAM[8] As Configured (if Native)

EBX 4 4 1|PTWRITE Support XFAM XFAM[8] As Configured (if Native)

EBX 5 5 1|Power Event Trace Support XFAM XFAM(8] As Configured (if Native)

EBX 6 6 1| PSB/PMI Injection Support XFAM XFAM(8] As Configured (if Native)

EBX 7 7 1|PT Event Trace Support XFAM XFAM[8] As Configured (if Native)

EBX 31 8 24 | Reserved XFAM XFAM[8] As Configured (if Native)

ECX 0 0 1|ToPA Output Supported XFAM XFAM(8] As Configured (if Native)

ECX 1 1 1| ToPA Tables Support Multiple Regions XFAM XFAM(8] As Configured (if Native)

ECX 2 2 1|Single-Range Output Supported XFAM XFAM([8] As Configured (if Native)

ECX 30 3 28 | Reserved XFAM XFAM[8] As Configured (if Native)

ECX 31 31 1|1P Payload Contains LIP XFAM XFAM[8] As Configured (if Native)

EDX 31 0 32| Reserved XFAM XFAM(8] As Configured (if Native)
Leaf 0x14 / Sub-Leaf Ox1

EAX 1 0 2 | MTC Period Options XFAM XFAM[8] As Configured (if Native)

EAX 15 2 14 | Reserved XFAM XFAM[8] As Configured (if Native)

EAX 31 16 16 | Number of Address Ranges Supported XFAM XFAM(8] As Configured (if Native)

EBX 15 0 16 | Cycle Thresholds XFAM XFAM(8] As Configured (if Native)

EBX 31 16 16| PSB Frequencies XFAM XFAM(8] As Configured (if Native)

ECX 31 0 32| Reserved XFAM XFAM[8] As Configured (if Native)

EDX 31 0 32| Reserved XFAM XFAM[8] As Configured (if Native)
Leaf Ox15

EAX 31 0 32| Denominator N/A Fixed Ox1

EBX 31 0 32| Numerator Other TSC_FREQUENCY |As Configured

ECX 31 0 32| Nominal ART Frequency N/A Fixed 0x017D7840

EDX 31 0 32 |Reserved N/A Fixed 0x0
Leaf 0x19

EAX 0 0 1| CPLO Restriction ATTRIBUTES KL As Configured (if Native)

EAX 1 1 1| Decrypt only Restriction ATTRIBUTES KL As Configured (if Native)

EAX 2 2 1| Encrypt only Restriction ATTRIBUTES KL As Configured (if Native)

EAX 3 3 1| Process Restriction ATTRIBUTES KL As Configured (if Native)

EAX 31 4 28 |Reserved_31_4 ATTRIBUTES KL As Configured (if Native)

EBX 0 0 1| AES KL Enabled ATTRIBUTES KL As Configured (if Native)

EBX 1 1 1|Reserved ATTRIBUTES KL As Configured (if Native)

EBX 2 2 1| AES wide KL Support ATTRIBUTES KL As Configured (if Native)

EBX 3 3 1|Reserved ATTRIBUTES KL As Configured (if Native)

EBX 4 4 1|IW Key Backup Support ATTRIBUTES KL As Configured (if Native)

EBX 31 5 27 | Reserved ATTRIBUTES KL As Configured (if Native)

ECX 0 0 1| LOADIWKEY No Backup parameter Support ATTRIBUTES KL As Configured (if Native)

ECX 1 1 1|Random IWKey Support N/A Fixed 0x0

ECX 31 2 30| Reserved N/A Fixed 0x0

EDX 31 0 32 |Reserved N/A Fixed 0x0
Leaf Ox1c

EAX 7 0 8 | Supported LBR depth values XFAM XFAM[15] As Configured (if Native)

EAX 29 8 22 |Reserved_29 8 XFAM XFAM[15] As Configured (if Native)

EAX 30 30 1| Deep C-state May Reset XFAM XFAM[15] As Configured (if Native)

EAX 31 31 1|IP values contain LIP XFAM XFAM[15] As Configured (if Native)

EBX 0 0 1| CPL Filtering Supported XFAM XFAM[15] As Configured (if Native)

EBX 1 1 1|Branch Filtering Supported XFAM XFAM[15] As Configured (if Native)

EBX 2 2 1| Call-stack Mode Supported XFAM XFAM[15] As Configured (if Native)

EBX 31 3 29 |Reserved_31_3 XFAM XFAM[15] As Configured (if Native)

ECX 0 0 1| Mispredict Bit Supported XFAM XFAM[15] As Configured (if Native)

February 2023

Page 147 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

CPUID Field Configuration by TDH.MNG.INIT Virtualization
Reg. |MSB |LSB |Field |Field Name TD_PARAMS Configuration Virtualization Type Virtualization Details
Size Section Details
ECX 1 1 1|Timed LBRs Supported XFAM XFAM[15] As Configured (if Native)
ECX 2 2 1|Branch Type Field Supported XFAM XFAM[15] As Configured (if Native)
ECX 31 3 29 |Reserved_31_3 XFAM XFAM[15] As Configured (if Native)
EDX 31 0 32 |Reserved XFAM XFAM[15] As Configured (if Native)
Leaf Ox1d / Sub-Leaf 0x0
EAX 0 0 1| TILE support XFAM XFAM[18:17] As Configured (if Native)
EAX 31 1 31|Reserved_31_1 XFAM XFAM[18:17] As Configured (if Native)
EBX 31 0 32 |Reserved XFAM XFAM[18:17] As Configured (if Native)
ECX 31 0 32| Reserved XFAM XFAM[18:17] As Configured (if Native)
EDX 31 0 32| Reserved XFAM XFAM[18:17] As Configured (if Native)
Leaf Ox1d / Sub-Leaf Ox1
EAX 15 0 16 |total_tile_bytes XFAM XFAM[18:17] As Configured (if Native)
EAX 31 16 16 | bytes_per_tile XFAM XFAM[18:17] As Configured (if Native)
EBX 15 0 16 | bytes_per_row XFAM XFAM[18:17] As Configured (if Native)
EBX 31 16 16 | max_names XFAM XFAM[18:17] As Configured (if Native)
ECX 15 0 16 | max_rows XFAM XFAM[18:17] As Configured (if Native)
ECX 31 16 16 |Reserved_31_16 XFAM XFAM[18:17] As Configured (if Native)
EDX 31 0 32| Reserved XFAM XFAM[18:17] As Configured (if Native)
Leaf Oxle
EAX 31 0 32| Reserved XFAM XFAM[18:17] As Configured (if Native)
EBX 7 0 8 |impl.tmul_maxk (rows or cols) XFAM XFAM[18:17] As Configured (if Native)
EBX 23 8 16 | impl.tmul_maxn (column bytes) XFAM XFAM[18:17] As Configured (if Native)
EBX 31 24 8 |Reserved_31_24 XFAM XFAM[18:17] As Configured (if Native)
ECX 31 0 32 | Reserved XFAM XFAM[18:17] As Configured (if Native)
EDX 31 0 32| Reserved XFAM XFAM[18:17] As Configured (if Native)
Leaf 0x20
EAX 31 0 32 |Reserved N/A Fixed 0x0
EBX 31 0 32 |Reserved N/A Fixed 0x0
ECX 31 0 32 |Reserved N/A Fixed 0x0
EDX 31 0 32| Reserved N/A Fixed 0x0
Leaf 0x21 / Sub-Leaf 0x0
EAX 31 0 32 [Maximum sub-leaf N/A Fixed 0x00000000
EBX 31 0 32| “Inte” N/A Fixed 0x65746E49
ECX 31 0 32| “ N/A Fixed 0x20202020
EDX 31 0 32| “ITDX” N/A Fixed 0x5844546C
Leaf 0x80000000
EAX 31 0 32| MaxIndex N/A Native
EBX 31 0 32 |Reserved N/A Fixed 0x0
ECX 31 0 32 |Reserved N/A Fixed 0x0
EDX 31 0 32| Reserved N/A Fixed 0x0
Leaf 0x80000001
EAX 31 0 32 |Reserved N/A Fixed 0x0
EBX 31 0 32 |Reserved N/A Fixed 0x0
ECX 0 0 1| LAHF/SAHF in 64-bit Mode N/A Native
ECX 4 1 4 |Reserved_4_1 N/A Fixed 0x0
ECX 5 5 1|LZCNT N/A Native
ECX 7 6 2 |Reserved_7_6 N/A Fixed 0x0
ECX 8 8 1|PREFETCHW N/A Native
ECX 31 9 23 |Reserved_31_9 N/A Fixed 0x0
EDX 10 0 11 |Reserved_10_0 N/A Fixed 0x0
EDX 11 11 1|SYSCALL/SYSRET in 64-bit Mode N/A Native
EDX 19 12 8|Reserved_19_12 N/A Fixed 0x0
EDX 20 20 1| Execute Disable Bit N/A Fixed Oox1
EDX 25 21 5|Reserved_25_21 N/A Fixed 0x0
EDX 26 26 1|1GB Pages N/A Fixed Ox1
EDX 27 27 1|RDTSCP and IA32_TSC_AUX N/A Fixed 0x1
EDX 28 28 1|Reserved_28 N/A Fixed 0x0
EDX 29 29 1|Intel 64 N/A Fixed Ox1
EDX 31| 30 2|Reserved_31_30 N/A Fixed 0x0
Leaf 0x80000008
EAX 7 0 8 [Number of Physical Address Bits N/A Fixed 0x34
EAX 15 8 8| Number of Linear Address Bits N/A Native
EAX 31 16 16 | Reserved N/A Fixed 0x0
EBX 8 0 9|Reserved_8_0 N/A Fixed 0x0
EBX 9 9 1| WBNOINVD support CPUID_CONFIG As Configured (if Native)
EBX 31 10| 22|Reserved_31_10 N/A Fixed 0x0
ECX 31 0 32 |Reserved N/A Fixed 0x0
EDX 31 0 32 |Reserved N/A Fixed 0x0

February 2023

Page 148 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

February 2023

Page 149 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

21.ABI Reference: Constants

This chapter describes the constants designed to be used in the Intel TDX module.

21.1. Interface Function Completion Status Codes
Note: This section provides a high-level overview of function completion status, as defined. Implementation details
5 may differ.

This section defines the function completion status codes. The structure of the status codes is described in 19.3.2. Three

tables are provided below: class table, code table and operand ID table.

21.1.1. Function Completion Status Code Classes (Bits 47:40)

Table 21.1: Function Completion Status Code Classes (Bits 47:40) Definition

Class ID | Class Name Description

0 General General function completion status

1 Invalid Operand An invalid operand value has been provided, e.g., HKID is out of range,
HPA overlaps SEAMRR, GPA is not private, etc.

2 Resource Busy Resource is busy, there is a concurrency conflict.

3 Page Metadata Page metadata (in PAMT) are incorrect, e.g., page type is wrong.

4 Dependent Resources The state of dependent resources is incorrect, e.g., there are TD pages
while trying to reclaim a TDR page.

5 Intel TDX Module State The Intel TDX module state is incorrect.

6 TD State The state of the TD is incorrect, e.g., it has not been initialized yet.

7 TD VCPU State The state of the TD VCPU is incorrect, e.g., it is corrupted.

8 Key Management The status code is related to key management, e.g., keys are not
configured.

9 Platform The status code is related to platform configuration or state.

10 Physical Memory The status code is related to physical memory.

11 Guest TD Memory The status code is related to guest TD memory.

255 Reserved Reserved for use by host VMM or guest TD software
This value is never used by the TDX module.

10

21.1.2. Function Completion Status Codes

Table 21.2: Function Completion Status Codes Definition

Error and Recoverability Flags, Class and Name (Bits 63:32) Details L2 (Bits 31:0) Description
Value (Hex) |Status Name
0x00000000 |Success |TDX_SUCCESS TDH.VP.ENTER: Exit Reason Function completed successfully.
Other : 0
0x40000001 [Non- TDX_NON_RECOVERABLE_VCPU TDH.VP.ENTER: Exit Reason TD exit due to a non-recoverable VCPU state (e.g., triple
Recover. fault) — VCPU is disabled
0x40000002 |Non- TDX_NON_RECOVERABLE_TD TDH.VP.ENTER: Exit Reason TD exit due to a non-recoverable TD state — TD is
Recover. disabled
0x80000003 [Recover. |TDX_INTERRUPTED_RESUMABLE 0 Function operation has been interrupted by an external
Error event, and it may be resumed from the point it was
interrupted by calling it again.
0x80000004 [Recover. |TDX_INTERRUPTED_RESTARTABLE 0 Function operation has been interrupted by an external
Error event, and it may be restarted (from its beginning) by
calling it again.
0x40000005 |Non- TDX_NON_RECOVERABLE_TD_FATAL TDH.VP.ENTER: Exit Reason TD exit due to a fatal TD state (e.g., machine check
Recover. caused by a memory integrity check error) —TD is
disabled and its private memory can't be accessed.
February 2023 Page 150 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Error and Recoverability Flags, Class and Name (Bits 63:32) Details L2 (Bits 31:0) Description
Value (Hex) |Status Name
0xC0000006 (Error TDX_INVALID_RESUMPTION 0 Resumed function in invalid, e.g., its operands are
different than the last interrupted function.
0xC0000007 (Error TDX_NON_RECOVERABLE_TD_WRONG_API |TDH.VP.ENTER: Exit Reason TD is disabled due to host VMM running with wrong
C_MODE local APIC mode, e.g.:
- Local APIC is disabled.
- Local APIC is mode is xAPIC and there are more than
255 logical processors in the platform.
0xC0000100 (Error TDX_OPERAND_INVALID Operand ID Operand is invalid.
0xC0000101 (Error TDX_OPERAND_ADDR_RANGE_ERROR Operand ID Operand address is out of range (e.g., not in a TDMR).
0x80000200 [Recover. |TDX_OPERAND_BUSY Operand ID The operand is busy (e.g., it is locked in Exclusive mode).
Error
0x80000201 [Recover. |TDX_PREVIOUS_TLB_EPOCH_BUSY 0 TDH.MEM.TRACK failed because one or more of the TD's
Error VCPUs are running, and their VCPU epoch is the previous
TD epoch.
0x80000202 [Recover. |TDX_SYS_BUSY 0 The Intel TDX module (as a whole) is busy.
Error
0xC0000300 (Error TDX_PAGE_METADATA_INCORRECT Operand ID Physical page metadata (in PAMT) are incorrect for the
requested operation.
0x00000301 [Success |TDX_PAGE_ALREADY_FREE Operand ID Physical page is already marked as PT_FREE.
0xC0000302 (Error TDX_PAGE_NOT_OWNED_BY_TD Operand ID Physical page PAMT entry's OWNER field does not point
to the TD's TDR page
0xC0000303 (Error TDX_PAGE_NOT_FREE Operand ID Physical page is not free
0xC0000400 |Error TDX_TD_ASSOCIATED_PAGES_EXIST 0 Physical pages associated with the TD exist in memory.
0xC0000500 |Error TDX_SYS_INIT_NOT_PENDING 0 Attempting TDH.SYS.INIT when not expected.
0xC0000501 |Error RESERVED 0
0xC0000502 |Error TDX_SYS_LP_INIT_NOT_DONE 0 Attempting non-TDH.SYS.LP.INIT SEAMCALL leaf before
TDH.SYS.LP.INIT was done on this LP.
0xC0000503 |Error TDX_SYS_LP_INIT_DONE 0 Attempting TDH.SYS.LP.INIT when already done on this
LP.
0xC0000504 |Error RESERVED
0xC0000505 |Error TDX_SYS_NOT_READY 0 Attempting to execute a non-initialization SEAMCALL
function before initialization sequence completed.
0xC0000506 |Error TDX_SYS_SHUTDOWN 0 Attempting to execute SEAMCALL when the Intel TDX
module is being shut down.
0xC0000507 |Error TDX_SYS_KEY_CONFIG_NOT_PENDING 0 Attempting TDH.SYS.KEY.CONFIG when it is not pending.
0xC0000508 |Error RESERVED
0xC0000509 (Error RESERVED
0xCO00050A (Error RESERVED
0xC0000508B |Error TDX_SYS_LP_INIT_NOT_PENDING 0 Attempting TDH.LP.INIT when it is not pending.
0xC000050C |Error TDX_SYS_CONFIG_NOT_PENDING 0 Attempting TDH.SYS.CONFIG when it is not pending.
0xC0000600 |Error TDX_TD_NOT_INITIALIZED 0 TD has not been initialized (by TDH.MNG.INIT).
0xC0000601 (Error TDX_TD_INITIALIZED 0 TD has been initialized (by TDH.MNG.INIT).
0xC0000602 (Error TDX_TD_NOT_FINALIZED 0 TD measurement has not been finalized (by
TDH.MR.FINALIZE).
0xC0000603 |Error TDX_TD_FINALIZED 0 TD measurement has been finalized (by
TDH.MR.FINALIZE).
0xC0000604 |Error TDX_TD_FATAL 0 TDis in a FATAL error state.
0xC0000605 |Error TDX_TD_NON_DEBUG 0 TD's ATTRIBUTES.DEBUG bit is 0.
0xC0000607 |Error TDX_LIFECYCLE_STATE_INCORRECT 0 The TD's LIFECYCLE_STATE is incorrect for the required
operation.
0xC0000610 (Error TDX_TDCX_NUM_INCORRECT 0 The number of TDCX pages is incorrect.
0xC0000700 (Error TDX_VCPU_STATE_INCORRECT 0 The VCPU state is incorrect for the requested operation.
0x80000701 |Recover. |TDX_VCPU_ASSOCIATED 0 The VCPU is already associated with another LP.
Error
0x80000702 [Recover. |TDX_VCPU_NOT_ASSOCIATED 0 The VCPU is not associated with the current LP.
Error
0xC0000703 |Error TDX_TDVPX_NUM_INCORRECT 0 The number of TDVPX pages is incorrect.
0xC0000704 (Error TDX_NO_VALID_VE_INFO 0 There is no valid #VE information.
0xC0000705 (Error TDX_MAX_VCPUS_EXCEEDED 0 TD's maximum number of VCPUs has been exceeded.
0xC0000706 |Error TDX_TSC_ROLLBACK 0 Time Stamp Counter value is lower than on last TD exit.
0xC0000720 |Error TDX_FIELD_NOT_WRITABLE 0 Field code and write mask are for a read-only field.
0xC0000721 (Error TDX_FIELD_NOT_READABLE 0 Field code is for an unreadable field.
0xC0000730 |Error TDX_TD_VMCS_FIELD_NOT_INITIALIZED Bits 31:0: VMCS field code The TD VMCS field has not been initialized.
0x80000800 |Recover. |TDX_KEY_GENERATION_FAILED 0 Failed to generate a random key. This is typically caused
Error by an entropy error of the CPU's random number
generator, and may be impacted by RDSEED, RDRAND or
PCONFIG executing on other LPs. The operation should
be retried.
0x80000810 [Recover. |TDX_TD_KEYS_NOT_CONFIGURED 0 TD keys have not been configured on the hardware.
Error

February 2023

Page 151 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Error and Recoverability Flags, Class and Name (Bits 63:32)

Value (Hex) |Status

Name

Details L2 (Bits 31:0)

Description

0xC0000811 (Error TDX_KEY_STATE_INCORRECT 0 TDCS.KEY_STATE is incorrect for the required operation.

0x00000815 [Success |TDX_KEY_CONFIGURED 0 The key is already configured on the current package.

0x80000817 |Recover. |TDX_WBCACHE_NOT_COMPLETE 0 Attempting to execute TDH.MNG.KEY.FREEID when

Error TDH.PHYMEM.CACHE.WB has not completed its

operation.

0xC0000820 (Error TDX_HKID_NOT_FREE 0 A provided HKID cannot be assigned because it is not
free.

0x00000821 |Success |TDX_NO_HKID_READY_TO_WBCACHE 0 No private HKID is in the HKID_FLUSHED state, ready for
TDH.PHYMEM.CACHE.WB.

0xC0000823 (Error TDX_WBCACHE_RESUME_ERROR 0 Resume of a previously-interrupted function has been
aborted due to wrong HKID.

0x80000824 (Recover. |TDX_FLUSHVP_NOT_DONE 0 TDH.VP.FLUSH was not done on all required VCPUs;

Error

some VCPUs are still associated with LPs.

0xC0000825 |Error

TDX_NUM_ACTIVATED_HKIDS_NOT_SUPPO
RTED

Bits 31:0: Maximum supported HKIDs

The number of activated key IDs on the platform is not
supported.

0xC0000900 |Error TDX_INCORRECT_CPUID_VALUE 0 A CPUID value is incorrect.

0xC0000901 |Error TDX_BOOT_NT4_SET 0 MSR IA32_MISC_ENABLES bit 22 (Boot NT4) is set.

0xC0000902 (Error TDX_INCONSISTENT_CPUID_FIELD 0 A field returned by CPUID is inconsistent between LPs.

0xC0000903 (Error TDX_CPUID_MAX_SUBLEAVES_UNRECOGNI |CPUID leaf The maximum number of sub-leaves for this CPUID leaf
ZED is not recognized.

0xC0000904 (Error TDX_CPUID_LEAF_1F_FORMAT_UNRECOGN (0 CPUID leaf 1F format is not recognized or sub-leaves are
IZED not in order.

0xC0000905 |Error TDX_INVALID_WBINVD_SCOPE 0 WBINVD scope is not supported.

0xC0000906 (Error TDX_INVALID_PKG_ID Package ID Package ID is larger than the maximum supported.

0xC0000907 |Error TDX_ENABLE_MONITOR_FSM_NOT_SET 0 MSR IA32_MISC_ENABLES bit 3 (Enable Monitor FSM) is

not set.
0xC0000908 |Error TDX_CPUID_LEAF_NOT_SUPPORTED CPUID leaf

0xC0000910 |Error

TDX_SMRR_NOT_LOCKED

0: SMRR, 1: SMRR2

SMRR* is not locked.

0xC0000911 |Error

TDX_INVALID_SMRR_CONFIGURATION

0: SMRR, 1: SMRR2

SMRR* configuration is invalid.

0xC0000912 |Error

TDX_SMRR_OVERLAPS_CMR

Bits 7:0: 0: SMRR, 1: SMRR2
Bits 15:8: Overlapping CMR index

SMRR* overlaps a CMR.

0xC0000913 |Error

TDX_SMRR_LOCK_NOT_SUPPORTED

0

Platform does not support SMRR locking.

0xC0000914 |Error

TDX_SMRR_NOT_SUPPORTED

0

Platform does not support SMRR.

0xC0000920 |Error

TDX_INCONSISTENT_MSR

Bits 31:0: MSR index

MSR configuration is inconsistent between LPs.

0xC0000921 |Error

TDX_INCORRECT_MSR_VALUE

Bits 31:0: MSR index

MSR value is incorrect.

0xC0000930 |Error TDX_SEAMREPORT_NOT_AVAILABLE 0 SEAMOPS(SEAMREPORT) instruction leaf is not available.

0xC0000931 |Error RESERVED 0

0xC0000932 |Error RESERVED 0

0xC0000933 (Error TDX_SEAMVERIFYREPORT_NOT_AVAILABLE (0 SEAMOPS(SEAMVERIFYREPORT) instruction leaf is not
available.

0xC0000940 |Error RESERVED 0 Reserved

0xCOO00AOQO |Error TDX_INVALID_TDMR Bits 7:0: TDMR index TDMR base address is not aligned on 1GB, its HKID bits
are not 0, TDMR size is not specified with 1GB
granularity or TDMR is outside the platform's maximum
PA.

0xCO000AO1 (Error TDX_NON_ORDERED_TDMR Bits 7:0: TDMR index TDMR is not specified in an ascending, non-overlapping
order.

0xCOO000AO02 |Error TDX_TDMR_OUTSIDE_CMRS Bits 7:0: TDMR index TDMR non-reserved parts are not fully contained in
CMRs.

0x00000A03 [Success |TDX_TDMR_ALREADY_INITIALIZED 0 TDMR is already fully initialized.

0xCO000A10 |Error

TDX_INVALID_PAMT

Bits 7:0: TDMR index
Bits 15:8: PAMT level (2: 1GB,
1: 2MB, 0: 4KB)

PAMT region base address is not aligned on 4KB, its HKID
bits are not 0, PAMT region size is not specified with 4KB
granularity, it is not large enough for the TDMR size or
PAMT region is outside the platform's maximum PA.

0xCO000A11 |Error

TDX_PAMT_OUTSIDE_CMRS

Bits 7:0: TDMR index
Bits 15:8: PAMT level (2: 1GB,

PAMT is not fully contained in CMRs.

1: 2MB, 0: 4KB)
0xCO000A12 (Error TDX_PAMT_OVERLAP Bits 7:0: TDMR index PAMT overlaps with TDMR non-reserved parts or with
Bits 15:8: PAMT level (2: 1GB, another PAMT.
1: 2MB, 0: 4KB)

Bits 23:16: Overlapping TDMR index

0xCO000A20 |Error

TDX_INVALID_RESERVED_IN_TDMR

Bits 7:0: TDMR index
Bits 15:8: Reserved area index

Reserved area in TMDR's base offset is not aligned on
4KB, its size is not specified with 4KB granularity or it is
not fully contained within the TDMR.

0xCO000A21 |Error

TDX_NON_ORDERED_RESERVED_IN_TDMR

Bits 7:0: TDMR index
Bits 15:8: Reserved area index

Reserved area in TDMR is not specified in an ascending,
non-overlapping order.

0xCO000A22 |Error

TDX_CMR_LIST_INVALID

0

CMR list provided to the TDX module is invalid

0xCO000BOO (Error TDX_EPT_WALK_FAILED Operand ID EPT walk failed
0xCO000BO1 (Error TDX_EPT_ENTRY_FREE Operand ID EPT entry is free
0xCO0000BO2 |Error TDX_EPT_ENTRY_NOT_FREE Operand ID EPT entry is not free

February 2023

Page 152 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Error and Recoverabi

lity Flags, Class and Name (Bits 63:32)

Value (Hex) |Status

Name

Details L2 (Bits 31:0)

Description

0xC0O000BO3 |Error TDX_EPT_ENTRY_NOT_PRESENT Operand ID EPT entry is not present

0xCO000BO4 (Error TDX_EPT_ENTRY_NOT_LEAF Operand ID EPT entry is not a leaf

0xCO000BO5 |(Error TDX_EPT_ENTRY_LEAF Operand ID EPT entry is a leaf

0xCO000BO6 |Error TDX_GPA_RANGE_NOT_BLOCKED Operand ID GPA range is not blocked

0x00000B07 [Success |TDX_GPA_RANGE_ALREADY_BLOCKED Operand ID GPA range is already blocked

0xCO000BO08 (Error TDX_TLB_TRACKING_NOT_DONE Operand ID TLB tracking has not been done

0xCO000BO09 (Error TDX_EPT_INVALID_PROMOTE_CONDITIONS |Operand ID Conditions for GPA mapping promotions as invalid

0x00000BOA |Success

TDX_PAGE_ALREADY_ACCEPTED

Error EPT level

Page has already been accepted

0xCO000BOB |Error

TDX_PAGE_SIZE_MISMATCH

Error EPT level

Requested page size does not match the current GPA
mapping size

0xC0001000 |Error
0xC0001001 |Error

TDX_INVALID_CPUSVN

0

REPORTMACSTRUCT.CPUSVN is invalid

TDX_INVALID_REPORTMACSTRUCT

0

REPORTMACSTRUCT is invalid

21.1.3. Function Completion Status Operand IDs
Table 21.3: Function Completion Operand IDs Definition
Operand | Explicit/ | Class Operand Description
ID Implicit
0 Explicit GPR RAX Explicit input operand RAX
1 Explicit GPR RCX Explicit input operand RCX
2 Explicit GPR RDX Explicit input operand RDX
3 Explicit GPR RBX Explicit input operand RBX
4 Explicit GPR Reserved_RSP Reserved
5 Explicit GPR RBP Explicit input operand RBP
6 Explicit GPR RSI Explicit input operand RSI
7 Explicit GPR RDI Explicit input operand RDI
8 Explicit GPR R8 Explicit input operand R8
9 Explicit GPR R9 Explicit input operand R9
10 Explicit GPR R10 Explicit input operand R10
11 Explicit GPR R11 Explicit input operand R11
12 Explicit GPR R12 Explicit input operand R12
13 Explicit GPR R13 Explicit input operand R13
14 Explicit GPR R14 Explicit input operand R14
15 Explicit GPR R15 Explicit input operand R15
63-16 Explicit Reserved Reserved Reserved for additional explicit operands
(e.g., XMM).
64 Explicit Component of explicit input ATTRIBUTES TD_PARAMS.ATTRIBUTES
65 Explicit Component of explicit input XFAM TD_PARAMS.XFAM
66 Explicit Component of explicit input EXEC_CONTROLS TD_PARAMS.EXEC_CONTROLS
67 Explicit Component of explicit input EPTP_CONTROLS TD_PARAMS.EPTP_CONTROLS
68 Explicit Component of explicit input MAX_VCPUS TD_PARAMS.MAX_VCPUS
69 Explicit Component of explicit input CPUID_CONFIG TD_PARAMS.CPUID_CONFIG
70 Explicit Component of explicit input TSC_FREQUENCY TD_PARAMS.TSC_FREQUENCY
95-71 Explicit Component of explicit input Reserved Reserved for additional components.

February 2023

Page 153 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Operand | Explicit/ | Class Operand Description
ID Implicit
96 Explicit Component of explicit input TDMR_INFO_PA TDMR_INFO_PA array entry
127-97 Explicit Component of explicit input Reserved Reserved for additional components.
128 Implicit Physical Page TDR TDR Page
129 Implicit Physical Page TDCX TDCX Page
130 Implicit Physical Page TDVPR TDVPR Page
131 Implicit Physical Page TDVPX TDVPX Page
143-132 | Implicit Physical Page Reserved Reserved for additional implicit physical
page types.
144 Implicit Logical control structure TDCS TDCS Logical Structure
145 Implicit Logical control structure TDVPS TDVPS Logical Structure
146 Implicit Logical control structure SEPT Secure EPT Tree
167-147 | Implicit Logical control structure Reserved Reserved for additional implicit logical
structure types.
168 Implicit Component of logical control | RTMR TDCS.RTMR
structure
169 Implicit Component of logical control | TD_EPOCH TDCS.TD_EPOCH
structure
183-170 | Implicit Component of logical control | Reserved Reserved for additional components.
structure
184 Implicit | Abstract item SYS Intel TDX Module
185 Implicit Abstract item TDMR TDMR
186 Implicit Abstract item KOT KOT
187 Implicit Abstract item KET KET
188 Implicit Abstract item WBCACHE TDH.PHYMEM.CACHE.WB State
February 2023 Page 154 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

22.ABI Reference: Data Types

This section describes data types that are designed to be used by the Intel TDX module.
22.1. Basic Crypto Types

Table 22.1: Basic Crypto Types

Name Size Description
(Bytes)
SHA384_HASH 48 384-bit buffer containing the result of a SHA384 hash calculation
KEY128 16 128-bit key
KEY256 32 256-bit key

22.2. TD Parameters Types

Note: This section describes TD parameter types, as defined. Implementation details may differ.

22.2.1. ATTRIBUTES

ATTRIBUTES is defined as a 64b field that specifies various guest TD attributes. ATTRIBUTES is provided by the host VMM
as a guest TD initialization parameter as part of TD_PARAMS. It is reported to the guest TD by TDG.VP.INFO and as part
of TDREPORT_STRUCT returned by TDG.MR.REPORT.

The ATTRIBUTES bits are divided into three groups, as shown in the table below. If any bit in the TUD group is set to 1,
the guest TD is under off-TD debug and is untrusted. The SEC group indicates features that may impact TD security but
are not considered as impacting TD trust.

February 2023 . Page 155 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Table 22.2: ATTRIBUTES Definition

Bits Group Description Bits Field Description Reference
7:0 TUD TD Under Debug 0 DEBUG Guest TD runs in off-TD debug mode. 16.3
If any of the bits Its VCFTU state and private memory are
in this group are accessible by the host VMM.
set .to 1, the guest 7:1 RESERVED Reserved for future TUD flags — must
TD is untrusted.
be 0
31:8 | SEC Attributes that 27:8 RESERVED Reserved for future SEC flags — must
may impact TD be 0
security
28 SEPT_VE_DISABLE | Disable EPT violation conversion to
#VE on guest TD access of PENDING
pages
29 RESERVED Reserved for future SEC flags — must
be 0
30 PKS TD is allowed to use Supervisor 13.14
Protection Keys.
31 KL TD is allowed to use Key Locker.
Must be 0
63:32 | OTHER | Attributes that do | 62:32 | RESERVED Reserved for future OTHER flags —
not impact TD must be 0
security
63 PERFMON TD is allowed to use Perfmon and 16.2
PERF_METRICS capabilities.
22.2.2. XFAM
Intel SDM, Vol. 1, 13 Managing State Using the XSAVE Feature Set
5 Intel SDM, Vol. 3, 13 System Programming for Instruction Set Extensions and Processor Extended State

10

15

Intel TDX module extended state handling is described in 13.5.

XFAM (eXtended Features Available Mask) is defined as a 64b bitmap, which has the same format as XCRO or IA32_XSS
MSR. XFAM determines the set of extended features available for use by the guest TD. XFAM is provided by the host
VMM as a guest TD initialization parameter as part of TD_PARAMS. It is reported to the guest TD by CPUID(0x0D, 0x01)
and as part of TDREPORT_STRUCT returned by TDG.MR.REPORT.

The Intel TDX module and the Intel® architecture impose some rules on how the bits of XFAM may be set. See Table 13.4
for details.

22.2.3. CPUID_VALUES

CPUID_VALUES is defined as a 128b structure composed of four 32b fields representing the values returned by CPUID in
registers EAX, EBX, ECX and EDX. An array of CPUID_RET is used during guest TD configuration by TDH.MNG.INIT.

Table 22.3: CPUID_VALUES Definition

Field Offset Size Description

(Bytes) | (Bytes)
EAX 0 4 Value returned by CPUID in EAX
EBX 4 4 Value returned by CPUID in EBX

February 2023 Page 156 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Field Offset Size Description

(Bytes) | (Bytes)
ECX 8 4 Value returned by CPUID in ECX
EDX 12 4 Value returned by CPUID in EDX

22.2.4. TD_PARAMS

TD_PARAMS is provided as an input to TDH.MNG.INIT, and some of its fields are included in the TD report. The format

of this structure is valid for a specific MAJOR_VERSION of the Intel TDX module, as reported by TDH.SYS.INFO.

TD_PARAMS’ size is 1024B.

Table 22.4: TD_PARAMS Definition

Field Offset | Type Size Description Included in
(Bytes) (Bytes) TDREPORT?
ATTRIBUTES 0 64b bitmap (see | 8 TD attributes: the value set in this field must | Yes
22.2.1) comply with ATTRIBUTES_FIXEDO and
ATTRIBUTES_FIXED1 enumerated by
TDH.SYS.INFO.
XFAM 8 64b bitmap in 8 Extended Features Available Mask: indicates | Yes
XCRO format the extended state features allowed for the
TD. XFAM'’s format is the same as XCRO and
IA32_XSS MSR. The value set in this field
must satisfy the following conditions:
e Natively valid value for XCRO and
IA32_XSS (does not contain reserved
bits, features not supported by the CPU,
or illegal bit combinations)
e Complies with XFAM_FIXEDO and
XFAM_FIXED1 as enumerated by
TDH.SYS.INFO.
MAX_VCPUS 16 Unsigned 16b 2 Maximum number of VCPUs No
Integer
RESERVED 18 N/A 6 Must be 0 No
EPTP_CONTROLS 24 EPTP 8 Control bits of EPTP — copied to each TD No
VMCS on TDH.VP.INIT:
Bits 2:0 Memory type — must be 110 (WB)
Bits 5:3 EPT level — 1 less than the EPT
page-walk length. Must be either 3
or 4.
Bits 63:6 Reserved — must be 0
EXEC_CONTROLS 32 64b bitmap (see 8 Non-measured TD-scope execution controls No
Table 22.5)
TSC_FREQUENCY 40 16b unsigned 2 TD-scope virtual TSC frequency in units of No
integer 25MHz — must be between 4 and 400.
RESERVED 42 N/A 38 Must be 0 No

February 2023

Page 157 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Field

Offset
(Bytes)

Type

Size
(Bytes)

Description

Included in
TDREPORT?

MRCONFIGID

80

SHA384 HASH

48

Software-defined ID for non-owner-defined
configuration of the guest TD —e.g., run-
time or OS configuration

Yes

MROWNER

128

SHA384_HASH

48

Software-defined ID for the guest TD’s
owner

Yes

MROWNERCONFIG

176

SHA384_HASH

48

Software-defined ID for owner-defined
configuration of the guest TD — e.g., specific
to the workload rather than the run-time or
oS

Yes

RESERVED

224

N/A

32

Must be 0

No

CPUID_CONFIGI[0]

256

CPUID_VALUES

16

CPUID_CONFIG[n-1]

CPUID_VALUES

16

Direct configuration of CPUID leaves/sub-
leaves virtualization: the number and order
of entries must be equal to the number and
order of directly configurable or allowable
CPUID leaves/sub-leaves reported by
TDH.SYS.INFO. Note that the leaf and sub-
leaf numbers are implicit.

Only bits that have been reported as 1 by
TDH.SYS.INFO may be set to 1.

Note that the virtualization of many CPUID
bit fields not enumerated in this list is
configurable indirectly, via the XFAM and
ATTRIBUTES fields.

No

RESERVED

N/A

Fills up to TD_PARAMS size (1024B) — must
be 0

No

Table 22.5: TD_PARAMS_STRUCT.EXEC_CONTROLS Definition

Bits | Name

Description

0 GPAW

TD-scope Guest Physical Address Width execution control: copied to each TD
VMCS GPAW execution control on TDH.VP.INIT

0: GPA.SHARED bit is GPA[47]
1: GPA.SHARED bit is GPA[51]

63:1 | RESERVED

Must be 0

22.3. Physical Memory Management Types

5 Note: This section describes physical memory types, as defined. Implementation may differ.

PAMT entry and PT (page type) are defined in 10.3.

22.3.1. Physical Pa

ge Size

Three physical page size levels (4KB, 2MB and 1GB) are defined.

February 2023

Page 158 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

22.4.

Intel SDM, Vol. 3, 28.2.2

Note:

Table 22.6: Page Size Definition

Page Size | Associated Value
Physical Page Size

PS_1G 1GB 2

PS_2M 2MB 1

PS_aK 4KB 0

EPT Translation Mechanism

22.4.1. Secure EPT Levels

TD Private Memory Management Data Types: Secure EPT

This section describes private memory management types, as defined. Implementation may differ.

Secure EPT level definition is identical to legacy VMX EPT level definition. As a rule, an EPT entry at level L maps a GPA
range whose size is 212",

Table 22.7: EPT Levels Definition

Level 0 1 2 3 4 5 (5-Level EPT Only)
GPA Range Size | 4KB 2MB 1GB 512GB 256TB 16PB’

Child Physical 4KB 2MB 1GB N/A N/A N/A

Page Size

EPT Page Type N/A EPT EPD EPDPT EPML4 EPML5

Parent EPT EPTE EPDE EPDPTE EPML4E EPMLSE (5-level EPT) or VMCS.EPTP

Entry Type VMCS.EPTP (4-level EPT)

GPA Offset Bits | 20:12 29:21 38:30 47:39 51:48 (5-level EPT only) N/A

10

15

22.4.2. Secure EPT Entry Information as Returned by TDX Module Functions

Many Intel TDX module functions return Secure EPT entry information. This information is returned in the formats
detailed below, which may be different that the actual Secure EPT format as maintained by the TDX module in memory.

Note:

22.4.2.1.

The returned secure EPT entry format is detailed below.

Returned Secure EPT Entry Content

maintained by the TDX module in memory.

Table 22.8: Secure EPT Entry Content as Returned by TDX Interface Functions

The returned Secure EPT information is subject to change with new versions of TDX.

It may be different that the actual Secure EPT format as

Secure EPT Entry Field

Value Returned in RCX
(per Entry State Returned in RDX)

MSB | LSB Size | Short Full Name Enabled | Leaf Non-Leaf SEPT_FREE
Name

0 0 1 R Read N/A R R 0

1 1 1 W Write N/A W W 0

7 Only the lower half is available as TD private GPA space, because the SHARED bit must be 0

February 2023

Page 159 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Secure EPT Entry Field

Value Returned in RCX
(per Entry State Returned in RDX)

MSB | LSB Size | Short Full Name Enabled | Leaf Non-Leaf SEPT_FREE
Name
2 2 1 X Execute N/A X X 0
5 3 3 MT Memory Type N/A 6 0 0
6 6 1 IPAT Ignore PAT N/A 1 0 0
7 7 1 PS Leaf N/A 1 0 0
8 8 1 A Accessed No 0 0 0
9 9 1 D Dirty No 0 0 0
10 10 1 Xu Execute (User) No 0 0 0
11 11 1 Ignored Ignored N/A 0 0 0
51 12 40 HPA[51:12] | Host Physical Address [51:12] | N/A HPA[51:12] | HPA[51:12] | O
57 57 1 VPW Verify Paging-Write No 0 0 0
58 58 1 PW Paging Write No 0 0 0
59 59 1 Ignored Ignored N/A 0 0 0
60 60 1 SSS Supervisor Shadow Stack No 0 0 0
61 61 1 SPP Check Sub-Page Permissions No 0 0 0
62 62 1 Ignored Ignored N/A 0 0 0
63 63 1 SVE Suppress #VE Yes SVE 0 1
22.4.2.2. Additional Returned Secure EPT Information

Additional information for secure EPT entries is returned as defined below.

Table 22.9: Additional Secure EPT Entry Information Returned by TDX Interface Functions

Bits Name Description

2:0 Level Level of the returned Secure EPT entry — see 22.4.1 above

7:3 Reserved Setto O

15:8 State The TDX state of the Secure EPT entry — see Table 22.10 below
63:16 | Reserved Setto O

Table 22.10: Secure EPT Entry TDX State Returned by TDX Interface Functions

Value | Secure EPT Entry State

0 SEPT_FREE

SEPT_BLOCKED

2 SEPT_PENDING
3 SEPT_PENDING_BLOCKED
4 SEPT_PRESENT

Other Reserved

February 2023

Page 160 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

22.5. TD Entry and Exit Types

22.5.1. Extended Exit Qualification

Extended Exit Qualification is a 64-bit field returned by TDH.VP.ENTER for asynchronous TD exits with an architectural
VMX exit reasons. It contains additional non-VMX, TDX-specific information.

Table 22.11: Extended Exit Qualification

Bits Name Description
3:0 TYPE Extended exit qualification type
Value | Name Description
0 NONE No extended exit qualification
1 ACCEPT Exit qualification for an EPT violation during

TDG.MEM.PAGE.ACCEPT

Other | Reserved

31:4 Reserved Setto 0

63:32 | INFO TYPE-specific information
Set to O for NONE — See below for other values of TYPE

Table 22.12: Extended Exit Qualification INFO Field for ACCEPT

Bits Name Description

34:32 | REQ_SEPT_LEVEL SEPT level requested as an input to TDG.MEM.PAGE.ACCEPT

37:35 ERR_SEPT_LEVEL SEPT level in which TDG.MEM.PAGE.ACCEPT detected an error

45:38 ERR_SEPT_STATE The TDX state of the Secure EPT entry where TDG.MEM.PAGE.ACCEPT detected
an error —see Table 22.10 above

46 ERR_SEPT_IS_LEAF | Indicates that the SEPT entry where TDG.MEM.PAGE.ACCEPT detected an error
is a leaf entry

63:47 Reserved Setto 0

22.6. Measurement and Attestation Types

Note: This section describes measurement and attestation types, as defined. Implementation may differ.

22.6.1. CPUSVN

CPUSVN is a 16B Security Version Number of the CPU.

e Thereis a single CPUSVN used for SGX and TDX.
e CPUSVN contents are considered micro-architectural. CPUSVN is composed of fields for PR_RESET_SVN,
R_LAST_PATCH_SVN, SINIT, BIOS ACM, Boot Guard ACM and BIOS Guard NP-PPPE module.

22.6.2. TDREPORT_STRUCT

TDREPORT_STRUCT is the output of the TDG.MR.REPORT function. TDREPORT_STRUCT is composed of a generic MAC
structure (REPORTMACSTRUCT, see 22.6.3 below), a SEAMINFO structure and a TDX-specific TEE info structure
(TDINFO_STRUCT, see 22.6.5 below).

February 2023 . Page 161 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

The size of TDREPORT_STRUCT is 1024B.
Table 22.13: TDREPORT_STRUCT Definition

Name Offset | Type Size Description
(Bytes) (Bytes)
REPORTMACSTRUCT | O REPORTMACSTRUCT 256 REPORTMACSTRUCT for the

TDG.MR.REPORT

TEE_TCB_INFO 256 TEE_TCB_INFO_STRUCT | 239 Additional attestable elements in the
TD’s TCB are not reflected in the
REPORTMACSTRUCT.CPUSVN —includes
the Intel TDX module measurements.

RESERVED 495 N/A 17 Reserved — contains 0

TDINFO 512 TDINFO_STRUCT 512 TD’s attestable properties

22.6.3. REPORTMACSTRUCT (Reference)

REPORTMACSTRUCT is common to Intel’s Trusted Execution Environments (TEEs) — e.g., SGX and TDX.
REPORTMACSTRUCT is the first field in the TEE report structure. In the TDX architecture, that is TDREPORT_STRUCT.
REPORTMACSTRUCT is MAC-protected and contains hashes of the remainder of the report structure which includes the
TEE’s measurements, and where applicable, the measurements of additional TCB elements not reflected in
REPORTMACSTRUCT.CPUSVN —e.g., a SEAM’s measurements.

Software verifying a TEE report structure (for TDX, this includes TEE_TCB_INFO_STRUCT and TDINFO_STRUCT) should
first confirm that its REPORTMACSTRUCT.TEE_TCB_INFO_HASH equals the hash of the TEE_TCB_INFO_STRUCT (if
applicable) and that REPORTMACSTRUCT.TEE_INFO_HASH equals the hash of the TDINFO_STRUCT. Then, software uses
ENCLU(EVERIFYREPORT) to help check the integrity of the REPORTMACSTRUCT. If all checks pass, the measurements in
the structure describe a TEE on this platform.

The size of REPORTMACSTRUCT is 2568B.
Table 22.14: REPORTMACSTRUCT Definition

Name Offset | Type Size Description MAC
(Bytes) (Bytes)

REPORTTYPE 0 REPORTTYPE 4 Type Header Structure Yes

RESERVED 4 12 Must be zero Yes

CPUSVN 16 CPUSVN 16 CPU SVN Yes

TEE_TCB_INFO_HASH | 32 SHA384_HASH | 48 SHA384 of TEE_TCB_INFO for TEEs Yes

implemented using Intel TDX

TEE_INFO_HASH 80 SHA384_HASH | 48 SHA384 of TEE_INFO: a TEE-specific info Yes
structure (TDINFO_STRUCT or SGXINFO) or
0 if no TEE is represented

REPORTDATA 128 64 A set of data used for communication Yes
between the caller and the target.

RESERVED 192 32 Must be zero Yes

MAC 224 32 The MAC over the REPORTMACSTRUCT No
with model-specific MAC

February 2023 . Page 162 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

22.6.4. REPORTTYPE (Reference)

REPORTTYPE indicates the reported Trusted Execution Environment (TEE) type, sub-type and version.

The size of REPORTTYPE is 4B.

Table 22.15: REPORTTYPE Definition

Name Offset | Size Description
(Bytes) | (Bytes)
TYPE 0 1 Trusted Execution Environment (TEE) Type:
0x00: SGX
0x7F-0x01: Reserved (TEE implemented by CPU)
0x80: Reserved (TEE implemented by SEAM module)
0x81: TDX
OxFF-0x82: Reserved (TEE implemented by SEAM module)
SUBTYPE 1 1 TYPE-specific subtype
Value is O
VERSION 2 1 TYPE-specific version.
Value is 0
RESERVED 3 1 Must be zero
5
22.6.5. TDINFO_STRUCT
TDINFO_STRUCT is defined as the TDX-specific TEE_INFO part of TDG.MR.REPORT. It contains the measurements and
initial configuration of the TD that was locked at initialization and a set of measurement registers that are run-time
extendable. These values are copied from the TDCS by the TDG.MR.REPORT function. Refer to 13.12 for additional
10 details.
The size of TDINFO_STRUCT is 512B.
Table 22.16: TDINFO_STRUCT Definition
Name Offset | Type Size (Bytes) Description
(Bytes)
ATTRIBUTES 0 8 TD’s ATTRIBUTES
XFAM 8 8 TD’s XFAM
MRTD 16 SHA384_HASH | 48 Measurement of the initial contents of the TD
MRCONFIGID 64 SHA384 HASH | 48 Software-defined ID for non-owner-defined
configuration of the guest TD — e.g., run-time or OS
configuration
MROWNER 112 SHA384 HASH | 48 Software-defined ID for the guest TD’s owner
MROWNERCONFIG | 160 SHA384_HASH | 48 Software-defined ID for owner-defined configuration of
the guest TD — e.g., specific to the workload rather than
the run-time or OS
RTMR 208 SHA384_HASH | NUM_RTMRS | Array of NUM_RTMRS (4) run-time extendable
*48 measurement registers
RESERVED 400 N/A 112 Must be zero

February 2023

Page 163 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

22.7. Configuration, Enumeration and Initialization Types

Note: This section describes configuration, enumeration and initialization types, as defined. Implementation may
differ.

22.7.1. CPUID_CONFIG

CPUID_CONFIG is designed to enumerate how the host VMM may configure the virtualization done by the Intel TDX
module for a single CPUID leaf and sub-leaf. An array of CPUID_CONFIG entries is used for the Intel TDX module
enumeration by TDH.SYS.INFO.

Table 22.17: CPUID_CONFIG Definition

Field Offset Size Description
(Bytes) | (Bytes)

LEAF 0 4 EAX input value to CPUID

SUB_LEAF | 4 4 ECX input value to CPUID

A value of -1 indicates a CPUID leaf with no sub-leaves.

EAX 8 4 Enumeration of the configurable virtualization of the value returned by CPUID in
EAX: avalue of 1in any of the bits indicates that the host VMM is allowed to
configure that bit

EBX 12 4 Enumeration of the configurable virtualization of the value returned by CPUID in
EBX: avalue of 1 in any of the bits indicates that the host VMM is allowed to
configure that bit

ECX 16 4 Enumeration of the configurable virtualization of the value returned by CPUID in
ECX: avalue of 1 in any of the bits indicates that the host VMM is allowed to
configure that bit

EDX 20 4 Enumeration of the configurable virtualization of the value returned by CPUID in
EDX: avalue of 1 in any of the bits indicates that the host VMM is allowed to
configure that bit

22.7.2. TDSYSINFO_STRUCT
TDSYSINFO_STRUCT is designed to provide enumeration information about the Intel TDX module. It is an output of the
TDH.SYS.INFO leaf function.
TDSYSINFO_STRUCT's size is 1024B.
Table 22.18: TDSYSINFO_STRUCT Definition

Section Field Name Offset | Type Size Description
(Bytes) (Bytes)

Intel TDX ATTRIBUTES 0 Bitmap 4 Module attributes

Module

Bits 30:0 Reserved —setto 0
Info

Bit 31 0 indicates a
production module.

1 indicates a debug
module.

VENDOR_ID 4 Integer 4 0x8086 for Intel

February 2023 . Page 164 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Section Field Name Offset | Type Size Description
(Bytes) (Bytes)

BUILD_DATE 8 BCD 4 Intel TDX module build data —in
yyyymmdd BCD format (each
digit occupies 4 bits)

BUILD_NUM 12 Integer 2 Build number of the Intel TDX
module

MINOR_VERSION 14 Integer 2 Minor version number of the
Intel TDX module

MAJOR_VERSION 16 Integer 2 Major version number of the
Intel TDX module

RESERVED 18 N/A 14 This field is reserved for
enumerating future Intel TDX
module capabilities.

Setto O
Memory MAX_TDMRS 32 Integer 2 The maximum number of
Info TDMRs supported

MAX_RESERVED_ | 34 Integer | 2 The maximum number of

PER_TDMR reserved areas per TDMR

PAMT_ENTRY_ 36 Integer 2 The size of a PAMT entry —

SIZE determines the number of bytes
that need to be reserved for the
three PAMT areas:

e PAMT_1G (1 entry per 1GB
of TDMR)

e PAMT_2M (1 entry per 2MB
of TDMR)

e PAMT_4K (1 entry per 4KB
of TDMR)

RESERVED 38 N/A 10 Setto O

Control TDCS_BASE_SIZE 48 Integer 2 Base value for the number of
Struct Info bytes required to hold TDCS

RESERVED 50 N/A 2 Reserved for additional TDCS
enumeration
Setto O

TDVPS_BASE_SIZE | 52 Integer 2 Base value for the number of
bytes required to hold TDVPS

RESERVED 54 N/A 10 Setto 0

February 2023

Page 165 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Section

Field Name

Offset
(Bytes)

Type

Size
(Bytes)

Description

D

Capabilities

ATTRIBUTES_
FIXEDO

64

Bitmap

If any certain bitis 0 in
ATTRIBUTES_FIXEDO, it must be
0in any TD’s ATTRIBUTES. The
value of this field reflects the
Intel TDX module capabilities
and configuration and CPU
capabilities.

ATTRIBUTES_
FIXED1

72

Bitmap

If any certain bitis 1 in
ATTRIBUTES_FIXED1, it must be
1lin any TD’s ATTRIBUTES. The
value of this field reflects the
Intel TDX module capabilities
and configuration and CPU
capabilities.

XFAM_FIXEDO

80

Bitmap

If any certain bitis 0 in
XFAM_FIXEDO, it must be 0 in
any TD’s XFAM.

XFAM_FIXED1

88

Bitmap

If any certain bitis 1 in
XFAM_FIXED1, it must be 1in
any TD’s XFAM.

RESERVED

96

N/A

32

Setto 0

NUM_CPUID_
CONFIG

128

Integer

Number of the following
CPUID_CONFIG entries

CPUID_CONFIG[0]

132

CPUID_
CONFIG

24

CPUID_
CONFIG[last]

CPUID_
CONFIG

24

Enumeration of the CPUID
leaves/sub-leaves that contain
bit fields whose virtualization by
the Intel TDX module is either:

e Directly configurable
(CONFIG_DIRECT) by the
host VMM

e Bits that the host VMM may
allow to be 1
(ALLOW_DIRECT) and their
native value, as returned by
the CPU, is 1.

See 22.7.1 for details.

Note that the virtualization of
many CPUID bit fields not
enumerated in this list is
configurable indirectly via the
XFAM and ATTRIBUTES assigned
to a TD by the host VMM.

Reserved

RESERVED

N/A

Fills up to the structure size
(1024B) —setto O

February 2023

Page 166 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

22.7.3. CMR_INFO

CMR_INFO is designed to provide information about a Convertible Memory Range (CMR), as configured by BIOS and
checked and stored securely by MCHECK.

Table 22.19: CMR_INFO Entry Definition

Name Offset | Type Size Description
(Bytes) (Bytes)
CMR_BASE 0 Physical | 8 Base address of the CMR: since a CMR is aligned on 4KB, bits
Address 11:0 are 0.
CMR_SIZE 8 Integer | 8 Size of the CMR, in bytes: since a CMR is aligned on 4KB, bits
11:0 are O.
A value of 0 indicates a null entry.

5
TDH.SYS.INFO leaf function returns an array of CMR_INFO entries. The CMRs are sorted from the lowest base address to
the highest base address, and they are non-overlapping.
22.7.4. TDMR_INFO
TDMR_INFO is designed to provide information about a single Trust Domain Memory Region (TDMR) and its associated
10 PAMT.
Table 22.20: TDMR_INFO Entry Definition
Name Offset Type Size Description
(Bytes) (Bytes)
TDMR_BASE 0 Physical | 8 Base address of the TDMR (HKID bits must be 0): since a
Address TDMR is aligned on 1GB, bits 29:0 are always 0.
TDMR_SIZE 8 Integer 8 Size of the TDMR, in bytes: must be greater than 0 and a
whole multiple of 1GB (i.e., bits 29:0 are always 0).
PAMT_1G_BASE 16 Physical | 8 Base address of the PAMT_1G range associated with the
Address above TDMR (HKID bits must be 0): since a PAMT range is
aligned on 4KB, bits 11:0 are always 0.
PAMT_1G_SIZE 24 Integer 8 Size of the PAMT_1G range associated with the above TDMR:
since a PAMT range is aligned on 4KB, bits 11:0 are always 0.
PAMT_2M_BASE 32 Physical | 8 Base address of the PAMT_2M range associated with the
Address above TDMR (HKID bits must be 0): since a PAMT range is
aligned on 4KB, bits 11:0 are always O.
PAMT_2M_SIZE 40 Integer 8 Size of the PAMT_2M range associated with the above TDMR:
since a PAMT range is aligned on 4KB, bits 11:0 are always 0.
PAMT_4K_BASE 48 Physical | 8 Base address of the PAMT_4K range associated with the above
Address TDMR (HKID bits must be 0): since a PAMT range is aligned on
4KB, bits 11:0 are always 0.
PAMT_4K_SIZE 56 Integer 8 Size of the PAMT_4K range associated with the above TDMR:
since a PAMT range is aligned on 4KB, bits 11:0 are always 0.
RESERVED_OFFSET[0] 64 Integer 8 e Offset of reserved range 0 within the TDMR: since a
reserved range is aligned on 4KB, bits 11:0 are always 0.
RESERVED_SIZE[O] 72 Integer 8 Size of reserved range 0 within the TDMR:

February 2023 . Page 167 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Name Offset Type Size Description
(Bytes) (Bytes)

e Asize of 0 indicates a null entry. All following reserved
range entries must also be null.

e Since areserved range is aligned on 4KB, bits 11:0 are

always 0.
RESERVED_OFFSET[N-1] | 64 + Integer 8 Offset of the last reserved range within the TDMR.
16*(N-1)
RESERVED_SIZE[N-1] 72 + Integer 8 Size of the last reserved range within the TDMR.
16*(N-1)

Notes:

e The number of reserved areas within a TDMR is enumerated by TDSYSINFO_STRUCT.MAX_RESREVED_PER_TDMR
(see 22.7.2).
5 e Within each TDMR entry, all reserved areas must be sorted from the lowest offset to the highest offset, and they
must not overlap with each other.
e Al TDMRs and PAMTs must be contained within CMRs.
e A PAMT area must not overlap with another PAMT area (associated with any TDMR), and it must not overlap with
non-reserved areas of any TDMR. PAMT areas may reside within reserved areas of TDMRs.

10 22.8. Metadata Access Types

Note: This section describes control structure field access types, as defined. Implementation may differ.

Metadata access is described in 19.4.

22.8.1. MD_FIELD_ID: Metadata Field Identifier

15 A metadata field identifier is used for accessing a single metadata element. Lists of metadata field identifiers for TD-
scope metadata and VCPU-scope metadata are provided in Ch. 23. To access a certain metadata element, a base
identifier is taken from those tables.

Field access codes are used with TDH.MNG.RD, TDH.MNG.WR, TDH.VP.RD, TDH.VP.WR, TDG.VM.RD and TDG.VM.WR
functions. They have the following general structure:

20 Table 22.21: Metadata Field Identifier Definition
Bits Name Description
63 NON_ARCH A value of 0 indicates that the field code and field definition will be maintained

throughout Intel TDX module updates.

A value of 1 indicates that the field code and field definition are non-architectural,
and their meaning may change with Intel TDX module version. This is normally used
for fields accessible only in debug mode.

62:56 | CLASS_CODE | Identifies the field class — see the following sections for details

55:32 | RESERVED Must be 0

31:.0 FIELD_CODE | Identifies the field — see the following sections for details

February 2023 . Page 168 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

The interface functions are designed to read and/or write up to eight bytes at a time. Thus, for those functions, fields
that are larger than eight bytes are divided into multiple elements, each with its own field code. For example, SHA384
fields such as MRCONFIGID, whose size is 48B, are divided into six 8B elements, with six sequential field codes.

22.8.2. TDR and TDCS Metadata Fields
Intel SDM, Vol. 3, 24.6.9 MSR-Bitmap Address

TD-scope field identifiers are used with TDH.MNG.RD, TDH.MNG.WR, TDG.VM.RD and TDG.VM.WR.
TD-scope CLASS_CODE is defined as follows:
Table 22.22: TD Scope (TDR and TDCS) Metadata CLASS_CODE Definition

CLASS_CODE | Control Structure | Class Name FIELD_CODE Meaning

0 TDR TD Management Arbitrary field identifiers

1 TDR Key Management Arbitrary field identifiers

16 TDCS TD Management Arbitrary field identifiers

17 TDCS Execution Controls Arbitrary field identifiers

18 TDCS TLB Epoch Tracking Arbitrary field identifiers

19 TDCS Measurement Arbitrary field identifiers

32 TDCS MSR Bitmaps Offset (in 8B units) from the beginning of the
architectural MSR bitmaps page structure, as specified
by the [Intel SDM, Vol. 3, 24.6.9]

33 TDCS Secure EPT Root Offset (in 8B units) from the beginning of the page

22.8.3. TDVPS Metadata Field Codes

Intel SDM, Vol. 1, 13.4 XSAVE Area

Intel SDM, Vol. 3, 24.11.2 VMREAD, VMWRITE, and Encodings of VMCS Fields

Intel SDM, Vol. 3, 29.1 Virtual APIC State

Intel SDM, Vol. 3, App. B Field Encoding in VMCS

TDVPS field access codes are used with TDH.VP.RD and TDH.VP.WR, as described in 24.2.43 and 24.2.44, respectively.
TDVPS CLASS_CODE is defined as follows:

Table 22.23: TD VCPU Scope (TDVPS) Metadata CLASS_CODE Definition

CLASS_CODE | Class Name FIELD_CODE Meaning

0 TD VMCS Architectural VMCS field code, as specified by [Intel SDM, Vol. 3, 24.11.2
and App. B]. The “HIGH” access type (for accessing the upper 32b of 64b
fields) is not supported.

1 VAPIC Offset (in 8B units) from the beginning of the architectural virtual APIC
page structure, as specified by the [Intel SDM, Vol. 3, 29.1]

2 VE_INFO Arbitrary field identifiers

16 Guest GPR State Architectural GPR number

17 Other Guest State Arbitrary field identifiers

18 Guest Extended State | Offset (in 8B units) from the beginning of the architectural XSAVE area

structure, as specified by the [Intel SDM, Vol. 1, 13.4] and enumerated by
CPUID(Ox0A)

19 Guest MSR State Architectural MSR index, packed as shown below:

Bits Description

February 2023 . Page 169 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US
CLASS_CODE | Class Name FIELD_CODE Meaning
31:14 | Reserved, must be 0
13 Bit 31 (equal to bit 30) of the architectural MSR index
12:0 | Bits 12:0 of the architectural MSR index
32 Management Arbitrary field identifiers

February 2023

Page 170 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

23.ABI Reference: Control Structures

This chapter describes the details of TDX control structures.
23.1. TD-Scope Control Structures

TD-scope control structures are described in 8.2.

5 23.1.1. How to Read the TDR and TDCS Tables
The VMM access column describes whether this field is accessible to the host VMM, using TDH.MNG.RD and TDDBGWRYV,
in production mode (ATTRIBUTES.DEBUG == 0) and debug mode (ATTRIBUTES.DEBUG == 1). Possible values are shown
in the table below.
Table 23.1: VMM Access Definition
VMM Access Meaning
None No host VMM access to the field.
RO Host VMM can only read the field using TDH.MNG.RD.
RW Host VMM can read and write the field using TDH.MNG.RD and TDH.MNG.WR.
10
23.1.2. TDR
Note: This section describes TDR, as defined. Implementation may differ.
TDR is the root control structure of a guest TD. TDR is encrypted using the Intel TDX global private HKID. It contains the
minimal set of fields that allow TD management operation when the guest TD’s private ephemeral HKID is not known yet
15 or when the TD’s key state is such that memory encrypted with the guest TD’s private ephemeral key is not accessible.
TDR occupies a single 4KB naturally aligned page of memory. It is the first TD page to be allocated and the last to be
removed.
TRD fields are divided into the following classes:
Table 23.2: TDR Field Classes Definition
Field Class Description
TD Management These fields are used to manage the TDR page, its descendent TD private memory
pages and control structure pages.
Key Management These fields are used by the Intel TDX module to manage memory encryption keys.
See Chapter 6 for details.
20
Note: The table below lists only TDR fields that may be accessed by the host VMM in either production or debug mode.
Table 23.3: TDR Definition
Class Field VMM Access Type Description Field Code
Prod. Debug
TD Management|INIT None RO Boolean Indicates that the TDCS has been 0x8000000000000000
initialized by TDH.MNG.INIT
TD Management |FATAL None RO Boolean Indicates a fatal error —e.g., #MC |0x8000000000000001
during TD operation.
TD Management|NUM_TDCX None RO Unsigned Integer [Number of TDCX pages that have 0x8000000000000002
been added by TDH.MNG.ADDCX
TD Management|TDCX_PA None RO Array of Physical |Physical addresses of the TDCX 0x8000000000000010
Address pages (without HKID bits)

February 2023 . Page 171 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Class Field VMM Access Type Description Field Code
Prod. Debug
TD Management|CHLDCNT None RO 64b Unsigned The number of 4KB child pages 0x8000000000000004
Integer (including opaque control structure

pages) associated with this TDR
TD Management|LIFECYCLE_STATE None RO LIFECYCLE_STATE|The life cycle state of this TD 0x8000000000000005
Key HKID None RO 16b Unsigned Private HKID 0x8100000000000001
Management Integer
Key PKG_CONFIG_ None RO Bitmap Bitmap that indicates on which 0x8100000000000002
Management BITMAP package TDH.MNG.KEY.CONFIG was

executed successfully using this

private key entry

23.1.3. TDCS

Note: This section describes TDCS, as defined. Implementation may differ.

TDCS complements TDR as the logical control structure of a guest TD. TDCS is encrypted with the guest TS’s ephemeral
5 private key. It controls the guest TD operation and holds the state that is global to all the TD’s VCPUs.

TDCS fields are divided into the following classes:

Table 23.4: TDCS Field Classes Definition

Field Class

Description

TD Management

These fields are used to manage the TDCS, its descendent TD private memory pages
and control structure pages.

TD Execution Control

Control the execution of the guest TD: some TD execution control fields are
provided as an input to TDH.MNG.INIT, and some of those are included in the
TDG.MR.REPORT.

TLB Epoch Tracking

Track the TLB epoch of the guest TD — see 11.7 for details

Measurement

TD measurement registers and associated fields — see Chapter 14 for details

MSR Bitmaps

MSR bitmaps that control VM exit from the guest TD on RDMSR/WRMSR are
common to all TD VCPUs and thus are stored as part of TDCS.

Secure EPT Root Page

The root page (PML5 or PML4) of the secure EPT

Note: The table below lists only TDCS fields that may be accessed by the host VMM in either production or debug

10 mode.
Table 23.5: TDCS Definition
Class Field VMM Access |Guest (Type Description Base Field ID
Access
Prod. [Debug
D FINALIZED RO RO None |[Boolean Flags that TD build and 0x9000000000000000
Management measurement has been finalized

February 2023

Page 172 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Class Field VMM Access |Guest Type Description Base Field ID
Access
Prod. |Debug

TD NUM_VCPUS RO RO RO 32b Unsigned |The number of VCPUs that are 0x9000000000000001
Management Integer either in TDX non-root mode

(TDVPS.STATE == VCPU_ACTIVE)

or are ready to run (TDVPS.STATE

== VCPU_READY):

this includes VCPUs that have

been successfully initialized (by

TDINITVP) and have not since

started teardown (due to a Triple

Fault)
TD NUM_ASSOC_VCPUS |RO RO None |[32b Unsigned |The number of VCPUS associated |0x9000000000000002
Management Integer with LPs —i.e., the LPs might hold

TLB translations and/or cached TD

VMCS
Execution ATTRIBUTES RO RO RO ATTRIBUTES TD attributes 0x1100000000000000
Controls
Execution XFAM RO RO RO XCRO Extended Features Available 0x1100000000000001
Controls Mask: indicates the extended

user and system features which

are available for the TD.

Copied to each TDVPS on

TDH.VP.INIT.
Execution MAX_VCPUS RO RO RO 32b Unsigned Maximum number of VCPUs 0x1100000000000002
Controls Integer
Execution GPAW RO RO RO Boolean This bit has the same meaning as |{0x1100000000000003
Controls the VMCS GPAW execution

control:

0: GPA.SHARED bit is GPA[47]

1: GPA.SHARED bit is GPA[51]
Execution EPTP RO RO None |EPTP TD-scope Secure EPT pointer: 0x1100000000000004
Controls format is the same as the VMCS

EPTP execution control; copied to

each TD VMCS EPTP on

TDH.VP.INIT
Execution TSC_OFFSET RO RO None |64b unsigned TD-scope TSC offset execution 0x110000000000000A
Controls Integer control: copied to each TD VMCS

TSC-offset execution control on

TDINITVP
Execution TSC_MULTIPLIER RO RO None |64b Unsigned |TD-scope TSC multiplier execution |0x1100000000000008B
Controls Integer control: copied to each TD VMCS

TSC-multiplier execution control

on TDH.VP.INIT
Execution TSC_FREQUENCY RO RO RO 16b Unsigned |Virtual TSC frequency — in units of |0x110000000000000C
Controls Integer 25MHz
Execution NOTIFY_ENABLES None |RW RW Bitmap Enable guest notification of 0x9100000000000010
Controls events:

bit 0: Notify when Zero Step

attack is suspected

bits 63:1: Reserved, must be 0
Execution CPUID_VALUES RO RO None |CPUID_RET Values returned by CPUID 0x9100000000000400
Controls leaves/sub-leaves

February 2023

Page 173 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Class Field VMM Access |Guest Type Description Base Field ID
Access
Prod. |Debug
Execution XBUFF_OFFSETS RO RO None [Unsigned XSAVE buffer components offsets |0x1100000000000800
Controls Integer — calculated by TDH.MNG.INIT
based on XFAM
TLB Epoch TD_EPOCH RO RO None |64b Integer The TD epoch counter: 0x9200000000000000
Tracking incremented by the host VMM
using the TDH.MEM.TRACK
function
TLB Epoch REFCOUNT RO RO None |16b Unsigned Each REFCOUNT counts the 0x9200000000000001
Tracking Integer number of LPs which may have
TLB entries created during a
specific TD_EPOCH and are
currently executing in TDX non-
root mode.
Measurement |MRTD RO RO RO SHA384 HASH [Measurement of the initial 0x1300000000000000
contents of the TD
Measurement |MRCONFIGID RO RO RO SHA384_HASH |[Software-defined ID for non- 0x1300000000000010
owner-defined configuration of
the guest TD — e.g., run-time or
OS configuration
Measurement |MROWNER RO RO RO SHA384_HASH |Software-defined ID for the guest [0x1300000000000018
TD’s owner
Measurement |MROWNERCONFIG RO RO RO SHA384_HASH |[Software-defined ID for owner- 0x1300000000000020
defined configuration of the guest
TD - e.g., specific to the workload
rather than the run-time or OS
Measurement |[RTMR None |RO RO Array of Array of NUM_RTMRS run-time [0x1300000000000040
SHA384_HASH |extendable measurement
registers
Measurement |MRTD_CONTEXT None |RO None |N/A Non-architectural context used 0x9300000000000080
during ongoing calculation of
MRTD until TDH.MR.FINELIZE
MSR Bitmaps |MSR_BITMAPS None |RO None |64b bitmap TD-scope RDMSR/WRMSR exit 0x2000000000000000
control bitmaps
Secure EPT SEPT_ROOT None |RO None |Secure EPT Secure EPT root page (PML5 or 0x2100000000000000
Root Entry PML4)
23.2. TDVPS: VCPU-Scope Control Structure
Note: This section describes TDVPS, as defined. Implementation may differ.

TDVPS is described in 8.3.1.

5 23.2.1. Overview

Logically, in the Intel TDX module’s linear address space, TDVPS is a single structure that holds the state and control
information for a single TD VCPU. The state is loaded to the LP on TD Entry and saved on TD exits.

Physically, TDVPS is composed of a root page (TDVPR) and multiple extension pages (TDVPX).

contiguous in physical memory.

The pages need not be

February 2023

Page 174 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

TDVPS fields are divided into the following classes:

Table 23.6: TDVPS Field Classes Definition

Field Class Description

VCPU Management These fields are used to manage the TDVPS and the TD VCPU.
TD VMCS The TD VCPU’s architectural VMCS

VAPIC The TD VCPU’s Virtual APIC page

VE_INFO Holds Virtualization Exception (#VE) information

Guest GPR State TD VCPU'’s general-purpose register state

Guest MSR State TD VCPU’s MSR state

Guest Extended State TD VCPU’s extended state

23.2.2. How to Read the TDVPS (including TD VMCS) Tables

5 23.2.2.1. VMM Access using TDH.VP.RD and TDH.VP.WR

Describes whether this field is accessible to the host VMM, using TDH.VP.RD and TDH.VP.WR, in production mode
(ATTRIBUTES.DEBUG == 0) and debug mode (ATTRIBUTES.DEBUG == 1). Possible values are shown in the table below.

Table 23.7: VMM Access Column Definition

VMM Access Meaning

None No host VMM access to the field

RO Host VMM can only read the field (using TDH.VP.RD)

RW Host VMM can read and write the field using TDH.VP.RD and TDH.VP.WR. TDH.VP.WR does
not impose any limitations except for checking that the value fits in the field size.

RWS Host VMM can read and write the field using TDH.VP.RD and TDH.VP.WR. Writing is subject to
the same limitations as if the field was modified by the guest TD (for guest state fields) and/or
other limitation as described per field.

10 23.2.2.2. Text Highlighting

In the TD VMCS tables, text is highlighted to emphasize how the VMCS field value is determined and whether it can be
modified during a TD VCPU life cycle, as shown in the table below.

Table 23.8: Text Highlighting in the TD VMCS Tables

Highlighting Meaning

Black Text Value is set by the Intel TDX module (based on a constant value) on TD VCPU
initialization (TDH.VP.INIT), and it does not change afterwards.

Purple Text On TD VCPU initialization (TDH.VP.INIT), value is computed by the Intel TDX module
(e.g., based on TD parameters), and it does not change afterwards.

Blue Text Value may be modified by the Intel TDX module during guest TD VCPU life cycle
(possibly only in debug mode).

Grey Background Reserved field: value is determined by the IA32_VMX_* MSRs

February 2023 Page 175 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

23.2.3. TDVPS (excluding TD VMCS)

Note:

Table 23.9: TDVPS Definition

The table below lists only TDVPS fields that may be accessed by the host VMM in either production or debug
mode.

Class

Field

VMM Access

Prod. |Debug

Type

Description

Base Field ID

Management

VCPU_STATE

None |RO

VCPU_STATE

The activity state of the VCPU.

0xA000000000000000

Management

LAUNCHED

None |RO

Boolean

A Boolean flag, indicating
whether the TD VCPU has been
VMLAUNCH’ed on this LP since
it has last been associated with
this VCPU.

If TRUE, VM entry should use
VMRESUME.

Else, VM entry should use
VMLAUNCH.

0xA000000000000001

Management

VCPU_INDEX

RO RO

32b Unsigned
Integer

Sequential index of the VCPU in
the parent TD. VCPU_INDEX
indicates the order of VCPU
initialization (by TDINITVP),
starting from 0, and is made
available to the TD via TDINFO.
VCPU_INDEX is in the range 0
to (TDCS.MAX_VCPUS - 1), up
to OXFFFE

0xA000000000000002

Management

NUM_TDVPX

RO RO

Unsigned
Integer

Sequential index of the VCPU in
the parent TD. VCPU_INDEX
indicates the order of VCPU
initialization (by TDINITVP),
starting from 0, and is made
available to the TD via TDINFO.
VCPU_INDEX is in the range O
to (TDCS.MAX_VCPUS - 1), up
to OXFFFE

0xA000000000000003

Management

TDVPS_PAGE_PA

RO RO

Array of PA

An array of TDVPS_PAGES

physical address pointers to the

TDVPS physical pages

e PAis without HKID bits

e Page 0 is the PA of the
TDVPR page

e Pages 1,2... are PAs of the
TDVPX pages

0xA000000000000010

Management

ASSOC_LPID

RO RO

Integer

The unique, hardware-derived
identifier of the logical
processor on which this VCPU is
currently associated (either by
TDENTER or by other VCPU-
specific SEAMCALL flow):

e Avalue of -1 indicates that
VCPU is not associated with
any LP.

e Initialized by TDH.VP.INIT to
the LP_ID on which it ran.

0xA000000000000004

February 2023

Page 176 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Class Field VMM Access Type Description Base Field ID
Prod. |Debug
Management ASSOC_HKID RO RO Integer The TD's ephemeral private 0xA000000000000005
HKID at the last time this VCPU
was associated (either by
TDENTER or by other VCPU-
specific SEAMCALL flow) with
an LP: initialized by
TDH.VP.INIT to the current TD
ephemeral private HKID
Management VCPU_EPOCH RO RO Integer The value of TDCS.TD_EPOCH at |0xA000000000000006
the time this VCPU entered TDX
non-root mode
Management CPUID_SUPERVISOR_VE RO RO Boolean When set, the Intel TDX module |0xA000000000000007
injects #VE on guest TD
execution of CPUID in CPL = 0.
Management CPUID_USER_VE RO RO Boolean When set, the Intel TDX module |0xA000000000000008
injects #VE on guest TD
execution of CPUID in CPL > 0.
Management IS_SHARED_EPTP_VALID RO RO Boolean Indicates that Shared EPTP is 0xA000000000000009
valid: set on successful
TDH.VP.WR to Shared EPTP
Management LAST_EXIT_TSC None |RO Unsigned 64b |Initialized to the value returned |0xAO0000000000000A
Integer rdtsc on TDH.VP.INIT
Management PEND_NMI RW RW Boolean When set, the Intel TDX module [0x200000000000000B
injects an NMI to the guest TD
at the next available
opportunity (NMI window open
after TDENTER). The module
then clears PEND_NIM.
Management XFAM RO RW Bitmap Copied from TDCS on 0x200000000000000C
TDH.VP.INIT.
On TDH.VP.WR, checked for
architectural and platform
compatibility
Management LAST_EPF_GPA_LIST_IDX None |[RO Unsigned Number of valid entries in 0xA00000000000000D
Integer LAST_EPF_GPA_LIST
Management POSSIBLY_EPF_STEPPING None |RO Unsigned Number of possibly-legal EPT |0xA0O0000000000000E
Integer Faults (EPFs) detected so far at
this TD vCPU instruction
Management LAST_EPF_GPA_LIST None |RO GPA Array of GPAs that caused EPF |0xA000000000000100
so far at this TD vCPU
instruction
VAPIC VAPIC None |RO Page Virtual APIC Page 0x0100000000000000
VE_INFO EXIT_REASON None |RO 0x0200000000000000
VE_INFO VALID None |[RO OxFFFFFFFF: valid 0x0200000000000001
0x00000000: not valid
VE_INFO EXIT_QUALIFICATION None |RO 0x0200000000000002
VE_INFO GLA None |RO 0x0200000000000003
VE_INFO GPA None |RO 0x0200000000000004
VE_INFO EPTP_INDEX None |RO 0x0200000000000005
VE_INFO INSTRUCTION_LENGTH None |RO 0x8200000000000010
VE_INFO INSTRUCTION_INFORMATION None |RO 0x8200000000000011

February 2023

Page 177 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Class Field VMM Access Type Description Base Field ID
Prod. |Debug
Guest GPR State |[RAX None |RW 0x1000000000000000
Guest GPR State [RCX None |RW Init value is provided as an 0x1000000000000001
input to TDH.VP.INIT (same
value as R8)
Guest GPR State |RDX None |RW Init Value: 0x1000000000000002
e Bits [31:00]: Same as RESET
value, matches
CPUID.1:EAX. CPU version
information includes Family,
Model and Stepping
e Bits [63:32]: Setto O
Guest GPR State |RBX None |RW Init Value: 0x1000000000000003
e Bits [05:00]: GPAW is the
effective GPA width (in bits)
for this TD (do not confuse
with MAXPA); SHARED bit is
at GPA bit GPAW-1; only
GPAW values 48 and 52 are
possible
e Bits [63:06]: Reserved for
future additional details, set
to 0, must be ignored by
vBIOS
Guest GPR State |RBP None |RW 0x1000000000000005
Guest GPR State |RSI None |RW Init Value: 0x1000000000000006
e Bits [31:00]: Virtual CPU
index, starting from 0 and
allocated sequentially on
each successful TDH.VP.INIT
* Bits [63:32]: Setto 0
Guest GPR State |RDI None |RW 0x1000000000000007
Guest GPR State |R8 None |RW Init value is provided as an 0x1000000000000008
input to TDH.VP.INIT (same
value as RCX)
Guest GPR State |R9 None |RW 0x1000000000000009
Guest GPR State [R10 None |RW 0x100000000000000A
Guest GPR State [R11 None |RW 0x100000000000000B
Guest GPR State [R12 None |RW 0x100000000000000C
Guest GPR State [R13 None |RW 0x100000000000000D
Guest GPR State |R14 None |RW 0x100000000000000E
Guest GPR State |R15 None |RW 0x100000000000000F
Guest State DRO None |RW 0x1100000000000000
Guest State DR1 None |RW 0x1100000000000001
Guest State DR2 None |RW 0x1100000000000002
Guest State DR3 None |RW 0x1100000000000003
Guest State DR6 None |RW 0x1100000000000006
Guest State XCRO None |RO 0x1100000000000020
Guest State CR2 None |RW 0x1100000000000028
Guest State IWK.ENCKEY None |RO Last KeyLocker IWK loaded 0x1100000000000040
February 2023 Page 178 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Class Field VMM Access Type Description Base Field ID
Prod. |Debug

Guest State IWK.INTKEY None |RO 0x1100000000000044
Guest State IWK.FLAGS None |RO 0x1100000000000046
Guest State VCPU_STATE_DETAILS RO RO Bit 0: VMXIP, indicates thata |0x9100000000000100

virtual interrupt is pending

delivery, i.e.

VMCS.RVI[7:4] >

TDVPS.VAPIC.VPPR[7:4]

Bits 63:1: Reserved, setto 0
Guest MSR State [IA32_SPEC_CTRL None |RW 0x1300000000000048
Guest MSR State [IA32_UMWAIT_CONTROL None |RW 0x13000000000000E1
Guest MSR State [IA32_PERFEVTSELx None |RW 0x1300000000000186
Guest MSR State [MSR_OFFCORE_RSPx None |RW 0x13000000000001A6
Guest MSR State [IA32_XFD None (RO 0x13000000000001C4
Guest MSR State [IA32_XFD_ERR None (RO 0x13000000000001C5
Guest MSR State [IA32_FIXED_CTRx None [RW 0x1300000000000309
Guest MSR State [IA32_PERF_METRICS None [RW 0x1300000000000329
Guest MSR State [IA32_FIXED_CTR_CTRL None |RW 0x130000000000038D
Guest MSR State [IA32_PERF_GLOBAL_STATUS None |RO 0x130000000000038E
Guest MSR State [IA32_PEBS_ENABLE None |RW 0x13000000000003F1
Guest MSR State [MSR_PEBS_DATA_CFG None [RW 0x13000000000003F2
Guest MSR State [MSR_PEBS_LD_LAT None [RW 0x13000000000003F6
Guest MSR State [MSR_PEBS_FRONTEND None [RW 0x13000000000003F7
Guest MSR State [IA32_A_PMCx None [RW 0x13000000000004C1
Guest MSR State [IA32_DS_AREA None |RW 0x1300000000000600
Guest MSR State [IA32_XSS None |RO 0x1300000000000DA0O
Guest MSR State [IA32_LBR_DEPTH None |RW 0x13000000000014CF
Guest MSR State [IA32_STAR None (RO 0x1300000000002081
Guest MSR State [IA32_LSTAR None (RO 0x1300000000002082
Guest MSR State [IA32_FMASK None (RO 0x1300000000002084
Guest MSR State [IA32_KERNEL_GS_BASE None (RO 0x1300000000002102
Guest MSR State [IA32_TSC_AUX None |RW 0x1300000000002103
Guest Ext. State |[XBUFF None |RW XSAVES 0x1200000000000000

buffer
23.2.4. TD VMCS
Intel SDM, 24 Virtual Machine Control Structures

Note:

This section describes TD VMCS usage, as defined. Implementation may differ.

5 TD VMCS is a VMX format VMCS (with TDX ISA extensions) that is stored as part of TDVPS.

February 2023

Page 179 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

23.2.4.1. TD VMCS Guest State Area

23.24.1.1.

Intel SDM, Vol. 3,9.1.1
Intel SDM, Vol. 3, 24.4.1

TD VMCS Guest Register State Area

Processor State after Reset
Guest Register State

5 Table 23.10: TD VMCS Guest Register State Area Fields
Field VMM Access |Init Value (after TDH.VP.INIT)
Prod. |Debug
Guest CRO None |[RWS |0x0021
o Bits PE (0) and NE (5) are set to 1.
o All other bits are cleared to 0.
The initial value is checked for compatibility with fixed-0 and fixed-1 bits according to
IA32_VMX_CRO_FIXED* MSRs, except for PG (bit 31) which is allowed to be 0 since the
guest TD runs as an unrestricted guest.
Guest CR3 None |RW 0
Guest CR4 None [RWS |0x2040
e Bits MCE (6) and VMXE (13) are set
tol
o All other bits are cleared to 0.
The initial value is checked for compatibility with fixed-0 and fixed-1 bits according to
IA32_VMX_CR4_FIXED* MSRs.
Guest DR7 None |RW 0x00000400
Guest RSP None |RW 0
Guest RIP None |RW OxFFFFFFFO
Guest RFLAGS None |RW 0x00000002
Guest ES selector None |RW 0
Guest CS selector None |RW 0
Guest SS selector None |RW 0
Guest DS selector None |RW 0
Guest FS selector None |RW 0
Guest GS selector None |RW 0
Guest LDTR selector None |RW 0
Guest TR selector None |RW 0
Guest ES base None |RW 0
Guest CS base None |RW 0
Guest SS base None |RW 0
Guest DS base None |RW 0
Guest FS base None |RW 0
Guest GS base None |RW 0
Guest LDTR base None |RW 0
Guest TR base None |RW 0
Guest GDTR base None |RW 0
Guest IDTR base None |RW 0
Guest ES limit None |RW OxFFFFFFFF
Guest CS limit None |RW OxFFFFFFFF
Guest SS limit None |RW OxFFFFFFFF
Guest DS limit None |RW OxFFFFFFFF
Guest FS limit None |RW OxFFFFFFFF
Guest GS limit None |RW OxFFFFFFFF
Guest LDTR limit None |RW Ox0000FFFF
Guest TR limit None |RW 0x0000FFFF
Guest GDTR limit None |RW 0x0000FFFF
Guest IDTR limit None |RW 0
Guest ES access rights None |RW 0x0000C093
(Data, RW, Accessed, DPL=0, Present, 32b, 4KB granularity)
Guest CS access rights None |RW 0x0000C09B
(Code, RX, Accessed, DPL=0, Present, 32b)
Guest SS access rights None |RW 0x0000C093
(Data, RW, Accessed, DPL=0, Present, 32b, 4KB granularity)
Guest DS access rights None |RW 0x0000C093

(Data, RW, Accessed, DPL=0, Present, 32b, 4KB granularity)

February 2023

Page 180 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Field

VMM Access |Init Value (after TDH.VP.INIT)
Prod. |Debug

Guest FS access rights

None |RW 0x0000C093

(Data, RW, Accessed, DPL=0, Present, 32b, 4KB granularity)

Guest GS access rights

None |RW 0x0000C093

(Data, RW, Accessed, DPL=0, Present, 32b, 4KB granularity)

Guest LDTR access rights

None |[RW 0x00010082
(LDT, Present, 32b, 1B granularity, Unusable)

Guest TR access rights

None |RW 0x0000008B
(32b TSS, Busy, Present, 32b, 1B granularity)

Guest SMBASE

None |[None |0

23.2.4.1.2. TD VMCS Guest MSRs

See also the MSR virtualization tables in 20.1.

Table 23.11: TD VMCS Guest MSRs

Field VMM Access |Init Value (after TDH.VP.INIT)
Prod. |Debug

1A32_DEBUGCTL None |RWS |0

I1A32_SYSENTER_CS None |RW 0

I1A32_SYSENTER_ESP None |RW 0

I1A32_SYSENTER_EIP None |RW 0

IA32_PERF_GLOBAL_CTRL

None |RW 0x000000FF

® EN_PMCx (bits 0 to (NUM_PMC - 1))
aresetto 1.

¢ All other bits are cleared to 0.

IA32_PAT

None |RW 0x0007040600070406

IA32_EFER

None |RW 0x901

o SCE (bit 0) is set to 1.

o LME (bit 8) is set to 1.

o NXE (bit 11) is set to 1.

¢ All other bits are cleared to 0.

GUEST_IA32_S_CET None [RW |0
GUEST_SSP None |RW |0
GUEST_IA32_INTERRUPT_SSP_TABLE_ADDR |None [RW |0
IA32_RTIT_CTL None [RW |0
1A32_LBR_CTL None |RW 0
1A32_BNDCFGS None |RO 0
1A32_GUEST_PKRS None |RW 0
5
23.2.4.1.3. TD VMCS Guest Non-Register State Area

Intel SDM, 24.4.2

Guest Non-Register State

Table 23.12: TD VMCS Guest Non-Register State Area Fields

Field Name VMM Access Description Initial
Prod. Debug State

Activity State None RO Saved/restored on VM exit/entry Active (0)

Interruptibility State | None RW Saved/restored on VM exit/entry 0

Pending Debug None RW Saved/restored on VM exit/entry 0

Exceptions

VMCS Link Pointer None None Saved/restored on VM exit/entry NULL_PA

(-1)
VMX-Preemption None RW N/A: VMX-preemption timer is not used by 0
Timer Value guest TDs.

February 2023

Page 181 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Field Name VMM Access Description Initial
State
Prod. Debug
PDPTEN None RW N/A: PAE paging is not used by TD guests. NULL_PA
(-1)
Guest Interrupt None RW Includes RVI (lower byte) and SVI (upper byte): | 0
Status saved/restored on VM exit/entry
PML Index None RW N/A: PML is not used by guest TDs. 0
Guest UINV None RW 0
23.2.4.2. TD VMCS Host State Area
Intel SDM, 24.5 Host-State Area
The host state area is not intended to be accessible outside the Intel TDX module.
5 23.2.4.3. TD VMCS VM-Execution Control Fields
Intel SDM, 24.6 VM-Execution Control Fields
23.2.4.3.1. TD VMCS Pin-Based VM-Execution Controls
Table 23.13: TD VMCS Pin-Based VM-Execution Controls
VMM Access
Bit Name Prod. | Debug | Description Init Value
0 | External-interrupt exiting None | RO The Intel TDX module performs TD Exit 1
1 | Reserved None | RO MSR
2 | Reserved None | RO MSR
3 | NMI exiting None | RO The Intel TDX module performs TD Exit 1
4 | Reserved None | RO MSR
5 | Virtual NMls None | RO 1
6 | Activate VMX-preemption timer None | RO 0
7 | Process posted interrupts RWS | RWS Set to 1 by TDH.VP.WR only if a valid posted interrupt 0
descriptor and a valid posted interrupt notification
vector are set.
8 | Reserved None | RO MSR
9 | Reserved None | RO MSR
10 | Reserved None | RO MSR
11 | Reserved None | RO MSR
12 | Reserved None | RO MSR
13 | Reserved None | RO MSR
14 | Reserved None | RO MSR
15 | Reserved None | RO MSR
16 | Reserved None | RO MSR
17 | Reserved None | RO MSR
18 | Reserved None | RO MSR
19 | Reserved None | RO MSR
20 | Reserved None | RO MSR
21 | Reserved None | RO MSR
22 | Reserved None | RO MSR
23 | Reserved None | RO MSR
24 | Reserved None | RO MSR
25 | Reserved None | RO MSR
26 | Reserved None | RO MSR
27 | Reserved None | RO MSR

February 2023

Page 182 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

VMM Access
Bit Name Prod. | Debug | Description Init Value
28 | Reserved None | RO MSR
29 | Reserved None | RO MSR
30 | Reserved None | RO MSR
31 | Reserved None | RO MSR

Reserved bits are set based on 1A32_VMX_TRUE_PINBASED_CTLS MSR.

23.2.4.3.2. TD VMCS Processor-Based VM-Execution Controls
Table 23.14: TD VMCS Primary Processor-Based VM-Execution Controls
VMM Access
Bit | Name Prod. | Debug | Description Init Value
0 | Reserved None RO MSR
1 | Reserved None RO MSR
2 | Interrupt-window exiting None RW 0
3 | Use TSC offsetting None RO 1
4 | Reserved None RO MSR
5 | Reserved None RO MSR
6 | Reserved None | RO MSR
7 | HLT exiting None | RO The Intel TDX module injects a 1
#VE into the guest TD
8 | Reserved None | RO MSR
9 | INVLPG exiting None RW 0
10 | MWAIT exiting None RO The Intel TDX module injects a 1
#VE into the guest TD
11 | RDPMC exiting None | RW ~TDCS.ATTRIBUTES.PERFMON
12 | RDTSC exiting None RW 0
13 | Reserved None RO MSR
14 | Reserved None RO MSR
15 | CR3-load exiting None RW 0
16 | CR3-store exiting None RW 0
17 | Activate tertiary controls None RO 1
18 | Reserved None RO MSR
19 | CR8-load exiting None RW 0
20 | CR8-store exiting None RW 0
21 | Use TPR shadow None RO 1
22 | NMI-window exiting None | RO Set by the Intel TDX module 0
before entering the guest TD —
based on TDVPS.PEND_NMI
23 | MOV-DR exiting None RW 0
24 | Unconditional I/O exiting None RW 1
25 | Use I/O bitmaps None | RO 0
26 | Reserved None RO MSR
27 | Monitor trap flag None RW 0
28 | Use MSR bitmaps None RO 1
29 | MONITOR exiting None RW 1
30 | PAUSE exiting None RW 0
31 | Activate secondary controls None RO 1

Reserved bits are set based on IA32_VMX_TRUE_PROCBASED_CTLS MSR.

Table 23.15: TD VMCS Secondary Processor-Based VM-Execution Controls

VMM Access
Bit | Name Prod. | Debug | Description Init Value
0 | Virtualize APIC accesses None | RO 0

February 2023

Page 183 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

VMM Access
Bit | Name Prod. | Debug | Description Init Value
1 | Enable EPT None | RO 1
2 | Descriptor-table exiting None | RW 0
3 | Enable RDTSCP None | RO 1
4 | Virtualize x2APIC mode None | RO 1
5 | Enable VPID None | RO 1
6 | WBINVD exiting None | RO 1
7 | Unrestricted guest None | RO 1
8 | APIC-register virtualization None | RO 1
9 | Virtual-interrupt delivery None | RO 1
10 | PAUSE-loop exiting None | RW 0
11 | RDRAND exiting None | RW 0
12 | Enable INVPCID None | RO 1
13 | Enable VM functions None | RO 1
14 | VMCS shadowing None | RO 0
15 | Enable ENCLS exiting None | RO 1
16 | RDSEED exiting None | RW 0
17 | Enable PML None | RWS If setto 1, PML address mustbea | O
valid shared physical address
18 | EPT-violation #VE None | RO 1
19 | Conceal VMX from PT None | RO 1
20 | Enable XSAVES/XRSTORS None | RW 1
21 | PASID translation None | RO 1
22 | Mode-based execute control None | RO 0
for EPT
23 | Enable SPP None | RO 0
24 | PT uses guest physical None | RO 1
addresses (PT2GPA)
25 | Use TSC scaling None | RO 1
26 | Enable user-level wait and None | RO Set to the value of virtualized
pause CPUID(0x7,0x0).ECX[5]
27 | Enable PCONFIG None | RO Set to the value of virtualized
CPUID(0x7,0x0).EDX[18]
28 | Enable ENCLV exiting None | RO 1
29 | Enable EPC Virtualization None | RO 0
Extensions
30 | Bus-lock detection RW RW If enabled by the host VMM 0
(using TDH.VP.WR), then the Intel
TDX module performs TD Exit on
VM exit.
31 | Notification exiting RW RW If enabled by the host VMM 0
(using TDH.VP.WR), then the Intel
TDX module performs TD Exit on
VM exit.

Table 23.16: TD VMCS Tertiary Processor-Based VM-Execution Controls

VMM Access
Bit Name Prod. | Debug | Description Init Value (after
TDH.VP.INIT)

0 | LOADIWKEY exiting None | RW 0
1 | Enable HLAT None | RO 0
2 | EPT paging-write control None | RO 0
3 | Guest paging verification None | RO 0
4 | IPI virtualization None | RO 0
5 | GPAW None | RO 0: GPA.SHARED bit is GPA[47] Copied from

1: GPA.SHARED bit is GPA[51] TDCS.GPAW

February 2023

Page 184 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US
VMM Access
Bit Name Prod. | Debug | Description Init Value (after
TDH.VP.INIT)
6 | Reserved None | RO MSR
7 | Reserved None | RO MSR
8 | Reserved None | RO MSR
9 | Reserved None | RO MSR
10 | Reserved None | RO MSR
11 | Reserved None | RO MSR
12 | Reserved None | RO MSR
13 | Reserved None | RO MSR
14 | Reserved None | RO MSR
15 | Reserved None | RO MSR
16 | Reserved None | RO MSR
17 | Reserved None | RO MSR
18 | Reserved None | RO MSR
19 | Reserved None | RO MSR
20 | Reserved None | RO MSR
21 | Reserved None | RO MSR
22 | Reserved None | RO MSR
23 | Reserved None | RO MSR
24 | Reserved None | RO MSR
25 | Reserved None | RO MSR
26 | Reserved None | RO MSR
27 | Reserved None | RO MSR
28 | Reserved None | RO MSR
29 | Reserved None | RO MSR
30 | Reserved None | RO MSR
31 | Reserved None | RO MSR
32 | Reserved None | RO MSR
33 | Reserved None | RO MSR
34 | Reserved None | RO MSR
35 | Reserved None | RO MSR
36 | Reserved None | RO MSR
37 | Reserved None | RO MSR
38 | Reserved None | RO MSR
39 | Reserved None | RO MSR
40 | Reserved None | RO MSR
41 | Reserved None | RO MSR
42 | Reserved None | RO MSR
43 | Reserved None | RO MSR
44 | Reserved None | RO MSR
45 | Reserved None | RO MSR
46 | Reserved None | RO MSR
47 | Reserved None | RO MSR
48 | Reserved None | RO MSR
49 | Reserved None | RO MSR
50 | Reserved None | RO MSR
51 | Reserved None | RO MSR
52 | Reserved None | RO MSR
53 | Reserved None | RO MSR
54 | Reserved None | RO MSR
55 | Reserved None | RO MSR
56 | Reserved None | RO MSR
57 | Reserved None | RO MSR
58 | Reserved None | RO MSR
59 | Reserved None | RO MSR

February 2023

Page 185 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US
VMM Access
Bit Name Prod. | Debug | Description Init Value (after
TDH.VP.INIT)
60 | Reserved None | RO MSR
61 | Reserved None | RO MSR
62 | Reserved None | RO MSR
63 | Reserved None | RO MSR
Reserved bits are set based on IA32_VMX_PROCBASED_CTLS3 MSR.
23.2.4.3.3. TD VMCS Controls for APIC Virtualization
Table 23.17: TD VMCS Controls for APIC Virtualization
Field Name VMM Access Description Initial Value
Prod. Debug
APIC-access address | None RO NULL_PA (-1)
Virtual-APIC address | None None On VCPU-to-LP association, set by the Intel TDX Address of the VAPIC
module to the address of the VAPIC page in page in TDVPS,
TDVPS, including the TD’s ephemeral HKID including the TD’s
ephemeral HKID
TPR threshold None RO 0
EOl-exit bitmap n None RO 0
Posted-interrupt RWS RWS TDH.VP.WR checks the value to be in the range 0 | OxFFFF
notification vector to 255.
See process posted interrupt pin-based
execution control.
Posted-interrupt RWS RWS TDH.VP.WR checks the value as follows: OxFFFFFFFFFFFFFFCO
descriptor address ¢ |t must be a valid shared physical address
(HKID bits encode a shared HKID).
¢ |t must be aligned on 64B.
See process posted interrupt pin-based
execution control.
23.2.4.3.4. EPTP and Shared EPTP
Table 23.18: EPTP (Copied from TDCS.EPTP on TDH.VP.INIT)
Bits Field Name VMM Access Description Initial Value
Prod. Debug
2:0 EPT Memory RO RO Set to WB 6
Type
5:3 EPT Level RO RO 1 less than the EPT page-walk length | Copied from TDCS.EPTP
6 Enable A/D Bits RO RO 0
7 Enable RO RO 0
supervisor
shadow stack
control
11:8 Reserved RO RO 0
51:12 | EPML5/4 PA RO RO
63:52 | Reserved RO RO 0
February 2023 Page 186 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Table 23.19: Shared EPTP

Bits Field Name VMM Access Description Initial Value
Prod. Debug
11:0 Reserved None RO 0
51:12 | EPML5/4 PA RWS RWS
63:52 | Reserved None RO 0
23.2.4.3.5. CR-Related TD VMCS VM-Execution Control Fields
5 Table 23.20: CR-Related VMCS VM-Execution Control Fields
Field Name VMM Access Description Initial Value

Prod. Debug

CRO Guest/Host None RW Bits 0, 5, 29 and 30 can't be written | The following bits are set to 1, indicating they

Mask even in debug mode are owned by the Intel TDX module:

« PE (0)

* NE (5)

o NW (29)

« CD (30)

* Any bit set to 1 in IA32_VMX_CRO_FIXEDO
(i.e., a bit whose value must be 1), except for
PG(31) which is set to 0, since the guest TD
runs as an unrestricted guest

« Any bit set to 0 in IA32_VMX_CRO_FIXED1
(i.e., a bit whose value must be 0)

¢ Bits known to the Intel TDX module as
reserved (bits 63-32, 28-19, 17 and 15-6)

All other bits are cleared to 0, indicating they

are owned by the guest TD.

CRO Read Shadow None RW Bits 0 and 5 can't be written even The following bits are set to 1:
in debug mode * PE (0)
¢ NE (5)

e Any bit set to 1 in IA32_VMX_CRO_FIXEDO
(i.e., a bit whose value must be 1)
All other bits are cleared to 0.

February 2023 . Page 187 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Field Name

VMM Access

Prod.

Debug

Description

Initial Value

CR4 Guest/Host
Mask

None

RW

Bits 6, 13 and 14 can't be written
even in debug mode

¢ Bits MCE (6), VMXE (13) and SMXE (14) are
set to 1, indicating they are owned
by the Intel TDX module.
¢ Bit PKE (22) is set to ~TDCS.XFAM[9] to
intercept writes to CR4 If PK is not enabled.
o If TDCS.XFAM([12:11] is 11, then bit CET (23)
is cleared to 0. Otherwise (CET is not
enabled), bit CET (23) is set to 1 to
intercept writes to CR4.
Bit UINTR (25) is set ~TDCS.XFAM[14] to

intercept writes to CR4 if ULl is not enabled.

Bit KL (19) is set to ~TDCS.ATTRIBUTES.KL to
intercept writes to CR4 if KeyLocker is not
enabled.

¢ Bit PKS (24) is set to ~TDCS.ATTRIBUTES.PKS
to intercept writes to CR4 if PKS is not
enabled.

Any bit set to 1 in IA32_VMX_CR4_FIXEDO

(i.e., a bit whose value must be 1) is set to 1.

Any bit set to 0 in IA32_VMX_CR4_FIXED1

(i.e., a bit whose value must be 0) is set to 1.

* Bits known to the Intel TDX module as
reserved (bits 63-26 and bit 15) are set to 1.
All other bits are cleared to 0.

CR4 Read Shadow

None

RW

Bit 6 can't be written even in debug
mode

Bit MCE (6) is set to 1.

* Bit VMXE (13) is cleared to 0.

Any other bit whose value is set to 1 in
IA32_VMX_CR4_FIXEDO (i.e., a bit
whose value must be 1) is set to 1.

¢ All other bits are cleared to 0.

CR3-Target Values

None

RW

N/A: The Intel TDX module does
not control guest CR3

N/A

CR3-Target Count

None

RW

Set to 0: Intel TDX module does
not control guest CR3

23.2.4.3.6. Other TD VMCS VM-Execution Control Fields
Table 23.21: Other TD VMCS VM-Execution Control Fields
Field Name VMM Access Description Initial Value
Prod. | Debug

Exception Bitmap | None | RW * Bit 18 (MCE) is set to 1, even in 0x00040000

debug mode.

e Other bits are cleared to 0. They may be

modified in debug mode.
Page-fault error- None RW 0
code mask
Page-fault error- None RW 0
code match
I/O-Bitmap None | RO Set to NULL_PA (-1): I/O bitmaps execution | NULL_PA (-1)
Address n control is setto 0

February 2023

Page 188 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Field Name VMM Access Description Initial Value
Prod. | Debug
Time-Stamp RO RW Copied from TDCS.TSC_OFFSET
Counter Offset
Time-Stamp RO RW Copied from
Counter TDCS.TSC_MULTIPLIER
Multiplier
MSR-Bitmap RO RO
Address
Executive-VMCS None | None N/A NULL_PA (-1)
Pointer
TD HKID RO RO
VPID None | RO 1 + the sequential initialization index of the | Set to 1 + the sequential index
VCPU (TDVPS.VCPU_INDEX + 1) of the VCPU
(TDVPS.VCPU_INDEX + 1)
PLE_GAP RO RW 0
PLE_Window RO RW 0
VM-Function RO RO The Intel TDX module injects a #UD into the | O
Controls TD.
EPTP-list address RO RO VMFUNC is not supported. NULL_PA (-1)
VMREAD-bitmap None | RO VMCS shadowing is not supported. NULL_PA (-1)
address
VMWRITE-bitmap | None | RO VMCS shadowing is not supported. NULL_PA (-1)
address
ENCLS-Exiting None RO Set to all 1’s — the Intel TDX module injects | All 1s
Bitmap a #UD into the guest TD.
ENCLV-Exiting None RO Set to all 1’s — the Intel TDX module injects | All 1s
Bitmap a #UD into the guest TD.
PML address RO RWS TDH.VP.WR checks the value as follows: OxFFFFFFFFFFFFFOO0
¢ [t must be a valid shared physical address
(HKID bits encode a shared HKID).
¢ |t must be aligned on 4KB.
See enable PML execution control.
Virtualization- None RO
exception
information
address
EPTP index None | RO 0
XSS-Exiting None RW 0
Bitmap
low PASID None RO
directory address
high PASID None RO
directory address
notify window RW RW 0
PCONFIG-Exiting None RO -1
Bitmap

February 2023

Page 189 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

23.24.4. TD VMCS VM-Exit Control Fields
Intel SDM, 24.7 VM-Exit Control Fields
Table 23.22: TD VMCS VM-Exit Controls
VMM Access
Name Prod. | Debug | Description Init Value
Reserved None | RO MSR
Reserved None | RO MSR
Save debug controls None | RO 1
Reserved None | RO MSR
Reserved None | RO MSR
Reserved None | RO MSR
Reserved None | RO MSR
Reserved None | RO MSR
Reserved None | RO MSR
Host address-space size None | RO 1
Reserved None | RO MSR
Reserved None | RO MSR
Load IA32_PERF_GLOBAL_CTRL None | RO Set to 1 if TDCS.ATTRIBUTES.PERFMON =
1 or ATTRIBUTES.DEBUG =1
Reserved None | RO MSR
Reserved None | RO MSR
Acknowledge interrupt on exit None | RO 1
Reserved None | RO MSR
Reserved None | RO MSR
Save IA32_PAT None | RO 1
Load IA32_PAT None | RO 1
Save IA32_EFER None | RO 1
Load IA32_EFER None | RO 1
Save VMX-preemption time value None | RO Set to 1 if TDCS.ATTRIBUTES.DEBUG =1
Clear IA32_BNDCFGS None | RO Deprecated 0
Conceal VMX from PT None | RO 1
Clear IA32_RTIT_CTL None | RO 1
Clear IA32_LBR_CTL None | RO 1
Clear UINV None | RO 1
Load host CET state None | RO 1
Load host PKRS None | RO 0
Save IA32_PERF_GLOBAL_CTRL None | RO Set to 1 if TDCS.ATTRIBUTES.PERFMON =
1 or ATTRIBUTES.DEBUG =1
Reserved None | RO MSR

5

Reserved bits are set based on 1A32_VMX_TRUE_EXIT_CTLS MSR.

Table 23.23: TD VMCS VM-Exit Controls for MSRs

Field Name VMM Access Description Initial Value
Prod. Debug

VM-exit MSR-store count None RO Not used 0

VM-exit MSR-store address None RO Not used NULL_PA (-1)

VM-exit MSR-load count None RW Not used 0

VM-exit MSR-load address None RO Not used NULL_PA (-1)

February 2023

Page 190 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

23.2.4.5. TD VMCS VM-Entry Control Fields

Intel SDM, 24.8 VM-Entry Control Fields
Table 23.24: TD VMCS VM-Entry Controls
VMM Access
Bit | Name Prod. | Debug | Description Init Value (after TDH.VP.INIT)
0 | Reserved None | RO MSR
1 | Reserved None | RO MSR
2 | Load debug controls None | RO 1
3 | Reserved None | RO MSR
4 | Reserved None | RO MSR
5 | Reserved None | RO MSR
6 | Reserved None | RO MSR
7 | Reserved None | RO MSR
8 | Reserved None | RO MSR
9 | IA-32e mode guest None | RO Written by the CPUon VM exit | O
10 | Entry to SMM None | RO 0
11 | Deactivate dual-monitor None | RO 0
treatment
12 | Reserved None | RO MSR
13 | Load None | RO Set to 1 if TDCS.ATTRIBUTES.PERFMON =1
IA32_PERF_GLOBAL_CTRL or ATTRIBUTES.DEBUG =1
14 | Load IA32_PAT None | RO 1
15 | Load IA32_EFER None | RO 1
16 | Load IA32_BNDCFGS None | RO 0
17 | Conceal VMX from PT None | RO 1
18 | Load IA32_RTIT_CTL None | RO 1
19 | Load UINV None | RO 1
20 | Load CET state None | RO 1
21 | Load IA32_LBR_CTL None | RO 1
22 | Load guest PKRS None | RO Set to 1 if TDCS.ATTRIBUTES.PKRS =1 or
TDCS.ATTRIBUTES.DEBUG =1
23 | Reserved None | RO MSR
24 | Reserved None | RO MSR
25 | Reserved None | RO MSR
26 | Reserved None | RO MSR
27 | Reserved None | RO MSR
28 | Reserved None | RO MSR
29 | Reserved None | RO MSR
30 | Reserved None | RO MSR
31 | Reserved None | RO MSR
5 Reserved bits are set based on IA32_VMX_ENTRY_CTLS MSR.
Table 23.25: TD VMCS VM-Entry Controls for MSRs
Field Name VMM Access Description Initial Value
Prod. Debug
VM-entry MSR-load count None RO Not used 0
VM-entry MSR-load address None RO Not used NULL_PA (-1)

February 2023

Page 191 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Table 23.26: TD VMCS VM-Entry Controls for Event Injection

Field Name VMM Access Description Initial Value
Prod. | Debug
VM-entry interruption information None | RO
VM-entry exception error code None | RO
VM-entry instruction length None | RO
23.2.4.6. TD VMCS VM-Exit Information Fields
Intel SDM, 24.9 VM-Exit Information Fields
5 Table 23.27: TD VMCS Basic VM-Exit Information
Field Name VMM Access Description Initial Value
Prod. Debug
Exit reason None RO If the Intel TDX module decides to perform a TD exit, it N/A
returns this in RAX bits 31:0.
Bit 27 (enclave mode) is not set.
Bit 28 (Pending MTF VM exit) is not set.
Bit 29 (VM exit from VMX root operation) is not set.
Bit 31 (VM-entry failure) is not set.
Exit qualification None RO If the Intel TDX module decides to perform a TD exit, it N/A
returns this in RCX. If the exit is due to EPT violation,
bits 12-7 of the exit qualification are cleared to 0.
Guest-Linear None RO N/A
Address
Guest-physical None RO If the Intel TDX module decides to perform a TD exit, it N/A
Address returns this in R8. It the EPT fault was caused by an
access attempt to a private page, the Intel TDX module
clears bits 11:0 to 0.
Table 23.28: TD VMCS Information for VM Exits Due to Vectored Events
Field Name VMM Access Description Initial Value
Prod. Debug
VM-exit interruption | None RO On asynchronous TD exit, the Intel TDX module returns N/A
information this in R9. Bits 63:32 are cleared to 0.
VM-exit interruption | None RO N/A
error code
Table 23.29: TD VMCS Information for VM Exits That Occur During Event Delivery
Field Name VMM Access Description Initial Value
Prod. Debug
IDT-vectoring None RO
information
IDT-vectoring error None RO
code

10

February 2023

Page 192 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Table 23.30: TD VMCS Information for VM Exits Due to Instruction Execution

Field Name VMM Access Description Initial Value
Prod. Debug

VM-exit instruction None RO

length

VM-exit instruction None RO

information

I/0O RCX None RO N/A

1/O RSI None RO N/A

1/0 RDI None RO N/A

I/O RIP None RO N/A

Table 23.31: TD VMCS VM-Instruction Error Field

Field Name VMM Access Description Initial Value

Prod. Debug

VM-instruction None | RO N/A
error

February 2023 . Page 193 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.ABI Reference: Interface Functions

24.1. How to Read the Interface Function Definitions

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

A table of operands is provided for any function that has explicit and/or implicit memory operands or implicit resources.
Table 24.1 below describes how to read it. Most of the background is detailed in Chapter 19.

Table 24.1: How to Read the Operands Information Tables

Explicit/ | Reg. Addr. Resource Resource | Access Access Alignment Concurrency Restrictions
Implicit Type Type Semantics | Check
Resource | Contain. | Contain.
2MB 1GB
The Register HPA or Resource Data type Type of Shared, Required Concurrency restrictions are
operand used as GPA, (memory of the memory Private, alignment described in 19.1.
maylb'e a . see F)r CPU resour.ce, or Opaque or | ofthe For explicit memory accesses using
specified pointer 19.2 internal) as defined | resource Hidden, operand HPA there are additional
explicitly to the for this in Chapter | access: see 19.2 concurrency restrictions on the
or may be | operand operand 22 or R, RW, or 1GB and 2MB blocks that contain
|mp|1|;|té 0 g;\apter T;f’zo see the accessed HPA. For other types
see 1. ’ of accesses, only the operand
concurrency is applicable.
Shared(i) and Exclusive(i) indicate
that the resource is implicitly
restricted.
24.2. Host-Side (SEAMCALL) Interface Functions
10 The SEAMCALL instruction enters the Intel TDX module. It is designed to call host-side Intel TDX functions, either local or

15

a TD entry to a guest TD, as selected by RAX.

24.2.1. SEAMCALL Instruction (Common)

This section describes the common functionality of SEAMCALL. Leaf functions are described in the following sections.

Table 24.2: SEAMCALL Input Operands Definition

Parameter | Description
RAX Leaf number: see Table 24.4 below.
Other See individual SEAMCALL leaf functions.
Table 24.3: SEAMCALL Output Operands Definition
Parameter Description
RAX Instruction return code, indicating the outcome of execution of the instruction. See 19.3.2 for
details.
Other See individual SEAMCALL leaf functions.

February 2023

Page 194 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Table 24.4: SEAMCALL Instruction Leaf Numbers Definition

Leaf Number Interface Function Name
0 TDH.VP.ENTER

1 TDH.MNG.ADDCX

2 TDH.MEM.PAGE.ADD

3 TDH.MEM.SEPT.ADD

4 TDH.VP.ADDCX

5

6 TDH.MEM.PAGE.AUG

7 TDH.MEM.RANGE.BLOCK
8 TDH.MNG.KEY.CONFIG

9 TDH.MNG.CREATE

10 TDH.VP.CREATE

11 TDH.MNG.RD

12 TDH.MEM.RD

13 TDH.MNG.WR

14 TDH.MEM.WR

15 TDH.MEM.PAGE.DEMOTE
16 TDH.MR.EXTEND

17 TDH.MR.FINALIZE

18 TDH.VP.FLUSH

19 TDH.MNG.VPFLUSHDONE
20 TDH.MNG.KEY.FREEID

21 TDH.MNG.INIT

22 TDH.VP.INIT

23 TDH.MEM.PAGE.PROMOTE
24 TDH.PHYMEM.PAGE.RDMD
25 TDH.MEM.SEPT.RD

26 TDH.VP.RD

27 TDH.MNG.KEY.RECLAIMID
28 TDH.PHYMEM.PAGE.RECLAIM
29 TDH.MEM.PAGE.REMOVE
30 TDH.MEM.SEPT.REMOVE
31 TDH.SYS.KEY.CONFIG

32 TDH.SYS.INFO

33 TDH.SYS.INIT

35 TDH.SYS.LP.INIT

36 TDH.SYS.TDMR.INIT

38 TDH.MEM.TRACK

February 2023

Page 195 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Instruction Description

Leaf Number Interface Function Name

39 TDH.MEM.RANGE.UNBLOCK
40 TDH.PHYMEM.CACHE.WB

41 TDH.PHYMEM.PAGE.WBINVD
42 Reserved

43 TDH.VP.WR

44 TDH.SYS.LP.SHUTDOWN

45 TDH.SYS.CONFIG

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

On entry, the Intel TDX module

performs the checks listed below at a high level. Errors cause a SEAMRET with RAX set

to the proper completion status code.

1. The leaf numberin RAX is supported by the Intel TDX module.

2. If the Intel TDX module’s state is not SYS_READY (see 6.1.2), only TDH.SYS.INFO, TDH.SYS.INIT, TDH.SYS.LP.INIT,
TDH.SYS.CONFIG, TDH.SYS.KEY.CONFIG and TDH.SYS.SHUTDOWN leaf functions are allowed. Those leaf functions
then perform other initialization state checks.

If all checks pass, the Intel TDX

module calls the leaf function according to the leaf number in RAX. See the following

sections for individual leaf function details.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.5:

SEAMCALL Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_SUCCESS

SEAMCALL is successful.

TDX_SYS_SHUTDOWN

Other

See individual leaf functions.

February 2023

Page 196 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.2. TDH.MEM.PAGE.ADD Leaf

Add a 4KB private page to a TD, mapped to the specified GPA, filled with the given page image and encrypted using the
TD ephemeral key, and update the TD measurement with the page properties.

Table 24.6: TDH.MEM.PAGE.ADD Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number — see 24.2.1
RCX EPT mapping information:
Bits Name Description
2:0 Level Level of the EPT entry that will map the new page —see 22.4.1: must be 0
11:3 Reserved Reserved: must be 0
51:12 | GPA Bits 51:12 of the guest physical address to be mapped for the new Secure
EPT page
63:52 | Reserved Reserved: must be 0
RDX Host physical address of the parent TDR page (HKID bits must be 0)
R8 Host physical address of the target page to be added to the TD (HKID bits must be 0)
R9 Host physical address (including HKID bits) of the source page image

Table 24.7: TDH.MEM.PAGE.ADD Output Operands Definition

Operand Description
RAX SEAMCALL instruction return code — see 24.2.1
RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected —
see 22.4.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected — see
22.4.2

In other cases, RDX returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.PAGE.ADD adds a 4KB private page to a TD and maps it to the provided GPA. It copies the provided source
page image to specified physical page using the TD’s ephemeral private key and updates the TD measurement with the
page properties. TDH.MEM.PAGE.ADD is used during TD build before the TD is initialized.

February 2023 . Page 197 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

In-Place Add: It is allowed to set the TD page HPA in R8 to the same address as the source page HPA in R9. In this
case the source page is converted to be a TD private page.

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.

5 Table 24.8: TDH.MEM.PAGE.ADD Memory Operands Information Definition
Explicit/ | Reg. | Addr. | Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand Contain. | Contain.
2MB 1GB
Explicit RCX GPA TD private page | Blob RW Private 4KB N/A N/A N/A
(GPA)®
Explicit RDX HPA TDR page Blob RW Opaque 4KB Exclusive Shared Shared
Explicit R8 HPA TD private page | Blob RW Private 4KB Exclusive Shared Shared
(HPA)®
Explicit R9 HPA Source page Blob R Shared 4KB None None None
Implicit N/A N/A TDCS structure | TDCS RW Opaque N/A Exclusive(i) | N/A N/A
Implicit N/A GPA Secure EPT tree | N/A RW Private N/A Exclusive N/A N/A
TDH.MEM.PAGE.ADD checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.
The function checks the following conditions:
10 1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. TheTDis notin a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS must have been initialized (TDR.INIT is TRUE).
5. The TD build and measurement must not have been finalized (by TDH.MR.FINALIZE).
15 6. The target page metadata in PAMT must be correct (PT must be PT_NDA).
If successful, the function does the following:
7. Walk the Secure EPT based on the GPA operand, and find the leaf EPT entry for the 4KB page.
If the Secure EPT entry is marked as SEPT_FREE, the function does the following:
8. Copy the source image to the target TD page using the TD’s ephemeral private HKID, and direct write (MOVDIR64B).
20 9. Update the parent Secure EPT entry with the target page HPA and SEPT_PRESENT state.
10. Extend TDCS.MRTD with the target page GPA. Extension is done using SHA384 with a 128B extension buffer
composed as follows:
o Bytes 0 through 11 contain the ASCII string “MEM.PAGE.ADD”.
o Bytes 16 through 23 contain the GPA (in little-endian format).
25 o All the other bytes contain 0.

11. Increment TDR.CHLDCNT.
12. Update the PAMT entry with the PT_REG page type and the TDR physical address as the OWNER.

8 RCX and R8 denote the same TD private page operand, using HPA and GPA respectively

February 2023 . Page 198 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.9: TDH.MEM.PAGE.ADD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_NOT_FREE

TDX_EPT_WALK_FAILED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.PAGE.ADD is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_FINALIZED

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

February 2023 . Page 199 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.3. TDH.MEM.PAGE.AUG Leaf

Dynamically add a 4KB or a 2MB private page to an initialized TD, mapped to the specified GPAs.
Table 24.10: TDH.MEM.PAGE.AUG Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number — see 24.2.1
RCX EPT mapping information:
Bits Name Description
2:0 Level Level of the EPT entry that will map the new page — see 22.4.1: must be 0
(4KB) or 1 (2MB)
11:3 Reserved Reserved: must be 0
51:12 | GPA Bits 51:12 of the guest physical address to be mapped for the new Secure
EPT page
63:52 | Reserved Reserved: must be 0
RDX Host physical address of the parent TDR page (HKID bits must be 0)
R8 Host physical address of the target page to be added to the TD (HKID bits must be 0)

Table 24.11: TDH.MEM.PAGE.AUG Output Operands Definition

Operand Description
RAX SEAMCALL instruction return code — see 24.2.1
RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected —
see 22.4.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected — see
22.4.2

In other cases, RDX returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.PAGE.AUG adds a 4KB or a 2MB private page to a TD and maps it to the provided GPA. The new page is
mapped in a pending state and can be accessed only by the guest TD after it accepts it using
TDCALL(TDG.MEM.PAGE.ACCEPT). TDH.MEM.PAGE.AUG does not initialize the new page and does not update the TD
measurement.

February 2023 . Page 200 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.

Table 24.12: TDH.MEM.PAGE.AUG Memory Operands Information Definition

Explicit/ | Register | Addr. Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB

Explicit | RCX GPA TD private Blob None | Private 212+9%Level | N/A N/A N/A
page (GPA)® Bytes

Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared

Explicit | R8 HPA TD private Blob None Private 212+9%Level | Exclusive | Shared® | Shared
page (HPA)® Bytes

Implicit | N/A N/A TDCS TDCS RW Opaque N/A Shared(i) | N/A N/A
structure

Implicit | N/A GPA Secure EPT N/A RW Private N/A Exclusive | N/A N/A
tree

10

15

20

TDH.MEM.PAGE.AUG checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).

2. TheTDis notin a FATAL state (TDR.FATAL is FALSE).

3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).

4. TDCS must have been initialized (TDR.INIT is TRUE).

5. The target page metadata in PAMT must be correct (PT must be PT_NDA for the entire 4KB or 2MB range).
If successful, the function does the following:

6. Walk the Secure EPT based on the GPA operand, and find the leaf EPT entry for the 4KB or 2MB page.
If the Secure EPT entry is marked as SEPT_FREE, the function does the following:

7. Update the parent Secure EPT entry with the target page HPA and SEPT_PENDING state.
8. Atomically increment TDR.CHLDCNT by 1 (for a 4KB page) or by 512 (for a 2MB page).
9. Update the PAMT entry with the PT_REG page type and the TDR physical address as the OWNER.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.13: TDH.MEM.PAGE.AUG Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_NOT_FREE

TDX_EPT_WALK_FAILED

TDX_OPERAND_ADDR_RANGE_ERROR

9 RCX and R8 denote the same TD private page operand, using HPA and GPA respectively

10 Applicable for 4KB pages only

February 2023 . Page 201 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Code

Description

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDH.MEM.PAGE.AUG is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_FINALIZED

TDX_TD_NOT_INITIALIZED

February 2023

Page 202 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.4. TDH.MEM.PAGE.DEMOTE Leaf

Split a large private TD page (2MB or 1GB) into 512 small pages (4KB or 2MB, respectively).

Table 24.14: TDH.MEM.PAGE.DEMOTE Input Operands Definition

Operand

Description

RAX

SEAMCALL instruction leaf number — see 24.2.1

RCX

EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry that maps the large page to be split: either 1
(2MB) or 2 (1GB) —see 22.4.1

11:3 Reserved Reserved: must be 0

51:12 | GPA Bits 51:12 of the guest physical address of the large page to be split
Depending on the level, the following least significant bits must be 0:
Level 1 (2MB): Bits 20:12

Level 2 (1GB): Bits 29:12

63:52 | Reserved Reserved: must be 0

RDX

Host physical address of the parent TDR page (HKID bits must be 0)

R8

Host physical address of the new Secure EPT page to be added to the TD (HKID bits must be 0)

Table 24.15: TDH.MEM.PAGE.DEMOTE Output Operands Definition

Operand

Description

RAX

SEAMCALL instruction return code — see 24.2.1

RCX

Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected —
see 22.4.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX

Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected — see
22.4.2

In other cases, RDX returns 0.

Other

Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

TDH.MEM.PAGE.DEMOTE splits a large TD private page (2MB or 1GB) into 512 small pages (4KB or 2MB, respectively)
and adds a new Secure EPT page to map those small pages.

February 2023

Page 203 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface

functions.
Table 24.16: TDH.MEM.PAGE.DEMOTE Memory Operands Information Definition
Explicit/ | Reg. | Addr. | Resource Name | Resource Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit | RCX | GPA TD private page | Blob None | Private 212+9%level | Exclysive | None None
and to split bytes
Level
Explicit RDX | HPA TDR page TDR RW Opaque 4KB Shared Shared Shared
Explicit R8 HPA New Secure SEPT_PAGE | RW Private 4KB Exclusive | Shared Shared
EPT page
Implicit | N/A | N/A TDCS structure | TDCS RW Opaque N/A Shared(i) | N/A N/A
Implicit | N/A | GPA Secure EPT N/A RW Private N/A Exclusive | N/A N/A
Tree

10

15

20

25

30

TDH.MEM.PAGE.DEMOTE checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

ukhwNe

o =

8.

The TDR page metadata in PAMT must be correct (PT must be PT_TDR).

The TD is not in a FATAL state (TDR.FATAL is FALSE).

The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
TDCS must have been initialized (TDR.INIT is TRUE).

The specified page level is either 1 (2MB) or 2 (1GB). See 22.4.1 for a definition of EPT level.

successful, the function does the following:

Walk the Secure EPT based on the GPA operand and locate the large TD private page to be demoted.

Check the page is blocked (its parent Secure EPT entry is a leaf entry, and its state is either SEPT_BLOCKED or
SEPT_PENDING_BLOCKED).

Check that TLB tracking has been done, based on the large TD private page’s PAMT.BEPOCH.

If successful, the function does the following:

9. Split the large TD private page PAMT entry into 512 PAMT entries at the lower level:
9.1. Set the parent PAMT_2M or PAMT_1G entry state to PT_NDA.
9.2. Set the 512 child PAMT4K or PAMT_2M entries respectively to PT_REG.

10. Initialize the new Secure EPT page’s 512 entries to SEPT_PRESENT state pointing to the 512 consecutive small pages
above. Use the TD’s ephemeral private HKID and direct write (MOVDIR64B).

11. Atomically set the demoted Secure EPT entry to SEPT_PRESENT (if it was SEPT_BLOCKED) or SEPT_PENDING (if it was
SEPT_PENDING_BLOCKED) non-leaf entry pointing to the new Secure EPT page.

12. Atomically increment TDR.CHLDCNT by 1.
12.1. Note that CHLDCNT counts the number of 4KB pages. The change is due only to the addition of the new Secure

EPT page.

13. Update the PAMT entry of the new Secure-EPT page with the PT_EPT page type and the TDR physical address as the
OWNER.

February 2023 Page 204 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of

completion status code, see 21.1.

Table 24.17: TDH.MEM.PAGE.DEMOTE Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_EPT_ENTRY_NOT_LEAF

TDX_EPT_WALK_FAILED

TDX_GPA_RANGE_NOT_BLOCKED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDH.MEM.PAGE.DEMOTE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

TDX_TLB_TRACKING_NOT_DONE

February 2023

Page 205 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.5. TDH.MEM.PAGE.PROMOTE Leaf

Merge 512 consecutive small private TD pages (4KB or 2MB) into one large page (2MB or 1GB, respectively).

Table 24.18: TDH.MEM.PAGE.PROMOTE Input Operands Definition

Operand

Description

RAX

SEAMCALL instruction leaf number — see 24.2.1

RCX

EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry that will map the merged large page: either
1(2MB) or 2 (1GB) (see 22.4.1)

11:3 Reserved Reserved: must be 0

51:12 | GPA Bits 51:12 of the guest physical address of the merged large page
Depending on the level, the following least significant bits must be 0:
Level 1 (2MB): Bits 20:12

Level 2 (1GB): Bits 29:12

63:52 | Reserved Reserved: must be 0

RDX

Host physical address of the parent TDR page (HKID bits must be 0)

Table 24.19: TDH.MEM.PAGE.PROMOTE Output Operands Definition

Operand

Description

RAX

SEAMCALL instruction return code — see 24.2.1

RCX

If TDH.MEM.PAGE.PROMOTE succeeded, RCX returns the HPA of the removed SEPT page.
Else, in RCX returns extended error information part 1.

In case of EPT walk error, Secure EPT entry architectural content where the error was detected —
see 22.4.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns O.

RDX

Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected — see
22.4.2

In other cases, RDX returns 0.

Other

Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

TDH.MEM.PAGE.PROMOTE merges 512 private pages, which are consecutive both in the HPA space and in the GPA space.
It removes the Secure EPT leaf page that formerly mapped those pages.

February 2023

Page 206 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Cache Flush and Init: After the SEPT page has been removed, the host VMM should flush the physical page’s cache lines
and initialize its content before it is reused, as described in 10.5.1.

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.

5 Table 24.20: TDH.MEM.PAGE.PROMOTE Memory Operands Information Definition
Explicit/ | Reg. Addr. Resource Resource Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit | RCX GPA Removed SEPT_PAGE | R Private 212+9%Level | Eyclusive | None None
and Secure EPT Bytes
Level page
Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared
Implicit N/A HPA Merged HPA Blob None Private N/A Exclusive | None None
range
Implicit | N/A N/A TDCS structure | TDCS RW Opaque N/A Shared(i) | N/A N/A
Implicit | N/A GPA Secure EPT N/A RW Private N/A Exclusive | N/A N/A
Tree
TDH.MEM.PAGE.PROMOTE checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.
The function checks the following conditions:
10 1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. TheTDis notin a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS must have been initialized (TDR.INIT is TRUE).
5. The specified merged page level is either 1 (2MB) or 2 (1GB) — see 22.4.1 for a definition of EPT level.
15 If successful, the function does the following:
6. Walk the Secure EPT based on the GPA operand, and locate the Secure EPT parent entry of the GPA range to be
promoted to a merged large page.
7. Check the Secure EPT entry:
7.1. It must be a non-leaf entry.
20 7.2. It must be blocked (SEPT_BLOCKED) .
8. Get the HPA of the Secure EPT page, which currently maps the GPA range to be promoted, from the Secure EPT
above. Get its PAMT entry.
9. Check that TLB tracking has been done, based on the above Secure EPT page’s PAMT.BEPOCH.
10. Scan the content of the above Secure EPT page and check all 512 entries:
25 10.1.They are leaf entries (this also implies that the corresponding pages are PT_REG).
10.2. Their state is SEPT_PRESENT.
10.3. Have contiguous HPA mapping aligned to the promoted range size.
If successful, the above checks imply that:
e The 2MB or 1GB GPA range to be promoted has a corresponding single HPA range and a single PAMT entry
30 (PAMT_2M or PAMT_1G, respectively) owned by the current guest TD, and its current PAMT.PT is PAMT_NDA.
e The 512 child PAMT entries (PAMT_2M or PAMT_4K, respectively) of the above are owned by the current guest TD,
and their PAMT.PT is PAMT_REG.
The function then does the following:
11. Merge the corresponding 512 physical pages into a single larger physical page:
35 11.1. Set the small page (PAMT_4K or PAMT_2M) entries state to PT_NDA.

11.2.Set the parent (PAMT_2M or PAMT_1G respectively) entry to PT_REG.

February 2023 Page 207 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

12. Atomically set the promoted Secure EPT entry to SEPT_PRESENT leaf entry pointing to the merged HPA range.
13. Remove the Secure EPT page that previously mapped the 512 physical pages:

13.1. Atomically decrement TDR.CHLDCNT by 1.
13.1.1. Note that CHLDCNT counts the number of 4KB pages. The change is due only to the removal of the

Secure EPT page.

13.2. Update the PAMT entry of the removed Secure EPT page to PT_NDA.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of

completion status code, see 21.1.

Table 24.21: TDH.MEM.PAGE.PROMOTE Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_EPT_ENTRY_LEAF

TDX_EPT_INVALID_PROMOTE_CONDITIONS

TDX_EPT_WALK_FAILED

TDX_GPA_RANGE_NOT_BLOCKED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDH.MEM.PAGE.PROMOTE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

TDX_TLB_TRACKING_NOT_DONE

February 2023

Page 208 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.6. TDH.MEM.PAGE.RELOCATE Leaf

Relocate a 4KB mapped page from its current host physical address to another.

Table 24.22: TDH.MEM.PAGE.RELOCATE Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number — see 24.2.1
RCX EPT mapping information:
Bits Name Description
2:0 Level Level of the Secure EPT entry that maps the private page to be relocated,
must be O (i.e., 4KB) (see 22.4.1).
11:3 Reserved Reserved: must be 0
51:12 | GPA Bits 51:12 of the guest physical address of the private page to be relocated
63:52 | Reserved Reserved: must be 0
RDX Host physical address of the parent TDR page (HKID bits must be 0)
R8 Host physical address of the relocated page target (HKID bits must be 0)

Table 24.23: TDH.MEM.PAGE.RELOCATE Output Operands Definition

Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
RCX Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected —
see 22.4.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected — see
22.4.2

In other cases, RDX returns 0.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.PAGE.RELOCATE replaces a mapped 4KB page mapping target HPA by moving the current page content to a
new target HPA and updating the Secure-EPT mapping to the new target HPA. On successful operation, the previous
mapped HPA target is marked is free in the PAMT.

Cache Flush and Init: After the page has been relocated, the host VMM should flush the old physical page’s cache lines
and initialize its content before it is reused, as described in 10.5.1.

To understand the table and text below, please refer to Ch. 19, which explains the general aspects of the Intel TDX API.

February 2023 . Page 209 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Table 24.24: TDH.MEM.PAGE.RELOCATE Memory Operands Information Definition

10

15

20

25

Explicit/ | Reg. Addr. | Resource Resource Access Access Align. | Concurrency Restrictions
Implicit Type Type Semantics | Check
P P P Operand | Contain. | Contain.
2MB 1GB
Explicit RCX GPA TD private | Blob R Private 4KB Exclusive | None None
and page
Level
Explicit RDX HPA TDR page | TDR RW Opaque 4KB Shared Shared Shared
Explicit R8 HPA Target Blob RW Private 4KB Exclusive | Shared Shared
physical
page
Implicit N/A N/A TDCS TDCS RW Opaque N/A Shared(i) | N/A N/A
structure
Implicit N/A GPA Secure N/A RW Private N/A Exclusive | N/A N/A
EPT tree
TDH.MEM.PAGE.RELOCATE checks the memory operands per the table above when applicable during its flow. The text

below does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

nhwn R

=

6.
7.
8.
9.

The TDR page metadata in PAMT must be correct (PT must be PT_TDR).

The TD is not in a FATAL state (TDR.FATAL is FALSE).

The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
TDCS must have been initialized (TDR.INIT is TRUE).

The target page metadata in PAMT must be correct (PT must be PT_NDA).

successful, the function does the following:

Walk the Secure EPT based on the GPA operand and level and find the currently mapped HPA.
Check the Secure EPT entry is a blocked (SEPT_BLOCKED or SEPT_PENDING_BLOCKED) leaf entry.
Check that the currently mapped HPA is different than the target HPA.

Check that TLB tracking was done.

If successful, the function does the following:

10.

11.
12.
13.

If the page state is SEPT_BLOCKED, copy the currently mapped page content to the target page, using the TD’s
ephemeral private HKID and direct writes (MOVDIR64B).

Free the currently mapped HPA by setting its PAMT.PT to PT_NDA.

Update the target page’s PAMT entry with the PT_REG page type and the TDR physical address as the OWNER.
Update the Secure EPT entry with the target page HPA. Set its state to SEPT_PRESENT or SEPT_PENDING depending
on whether its previous state was SEPT_BLOCKED or SEPT_PENDING_BLOCKED, respectively.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.25: TDH.MEM.PAGE.RELOCATE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_WALK_FAILED

TDX_GPA_RANGE_NOT_BLOCKED

TDX_OPERAND_ADDR_RANGE_ERROR

February 2023 . Page 210 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Completion Status Code

Description

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower

32 bits of the status.
retrying the operation.

In many cases, this can be resolved by

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDH.MEM.PAGE.RELOCATE is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

TDX_TLB_TRACKING_NOT_DONE

February 2023

Page 211 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.7. TDH.MEM.PAGE.REMOVE Leaf

Remove a GPA-mapped 4KB, 2MB or 1GB private page from a TD.

Table 24.26: TDH.MEM.PAGE.REMOVE Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number —see 24.2.1
RCX EPT mapping information:
Bits Name Description
2:0 Level Level of the Secure EPT entry that maps the private page to be removed:
either 0 (4KB), 1 (2MB) or 2 (1GB) —see 22.4.1.
11:3 Reserved Reserved: must be 0
51:12 | GPA Bits 51:12 of the guest physical address of the private page to be removed
63:52 | Reserved Reserved: must be 0
RDX Host physical address of the parent TDR page (HKID bits must be 0)
Table 24.27: TDH.MEM.PAGE.REMOVE Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
RCX If TDH.MEM.PAGE.REMOVE succeeded, RCX returns the HPA of the removed page.
In case of EPT walk error, Secure EPT entry architectural content where the error was detected —
see 22.4.2
The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.
In other cases, RCX returns 0.
RDX Extended error information part 2
In case of EPT walk error, Secure EPT entry level and state where the error was detected — see
22.4.2
In other cases, RDX returns 0.
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

TDH.MEM.PAGE.REMOVE removes a 4KB, 2MB or 1GB private page from the TD’s Secure EPT tree. On successful
operation, it marks the physical page as free in PAMT.

Cache Flush and Init: After the page has been removed, the host VMM should flush the physical page’s cache lines and

initialize its content before it is reused, as described in 10.5.1.

February 2023

Page 212 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.

Table 24.28: TDH.MEM.PAGE.REMOVE Memory Operands Information Definition

Explicit/ | Reg. | Addr. Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB

Explicit | RCX | GPA TD private page | Blob R Private 212+9"Level | Exclusive | None None

and Bytes

Level
Explicit RDX | HPA TDR page TDR RW Opaque 4KB Shared Shared Shared
Implicit | N/A N/A TDCS structure | TDCS RW Opaque N/A Shared(i) | N/A N/A
Implicit | N/A | GPA Secure EPT tree | N/A RW Private N/A Exclusive | N/A N/A

10

15

20

25

TDH.MEM.PAGE.REMOVE checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

The TDR page metadata in PAMT must be correct (PT must be PT_TDR).

The TD is not in a FATAL state (TDR.FATAL is FALSE).

The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
TDCS must have been initialized (TDR.INIT is TRUE).

The specified level is either 0 (4KB), 1 (2MB) or 2 (1GB) — see 22.4.1 for a definition of EPT level.

ukhwnNeE

=

successful, the function does the following:

6. Walk the Secure EPT based on the GPA operand, and find the page to be removed.
7. Check the page’s parent Secure EPT entry is a blocked leaf entry (SEPT_BLOCKED or SEPT_PENDING_BLOCKED).
8. Check that TLB tracking was done.

If successful, the function does the following:

9. Atomically decrement TDR.CHLDCNT by 1, 512 or 5122 depending on the removed TD private page size (4KB, 2MB or
1GB, respectively).
10. Free the physical page:
10.1.If the level is 0 (4KB), set the PAMT entry of the removed TD private page to PT_NDA.
10.2. Else (levels 1 or 2, 2MB or 1GB respectively), set the PAMT entry of the removed TD private page to PT_NDA.
11. Set the parent Secure EPT entry to SEPT_FREE.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.29: TDH.MEM.PAGE.REMOVE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_NOT_LEAF

TDX_EPT_WALK_FAILED

TDX_GPA_RANGE_NOT_BLOCKED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

February 2023 . Page 213 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Completion Status Code

Description

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDH.MEM.PAGE.REMOVE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

TDX_TLB_TRACKING_NOT_DONE

February 2023

Page 214 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.8. TDH.MEM.RANGE.BLOCK Leaf

Block a TD private GPA range (i.e., a Secure EPT page or a TD private page) at any level (4KB, 2MB, 1GB, 512GB, 256TB,
etc.) from creating new GPA-to-HPA address translations.

Table 24.30: TDH.MEM.RANGE.BLOCK Input Operands Definition

Operand

Description

RAX

SEAMCALL instruction leaf number — see 24.2.1

RCX

EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry that maps the GPA range to be blocked — see
22.4.1

Level must between 0 and 3 for a 4-level EPT or between 0 and 4 for a 5-
level EPT.

11:3 Reserved Reserved: must be 0

51:12 | GPA Bits 51:12 of the GPA range to be blocked

Depending on the level, the following least significant bits must be 0:
Level O (EPTE): None

Level 1 (EPDE): Bits 20:12

Level 2 (EPDPTE): Bits 29:12

Level 3 (EPML4E): Bits 38:12

Level 4 (EPML5E): Bits 47:12

63:52 | Reserved Reserved: must be 0

RDX

Host physical address of the parent TDR page (HKID bits must be 0)

Table 24.31: TDH.MEM.RANGE.BLOCK Output Operands Definition

Operand

Description

RAX

SEAMCALL instruction return code — see 24.2.1

RCX

Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected —
see 22.4.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX

Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected — see
22.4.2

In other cases, RDX returns 0.

Other

Unmodified

February 2023

Page 215 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

TDH.MEM.RANGE.BLOCK finds the Secure EPT entry for the given GPA and level, and it marks it as blocked

5 (SEPT_BLOCKED or SEPT_PENDING_BLOCKED as appropriate). It records the current TD’s TLB epoch in the PAMT entry
of the physical Secure EPT page or TD private page mapped by the blocked Secure EPT entry.
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.
Table 24.32: TDH.MEM.RANGE.BLOCK Memory Operands Information Definition
Explicit/ | Reg. | Addr. | Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand Contain. | Contain.
2MB 1GB
Explicit | RCX | GPA | Secure EPT Blob None | Private 212+9%Level | None None None
and page or TD Bytes
Level | private page
Explicit RDX | HPA TDR page TDR R Opaque 4KB Shared Shared Shared
Implicit | N/JA | N/A TDCS TDCS RW Opaque N/A Shared(i) N/A N/A
structure
Implicit | N/A | GPA Secure EPT N/A RW Private N/A Exclusive N/A N/A
tree
Implicit | N/A | GPA Secure EPT SEPT RW Private N/A Transaction | N/A N/A
entry Entry
10
TDH.MEM.RANGE.BLOCK checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.
The function checks the following conditions:
1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
15 2. TheTDis notin a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS must have been initialized (TDR.INIT is TRUE).
5. The specified level is of an EPT entry —i.e., 0 to 3 for 4-level EPT or O to 4 for 5-level EPT. See 22.4.1 for a definition
of EPT level.
20 If successful, the function does the following:
6. Walk the Secure EPT based on the GPA operand, and find the Secure EPT entry to be blocked.
7. Check the Secure EPT entry is not free and not blocked (its state should be SEPT_PRESENT or SEPT_PENDING).
If passed:
8. Block the Secure EPT entry. Use an atomic operation (LOCK CMPXCHG) to check that the Secure EPT entry has not
25 change and to set its state to SEPT_BLOCKED (if it was SEPT_PRESENT) or SEPT_PENDING_BLOCKED (if it was
SEPT_PENDING).
If passed:
9. Read the TD’s epoch (TDCS.TD_EPOCH), and write it to the PAMT entry of the blocked Secure EPT page or TD private
page (PAMT.BEPOCH).
February 2023 Page 216 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of

completion status code, see 21.1.

Table 24.33: TDH.MEM.RANGE.BLOCK Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_EPT_ENTRY_FREE

TDX_EPT_WALK_FAILED

TDX_GPA_RANGE_ALREADY_BLOCKED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDH.MEM.RANGE.BLOCK is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

February 2023

Page 217 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.9. TDH.MEM.RANGE.UNBLOCK Leaf

Remove the blocking of a TD private GPA range (i.e., a Secure EPT page or a TD private page), at any level (4KB, 2MB,
1GB, 512GB, 256TB etc.) previously blocked by TDH.MEM.RANGE.BLOCK.

Table 24.34: TDH.MEM.RANGE.UNBLOCK Input Operands Definition

Operand

Description

RAX

SEAMCALL instruction leaf number — see 24.2.1

RCX

EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry that maps the GPA range to be unblocked —
see 22.4.1

Level must between 0 and 3 for a 4-level EPT or between 0 and 4 for a 5-
level EPT.

11:3 Reserved Reserved: must be 0

51:12 | GPA Bits 51:12 of the guest physical address range to be unblocked
Depending on the level, the following least significant bits must be 0:
Level O (EPTE): None

Level 1 (EPDE): Bits 20:12

Level 2 (EPDPTE): Bits 29:12

Level 3 (EPML4E): Bits 38:12

Level 4 (EPML5E): Bits 47:12

63:52 | Reserved Reserved: must be 0

RDX

Host physical address of the parent TDR page (HKID bits must be 0)

Table 24.35: TDH.MEM.RANGE.UNBLOCK Output Operands Definition

Operand

Description

RAX

SEAMCALL instruction return code — see 24.2.1

RCX

Extended error information part 1

In case of EPT walk error, Secure EPT entry architectural content where the error was detected —
see 22.4.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX

Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected — see
22.4.2

In other cases, RDX returns 0.

Other

Unmodified

February 2023

Page 218 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

TDH.MEM.RANGE.UNBLOCK finds the blocked Secure EPT entry for the given GPA and level. It checks that the entry has

5 been blocked and TLB tracking has been done, and then it marks the entry as non-blocked (SEPT_PRESENT or
SEPT_PENDING as appropriate).
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.
Table 24.36: TDH.MEM.RANGE.UNBLOCK Memory Operands Information Definition
Explicit/ | Reg. | Addr. | Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit | RCX | GPA | Secure EPT Blob None | Private 212+9"Level | None None None
and page or TD Bytes
Level | private page
Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared
Implicit | N/A N/A TDCS TDCS RW Opaque N/A Shared(i) | N/A N/A
structure
Implicit | N/A GPA Secure EPT N/A RW Private N/A Exclusive | N/A N/A
tree
10
TDH.MEM.RANGE.UNBLOCK checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.
The function checks the following conditions:
1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
15 2. TheTDis notin a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS must have been initialized (TDR.INIT is TRUE).
5. The specified level is of an EPT entry (i.e., 0 to 3 for 4-level EPT or 0 to 4 for 5-level EPT) — see 22.4.1 for a definition
of EPT level.
20 If successful, the function does the following:
6. Walk the Secure EPT based on the GPA operand, and find the Secure EPT page or TD private page to be unblocked.
7. Check the page’s parent Secure EPT entry is blocked (SEPT_BLOCKED or SEPT_PENDING_BLOCKED).
8. Check that TLB tracking was done.
If successful, the function does the following:
25 9. Unblock the Secure EPT entry. Atomically set its state to SEPT_PRESENT (if it was SEPT_BLOCKED) or SEPT_PENDING
(if it was SEPT_PENDING_BLOCKED).
Completion Status Codes
The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.
30 Table 24.37: TDH.MEM.RANGE.UNBLOCK Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_WALK_FAILED

TDX_GPA_RANGE_NOT_BLOCKED

February 2023 Page 219 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Code

Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDH.MEM.RANGE.UNBLOCK is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

TDX_TLB_TRACKING_NOT_DONE

February 2023

Page 220 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.10. TDH.MEM.RD Leaf

Read a 64b chunk from a debuggable guest TD private memory.
Table 24.38: TDH.MEM.RD Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number —see 24.2.1
RCX The guest physical address of a naturally aligned 8-byte chunk of a guest TD private page
RDX Host physical address of the parent TDR page (HKID bits must be 0)
5 Table 24.39: TDH.MEM.RD Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
RCX Extended error information part 1
In case of EPT walk error, Secure EPT entry architectural content where the error was detected
—see 22.4.2
The architectural content represents how the Secure EPT maps a private memory page or a
Secure EPT page, and may be different than the actual contents of the Secure EPT entry.
Software should consult the Secure EPT information returned in RDX.
In other cases, RCX returns 0.
RDX Extended error information part 2
In case of EPT walk error, Secure EPT entry level and state where the error was detected — see
22.4.2
In other cases, RDX returns 0.
R8 Content of the memory chunk
In case of an error, as indicated by RAX, R8 returns 0
Other Unmodified
Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.
10 TDH.MEM.RD reads a 64b chunk from a debuggable guest TD private memory.
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.
Table 24.40: TDH.MEM.RD Memory Operands Information Definition
Explicit/ | Reg. Addr. | Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit RCX GPA TD private Blob R Private 8B None None None
memory
Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared

February 2023 . Page 221 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Explicit/ | Reg. Addr. | Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Implicit | N/A N/A TDCS TDCS RW Opaque N/A Shared(i) | N/A N/A
structure
Implicit | N/A GPA Secure EPT N/A RW Private N/A Shared N/A N/A
tree

10

15

TDH.MEM.RD checks the memory operands per the table above when applicable during its flow. The text below does
not explicitly mention those checks, except when necessary.

The function checks the following conditions:

The TDR page metadata in PAMT must be correct (PT must be PT_TDR).

The TD is not in a FATAL state (TDR.FATAL is FALSE).

The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
TDCS must have been initialized (TDR.INIT is TRUE).

The TD is debuggable (TDCS.ATTRIBUTES.DEBUG is 1).

ukhwNpE

==

successful, the function does the following:

6. Walk the Secure EPT based on the GPA operand and find the leaf entry.
7. Check that the Secure EPT entry state is PRESENT.

If passed:

8. Read the content of the memory chunk.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.41: TDH.MEM.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_NOT_PRESENT

TDX_EPT_WALK_FAILED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NON_DEBUG

February 2023 . Page 222 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Completion Status Code

Description

TDX_TD_NOT_INITIALIZED

February 2023

Page 223 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.11. TDH.MEM.SEPT.ADD Leaf

Add and map a 4KB Secure EPT page to a TD.

Table 24.42: TDH.MEM.SEPT.ADD Input Operands Definition

Operand

Description

RAX

SEAMCALL instruction leaf number — see 24.2.1

RCX

EPT mapping information:

Bits Name Description

2:0 Level Level of the non-leaf Secure EPT entry that will map the new Secure EPT
page —see 22.4.1

Level must between 1 and 3 for a 4-level EPT or between 1 and 4 for a 5-
level EPT.

11:3 Reserved Reserved: must be 0

51:12 | GPA Bits 51:12 of the guest physical address of to be mapped for the new
Secure EPT page

Depending on the level, the following least significant bits must be 0:
Level 1 (EPT): Bits 20:12
Level 2 (EPD): Bits 29:12
Level 3 (EPDPT): Bits 38:12
Level 4 (EPML4): Bits 47:12

63:52 | Reserved Reserved: must be 0

RDX

Host physical address of the parent TDR page (HKID bits must be 0)

R8

Host physical address of the new Secure EPT page to be added to the TD (HKID bits must be 0)

Other

Unmodified

Table 24.43: TDH.MEM.SEPT.ADD Output Operands Definition

Operand

Description

RAX

SEAMCALL instruction return code — see 24.2.1

RCX

Secure EPT entry architectural content — see 22.4.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

e In case of successful operation, the requested entry’s architectural content is returned.

e In case of EPT walk error, the architectural content of the Secure EPT entry where the error
was detected is returned.

In other cases, RCX returns 0.

RDX

Secure EPT entry level and state — see 22.4.2
e In case of successful operation, the requested entry’s information is returned.

e In case of EPT walk error, the information of the Secure EPT entry where the error was
detected is returned.

In other cases, RDX returns 0.

February 2023

Page 224 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Operand Description

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

5 TDH.MEM.SEPT.ADD adds a 4KB Secure EPT page to a TD and maps it to the provided GPA. It initializes the page to hold
512 free entries using the TD’s ephemeral private key.

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface

functions.
Table 24.44: TDH.MEM.SEPT.ADD Memory Operands Information Definition
Explicit/ | Reg. | Addr. | Resource Resource Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit RCX GPA Secure EPT SEPT_PAGE | RW Private 212+9%Level | N /A N/A N/A
and page (GPA)! Bytes
Level
Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared
Explicit R8 HPA Secure EPT SEPT_PAGE | RW Private 4KB Exclusive | Shared Shared
page (HPA)!
Implicit N/A N/A TDCS TDCS RW Opaque N/A Shared(i) | N/A N/A
structure
Implicit N/A GPA Secure EPT N/A RW Private N/A Exclusive | N/A N/A
tree

TDH.MEM.SEPT.ADD checks the memory operands per the table above when applicable during its flow. The text below
does not explicitly mention those checks, except when necessary.

The function checks the following conditions:

The TDR page metadata in PAMT must be correct (PT must be PT_TDR).

The TD is not in a FATAL state (TDR.FATAL is FALSE).

The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).

TDCS must have been initialized (TDR.INIT is TRUE).

The specified level is of an EPT non-leaf entry —i.e., 1 to 3 for 4-level EPT or 1 to 4 for 5-level EPT. See 22.4.1 for a
definition of EPT level.

The target page metadata in PAMT must be correct (PT must be PT_NDA).

If successful, the function does the following:

Walk the Secure EPT based on the GPA operand, and find the parent EPT entry for the new Secure EPT page.

If the Secure EPT entry is marked as SEPT_FREE:

10
1.
15 2.
3.
4,
5.
20 6.
7.
8.
25
9.
10.

Initialize the new Secure EPT page to 0, indicating 512 entries in the SEPT_FREE state, using the TD’s ephemeral
private HKID and direct writes (MOVDIR64B).

Update the parent Secure EPT entry with the new Secure EPT page HPA and SEPT_PRESENT state.

Increment TDR.CHLDCNT.

11 RCX and R8 denote the same Secure EPT page operand, using HPA and GPA respectively

February 2023 . Page 225 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

11. Update the new Secure EPT page’s PAMT entry with the PT_EPT page type and the TDR physical address as the

OWNER.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of

completion status code, see 21.1.

Table 24.45: TDH.MEM.SEPT.ADD Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_EPT_ENTRY_NOT_FREE

TDX_EPT_WALK_FAILED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDH.MEM.SEPT.ADD is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

February 2023

Page 226 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.12. TDH.MEM.SEPT.RD Leaf

Read a Secure EPT entry.

Table 24.46: TDH.MEM.SEPT.RD Input Operands Definition

Operand

Description

RAX

SEAMCALL instruction leaf number — see 24.2.1

RCX

EPT mapping information:

Bits Name Description

2:0 Level Level of the Secure EPT entry to read — see 22.4.1

Level must between 0 and 3 for a 4-level EPT or between 0 and 4 for a 5-
level EPT.

11:3 Reserved Reserved: must be 0

51:12 | GPA Bits 51:12 of the guest physical address for the Secure EPT entry to read
Depending on the level, the following least significant bits must be 0:
Level O (EPTE): None

Level 1 (EPDE): Bits 20:12

Level 2 (EPDPTE): Bits 29:12

Level 3 (EPML4E): Bits 38:12

Level 4 (EPML5E): Bits 47:12

63:52 | Reserved Reserved: must be 0

RDX

Host physical address of the parent TDR page (HKID bits must be 0)

Table 24.47: TDH.MEM.SEPT.RD Output Operands Definition

Operand

Description

RAX

SEAMCALL instruction return code — see 24.2.1

RCX

Secure EPT entry architectural content —see 22.4.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

e In case of successful operation, the requested entry’s architectural content is returned.

e In case of EPT walk error, the architectural content of the Secure EPT entry where the error
was detected is returned.

e |n other cases, RCX returns 0.

RDX

Secure EPT entry level and state — see 22.4.2
e In case of successful operation, the requested entry’s information is returned.

e In case of EPT walk error, the information of the Secure EPT entry where the error was
detected is returned.

e |n other cases, RDX returns 0.

Other

Unmodified

February 2023

Page 227 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.SEPT.RD reads a Secure EPT entry.

5 To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.
Table 24.48: TDH.MEM.SEPT.RDSEPT Memory Operands Information Definition
Explicit/ | Reg. | Addr. | Resource Resource Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit | RCX | GPA Secure EPT SEPT_ENTRY | R Private 212+9%Level | None None None
and entry Bytes
Level
Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared
Implicit | N/A N/A TDCS TDCS RW Opaque N/A Shared(i) | N/A N/A
structure
Implicit | N/A GPA Secure EPT N/A R Private N/A Shared N/A N/A
Tree
TDH.MEM.SEPT.RD checks the memory operands per the table above when applicable during its flow. The text below
10 does not explicitly mention those checks, except when necessary.
The function checks the following conditions:
1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. TheTDis notin a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
15 4. TDCS must have been initialized (TDR.INIT is TRUE).
5. The specified level is of an EPT entry (i.e., 0 to 3 for 4-level EPT or O to 4 for 5-level EPT) — see 22.4.1 for a definition
of EPT level.
If successful, the function does the following:
6. Walk the Secure EPT based on the GPA operand, and find the Secure EPT entry.
20 7. Translate the internal Secure EPT content into an architectural representation (returned in RCX) and TDX state and
level (returned in RDX).
Completion Status Codes
The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.
25 Table 24.49: TDH.MEM.SEPT.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_WALK_FAILED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

February 2023 . Page 228 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Completion Status Code

Description

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDH.MEM.SEPT.RD is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

February 2023

Page 229 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.13. TDH.MEM.SEPT.REMOVE Leaf

Remove an empty 4KB Secure EPT page from a TD.

Table 24.50: TDH.MEM.SEPT.REMOVE Input Operands Definition

Operand

Description

RAX

SEAMCALL instruction leaf number — see 24.2.1

RCX

EPT mapping information:

Bits Name Description

2:0 Level Level of the non-leaf Secure EPT entry that maps the Secure EPT page to be
removed —see 22.4.1

Level must be between 1 and 3 for a 4-level EPT or between 1 and 4 for a
5-level EPT.

11:3 Reserved Reserved: must be 0

51:12 | GPA Bits 51:12 of the guest physical address for the Secure EPT page to be
removed

Depending on the level, the following least significant bits must be 0:
Level 1 (EPT): Bits 20:12
Level 2 (EPD): Bits 29:12
Level 3 (EPDPT): Bits 38:12
Level 4 (EPML4): Bits 47:12

63:52 | Reserved Reserved: must be 0

RDX

Host physical address of the parent TDR page (HKID bits must be 0)

Table 24.51: TDH.MEM.SEPT.REMOVE Output Operands Definition

Operand

Description

RAX

SEAMCALL instruction return code — see 24.2.1

RCX

If TDH.MEM.SEPT.REMOVE succeeded, RCX returns the HPA of the removed SEPT page.
Else, in RCX returns extended error information part 1.

In case of EPT walk error, Secure EPT entry architectural content where the error was detected —
see 22.4.2

The architectural content represents how the Secure EPT maps a private memory page or a Secure
EPT page, and may be different than the actual contents of the Secure EPT entry. Software should
consult the Secure EPT information returned in RDX.

In other cases, RCX returns 0.

RDX

Extended error information part 2

In case of EPT walk error, Secure EPT entry level and state where the error was detected — see
22.4.2

In other cases, RDX returns 0.

Other

Unmodified

February 2023

Page 230 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.SEPT.REMOVE removes an empty Secure EPT page, with all 512 marked as SEPT_FREE, from the TD’s Secure

5 EPT tree. On successful operation, it marks the 4KB physical page as free in PAMT.
Cache Flush and Init: After the page has been removed, the host VMM should flush the physical page’s cache lines and
initialize its content before it is reused, as described in 10.5.1.
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.
10 Table 24.52: TDH.MEM.SEPT.REMOVE Memory Operands Information Definition
Explicit/ | Reg. Addr. Resource Resource Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit | RCX GPA Secure EPT SEPT_PAGE | R Private 212+9%Level | Exclusive | None None
and page Bytes
Level
Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared
Implicit | N/A N/A TDCS TDCS RW Opaque N/A Shared(i) | N/A N/A
structure
Implicit | N/A GPA Secure EPT N/A RW Private N/A Exclusive | N/A N/A
Tree
TDH.MEM.SEPT.REMOVE checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.
The function checks the following conditions:
15 1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. TheTDis notin a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS must have been initialized (TDR.INIT is TRUE).
5. The specified level is of a non-leaf EPT entry (i.e., 1 to 3 for 4-level EPT or 1 to 4 for 5-level EPT) — see 22.4.1 for a
20 definition of EPT level.
If successful, the function does the following:
6. Walk the Secure EPT based on the GPA operand, and find the Secure EPT page to be removed.
7. Check the page’s parent Secure EPT entry is a blocked (SEPT_BLOCKED) non-leaf entry.
8. Check that TLB tracking was done.
25 9. Scan the Secure EPT page content and check all 512 entries are SEPT_FREE.

If successful, the function does the following:

10. Atomically decrement TDR.CHLDCNT.
11. Set the PAMT entry of the removed Secure EPT page to PT_NDA.
12. Set the parent Secure EPT entry to SEPT_FREE.

February 2023 . Page 231 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.53: TDH.MEM.SEPT.REMOVE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_LEAF

TDX_EPT_ENTRY_NOT_FREE

TDX_EPT_WALK_FAILED

TDX_GPA_RANGE_NOT_BLOCKED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MEM.SEPT.REMOVE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

TDX_TLB_TRACKING_NOT_DONE

February 2023 . Page 232 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.14. TDH.MEM.TRACK Leaf

Increment the TD’s TLB epoch counter.

Table 24.54: TDH.MEM.TRACK Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number —see 24.2.1
RCX The physical address of the parent TDR page (HKID bits must be 0)

5 Table 24.55: TDH.MEM.TRACK Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

10 TDH.MEM.TRACK increments the TD’s TLB epoch counter.

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface

functions.
Table 24.56: TDH.MEM.TRACK Memory Operands Information Definition
Explicit/ | Reg. Addr. Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit RCX HPA TDR page TDR R Opaque 4KB Shared Shared Shared
Implicit | N/A N/A TDCS structure TDR RW Opaque 4KB Shared(i) | N/A N/A
Implicit | N/A N/A TDCS Epoch N/A RW Opaque N/A Exclusive | N/A N/A
Tracking Fields
15 In addition to the memory operand checks per the table above, the function checks the following:
1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. TheTDis notin a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS must have been initialized (TDR.INIT is TRUE).
20 If successful, the function does the following as a critical section, protected by exclusively locking the TDCS epoch tracking

fields TD_EPOCH and REFCOUNT. A concurrent TDH.VP.ENTER may cause this locking to fail with a TDX_OPERAND_BUSY
status code; in this case the caller is expected to retry TDH.MEM.TRACK.

5.
6.
25

Lock the TDCS epoch tracking fields in exclusive mode.

Check that the TD’s previous epoch’s REFCOUNT is 0. This helps ensure that no REFCOUNT information will be lost
when TD_EPOCH is incremented in the next step.

If successful, increment the TD’s epoch counter (TDCS.TD_EPOCH).

Release the exclusive mode locking of the epoch tracking fields.

February 2023 . Page 233 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.57: TDH.MEM.TRACK Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

Note the special case where the indicated operand is
TLB_EPOCH. This may happen due to a conflict with
TDH.VP.ENTER. The host VMM should retry
TDH.MEM.TRACK.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_PREVIOUS_TLB_EPOCH_BUSY

TDX_SUCCESS TDH.MEM.TRACK is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

February 2023 . Page 234 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.15. TDH.MEM.WR Leaf

Write a 64b chunk from a debuggable guest TD private memory.
Table 24.58: TDH.MEM.WR Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number — see 24.2.1

RCX The guest physical address of a naturally aligned 8-byte chunk of a guest TD private page
RDX Host physical address of the parent TDR page (HKID bits must be 0)

R8 Data to be written to memory

Table 24.59: TDH.MEM.WR Output Operands Definition

Operand Description
RAX SEAMCALL instruction return code — see 24.2.1
RCX Secure EPT entry architectural content — see 22.4.2

The architectural content represents how the Secure EPT maps a private memory page or a
Secure EPT page, and may be different than the actual contents of the Secure EPT entry.
Software should consult the Secure EPT information returned in RDX.

e In case of successful operation, the requested entry’s architectural content is returned.

e In case of EPT walk error, the architectural content of the Secure EPT entry where the error
was detected is returned.

In other cases, RCX returns O.

RDX Secure EPT entry level and state — see 22.4.2
e In case of successful operation, the requested entry’s information is returned.

e In case of EPT walk error, the information of the Secure EPT entry where the error was
detected is returned.

In other cases, RDX returns 0.

R8 Previous content of the memory chunk

In case of an error, as indicated by RAX, R8 returns 0

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MEM.WR writes a 64b chunk to a debuggable guest TD private memory.

February 2023 . Page 235 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface

functions.
Table 24.60: TDH.MEM.RD Memory Operands Information Definition
Explicit/ | Reg. Addr. | Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit RCX GPA TD private Blob RW Private 8B None None None
memory
Explicit RDX HPA TDR page TDR R Opaque 4KB Shared Shared Shared
Implicit | N/A N/A TDCS TDCS RW Opaque N/A Shared(i) | N/A N/A
structure
Implicit | N/A GPA Secure EPT N/A RW Private N/A Shared N/A N/A
tree

10

15

20

TDH.MEM.WR checks the memory operands per the table above when applicable during its flow. The text below does
not explicitly mention those checks, except when necessary.

The function checks the following conditions:

The TDR page metadata in PAMT must be correct (PT must be PT_TDR).

The TD is not in a FATAL state (TDR.FATAL is FALSE).

The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
TDCS must have been initialized (TDR.INIT is TRUE).

The TD is debuggable (TDCS.ATTRIBUTES.DEBUG is 1).

mhwn e

=

successful, the function does the following:

6. Walk the Secure EPT based on the GPA operand and find the leaf entry.
7. Check that the Secure EPT entry state is PRESENT.

If passed:

8. Read the content of the memory chunk.
9. Write the new content of the memory chunk.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.61: TDH.MEM.WR Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_NOT_PRESENT

TDX_EPT_WALK_FAILED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be

resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

February 2023 . Page 236 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Completion Status Code

Description

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NON_DEBUG

TDX_TD_NOT_INITIALIZED

February 2023

Page 237 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

20

25

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.16. TDH.MNG.ADDCX Leaf

Add a TDCX page to a guest TD.
Table 24.62: TDH.MNG.ADDCX Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number — see 24.2.1

RCX The physical address of a page where TDCX will be added (HKID bits must be 0)
RDX The physical address of the owner TDR page (HKID bits must be 0)

Table 24.63: TDH.MNG.ADDCX Output Operands Definition

Operand Description
RAX SEAMCALL instruction return code — see 24.2.1
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MNG.ADDCX adds a TDCX page, which is a child of the specified TDR.

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX Interface
functions.

Table 24.64: TDH.MNG.ADDCX Memory Operands Information Definition

Explicit/ | Reg. | Addr. | Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit RCX | HPA TDCX page | Blob RW Opaque 4KB Exclusive | Shared Shared
Explicit RDX | HPA TDR page TDR RW Opaque 4KB Exclusive | Shared Shared

In addition to the explicit memory operand checks per the table above, the function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).

The TD is not in a FATAL state (TDR.FATAL is FALSE).

The TD must not have been initialized (TDR.INIT is FALSE).

The number of TDCX pages (TDR.NUM_TDCX) is smaller than the required number.

The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
The new TDCX page metadata in PAMT must be correct (PT must be PT_NDA).

ounkwnN

=

successful, the function does the following:

7. Initialize the TDCX page contents using direct writes (MOVDIR64B).
8. Set the TDCX pointer entry in the TDR.TDCX_PA array.
9. Increment TDR.NUM_TDCX.

February 2023 . Page 238 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.65: TDH.MNG.ADDCX Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.ADDCX is successful

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_INITIALIZED

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCX_NUM_INCORRECT

February 2023 . Page 239 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.17. TDH.MNG.CREATE Leaf

Create a new guest TD and its TDR root page.
Table 24.66: TDH.MNG.CREATE Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number —see 24.2.1
RCX The physical address of a page where TDR will be created (HKID bits must be 0)
RDX Bits Name Description
15:0 HKID The TD’s ephemeral private HKID
63:16 | Reserved Reserved: must be O
5 Table 24.67: TDH.MNG.CREATE Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
Other Unmodified
Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.
10 TDH.MNG.CREATE creates a TDR page which is the root page of a new guest TD.
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.
Table 24.68: TDH.MNG.CREATE Memory Operands Information Definition
Explicit/ | Reg. | Addr. | Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit RCX HPA TDR page TDR RW Opaque 4KB Exclusive | Shared Shared
Implicit | N/A N/A KOT KOT N/A Hidden N/A Exclusive | N/A N/A
15 In addition to the explicit memory operand checks per the table above, the function checks the following conditions:
1. The TDR page metadata in PAMT must be correct (PT must be PT_NDA).
2. The value of the specified HKID must be in the range configured for TDX.
3. The KOT entry for the specified HKID must be marked as HKID_FREE.
If successful, the function does the following:
20 4. Zero out the TDR page contents using direct write (MOVDIR64B).
5. Initialize the key management fields.
6. Initialize the state variables.
7. Initialize the TD management fields.
8. Mark the KOT entry for the specified HKID as HKID_ASSIGNED.
25 9. Initialize the TDR page metadata in PAMT.
February 2023 Page 240 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.69: TDH.MNG.CREATE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_HKID_NOT_FREE

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.CREATE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

February 2023 . Page 241 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.18. TDH.MNG.INIT Leaf

Initialize TD-scope control structures TDR and TDCS.

Table 24.70: TDH.MNG.INIT Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number —see 24.2.1
RCX The physical address of a TDR page (HKID bits must be 0)
RDX The physical address (including HKID bits) of an input TD_PARAMS_STRUCT
5 Table 24.71: TDH.MNG.INIT Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
RCX Extended error information
In case of a TD_PARAMS_STRUCT.CPUID_CONFIG error, RCX returns the applicable CPUID
information as shown below. In all other cases, RCX returns 0.
Bits Name Description
31:.0 LEAF CPUID leaf number
63:32 | SUBLEAF CPUID sub-leaf number: if sub-leaf is not applicable, value is -1
(OXFFFFFFFF).
Other Unmodified
Leaf Function Latency
TDH.MNG.INIT execution time may be longer than most TDX module interface functions execution time. No interrupts
(including NMI and SMI) are processed by the logical processor during that time.
10 Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.
TDH.MNG.INIT initializes the TD-scope control structures TDR and TDCS based on a set of TD parameters provided as
input.
15 To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.
Table 24.72: TDH.MNG.INIT Memory Operands Information Definition
Explicit/ | Reg. | Addr. | Resource Resource Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand Contain. | Contain.
2MB 1GB
Explicit RCX | HPA TDR page TDR RW Opaque 4KB Exclusive Shared Shared
Explicit RDX | HPA TD TD_PARAMS R Shared 1024B | None N/A N/A
Parameters
Implicit | N/A | N/A TDCS TDCS RW Opaque N/A Exclusive(i) | N/A N/A
structure
February 2023 Page 242 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

20

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

In addition to the explicit memory operand checks per the table above, the function checks the following conditions:

The TDR page metadata in PAMT must be correct (PT must be PT_TDR).

The TD is not in a FATAL state (TDR.FATAL is FALSE).

The TD must not have been initialized (TDR.INIT is FALSE).

The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
All the TDCX pages have been added (by TDH.MNG.ADDCX).

If successful, the function does the following:

6. Setthe TDCS TD management fields to their initial values.

7. Read the input parameters structure fields.

8. Check the input parameters and initialize the TDCS logical structure.
8.1. Check that ATTRIBUTES and XFAM bits that must be fixed-0 or fixed-1 are set correctly.
8.2. Check XFAM bit groups that must have certain values (e.g., AVX bits 7:5).

If passed:

9. Initialize EPTP to point to TDCS.SEPT_ROOT.

10. Initialize the MSR bitmaps based on ATTRIBUTES and XFAM.

11. Initialize the TDCS measurement fields.

12. Mark the TD as initialized (set TDR.INIT to TRUE).

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.73: TDH.MNG.INIT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_BOOT_NT4_SET

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the

lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.INIT is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_INITIALIZED

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDCX_NUM_INCORRECT

February 2023 . Page 243 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.19. TDH.MNG.KEY.CONFIG Leaf

Configure the TD ephemeral private key on a single package.

Table 24.74: TDH.MNG.KEY.CONFIG Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number —see 24.2.1
RCX The physical address of a TDR page (HKID bits must be 0)

5 Table 24.75: TDH.MNG.KEY.CONFIG Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code — see 24.2.1
Other Unmodified
Leaf Function Latency
TDH.MNG.KEY.CONFIG execution time may be longer than most TDX module interface functions execution time. No
interrupts (including NMI and SMI) are processed by the logical processor during that time.
10 Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.
TDH.MNG.KEY.CONFIG configures the TD’s ephemeral private key on a single package.
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
15 functions.
Table 24.76: TDH.MNG.KEY.CONFIG Operands Information
Explicit/ | Reg. Addr. | Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit RCX HPA TDR page TDR RW Opaque 4KB Exclusive | Shared Shared
Implicit | N/A N/A KETs on current N/A N/A Hidden N/A Exclusive | N/A N/A
package
In addition to the memory operand checks per the table above, the function checks the following conditions:
1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
20 2. TheTDis notin a FATAL state (TDR.FATAL is FALSE).
3. HKID has been assigned to the TD; TDR.LIFECYCLE_STATE is TD_HKID_ASSIGNED.
4. The key has not yet been configured by TDH.MNG.KEY.CONFIG on this package.
If successful, the function does the following:
5. Configure the TD ephemeral private key on the package.
25 5.1. This operation may fail due to a conflict with a concurrent TDH.MNG.KEY.CONFIG or PCONFIG running on the

same package.
5.2. A CPU-generated random key is used. The operation may fail due to lack of entropy.
6. If the key has been configured on all the packages, set TDR.LIFECYCLE_STATE to TD_KEYS_CONFIGURED.

February 2023 . Page 244 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.77: TDH.MNG.KEY.CONFIG Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_KEY_CONFIGURED

TDX_KEY_GENERATION_FAILED Failed to generate a random key. This is typically caused by
an entropy error of the CPU's random number generator,
and may be impacted by RDSEED, RDRAND or PCONFIG
executing on other LPs. The operation should be retried.

TDX_LIFECYCLE_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

Specifically, key configuration may fail due to a concurrently
running PCONFIG instruction.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.KEY.CONFIG is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

February 2023 . Page 245 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

20

25

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

24.2.20. TDH.MNG.KEY.FREEID Leaf

End the platform cache flush sequence, and mark applicable HKIDs in KOT as free.

Table 24.78: TDH.MNG.KEY.FREEID Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number — see 24.2.1
RCX The physical address of a TDR page (HKID bits must be 0)
Table 24.79: TDH.MNG.KEY.FREEID Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
Other Unmodified

Leaf Function Description

Note:

The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.MNG.KEY.FREEID ends the platform cache flush sequence for the HKIDs associated with the specified TD after
TDH.PHYMEM.CACHE.WB has been executed on all the required packages. It marks the TD’s HKIDs in KOT as free, and
the TD itself as being torn down.

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface

functions.
Table 24.80: TDH.MNG.KEY.FREEID Memory Operands Information Definition

Explicit/ | Reg. Addr. Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check

Operand | Contain. | Contain.

2MB 1GB

Explicit RCX HPA TDR page TDR RW Opaque 4KB Exclusive | Shared Shared
Implicit | N/A N/A KOT KOT N/A Hidden N/A Exclusive | N/A N/A

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. TLB and VMCS caches associated with the HKID have been flushed, and no memory associated with this HKID may
be accessed:
2.1. TDR.LIFECYCLE_STATE is TD_BLOCKED.

2.2. The KOT entry for the TD’s private HKID is marked as HKID_FLUSHED.

2.3. The KOT entry for the TD’s private HKID indicates that TDH.PHYMEM.CACHE.WB has been executed on all
applicable packages or cores.

If successful, the function does the following:

3. Mark the KOT entry as HKID_FREE.
4. Set TDR.LIFECYCLE_STATE to TD_TEARDOWN.

February 2023

Page 246 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.81: TDH.MNG.KEY.FREEID Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_LIFECYCLE_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.KEY.FREEID is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_WBCACHE_NOT_COMPLETE

February 2023 . Page 247 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

24.2.21. TDH.MNG.KEY.RECLAIMID Leaf

This function is provided for backward compatibility.

Table 24.82: TDH.MNG.KEY.RECLAIMID Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number — see 24.2.1
RCX The physical address of a TDR page (HKID bits must be 0)
5 Table 24.83: TDH.MNG.KEY.RECLAIMID Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

10 TDH.MNG.KEY.RECLAIMID is provided for backward compatibility. It does not do anything except returning a constant

TDX_SUCCESS status.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of

completion status code, see 21.1.

15 Table 24.84: TDH.MNG.KEY.RECLAIMID Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_SUCCESS

TDH.MNG.KEY.RECLAIMID is successful.

February 2023

Page 248 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.22. TDH.MNG.RD Leaf

Read a TD-scope control structure field of a TD.

Table 24.85: TDH.MNG.RD Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number —see 24.2.1
RCX The physical address of a TDR page (HKID bits must be 0)
RDX Field code
5 Table 24.86: TDH.MNG.RD Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
R8 Contents of the field
In case of an error, as indicated by RAX, R8 returns 0
Other Unmodified
Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.
10 TDH.MNG.RD reads a TD-scope control structure field of a TD.
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.
Table 24.87: TDH.MNG.RD Memory Operands Information Definition
Explicit/ | Reg. | Addr. | Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit RCX HPA TDR page TDR R Opaque 4KB Shared Shared Shared
Implicit | N/A N/A TDCS structure | TDCS R Opaque N/A Shared(i) | N/A N/A
15 In addition to the memory operand checks per the table above, the function checks the following conditions:
1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. TheTDis notin a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS must have been initialized (TDR.INIT is TRUE).
20 5. The provided field code is valid and indicates a readable field per the TD’s debug attribute

(TDCS.ATTRIBUTES.DEBUG).
If the above checks pass, the function does the following:

6. Read the TD field.

February 2023 . Page 249 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.88: TDH.MNG.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_FIELD_NOT_READABLE

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.RD is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

February 2023 . Page 250 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.23. TDH.MNG.VPFLUSHDONE Leaf

Check that none of the TD’s VCPUs are associated with an LP.
Table 24.89: TDH.MNG.VPFLUSHDONE Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number —see 24.2.1
RCX The physical address of a TDR page (HKID bits must be 0)

5 Table 24.90: TDH.MNG.VPFLUSHDONE Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
Other Unmodified
Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.
10 TDH.MNG.VPFLUSHDONE checks that none of the TD’s VCPUs are associated with an LP, and it then prepares for cache
flushing by TDH.PHYMEM.CACHE.WB.
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.
Table 24.91: TDH.MNG.VPFLUSHDONE Operands Information
Explicit/ | Reg. | Addr. | Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand Contain. | Contain.
2MB 1GB
Explicit RCX HPA TDR page TDR RW Opaque 4KB Exclusive Shared Shared
Implicit | N/A N/A TDCS structure | TDCS R Opaque N/A Exclusive(i) | N/A N/A
Implicit | N/A N/A KOT KOT N/A Hidden N/A Exclusive N/A N/A
15
In addition to the memory operand checks per the table above, the function checks the following conditions:
1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. TDR.LIFECYCLE_STATE is either TD_HKID_ASSIGNED or TD_KEYS_CONFIGURED.
3. The KOT entry for the TD’s assigned HKID in the list must be marked as HKID_ASSIGNED.
20 4. None of the TD’s VCPUs are associated with an LP (either the TD has not been initialized by TDH.MNG.INIT, or
TDCS.NUM_ASSOC_VCPUS is 0).
If successful, the function does the following:
5. Set a bitmap in the KOT entry to track the required subsequent TDH.PHYMEM.CACHE.WB operations.
6. Set TDR.LIFECYCLE_STATE to TD_BLOCKED.
25 7. Mark the KOT entry as HKID_FLUSHED.

February 2023 . Page 251 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.92: TDH.MNG.VPFLUSHDONE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_FLUSHVP_NOT_DONE

TDX_LIFECYCLE_STATE_INCORRECT

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.VPFLUSHDONE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

February 2023 . Page 252 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.24. TDH.MNG.WR Leaf

Write a TD-scope control structure field of a TD.

Table 24.93: TDH.MNG.WR Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number —see 24.2.1
RCX The physical address of a TDR page (HKID bits must be 0)
RDX Field code
R8 Data to write to the field
R9 64b mask to indicate which bits of the value in R8 are to be written to the field
5 Table 24.94: TDH.MNG.WR Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
R8 Previous content of the field
In case of an error, as indicated by RAX, R8 returns 0
Other Unmodified
Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.
10 TDH.MNG.WR writes a TD-scope control structure field of a TD. The specific bits of the value (R8) are written as specified
by the write mask (R9). Writing is subject to the field’s writability.
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.
Table 24.95: TDH.MNG.WR Memory Operands Information Definition
Explicit/ | Reg. | Addr. | Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit RCX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared
Implicit | N/A N/A TDCS structure | TDCS R Opaque N/A Shared(i) | N/A N/A
15
In addition to the memory operand checks per the table above, the function checks the following conditions:
The TDR page metadata in PAMT must be correct (PT must be PT_TDR)
The TD is not in a FATAL state (TDR.FATAL is FALSE)
The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED)
20

The provided field code is valid and indicates a writable field per the TD’s debug attribute (TDCS.ATTRIBUTES.DEBUG).

the above checks pass, the function does the following:

1
2
3.
4. TDCS must have been initialized (TDR.INIT is TRUE)
5
If
6.

Derive the field attributes (read mask, write mask, VMCS field code or offset in TDVPS) from the field code provided
in RDX.

February 2023

Page 253 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

If passed:

7. Derive the effective write mask by bitwise-anding the write mask derived above with the write mask provided in R9.
If the effective write mask is 0, then fail; the field in not writable.

If passed:

8. Read the field value.
9. Update the field value from the input value in R8, per the effective write mask.

If passed:

10. Mask out the previous field value with the read mask derived earlier, and return in R8.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.96: TDH.MNG.WR Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_FIELD_NOT_READABLE

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MNG.WR is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

February 2023 . Page 254 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.25. TDH.MR.EXTEND Leaf

Extend the MRTD measurement register in the TDCS with the measurement of the indicated chunk of a TD page.

Table 24.97: TDH.MR.EXTEND Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number — see 24.2.1

RCX The GPA of the TD page chunk to be measured

RDX The TDR page of the target TD (HKID bits must be 0)

5 Table 24.98: TDH.MR.EXTEND Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
RCX Extended error information part 1
In case of EPT walk error, Secure EPT entry where the error was detected
In other cases, RCX returns 0.
RDX Extended error information part 2
In case of EPT walk error, EPT level where the error was detected
In other cases, RDX returns 0.
Other Unmodified
Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

10 TDH.MR.EXTEND updates the MRTD measurement register in the TDCS with the measurement of the indicated chunk of
a TD private page. For pages whose contents need to be measured, once the page is copied into the TD memory area,
the host VMM will call TDH.MR.EXTEND multiple times to measure the pages contents into MRTD. TDEXEND can be
executed only before TDH.MR.FINALIZE.

Note: TDH.MR.EXTEND works on a 256B chunk of a page, not on a full page, due to instruction latency considerations.

15 To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.

Table 24.99: TDH.MR.EXTEND Memory Operands Information Definition
Explicit/ | Reg. | Addr. | Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check

Operand Contain. | Contain.
2MB 1GB

Explicit RCX | GPA TD private page Blob R Private 256B | None None None

chunk
Explicit RDX | HPA TDR page TDR R Opaque 4KB Exclusive Shared Shared
Implicit | N/JA | N/A TDCS structure TDCS RW Opaque 4KB Exclusive(i) | N/A N/A
Implicit | N/A | GPA Secure EPT tree N/A R Private N/A Shared N/A N/A

February 2023 . Page 255 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

20

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

In addition to the memory operand checks per the table above, the function checks the following:

1.

2.
3.
4.
5.
6.
If

7.
8.

The TDR page metadata in PAMT must be correct (PT must be PT_TDR).

The TD is not in a FATAL state (TDR.FATAL is FALSE).

The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
TDCS must have been initialized (TDR.INIT is TRUE).

The TD build and measurement must not have been finalized (by TDH.MR.FINALIZE).

The page must be mapped and accessible in the Secure EPT.

successful, the function does the following:

Update the TD measurement in TDCS based on the chunk’s GPA and contents.

Extend TDCS.MRTD with the chunk’s GPA and contents. Extension is done using SHA384, with three 128B extension
buffers. The first extension buffer is composed as follows:

o Bytes 0 through 8 contain the ASCII string “MR.EXTEND”.

o Bytes 16 through 23 contain the GPA (in little-endian format).

o All the other bytes contain 0.

The other two extension buffers contain the chunk’s contents.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.100: TDH.MR.EXTEND Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_EPT_ENTRY_NOT_PRESENT

TDX_EPT_WALK_FAILED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the

lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.MR.EXTEND is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_FINALIZED

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

24.2.26. TDH.MR.FINALIZE Leaf

TDH.MR.FINALIZE completes measurement of the initial TD contents and marks the TD as ready to run.

February 2023 . Page 256 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Table 24.101: TDH.MR.FINALIZE Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number —see 24.2.1
RCX The physical address of the parent TDR page (HKID bits must be 0)

Table 24.102: TDH.MR.FINALIZE Output Operands Definition

Operand Description
RAX SEAMCALL instruction return code — see 24.2.1
Other Unmodified

5 Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.
TDH.MR.FINALIZE completes the measurement of the initial TD contents and marks the TD as finalized.
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
10 functions.
Table 24.103: TDH.MR.FINALIZE Memory Operands Information Definition
Explicit/ | Reg. Addr. | Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand Contain. | Contain.
2MB 1GB
Explicit RCX HPA TDR page TDR R Opaque 4KB Exclusive Shared Shared
Implicit | N/A N/A TDCS structure | TDCS RW Opaque 4KB Exclusive(i) | N/A N/A
In addition to the memory operand checks per the table above, the function checks the following:
1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
15 2. TheTDis notin a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS must have been initialized (TDR.INIT is TRUE).
5. The TD build and measurement must not have been finalized (by TDH.MR.FINALIZE).
If successful, the function does the following:
20 6. Finalize the TD measurement.
7. Mark the TD as finalized.
Completion Status Codes
The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.
25 Table 24.104: TDH.MR.FINALIZE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

February 2023 . Page 257 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Code

Description

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDH.MR.FINALIZE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_FINALIZED

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

February 2023

Page 258 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

24.2.27. TDH.PHYMEM.CACHE.WB Leaf

TDH.PHYMEM.CACHE.WB is an interruptible and restartable function to write back the cache hierarchy on a package or

a core.
Table 24.105: TDH.PHYMEM.CACHE.WB Input Operands Definition
Operand | Description
RAX SEAMCALL instruction leaf number —see 24.2.1
RCX Command, as described below:
Value | Name Description
0 WB_START_CMD Start a new TDH.PHYMEM.CACHE.WB cycle with no cache
invalidation.
1 WB_RESUME_CMD | Resume a previously interrupted TDH.PHYMEM.CACHE.WB cycle
with no cache invalidation.
Other Reserved
5
Table 24.106: TDH.PHYMEM.CACHE.WB Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
Other Unmodified
Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
10 vary.
TDH.PHYMEM.CACHE.WB writes back the cache hierarchy to memory and updates the KOT state to allow reuse of HKIDs.
e TDH.PHYMEM.CACHE.WB does not invalidate cache lines.
e The function is interruptible by external events and is restartable. In case it is interrupted by an external event,
information is stored in an Intel TDX module internal table which allows the instruction to be restarted.
15 e The function operates on cache lines associated with any HKID.
e The function is designed to ensure write back of at least those cache lines where the state of that HKID (in the KOT)
was HKID_FLUSHED at the time of the first invocation (RCX == TDH.PHYMEM.CACHE.WB_START_CMD (0)).
e Depending on the implementation, the instruction may write back additional cache lines.
e The scope at which TDH.PHYMEM.CACHE.WB operates (e.g., package or core) is determined at Intel TDX module
20 initialization time.
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.
Table 24.107: TDH.PHYMEM.CACHE.WB (Implicit) Operands Information
Explicit/ | Reg. Addr. | Resource Resource Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Implicit | N/A N/A KOT KOT N/A Hidden N/A Shared N/A N/A
Implicit | N/A N/A WBT entry for WBT_ENTRY | N/A Hidden N/A Exclusive | N/A N/A
current scope
February 2023 Page 259 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

20

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. The command value is one of the supported ones.
2. Ifthe command is to start a new TDH.PHYMEM.CACHE.WB cycle (RCX == 0), then:

2.1. Clear the internally saved interruption state.

2.2. Scan the KOT: mark those HKIDs whose state is HKID_FLUSHED in an internal table; only those HKIDs will be
later marked as written back and invalidated upon successful completion of TDH.PHYMEM.CACHE.WB.

2.3. If none of the KOT entries for the requested set of HKIDs (either single or all) is in HKID_FLUSHED state, then
abort with an informational code (it achieved its goal: write back and invalidate at least the HKIDs that are in
the HKID_FLUSHED state).

3. Run cache write back operation on the cache hierarchy of the current package or core. This operation is long and
may be interrupted by external events.

3.1. If a previous TDH.PHYMEM.CACHE.WB has been interrupted, the operation resumes from the interruption
point which has been recorded.

3.2. In case of interruption, the current point in the write back and invalidation flow and the current HKID are
recorded.

4. If the operation has not been interrupted, update the KOT as follows:

4.1. For each KOT entry, if the entry was marked as HKID_FLUSHED at the start of the TDH.PHYMEM.CACHE.WB
cycle as discussed above, use the KOT entry’s bitmap to indicate that TDH.PHYMEM.CACHE.WB has been
executed on this package or core.

Error and Informational Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.108: TDH.PHYMEM.CACHE.WB Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_INTERRUPTED_RESUMABLE TDH.PHYMEM.CACHE.WB was interrupted; it is
recommended to resume it with RCX indicating
WB_RESUME_CMD

TDX_NO_HKID_READY_TO_WBCACHE

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_SUCCESS TDH.PHYMEM.CACHE.WB is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

February 2023 . Page 260 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

24.2.28. TDH.PHYMEM.PAGE.RDMD Leaf

Read the metadata of a page (or the metadata of the containing large page) in TDMR.

Table 24.109: TDH.PHYMEM.PAGE.RDMD Operands

Operand Description
RAX SEAMCALL instruction leaf number — see 24.2.1
RCX A physical address of a 4KB page in TDMR (HKID bits must be 0)
Table 24.110: TDH.PHYMEM.PAGE.RDMD Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
RCX Page Type (PT):
Value | Name Description
0 PT_NDA The physical page is Not Directly Assigned to the Intel TDX module.
1 PT_RSVD The physical page is reserved for non-TDX usage.
3 PT_REG The physical page holds TD private memory.
4 PT_TDR The physical page holds the TD Root (TDR) control structure.
8:5 The physical page holds a TD control structure.
Other Reserved
In case of an error, as indicated by RAX, RCX returns 0
RDX OWNER: the HPA of the TD’s TDR control structure page (if applicable)
In case of an error, RDX returns 0
R8 Bits Name Description
2:0 Size Size of the containing 4KB, 2MB or 1GB page —see 22.3.1
63:3 Reserved Setto 0
In case of an error, as indicated by RAX, R8 returns 0
R9 BEPOCH
In case of an error, as indicated by RAX, R9 returns 0
R10 Reserved: setto O
R11 Reserved: setto O
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

TDH.PHYMEM.PAGE.RDMD finds the containing page (4KB, 2MB or 2GB) of the given page in TDMR and reads its
metadata from its PAMT entry.

February 2023

Page 261 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface

functions.

Table 24.111: TDH.PHYMEM.PAGE.RDMD Memory Operands Information Definition

Explicit/ | Reg. | Addr. | Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit RCX HPA Target Blob None Opaque/ 4KB Shared Shared Shared
page Private
5 If the memory operand checks per the table above pass, the function does the following:

1. Do a PAMT walk, and find the containing page and its size.

If passed:
2. Read the PAMT entry.

Completion Status Codes

10 The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.112: TDH.PHYMEM.PAGE.RDMD Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower 32
bits of the status. In many cases, this can be resolved by retrying the
operation.

TDX_OPERAND_INVALID

TDX_SUCCESS

TDH.PHYMEM.PAGE.RDMD is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

February 2023

Page 262 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.29. TDH.PHYMEM.PAGE.RECLAIM Leaf

Reclaim a physical 4KB, 2MB or 1GB TD-owned page (i.e., TD private page, Secure EPT page or a control structure page)
from a TD, given its HPA.

Table 24.113: TDH.PHYMEM.PAGE.RECLAIM Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number —see 24.2.1
RCX The physical address of a 4KB, 2MB or 1GB page to be reclaimed (HKID bits must be 0)

Table 24.114: TDH.PHYMEM.PAGE.RECLAIM Output Operands Definition

Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
RCX Page Type (PT):
Value | Name Description
0 PT_NDA The physical page is Not Directly Assigned to the Intel TDX module.
1 PT_RSVD The physical page is reserved for non-TDX usage.
3 PT_REG The physical page holds TD private memory.
4 PT_TDR The physical page holds the TD Root (TDR) control structure.
8:5 The physical page holds a TD control structure.
Other Reserved

In multiple error cases, as indicated by RAX, RDX returns 0. In other error cases, RDX still
returns the PT information. See the completion status codes table below for details.

RDX OWNER: the HPA of the TD’s TDR control structure page (if applicable)

In multiple error cases, as indicated by RAX, RDX returns 0. In other error cases, RDX still
returns the OWNER information. See the completion status codes table below for details.

R8 Bits Name Description
2:0 Size Size of the containing 4KB, 2MB or 1GB page —see 22.3.1
63:3 Reserved Setto 0

In multiple error cases, as indicated by RAX, RDX returns 0. In other error cases, RDX still
returns the size information. See the completion status codes table below for details.

R9 Reserved: setto O
R10 Reserved: setto 0
R11 Reserved: setto O
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

February 2023 . Page 263 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

T
T

DH.PHYMEM.PAGE.RECLAIM reclaims a TD-owned physical page from the TD.
DH.PHYMEM.PAGE.RECLAIM can reclaim pages only if the owner TD is in the TD_TEARDOWN state.

Cache Flush and Init: After the physical page has been reclaimed, the host VMM should flush its cache lines (required

only for TDR pages) and initialize its content before it is reused, as described in 10.5.1.

5 To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.
Table 24.115: TDH.PHYMEM.PAGE.RECLAIM Memory Operands Information Definition
Explicit/ | Reg. Addr. Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit RCX HPA Target page Blob RW Opaque/ 4KB, Exclusive | Shared Shared
Private 2MB
or
1GB
Implicit | N/A N/A TDR page!? TDR RW Opaque 4KB Shared N/A N/A
TDH.PHYMEM.PAGE.RECLAIM checks the memory operands per the table above when applicable during its flow. The
10 text below does not explicitly mention those checks, except when necessary.
The function works as follows:
1. Check that the target page metadata in PAMT are correct (PT must not be PT_NDA nor PT_RSVD).
2. Ifthe target page is not a TDR (PT is not PT_TDR):
2.1. Get the TDR page (pointed by the target page’s PAMT.OWNER).
15 2.2. Check that the TD is in teardown state (TDR.LIFECYCLE_STATE is TD_TEARDOWN).
2.3. Atomically decrement TDR.CHLDCNT.
3. Else (target page is a TDR):
3.1. Check that the TD is in teardown state (TDR.LIFECYCLE_STATE is TD_TEARDOWN).
3.2. Check that TDR.CHLDCNT is 0.
20 4. Update the PAMT entry of the reclaimed page to PT_NDA.
5. Return the page metadata (as they were before PAMT update above).
Completion Status Codes
The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.
25 Table 24.116: TDH.PHYMEM.PAGE.RECLAIM Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description
TDX_LIFECYCLE_STATE_INCORRECT RCX, RDX and R9 return the actual PT, OWNER and size
information.

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

If the page is not a TDR page but the owner TDR is busy,
then RCX, RDX and R9 return the actual PT, OWNER and size
information.

12 Except when TDR is the target page

February 2023 . Page 264 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Code

Description

TDX_OPERAND_INVALID

If the page physical address is not aligned on its size, then
RCX, RDX and R9 return the actual PT, OWNER and size
information.

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDH.PHYMEM.PAGE.RECLAIM is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_ASSOCIATED_PAGES_EXIST

RCX, RDX and R9 return the actual PT, OWNER and size
information.

February 2023

Page 265 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.30. TDH.PHYMEM.PAGE.WBINVD Leaf

Write back and invalidate all cache lines associated with the specified memory page and HKID.

Table 24.117: TDH.PHYMEM.PAGE.WBINVD Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number —see 24.2.1
RCX Physical address (including HKID bits) of a 4KB page in TDMR
5 Table 24.118: TDH.PHYMEM.PAGE.WBINVD Output Operands Definition

Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.

10 TDH.PHYMEM.PAGE.WBINVD performs cache write back and invalidation on all the cache lines associated with the
specified page and HKID. The page must not be in use by the Intel TDX module (i.e., not assigned to a TD as a private
page or a Secure EPT page), nor used as a control structure page.

It is the responsibility of the host VMM to track which HKID is associated with the target page; the function does not
check it.

15 To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.

Table 24.119: TDH.PHYMEM.PAGE.WBINVD Memory Operands Information Definition
Explicit/ | Reg. Addr. | Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics Check
Operand | Contain. | Contain.
2MB 1GB
Explicit RCX HPA Target page | Blob R Private/ 4KB Shared Shared Shared
Opaque
In addition to the memory operand checks per the table above, the function checks the following conditions:
20 1. The target page must be marked in PAMT as not controlled by the Intel TDX module (PT must be PT_NDA).
If successful, the function performs the following:
2. Write back and invalidate all the cache lines for the given target HPA and HKID.
Completion Status Codes
The table below provides specific notes for status codes returned by this interface function. For a general description of
25 completion status code, see 21.1.

Table 24.120: TDH.PHYMEM.PAGE.WBINVD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

February 2023 Page 266 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Code

Description

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDH.PHYMEM.PAGE.WBINVD is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

February 2023

Page 267 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.31. TDH.SYS.CONFIG Leaf

Globally configure the Intel TDX module.

Table 24.121: TDH.SYS.CONFIG Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number —see 24.2.1

RCX The physical address (including HKID bits) of an array of pointers, each containing the physical
address of a single TDMR_INFO entry (see 22.7.4).
The pointer array must be sorted such that TDMR base addresses (TDMR_INFO.TDMR_BASE)
are sorted from the lowest to the highest base address, and TDMRs do not overlap with each
other.

RDX The number of pointers in the above buffer, between 1 and 64

R8 Bits Name Description
15:0 HKID Intel TDX global private HKID value
63:16 | Reserved Reserved: must be 0

5 Table 24.122: TDH.SYS.CONFIG Output Operands Definition

Operand Description

RAX SEAMCALL instruction return code —see 24.2.1

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

10 TDH.SYS.CONFIG performs global (platform-scope) configuration of the Intel TDX module. This function is intended to be
executed during OS/VMM boot, and thus it has relaxed latency requirements.

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface

functions.
Table 24.123: TDH.SYS.CONFIG Memory Operands Information Definition
Explicit/ | Reg. | Addr. | Resource Resource Type | Access | Access Align. Concurrency Restrictions
Implicit Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit RCX | HPA TDMR Info Array of HPA R Shared 512B None N/A N/A
Pointers
Explicit N/A | HPA TDMR Info TDMR_INFO R Shared 512B None N/A N/A
Implicit | N/A | N/A All Intel TDX N/A RW Hidden N/A Exclusive | N/A N/A
module
internal
variables
15
February 2023 Page 268 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

20

25

30

35

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. Global and LP-scope initialization has been done:

1.1. PL.SYS_STATE is SYSINIT_DONE.

1.2. TDH.SYS.LP.INIT has been executed on all LPs.
2. The number of TDMR_INFO entries is at least 1 and does not exceed the supported number of TDMRs.
3. Check each physical address of to TDMR_INFO; read the applicable TDMR_INFO entry; check and update the internal
TDMR_TABLE with TDMR, reserved areas and PAMT setup. The order of checks is not required to be exactly the

same as described below.

o TDMRs must be sorted in an ascending base address order.

o Foreach TDMR:

e TDMR base address must be aligned on 1GB.

e TDMR size must be greater than 0 and a whole multiple of 1GB.
e Any address within the TDMR must comply with the platform’s maximum PA, and its HKID bits must be 0.
e For each PAMT region (1G, 2M and 4K) of each TDMR:

= PAMT base address must comply with the alignment requirements.

= Any address within the PAMT range must comply with the platform’s maximum PA, and its HKID bits

must be 0.

= The size of each PAMT region must be large enough to contain the PAMT for its associated TDMR.

e Reserved areas within TDMR must be sorted in an ascending offset order.

e Anull reserved area (indicated by a size of 0) may be followed only by other null reserved areas.
e For each reserved area within TDMR:

= Offset and size must comply with the alignment and granularity requirements.

= Reserved areas must not overlap.
= Reserved areas must be fully contained within their TDMR.

O O O O O

TDMRs must not overlap with other TDMRs.
PAMTs must not overlap with other PAMTs.
TDMRs’ non-reserved parts and PAMTs must not overlap (PAMTs may reside within TDMR reserved areas).
TDMRs’ non-reserved parts must be contained in convertible memory —i.e., in CMRs.

PAMTs must be contained in convertible memory —i.e., in CMRs.

4. Check and set the Intel TDX global private HKID. The provided HKID must be in the TDX HKID range.

If successful, the function does the following:

5. Complete the initialization of the Intel TDX module at platform scope.

6. Set PL.SYS_STATE to SYSCONFIG_DONE.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of

completion status code, see 21.1.

Table 24.124: TDH.SYS.CONFIG Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_INVALID_PAMT

TDX_INVALID_RESERVED_IN_TDMR

TDX_INVALID_TDMR

TDX_NON_ORDERED_RESERVED_IN_TDMR

TDX_NON_ORDERED_TDMR

TDX_OPERAND_INVALID

TDX_PAMT_OUTSIDE_CMRS

TDX_PAMT_OVERLAP

TDX_SUCCESS

TDH.SYS.CONFIG is successful.

February 2023

Page 269 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Code

Description

TDX_SYS_BUSY

The operation was invoked when another TDX module operation
was in progress. The operation may be retried.

TDX_SYS_CONFIG_NOT_PENDING

TDX_SYS_SHUTDOWN

TDX_TDMR_ALREADY_INITIALIZED

TDX_TDMR_OUTSIDE_CMRS

February 2023

Page 270 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.32. TDH.SYS.INFO Leaf

Provide information about the Intel TDX module and the convertible memory.

Table 24.125: TDH.SYS.INFO Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number —see 24.2.1

RCX The physical address (including HKID bits) of a buffer where the output TDSYSINFO_STRUCT will
be written

RDX The number of bytes in the above buffer

R8 The physical address (including HKID bits) of a buffer where an array of CMR_INFO will be
written

R9 The number of CMR_INFO entries in the above buffer

5 Table 24.126: TDH.SYS.INFO Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
RDX The actual number of bytes written to the above buffer
In case of an error, as indicated by RAX, RDX returns O
R9 The number of CMR_INFO entries actually written to the above buffer
In case of an error, as indicated by RAX, R9 returns 0
Other Unmodified
Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.
10 TDH.SYS.INFO provides information about the Intel TDX module and about the memory configuration.
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.
Table 24.127: TDH.SYS.INFO Memory Operands Information Definition
Explicit/ | Reg. | Addr. | Resource Resource Type Access | Access Align. Concurrency Restrictions
Implicit Type Semantics | Check
Operand | Contain. | Contain.
2MMB 1GB
Explicit RCX | HPA TDX system | TDSYSINFO_STRUCT | RW Shared 1024B | None N/A N/A
information
structure
Explicit R8 HPA CMR table CMR_INFO_ARRAY RW Shared 512B None N/A N/A
15 In addition to the memory operand checks per the table above, the function checks the following conditions:

1. Global and LP-scope initialization has been done:
1.1. TDH.SYS.INIT has been executed.
1.2. TDH.SYS.LP.INIT has been executed on the current LP.

February 2023 . Page 271 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

2. The number of bytes provided for returning TDSYSINFO_STRUCT (in RDX) must be at least the size of that structure.
3. The number of entries provided for returning CMR_INFO_ARRAY (in R9) must be at least the number of CMRs
supported by TDX.

If successful, the function does the following:

4. Write the TDSYSINFO_STRUCT, and set RDX to the actual number of bytes written.
5. Write the CMR_INFO_ARRAY based on the CMR information in SEAMCFG, and set R9 to the number of CMRs.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.128: TDH.SYS.INFO Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_SUCCESS TDH.SYS.INFO is successful.

TDX_SYS_SHUTDOWN

TDX_SYS_LP_INIT_NOT_DONE

February 2023 . Page 272 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.33. TDH.SYS.INIT Leaf

Globally initialize the Intel TDX module.

Table 24.129: TDH.SYS.INIT Input Operands Definition

Operand

Description

RAX

SEAMCALL instruction leaf number — see 24.2.1

RCX

Intel TDX module attributes

Bits Name Description

63:0 RESERVED Reserved: must be 0

Table 24.130: TDH.SYS.INIT Output Operands Definition

Operand

Description

RAX

SEAMCALL instruction return code — see 24.2.1

RCX

Extended error information part 1

If RAX returns TDX_INCORRECT_CPUID_VALUE, RCX returns the applicable CPUID information
as shown below. In all other cases, RCX returns 0.

Bits Name Description

31:0 LEAF CPUID leaf number

63:32 | SUBLEAF CPUID sub-leaf number: if sub-leaf is not applicable, value is -1

(OXFFFFFFFF).

RDX

Extended error information part 2

If RAX returns TDX_INCORRECT_CPUID_VALUE, RDX returns the value masks as shown below. A
bit value of 1 indicates a bit position that was checked against the required value. In all other
cases, RDX returns O.

Bits Name Description

31:0 MASK_EAX Mask of the value returned by CPUID in EAX

63:32 | MASK_EBX Mask of the value returned by CPUID in EBX

R8

Extended error information part 3

If RAX returns TDX_INCORRECT_CPUID_VALUE, R8 returns the value masks as shown below. A
bit value of 1 indicates a bit position that was checked against the required value. In all other
cases, R8 returns 0.

Bits Name Description

31:0 MASK_ECX Mask of the value returned by CPUID in ECX

63:32 | MASK_EDX Mask of the value returned by CPUID in EDX

R9

Extended error information part 4

If RAX returns TDX_INCORRECT_CPUID_VALUE, R9 returns the expected values as shown below.
In all other cases, R9 returns 0.

Bits

Name

Description

31:0

VALUE_EAX

Value expected to be returned by CPUID in EAX

February 2023

Page 273 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Operand Description
63:32 | VALUE_EBX Value expected to be returned by CPUID in EBX
R10 Extended error information part 5

If RAX returns TDX_INCORRECT_CPUID_VALUE, R10 returns the expected values as shown
below. In all other cases, R10 returns 0.

Bits Name Description

31:0 | VALUE_ECX Value expected to be returned by CPUID in ECX

63:32 | VALUE_EDX Value expected to be returned by CPUID in EDX
Other Unmodified

Special Environment Requirements

If the IA32_TSX_CTRL MSR is supported by the CPU, as enumerated by IA32_ARCH_CAPABILITIES.TSX_CTRL (bit 7), then
the values of its following bits must be 0:

5 e RTM_DISABLE (bit 0)
e TSX_CPUID_CLEAR (bit 1)
Leaf Function Latency
TDH.SYS.INIT execution time may be longer than most TDX module interface functions execution time. No interrupts
(including NMI and SMI) are processed by the logical processor during that time.
10 Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.
TDH.SYS.INIT performs global (platform-scope) initialization of the Intel TDX module. This function is intended to be
executed during OS/VMM boot and thus it has relaxed latency requirements.
15 To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.
Table 24.131: TDH.SYS.INIT Memory Operands Information Definition
Explicit/ | Reg. | Addr. | Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Implicit | N/A | N/A All Intel TDX N/A RW Hidden N/A Exclusive | N/A N/A
module internal
variables
In addition to the memory operand checks per the table above, the function checks the following conditions:
20 1. Check that PL.SYS_STATE is SYSINIT_PENDING.
2. Do any global Intel TDX module initializations required for running this flow.
3. Check the memory operands per the table above.
4. Check the following conditions (no specific order is implied):
e Enumerate CPU and platform information, and check Intel TDX module compatibility. If the Intel TDX module is
25 compatible with multiple variants of CPU and platform features, sample the current LP’s features enumeration

—to be later checked to be the same on all LPs by TDH.SYS.LP.INIT. Examples of compatibility checks are:
o The CPU must support any ISA that the Intel TDX module relies upon, such as SHA-NI.
o The CPU must support the WBINVD scope for which the Intel TDX module was built.

February 2023 . Page 274 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

e Sample and check the platform configuration on the current LP — to be later checked to be the same on all LPs
by TDH.SYS.LP.INIT. For example:
o Sample SMRR and SMRR2, check they are locked and do not overlap any CMR, and store their values to be
checked later on each LP.

If successful, the function does the following:

5. Complete the initialization of the Intel TDX module at platform scope.
6. Set PL.SYS_STATE to SYSINIT_DONE.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.132: TDH.SYS.INIT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_BOOT_NT4_SET

TDX_CMR_LIST_INVALID

TDX_CPUID_LEAF_NOT_SUPPORTED

TDX_CPUID_LEAF_1F_FORMAT_UNRECOGNIZED

TDX_INCORRECT_CPUID_VALUE Additional information is provided in RCX — R10

TDX_INCORRECT_MSR_VALUE

TDX_INVALID_SMRR_CONFIGURATION

TDX_INVALID_WBINVD_SCOPE

TDX_NUM_ACTIVATED_HKIDS_NOT_SUPPORTED

TDX_OPERAND_INVALID

TDX_SMRR_LOCK_NOT_SUPPORTED

TDX_SMRR_NOT_LOCKED

TDX_SMRR_NOT_SUPPORTED

TDX_SMRR_OVERLAPS_CMR

TDX_SUCCESS TDH.SYS.INIT is successful.

TDX_SYS_BUSY The operation was invoked when another TDX module
operation was in progress. The operation may be retried.

TDX_SYS_SHUTDOWN

TDX_SYS_INIT_NOT_PENDING

February 2023 . Page 275 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.34. TDH.SYS.KEY.CONFIG Leaf

Configure the Intel TDX global private key on the current package.
Table 24.133: TDH.SYS.KEY.CONFIG Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number — see 24.2.1

5 Table 24.134: TDH.SYS.KEY.CONFIG Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code — see 24.2.1
Other Unmodified
Leaf Function Latency
TDH.SYS.KEY.CONFIG execution time may be longer than most TDX module interface functions execution time. No
interrupts (including NMI and SMI) are processed by the logical processor during that time.
10 Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.
TDH.SYS.KEY.CONFIG performs package-scope Intel TDX global private key configuration.
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
15 functions.
Table 24.135: TDH.SYS.KEY.CONFIG Operands Information
Explicit/ | Reg. Addr. Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Implicit | N/A N/A All Intel TDX N/A RW Hidden N/A Exclusive | N/A N/A
module internal
variables
In addition to the memory operand checks per the table above, the function checks the following conditions:
1. Check that TDH.SYS.CONFIG has completed successfully (PL.SYS_STATE is SYSCONFIG_DONE).
20 If successful, the function does the following:
2. Do the following as an atomic operation (e.g., LOCK BTS) on PL.PKG_CONFIG_BITMAP:
2.1. Check the package has not yet been configured.
2.2. Mark it as configured.
3. Execute PCONFIG to configure the Intel TDX global private HKID on the package with a CPU-generated random key.
25 PCONFIG may fail due to an entropy error or a device busy error. In these cases, the VMM should retry

TDH.SYS.KEY.CONFIG.
If successful:

4. If this was the last package on which TDH.SYS.KEY.CONFIG has executed, set PL.STATE to SYS_READY.

February 2023 . Page 276 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of

completion status code, see 21.1.

Table 24.136: TDH.SYS.KEY.CONFIG Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_KEY_CONFIGURED

TDX_KEY_GENERATION_FAILED

Failed to generate a random key. This is typically caused by an
entropy error of the CPU's random number generator, and may
be impacted by RDSEED, RDRAND or PCONFIG executing on
other LPs. The operation should be retried.

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower
32 bits of the status. In many cases, this can be resolved by
retrying the operation.

Specifically, key configuration may fail due to a concurrently
running PCONFIG instruction.

TDX_SUCCESS

TDH.SYS.KEY.CONFIG is successful.

TDX_SYS_BUSY

The operation was invoked when another TDX module operation
was in progress. The operation may be retried.

TDX_SYS_KEY_CONFIG_NOT_PENDING

TDX_SYS_SHUTDOWN

February 2023

Page 277 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.35. TDH.SYS.LP.INIT Leaf

Initialize the Intel TDX module at the current logical processor scope.

Table 24.137: TDH.SYS.LP.INIT Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number —see 24.2.1
Table 24.138: TDH.SYS.LP.INIT Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code — see 24.2.1
RCX Extended error information part 1
If RAX returns TDX_INCONSISTENT_CPUID_FIELD, RCX returns the applicable CPUID information
as shown below. In all other cases, RCX returns 0.
Bits Name Description
31:.0 LEAF CPUID leaf number
63:32 | SUBLEAF CPUID sub-leaf number: if sub-leaf is not applicable, value is -1
(OXFFFFFFFF).
RDX Extended error information part 2
If RAX returns TDX_INCONSISTENT_CPUID_FIELD, RDX returns the value masks as shown below.
A bit value of 1 indicates a bit position that was checked against the same CPUID leaf value
checked during TDH.SYS.INIT. In all other cases, RDX returns 0.
Bits Name Description
31:0 MASK_EAX Mask of the value returned by CPUID in EAX
63:32 | MASK_EBX Mask of the value returned by CPUID in EBX
R8 Extended error information part 3
If RAX returns TDX_INCONSISTENT_CPUID_FIELD, R8 returns the value masks as shown below.
A bit value of 1 indicates a bit position that was checked against the same CPUID leaf value
checked during TDH.SYS.INIT. In all other cases, R8 returns 0.
Bits Name Description
31:0 MASK_ECX Mask of the value returned by CPUID in ECX
63:32 | MASK_EDX Mask of the value returned by CPUID in EDX
Other Unmodified

Special Environment Requirements

If the IA32_TSX_CTRL MSR is supported by the CPU, as enumerated by IA32_ARCH_CAPABILITIES.TSX_CTRL (bit 7), then
the values of its following bits must be 0O:

e RTM_DISABLE (bit 0)
e TSX_CPUID_CLEAR (bit 1)

February 2023

Page 278 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Leaf Function Latency

TDH.SYS.LP.INIT execution time may be longer than most TDX module interface functions execution time. No interrupts
(including NMI and SMI) are processed by the logical processor during that time.

Leaf Function Description

5 Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDH.SYS.LP.INIT performs LP-scope initialization of the Intel TDX module. This function is intended to be executed during

0S/VMM boot, and thus it has relaxed latency requirements.

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
10 functions.

Table 24.139: TDH.SYS.LP.INIT Operands Information
Explicit/ | Reg. Addr. Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Implicit | N/A N/A All Intel TDX N/A RW Hidden N/A Shared N/A N/A
module internal
variables

In addition to the memory operand checks per the table above, the function checks the following conditions:

1. TDH.SYS.INIT has completed successfully (PL.SYS_STATE is SYSINIT_DONE).
15 2. This is the first invocation of TDH.SYS.LP.INIT on the current LP.

If successful, the function does the following:

3. Do aglobal EPT flush (INVEPT type 2).

4. Initialize the Intel TDX module’s LP-scope variables.

5. Check the compatibility and uniformity of features and configuration. Once per LP, core or package, depending on
20 the scope of the checked feature or configuration:

5.1. Check features compatibility with the Intel TDX module. For example, the WBINVD scope must be the same as
the scope the Intel TDX module was built to handle. In cases where the Intel TDX module supports several
options, check that the features on the current LP are the same as sampled during TDH.SYS.INIT.

5.2. Check configuration uniformity. For example, the SMRR and SMRR2 must be locked and configured in the same

25 way as sampled during TDH.SYS.INIT.
6. Mark the current LP as initialized.
Completion Status Codes
The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.
30 Table 24.140: TDH.SYS.LP.INIT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_BOOT_NT4_SET

TDX_INCONSISTENT_CPUID_FIELD Additional information is provided in RCX — R8

TDX_INCONSISTENT_MSR

TDX_INCORRECT_MSR_VALUE

TDX_INVALID_PKG_ID

TDX_SEAMREPORT_NOT_AVAILABLE

February 2023 . Page 279 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Code

Description

TDX_SUCCESS

TDH.SYS.LP.INIT is successful.

TDX_SYS_BUSY

The operation was invoked when another TDX module operation
was in progress. The operation may be retried.

TDX_SYS_LP_INIT_NOT_PENDING

TDX_SYS_SHUTDOWN

February 2023

Page 280 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.36. TDH.SYS.LP.SHUTDOWN Leaf

Initiate Intel TDX module shutdown, and prevent further SEAMCALLs on the current logical processor.

Table 24.141: TDH.SYS.LP.SHUTDOWN Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number — see 24.2.1
5 Table 24.142: TDH.SYS.LP.SHUTDOWN Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code — see 24.2.1
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

10 TDH.SYS.LP.SHUTDOWN marks the Intel TDX module as being shut down (if not already in this state) and prevents further
SEAMCALLs on the current LP.

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface

functions.
Table 24.143: TDH.SYS.LP.SHUTDOWN Operands Information
Explicit/ | Reg. Addr. Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Implicit | N/A N/A All Intel TDX N/A RW Hidden N/A Shared N/A N/A
module internal
variables

15
In addition to the memory operand checks per the table above, the function checks the following conditions:

1. Mark the Intel TDX module as being shut down by setting PL.SYS_STATE to SYS_SHUTDOWN.
2. Prevent further SEAMCALLs on the current LP by setting the SEAM VMCS’s HOST RIP field to the value of
SYS_INFO_TABLE.SHUTDOWN_HOST_RIP (originally configured by the SEAMLDR).
20 3. Do aglobal EPT flush (INVEPT type 2).
3.1. Thisis a defense-in-depth. In case of an Intel TDX module update, TDH.SYS.LP.INIT will do a global EPT flush.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

25 Table 24.144: TDH.SYS.LP.SHUTDOWN Completion Status Codes (Returned in RAX) Definition
Completion Status Code Description
TDX_SUCCESS TDH.SYS.LP.SHUTDOWN is successful.
TDX_SYS_BUSY The operation was invoked when another TDX module
operation was in progress. The operation may be retried.

February 2023 . Page 281 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.37. TDH.SYS.TDMR.INIT Leaf

Partially initialize a Trust Domain Memory Region (TDMR) and its associated PAMT.
Table 24.145: TDH.SYS.TDMR.INIT Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number —see 24.2.1
RCX The physical base address of a TDMR (HKID bits must be 0)

5 Table 24.146: TDH.SYS.TDMR.INIT Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
RDX On successful completion, RDX returns the TDMR next-to-initialize address. This is the physical
address of the last byte that has been initialized so far, rounded down to 1GB.
In all other cases, RDX returns 0.
Other Unmodified
Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

10 TDH.SYS.TDMR.INIT partially initializes the metadata (PAMT) associated with a Trust Domain Memory Region (TDMR),
while adhering to latency considerations. It can run concurrently on multiple LPs as long as each concurrent flow
initializes a different TDMR. After each 1GB range of a TDMR has been initialized, that 1GB range becomes available for
use by any Intel TDX function that creates a private TD page or a control structure page — e.g., TDH.MEM.PAGE.ADD,
TDH.VP.ADDCX, etc.

15 To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.

Table 24.147: TDH.SYS.TDMR.INIT Memory Operands Information Definition
Explicit/ | Reg. Addr. | Resource Resource | Access | Access Align. | Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit RCX HPA TDMR Blob None None 1GB Exclusive | N/A N/A
Implicit | N/A HPA PAMT region Blob RW Hidden N/A Exclusive | N/A N/A
associated with
TDMR
In addition to the memory operand checks per the table above, the function checks the following conditions:
20 1. The provided TDMR start address belongs to one of the TDMRs set during TDH.SYS.INIT.
2. The TDMR has not been completely initialized yet.
If successful, the function does the following:
3. Ifthe TDMR has been completely initialized, there is nothing to do.
February 2023 Page 282 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Else, the function does the following:

4. Initialize the next implementation defined un-initialized number of PAMT entries. The maximum number of PAMT
entries to be initialized is set to help avoid latency issues.

4.1. PAMT_4K entries associated with a physical address that is within a reserved range are marked with PT_RSVD.
4.2. Other PAMT_4K entries are marked with PT_NDA.
4.3. PAMT_2M and PAMT_1G entries are marked with PT_NDA.

5. If the PAMT for a 1GB block of TDMR has been fully initialized, mark that 1GB block as ready for use. This means that
4KB pages in this 1GB block may be converted to private pages — e.g., by SEAMCALL(TDH.MEM.PAGE.ADD). This can
be done concurrently with initializing other TDMRs.

6. Return the next-to-initialize address rounded down to 1GB. This is done so the host VMM will not attempt to use a
1GB block that is not fully initialized.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.148: TDH.SYS.TDMR.INIT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_SUCCESS TDH.SYS.TDMR.INIT is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TDMR_ALREADY_INITIALIZED

February 2023 . Page 283 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.38. TDH.VP.ADDCX Leaf

Add a TDVPX page to memory as a child of a given TDVPR.
Table 24.149: TDH.VP.ADDCX Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number — see 24.2.1

RCX The physical address of a page where the TDVPX page will be added (HKID bits must be 0)
RDX The physical address of a TDVPR page (HKID bits must be 0)

5 Table 24.150: TDH.VP.ADDCX Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
Other Unmodified
Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.
10 TDH.VP.ADDCX adds a TDVPX page as a child of a given TDVPR.
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.
Table 24.151: TDH.VP.ADDCX Memory Operands Information Definition
Explicit/ | Reg. | Addr. | Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand Contain. | Contain.
2MB 1GB
Explicit RCX HPA TDVPX page Blob RW Opaque 4KB Exclusive Shared Shared
Explicit RDX | HPA TDVPR page Blob RW Opaque 4KB Exclusive Shared Shared
Implicit | N/A HPA TDR page TDR RW Opaque N/A Shared None None
Implicit | N/A N/A TDCS structure | TDCS R Opaque N/A Exclusive(i) | N/A N/A
15 In addition to the explicit memory operand checks per the table above, the function checks the following conditions:
1. The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR).
2. TheTDis notin a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD has been initialized (by TDH.MNG.INIT).
20 5. The TD build and measurement must not have been finalized (by TDH.MR.FINALIZE).
6. The TD VCPU has not been initialized (by TDH.VP.INIT) and is not being torn down (TDVPS.STATE is
VCPU_UNINITIALIZED).
7. The new TDVPX page metadata in PAMT must be correct (PT must be PT_NDA).
8. The maximum number of TDVPX pages per TD VCPUs (as enumerated by TDH.SYS.INFO) has not been exceeded.
25 If successful, the function does the following:

9. Zero out the TDVPX page contents using direct writes (MOVDIR64B).
10. Increment the VCPU’s TDVPX counter, and set a pointer in the parent TDVPR page to the new TDVPX page.

February 2023 . Page 284 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

11. Increment TDR.CHLDCNT.
12. Initialize the TDVPX page metadata in PAMT.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.152: TDH.VP.ADDCX Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.VP.ADDCX is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_FINALIZED

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

TDX_TDVPX_NUM_INCORRECT

TDX_VCPU_STATE_INCORRECT

February 2023 . Page 285 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.39. TDH.VP.CREATE Leaf

Create a guest TD VCPU and its root TDVPR page.
Table 24.153: TDH.VP.CREATE Input Operands Definition

Operand Description

RAX SEAMCALL instruction leaf number — see 24.2.1

RCX The physical address of a page where TDVPR will be added (HKID bits must be 0)
RDX The physical address of the owner TDR page (HKID bits must be 0)

5 Table 24.154: TDH.VP.CREATE Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
Other Unmodified
Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.
10 TDH.VP.CREATE begins the build of a new guest TD VCPU. It adds a TDVPR page as a child of a TDR page.
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.
Table 24.155: TDH.VP.CREATE Memory Operands Information Definition
Explicit/ | Reg. Addr. Resource Resource | Access | Access Align. | Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit RCX HPA TDVPR page Blob RW Opaque 4KB Exclusive | Shared Shared
Explicit RDX HPA TDR page TDR RW Opaque 4KB Shared Shared Shared
Implicit | N/A N/A TDCS structure TDCS R Opaque 4KB Shared(i) | N/A N/A
15 In addition to the explicit memory operand checks per the table above, the function checks the following conditions:
1. The TDR page metadata in PAMT must be correct (PT must be PT_TDR).
2. TheTDis notin a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. TDCS must have been initialized (TDR.INIT is TRUE).
20 5. The TD build and measurement must not have been finalized (by TDH.MR.FINALIZE).
6. The TDVPR page metadata in PAMT must be correct (PT must be PT_NDA).
If successful, the function does the following:
7. Zero out the TDVPR page contents using direct write (MOVDIR64B).
8. Increment TDR.CHLDCNT.
25 9. Initialize the TDVPR management fields.

10. Initialize the TDVPR page metadata in PAMT.

February 2023 . Page 286 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.156: TDH.VP.CREATE Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.VP.CREATE is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_FINALIZED

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

February 2023 . Page 287 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.40. TDH.VP.ENTER Leaf

Enter TDX non-root operation.

From the host VMM'’s point of view, TDH.VP.ENTER is a complex operation that normally involves TD entry followed by a

TD exit. Therefore, input and output operands are specified by multiple tables below.

5 The following table details TDH.VP.ENTER input operands for initial entry or following a previous asynchronous TD exit.

Table 24.157: : TDH.VP.ENTER Input Operands Definition for Initial Entry or Following a Previous Asynchronous TD

Exit
Operand Description
RAX SEAMCALL instruction leaf number — see 24.2.1
RCX The physical address of the TD VCPU’s TDVPR page (HKID bits must be 0)

The following table details TDH.VP.ENTER input operands for following a previous synchronous TD exit.

10 Table 24.158: TDH.VP.ENTER Input Operands Definition Following a Previous TDCALL(TDG.VP.VMCALL)
Operand Description
RAX SEAMCALL instruction leaf number —see 24.2.1
RCX The physical address of the TD VCPU’s TDVPR page
RBX, RDX, If the corresponding bit of RCX at the previous TD exit (i.e., previous TDH.VP.ENTER termination)
RBP, RDI, was set to 1, the register value is passed as-is to the guest TD — see the description of
RSI, TDG.VP.VMCALL in 24.3.10 for details.
R8 —R15 Else, the register value is not used as an input.
XMMO - If the corresponding bit of RCX at the previous TD exit (i.e., previous TDH.VP.ENTER termination)
XMM15 was set to 1, the register value is passed as-is to the guest TD — see the description of

TDG.VP.VMCALL in 24.3.10 for details.

Else, the register value is not used as an input.

The following table details TDH.VP.ENTER output operands when an error occurs, and the interface function returns

without entering the TD.

Table 24.159: TDH.VP.ENTER Output Operands Definition on Error (No TD Entry)

Operand Description
RAX SEAMCALL instruction return code — see 19.3.2
Other Unmodified
GPRs
Extended Any extended state that the TD is allowed to use (per TDCS.XFAM) may be cleared to its
State architectural INIT state.
15
February 2023 Page 288 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

The following table details TDH.VP.ENTER output operands on when TD entry succeeds, and later an asynchronous TD
exit occurs due to a VMX architectural exit reason.

Table 24.160: TDH.VP.ENTER Output Operands Definition on Asynchronous TD Exits Following a TD Entry

Operand TD Exit Description
Information
RAX Status and SEAMCALL instruction return code —see 19.3.2
Exit Reason Note the special values of the DETAILS_L1 field in bits 39:32 which indicate that
the VCPU or the whole TD is corrupt and cannot be re-entered:
e TDX_NON_RECOVERABLE_VCPU
e TDX_NON_RECOVERABLE_TD
The DETAILS_L2 field in bits 31:0 contain the VMCS exit reason.
RCX Exit Format is similar to the VMCS exit qualification.
Qualification | when exit is due to EPT violation, bits 12-7 of the exit qualification are cleared to
0.
RDX Extended Exit | Additional non-VMX, TDX-specific information —see 22.5.1
Qualification
R8 Guest When exit is due to EPT violation or EPT misconfiguration, format is similar to the
Physical VMCS guest-physical address, except that bits 11:0 are cleared to 0.
Address In other cases, R8 is cleared to 0.
R9 VM-Exit When exit is due to a vectored event, format of bits 31:0 is similar to the VMCS
Interruption VM-exit interruption information. Bits 63:32 are cleared to 0.
Information In other cases, R9 is cleared to 0.
RBX, RSI, None Cleared to 0
RDI, R10 —
R15
Extended Any extended state that the TD is allowed to use (per TDCS.XFAM) is cleared to its architectural
State INIT state.

5 The following table details TDH.VP.ENTER output operands on when TD entry succeeds, and later a synchronous TD exit,
triggered by TDG.VP.VMCALL, occurs.

Table 24.161: TDH.VP.ENTER Output Operands Definition on TDCALL(TDG.VP.VMCALL) Following a TD Entry

Operand Description
RAX SEAMCALL instruction return code —see 19.3.2

The DETAILS_L2 field in bits 31:0 contain the VMCS exit reason, indicating TDCALL (77).
RCX Value as passed in to TDCALL(TDG.VP.VMCALL) by the guest TD: indicates which part of

the guest TD GPR and XMM state is passed as-is to the VMM and back. For details, see the
description of TDG.VP.VMCALL in 24.3.10.

RBX, RDX, RBP,

If the corresponding bit in RCX is set to 1, the register value is passed as-is from the guest

RDI, RSI, TD’s input to TDG.VP.VMCALL.

R8-R15 Else, the register value cleared to 0.

XMMO — If the corresponding bit in RCX is set to 1, the register value is passed as-is from the guest
XMM15 TD’s input to TDG.VP.VMCALL.

Else, the register value cleared to 0.

Extended State
except XMM

Any extended state, except XMM, that the TD is allowed to use (per TDCS.XFAM) is cleared
to its architectural INIT state.

February 2023

Page 289 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

CPU State Preservation Following a Successful TD Entry and a TD Exit

Following a successful TD entry and a TD exit, some CPU state is modified:

e Registers CR2, DRO, DR1, DR2, DR3, DR6 and DR7 are set to their architectural INIT value.
e XCROis set to the TD’s user-mode feature bits of XFAM (bits 7:0, 9).

e Multiple MSRs are set as described in Table 24.162 below. In this table, Init(condition) means that the MSR is set to
its INIT value if the condition is true, else the MSR is unmodified.

Table 24.162: MSRs that may be Modified by TDH.VP.ENTER

MSR Index Range (Hex)

First (H) Last (H) Size (H) | MSR Architectural Name MBSR Value after TDH.VP.ENTER

0x00C1 0x00C8 0x8 | 1A32_PMCx Implicit (via IA32_A_PMCx):
Init(PERFMON)

Ox00E1 Ox00E1 Ox1 | 1A32_UMWAIT_CONTROL Init(virt. CPUID(7,0).ECX[5])

0x0122 0x0122 Ox1 | 1A32_TSX_CTRL Init(virt. TSX enabled)

0x0186 0x018D 0x8 | 1A32_PERFEVTSELx Init(PERFMON)

0x01A6 0x01A7 0x2 | MSR_OFFCORE_RSPx Init(PERFMON)

0x01C4 0x01C4 0x1 | IA32_XFD Init(virt. CPUID(0xD,0x1).EAX[4])

0x01C5 0x01C5 0x1 | 1A32_XFD_ERR Init(virt. CPUID(0xD,0x1).EAX[4])

0x01D9 0x01D9 Ox1 | 1A32_DEBUGCTL INIT, except for the following bits which are preserved:
Bit 1 (BTF)
Bit 12 (FREEZE_PERFMON_ON_PMI)
Bit 14 (FREEZE_ WHILE_SMM)

0x0309 0x030C 0x4 | 1A32_FIXED_CTRx Init(PERFMON)

0x0329 0x0329 Ox1 | 1A32_PERF_METRICS Init(PERFMON)

0x038D 0x038D 0x1 | I1A32_FIXED_CTR_CTRL Init(PERFMON)

0x038E 0x038E 0x1 | I1A32_PERF_GLOBAL_STATUS Init(PERFMON)

0x038F 0x038F Ox1 | IA32_PERF_GLOBAL_CTRL Init(PERFMON)

0x03F1 0x03F1 Ox1 | IA32_PEBS_ENABLE Init(PERFMON)

0x03F2 0x03F2 Ox1 | MSR_PEBS_DATA_CFG Init(PERFMON)

0x03F6 0x03F6 Ox1 | MSR_PEBS_LD_LAT Init(PERFMON)

0x03F7 0x03F7 Ox1 | MSR_PEBS_FRONTEND Init(PERFMON)

0x04C1 0x04C8 0x8 | 1A32_A_PMCx Init(PERFMON)

0x0560 0x0560 0x1 | I1A32_RTIT_OUTPUT_BASE Init(XFAM(8))

0x0561 0x0561 Ox1 | 1A32_RTIT_OUTPUT_MASK_PTRS Init(XFAM(8))

0x0570 0x0570 Ox1 | 1A32_RTIT_CTL Init(XFAM(8))

0x0571 0x0571 Ox1 | 1A32_RTIT_STATUS Init(XFAM(8))

0x0572 0x0572 Ox1 | 1A32_RTIT_CR3_MATCH Init(XFAM(8))

0x0580 0x0580 0x1 | 1A32_RTIT_ADDRO_A Init(XFAM(8))

0x0581 0x0581 0x1 | I1A32_RTIT_ADDRO_B Init(XFAM(8))

0x0582 0x0582 0x1 | IA32_RTIT_ADDR1_A Init(XFAM(8))

0x0583 0x0583 Ox1 | I1A32_RTIT_ADDR1_B Init(XFAM(8))

0x0584 0x0584 Ox1 | I1A32_RTIT_ADDR2_A Init(XFAM(8))

0x0585 0x0585 Ox1 | I1A32_RTIT_ADDR2_B Init(XFAM(8))

0x0586 0x0586 Ox1 | 1A32_RTIT_ADDR3_A Init(XFAM(8))

0x0587 0x0587 0x1 | 1A32_RTIT_ADDR3_B Init(XFAM(8))

0x06A0 0x06A0 0x1 | I1A32_U_CET Init(XFAM[11] | XFAM[12])

0x06A4 0x06A4 0x1 | I1A32_PLO_SSP Init(XFAM[11] | XFAM[12])

0x06A5 0x06A5 0x1 | 1A32_PL1_SSP Init(XFAM[11] | XFAM[12])

0x06A6 0x06A6 0x1 | 1A32_PL2_SSP Init(XFAM[11] | XFAM[12])

0x06A7 0x06A7 0x1 | 1A32_PL3_SSP Init(XFAM[11] | XFAM[12])

0x0985 0x0985 Ox1 | 1A32_UINTR_RR Init(XFAM[14])

0x0986 0x0986 0x1 | IA32_UINTR_HANDLER Init(XFAM[14])

0x0987 0x0987 0x1 | IA32_UINTR_STACKADJUST Init(XFAM[14])

0x0988 0x0988 0x1 | IA32_UINTR_MISC Init(XFAM[14])

0x0989 0x0989 0x1 | IA32_UINTR_PD Init(XFAM[14])

0x098A 0x098A Ox1 | I1A32_UINTR_TT Init(XFAM[14])

0xO0DAO 0xODAO 0x1 | IA32_XSS Supervisor-mode feature bits of XFAM (bits 8, 16:10)

0x1200 Ox12FF 0x100 | IA32_LBR_INFO Init(XFAM[15])

0x14CE 0x14CE Ox1 | I1A32_LBR_CTL Init(XFAM[15])

0x14CF 0x14CF Ox1 | I1A32_LBR_DEPTH Init(XFAM[15])

0x1500 Ox15FF | 0x100 | 1A32_LBR_FROM_IP Init(XFAM[15])

0x1600 Ox16FF | 0x100 | 1A32_LBR_TO_IP Init(XFAM[15])

February 2023

Page 290 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

MSR Index Range (Hex)
First (H) Last (H) Size (H) | MSR Architectural Name MBSR Value after TDH.VP.ENTER
0xC0000081 | 0xC0000081 Ox1 | I1A32_STAR INIT
0xC0000082 | 0xC0000082 Ox1 | IA32_LSTAR INIT
0xC0000084 | 0xC0000084 Ox1 | 1A32_FMASK INIT
0xC0000102 | 0xC0000102 Ox1 | 1A32_KERNEL_GS_BASE INIT
0xC0000103 | 0xC0000103 Ox1 | 1A32_TSC_AUX INIT

Special Environment Requirements

The value read from IA32_TSC_ADJUST MSR must be the same as it was during TDH.SYS.INIT.

Leaf Function Latency

5 In some cases (e.g., suspected single/zero step attack mitigation), TDH.VP.ENTER execution time may be longer than most
TDX module interface functions execution time. No interrupts (including NMI and SMI) are processed by the logical
processor during that time.

Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
10 vary.
TDH.VP.ENTER enters TDX non-root operation.
VCPU Association: TDH.VP.ENTER associates the target TD VCPU with the current LP. This requires that the VCPU will
not be associated with another LP. For details, see 12.3.
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
15 functions.
Table 24.163: TDH.VP.ENTER Memory Operands Information Definition
Explicit/ | Reg. | Addr. | Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand Contain. | Contain.
2MB 1GB
Explicit | RCX | HPA | TDVPR page TDVPS RW Opaque 4KB Shared®3 Shared®® | Shared!3
Implicit | N/A | HPA | TDR page TDR RW Opaque N/A Shared?!3 N/A N/A
Implicit | N/A | N/A | TDCS structure | TDCS RW Opaque N/A Shared(i)'3 | N/A N/A
Implicit | N/A | N/A TDCS TLB N/A RW Opaque N/A Shared®* N/A N/A
Tracking Fields
Implicit | N/A | N/A SEPT tree N/A R Opaque N/A Exclusive® | N/A N/A

20

In addition to the explicit memory operand checks per the table above, the function checks the following conditions:

The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR).

The TD is not in a FATAL state (TDR.FATAL is FALSE).

The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
TDCS must have been initialized (TDR.INIT is TRUE).

The TD build and measurement must have been finalized (by TDH.MR.FINALIZE).

vkhwNE

13 The shared locking of TDVPS, TDR and TDCS (but not the TDCS epoch tracking fields) is for the whole duration of running in TDX non-
root mode; the locks are released on TD exit.

14 The locking of SEPT tree and the TLB tracking fields is until before entering TDX non-root mode; the locks are released before VM
entry into the TD VCPU.

February 2023 Page 291 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

20

25

30

35

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

If successful, the function does the following:

6. Associate the VCPU with the current LP and update TD VMCS.
6.1. Check that the VCPU has been initialized and is not being torn down.
6.2. Atomically check that the VCPU is not associated with another LP, and associate it with the current LP.
6.3. Ifthe TD’s ephemeral HKID has changed since last VM entry, update all TD VMCS physical pointers and the TD
HKID execution control.
6.4. Update the TD VMCS host state fields with any Intel TDX module LP-specific values.

If passed:

7. Ifthe TD VCPU to be entered is different than the last TD VCPU entered on the current LP, issue an indirect branch
prediction barrier command to the CPU by writing to the IA32_PRED_CMD MSR with the IBPB bit set.

8. Update the TLB tracking state. This is done as a critical section allowing concurrent TDH.VP.ENTERs but no concurrent
TDH.MEM.TRACK. A concurrent TDH.MEM.TRACK may cause this locking to fail; in this case, the caller is expected
to retry TDH.VP.ENTER.

8.1. Lock the TDCS epoch tracking fields in shared mode.

8.2. Sample the TD’s epoch counter (TDCS.TD_EPOCH) into the VCPU’s TDVPS.VCPU_EPOCH.

8.3. Atomically increment the TD’s REFCOUNT that is associated with the sampled epoch
(TDCS.REFCOUNT[TD_EPOCH % 2]).

8.4. Release the shared mode locking of the epoch tracking fields.

If successful:

9. Set TDVPS.VCPU_STATE to VCPU_ACTIVE.
10. Restore guest TD state:
10.1. If previous TD exit was due to a TDG.VP.VMCALL:
10.1.1. Restore guest XMM and GPR state that is not passed as-is from the host VMM, as controlled by the
value of guest TD RCX input to TDG.VP.VMCALL.
10.1.2. Set guest RAX to 0.
10.2. Else (TD exit was an asynchronous exit):
10.2.1. Restore CPU extended state from TDVPS (per TDCS.XFAM).
10.3. Restore other guest state from TDVPS.
11. Execute VMLAUNCH or VMRESUME depending on whether this VCPU has been launched on this LP since its last
association with the LP (TVPS.VMLAUNCH).

Note: Logically, from the point of view of the host VMM, a successful TDH.VP.ENTER is terminated by the next TD exit.

Completion Status Codes

In case of successful execution (which resulted in the TD guest running and then exiting), the status code value in RAX is
encoded the same as the VMX Exit reason — see 19.3.2 for details.

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.164: TDH.VP.ENTER Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_BOOT_NT4_SET

TDX_INCONSISTENT_MSR

Specifically, IA32_TSC_ADJUST MSR value must be the same as
sampled by TDH.SYS.INIT.

TDX_NON_RECOVERABLE_TD

TDH.VP.ENTER launched or resumed TD VCPU operation (TDX
non-root mode) — followed later by a TD exit. The TD state is non-
recoverable — further TD entry is prohibited. Exit reason is in RAX
bits 31:0.

TDX_NON_RECOVERABLE_TD_FATAL

TDH.VP.ENTER launched or resumed TD VCPU operation (TDX
non-root mode) — followed later by a TD exit. The TD state is non-
recoverable — further TD entry is prohibited, and TD private
memory can’t be accessed. Exit reason is in RAX bits 31:0.

February 2023

Page 292 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Code

Description

TDX_NON_RECOVERABLE_TD_WRONG_APIC_MODE

The host VMM is running with local APIC mode is not supported
for TD operation — further TD entry is prohibited. TDH.VP.ENTER
launched or resumed TD VCPU operation (TDX non-root mode) —
followed later by a TD exit. The. Exit reason is in RAX bits 31:0.

TDX_NON_RECOVERABLE_VCPU

TDH.VP.ENTER launched or resumed TD VCPU operation (TDX
non-root mode) — followed later by a TD exit. The TD VCPU state
is non-recoverable — further TD entry to this VCPU is prohibited.
Exit reason is in RAX bits 31:0.

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower 32
bits of the status. In many cases, this can be resolved by retrying
the operation.

Note the special case where the indicated operand is TLB_EPOCH.
This may happen due to a conflict with TDH.MEM.TRACK. The
host VMM should retry TDH.VP.ENTER.

Another special case is where the indicated operand is SEPT. In
some cases, TDH.VP.ENTER may acquire exclusive access on the
SEPT tree for a short period of time, and may fail due to a
concurrent operation . The host VMM should retry
TDH.VP.ENTER.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDH.VP.ENTER launched or resumed TD VCPU operation (TDX
non-root mode) — followed later by a TD exit. Exit reason is in
RAX bits 31:0.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_FINALIZED

TDX_TD_NOT_INITIALIZED

TDX_TDVPX_NUM_INCORRECT

TDX_TSC_ROLLBACK

TDX_VCPU_ASSOCIATED

TDX_VCPU_STATE_INCORRECT

February 2023

Page 293 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.41. TDH.VP.FLUSH Leaf

Flush the address translation caches and cached TD VMCS associated with a TD VCPU on the current logical processor.

Table 24.165: TDH.VP.FLUSH Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number —see 24.2.1
RCX The physical address of a TDVPR page (HKID bits must be 0)

5 Table 24.166: TDH.VP.FLUSH Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
Other Unmodified
Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.
10 TDH.VP.FLUSH flushes the address translation caches and cached TD VMCS associated with a TD VCPU on the current LP.
It then marks the VCPU as not associated with any LP.
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.
Table 24.167: TDH.VP.FLUSH Memory Operands Information Definition
Explicit/ | Reg. Addr. | Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit RCX HPA TDVPR page TDVPS RW Opaque 4KB Exclusive | Shared Shared
Implicit | N/A HPA TDR page TDR R Opaque N/A Shared N/A N/A
Implicit | N/A N/A TDCS structure | TDCS RW Opaque N/A Shared(i) | N/A N/A
15
In addition to the memory operand checks per the table above, the function checks the following:
1. The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR).
2. TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED.
3. The current VCPU must be currently associated with the current LP.
20 If the above checks pass, the function does the following:
4. Flush the TLB context and extended paging structure (EPXE) caches associated with the TD using INVEPT single-
context invalidation (type 1).
5. Flush the cached TD VMCS content to TDVPS using VMCLEAR.
6. Mark the current VCPU as not associated with any LP.
25 7. Atomically decrement (using LOCK XADD) the associated VCPUs counter (TDCS.NUM_ASSOC_VCPUS).

February 2023 . Page 294 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.168: TDH.VP.FLUSH Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.VP.FLUSH is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDVPX_NUM_INCORRECT

TDX_VCPU_NOT_ASSOCIATED

February 2023 . Page 295 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

20

25

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.42. TDH.VP.INIT Leaf

Initialize the saved state of a TD VCPU.

Operands
Table 24.169: TDH.VP.INIT Input Operands Definition
Operand Description
RAX SEAMCALL instruction leaf number — see 24.2.1
RCX The physical address of a TDVPR page (HKID bits must be 0)
RDX Initial value of the guest TD VCPU RCX
Table 24.170: TDH.VP.INIT Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
Other Unmodified

Leaf Function Latency

TDH.VP.INIT execution time may be longer than most TDX module interface functions execution time. No interrupts
(including NMI and SMI) are processed by the logical processor during that time.

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may

vary.
TDH.VP.INIT initialized the saved state of a VCPU in the TDVPR and TDPX pages.
VCPU Association: TDH.VP.INIT associates the target TD VCPU with the current LP — for details, see 12.3.

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.

Table 24.171: TDH.VP.INIT Memory Operands Information Definition

Explicit/ | Reg. Addr. Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit RCX HPA TDVPR page | TDVPS RW Opaque 4KB Exclusive | Shared Shared
Implicit | N/A HPA TDR page TDR R Opaque 4KB Shared N/A N/A
Implicit | N/A N/A TDCS TDCS RW Opaque 4KB Shared(i) | N/A N/A
structure

In addition to the memory operand checks per the table above, the function checks the following:

The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR).

The TD is not in a FATAL state (TDR.FATAL is FALSE).

The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).

The TD build and measurement must not have been finalized (by TDH.MR.FINALIZE).

The TD VCPU has not been initialized (by TDH.VP.INIT) and is not being torn down (TDVPS.STATE is
VCPU_UNINITIALIZED).

6. The number of TDVPX pages associated with the TDVPR page is correct.

ukhwNe

February 2023 Page 296 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

7. Atomically Increment the TD’s VCPU counter (TDCS.NUM_VCPUS), and check that maximum number of VCPUs
(TDCS.MAX_VCPUS) has not been exceeded.

If successful, the function does the following:

8. Assign a unique sequential identifier to the VCPU.

9. Initialize the VCPU state fields in the logical TDVPS structure (TDVPR and TDVPX pages).

10. Set the VCPU state VCPU_READY_ASYNC since the first TD entry is the same as TD entry following an asynchronous
TD exit.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.172: TDH.VP.INIT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_INCONSISTENT_MSR Specifically, IA32_TSC_ADJUST MSR value must be the same
as sampled by TDH.SYS.INIT.

TDX_MAX_VCPUS_EXCEEDED

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.VP.INIT is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_FINALIZED

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TDVPX_NUM_INCORRECT

TDX_VCPU_STATE_INCORRECT

February 2023 . Page 297 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.43. TDH.VP.RD Leaf

Read a TDVPS field.
Table 24.173: TDH.VP.RD Input Operands Definition

Operand Description
RAX SEAMCALL instruction leaf number —see 24.2.1
RCX The physical address of a TDVPR page (HKID bits must be 0)
RDX Field code —see 22.8.3
5 Table 24.174: TDH.VP.RD Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
R8 Field content
In case of an error, as indicated by RAX, R8 returns 0
Other Unmodified
Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.
10 TDH.VP.RD reads a TDVPS field, given its field code. Reading is subject to the field’s readability (per the TD’s
ATTRIBUTES.DEBUG bit).
VCPU Association: TDH.VP.RD associates the target TD VCPU with the current LP. This requires that the VCPU will not
be associated with another LP — for details, see 12.3.
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
15 functions.
Table 24.175: TDH.VP.RD Memory Operands Information Definition
Explicit/ | Reg. Addr. Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MB 1GB
Explicit RCX HPA TDVPR page TDVPS RW Opaque 4KB Shared Shared Shared
Implicit | N/A HPA TDR page TDR R Opaque N/A Shared N/A N/A
Implicit | N/A N/A TDCS structure | TDCS RW Opaque N/A Shared(i) | N/A N/A
In addition to the memory operand checks per the table above, the function checks the following:
1. The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR).
20 2. TheTDis notin a FATAL state (TDR.FATAL is FALSE).
3. The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
4. The TD has been initialized (by TDH.MNG.INIT).
5. The provided field code is valid.
6. The provided TDVPS field is readable per the TD’s debug attribute (TDCS.ATTRIBUTES.DEBUG).
February 2023 Page 298 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

If successful, the function does the following:

7. Associate the VCPU with the current LP, and update TD VMCS.
7.1. Check that the VCPU has been initialized and is not being torn down.
7.2. Atomically check that the VCPU is not associated with another LP, and associate it with the current LP.
7.3. If the TD’s ephemeral HKID has changed since last VM entry, update all TD VMCS physical pointers and the TD
HKID execution control.
7.4. Update the TD VMCS host state fields with any Intel TDX module LP-specific values.

If passed:

8. Derive the field attributes (read mask, VMCS field code or offset in TDVPS) from the field code provided in RDX per
the TD’s ATTRIBUTE.DEBUG. If the read mask is 0, then fail; the field in not readable.

If passed:

9. Read the field value (VMREAD from TD VMCS, directly from other TDVPS areas).
10. Mask out the field value with the read mask derived earlier and return in RS8.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.176: TDH.VP.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_FIELD_NOT_READABLE

TDX_OPERAND_ADDR_RANGE_ERROR

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS TDH.VP.RD is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

TDX_TDVPX_NUM_INCORRECT

TDX_VCPU_ASSOCIATED

TDX_VCPU_STATE_INCORRECT

February 2023 . Page 299 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.2.44. TDH.VP.WR Leaf

Write a TDVPS field.
Table 24.177: TDH.VP.WR Input Operands Definition
Operand Description
RAX SEAMCALL instruction leaf number —see 24.2.1
RCX The physical address of a TDVPR page (HKID bits must be 0)
RDX Field code —see 22.8.3
R8 64b value to write to the field
R9 64b mask to indicate which bits of the value in R8 are to be written to the field
5 Table 24.178: TDH.VP.WR Output Operands Definition
Operand Description
RAX SEAMCALL instruction return code —see 24.2.1
R8 Previous content of the field
In case of an error, as indicated by RAX, R8 returns 0
Other Unmodified
Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

10 TDH.VP.WR writes a TDVPS field, given its field code. The specific bits of the value (R8) are written as specified by the
write mask (R9). Writing is subject to the field’s writability (per the TD’s ATTRIBUTES.DEBUG bit). Writing of specific
fields is also subject to additional rules as detailed in 23.2.

TDH.VP.WR returns the previous content of the field masked by the field’s readability (per the TD’s ATTRIBUTES.DEBUG
bit).

15 VCPU Association: TDH.VP.WR associates the target TD VCPU with the current LP. This requires that the VCPU will not

be associated with another LP — for details, see 12.3.
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.
Table 24.179: TDH.VP.WR Memory Operands Information Definition
Explicit/ | Reg. Addr. Resource Resource | Access | Access Align. Concurrency Restrictions
Implicit Type Type Semantics | Check
Operand | Contain. | Contain.
2MMB 1GB

Explicit RCX HPA TDVPR page TDVPS RW Opaque 4KB Shared Shared Shared
Implicit | N/A HPA TDR page TDR R Opaque N/A Shared N/A N/A
Implicit | N/A N/A TDCS structure | TDCS RW Opaque N/A Shared(i) | N/A N/A

20
In addition to the memory operand checks per the table above, the function checks the following:

1. The TDVPR page metadata in PAMT must be correct (PT must be PT_TDVPR).
February 2023 Page 300 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

20

25

30

35

40

45

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

The TD is not in a FATAL state (TDR.FATAL is FALSE).

The TD keys are configured on the hardware (TDR.LIFECYCLE_STATE is TD_KEYS_CONFIGURED).
TDCS must have been initialized (TDR.INIT is TRUE).

The provided field code is valid.

The provided TDVPS field is writable per the TD’s debug attribute (TDCS.ATTRIBUTES.DEBUG).

oukwnN

=

successful, the function does the following:

7. Associate the VCPU with the current LP and update TD VMCS.
7.1. Check that the VCPU has been initialized and is not being torn down.
7.2. Atomically check that the VCPU is not associated with another LP, and associate it with the current LP.
7.3. If the TD’s ephemeral HKID has changed since last VM entry, update all TD VMCS physical pointers and the TD
HKID execution control.
7.4. Update the TD VMCS host state fields with any Intel TDX module LP-specific values.

If passed:

8. Derive the field attributes (read mask, write mask, VMCS field code or offset in TDVPS) from the field code provided
in RDX per the TD’s ATTRIBUTE.DEBUG.

If passed:

9. Derive the effective write mask by bitwise-anding the write mask derived above with the write mask provided in R9.
If the effective write mask is 0, then fail; the field in not writable.

If passed:

10. Read the field value. For a TD VMCS field, use VMREAD. For other fields, read directly from the TDVPS.
11. Update the field value from the input value in R8, per the effective write mask, and write the field (use VMWRITE to
write TD VMCS, write directly to other TDVPS areas).

11.1. Writes of some fields are subject to rules, as detailed per field in 23.2 — e.g., the value of fields that contain
Shared physical address, such as the Shared EPT Pointer, must have a Shared HKID value and must comply with
some alignment rules.

11.2.In most cases, writes of guest state fields are subject to the same rules as if the write is done by the guest itself
—e.g., writing to guest CR4 is subject to the rules described in 13.6.2. If the write operation is illegal, TDH.VP.WR
fails and returns a proper error code.

11.3.In debug mode (ATTRIBUTES.DEBUG == 1), there are some TDVPS fields where the TDH.VP.WR does not check
whether the written values are architecturally valid. It is the responsibility of the host VMM, and failing to do
so will later cause a VM entry failure leading to a fatal shutdown of the Intel TDX module. The security of any
guest TD is not impacted.

11.4.n other cases, in debug mode (ATTRIBUTES.DEBUG == 1), TDH.VP.WR allows setting of TDVPS fields to values
that may impact the correct operation of the TD under debug. It is the responsibility of the host VMM to take
this into consideration.

e TDH.VP.WR is allowed to enable BTM by setting guest IA32_DEBUGCTL[7:6] to Ox1 (see 16.1.3).

e TDH.VP.WR is allowed to modify the state of IA32_DEBUCTL[13] (ENABLE_UNCORE_PMI) (see 16.1.2.2).

e TDH.VP.WR is allowed to enable VM exits on exceptions other than MCE by setting the TD VMCS exception
bitmap execution control. The Intel TDX module does not take this into account when handling VM exits
that occur during event delivery.

If passed:

12. Mask out the previous field value with the read mask derived earlier, and return in R8.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.180: TDH.VP.WR Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_FIELD_NOT_WRITABLE

TDX_OPERAND_ADDR_RANGE_ERROR

February 2023 . Page 301 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Code

Description

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_OPERAND_PAGE_METADATA_INCORRECT

TDX_SUCCESS

TDH.VP.WR is successful.

TDX_SYS_NOT_READY

TDX_SYS_SHUTDOWN

TDX_TD_FATAL

TDX_TD_KEYS_NOT_CONFIGURED

TDX_TD_NOT_INITIALIZED

TDX_TD_VMCS_FIELD_NOT_INITIALIZED

TDX_TDVPX_NUM_INCORRECT

TDX_VCPU_ASSOCIATED

TDX_VCPU_STATE_INCORRECT

February 2023

Page 302 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

20

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.3. Guest-Side (TDCALL) Interface Functions

The TDCALL instruction causes a VM exit to the Intel TDX module. It is used to call guest-side Intel TDX functions, either
local or a TD exit to the host VMM, as selected by RAX.

24.3.1. TDCALL Instruction (Common)

This section describes the common functionality of TDCALL. Leaf functions are described in the following sections. As
used by the Intel TDX module, TDCALL is allowed only in 64b mode.

Table 24.181: TDCALL Input Operands Definition

Operand Description
RAX Leaf number —see Table 24.183 below.
Other See individual TDCALL leaf functions.
Table 24.182: TDCALL Output Operands Definition
Operand Description
RAX Instruction return code, indicating the outcome of execution of the instruction — see 19.3.2 for
details.
Other See individual TDCALL leaf functions.

Table 24.183: TDCALL Instruction Leaf Numbers Definition

Leaf Number Interface Function Name

0 TDG.VP.VMCALL

1 TDG.VP.INFO

TDG.MR.RTMR.EXTEND

TDG.VP.VEINFO.GET

TDG.MR.REPORT

TDG.VP.CPUIDVE.SET

TDG.MEM.PAGE.ACCEPT

TDG.VM.RD

0| N~ wWw N

TDG.VM.WR

Instruction Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

This section describes how TDCALL leaf functions are implemented by the Intel TDX module.
On VM exit, the Intel TDX module performs the following checks:

1. If the CPU mode is not 64b ((IA32_EFER.LMA == 1) && (CS.L == 1)), the Intel TDX module injects a #GP(0) fault into
the guest TD.

2. If the leaf number in RAX is not supported by the Intel TDX module, it returns a TDX_OPERAND_INVALID(0) status
code in RAX.

If all checks pass, the Intel TDX module calls the leaf function according to the leaf number in RAX — see the following
sections for individual leaf function details.

February 2023 . Page 303 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.184: TDCALL Completion Status Codes (Returned in RAX) Definition

Completion Status Code | Description

TDX_SUCCESS TDCALL is successful.

TDX_OPERAND_INVALID | lllegal leaf number

Other See individual leaf functions

February 2023 . Page 304 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.3.2. TDG.MEM.PAGE.ACCEPT Leaf

Accept a pending private page, and initialize the page to all-0 using the TD ephemeral private key.

Table 24.185: TDG.MEM.PAGE.ACCEPT Input Operands Definition

Operand Description
RAX TDCALL instruction leaf number — see 24.3.1
RCX EPT mapping information:
Bits Name Description
2:0 Level Level of the Secure EPT entry that maps the private page to be
accepted: either 0 (4KB) or 1 (2MB) —see 22.4.1.
11:3 Reserved Reserved: must be 0
51:12 | GPA Bits 51:12 of the guest physical address of the private page to be
removed
63:52 | Reserved Reserved: must be 0

5 Table 24.186: TDG.MEM.PAGE.ACCEPT Output Operands Definition
Operand Description
RAX TDCALL instruction return code — see 24.3.1
Other Unmodified
Leaf Function Description
Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.
10 Accept a pending private page, previously added by TDH.MEM.PAGE.AUG, into the TD. Initialize the page to 0.
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.
Table 24.187 TDG.MEM.PAGE.ACCEPT Memory Operands Information Definition
Explicit/ Reg. Addr. Resource Resource Access | Access Align. Concurrency
Implicit Type Type Semantics | Check Restrictions
Explicit RCX GPA TD private page Blob RW Private 212+9%Level | None
Bytes
Implicit N/A N/A TDR page TDR None Opaque N/A Shared
Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)
Implicit N/A N/A TDVPS structure TDVPS RW Opaque N/A Shared
Implicit N/A N/A Secure EPT tree N/A RW Private N/A None
Implicit N/A GPA Secure EPT entry SEPT Entry RW Private N/A Exclusive®®,
Transaction

15 Guest-side only

February 2023

Page 305 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

20

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

TDG.MEM.PAGE.ACCEPT checks the memory operands per the table above when applicable during its flow. The text
below does not explicitly mention those checks, except when necessary.

In addition to the memory operand checks per the table above, the function does the following (no specific order is
implied):

1. Walkthe Secure EPT based on the GPA operand and requested level. The walk is successful if arrived at a leaf entry
whose state is SEPT_PENDING. In case of error, return a status code or TD exit as described in Table 11.3.

If successful, do the following:

2. Loop until the whole page has been initialized, or until interrupted:
2.1. Initialize the next 4KB chunk to 0 using the TD’s ephemeral private HKID and direct writes (MOVDIR64B).
2.2. If not done and there is a pending interrupt, abort TDG.MEM.PAGE.ACCEPT and resume the guest TD without
updating RIP and any GPR.

If done initializing the page, do the following:

3. Atomically (using LOCK CMPXCHG), check that the entry state is still SEPT_PENDING, and set it to SEPT_PRESENT.
3.1. If failed (a concurrent host-side function may have changed the Secure EPT entry state), do a TD exit with an
EPT Violation exit reason and a NOT_PENDING indication in the extended exit qualification.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.188: TDG.MEM.PAGE.ACCEPT Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the lower 32 bits of
the status. In many cases, this can be resolved by retrying the operation.

Specifically, it may indicate that a concurrent TDG.MEM.PAGE.ACCEPT is
using the same Secure EPT entry

TDX_PAGE_ALREADY_ACCEPTED

TDX_PAGE_SIZE_MISMATCH Requested page size is 2MB, but the page GPA is not mapped at 2MB size

TDX_SUCCESS TDG.MEM.PAGE.ACCEPT is successful.

February 2023 . Page 306 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

20

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.3.3. TDG.MR.REPORT Leaf

TDG.MR.REPORT creates a TDREPORT_STRUCT structure that contains the measurements/configuration information of
the guest TD that called the function, measurements/configuration information of the Intel TDX module and a
REPORTMACSTRUCT.

Table 24.189: TDG.MR.REPORT Input Operands Definition

Operand Description
RAX TDCALL instruction leaf number — see 24.3.1
RCX 1024B-aligned guest physical address of newly created report structure
RDX 64B-aligned guest physical address of additional data to be signed
R8 Bits Name Description

7:0 Report sub type | Must be 0

63:8 | Reserved Reserved: must be 0

Table 24.190: TDG.MR.REPORT Output Operands Definition

Operand Description
RAX TDCALL instruction return code — see 24.3.1
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

This function creates a TDREPORT_STRUCT structure that contains the measurements/configuration information of the
guest TD that called the function, measurements/configuration information of the Intel TDX module and a
REPORTMACSTRUCT. The REPORTMACSTRUCT is integrity-protected with a MAC, and it contains the hash of the
measurements and configuration as well as additional REPORTDATA provided by the TD software.

Additional REPORTDATA, a 64-byte value, is provided by the guest TD to be included in the TDG.MR.REPORT.

Note: Although not enforced by TDG.MR.REPORT, the guest TD should normally place REPORTDATA in private memory
to help ensure secure report generation.

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.

Table 24.191: TDG.MR.REPORT Memory Operands Information Definition

Explicit/ | Reg. | Addr. | Resource Resource Type Access Access Align. Concurrency

Implicit Type Semantics | Check Restrictions

Explicit RCX | GPA Output report TDREPORT_STRUCT RW Private/ 10248B None
Shared

Explicit RDX | GPA Input report data REPORTDATA R Private/ 64B None
Shared

Implicit N/A | N/A TDR page TDR None Opaque N/A Shared

Implicit N/A | N/A TDCS structure TDCS R Opaque N/A Shared(i)

Implicit N/A | N/A TDCS.RTMR SHA384_HASH N/A Opaque N/A Shared

February 2023 Page 307 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Explicit/ | Reg. | Addr. | Resource Resource Type Access | Access Align. Concurrency
Implicit Type Semantics | Check Restrictions
Implicit N/A | N/A TDVPS structure TDVPS None Opaque N/A Shared

In addition to the memory operand checks per the table above, the function checks the following conditions (no specific

order is implied):

1. R8 must specify report sub type 0.

If passed, the function does the following:

2. Assemble a report type structure based on the report sub type provided in R8.

3. Assemble the output report’s TDG.VP.INFO fields from the TDCS reported fields (ATTRIBUTES, XFAM, MRTD,
MRCONFIGID, MROWNER, MROWNERCONFIG and RTMRs).

4. Calculate a SHA384 hash over TDG.VP.INFO.

5. Execute SEAMREPORT to complete the output report, based on the input report data, the TDG.VP.INFO hash
calculated above and the report type structure.

6. Write the output report to memory.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of

completion status code, see 21.1.

Table 24.192: TDG.MR.REPORT Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the lower 32 bits of
the status. In many cases, this can be resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_SUCCESS

TDG.MR.REPORT is successful.

February 2023

Page 308 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

20

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.3.4. TDG.MR.RTMR.EXTEND Leaf

Extend a TDCS.RTMR measurement register.
Table 24.193: TDG.MR.RTMR.EXTEND Input Operands Definition

Operand Description

RAX TDCALL instruction leaf number — see 24.3.1

RCX 64B-aligned guest physical address of a 48B extension data buffer
RDX Index of the measurement register to be extended

Table 24.194: TDG.MR.RTMR.EXTEND Output Operands Definition

Operand Description
RAX TDCALL instruction return code — see 24.3.1
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

This function extends one of the RTMR measurement registers in TDCS with the provided extension data in memory.

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.

Table 24.195 TDG.MR.RTMR.EXTEND Memory Operands Information Definition

Explicit/ Reg. | Addr. | Resource Resource Type | Access | Access Align. Concurrency
Implicit Type Semantics | Check Restrictions
Explicit RCX GPA EXTEND_DATA Blob R Private 64B None
Implicit N/A N/A TDR page TDR None Opaque N/A Shared
Implicit N/A N/A TDCS structure TDCS RW Opaque N/A Shared(i)
Implicit N/A N/A TDCS.RTMR SHA384_HASH | N/A Opaque N/A Exclusive
Implicit N/A N/A TDVPR page TDVPS None Opaque N/A Shared

In addition to the memory operand checks per the table above, the function checks the following conditions (no specific
order is implied):

1. RDX must contain a valid RTMR index.
If successful, the function does the following:

2. Extend the RTMR indexed by RDX with the extension data. Extension is done by calculating SHA384 hash over a 96B
buffer, composed as follows:
o Bytes 0 through 47 contain the current RTMR value.
o Bytes 48 through 95 contain the extension data.

February 2023 . Page 309 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.196: TDG.MR.RTMR.EXTEND Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the lower 32 bits of the
status. In many cases, this can be resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.MR.RTMR.EXTEND is successful.

February 2023 . Page 310 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

20

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.3.5. TDG.VM.RD Leaf

Read a TD-scope metadata field (control structure field) of a TD.

Table 24.197: TDG.VM.RD Input Operands Definition

Operand Description
RAX TDCALL instruction leaf and version numbers —see 24.3.1
RCX Reserved, must be O
RDX Field identifier — see 22.8
Table 24.198: TDG.VM.RD Output Operands Definition
Operand Description
RAX TDCALL instruction return code — see 24.3.1
R8 Contents of the field

In case of an error, as indicated by RAX, R8 returns 0

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VM.RD reads a VM-scope metadata field (control structure field) of a TD.

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.

Table 24.199 TDG.VM.RD Memory Operands Information Definition

Explicit/ Reg. | Addr. | Resource Resource Type | Access | Access Align. Concurrency
Implicit Type Semantics | Check Restrictions
Implicit N/A N/A TDR page TDR None Opaque N/A Shared
Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

If the memory operand checks per the table above pass:

1. Read the control structure field.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.200: TDG.VM.RD Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_FIELD_NOT_READABLE

TDX_OPERAND_BUSY Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

February 2023 . Page 311 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

Completion Status Code

Description

TDX_OPERAND_INVALID

TDX_SUCCESS

TDG.VM.RD is successful.

February 2023

Page 312 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

20

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.3.6. TDG.VM.WR Leaf

Write a TD-scope metadata field (control structure field) of a TD.

Table 24.201: TDG.VM.WR Input Operands Definition

Operand Description

RAX TDCALL instruction leaf and version numbers —see 24.3.1

RCX Reserved, must be O

RDX Field identifier — see 22.8

R8 Data to write to the field

R9 A 64b write mask to indicate which bits of the value in R8 are to be written to the field
Table 24.202: TDG.VM.WR Output Operands Definition

Operand Description

RAX TDCALL instruction return code — see 24.3.1

R8 Previous contents of the field

In case of an error, as indicated by RAX, R8 returns 0

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VM.WR writes a VM-scope metadata field (control structure field) of a TD.

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.

Table 24.203 TDG.VM.WR Memory Operands Information Definition

Explicit/ Reg. | Addr. | Resource Resource Type | Access | Access Align. Concurrency
Implicit Type Semantics | Check Restrictions
Implicit N/A N/A TDR page TDR None Opaque N/A Shared
Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)

If the memory operand checks per the table above pass:

1. Write the control structure field and return its old value.

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.204: TDG.VM.WR Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_FIELD_NOT_WRITABLE

February 2023 . Page 313 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Code

Description

TDX_OPERAND_BUSY

Operation encountered a busy operand, indicated by the
lower 32 bits of the status. In many cases, this can be
resolved by retrying the operation.

TDX_OPERAND_INVALID

TDX_SUCCESS

TDG.VM.WR is successful.

February 2023

Page 314 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

20

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.3.7. TDG.VP.CPUIDVE.SET Leaf

TDG.VP.CPUIDVE.SET controls unconditional #VE on CPUID execution by the guest TD.
Table 24.205: TDG.VP.CPUIDVE.SET Input Operands Definition

Operand Description
RAX TDCALL instruction leaf number — see 24.3.1
RCX Controls whether CPUID executed by the guest TD will cause #VE unconditionally
Bits Name Description
0 SUPERVISOR | Flags that when CPL is 0, a CPUID executed by the guest TD will cause a
#VE unconditionally
1 USER Flags that when CPL > 0, a CPUID executed by the guest TD will cause a
#VE unconditionally
63:2 RESERVED Reserved: must be 0

Table 24.206: TDG.VP.CPUIDVE.SET Output Operands Definition

Operand Description
RAX TDCALL instruction return code — see 24.3.1
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

This function controls whether execution of CPUID by the guest TD, when running in supervisor mode and/or in user
mode, will unconditionally result in a #VE.

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.

Table 24.207 TDG.VP.CPUIDVE.SET Memory Operands Information Definition

Explicit/ Reg. | Addr. | Resource Resource Type | Access | Access Align. Concurrency
Implicit Type Semantics | Check Restrictions
Implicit N/A N/A TDR page TDR None Opaque N/A Shared
Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)
Implicit N/A N/A TDVPS structure | TDVPS RW Opaque N/A Shared

In addition to the memory operand checks per the table above, the function checks the following conditions (no specific
order is implied):

1. Reserved bits of RCX must be 0.
If successful, the function does the following:

2. Update the TDVPS.CPUID_VE flags which control unconditional #VE injection for CPUID for the current VCPU.

February 2023 . Page 315 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.208: TDG.VP.CPUIDVE.SET Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description

TDX_OPERAND_INVALID

TDX_SUCCESS TDG.VP.CPUIDVE.SET is successful.

February 2023 . Page 316 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.3.8. TDG.VP.INFO Leaf

Get guest TD execution environment information.

Table 24.209: TDG.VP.INFO Input Operands Definition

Operand Description
RAX TDCALL instruction leaf number — see 24.3.1
Table 24.210: TDG.VP.INFO Output Operands Definition
Operand Description
RAX TDCALL instruction return code — see 24.3.1 — returns a constant value of TDX_SUCCESS (0)
RCX Bits Name Description
5:0 GPAW The effective GPA width (in bits) for this TD (do not confuse with
MAXPA). SHARED bit is at GPA bit GPAW-1.
Only GPAW values 48 and 52 are possible.
63:6 RESERVED Reserved: 0
RDX The TD’s ATTRIBUTES (provided as input to TDH.MNG.INIT)
R8 Bits Name Description
31.0 NUM_VCPUS | Number of Virtual CPUs that are usable (i.e. either active or ready) —
see 12.1.3
63:32 | MAX_VCPUS | TD's maximum number of Virtual CPUs (provided as input to
TDH.MNG.INIT)
R9 Bits Name Description
31:0 | VCPU_INDEX | Virtual CPU index, starting from 0 and allocated sequentially on each
successful TDH.VP.INIT
63:32 | RESERVED Reserved for enumerating future Intel TDX module capabilities, etc.:
settoO
R10 Reserved for enumerating future Intel TDX module capabilities, etc.: set to 0
R11 Reserved for enumerating future Intel TDX module capabilities, etc.: set to 0
Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VP.INFO provides the TD software with execution environment information — beyond information that is provided
by CPUID.

February 2023 Page 317 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference

344425-005US

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface

functions.
Table 24.211: TDG.VP.INFO Memory Operands Information Definition
Explicit/ | Reg. Addr. Resource Resource Type Access Access Align. Concurrency
Implicit Type Semantics | Check Restrictions
Implicit N/A N/A TDR page TDR None Opaque N/A Shared
Implicit N/A N/A TDCS structure TDCS R Opaque N/A Shared(i)
Implicit N/A N/A TDVPS structure TDVPS R Opaque N/A Shared

5

Completion Status Codes

The table below provides specific notes for status codes returned by this interface function. For a general description of
completion status code, see 21.1.

Table 24.212: TDG.VP.INFO Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_SUCCESS

TDG.VP.INFO is successful.

February 2023

Page 318 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.3.9. TDG.VP.VEINFO.GET Leaf

Intel SDM, Vol. 3, 24.9.4
Intel SDM, Vol. 3, 25.5.6
Intel SDM, Vol. 3, 27.2.5

Information for VM Exits Due to Instruction Execution
Virtualization Exceptions
Information for VM Exits Due to Instruction Execution

Get Virtualization Exception Information for the recent #VE exception.

Table 24.213: TDG.VP.VEINFO.GET Input Operands Definition

Operand Description
RAX TDCALL instruction leaf number — see 24.3.1
Table 24.214: TDG.VP.VEINFO.GET Output Operands Definition
Operand Description
RAX TDCALL instruction return code —see 24.3.1
RCX Bits Name Description
31.0 Exit Reason The 32-bit value that would have been saved into the VMCS as an exit
reason if a VM exit had occurred instead of the virtualization exception
63:32 | Reserved Reserved: 0
In case of an error, RCX returns 0
RDX Exit Qualification: the 64-bit value that would have been saved into the VMCS as an exit
qualification if a legacy VM exit had occurred instead of the virtualization exception
In case of an error, as indicated by RAX, RDX returns O
R8 Guest Linear Address: the 64-bit value that would have been saved into the VMCS as a guest-
linear address if a legacy VM exit had occurred instead of the virtualization exception
In case of an error, as indicated by RAX, R8 returns 0
R9 Guest Physical Address: the 64-bit value that would have been saved into the VMCS as a guest-
physical address if a legacy VM exit had occurred instead of the virtualization exception
In case of an error, as indicated by RAX, R9 returns 0
R10 Bits Name Description
31:0 VM-exit The 32-bit value that would have been saved into the VMCS as VM-exit
instruction instruction length if a legacy VM exit had occurred instead of the
length virtualization exception
63:32 | VM-exit The 32-bit value that would have been saved into the VMCS as VM-exit
instruction instruction information if a legacy VM exit had occurred instead of the
information virtualization exception
The content of R10 is only applicable for TDX-extended #VE (injected by the TDX module),
where Exit Reason is not EPT violation (48). It should be ignored for EPT violations converted
by the CPU to #VE.
In case of an error, R10 returns O
Other Unmodified
February 2023 Page 319 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VP.VEINFO.GET returns the virtualization exception information of a #VE exception that was previously delivered to

5 the guest TD.
To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.
Table 24.215: TDG.VP.VEINFO.GET Memory Operands Information Definition
Explicit/ | Reg. Addr. Resource Resource Type | Access | Access Align. Concurrency
Implicit Type Semantics | Check Restrictions
Implicit N/A N/A TDR page TDR None Opaque N/A Shared
Implicit N/A N/A TDCS structure TDCS None Opaque N/A Shared(i)
Implicit N/A N/A TDVPS structure TDVPS RW Opaque N/A Shared
10 The function checks the following conditions (no specific order is implied):
e The VALID field in TDVPS.VE_INFO must non-0 to indicate that a valid virtualization information is available.
If successful, the function does the following:
1. Return the EXIT_REASON, EXIT_QUALIFICATION, GLA, GPA, INSTRUCTION_LENGTH and
INSTRUCTION_INFORMATTION from TDVPS.VE_INFO in GPRs.
15 2. Clear the VALID field in TDVPS.VE_INFO to O to indicate that the virtualization information has been read.

Completion Status Codes

Table 24.216: TDG.VP.VEINFO.GET Completion Status Codes (Returned in RAX) Definition

Completion Status Code Description
TDX_NO_VE_INFO There is no Virtualization Exception information.
TDX_SUCCESS TDG.VP.VEINFO.GET is successful.

February 2023 . Page 320 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

24.3.10. TDG.VP.VMCALL Leaf

Perform a TD Exit to the host VMM.

Table 24.217: TDG.VP.VMCALL Input Operands Definition

Operand Description
RAX TDCALL instruction leaf number — see 24.3.1
RCX A bitmap that controls which part of the guest TD GPR and XMM state is passed as-is to the

VMM and back

A bit value of 0 indicates that the corresponding register is saved by the Intel TDX module,
scrubbed to 0 before SEAMRET to the host VMM, and restored by the Intel TDX module on
the following TDH.VP.ENTER.

A bit value of 1 indicates that the corresponding register is passed as-is to the host VMM,
and on the following TDH.VP.ENTER, the register value is used as input from the host VMM
and passed as-is to the guest TD.

The value of RCX is passed to the host VMM.

Bits Name Description

15:0 GPR Mask Controls the transfer of GPR values:

Bit O: RAX (must be 0)
Bit 1: RCX (must be 0)
Bit 2: RDX

Bit 3: RBX

Bit 4: RSP (must be 0)
Bit 5: RBP

Bit 6: RSI

Bit 7: RDI

Bits 15:8: R15-RS8

31:16 XMM Mask Controls the transfer of XMM15 — XMMO register values

63:32 Reserved Reserved: must be 0

RBX, RDX, RBP,

If the corresponding bit in RCX is set to 1, the register value passed as-is to the host VMM

RDI, RSI, on SEAMRET.
R8 —R15 Else, the register value is not used as an input and is preserved.
XMMO — If the corresponding bit in RCX is set to 1, the register value passed as-is to the host VMM
XMM15 on SEAMRET.

Else, the register value is not used as an input and is preserved.

Table 24.218: TDG.VP.VMCALL Output Operands Definition

Operand Description
RAX TDCALL instruction return code: returns a constant value of TDX_SUCCESS (0)
RCX Unmodified

February 2023

Page 321 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

10

15

20

25

30

Intel® TDX Module Spec Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Operand Description

RBX, RDX, RBP, If the corresponding bit in RCX is set to 1, the register value passed as-is from the host

RDI, RSI, VMM’s SEAMCALL(TDH.VP.ENTER) input.

R8 —R15 Else, the register value is unmodified.

XMMO - If the corresponding bit in RCX is set to 1, the register value passed as-is from the host
XMM15 VMM’s SEAMCALL(TDH.VP.ENTER) input.

Else, the register value is unmodified.

Other Unmodified

Leaf Function Description

Note: The description below is provided at a high level. Actual details, order of checks, returned status codes, etc. may
vary.

TDG.VP.VMCALL performs a TD exit to the host VMM. From the VMM'’s point of view, this is the termination of a previous
SEAMCALL(TDH.VP.ENTER). Selected GPR and XMM state is passed to the VMM host, controlled by RCX as shown above.
The rest of the CPU state is saved in TDVPS and replaced with a synthetic state.

From the guest TD’s point of view, a subsequent SEAMCALL(TDH.VP.ENTER) from the host VMM terminates the
TDG.VP.VMCALL function. Most GPR state, and if the value of RCX bit 1 is set, all XMM state, is passed to the TD guest as
shown above.

To understand the table and text below, refer to Chapter 19, which explains the general aspects of the Intel TDX interface
functions.

Table 24.219: TDG.VP.VMCALL Memory Operands Information Definition

Explicit/ | Reg. Addr. | Resource Resource Type | Access Access Align. Concurrency
Implicit Type Semantics | Check Restrictions
Implicit N/A N/A TDR page TDR None Opaque N/A Shared
Implicit N/A N/A TDCS structure TDCS None Opaque N/A Shared(i)
Implicit N/A N/A TDVPS structure TDVPS R/W Opaque N/A Shared

1. Save guest TD CPU state to TDVPS (including TD VMCS):
1.1. Save extended state per TDCS.XFAM. There is no strict requirement to save XMM state that will be passed to
the host VMM as controlled by RCX. This state will be overwritten on the next TD entry.
1.2. Save GPR state. There is no strict requirement to save GPR state that will be passed to the host VMM as
controlled by RCX (but RCX itself must be saved). This state will be overwritten on the next TD entry.
1.3. Advance the saved RIP to the instruction following TDCALL.
2. Adjust the TDCS TLB tracking counters.
Release the shared locking — acquired on TDH.VP.ENTER of TDR, TDCS and TDVPS.
4. Load host VMM state:
4.1. Clear the extended state except XMM (per TDCS.XFAM) to synthetic INIT values.
4.2. As controlled by RCX, either clear or set to the guest TD’s value the state of XMMO0 — XMM15.
4.3. Ascontrolled by RCX, either clear or set to the guest TD’s value the state of RBX, RDX, RBP, RDI, RSl and R8 — R15.
4.4. Set RCX to the guest TD’s value.
4.5. Set RAX to the TDCALL exit reason.
4.6. Restore other host VMM state — saved during TDH.VP.ENTER.
5. Execute SEAMRET to return to the host VMM.

w

Note: Logically, from the point of view of the guest TD, TDG.VP.VMCALL is terminated by the next TDH.VP.ENTER.

February 2023 . Page 322 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

Intel® TDX Module Spec

Section 3: Intel TDX Application Binary Interface (ABI) Reference 344425-005US

Completion Status Codes

Table 24.220: TDG.VP.VMCALL Completion Status Codes (Returned in RAX) Definition

Completion Status Code

Description

TDX_OPERAND_INVALID

TDX_SUCCESS

TDG.VP.VMCALL is successful. TD exit was done, resulting a in a completion of
SEAMCALL(TDH.VP.ENTER) on the host VMM side. Later, the host VMM
executed SEAMCALL(TDH.VP.ENTER) again, and execution returned to the
guest TD VCPU (in TDX non-root mode) completing TDG.VP.VMCALL.

February 2023

Page 323 of 323

Section 3: Intel TDX Application Binary Interface (ABl) Reference

	Notices and Disclaimers
	Table of Contents
	SECTION 1: INTRODUCTION AND OVERVIEW
	1. About this Document
	1.1. Scope of this Document
	1.2. Document Organization
	1.3. Glossary
	1.4. Notation
	1.4.1. Requirement and Definition Commitment Levels

	1.5. References
	1.5.1. Intel Public Documents
	1.5.2. Intel TDX Public Documents

	2. Overview of Intel® Trust Domain Extensions
	2.1. Intel TDX Module Lifecycle
	2.1.1. Boot-Time Configuration and Intel TDX Module Loading
	2.1.2. Intel TDX Module Initialization, Enumeration and Configuration

	2.2. Guest TD Life Cycle Overview
	2.2.1. Guest TD Build
	2.2.2. Guest TD Execution
	2.2.3. Guest TD Management during its Run-Time

	2.3. Intel TDX Operation Modes and Transitions
	2.4. Guest TD Private Memory Protection
	2.4.1. Memory Encryption
	2.4.2. Address Translation

	2.5. Guest TD State Protection
	2.6. Intel TDX I/O Model
	2.7. Measurement and Attestation
	2.8. Intel TDX Managed Control Structures
	2.9. Intel TDX Interface Functions
	2.9.1. Host-Side (SEAMCALL Leaf) Interface Functions
	2.9.2. Guest-Side (TDCALL Leaf) Interface Functions

	3. Software Use Cases
	3.1. Intel TDX Module Lifecycle
	3.1.1. Intel TDX Module Platform-Scope Initialization
	3.1.2. Intel TDX Module Shutdown and Update

	3.2. TD Build
	3.3. TD Run Time
	3.3.1. Private Memory Management
	3.3.1.1. Dynamic Page Addition (Shared to Private Conversion)
	3.3.1.2. Dynamic Page Removal (Private to Shared Conversion)
	3.3.1.3. Page Promotion (Mapping Merge)
	3.3.1.4. Page Demotion (Mapping Split)
	3.3.1.5. GPA Range Unblock

	3.3.2. Guest TD Execution
	3.3.2.1. TD VCPU First-Time Invocation
	3.3.2.2. TD VCPU Entry, Exit on TDG.VP.VMCALL and Re-Entry
	3.3.2.3. TD VCPU Entry, Exit on Asynchronous Event and Re-Entry
	3.3.2.4. Guest-Side Functions
	3.3.2.5. TD VCPU Rescheduling (Migration to Another LP)

	3.4. TD Destruction

	4. Host VMM Programming Considerations
	4.1. TDX Module Lifecycle
	4.1.1. TDMR Configuration and Initialization

	4.2. Memory Encryption Key Management
	4.3. TD Lifecycle
	4.3.1. TD Configuration

	4.4. Memory Management
	4.4.1. Memory Integrity Protection
	4.4.2. Shared EPT

	4.5. Off-TD Debug
	4.6. Memory Integrity Protection and Machine Check Handling
	4.7. Metadata Access
	4.8. Concurrency
	4.9. TDX Interface Functions Completion Status
	4.10. Latency of TDX Module Interface Functions
	4.11. Forward Compatibility
	4.11.1. Reserved Bits
	4.11.2. CPUID Configuration

	5. Guest TD Programming Considerations
	5.1. Run-Time Environment Enumeration
	5.2. Memory Management
	5.2.1. Private vs. Shared GPA
	5.2.2. Dynamic Private Memory Allocation and Removal
	5.2.3. Page Mapping Size Awareness
	5.2.4. Shared Memory

	5.3. CPU Virtualization
	5.3.1. Initial State
	5.3.2. CPU Modes, Allowed Instructions and Allowed Operations
	5.3.3. #VE Handler
	5.3.4. Interrupts
	5.3.4.1. APIC Access
	5.3.4.2. Cross-VCPU IPI

	5.3.5. Time Stamp Counter (TSC)

	5.4. Hypercalls
	5.5. Metadata Access
	5.6. Side Channel Attack Mitigation
	5.6.1. General
	5.6.2. Zero-Step Attack Notification

	5.7. Concurrency
	5.8. TDX Interface Functions Completion Status
	5.9. Forward Compatibility
	5.9.1. Reserved Bits

	SECTION 2: INTEL TDX MODULE ARCHITECTURE SPECIFICATION
	6. Intel TDX Module Lifecycle: Enumeration, Initialization and Shutdown
	6.1. Overview
	6.1.1. Initialization and Configuration Flow
	6.1.2. Intel TDX Module Lifecycle State Machine
	6.1.3. Platform Compatibility and Configuration Checking
	6.1.3.1. Overview
	6.1.3.2. CPU Configuration
	6.1.3.3. MSR Sampling and Checks
	6.1.3.4. CPUID Sampling, Checks and Enumeration

	6.1.4. Physical Memory Configuration Overview
	6.1.4.1. Intel TDX ISA Background: Convertible Memory Ranges (CMRs)
	6.1.4.2. TDMRs and PAMT Arrays Configuration
	6.1.4.2.1. Background: Reserved Areas within TDMRs
	6.1.4.2.2. Background: Three PAMT Areas
	6.1.4.2.3. Configuration Rules

	6.2. Intel TDX Module Initialization Interface
	6.2.1. Global Initialization: TDH.SYS.INIT
	6.2.2. LP-Scope Initialization: TDH.SYS.LP.INIT
	6.2.3. Enumeration: TDH.SYS.INFO
	6.2.4. Global Configuration: TDH.SYS.CONFIG
	6.2.5. Package-Scope Key Configuration: TDH.SYS.KEY.CONFIG

	6.3. TDMR and PAMT Initialization
	6.4. Intel TDX Module Shutdown
	6.4.1. Shutdown Initiated by the Host VMM (as Part of Module Update)
	6.4.2. Shutdown Initiated by a Fatal Error

	7. Memory Encryption Key Management
	7.1. Objectives
	7.2. Background: HKID Space Partitioning
	7.3. Key Management Tables
	7.4. Combined Key Management State
	7.5. Key Management Sequences
	7.5.1. Intel TDX Module Initialization: Setting an Ephemeral Key and Reserving an HKID for Intel TDX Data
	7.5.2. TD Creation, Keys Assignment and Configuration
	7.5.3. TD Keys Reclamation, TLB and Cache Flush

	8. TD Non-Memory State (Metadata) and Control Structures
	8.1. Overview
	8.1.1. Opaque vs. Shared Control Structures
	8.1.2. Scope of Control Structures

	8.2. TD-Scope Control Structures
	8.2.1. TDR (Trust Domain Root)
	8.2.2. TDCS (Trust Domain Control Structure)

	8.3. TD VCPU-Scope Control Structures and Management Functions
	8.3.1. Trust Domain Virtual Processor State (TDVPS)
	8.3.1.1. Physical View of TDVPS: TDVPR/TDVPX
	8.3.1.2. Logical View of TDVPS
	VMX (with TDX ISA Extensions) Standard Control Structures
	Proprietary Fields

	8.3.2. Non-Protected Control Structures: Shared EPT and VMCS Auxiliary Control Structures

	8.4. TD Non-Memory State (Metadata) Access Functions
	8.5. Concurrency Restrictions and Enforcement

	9. TD Life Cycle Management
	9.1. TD Life Cycle State Machine
	9.2. TD Creation Sequence
	9.3. VCPU Creation and Initialization Sequence
	9.4. TD Teardown Sequence

	10. Physical Memory Management
	10.1. Trust Domain Memory Regions (TDMRs) and Physical Address Metadata Tables (PAMTs)
	10.2. TDMR Details
	10.3. PAMT Details
	10.3.1. PAMT Entry
	10.3.2. PAMT Blocks and PAMT Arrays
	10.3.3. PAMT Hierarchy and Page Types

	10.4. Adding Physical Pages
	10.4.1. Preventing Cache Line Aliasing
	10.4.2. Adding Pages not Mapped to the Guest TD
	10.4.3. Adding Pages and Mapping to the Guest TD’s GPA

	10.5. Reclaiming Physical Pages
	10.5.1. Required Cache Flush and Initialization by the Host VMM
	Cache Flush
	Page Initialization

	10.5.2. Reclaiming Pages not Mapped to the Guest TD
	10.5.3. Reclaiming TD Pages in TD_TEARDOWN State
	10.5.4. Reclaiming Physical Pages as Part of TD Private Memory Management

	11. TD Private Memory Management
	11.1. Overview
	11.2. Secure EPT Entry
	11.2.1. Overview
	11.2.2. SEPT Entry State Diagrams

	11.3. EPT Walk
	11.4. Secure EPT Induced TD Exits
	11.5. Secure EPT Induced Exceptions
	11.6. Secure EPT Concurrency
	Host-Side (SEAMCALL) Functions:
	Guest-Side (TDCALL) Functions

	11.7. Introduction to TLB Tracking
	GPA Range TLB Tracking Sequence

	11.8. Secure EPT Build and Update: TDH.MEM.SEPT.ADD
	11.9. Adding TD Private Pages during TD Build Time: TDH.MEM.PAGE.ADD
	11.10. Dynamically Adding TD Private Pages
	11.10.1. Overview
	11.10.2. Page Addition by the Host VMM: TDH.MEM.PAGE.AUG
	11.10.3. Page Acceptance by the Guest TD: TDG.MEM.PAGE.ACCEPT
	11.10.3.1. Description
	11.10.3.2. TDG.MEM.PAGE.ACCEPT Concurrency
	Guest-Side
	Host-Side

	11.11. Page Merge: TDH.MEM.PAGE.PROMOTE
	11.12. Page Split: TDH.MEM.PAGE.DEMOTE
	11.13. Relocating TD Private Pages: TDH.MEM.PAGE.RELOCATE
	11.14. Removing TD Private Pages: TDH.MEM.PAGE.REMOVE
	11.15. Removing a Secure EPT Page: TDH.MEM.SEPT.REMOVE
	11.16. Unblocking a GPA Range: TDH.MEM.RANGE.UNBLOCK

	12. TD VCPU
	12.1. VCPU Transitions
	12.1.1. Initial TD Entry, Asynchronous TD Exit and Subsequent TD Entry
	12.1.2. Synchronous TD Exit and Subsequent TD Entry
	12.1.3. VCPU Activity State Machine

	12.2. TD VCPU TLB Address Space Identifier (ASID)
	12.2.1. TD ASID Components
	12.2.2. INVEPT by the Host VMM for Managing the Shared EPT

	12.3. VCPU-to-LP Association
	12.3.1. Non-Coherent Caching
	12.3.2. Intel TDX Functions for VCPU-LP Association and Dis-Association
	12.3.3. Performance Considerations

	13. CPU Virtualization (Non-Root Mode Operation)
	13.1. Initial State
	13.1.1. Overview
	13.1.2. Initial State of Guest TD GPRs
	13.1.3. Initial State of CRs
	13.1.4. Initial State of Segment Registers
	13.1.5. Initial State of MSRs

	13.2. Guest TD Run Time Environment Enumeration
	13.3. CPU Mode Restrictions
	13.4. Instructions Restrictions
	13.4.1. Unconditionally Blocked Instructions
	13.4.1.1. Instructions that Cause a #UD Unconditionally
	13.4.1.2. Instructions that Cause a #VE Unconditionally
	13.4.1.3. Instructions that Cause a #UD or #VE Depending on Feature Enabling
	13.4.1.4. Other Cases of Unconditionally Blocked Instructions

	13.4.2. Conditionally Blocked Instructions
	13.4.3. Other Exception Cases

	13.5. Extended Feature Set
	13.5.1. Allowed Extended Features Control
	13.5.2. Extended State Isolation
	13.5.3. Extended Features Execution Control

	13.6. CR Handling
	13.6.1. CR0
	13.6.2. CR4

	13.7. MSR Handling
	13.7.1. Overview

	13.8. CPUID Virtualization
	13.8.1. CPUID Configuration by the Host VMM
	13.8.2. Unconditional #VE for all CPUID Leaves and Sub-Leaves

	13.9. Interrupt Handling and APIC Virtualization
	13.9.1. Virtual APIC Mode
	13.9.2. Virtual APIC Access by Guest TD
	13.9.3. Implicit APIC Write #VE
	13.9.4. Posted Interrupts
	13.9.5. Pending Virtual Interrupt Delivery Indication
	13.9.6. Cross-TD-VCPU IPI
	13.9.7. Virtual NMI Injection

	13.10. Virtualization Exception (#VE)
	13.10.1. Virtualization Exception Information
	13.10.2. #VE Injection by the CPU due to EPT Violations
	13.10.3. #VE Injected by the Intel TDX Module

	13.11. Secure and Shared Extended Page Tables (EPTs)
	13.11.1. GPAW-Relate EPT Violations
	13.11.2. EPT Violation Mutated into #VE

	13.12. Prevention of TD-Induced Denial of Service
	13.12.1. Bus Lock Detection by the TD OS
	13.12.2. Impact of MSR_TEST_CTRL (MSR 0x33)
	13.12.3. Bus Lock TD Exit
	Bus Lock VM Exit Reason (74)
	Bus Lock Detected Bit (26) in VM Exit Reason

	13.12.4. Notification TD Exit

	13.13. Time Stamp Counter (TSC)
	13.13.1. TSC Virtualization
	13.13.2. TSC Deadline

	13.14. Supervisor Protection Keys (PKS)
	13.15. Intel® Total Memory Encryption (Intel® TME) and Multi-Key Total Memory Encryption (MKTME)
	13.15.1. TME Virtualization
	13.15.2. MKTME Virtualization

	13.16. Virtualization of Machine Check Capabilities and Controls
	13.17. Transactional Synchronization Extensions (TSX)
	13.18. Other Changes in TDX Non-Root Mode
	13.18.1. CET
	13.18.2. Tasking
	13.18.3. PAUSE-Loop Exiting

	14. Measurement and Attestation
	14.1. TD Measurement
	14.1.1. MRTD: Build-Time Measurement Register
	14.1.2. RTMR: Run-Time Measurement Registers

	14.2. TD Measurement and Configuration Reporting
	14.3. TD Measurement Quoting
	14.3.1. Intel SGX-Based Attestation

	14.4. Quote Signing Key
	14.5. TCB Recovery

	15. I/O Support
	15.1. Overview
	15.2. Paravirtualized I/O
	15.3. MMIO Emulation and Emulated Devices
	15.4. Direct Device Assignment (DDA) and SRIOV
	15.5. IOMMU – DMA Remapping
	15.6. Shared Virtual Memory (SVM)

	16. Debug and Profiling Architecture
	16.1. On-TD Debug
	16.1.1. Overview
	16.1.2. Generic Debug Handling
	16.1.2.1. Context Switch
	16.1.2.2. IA32_DEBUGCTL MSR Virtualization

	16.1.3. Debug Feature-Specific Handling

	16.2. On-TD Performance Monitoring
	16.2.1. Overview
	16.2.2. Performance Monitoring MSRs
	16.2.3. Performance Monitoring Interrupts (PMIs)

	16.3. Off-TD Debug
	16.3.1. Modifying Debuggable TD’s State, Controls and Memory
	16.3.2. Preventing Guest TD Corruption of DRs

	16.4. Uncore Performance Monitoring Interrupts (Uncore PMIs)

	17. Memory Integrity Protection and Machine Check Handling
	17.1. Overview
	17.2. TDX Memory Integrity Protection Background
	17.2.1. Cryptographic Integrity (Ci) vs. Logical Integrity (Li), MAC and TD Owner
	17.2.2. MAC and TD Owner Bit Update on Memory Writes
	17.2.3. Memory Reads: Integrity and TD Owner Bit Checks, Poison Generation and Poison Consumption
	17.2.4. Memory Writes: No Integrity nor TD Owner Bit Checks

	17.3. Machine Check Architecture (MCA) Background
	17.3.1. Uncorrected Machine Check Error
	17.3.2. Corrected Machine Check Interrupt (CMCI)
	17.3.3. Machine Check System Management Interrupt (MSMI)
	17.3.4. Local Machine Check Event (LMCE)

	17.4. Recommended MCA Platform Configuration for TDX
	17.5. Handling Machine Check Events during Guest TD Operation
	17.5.1. Machine Check Events Delivered as an #MC Exception (Recommended)
	17.5.2. Machine Check Events Delivered as an MSMI (Not Recommended)
	17.5.3. LMCE Disabled (Not Recommended)
	17.5.4. Machine Check Events Delivered as a CMCI

	17.6. Handling MCE during Intel TDX Module Operation

	18. Side Channel Attack Mitigation Mechanisms
	18.1. Checking CPU Vulnerabilities to Known Attacks
	18.2. Branch Prediction Side Channel Attacks Mitigation Mechanisms
	18.3. Single-Step and Zero-Step Attacks Mitigation Mechanisms
	18.3.1. Description
	18.3.2. Host VMM Expected Behavior
	18.3.3. Guest TD Interface and Expected Guest TD Operation

	19. General Aspects of the Intel TDX Interface Functions
	19.1. Concurrency Restrictions and Enforcement
	19.1.1. Explicit Concurrency Restrictions
	19.1.2. Implicit Concurrency Restrictions
	19.1.3. Transactions

	19.2. Memory and Resource Operands Access
	19.2.1. Overview
	19.2.1.1. Access Semantics
	19.2.1.2. Explicit vs. Implicit Access
	19.2.1.3. Memory Operand Address Specification
	19.2.1.4. Memory Type
	19.2.1.4.1. Memory Type for Private and Opaque Accesses
	19.2.1.4.2. Memory Type for Shared Accesses

	19.2.1.5. Actual Memory Access vs. Memory Reference
	19.2.1.6. Summary Table

	19.3. Register Operands and CPU State Convention
	19.3.1. Overview: Regular vs. Transition Leaf Functions
	19.3.2. Interface Function Completion Status
	19.3.2.1. Least Detailed Level: Success/Warning/Error
	19.3.2.2. Medium Detailed Level: Class and Recoverability
	19.3.2.3. Most Detailed Level

	19.3.3. Other CPU State Convention
	19.3.4. Transition Cases: TD Entry and Exit
	19.3.4.1. TD Entry: TDH.VP.ENTER
	Transfer of Host VMM State to TD Guest
	Output State (Back to the Host VMM)

	19.3.4.2. TD Synchronous Exit: TDG.VP.VMCALL
	Transfer of TD Guest State to Host VMM
	Output State (Back to the Guest TD)

	19.4. Metadata Access Interface
	19.4.1. Introduction
	19.4.2. Metadata Fields and Elements
	19.4.3. Arrays of Metadata Fields

	19.5. Latency of the Intel TDX Interface Functions

	SECTION 3: INTEL TDX APPLICATION BINARY INTERFACE (ABI) REFERENCE
	20. ABI Reference: CPU Virtualization Tables
	20.1. MSR Virtualization
	20.2. CPUID Virtualization

	21. ABI Reference: Constants
	21.1. Interface Function Completion Status Codes
	21.1.1. Function Completion Status Code Classes (Bits 47:40)
	21.1.2. Function Completion Status Codes
	21.1.3. Function Completion Status Operand IDs

	22. ABI Reference: Data Types
	22.1. Basic Crypto Types
	22.2. TD Parameters Types
	22.2.1. ATTRIBUTES
	22.2.2. XFAM
	22.2.3. CPUID_VALUES
	22.2.4. TD_PARAMS

	22.3. Physical Memory Management Types
	22.3.1. Physical Page Size

	22.4. TD Private Memory Management Data Types: Secure EPT
	22.4.1. Secure EPT Levels
	22.4.2. Secure EPT Entry Information as Returned by TDX Module Functions
	22.4.2.1. Returned Secure EPT Entry Content
	22.4.2.2. Additional Returned Secure EPT Information

	22.5. TD Entry and Exit Types
	22.5.1. Extended Exit Qualification

	22.6. Measurement and Attestation Types
	22.6.1. CPUSVN
	22.6.2. TDREPORT_STRUCT
	22.6.3. REPORTMACSTRUCT (Reference)
	22.6.4. REPORTTYPE (Reference)
	22.6.5. TDINFO_STRUCT

	22.7. Configuration, Enumeration and Initialization Types
	22.7.1. CPUID_CONFIG
	22.7.2. TDSYSINFO_STRUCT
	22.7.3. CMR_INFO
	22.7.4. TDMR_INFO
	Notes:

	22.8. Metadata Access Types
	22.8.1. MD_FIELD_ID: Metadata Field Identifier
	22.8.2. TDR and TDCS Metadata Fields
	22.8.3. TDVPS Metadata Field Codes

	23. ABI Reference: Control Structures
	23.1. TD-Scope Control Structures
	23.1.1. How to Read the TDR and TDCS Tables
	23.1.2. TDR
	23.1.3. TDCS

	23.2. TDVPS: VCPU-Scope Control Structure
	23.2.1. Overview
	23.2.2. How to Read the TDVPS (including TD VMCS) Tables
	23.2.2.1. VMM Access using TDH.VP.RD and TDH.VP.WR
	23.2.2.2. Text Highlighting

	23.2.3. TDVPS (excluding TD VMCS)
	23.2.4. TD VMCS
	23.2.4.1. TD VMCS Guest State Area
	23.2.4.1.1. TD VMCS Guest Register State Area
	23.2.4.1.2. TD VMCS Guest MSRs
	23.2.4.1.3. TD VMCS Guest Non-Register State Area

	23.2.4.2. TD VMCS Host State Area
	23.2.4.3. TD VMCS VM-Execution Control Fields
	23.2.4.3.1. TD VMCS Pin-Based VM-Execution Controls
	23.2.4.3.2. TD VMCS Processor-Based VM-Execution Controls
	23.2.4.3.3. TD VMCS Controls for APIC Virtualization
	23.2.4.3.4. EPTP and Shared EPTP
	23.2.4.3.5. CR-Related TD VMCS VM-Execution Control Fields
	23.2.4.3.6. Other TD VMCS VM-Execution Control Fields

	23.2.4.4. TD VMCS VM-Exit Control Fields
	23.2.4.5. TD VMCS VM-Entry Control Fields
	23.2.4.6. TD VMCS VM-Exit Information Fields

	24. ABI Reference: Interface Functions
	24.1. How to Read the Interface Function Definitions
	24.2. Host-Side (SEAMCALL) Interface Functions
	24.2.1. SEAMCALL Instruction (Common)
	Instruction Description
	Completion Status Codes

	24.2.2. TDH.MEM.PAGE.ADD Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.3. TDH.MEM.PAGE.AUG Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.4. TDH.MEM.PAGE.DEMOTE Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.5. TDH.MEM.PAGE.PROMOTE Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.6. TDH.MEM.PAGE.RELOCATE Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.7. TDH.MEM.PAGE.REMOVE Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.8. TDH.MEM.RANGE.BLOCK Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.9. TDH.MEM.RANGE.UNBLOCK Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.10. TDH.MEM.RD Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.11. TDH.MEM.SEPT.ADD Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.12. TDH.MEM.SEPT.RD Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.13. TDH.MEM.SEPT.REMOVE Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.14. TDH.MEM.TRACK Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.15. TDH.MEM.WR Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.16. TDH.MNG.ADDCX Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.17. TDH.MNG.CREATE Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.18. TDH.MNG.INIT Leaf
	Leaf Function Latency
	Leaf Function Description
	Completion Status Codes

	24.2.19. TDH.MNG.KEY.CONFIG Leaf
	Leaf Function Latency
	Leaf Function Description
	Completion Status Codes

	24.2.20. TDH.MNG.KEY.FREEID Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.21. TDH.MNG.KEY.RECLAIMID Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.22. TDH.MNG.RD Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.23. TDH.MNG.VPFLUSHDONE Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.24. TDH.MNG.WR Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.25. TDH.MR.EXTEND Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.26. TDH.MR.FINALIZE Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.27. TDH.PHYMEM.CACHE.WB Leaf
	Leaf Function Description
	Error and Informational Codes

	24.2.28. TDH.PHYMEM.PAGE.RDMD Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.29. TDH.PHYMEM.PAGE.RECLAIM Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.30. TDH.PHYMEM.PAGE.WBINVD Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.31. TDH.SYS.CONFIG Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.32. TDH.SYS.INFO Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.33. TDH.SYS.INIT Leaf
	Special Environment Requirements
	Leaf Function Latency
	Leaf Function Description
	Completion Status Codes

	24.2.34. TDH.SYS.KEY.CONFIG Leaf
	Leaf Function Latency
	Leaf Function Description
	Completion Status Codes

	24.2.35. TDH.SYS.LP.INIT Leaf
	Special Environment Requirements
	Leaf Function Latency
	Leaf Function Description
	Completion Status Codes

	24.2.36. TDH.SYS.LP.SHUTDOWN Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.37. TDH.SYS.TDMR.INIT Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.38. TDH.VP.ADDCX Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.39. TDH.VP.CREATE Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.40. TDH.VP.ENTER Leaf
	CPU State Preservation Following a Successful TD Entry and a TD Exit
	Special Environment Requirements
	Leaf Function Latency
	Leaf Function Description
	Completion Status Codes

	24.2.41. TDH.VP.FLUSH Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.42. TDH.VP.INIT Leaf
	Operands
	Leaf Function Latency
	Leaf Function Description
	Completion Status Codes

	24.2.43. TDH.VP.RD Leaf
	Leaf Function Description
	Completion Status Codes

	24.2.44. TDH.VP.WR Leaf
	Leaf Function Description
	Completion Status Codes

	24.3. Guest-Side (TDCALL) Interface Functions
	24.3.1. TDCALL Instruction (Common)
	Instruction Description
	Completion Status Codes

	24.3.2. TDG.MEM.PAGE.ACCEPT Leaf
	Leaf Function Description
	Completion Status Codes

	24.3.3. TDG.MR.REPORT Leaf
	Leaf Function Description
	Completion Status Codes

	24.3.4. TDG.MR.RTMR.EXTEND Leaf
	Leaf Function Description
	Completion Status Codes

	24.3.5. TDG.VM.RD Leaf
	Leaf Function Description
	Completion Status Codes

	24.3.6. TDG.VM.WR Leaf
	Leaf Function Description
	Completion Status Codes

	24.3.7. TDG.VP.CPUIDVE.SET Leaf
	Leaf Function Description
	Completion Status Codes

	24.3.8. TDG.VP.INFO Leaf
	Leaf Function Description
	Completion Status Codes

	24.3.9. TDG.VP.VEINFO.GET Leaf
	Leaf Function Description
	Completion Status Codes

	24.3.10. TDG.VP.VMCALL Leaf
	Leaf Function Description
	Completion Status Codes

