Intel® Arria® 10 Avalon-ST Interface
for PCIe* Solutions User Guide

UG-01145_avst
2017.05.15

Last updated for Intel® Quartus® Prime Design Suite: 17.0

@ Subscribe
C] Send Feedback

https://www.altera.com/servlets/subscriptions/alert?id=UG-01145_avst
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Arria%2010%20Avalon-ST%20Interface%20for%20PCIe%20Solutions%20User%20Guide%20(UG-01145_avst%202017.05.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

(intel“ﬁ>

Contents

B 0 = = T =T 7
1.1 Arria 10 Avalon-ST Interface for PCle Datasheet........ccovviiiiiiiic s 7
1.1.1 Arria 10 FEaAtUIES vttt e e 8
1.2 Release INformation ..o e 10
1.3 DeVvice Family SUP DOt ittt e et e 11
8 3 @) a1 e 18T =] 1= PP 11
1.5 DEDUQG FEATUIES ..ot as 13
I I S @0 g I/ 1 t=] o [o TP 13
1.6.1 Compatibility Testing ENVIroNmMENtcciiiiiiiiiiii i aae s 13
1.7 Performance and Resource ULIHZationcooviiiiiiiiiiiii s e neaaas 13
1.8 Recommended Speed Gradesuuviuieiriiiiiiiitieieettatta it taseaeaaeenranaanannans 13
1.9 Creating @ DeSign fOr PCL EXPIreSS. . ..uuuee i ieieaeae e aeaeeaeaeeaeeaaneaeaeeneeaeaneneeaeananens 15
2 QUICK Start GUIAE. . .cicieieirimimierere s sa s st s s ssasasasasasassssasnsasasasasassasnsnsnsnnanns 17
DA R D [¢ =Tot o] o VA o o o U] = P 18
A2 B T=1=] o | I @0 T o] T=T 0 | = 18
2.3 Generating the DESIgNuiui ittt ettt 18
2.4 SIMUIating the DeSIgN. ..ot e et a e a e ans 19
2.5 Compiling and Testing the Design in Hardware.......ccuviiiii i e ne e naeeneas 21
3 Getting Started with the Arria 10 Hard IP for PCI EXPreSS ..cuiccvierieriassasmsnsnssassassansansnnnss 24
3.1 QSYS DESIGN FlOW . ettt it ettt e e e e e e e e e n e nas 25
3.1.1 Generating the Testbench ..o 25
3.1.2 Simulating the EXxample DeSIgNciviiiiiiiiiiiiiiiiiri et naeees 26
3.1.3 Generating Synthesis Files......civiiiiiiii i e 27
3.1.4 Understanding the Files Generated........ccooviiiiiiiiiiiiiii s eeeaaas 27
3.1.5 Understanding Simulation Log File Generation.........ccvviiiiiiiiiiiii i ieiaeieas 27
3.1.6 Understanding Physical Placement of the PCIe IP COreccovviviiiieinnnnnnnnnn. 28
3.1.7 Adding Virtual Pin Assignment to the Quartus II Settings File (.qsf)................. 28
3.1.8 Compiling the Design in the Qsys Design FIOWccoceiviiiiiiiiiiiiiiiiiiie e 28
3.1.9 Modifying the EXample DeSIGN ..co.ciiriiiiiii i e aaeas 32

3.1.10 Using the IP Catalog To Generate Your Arria 10 Hard IP for PCI Express as
A Separate ComMPONENt. .. i i e 32
3.1.11 IP Core Generation Output (Quartus Prime Pro Edition).........cccooiiiiiiiiiiinnnn, 33
4 Arria 10 Parameter Settings.......cccicimiiiiaiiiiiiirre s s s nana 36
4.1 PAramMELEIS .ottt e 36
4.2 Arria 10 Avalon-ST Setlings .oiviiiiiiiiii i e 38
4.3 Base Address Register (BAR) and Expansion ROM Settingscovviiiiiiiiiiiiiiiiinennens 38
4.4 Base and Limit Registers for ROOt POItSouiiieiiiie i e e e e e 39
4.5 Device Identification REGISEEISuuieieiiii i e e 39
4.6 PCI Express and PCI Capabilities Parametersccoviiiiiiiiiiiiir e 40
4.6.1 PCI Express and PCI Capabilitiescceviiiiiiii i e e 40
L A = o] gl =T oY o1 [41
4.6.3 LiNK Capabilities . uiiiiiiiiii i e e e 42
4.6.4 MSI and MSI-X Capabilitiesoieieiiiii e e 42
4.6.5 SIot Capabilitiesovieiii i 43
4.6.6 POWer ManagemeEnt ...eiiiiiii i e 44

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
2

intel)

4.7 Vendor Specific Extended Capability (VSEC)....cciiiiiiiiiiiii i 45
4.8 Configuration, Debug, and EXtension OptioNS.......cviiiiiiiiiiiii i aeas 45
4.9 PHY CharaCteriStiCS tuuuiuiitit ittt ettt e et et e et e et e e et et et e e e raneanens 46
4.10 Arria 10 EXample DeSIgNS. ..uuiueii ittt ettt et 47
5 Physical Layout of Hard IP In Arria 10 DeViCeS..iciiarramimminrianmanmsnmsnssassasssnsanssassassansansnnnss 48
5.1 Channel and Pin Placement for the Gen1, Gen2, and Gen3 Data Rates............ccccevvinnns 50
5.2 Channel Placement and fPLL Usage for the Genl and Gen2 Data Rates............cccccvvvnnens 52
5.3 Channel Placement and fPLL and ATX PLL Usage for the Gen3 Data Rate...................... 54
5.4 PCI Express Gen3 Bank Usage RestriCtionS.......cviiiiiiiiiiiii i i nnne e 56
6 Interfaces and Signal Descriptionsciciciiiieieiminaranni i nanas 57
6.1 AVAloN-ST RX TNt At uuiiiitiiiii e ettt e et e e ananes 58
6.1.1 Avalon-ST RX Component Specific Signalsccocviiiiiiiiiiiir e e 60

6.1.2 Data Alignment and Timing for the 64-Bit Avalon-ST RX Interface 61

6.1.3 Data Alignment and Timing for the 128-Bit Avalon-ST RX Interface 65

6.1.4 Data Alignment and Timing for 256-Bit Avalon-ST RX Interface 68

6.1.5 Tradeoffs to Consider when Enabling Multiple Packets per Cyclec.cvvuenne. 69

6.2 AValoN-ST TX LNt aCE .ottt et e e e anaaeaas 70
6.2.1 Avalon-ST Packets to PCI EXPress TLPS ...co.iiuiiiiiiiiiiiiiiie e rae e e 73

6.2.2 Data Alignment and Timing for the 64-Bit Avalon-ST TX Interface 73

6.2.3 Data Alignment and Timing for the 128-Bit Avalon-ST TX Interface 76

6.2.4 Data Alignment and Timing for the 256-Bit Avalon-ST TX Interface 79

6.2.5 Root Port Mode Configuration Requestsccvviiiiiiiiiiiiii s 82

LSINC 1 o Yol Q] T [o = = PP 82
6.4 Reset, Status, and Link Training Signals.......cccoviiiiiiii e 82
SIS = O S U o 2= e o e N 85
(SIS T = o1 g T | = £ PP 85
6.7 Interrupts for ENApPOints ..o e 86
6.8 INterrupts fOr ROOE POMTS .u.uiieiieiii it e e e e e eaeanens 87
6.9 Completion Side Band Signalscouiiiiieiiii e e e 87
6.10 Parity Signals ...oeieiiiiiiii s 89
L I] o =1 90
6.12 Transaction Layer Configuration Space Signalsccciiiiiiiiiiiiiiiic e 92
6.12.1 Configuration Space Register ACCess TiMING ...cvvviriieiiiiiiiiiiiiiiieaeeaeieees 93
6.12.2 Configuration Space Register ACCESSuiiiriiiiiiiiiii i a i eaaeaeeeenens 94

6.13 Hard IP Reconfiguration INterfacecooieieiiiiie i e ee e 98
6.14 Power Management Signalsooeiiiiiiiiiii i 99
6.15 Physical Layer Interface Signalsoieiiiiiiiiiiii e 101
6.15.1 Serial Data Signalsciiriiiiiii i 101
6.15.2 PIPE Interface Signals ...ccoiiiiiiiiiiii i e 102
6.15.3 TSt SIgNAlS viuiiiiiii i e 105
6.15.4 Arria 10 Development Kit Conduit Interface.........coooiiiiiiiiiiii e 105

7 2 =T« 11 = o= 107
7.1 Correspondence between Configuration Space Registers and the PCle Specification 107
7.2 Type 0 Configuration Space REGISLEIS ..uiiuiiiiitiiiii it e enranes 110
7.3 Type 1 Configuration Space REGISTEISciuieiii i e e e 111
7.4 PCI Express Capability StruCtUIeS.oiviiiiiii e aeee s 111
7.5 Intel-Defined VSEC REGISTOIS. ...ttt et e e e e e nenes 114
2 T OV o 2 =T 1] =] o= N 115
7.7 Uncorrectable Internal Error Mask ReGISTervvviviiiiiiiiiii i enaaas 117

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
3

(intel“ﬁ>

7.8 Uncorrectable Internal Error Status Registercoovvviiiiiiiiiiiiic e 118

7.9 Correctable Internal Error Mask RegiSterccviiiiiiiiiiiii e 118

7.10 Correctable Internal Error Status RegiStercoovieieiiiii i 119

8 Arria 10 Reset and CIOCKS....curimrrimmumimrnms s sumss s sassmsassnsas s s s s s s s nsmsansmsansnsnnsnnnnsannnsas 120
8.1 Reset Sequence for Hard IP for PCI Express IP Core and Application Layer 121

S T A O e Yol & PP 123

L3 1720 R @1 (o Yol | gl B 1] 1 o T= 11 T PR 123

8.2.2 ClOCK SUMIMAIY .inuieiii ittt e e e e e e s e e e e reraeanans 125

1 10 1 =T o T o 126
9.1 Interrupts fOr ENAPOiNtS. . vttt et 126

9.1.1 MSI and Legacy INterrupts ..coeouieieie i e 126

1S T I S PP 129

9.1.3 Implementing MSI-X INterruUpPtS....cciiriiiiii i e e aae e aees 129

9.1.4 Legacy INterrupts ..ooviiiiiiiiii 131

9.2 Interrupts for ROOL POMES ..uviiiiiiii i e e e e e n e e e raeaeas 132

10 Error HanNdling .ccciieieeierammememsmmemssmemssmemsssssssmssmasssssssssassassssassssssssssssasansassssassnsassnsnnsnsnns 133
10.1 PhySICal LAyl EFTOIS ..ueuiieiieiie it sttt s e et e s et s e e s e st s e s e st s e e s e seaneaneness 133

10.2 Data LinK Layer ErTOrs vttt s e et r e e et e a et e e e nne e 134

ORI I =T o= Lot o] o I =YL= e o =N 134

10.4 Error Reporting and Data POIiSONINGviieiiiiiiiitii s ieie e eenre e aaeeeanans 136

10.5 Uncorrectable and Correctable Error Status Bitsoceieieiiiiiiiiii e e 137

11 IP Core ArchiteCtUre. .uiccvirierrsansesre s s s srassassasssassansassanssnssansansanssnssansansnnsnnsnnnnas 138
11.1 Top-LeVel INterfaces .ouiiii i e e 139
11.1.1 AValon-ST INEerface tvieii i et 139

11.1.2 ClOCKS @Nd RESELE vttt et ettt e e e e e e e e 140

11.1.3 Local Management Interface (LMI INterface)ccocveveviiieininiiinnieieneinnnenens 140

11.1.4 Hard IP Reconfigurationoovieiiiiiiiiiii et e e e 140

B I A N) o= U o P 141

3 o 141

B A 1 = g 1= ot o (o I = Y PN 141
11.2.1 Configuration SPaCEcuciiiniiie i e et n e eeans 143

11.2.2.1 Error Checking and Handling in Configuration Space Bypass Mode 144

11.2.2.2 Protocol Extensions SUpportedccoovvviiiiiiiiiiiiiii e 147

11,3 Data LiNK LAy @l .ottt e e e et e as 147

I 0NV o= | B = 1 ol P 149

12 Transaction Layer Protocol (TLP) DetailS....civcverimrariemsmiarmremsemarsasassasassarsnsassnsassasannasas 152
12.1 SUPPOrted MESSAGE TYPES .uurineieiie ettt e e et et e et e e e e tansaneneaneaneess 152
12.1.1 INTX MESSAGES 1ueutirinintititinit ittt ettt e e e e 152

12.1.2 Power Management MESSAgESiivviiiiiiiiiiiiiiiei it iaresesaisrarssesaesannaaness 153

12.1.3 Error Signaling MESSAg@S ..uuiiriiiiiiiitiitiit it iisasat et se e aeeae e raenreaneeanes 153

12.1.4 Locked Transaction MESSAQEucueeiniiieiaie it e e e e e aeeeeeenas 154

12.1.5 Slot Power Limit MESSAgeouiiviiiiiiiiiiiiii e e 154

12.1.6 Vendor-Defined MESSAGESuiviiiiiiiiiii it aeneeeas 154

872 A o o ol o [¥ o I == T 1= PP 155

12.2 Transaction Layer ROULING RUIESviiiiiiiiiiiiii i aenea s 155

12.3 Receive Buffer REOIAEING .uiviiriiie i e e e e e e e e eaneeas 156
12.3.1 Using Relaxed Orderingcoeouiieieiiie et e e e e e e e e e e e aeneaens 158

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
4

intel)

13 Throughput Optimization.....cucverimrriererirrr s s s s s s s ransassasassasansasassnssnsasnnsas 161
13.1 Throughput Of POSted WHEES .. .cueneieiiiie it e e e e eeeeees 163

13.2 Throughput of Non-Posted Readscciiiiiiiiiiiiiiii i e 163

14 Design Implementation....c.ciciiiirsrsrsnii s 165
14.1 Making Pin Assignments to Assign I/O Standard to Serial Data Pinsc.ccceceuenene. 165

14.2 Recommended Reset Sequence to Avoid Link Training ISSUESccooviviiiiiiiiinninnnens 165

14.3 Creating a Signal Tap II Debug File to Match Your Design Hierarchycccvennnns 166

14.4 SDC Timing CoNStraints. .. .ouiuiiiiiiii e 167

15 Optional Features.......ccciciiiiiiiiiimiiire i r s s s s r s s s s s nan s nnnnns 168
15.1 Configuration over ProtoCOl (CVP) ...t e e e e e e e nas 168

15.2 AULONOMOUS MOG ...ttt ettt e et e e e e e s e e e e e e an e s s e e e sanernnaaneanneannanns 169
15.2.1 Enabling AUtonomMOUS MOde.....ciuiiiiiiiii e 169

15.2.2 Enabling CvP INitialization.....c.voviiiiiiii i e e 170

BTG 2 01 170
15.3.1 ECRC 0N the RX Path vt e et aa e 170

15.3.2 ECRC 0N the TX Path ..o e e e v s e e ane e eens 171

16 Hard IP Reconfigurationccccivererimrssmmsmmessmsassmsssassnsessnsassnssnsasansnssnsasnnsassnsansnsnnsnnnns 173
17 Testbench and Design EXample ..iciicveriramierimremiemasiamsssassssassassssasassassssassnsassasassasansassnss 174
17.1 Endpoint TESTDENCH ...oieii s 175

17.2 Root Port TeStbench ... 177

17.3 Chaining DMA DeSign EXamMIPIES ..uviiiiiiiiiiiitiiie ittt sestsae e sse s s e saesneasaneaneanens 177
17.3.1 BAR/AAAIESS MaAP .tiviitiiiiieiiitiiiie et et e e et et s e e e aanane e ans 182

17.3.2 Chaining DMA Control and Status Registersccooieiiiiiiiiiiiiiieieee e 183

17.3.3 Chaining DMA Descriptor Tablesc.viiiiiiiiiiii e 185

B 1T ol B T g V=Y ol o T U] = 187

17.5 DMA WHIEE CYCIES 1ottt e 188

17.6 DMA REAA CYClBS uiiitiiitiiiiie it i it ettt ettt a e et e r e a et et a e e e anes 190

17.7 ROOt POrt DeSign EXamMIPIE uuuieiiiiiiiiitii ettt e e e e e e e e e e e e e e e ananeas 191

B B e Yo L ol o o o = P 193
17.8.1 BFM ME@MOKNY MaP .utiiiiiiiiiiii ittt st et st e s e e s e e rae s e e snrneenes 195

17.8.2 Configuration Space Bus and Device Numberingc.coovviiviiiiiiiiininnnnens 195

17.8.3 Configuration of Root Port and ENApointcccciiiiiiiiiiiiiic e 196

17.8.4 Issuing Read and Write Transactions to the Application Layercocvuvns 202

17.9 BFM Procedures and FUNCLIONS ...oviiriirii it et s e e e e rennen e enenenaeneans 202
17.9.1 ebfm_barWr ProCeAUIEconeiie e e et eeaaas 202

17.9.2 ebfm_barwr_imm ProCeAUIEc.iiiiiiiii i e re e e e e eaaeenens 203

17.9.3 ebfm_barrd_wait ProCedUreccciiiiiiiiii i e e e 203

17.9.4 ebfm_barrd_nowt Procedurecooviiiiiiiiiii 204

17.9.5 ebfm_cfgwr_imm_wait Procedurecociiiiiiiiiiiiii s e e naeaas 204

17.9.6 ebfm_cfgwr_imm_nowt Procedurecocciiiiiiiiiiii i 205

17.9.7 ebfm_cfgrd_wait ProCedureccoiiiiiiiiii i 205

17.9.8 ebfm_cfgrd_NOWt ProCedUIrecoviiiiiiii e 206

17.9.9 BFM Configuration ProCedUIES.......coviiiiiiiiiieiiii e ae e 206

17.9.10 BFM Shared Memory ACCESS ProCeAUIEScivieiiiiiniiiiiiiieiieeiesaierieeanens 208

17.9.11 BFM Log and Message ProCeUIEScvvviiiiriiriieiitiiieissneineineissnnsnernennes 210

17.9.12 Verilog HDL Formatting FUNCLIONScviiiiiiiiiiiii e 213

17.9.13 Procedures and Functions Specific to the Chaining DMA Design Example..... 216

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
5

(intel“ﬁ>

17.10 Setting Up SimUIatioN. ..ot e e e e e e e e 220
17.10.1 Changing Between Serial and PIPE Simulationccovviiiiiiiiiiiiiiienenns 220

17.10.2 Using the PIPE Interface for Genl and Gen2 Variantsc.coooieieiniiennnn. 221

17.10.3 Viewing the Important PIPE Interface Signals........c.cooviiiiieiiiiniiiiieieennes 221

17.10.4 Disabling the Scrambler for Genl and Gen2 Simulationscocvivvnnns 221

17.10.5 Disabling 8B/10B Encoding and Decoding for Genl and Gen2 Simulations... 221

18 DEDbUQGQGING tuuvurieramrerunmariarassarassassasassasassasssssssssensassssssssssssssssssssssssssssssnsassnsansassnsasansnnsns 222
18.1 Simulation Fails To Progress Beyond Polling.Active State...........coooviiiiiiiiicinenene, 222

18.2 Hardware Bring=Up ISSUESiiuiiiiiiiiiiiiiit ittt e st s e s e s e e s e naeanens 222

18.3 LiNK Training cuuuiuesieiieisii ittt 223
18.3.1 Link Hangs in LO State....civiiii i e 223

18.4 Use Third-Party PCIe ANalyzZer ..uuuiieiieiie it e et e s e r e e e e eanes 225

18.5 BIOS ENUMEration ISSUEBSuiiuiiiiiiiiiiii ittt ettt e e e e 225

A Transaction Layer Packet (TLP) Header Formatsciccvrimrmimnsissmsnmssnmsssmsansmnanas 226
A.1 TLP Packet Formats with Data Payloadccooiiiiiiiiiiii e 228

B Lane Initialization and Reversalccccvcrimmiermmeriemsmersssemsmarsssassasassassnsasassassasassasansananss 230
C Arria 10 Avalon-ST Interface for PCIe Solutions User Guide Archivecccvvrimnananns 232
D ReViSioN HiStOry. . cioiiiermrremeriarsssasassasssmsssasassassssassssessssssssssssassssasssssssasassnsansasansansnss 233
D.1 Revision History for the Avalon-ST Interface.......ccooviiiiiiiiiiii e 233

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
6

®
1 Datasheet l n tel

1 Datasheet

1.1 Arria 10 Avalon-ST Interface for PCIe Datasheet

Intel® Arria® 10 FPGAs include a configurable, hardened protocol stack for PCI
Express® that is compliant with PCI Express Base Specification 3.0. The Hard IP for
PCI Express using the Avalon® Streaming (Avalon-ST) interface is the most flexible
variant. However, this variant requires a thorough understanding of the PCIe®

Protocol.

Figure 1. Arria 10 PCIe Variant with Avalon-ST Interface

Table 1. PCI Express Data Throughput

Serial Data
Avalon-ST PIPE Transmissiog
Application Interface PCeHardIP | Interface | PHYIPCore |g—-——
> ——P
Layer < Block «— forPle |
(User Logic) (PCS/PMA) | ¢———

The following table shows the aggregate bandwidth of a PCI Express link for Gen1, Gen2, and Gen3 for 1, 2, 4,

and 8 lanes. This table provides bandwidths for a single transmit (TX) or receive (RX) channel. Th

e numbers

double for duplex operation. The protocol specifies 2.5 giga-transfers per second for Gen1, 5.0 giga-transfers
per second for Gen2, and 8.0 giga-transfers per second for Gen3. Genl and Gen2 use 8B/10B encoding which
introduces a 20% overhead. In contrast, Gen3 uses 128b/130b encoding which reduces the data throughput

lost to encoding to about 1.5%.

Link Width

x1 X2 x4 x8
PCI Express Genl 2 4 8 16
(2.5 Gbps)
PCI Express Gen2 4 8 16 32
(5.0 Gbps)
PCI Express Gen3 7.87 15.75 31.51 63
(8.0 Gbps)

Refer to the AN 456: PCI Express High Performance Reference Design for more
information about calculating bandwidth for the hard IP implementation of PCI Express

in many Intel FPGAs, including the Arria 10 Hard IP for PCI Express IP core.

Devices

Related Links

e Arria 10 Avalon-ST Interface for PCIe Solutions User Guide Archive on page 232

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

Iso
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

1 Datasheet

Introduction to Intel FPGA IP Cores
Provides general information about all Intel FPGA IP cores, including
parameterizing, generating, upgrading, and simulating IP cores.

Creating Version-Independent IP and Qsys Simulation Scripts
Create simulation scripts that do not require manual updates for software or IP
version upgrades.

Project Management Best Practices
Guidelines for efficient management and portability of your project and IP files.

PCI Express High Performance Reference Design
For a design example demonstrating DMA performance that you can download
to an Intel Development Kit.

PCI Express Base Specification 3.0

1.1.1 Arria 10 Features

New features in the Quartus® Prime 17.0 software release:

Added optional soft DFE controller IP to improve bit error rate (BER) margin. This
option is available on the PHY tab of the parameter editor. The default for this
option is off because it is typically not required. Short reflective links may benefit
from this soft DFE controller IP. This parameter is available only for Gen3
configurations.

The Arria 10 Hard IP for PCI Express supports the following features:

Complete protocol stack including the Transaction, Data Link, and Physical Layers
implemented as hard IP.

Support for x1, x2, x4, and x8 configurations with Genl1, Gen2, or Gen3 lane
rates for Root Ports and Native Endpoints.

Dedicated 16 KB receive buffer.

Optional support for Configuration via Protocol (CvP) using the PCIe link allowing
the I/O and core bitstreams to be stored separately.

Qsys example designs demonstrating parameterization, design modules, and
connectivity.

Extended credit allocation settings to better optimize the RX buffer space based on
application type.

Support for multiple packets per cycle with the 256-bit Avalon-ST interface.

Optional end-to-end cyclic redundancy code (ECRC) generation and checking and
advanced error reporting (AER) for high reliability applications.

Easy to use:

— Flexible configuration.

— Substantial on-chip resource savings and guaranteed timing closure.
— No license requirement.

— Example designs to get started.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

8

https://www.altera.com/documentation/mwh1409960636914.html#mwh1409958250601
https://www.altera.com/documentation/mwh1409960636914.html#mwh1409958301774
https://www.altera.com/documentation/mwh1409960181641.html#esc1444754592005
https://www.altera.com/documentation/nik1412473924913.html#nik1412473905263
http://www.pcisig.com/

Table 2.

1 Datasheet

Feature Comparison for all Hard IP for PCI Express IP Cores

intel.

The table compares the features for three variants of the Hard IP for PCI Express IP Core. An SR-IOV variant is
also available, but not included because it is very specialized product. Consult the Arria 10 Avalon-ST Interface
with SR-IOV PCle Solutions User Guide for features of this IP core.

Feature Avalon-ST Interface Avalon-MM Interface | Avalon-MM DMA
IP Core License Free Free Free
Native Endpoint Supported Supported Supported
Root port Supported Supported Not Supported
Genl x1, x2, x4, x8 x1, x2, x4, x8 Not Supported
Gen2 x1, x2, x4, x8 x1, x2, x4, x8 x4, x8
Gen3 x1, x2, x4, x8 x1, X2, x4 x2, X4, x8
64-bit Application Layer interface Supported Supported Not supported
128-bit Application Layer interface Supported Supported Supported
256-bit Application Layer interface Supported Not Supported Supported

Maximum payload size

128, 256, 512, 1024, 2048
bytes

128, 256 bytes

128, 256 bytes

Number of tags supported for non-posted
requests

32, 64, 128, 256

8 for 64-bit interface

16 for 128-bit interface

16 or 256

Automatically handle out-of-order
completions (transparent to the
Application Layer)

Not supported

Supported

Not Supported

Automatically handle requests that cross 4
KB address boundary (transparent to the
Application Layer)

Not supported

Supported

Supported

Polarity Inversion of PIPE interface signals

Supported

Supported

Supported

Number of MSI requests

1,2, 4,8, 16, or 32

1,2, 4,8, 16, or 32

1,2, 4,8, 16, or 32

MSI-X Supported Supported Supported
Legacy interrupts Supported Supported Supported
Expansion ROM Supported Not supported Not supported

PCle bifurcation

Not supported

Not supported

Not supported

Table 3.

TLP Support Comparison for all Hard IP for PCI Express IP Cores

The table compares the TLP types that the variants of the Hard IP for PCI Express IP Cores can transmit. Each
entry indicates whether this TLP type is supported (for transmit) by Endpoints (EP), Root Ports (RP), or both

(EP/RP).
Transaction Layer Packet type (TLP) (transmit | Avalon-ST Interface | Avalon-MM Interface Avalon-MM
support) DMA
Memory Read Request (Mrd) EP/RP EP/RP EP
Memory Read Lock Request (MRALK) EP/RP EP
Memory Write Request (MWr) EP/RP EP/RP EP
I/0 Read Request (10Rd) EP/RP EP/RP
I/0 Write Request (10Wr) EP/RP EP/RP
Config Type 0 Read Request (CFgRdO) RP RP
continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

9

Note:

intel.

1 Datasheet

Transaction Layer Packet type (TLP) (transmit | Avalon-ST Interface | Avalon-MM Interface Avalon-MM
support) DMA

Config Type 0 Write Request (CFgWr0) RP RP

Config Type 1 Read Request (CfgRd1) RP RP

Config Type 1 Write Request (CfgWrl) RP RP

Message Request (MsQ) EP/RP EP/RP

Message Request with Data (MsgD) EP/RP EP/RP

Completion (Cpl) EP/RP EP/RP EP

Completion with Data (CplID) EP/RP EP

Completion-Locked (CplLk) EP/RP

Completion Lock with Data (CpIDLk) EP/RP

Fetch and Add AtomicOp Request (FetchAdd) EP

The Arria 10 Avalon-ST Interface for PCIe Solutions User Guide explains how to use
this IP core and not the PCI Express protocol. Although there is inevitable overlap
between these two purposes, use this document only in conjunction with an
understanding of the PCI Express Base Specification.

This release provides separate user guides for the different variants. The Related

Information provides links to all versions.

Related Links

Arria 10 Avalon-MM DMA Interface for PCle Solutions User Guide
For the Avalon-MM interface and DMA functionality.

Arria 10 Avalon-MM Interface for PCIe Solutions User Guide
For the Avalon-MM interface with no DMA.

Arria 10 Avalon-ST Interface with SR-IOV PCle Solutions User Guide
For the Avalon-ST interface with Single Root I/O Virtualization (SR-IOV).

1.2 Release Information

Table 4. Hard IP for PCI Express Release Information
Item Description
Version 17.0
Release Date May 2017

Ordering Codes

No ordering code is required

Product IDs

Vendor ID

There are no encrypted files for the Arria 10 Hard IP for PCI Express. The Product ID and Vendor ID are
not required because this IP core does not require a license.

Intel verifies that the current version of the Quartus Prime software compiles the
previous version of each IP core, if this IP core was included in the previous release.
Intel reports any exceptions to this verification in the Intel IP Release Notes or clarifies
them in the Quartus Prime IP Update tool. Intel does not verify compilation with IP
core versions older than the previous release.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

10

https://www.altera.com/documentation/lbl1415138844137.html#nik1410905278518
https://www.altera.com/documentation/lbl1415230609011.html#nik1410905278518
https://www.altera.com/documentation/lbl1415123763821.html#nik1410905278518

1 Datasheet

intel)

Related Links

Errata for the Arria 10 Hard IP for PCI Express IP Core in the Knowledge Base

Intel FPGA IP Release Notes
Provides release notes for the current and past versions Intel FPGA IP cores.

1.3 Device Family Support

The following terms define device support levels for Intel® FPGA IP cores:

Advance support—the IP core is available for simulation and compilation for this
device family. Timing models include initial engineering estimates of delays based
on early post-layout information. The timing models are subject to change as
silicon testing improves the correlation between the actual silicon and the timing
models. You can use this IP core for system architecture and resource utilization
studies, simulation, pinout, system latency assessments, basic timing assessments
(pipeline budgeting), and I/0 transfer strategy (data-path width, burst depth, I/O
standards tradeoffs).

Preliminary support—the IP core is verified with preliminary timing models for
this device family. The IP core meets all functional requirements, but might still be
undergoing timing analysis for the device family. It can be used in production
designs with caution.

Final support—the IP core is verified with final timing models for this device
family. The IP core meets all functional and timing requirements for the device
family and can be used in production designs.

Table 5. Device Family Support
Device Family Support Level
Arria 10 Final.

Other device families | Refer to the Intel's PCI Express IP Solutions web page for support information on other device

families.

Related Links
PCI Express Solutions Web Page

1.4 Configurations

The Arria 10 Hard IP for PCI Express includes a full hard IP implementation of the PCI
Express stack including the following layers:

Physical (PHY), including:

— Physical Media Attachment (PMA)
— Physical Coding Sublayer (PCS)
Media Access Control (MAC)

Data Link Layer (DL)

Transaction Layer (TL)

The Hard IP supports all memory, I/O, configuration, and message transactions. It is
optimized for Intel devices. The Application Layer interface is also optimized to achieve
maximum effective throughput. You can customize the Hard IP to meet your design
requirements.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
11

http://www.altera.com/support/kdb/kdb-browse.jsp?keyword=pcie+a10+ki
https://www.altera.com/documentation/hco1421698042087.html#hco1421697689300
https://www.altera.com/solutions/technology/transceiver/protocols/pro-pci_exp.html

intel®>

Figure 2. PCI Express Application with a Single Root Port and Endpoint
The following figure shows a PCI Express link between two Arria 10 FPGAs.

Intel FPGA Intel FPGA
PCle PCle
User Application bl tard It User Application
Logic o | PCl Express Link oo Logic

Figure 3. PCI Express Application Using Configuration via Protocol
The Arria 10 design below includes the following components:
e A Root Port that connects directly to a second FPGA that includes an Endpoint.
e Two Endpoints that connect to a PCle switch.

e A host CPU that implements CvP using the PCI Express link connects through the
switch.

Intel FPGA with Hard IP for PCl Express Intel FPGA with Hard IP for PCl Express

PCle
Hard IP

User Application User

PCle Link PCle Link

Logic EP | iy, AP'EE;?:“’“
Yy v
PCle Hard IP
. Config
RP Switch Control
A A
. A Active Serial or
PlleLink Active Quad
v Device Configuration

EP

PCle Hard IP

Configuration over via Protol (CvP)
using PCl Express

User Application Download
Logic cable

Intel FPGA with Hard IP for PCl Express

Related Links

Arria 10 CvP Initialization and Partial Reconfiguration over PCI Express User Guide

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
12

https://documentation.altera.com/#/link/dsu1441819344145/dsu1442269728522

1 Datasheet (inte|®>

1.5 Debug Features

Debug features allow observation and control of the Hard IP for faster debugging of
system-level problems.

Related Links

Debugging on page 222

1.6 IP Core Verification

To ensure compliance with the PCI Express specification, Intel performs extensive
verification. The simulation environment uses multiple testbenches that consist of
industry-standard bus functional models (BFMs) driving the PCI Express link interface.
Intel performs the following tests in the simulation environment:

e Directed and pseudorandom stimuli test the Application Layer interface,
Configuration Space, and all types and sizes of TLPs

e Error injection tests inject errors in the link, TLPs, and Data Link Layer Packets
(DLLPs), and check for the proper responses

e PCI-SIG® Compliance Checklist tests that specifically test the items in the checklist
e Random tests that test a wide range of traffic patterns

Intel provides example designs that you can leverage to test your PCBs and complete
compliance base board testing (CBB testing) at PCI-SIG, upon request.

1.6.1 Compatibility Testing Environment

Intel has performed significant hardware testing to ensure a reliable solution. In
addition, Intel internally tests every release with motherboards and PCI Express
switches from a variety of manufacturers. All PCI-SIG compliance tests are run with
each IP core release.

1.7 Performance and Resource Utilization

Because the PCIe protocol stack is implemented in hardened logic, it uses no core
device resources (no ALMs and no embedded memory).
Related Links

e Fitter Resources Reports
For numerous reports on hardware resources such as Differential 1/O,PLLs,
RAM usage, and GXB RX and TX channels.

e Running the Fitter
For information on Fitter constraints.

1.8 Recommended Speed Grades

Recommended speed grades are pending characterization of production Arria 10
devices.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
13

https://www.altera.com/documentation/mwh1465496482416.html#mwh1465496449900
https://documentation.altera.com/#/link/jbr1437426657605/jbr1443213804950/en-us

1 Datasheet

Table 6. Arria 10 Recommended Speed Grades for All Link Widths and Application
Layer Clock Frequencies

Intel recommends setting the Quartus Prime Analysis & Synthesis Settings Optimization Technique to
Speed when the Application Layer clock frequency is 250 MHz. For information about optimizing synthesis,
refer to Setting Up and Running Analysis and Synthesis in Quartus II Help. For more information about how to
effect the Optimization Technique settings, refer to Area and Timing Optimization in volume 2 of the

Quartus Prime Handbook.

Link Rate Link Width Interface Application Clock Frequency | Recommended Speed Grades
Width (MHz)

Genl x1 64 bits 62.51,125 -1,-2,-3
x2 64 bits 125 -1,-2,-3
x4 64 bits 125 -1,-2,-3
x8 64 bits 250 -1, -2
x8 128 Bits 125 -1,-2,-3

Gen2 x1 64 bits 125 -1,-2,-3
x2 64 bits 125 -1,-2,-3
x4 64 bits 250 -1, -2
x4 128 bits 125 -1,-2,-3
x8 128 bits 250 -1, -2
x8 256 bits 125 -1,-2,-3

Gen3 x1 64 bits 125 -1,-2,-3
x2 64 bits 250 -1, -2
x2 128 bits 125 -1,-2,-3
x4 128 bits 250 -1, -2
x4 256 bits 125 -1,-2,-3
x8 256 bits 250 -1, -2

Related Links

Intel FPGA Software Installation and Licensing

Provides comprehensive information for installing and licensing Intel FPGA

software.

Running Synthesis

For settings that affect timing closure.

1 This is a power-saving mode of operation

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

14

https://www.altera.com/documentation/esc1425946071433.html#esc1426013042774
https://documentation.altera.com/#/link/jbr1437426657605/jbr1443212316061/en-us

1 Datasheet

1.9 Creating a Design for PCI Express

Select the PCIe variant that best meets your design requirements.

Is your design an Endpoint or Root Port?

What Generation do you intend to implement?

What link width do you intend to implement?

What bandwidth does your application require?

Does your design require Configuration via Protocol (CvP)?
Select parameters for that variant.

For Arria 10 devices, you can use the new Example Design tab of the component
GUI to generate a design that you specify. Then, you can simulate this example
and also download it to an Arria 10 FPGA Development Kit. Refer to the Arria 10
PCI Express IP Core Quick Start Guide for details.

For all devices, you can simulate using an Intel-provided example design. All static
PCI Express example designs are available under <i nstal | _di r>/ip/altera/
altera_pcie/altera_pcie_<dev>_ed/example_design/<dev>.
Alternatively, generate an example design that matches your parameter settings,
or create a simulation model and use your own custom or third-party BFM. The
Qsys Generate menu generates simulation models. Intel supports ModelSim* -
Intel FPGA Edition for all IP. The PCle cores support the Aldec RivieraPro, Cadence
NCsim, Mentor Graphics ModelSim, and Synopsys* VCS and VCS-MX simulators.

The Intel testbench and Root Port or Endpoint BFM provide a simple method to do
basic testing of the Application Layer logic that interfaces to the variation.
However, the testbench and Root Port BFM are not intended to be a substitute for
a full verification environment. To thoroughly test your application, Intel suggests
that you obtain commercially available PCI Express verification IP and tools, or do
your own extensive hardware testing, or both.

Compile your design using the Quartus Prime software. If the versions of your
design and the Quartus Prime software you are running do not match, regenerate
your PCIe design.

Download your design to an Intel development board or your own PCB. Click on
the All Development Kits link below for a list of Intel's development boards.

Test the hardware. You can use Intel's SignalTap® Logic Analyzer or a third-party
protocol analyzer to observe behavior.

Substitute your Application Layer logic for the Application Layer logic in Intel's
testbench. Then repeat Steps 3-6. In Intel's testbenches, the PCle core is typically
called the DUT (device under test). The Application Layer logic is typically called
APPS,

Related Links

Arria 10 Parameter Settings on page 36

Getting Started with the Arria 10 Hard IP for PCI Express on page 24
For a design example that illustrates a chaining DMA application.

Quick Start Guide on page 17
All Development Kits
Intel Wiki PCI Express

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
15

http://www.altera.com/products/devkits/kit-dev_platforms.jsp
http://www.alterawiki.com/wiki/Category:PCI_Express

] ®
l n tel) 1 Datasheet

For complete design examples and help creating new projects and specific
functions, such as MSI or MSI-X related to PCI Express. Intel Applications
engineers regularly update content and add new design examples. These
examples help designers like you get more out of the Intel PCI Express IP core
and may decrease your time-to-market. The design examples of the Intel Wiki
page provide useful guidance for developing your own design. However, the
content of the Intel Wiki is not guaranteed by Intel.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
16

®
2 Quick Start Guide l n te I

2 Quick Start Guide

The Intel Arria 10 Hard IP for PCI Express* IP core includes a programmed I/0O (PIO)
design example to help you understand usage. The PIO example transfers memory
from a host processor to a target device. It is appropriate for low-bandwidth

applications. The design example includes an Avalon-ST to Avalon-MM Bridge. This
component translates the TLPs received on the PCle* link to Avalon-MM memory

reads and writes to the on-chip memory.

This design example automatically creates the files necessary to simulate and compile
in the Quartus Prime software. You can download the compiled design to the Arria 10
GX FPGA Development Kit. The design examples cover a wide range of parameters.
However, the automatically generated design examples do not cover all possible
parameterizations of the PCle IP Core. If you select an unsupported parameter set,

generations fails and provides an error message.

In addition, many static design examples for simulation are only available in
<install_dir>/ip/altera/altera_pcie/altera pcie_al0O_ed/
example_design/al0 directory.

Figure 4. Development Steps for the Design Example

the

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

Iso
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

n ®
intel 2 quick Start Guide

2.1 Directory Structure

Figure 5. Directory Structure for the Generated Design Example

Ej <pcie_a10_hip_0_example_design>

pcie_example_design.qpf

pcie_example_design
‘D <design component>
‘D<design component>
o
ﬁ synth

pcie_example_design_th software
pcie_example_design.qsf

pcie_example_design_tb windows

pcie_example_design.sdc

pcie_example_design.qsys

(Quartus Prime Standard, only)

Altera_PCle_Interop_test.zip pcie_example_design.ip
(Quartus Prime Pro, only)

<component simulation model> interop

‘D <component simulation model> Readme_Altera_PCle_interop_Test.txt

sim

<simulator>

G<Simulation Script>

<simulator>

G <Simulation Script>

2.2 Desigh Components

Figure 6. Block Diagram for the Qsys PIO Design Example Simulation Testbench

PCle Example Design Simulation Testbench

Root Port BFM PCle Example Design
(RP_BFM)
l hip_serial I
Generated PCle | AV210n-ST Avalon-sTto | Avalon-MM On-Chip
OR Endpoi data > Avalon-MM 4 data }Memory
hipipipe Variant (DUT) Bridge (Apps) (MEM)

Related Links

Arria 10 Development Kit Conduit Interface on page 105
The Arria 10 Development Kit conduit interface signals are optional signals that
allow you to connect your design to the Arria 10 FPGA Development Kit.

2.3 Generating the Design

Figure 7. Procedure
Start Parameter p| Specfy IP Variation » Select » Specify » Initiate
Editor and Select Device Design Parameters Example Design Design Generation

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
18

2 Quick Start Guide

intel)

Follow these steps to generate the design from the IP Parameter Editor:

1.

In the IP Catalog (Tools O IP Catalog) locate and select the Arria 10 Hard IP
for PCI Express.

Starting with the Quartus Prime Pro 16.1 software, the New IP Variation dialog
box appears.

Specify a top-level name and the folder for your custom IP variation, and the
target device. Click OK

On the IP Settings tabs, specify the parameters for your IP variation.
On the Example Designs tab, the PIO design is available for your IP variation.

Figure 8. Example Design Tab

10.
11.

Arria 10 Hard IP for PClI Express Details . .
altera_pcie_al0_hip i Generate Example Desian. . fegl—— Initiates DeSIgn

Generation

IP Settings | Example Designs

[~ Available Example Designs]
Select design

[~ Example Desian Files |
[¥] Simulation
[¥] Synthesis

[~ Generated HDL Format |
Generated File FOrmat: [yerilog |+

[~ Target Development Kit
Select board [Arria 10 X FPGAD ||«

Select Arria 10 FPGA
Development Kit

This aption provides supports for various Development Kits listed
The details of Altera Development kits can be foundt on Altera wehsite hitps: fuww altera com /products fboards_and_kits /all-development=kits.html

If an Altera Development board is selected, the Target Device used for generation will be the one that matches the device on the Development Kit

For Example Design Files, select the Simulation and Synthesis options.
For Generated HDL Format, only Verilog is available.

For Target Development Kit select the Arria 10 FPGA Development Kit
option.
Click the Generate Example Design button. The software generates all files

necessary to run simulations and hardware tests on the Arria 10 FPGA
Development Kit.Click Close when generation completes.

Click Finish.

The prompt, Recent changes have not been generated. Generate now?,
allows you to create files for simulation and synthesis. Click No to continue to
simulate the design example you just generated.

2.4 Simulating the Design

Figure 9. Procedure
Change to
Run Analyze
Testbench —» o — 4
) <Simulation Script> Results
Directory
1. Change to the testbench simulation directory.
2. Run the simulation script for the simulator of your choice. Refer to the table below.
3. Analyze the results.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
19

intel.

2 Quick Start Guide

Table 7. Steps to Run Simulation
Simulator Working Directory Instructions

ModelSim <exanpl e_desi gn>/ 1. do msim_setup.tcl
pcie_example_design_tbh/ 2. 1d_debug
pcie_example_design_tbh/sim/mentor/ 3. run -all

4. A successful simulation ends with the following
message, "Simulation stopped due to
successful completion!"

VCs* <example_design>/ 1. sh vcs_setup.sh
pcie_example_design_tb/ USER_DEFINED_SIM_OPTIONS=""
pcie_example_design_tbh/sim/ 2. A successful simulation ends with the following
synopsys/vcs message, "Simulation stopped due to

successful completion!"

Cadence* <exanpl e_desi gn>/ 1. sh ncsim_setup.sh
pcie_example_design_tb/ USER_DEFINED_SIM_OPTIONS=""
pcie_example_design_tb/sim/cadence 2. A successful simulation ends with the following

message, "Simulation stopped due to
successful completion!"

Figure 10.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
20

Partial Transcript from Successful Avalon-ST PIO Simulation Testbench

¥ INFO: 60504 ns= New Link Speed: 8.0GT/=

$ INFO: 60576 ns RP PCI Express Link Control Register (0040):

¥ INFO: 60576 ns Common Clock Config: System Reference Clock Used

¥ INFO: 61640 ns RP PCI Express Link Capabilities Register (01606483):

§ INFO: 61640 ns Maximum Link Width: x8

¥ INFO: 61640 ns Supported Link Speed: 8.0GT/s or 5.0GT/s or 2.5GT/s

¥ INFO: 61640 ns L0s Entry: Supported

¥ INFO: 61640 ns= Ll Entry: Not Supported

¥ INFO: 61640 ns L0s Exit Latency: 2 us to 4 us

M INFO: 61640 ns L1l Exit Latency: Less Than 1 us

¥ INFC: 61640 ns Port Number: 01

¥ INFO: 61768 ns= RP PCI Express Device Control Register (5010):

¥ INFC: 61768 ns Error Reporting Enables: 0

¥ INFO: 61768 ns Relaxed Ordering: Enabled

¥ INFO: 61768 ns Max Payload: 128 Bytes

INFO: 61768 ns Extended Tag: Disabled

¥ INFO: 61768 ns Max Read Reguest: 4EBytes

¥ INFC: 61768 ns RP PCT Express Device Status Register (0000):

$ INFO: £2096 ns Configuring Bus 000, Device 000, Function 00

¥ INFO: 62056 ns RP Read Only Configuration Registers:

¥ INFO: 62056 ns= Vendor ID: 1172

¥ INFC: 62096 ns Device ID: E0O1

¥ INFO: 62096 ns Revision ID: 01

¥ INFC: 62096 ns Class Code: FFO000

INFO: 62056 ns Interrupt Pin: INTZ# used

¥ INFC: 62784 ns BAR Address Assignments:

INFO: 62784 ns BAR Size Assigned Address Type

INFO: 62784 ns BAR0 Disabled

¥ TNFC: 62784 ns BAR1 Disabled

¥ INFC: 62784 ns ExpRCOM Disabled

¥ INFO: 66680 ns Completed configuration of Endpoint BARs.

¥ INFO: 67728 ns TASK:downstream loop

¥ INFC: 68584 ns Passed: 0004 same bytes in BFM mem addr 0x00000040 and 0x00000840
¥ INFO: ©9448 ns Passed: 0004 same bytes in BFM mem addr 0x00000040 and 0x00000840
¥ INFC: 702%6 ns Passed: 0004 same bytes in BFM mem addr 0x00000040 and 0x00000840
¥ INFO: 71160 ns Passed: 0004 same bytes in BFM mem addr 0x00000040 and 0x00000840
¥ INFC: 72008 ns Passed: 0004 same bytes in BFM mem addr 0x00000040 and 0x00000840
¥ INFO: 72864 ns Passed: 0004 same bytes in BFM mem addr 0x00000040 and 0x00000840
¥ INFO: 73720 ns Passed: 0004 same bytes in BFM mem addr 0x00000040 and 0x00000840
¥ INFC: 74568 ns Passed: 0004 same bytes in BFM mem addr 0x00000040 and 0x00000840
¥ INFO: 75432 ns Passed: 0004 same bytes in BFM mem addr 0x00000040 and 0x00000840
¥ INFO: 76280 ns Passed: 0004 same bytes in BFM mem addr 0x00000040 and 0x00000840
¥ SUCCESS: Simulation stopped due to successful completion!

n ®
2 Quick Start Guide l n tel :

Related Links

AN-811: Using the Avery BFM for PCI Express Gen3x16 Simulation on Intel Stratix 10
Devices

2.5 Compiling and Testing the Design in Hardware

Figure 11. Procedure

Compile Design
in Quartus Prime p SetupHardware

Software

Test Design
in Hardware

v

Program Device »

Figure 12. Software Application to Test the PCI Express Design Example on the Arria 10
GX FPGA Development Kit

A software application running on a Windows PC performs the same hardware test for
all of the PCI Express Design Examples.

P(le Add-0n
Card

The software application to test the PCI Express Design Example on the Arria 10 GX
FPGA Development Kit is available on both 32- and 64-bit Windows platforms. This
program performs the following tasks:

1. Prints the Configuration Space, lane rate, and lane width.

2. Writes 0x00000000 to the specified BAR at offset 0x00000000 to initialize the
memory and read it back.

3. Writes 0xABCD1234 at offset 0x00000000 of the specified BAR. Reads it back and
compares.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
21

https://www.altera.com/documentation/zoz1492100248719.html#sjb1492100458182
https://www.altera.com/documentation/zoz1492100248719.html#sjb1492100458182

n ®
mtel)

If successful, the test program displays the message 'PASSED'

Follow these steps to compile the design example in the Quartus Prime software:

1. Launch the Quartus Prime software and open
<exanpl e_desi gn>pcie_example_design.gpf.

2. On the Processing > menu, select Start Compilation).
The timing constraints for the design example and the design components are
automatically loaded during compilation.

Follow these steps to test the design example in hardware:

1. In the <exanpl e_desi gn>/software/windows/interop directory, unzip
Altera_PCle_Interop_Test.zip.

Note: You can also refer to readme_Altera_PCle_interop_Test.txt file in
this same directory for instructions on running the hardware test.

2. Install the Intel FPGA Windows Demo Driver for PCIe on the Windows host
machine, using altera_pcie_win_driver.inf.

Note: If you modified the default Vendor ID or Device ID specified in the
component GUI, you must also modify them in
altera_pcie_win_driver.inf.

a. In the <exanpl e_desi gn> directory, launch the Quartus Prime software and
compile the design (Processing > Start Compilation).

b. Connect the development board to the host computer.

c. Configure the FPGA on the development board using the generated .sof file
(Tools > Programmer).

d. Open the Windows Device Manager and scan for hardware changes.

e. Select the Intel FPGA listed as an unknown PCI device and point to the
appropriate 32- or 64-bit driver (altera_pice_win_driver.inf) in the
Windows_driver directory.

f. After the driver loads successfully, a new device named Altera PCI API
Device appears in the Windows Device Manager.

g. Determine the bus, device, and function number for the Altera PCI API
Device listed in the Windows Device Manager.

i. Expand the tab, Altera PCI API Driver under the devices.
ii. Right click on Altera PCI API Device and select Properties.

iii. Note the bus, device, and function number for the device. The following
figure shows one example.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
22

] ®
2 Quick Start Guide l n tel :

Figure 13. Determining the Bus, Device, and Function Number for New PCIle Device

i N
Altera PCI AP] Driver Properties [
| General | Dnver | Detals | Fesources |
L-. Agera PC1 AP Driver
-
Device type: Aiera PCI Device
Manufacturer: Aera Coporation
Locatson: PClbus 3. device 0, function O
Device statuis
[This device is working propey. -
L
il
|__ok || Ccancal
L o'

3. In the <exanpl e_desi ng/software/windows/interop/
Altera_PCle_Interop_Test/Interop_software directory, click
Alt_Test.exe.

4. When prompted, type the bus, device, and function numbers and select the BAR
number (0-5) you specified when parameterizing the IP core.

Note: The bus, device, and function numbers for your hardware setup may be
different.

5. The test displays the message, PASSED, if the test is successful.

Related Links

e Arria 10 Development Kit Conduit Interface on page 105
The Arria 10 Development Kit conduit interface signals are optional signals that
allow you to connect your design to the Arria 10 FPGA Development Kit.

e Arria 10 GX FPGA Development Kit

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
23

https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-a10-gx-fpga.html

®
3 Getting Started with the Arria 10 Hard IP for PCI Express l n tEI

3 Getting Started with the Arria 10 Hard IP for PCI

Express

Figure 14.

Note:

This Genl x8 Endpoint design example illustrates a chaining DMA application. It
provides instructions to help you quickly customize, simulate, and compile the Arria 10
Hard IP for PCI Express IP Core.This design examples creates the files required for
simulation and synthesis, but does not generate all the files necessary to download
the design to hardware. The Quick Start Guide described in the previous chapter does
include all files necessary to download your design to the Arria 10 GX FPGA
Development Kit

When you install the Quartus Prime software you also install the IP Library. This
installation includes design examples for Hard IP for PCI Express under the
<instal |l _dir>/ip/altera/altera_pcie/ directory.

After you install the Quartus Prime software, you can copy the design examples from
the <instal | _di r>/ip/alteraZaltera_pcie/altera pcie_al0_ed/
example_design/al0 directory. This walkthrough uses the Genl x8 Endpoint,
ep_g1x8.qsys. The following figure illustrates the top-level modules of the testbench
in which the DUT, a Genl1 Endpoint, connects to a chaining DMA engine, labeled APPS
in the following figure, and a Root Port model. The simulation can use the parallel PHY
Interface for PCI Express (PIPE) or serial interface.

Testbench for an Endpoint

Root Port Model
altpcie_thed<dev> hwtcl.v

APPS DUT

altpcied <dev>hwtd.v <instance_name>_altera_pcie
_a10_hip_<version>
_<generated_string>.v

Root Port BFM
altpcietb_bfm_rpvar_64b_x8_pipen1b

Avalon-STTX Avalon-STTX
Avalon-STRX Avalon-STRX
reset reset Root Port Driver and Monitor

status status altpcieth_bfm_vc_intf

The Quartus Prime software automatically creates a simulation log file,
altpcie_monitor_<dev> dlhip_tlp_file_log.log, in your simulation
directory. Refer to Understanding Simulation Log File Generation for details.

Intel provides example designs to help you get started with the Arria 10 Hard IP for
PCI Express IP Core. You can use example designs as a starting point for your own
design. The example designs include scripts to compile and simulate the Arria 10 Hard
IP for PCI Express IP Core. This example design provides a simple method to perform
basic testing of the Application Layer logic that interfaces to the Hard IP for PCI
Express.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in 1so .
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services :OOEI..tZOOg
egistere

at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

3 Getting Started with the Arria 10 Hard IP for PCI Express

For a detailed explanation of this example design, refer to the Testbench and Design
Example chapter. If you choose the parameters specified in this chapter, you can run
all of the tests included in Testbench and Design Example chapter.

For more information about Qsys, refer to System Design with Qsys in the Quartus
Prime Handbook. For more information about the Qsys GUI, refer to About Qsys in
Quartus Prime Help.

Related Links

e Testbench and Design Example on page 174

e Understanding Simulation Log File Generation on page 27

3.1 Qsys Design Flow

Figure 15.

Copy the ep_g1x8.qsys design example from the <i nstal | _di r>/ip/altera/
altera pcie/altera pcie/altera_pcie_al0 _ed/example_designs/al0 to
your working directory.

The following figure illustrates this Qsys system.

Complete Genl1l x8 Endpoint (DUT) Connected to Example Design (APPS)

1= system comems & Address Map & | Project Settings &% =
k| EE Connections MName Description Expont Clock. Base End IRQ
] B APPS Example design for Avalon-5t..
x coreclkoui_hip |Clock Input DUT_coreclkout._...
.1;. pld_clk_hip Clock Output APPS_pld_clk_hip
rx_st Awvalon Streaming Sink APPS_pld_clk_hip
= rx_bar_be Conduit
a T _st Awvalon Streaming Source LAPPS_pld_clk_hip
tx_cred Conduit
hip_rst Conduit
- int_msi Conduit
? hip_status Conduit
config_tl Conduit
— powsr_mngt Conduit
vl 8 buT Arria 10 Hard IP for PCI Expr.
pld_clk Clock Input \APPS_pld_clk_hip
coreclkout_hip |Clock Output DUT _coreclkout_hip
(=l refillk Clock Input refclic exported =
<o npor Conduit pcie_rstn =
hip_rst Conduit
<= hip_ctrl Conduit hip_ctrl ==
hip_status Conduit
T currentspead Conduit currentspeed =
T _st Awvalon Streaming Sink [pld_clk]
rx_st Avalon Streaming Source [pld_clk]
rx_bar Conduit
tx_cred Conduit
< hip_pipe Conduit hip_pipe ==
<= hip_serial Conduit hip_serial ==
int_msi Conduit
— power_mant Conduit
config_tl Conduit

The example design includes the following components:

intel.

e DUT—This is Genl x8 Endpoint. For your own design, you can select the data rate,

number of lanes, and either Endpoint or Root Port mode.

e APPS—This Root Port BFM configures the DUT and drives read and write TLPs to
test DUT functionality. An Endpoint BFM is available if your PCI Express design
implements a Root Port.

3.1.1 Generating the Testbench

1. On the Generate menu, select Generate Testbench System. Specify the
parameters listed in the following table.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

25

] ®
l n tel) 3 Getting Started with the Arria 10 Hard IP for PCI Express

Table 8. Parameters to Specify on the Generation Tab in Qsys

Parameter Value

Testbench System

Create testbench Qsys system Standard, BFMs for standard Qsys interfaces
Create testbench simulation model Verilog
Allow mixed-language simulation Turn this option off

Output Directory

Clear output directories for selected generation targets Turn this option off

Testbench <wor ki ng_di r>/ep_glx8 th/

2. Click the Generate button at the bottom of the Generation tab to create the
testbench.
This testbench assumes that you are running the DMA application that the
example design available in the installation directory creates. Otherwise, the
testbench tests will probably fail unless your own testbench has equivalent
functionality.

Note: Arria 10 devices do not support the Create timing and resource
estimates for third-party EDA synthesis tools option on the Generate
0 Generate HDL menu. You can select this menu item, but generation
fails.

3.1.2 Simulating the Example Design

Start your simulation tool. This example uses the ModelSim® software.

2. From the ModelSim transcript window, in the testbench directory,
<wor ki ng_di r>/ep_g1x8_tb/ep_gilx8 thb/sim/mentor, type the following
commands:

a. do msim_setup.tcl

b. 1d_debug (This command compiles all design files and elaborates the
top-level design without any optimization.)

c. run -all

The simulation includes the following stages:

e Link training

e Configuration

e DMA reads and writes

¢ Root Port to Endpoint memory reads and writes

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
26

] ®
3 Getting Started with the Arria 10 Hard IP for PCI Express l n tel)

Disabling Scrambling for Genl and Gen2 to Interpret TLPs at the PIPE
Interface

1. Goto<project _directory/ep gix8 th/ep gix8 th/
altera pcie_alO tbed 140/sinm/.

Open altpcietb_bfm_top_rp.v.

Locate the assignment for test_in[2:1]. Set test_in[2] = 1 and
test_in[1] = 0. Changing test_in[2] = 1 disables data scrambling on the
PIPE interface.

4. Save altpcietb_bfm_top_rp.v.

3.1.3 Generating Synthesis Files

On the Generate menu, select Generate HDL.

2. For Create HDL design files for synthesis, select Verilog.
You can leave the default settings for all other items.

3. Click Generate to generate files for synthesis.

4. Click Finish when the generation completes.

Related Links

What assignments do I need for a PCle Genl, Gen2 or Gen3 design that targets an
Arria 10 ES2, ES3 or production device?
Starting with the Quartus Prime Software Release 17.0, these assignments are
automatically included in the design. You do not have to add them.

3.1.4 Understanding the Files Generated

Table 9. Overview of Qsys Generation Output Files
Directory Description
<t est bench_di r >/ <vari ant _nane>/synth Includes the top-level HDL file for the Hard IP for PCI Express.
<t est bench_di r >/ <vari ant _nane>/sim/ Includes the HDL source files and scripts for the simulation testbench.
<cad_vendor >

For a more detailed listing of the directories and files the Quartus Prime software
generates, refer to Files Generated for Intel IP Cores in Compiling the Design in the
Qsys Design Flow.

3.1.5 Understanding Simulation Log File Generation

Starting with the Quartus II 14.0 software release, simulation automatically creates a
log file, altpcie_monitor_<dev>_dlhip_tlp_file_log.log in your simulation
directory.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
27

https://www.altera.com/support/support-resources/knowledge-base/ip/2017/what-assignments-do-i-need-for-a-pcie-gen1--gen2-or-gen3-design-.html
https://www.altera.com/support/support-resources/knowledge-base/ip/2017/what-assignments-do-i-need-for-a-pcie-gen1--gen2-or-gen3-design-.html

] ®
l n tel) 3 Getting Started with the Arria 10 Hard IP for PCI Express

Table 10. Sample Simulation Log File Entries
Time TLP Type Payload TLP Header
(Bytes)
17989 RX CfgRdO 0004 04000001_0000000F_01080008
17989 RX MRd 0000 00000000_00000000_01080000
18021 RX CfgRdO 0004 04000001_0000010F_0108002C
18053 RX CfgRdO 0004 04000001_0000030F_0108003C
18085 RX MRd 0000 00000000_00000000_0108000C

3.1.6 Understanding Physical Placement of the PCIe IP Core

For more information about physical placement of the PCIe blocks, refer to the links
below. Contact your Intel sales representative for detailed information about channel
and PLL usage.

Related Links

e Channel Placement and fPLL Usage for the Genl and Gen2 Data Rates on page
52
For channel placement of x1, x2, x4, and x8 configurations.

e Channel Placement and fPLL and ATX PLL Usage for the Gen3 Data Rate on page
54
For channel placement of x1, x2, x4, and x8 configurations.

3.1.7 Adding Virtual Pin Assignment to the Quartus II Settings File (.qsf)

To compile successfully you must add a virtual pin assignment statement for the PIPE
interface to your .qsf file. The PIPE interface is useful for debugging, but is not a top-
level interface of the IP core.

1. Browse to the synthesis directory that includes the .qsT for your project,
<proj ect _dir>/ep_glx8/
2. Open ep_glx8.qgsf.
3. Add the following assignment statement:
set_instance_assignment -name VIRTUAL PIN ON -to hip_pipe_*
4. Save the .gsf file.

3.1.8 Compiling the Design in the Qsys Design Flow

To compile the Qsys design example in the Quartus Prime software, you must create a
Quartus Prime project and add your Qsys files to that project.

1. Before compiling, you can optionally turn on two parameters in the testbench. The
first parameter specifies pin assignments that match those for the Intel
Development Kit board I/0Os. The second parameter enables the Compliance Base
Board (CBB) logic on the development board. In the Genl x8 example design,
complete the following steps if you want to enable these parameters:

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
28

™ ®
3 Getting Started with the Arria 10 Hard IP for PCI Express l n tel)

Right-click the APPS component and select Edit.
Turn on Enable FPGA Dev kit board I/0s.
Turn on Enable FPGA Dev kit board CBB logic.
Click Finish.

On the Generate menu, select Generate Testbench System and then click
Generate.

® a0 T o

f. On the Generate menu, select Generate HDL and then click Generate. (You
can use the same parameters that are specified in Generating the Testbench
earlier in this chapter).

In the Quartus Prime software, click the New Project Wizard icon.

Click Next in the New Project Wizard: Introduction (The introduction does not
appear if you previously turned it off.)

4. On the Directory, Name, Top-Level Entity page, enter the following
information:

a. The working directory shown is correct. You do not have to change it.

b. For the project name, click the browse button browse to the synthesis
directory that includes your Qsys project, <wor ki ng_di r >/ ep_g1x8/synth
and click Choose. If the top-level design entity and Qsys system names are
identical, theQuartus Prime software treats the Qsys system as the top-level
design entity.

C. For What is the name of this project, select your variant name ep_g1x8.
Then click Open. If the top-level design entity and Qsys system names are
identical, the Quartus Prime software treats the Qsys system as the top-level
design entity.

d. For Project Type select Empty project.
Click Next to display the Add Files page.

6. Complete the following steps to add the Quartus Prime IP File (.qip)to the
project:

Click the browse button. The Select File dialog box appears.

Browse up one level to <wor ki ng_di r >/ ep_g1x8/ button.

Click ep_g1x8.qip and then click Open.
On the Add Files page, click Add.
Click Next to display the Device page.

a
b
c. In the Files of type list, select IP Variation Files (*.qip).
d
e

On the Family & Device Settings page, choose the following target device family
and options:

a. In the Family list, select Arria 10 (GX/SX/GT).
b. In the Devices list, select Arria 10 All.

c. In the Devices list, select All.
d

In the Available devices list, select the appropriate device. For Arria 10 GX
FPGA Development Kit, select 10AX115S2F45I1SG.

9. Click Next to close this page and display the EDA Tool Settings page.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
29

10.

11.
12.

13.
14.

15

16.

17.

3 Getting Started with the Arria 10 Hard IP for PCI Express

From the Simulation list, select ModelSim®. From the Format list, select the
HDL language you intend to use for simulation.

Click Next to display the Summary page.

Check the Summary page to ensure that you have entered all the information
correctly.

Click Finish to create the Quartus Prime project.

Before compiling, you must assign I/O standards to the pins of the device. Refer
to Making Pin Assignments to Assign I/O Standard to Serial Data Pins for
instructions.

. You must connect the pin_perst reset signal to the corresponding NnPERST pin of

the device. Refer to the definition of pin_perst in the Reset, Status, and Link
Training Signals section for more information.

Next, set the value of the test_in bus to a value that is compatible for hardware
testing. In Qsys design example provided, test_in is a top-level port.

a. Comment out the test_1in port in the top-level Verilog generated file.

b. Add the following declaration, wire[31:0] test_in, to the same top-level
Verilog file.

C. Assign hip_ctrl_test_in = 32"h188.
d. Connect test_into hip_ctrl_test_in.

Refer to the definition of test_in in the Test Signals section for more information
about the bits of the test_in bus.

To compile your design using the Quartus Prime software, on the Processing
menu, click Start Compilation. The Quartus Prime software then performs all the
steps necessary to compile your design.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

30

] ®
3 Getting Started with the Arria 10 Hard IP for PCI Express l n tel)

Files Generated for Intel IP Cores

Figure 16.

IP Core Generated Files

(7] <Project Directory>

<your_ip>.ip - Top-level IP variation file

—Ej <your_ip> - IP core variation files

—C|<your_ip>.bsf - Block symbol schematic file
—C|<your_ip>.cmp - VHDL component declaration
—E|<your_ip>.ppf - XML /0 pin information file
—C|<your_ip>.qip - Lists files for IP core synthesis
—[|<y0ur_ip>.spd - Simulation startup scripts
—[|<your_ip>_bb.v - Verilog HDL black box EDA synthesis file *
—G<your_ip>_generation.rpt - IP generation report
_[|<your_ip>_inst.v or .vhd - Lists file for IP core synthesis
_G <your_ip>.qgsimc - Simulation caching file (Qsys Pro)
_ﬂ <your_ip>.qgsynthc - Synthesis caching file (Qsys Pro)
sim - IP simulation files

<your_ip>.v or vhd - Top-level simulation file

<simulator vendor> - Simulator setup scripts
<simulator_setup_scripts>

synth - IP synthesis files
<your_ip>.v or .vhd - Top-level IP synthesis file

<IP Submodule>_<version> - IP Submodule Library
sim- IP submodule 1 simulation files

<HDL files>
synth - IP submodule 1 synthesis files

<HDL files>
<your_ip>_tb - IP testbench system *

<your_testbench>_th.qsys - testbench system file
<your_ip>_th - IP testbench files

your_testbench> _th.csv or .spd - testhench file

sim - IP testhench simulation files

* |f supported and enabled for your IP core variation.

Related Links

e Making Pin Assignments to Assign I/O Standard to Serial Data Pins on page 165
Before running Quartus Prime compilation, use the Pin Planner to assign I/O
standards to the pins of the device.

e Test Signals on page 105

e Reset, Status, and Link Training Signals on page 82

e Generating the Testbench on page 25

e Simulating the Example Design on page 26

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Gui

de
31

] ®
< l n tel) 3 Getting Started with the Arria 10 Hard IP for PCI Express

3.1.9 Modifying the Example Design

To use this example design as the basis of your own design, replace the Chaining DMA
Example shown in the following figure with your own Application Layer design. Then
modify the Root Port BFM driver to generate the transactions needed to test your
Application Layer.

Figure 17. Testbench for PCI Express

Intel FPGA
APPS DUT

Hard IP for PCl Express

Chaining DMA

perstn (npor)

3.1.10 Using the IP Catalog To Generate Your Arria 10 Hard IP for PCI
Express as a Separate Component

You can also instantiate the Arria 10 Hard IP for PCI Express IP Core as a separate
component for integration into your project.

You can use the Quartus Prime IP Catalog and IP Parameter Editor to select,
customize, and generate files representing your custom IP variation. The IP Catalog
(Tools 0 IP Catalog) automatically displays IP cores available for your target device.
Double-click any IP core name to launch the parameter editor and generate files
representing your IP variation.

For more information about the customizing and generating IP Cores refer to
Specifying IP Core Parameters and Options in Introduction to Intel FPGA IP Cores. For
more information about upgrading older IP cores to the current release, refer to
Upgrading Outdated IP Cores in Introduction to Intel FPGA IP Cores.

Related Links
Qsys Design Flow on page 25

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
32

] ®
3 Getting Started with the Arria 10 Hard IP for PCI Express l n tel

3.1.11 IP Core Generation Output (Quartus Prime Pro Edition)

The Quartus Prime software generates the following output file structure for individual
IP cores that are not part of a Qsys Pro system.

Figure 18. Individual IP Core Generation Output (Quartus Prime Pro Edition)
(] <Project Directory>

—G <your_ip>.ip - Top-level IP variation file
—Ej <your_ip> - IP core variation files
—G<your_ip>.bsf - Block symbol schematic file
<your_ip>.cmp - VHDL component declaration
—G<your_ip>.ppf - XML1/0 pin information file
—[|<your_ip>.qip - Lists files for IP core synthesis
—[|<your_ip>.spd - Simulation startup scripts
—E|<your_ip>_bb.v - Verilog HDL black box EDA synthesis file *
—G <your_ip>_generation.rpt - IP generation report
_ﬂ <your_ip>_inst.v or .vhd - Lists file for IP core synthesis
_ﬂ <your_ip>.qgsimc - Simulation caching file (Qsys Pro)
_EI <your_ip>.qgsynthc - Synthesis caching file (Qsys Pro)
sim - IP simulation files

<your_ip>.v or vhd - Top-level simulation file

<simulator vendor> - Simulator setup scripts
<simulator_setup_scripts>

synth - IP synthesis files
<your_ip>.v or .vhd - Top-level IP synthesis file

<IP Submodule>_<version> - IP Submodule Library

sim- [P submodule 1 simulation files

<HDL files>
synth - IP submodule 1 synthesis files
<HDL files>
<your_ip>_th - IP testhench system *

<your_testbench>_th.qsys - testhench system file
<your_ip>_th - IP testbench files

your_testbench> _th.csv or .spd - testhench file

sim - P testbench simulation files
* |f supported and enabled for your IP core variation.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
33

Table 11.

intel.

3 Getting Started with the Arria 10 Hard IP for PCI Express

Files Generated for IP Cores

File Name

Description

<your _i p>.1ip

Top-level IP variation file that contains the parameterization of an IP core in
your project. If the IP variation is part of a Qsys Pro system, the parameter
editor also generates a .gsys file.

<your _i p>.cmp

The VHDL Component Declaration (.cmp) file is a text file that contains local
generic and port definitions that you use in VHDL design files.

<your _i p>_generation.rpt

IP or Qsys Pro generation log file. Displays a summary of the messages during
IP generation.

<your _i p>.qggsimc (Qsys Pro systems
only)

Simulation caching file that compares the .qsys and . ip files with the current
parameterization of the Qsys Pro system and IP core. This comparison
determines if Qsys Pro can skip regeneration of the HDL.

<your _i p>.qggsynth (Qsys Pro
systems only)

Synthesis caching file that compares the .qsys and . ip files with the current
parameterization of the Qsys Pro system and IP core. This comparison
determines if Qsys Pro can skip regeneration of the HDL.

<your _i p>.qip

Contains all information to integrate and compile the IP component.

<your _i p>.csv

Contains information about the upgrade status of the IP component.

<your _i p>.bsf

A symbol representation of the IP variation for use in Block Diagram Files
(-bdf).

<your _i p>.spd

Required input file for ip-make-simscript to generate simulation scripts for
supported simulators. The .spd file contains a list of files you generate for
simulation, along with information about memories that you initialize.

<your _i p>.ppF

The Pin Planner File (.ppT) stores the port and node assignments for IP
components you create for use with the Pin Planner.

<your _i p>_bb.v

Use the Verilog blackbox (_bb.v) file as an empty module declaration for use
as a blackbox.

<your _i p>_inst.vor _inst.vhd

HDL example instantiation template. Copy and paste the contents of this file
into your HDL file to instantiate the IP variation.

<your _i p>.regmap

If the IP contains register information, the Quartus Prime software generates
the _regmap file. The .regmap file describes the register map information of
master and slave interfaces. This file complements the .sopcinfo file by
providing more detailed register information about the system. This file enables
register display views and user customizable statistics in System Console.

<your _i p>.svd

Allows HPS System Debug tools to view the register maps of peripherals that
connect to HPS within a Qsys Pro system.

During synthesis, the Quartus Prime software stores the .svd files for slave
interface visible to the System Console masters in the .sof file in the debug
session. System Console reads this section, which Qsys Pro queries for register
map information. For system slaves, Qsys Pro accesses the registers by name.

<your _i p>.v <your _i p>.vhd

HDL files that instantiate each submodule or child IP core for synthesis or
simulation.

mentor/ Contains a script msim_setup.tcl to set up and run a simulation.

aldec/ Contains a Riviera*-PRO script rivierapro_setup.tcl to setup and run a
simulation.

/synopsys/vcs Contains a shell script vcs_setup.sh to set up and run a VCS* simulation.

/synopsys/vcsmx Contains a shell script vesmx_setup.sh and synopsys_sim.setup file to

set up and run a VCS MX* simulation.

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

34

] ®
3 Getting Started with the Arria 10 Hard IP for PCI Express l n tel

File Name Description
/cadence Contains a shell script ncsim_setup.sh and other setup files to set up and
run an NCSIM simulation.
/submodules Contains HDL files for the IP core submodule.
<I P subnodul e>/ For each generated IP submodule directory, Qsys Pro generates /synth

and /sim sub-directories.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
35

4 Arria 10 Parameter Settings l n tel

4 Arria 10 Parameter Settings

4.1 Parameters

This chapter provides a reference for all the parameters of the Arria 10 Hard IP for PCI
Express IP core.

Table 12. System Settings

Parameter Value Description
Application Avalon-ST Selects the interface to the Application Layer.
Interface Type Avalon-MM

Avalon-MM with DMA
Avalon-ST with SR-IOV

Hard IP mode Gen3x8, Interface: 256-bit, 250 MHz | Selects the following elements:

Gen3x4, Interface: 256-bit, 125 MHz | . The |ane data rate. Genl, Gen2, and Gen3 are
Gen3x4, Interface: 128-bit, 250 MHz supported

Gen3x2, Interface: 128-bit, 125 MHz | | The width of the data interface between the hard IP

g::gif’ i::z:::z:f 22:2::’ i;g m:: Transaction Layer and the Application Layer
! b H implemented in the FPGA fabric

Gen2x8, Interface: 256-bit, 125 MHz o .
Gen2x8, Interface: 128-bit, 250 MHz | * The Application Layer interface frequency
Gen2x4, Interface: 128-bit, 125 The interface supports only the 256-bit modes.
MHzGen2x2, Interface: 64-bit, 125
MHz Gen2x4, Interface: 64-bit, 250
MHz Gen2x1, Interface: 64-bit, 125
MHz Gen1x8, Interface: 128-bit, 125
MHz Gen1x8, Interface: 64-bit, 250
MHz Gen1x4, Interface: 64-bit, 125
MHz Gen1x2, Interface: 64-bit, 125
MHz Gen1x1, Interface: 64-bit, 125
MHz Gen1x1, Interface: 64-bit, 62.5

MHz
Port type Native Endpoint Specifies the port type.
Root Port The Endpoint stores parameters in the Type 0
Configuration Space. The Root Port stores parameters in
the Type 1 Configuration Space.
The interface supports only Native Endpoint operation.
RX Buffer credit Minimum Determines the allocation of posted header credits,
allocation - Low posted data credits, non-posted header credits,
performance for Balanced completion header credits, and completion data credits
received requests ; in the 16 KB RX buffer. The settings allow you to adjust
High the credit allocation to optimize your system.
Maximum

The credit allocation for the selected setting displays in
the Message pane. The Message pane dynamically
updates the number of credits for Posted, Non-Posted
Headers and Data, and Completion Headers and Data as
you change this selection.

Refer to the Throughput Optimization chapter for more
information about optimizing your design.

continued...

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2008
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

4 Arria 10 Parameter Settings

intel.

Parameter

Value

Description

Refer to the RX Buffer Allocation Selections Available by
Interface Type below for the availability of these
settings by interface type.

Minimum—configures the minimum PCle specification
allowed for non-posted and posted request credits,
leaving most of the RX Buffer space for received
completion header and data. Select this option for
variations where application logic generates many read
requests and only infrequently receives single requests
from the PCIe link.

Low—configures a slightly larger amount of RX Buffer
space for non-posted and posted request credits, but
still dedicates most of the space for received completion
header and data. Select this option for variations where
application logic generates many read requests and
infrequently receives small bursts of requests from the
PCIe link. This option is recommended for typical
endpoint applications where most of the PClIe traffic is
generated by a DMA engine that is located in the
endpoint application layer logic.

Balanced—configures approximately half the RX Buffer
space to received requests and the other half of the RX
Buffer space to received completions. Select this option
for variations where the received requests and received
completions are roughly equal.

High—configures most of the RX Buffer space for
received requests and allocates a slightly larger than
minimum amount of space for received completions.
Select this option where most of the PCle requests are
generated by the other end of the PCle link and the
local application layer logic only infrequently generates
a small burst of read requests. This option is
recommended for typical root port applications where
most of the PCle traffic is generated by DMA engines
located in the endpoints.

Maximum—configures the minimum PCle specification
allowed amount of completion space, leaving most of
the RX Buffer space for received requests. Select this
option when most of the PClIe requests are generated by
the other end of the PCle link and the local application
layer logic never or only infrequently generates single
read requests. This option is recommended for control
and status endpoint applications that don't generate any
PCIe requests of their own and only are the target of
write and read requests from the root complex.

completion
credits

RX Buffer Header credits, Data credits

Displays the number of completion credits in the 16 KB
RX buffer resulting from the credit allocation parameter.
Each header credit is 16 bytes. Each data credit is 20
bytes.

Related Links

PCI Express Base Specification 3.0

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

37

http://www.pcisig.com/

] ®
l n tel 4 Arria 10 Parameter Settings

4.2 Arria 10 Avalon-ST Settings

Table 13. System Settings for PCI Express

Parameter Value Description
Enable Avalon-ST On/Off When On, the generated reset output port has the same functionality that
reset output port the reset_status port included in the Reset and Link Status interface.
Enable byte parity on/Off When On, the RX and TX datapaths are parity protected. Parity is odd. The
ports on Avalon- Application Layer must provide valid byte parity in the Avalon-ST TX
ST interface direction.
This parameter is only available for the Avalon-ST Arria 10 Hard IP for PCI
Express.
Enable multiple Oon/Off When On, the 256-bit Avalon-ST interface supports the transmission of TLPs
packets per cycle starting at any 128-bit address boundary, allowing support for multiple
for the 256-bit packets in a single cycle. To support multiple packets per cycle, the
interface Avalon-ST interface includes 2 start of packet and end of packet signals for

the 256-bit Avalon-ST interfaces. This is not supported for the Avalon-ST
with SR-IOV interface.

Enable credit Oon/Off When you turn on this option, the core includes the tx_cons_cred_sel
consumed port. This parameter does not apply to the Avalon-MM interface.

selection port

Enable on/Off When On, the Arria 10 Hard IP for PCI Express bypasses the Transaction
Configuration Layer Configuration Space registers included as part of the Hard IP, allowing
bypass (CfgBP) you to substitute a custom Configuration Space implemented in soft logic.

This parameter is not available for the Avalon-MM IP Cores.

Enable local On/Off When On, your variant includes the optional LMI interface. This interface is
management used to log error descriptor information in the TLP header log registers. The
interface (LMI) LMI interface provides the same access to Configuration Space registers as

Configuration TLP requests.

Related Links
e Throughput Optimization on page 161
e PCI Express Base Specification 3.0

4.3 Base Address Register (BAR) and Expansion ROM Settings

The type and size of BARs available depend on port type.

Table 14. BAR Registers

Parameter Value Description
Type Disabled If you select 64-bit prefetchable memory, 2 contiguous BARs
64-bit prefetchable memory are combined to form a 64-bit prefetchable BAR; you must

set the higher numbered BAR to Disabled. A non-

) prefetchable 64-bit BAR is not supported because in a typical
32-bit prefetchable memory system, the Root Port Type 1 Configuration Space sets the
I/0 address space maximum non-prefetchable memory window to 32 bits. The
BARs can also be configured as separate 32-bit memories.
Defining memory as prefetchable allows contiguous data to
be fetched ahead. Prefetching memory is advantageous
when the requestor may require more data from the same

32-bit non-prefetchable memory

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
38

http://www.pcisig.com/

4 Arria 10 Parameter Settings

intel.

Parameter

Value

Description

region than was originally requested. If you specify that a

memory is prefetchable, it must have the following 2

attributes:

e Reads do not have side effects such as changing the
value of the data read

e Write merging is allowed

The 32-bit prefetchable memory and I/0 address space

BARs are only available for the Legacy Endpoint.

Size

16 Bytes-8 EB

Supports the following memory sizes:

e 128 bytes-2 GB or 8 EB: Endpoint and Root Port
variants

e 6 bytes-4 KB: Legacy Endpoint variants

Expansion
ROM

Disabled-16 MB

Specifies the size of the optional ROM.
The expansion ROM is only available for the Avalon-ST
interface.

4.4 Base and Limit Registers for Root Ports

Table 15. Base and Limit Registers
The following table describes the Base and Limit registers which are available in the Type 1 Configuration
Space for Root Ports. These registers are used for TLP routing and specify the address ranges assigned to
components that are downstream of the Root Port or bridge.
Parameter Value Description
Input/Output Disabled Specifies the address widths for the 10 base and 10 limit

16-bit I/0 addressing
32-bit I/0 addressing

registers.

Prefetchable

Disabled

Specifies the address widths for the Prefetchable Memory

memory 16-bit memory addressing Base register and Prefetchable Memory Limit register.
32-bit memory addressing
Note: The Avalon-MM Hard IP for PCI Express Root Port does not filter addresses.

Related Links
PCI to PCI Bridge Architecture Specification

4.5 Device Identification Registers

Table 16.

Device ID Registers

The following table lists the default values of the read-only Device ID registers. You can use the parameter
editor to change the values of these registers. At run time, you can change the values of these registers using
the optional reconfiguration block signals. You can specify Device ID registers for each Physical Function.

Register Name

Default Value

Description

Vendor ID 0x00001172 Sets the read-only value of the Vendor ID register. This parameter can not
be set to OXFFFF per the PCI Express Specification.
Address offset: 0x000.

Device ID Custom value Sets the read-only value of the Device ID register.

Address offset: 0x000.

Revision ID

Custom value

Sets the read-only value of the Revision ID register.
continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
39

http://www.pcisig.com/home

] ®
l n tel 4 Arria 10 Parameter Settings

Register Name Default Value Description

Address offset: 0x008.

Class code Custom value Sets the read-only value of the Class Code register.
Address offset: 0x008.

Subsystem Custom value Sets the read-only value of the * register in the PCI Type 0 Configuration
Vendor ID Space. This parameter cannot be set to OxXFFFF per the PCI Express Base
Specification. This value is assigned by PCI-SIG to the device manufacturer.

Address offset: 0x02C.

Subsystem Device Custom value Sets the read-only value of the Subsystem Device ID register in the PCI
ID Type 0 Configuration Space.
Address offset: 0x02C

Related Links
PCI Express Base Specification 2.1 or 3.0

4.6 PCI Express and PCI Capabilities Parameters

This group of parameters defines various capability properties of the IP core. Some of
these parameters are stored in the PCI Configuration Space - PCI Compatible
Configuration Space. The byte offset indicates the parameter address.

4.6.1 PCI Express and PCI Capabilities

Table 17. Capabilities Registers

Parameter Possible Default Value Description
Values
Maximum 128 bytes 128 bytes Specifies the maximum payload size supported. This parameter
payload size 256 bytes sets the read-only value of the max payload size supported field
512 bytes of the Device Capabilities register (0x084[2:0]). Address: 0x084.
1024 bytes
2048 bytes
Number of 32 32 Indicates the number of tags supported for non-posted requests
Tags 64 transmitted by the Application Layer. This parameter sets the
supported values in the Device Control register (0x088) of the PCI Express
capability structure described in Table 9-9 on page 9-5.
The Transaction Layer tracks all outstanding completions for
non-posted requests made by the Application Layer. This
parameter configures the Transaction Layer for the maximum
number of Tags supported to track. The Application Layer must
set the tag values in all non-posted PCI Express headers to be
less than this value. Values greater than 32 also set the
extended tag field supported bit in the Configuration Space
Device Capabilities register. The Application Layer can only use
tag numbers greater than 31 if configuration software sets the
Extended Tag Field Enable bit of the Device Control register. This
bit is available to the Application Layer on the tl_cfg_ctl
output signal as cfg_devcsr[8].
Completion ABCD ABCD Indicates device function support for the optional completion
timeout range BCD timeout programmability mechanism. This mechanism allows
ABC system software to modify the completion timeout value. This
field is applicable only to Root Ports and Endpoints that issue
AB requests on their own behalf. Completion timeouts are specified
B and enabled in the Device Control 2 register (0x0A8) of the PCI
A
continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
40

http://www.pcisig.com/home

4 Arria 10 Parameter Settings

intel.

Parameter Possible Default Value Description
Values
None Express Capability Structure Version. For all other functions this

field is reserved and must be hardwired to 0x0000b. Four time
value ranges are defined:
e Range A: 50 us to 10 ms
e Range B: 10 ms to 250 ms
e RangeC: 250 msto4s
e RangeD:4sto64s
Bits are set to show timeout value ranges supported. The
function must implement a timeout value in the range 50 s to
50 ms. The following values specify the range:
e None—Completion timeout programming is not supported
e 0001 Range A
e (0010 Range B
e (0011 Ranges A and B
e 0110 Ranges B and C
e (0111 Ranges A, B, and C
e 1110 Ranges B, C and D
e 1111 Ranges A, B, C, and D
All other values are reserved. Intel recommends that the
completion timeout mechanism expire in no less than 10 ms.

Disable Oon/Off On Disables the completion timeout mechanism. When On, the core

completion supports the completion timeout disable mechanism via the PCI

timeout Express Device Control Register 2. The Application Layer
logic must implement the actual completion timeout mechanism
for the required ranges.

4.6.2 Error Reporting

Table 18. Error Reporting
Parameter Value Default Value Description

Enable On/Off Off When On, enables the Advanced Error Reporting (AER)

Advanced capability.

Error

Reporting

(AER)

Enable ECRC On/Off Off When On, enables ECRC checking. Sets the read-only value of

checking the ECRC check capable bit in the Advanced Error
Capabilities and Control Register. This parameter
requires you to enable the AER capability.

Enable ECRC Oon/Off Off When On, enables ECRC generation capability. Sets the read-

generation only value of the ECRC generation capable bit in the Advanced
Error Capabilities and Control Register. This
parameter requires you to enable the AER capability.

Enable ECRC Oon/Off Off When On, enables ECRC forwarding to the Application Layer. On

forwarding on the Avalon-ST RX path, the incoming TLP contains the ECRC

the Avalon-ST dword(?) and the TD bit is set if an ECRC exists. On the transmit

interface the TLP from the Application Layer must contain the ECRC dword
and have the TD bit set.

Track RX on/Off off When On, the core includes the rxfc_cplbuf_ovT output

completion status signal to track the RX posted completion buffer overflow

buffer status.

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
41

intel.

4 Arria 10 Parameter Settings

Parameter

Value

Default Value

Description

overflow on
the Avalon-ST
interface

Note:

1. Throughout this user guide, the terms word, dword and qword have the same meaning that they have in the PCI
Express Base Specification. A word is 16 bits, a dword is 32 bits, and a qword is 64 bits.

4.6.3 Link Capabilities

Table 19. Link Capabilities
Parameter Value Description

Link port number 0x01 Sets the read-only value of the port number field in the Link

(Root Port only) Capabi lities register. This parameter is for Root Ports only. It should
not be changed.

Data link layer On/Off Turn On this parameter for a Root Port, if the attached Endpoint

active reporting supports the optional capability of reporting the DL_Active state of the

(Root Port only) Data Link Control and Management State Machine. For a hot-plug
capable Endpoint (as indicated by the Hot Plug Capable field of the
Slot Capabilities register), this parameter must be turned On.
For Root Port components that do not support this optional capability,
turn Off this option.

Surprise down on/Off When your turn this option On, an Endpoint supports the optional

reporting (Root Port capability of detecting and reporting the surprise down error condition.

only) The error condition is read from the Root Port.

Slot clock on/Off When you turn this option On, indicates that the Endpoint or Root Port

configuration

uses the same physical reference clock that the system provides on the
connector. When Off, the IP core uses an independent clock regardless
of the presence of a reference clock on the connector. This parameter
sets the Slot Clock Configuration bit (bit 12) in the PC1 Express
Link Status register.

4.6.4 MSI and MSI-X Capabilities

Table 20.

MSI and MSI-X Capabilities

Parameter

Value

Description

MSI messages
requested

1,2,4,8, 16,32

Specifies the number of messages the Application Layer can
request. Sets the value of the Multiple Message Capable field
of the Message Control register,

Address: 0x050[31:16].

MSI-X Capabilities

Implement MSI-X on/Off When On, adds the MSI-X functionality.
Bit Range

Table size [15:0] System software reads this field to determine the MSI-X Table size
<n>, which is encoded as <n-1>. For example, a returned value of
2047 indicates a table size of 2048. This field is read-only. Legal
range is 0-2047 (216).
Address offset: 0x068[26:16]

Table offset [31:0] Points to the base of the MSI-X Table. The lower 3 bits of the table

BAR indicator (BIR) are set to zero by software to form a 64-bit
gword-aligned offset. This field is read-only.

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

42

] ®
4 Arria 10 Parameter Settings l n tel

Parameter Value Description

Table BAR indicator [2:0] Specifies which one of a function’s BARs, located beginning at 0x10
in Configuration Space, is used to map the MSI-X table into memory
space. This field is read-only. Legal range is 0-5.

Pending bit array (PBA) [31:0] Used as an offset from the address contained in one of the
offset function’s Base Address registers to point to the base of the MSI-X
PBA. The lower 3 bits of the PBA BIR are set to zero by software to
form a 32-bit qword-aligned offset. This field is read-only. 2

Pending BAR indicator [2:0] Specifies the function Base Address registers, located beginning at
0x10 in Configuration Space, that maps the MSI-X PBA into memory
space. This field is read-only. Legal range is 0-5.

4.6.5 Slot Capabilities

Table 21. Slot Capabilities

Parameter Value Description

Use Slot register On/Off This parameter is only supported in Root Port mode. The slot capability is
required for Root Ports if a slot is implemented on the port. Slot status is
recorded in the PCl Express Capabilities register.

Defines the characteristics of the slot. You turn on this option by selecting
Enable slot capability. Refer to the figure below for bit definitions.

Slot power scale 0-3 Specifies the scale used for the Slot power limit. The following coefficients
are defined:
e 0 =1.0x
e 1=0.1x
e 2 =0.01x
e 3 =0.001x

The default value prior to hardware and firmware initialization is b’00. Writes
to this register also cause the port to send the Set_Slot_Power_Limit
Message.

Refer to Section 6.9 of the PCI Express Base Specification Revision for more
information.

Slot power limit 0-255 In combination with the Slot power scale value, specifies the upper limit in
watts on power supplied by the slot. Refer to Section 7.8.9 of the PCI Express
Base Specification for more information.

Slot number 0-8191 Specifies the slot number.

2 Throughout this user guide, the terms word, dword and gqword have the same meaning that
they have in the PCI Express Base Specification. A word is 16 bits, a dword is 32 bits, and a
qgword is 64 bits.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
43

n ®
l n tel 4 Arria 10 Parameter Settings

Figure 19. Slot Capability

31 19118 |17 |16 15|14 7/6(5(41(3(2]1]0

Physical Slot Number

A A A1 1
No Command Completed Support

Electromechanical Interlock Present
Slot Power Limit Scale

Slot Power Limit Value

Hot-Plug Capable

Hot-Plug Surprise

Power Indicator Present

Attention Indicator Present

MRL Sensor Present

Power Controller Present
Attention Button Present

4.6.6 Power Management

Table 22. Power Management Parameters

Parameter Value Description
Endpoint LOs Maximum of 64 ns This design parameter specifies the maximum acceptable latency that
acceptable latency Maximum of 128 ns | the device can tolerate to exit the LOs state for any links between the

of 256 ns device and the root complex. It sets the read-only value of the
Endpoint LOs acceptable latency field of the Device Capabilities
Register (0x084).

This Endpoint does not support the LOs or L1 states. However, in a

Maximum
Maximum of 512 ns
Maximum of 1 us

Maximum of 2 us switched system there may be links connected to switches that have
Maximum of 4 us LOs and L1 enabled. This parameter is set to allow system configuration
No limit software to read the acceptable latencies for all devices in the system

and the exit latencies for each link to determine which links can enable
Active State Power Management (ASPM). This setting is disabled for
Root Ports.

The default value of this parameter is 64 ns. This is the safest setting
for most designs.

Endpoint L1 Maximum of 1 us This value indicates the acceptable latency that an Endpoint can
acceptable latency Maximum of 2 us withstand in the transition from the L1 to LO state. It is an indirect
measure of the Endpoint’s internal buffering. It sets the read-only value
of the Endpoint L1 acceptable latency field of the Device
Capabilities Register.

A This Endpoint does not support the LOs or L1 states. However, a
Maximum of 32 us switched system may include links connected to switches that have LOs
No limit and L1 enabled. This parameter is set to allow system configuration
software to read the acceptable latencies for all devices in the system
and the exit latencies for each link to determine which links can enable
Active State Power Management (ASPM). This setting is disabled for
Root Ports.

The default value of this parameter is 1 ps. This is the safest setting for
most designs.

Maximum of 4 us
Maximum of 8 us
Maximum of 16 us

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
44

®
4 Arria 10 Parameter Settings l n tel

4.7 Vendor Specific Extended Capability (VSEC)

Table 23. VSEC

Parameter Value Description
Vendor Specific 0x00001172 Sets the read-only value of the 16-bit User ID register from the Vendor
Extended Capability Specific Extended Capability.
(VSEC) ID:
Vendor Specific 0x00000000 Sets the read-only value of the 4-bit VSEC Revision register from the
Extended Capability Vendor Specific Extended Capability.
(VSEC) Revision:
User Device or 0x00000000 Sets the read-only value of the 16-bit Device or Board Type ID register
Board Type ID from the Vendor Specific Extended Capability.

register from the
Vendor Specific
Extended Capability:

4.8 Configuration, Debug, and Extension Options

Table 24. System Settings for PCI Express

Parameter Value Description
Enable Oon/Off When On, the Quartus Prime software places the Endpoint in the location
configuration via required for configuration via protocol (CvP). For more information about
Protocol (CvP) CvP, click the Configuration via Protocol (CvP) link below.
Enable dynamic On/Off When On, you can use the Hard IP reconfiguration bus to dynamically
reconfiguration of reconfigure Hard IP read-only registers. For more information refer to Hard
PCIe read-only IP Reconfiguration Interface.
registers
Enable Oon/Off When on, creates an Avalon-MM slave interface that software can drive to
transceiver update transceiver registers.
dynamic

reconfiguration

Enable Altera On/Off When On, an embedded Altera Debug Master Endpoint connects internally to

Debug Master the Avalon-MM slave interface for dynamic reconfiguration. The ADME can

Endpoint (ADME) access the reconfiguration space of the transceiver. It uses JTAG via the
System Console to run tests and debug functions.

Enable Arria 10 On/Off When On, add control and status conduit interface to the top level variant,

FPGA to be connected a PCIe Development Kit component.

Development Kit
connection

Related Links

Configuration over Protocol (CvP) on page 168

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
45

intel.

4.9 PHY Characteristics

4 Arria 10 Parameter Settings

Table 25. PHY Characteristics
Parameter Value Description
Gen2 TX de- 3.5dB Specifies the transmit de-emphasis for Gen2. Intel recommends the
emphasis 6dB following settings:
e 3.5dB: Short PCB traces
e 6.0dB: Long PCB traces.
Requested Preset0-Preset9 Specifies the requested TX preset for Phase 2 and 3 far-end

equalization far-end
TX preset

transmitter. The default value Preset8 provides the best signal quality
for most designs.

Enable soft DFE
controller IP

Oon
Off

When On, the PCIe Hard IP core includes a decision feedback
equalization (DFE) soft controller in the FPGA fabric to improve the bit
error rate (BER) margin. The default for this option is Off because the
DFE controller is typically not required. However, short reflective links
may benefit from this soft DFE controller IP.

This parameter is available only for Gen3 mode. It is not supported
when CvP or autonomous modes are enabled.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

46

®
4 Arria 10 Parameter Settings l n tel

4.10 Arria 10 Example Designs

format

Table 26. Example Designs
Parameter Value Description

Available Example DMA When you select the DMA option, the generated example design includes a

Designs PIO direct memory access application. This application includes upstream and
downstream transactions. When you select the PIO option, the generated
design includes a target application including only downstream transactions.

Simulation On/Off When On, the generated output includes a simulation model.

Synthesis On/Off When On, the generated output includes a synthesis model.

Generated HDL Verilog Only Verilog HDL is supported.

Target
Development Kit

Arria 10 GX FPGA
Development Kit

Arria 10 GX FPGA

Select Arria 10 FPGA Development Kit for Arria 10 production devices.
Select Arria 10 FPGA Development Kit ES for engineering sample (ES) or
ES2 devices. Select None if you are targeting your own development board.

Development Kit
ES2

None

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
47

®
5 Physical Layout of Hard IP In Arria 10 Devices l n tel

5 Physical Layout of Hard IP In Arria 10 Devices

Arria 10 devices include 1-4 hard IP blocks for PCI Express. The bottom left h

ard IP

block includes the CvP functionality for flip chip packages. For other package types,

the CvP functionality is in the bottom right block.

Note: Arria 10 devices do not support configurations that configure a bottom (left or right)
hard IP block with a Gen3 x4 or Gen3 x8 IP core and also configure the top hard IP

block on the same side with a Gen3 x1 or Gen3 x2 IP core variation.

Figure 20. Arria 10 Devices with 72 Transceiver Channels and Four PCIe Hard IP Blocks
. GT 115 SF45 wer —1
GXBLIH ITrané;l:er 090 S48 Tvané;:l:er — GXBR4H
RGN orfesticted Transceiver Transceiver E
[CT GTorGX . G Channels GXBL1G Bank Bank [| GXBR4G
Tl GTorGX Capable of Short —
Reach 25.8 Gbps —
[GYRR GX or Restricted
[GLI X or Restricted _ —
[GX or Restricted ransceiver GXBLIF Transceiver PCle PCle Transceiver | —— GXBRAF
Bark E Bank Gen - Gen3 Gen1 - Gen3 Bank —
Hard IP Hard IP —
GXBLIE Transceiver Transceiver [—— | GYBRE
Bank (3) Bank [
GXBLID Transceiver Transceiver [— | GXBR4D
PCle PCle —
E Bank Gen - Gen3 Gen1 - Gen3 Bank —
Hard IP Hard IP —
(with GvP)
GXBLIC Transceiver Transceiver [| GXBRAC
M Bank Bank [@
Notes:
(1) Nomendlature of left column bottom transceiver banks always end with “C".
(2) Nomendlature of right column bottom transceiver banks may end with “C’, “D’, or “E".
(3) Ifa GT channel is used in transceiver bank GXBL1E, the PCle Hard IP adjacent to GXBL1F and GXBL1E cannot be used.
Legend:
. GT transceiver channels (channel 0, 1, 3, and 4).
. GX transceiver channels (channel 2 and 5) with usage restrictions.
[6 transceiverchannels without usage restrctons.
D PCle Gen1 - Gen3 Hard IP blocks with Configuration via Protocol (CvP) capabilities.
7] Pcte Gen1 - Gen3 Hard P blocks without Configuration via Protocol (CvP) capabiltes.
Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other so
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in ;00 2008
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services R f‘"t d
egistere

at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

] ®
5 Physical Layout of Hard IP In Arria 10 Devices l n te I

Figure 21. Arria 10 Devices with 96 Transceiver Channels and Four PCIe Hard IP Blocks

GT 115 UF45 1
, 6T Channels GXBL1J Transceiver GT 090 UF45 Transceiver [| GXBR4J
Capable of Short Bank Bank
Reach 28.3 Gbps I
GX or Restricted —
GTorGX i GXBL1I Transceiver Transceiver |—— | GXBR4I
GlorGX Transceiver Bank Bank -
GX or Restricted Bank e
GTor GX £
GTor GX —
GXBLTH Transceiver Transceiver — | GXBR4H
Bank Bank —
GXBL1G Transceiver Transceiver —— | GXBR4G
Bank Bank —
CHBLIF TranBs;ﬁllz/er PCle PCle TranBs;lll/er 1 | GXBR4F
Gen1 - Gen3 Gen1-Gen3 —
Hard IP Hard IP —
Transceiver Transceiver | | GXBR4E
GHBLIE I Bank Bank [
GXBL1D Tran;;::ll:/er Pl PCle TranBs;:lil/er 1 | GXBR4D
Gen1-Gen3 Gen1-Gen3 [
Hard IP Hard IP —
(with CvP)
GXBL1C Transceiver Transceiver | —— | GXBR4C
(1) Bank Bank [@)

Notes:
(1) Nomenclature of left column bottom transceiver banks always ends with “C".
(2) Nomenclature of right column bottom transceiver banks may end with “C’, “D’, or “E".

Legend:

. GT transceiver channels (channel 0, 1, 3, and 4)

. GX transceiver channels (channel 2 and 5) with usage restrictions.

D GX transceiver channels without usage restrictions.

D PCle Gen1 - Gen3 Hard IP blocks with Configuration via Protocol (CvP) capabilities.
l:l PCle Gen1 - Gen3 Hard IP blocks without C ion via Protocol (CvP)

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
49

] ®
l n te I 5 Physical Layout of Hard IP In Arria 10 Devices

Figure 22. Arria 10 GT Devices with 48 Transceiver Channels and Two PCle Hard IP

Blocks
GT 115 NF40
GT Channels GXBL1J Transceiver GT 090 NF40
Capable of Short Bank
Reach 28.3 Gbps
GX or Restricted
[GUA Gl or GX £ GXBLII Transceiver
GTorGK Transceiver Bank
GX or Restricted Bank
GTor6X
[GUAN GTor GX . .
ransceiver
GXBLTH Bank
GXBLIG Transceiver
Bank
GXBL1F TranBsceil:/er PCle
an Gen1 - Gen3
Hard IP
GXBL1E Transceiver
Bank
GXBL1D i
Tran;;lll/er pCle
Gen1- Gen3
Hard [P
(with CvP)
GXBL1C T i
M Bank

Notes:
(1) Nomenclature of left column bottom transceiver banks always end with “C".
(2) These devices have transceivers only on left hand side of the device.

Legend:
. GT transceiver channels (channel 0, 1,3, and 4).

. GX transceiver channels (channel 2 and 5) with usage restrictions.

D GX transceiver channels without usage restrictions.

D PCle Gen3 HIP blocks with Configuration via Protocol (CvP) capabilities.
D PCle Gen3 HIP blocks without Configuration via Protocol (CvP) capabilities.

Refer to the Arria 10 Transceiver Layout in the Intel FPGA Arria 10 Transceiver PHY
User Guide for comprehensive figures for Arria 10 GT, GX, and SX devices.
Related Links

Intel FPGA Arria 10 Transceiver PHY IP Core User Guide
For information about the transceiver physical (PHY) layer architecture, PLLs, clock
networks, and transceiver PHY IP.

5.1 Channel and Pin Placement for the Genl, Gen2, and Gen3 Data
Rates

The following figures illustrate the x1, x2, x4, and x8 channel and pin placements for
the Arria 10 Hard IP for PCI Express.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
50

https://www.altera.com/documentation/nik1398707230472.html#nik1398706768037

5 Physical Layout of Hard IP In Arria 10 Devices

Note:

Figure 23.

Figure 24,

In these figures, channels that are not used for the PCI Express protocol are available
for other protocols. Unused channels are shown in gray.

In all configurations, physical channel 4 in the PCS connects to logical channel 0 in the
hard IP. You cannot change the channel placements illustrated below.

For the possible values of <txvr_block_N> and <txvr_block_N+1>, refer to the
figures that show the physical location of the Hard IP PCIe blocks in the different types
of Arria 10 devices, at the start of this chapter. For each HIP block, the transceiver
block that is adjacent and extends below the HIP block, is <txvr_block_N>, and the
transceiver block that is directly above <txvr_block_N> is <txvr_block_N+1>. For
example, in an Arria 10 device with 96 transceiver channels and four PCIe HIP blocks,
if your design uses the HIP block that supports CvP, <txvr_block_N> is GXB1C and

<txvr_block_N+1> is GXB1D.

Arria 10 Genl, Gen2, and Gen3 x1 Channel and Pin Placement

PMA Channel 5 PCS Channel 5
PMA Channel 4 PCS Channel 4
PMA Channel 3 PCS Channel 3 fI(;I? ;dqleP
PMA Channel 2 PCS Channel 2
PMA Channel 1 PCS Channel 1
PMA Channel 0 PCS Channel 0
PMA Channel 5 PCS Channel 5
<txvr_block_N>_TX/RX_CH4N | PMA Channel 4 PCS Channel 4 Hard IP ChO
PMA Channel 3 PCS Channel 3
PMA Channel 2 PCS Channel 2
PMA Channel 1 PCS Channel 1
PMA Channel 0 PCS Channel 0
Arria 10 Genl Gen2, and Gen3 x2 Channel and Pin Placement
PMA Channel 5 PCS Channel 5
PMA Channel 4 PCS Channel 4
PMA Channel3 | PCS Channel 3 fﬂra{,dq'ep
PMA Channel 2 PCS Channel 2
PMA Channel 1 PCS Channel 1
PMA Channel 0 PCS Channel 0
<txvr_block_N>_TX/RX_CH5N | PMA Channel 5 PCS Channel 5
<txvr_block_N>_TX/RX_CH4N | PMA Channel 4 PCS Channel 4 Hard IP ChO
PMA Channel 3 PCS Channel 3
PMA Channel 2 PCS Channel 2
PMA Channel 1 PCS Channel 1
PMA Channel 0 PCS Channel 0

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

51

5 Physical Layout of Hard IP In Arria 10 Devices

Figure 25. Arria 10 Genl, Gen2, and Gen3 x4 Channel and Pin Placement
PMA Channel 5 | PCS Channel 5
PMA Channel 4 PCS Channel 4
PMA Channel3 | PCS Channel 3 Hard IP
PMA Channel 2 PCS Channel 2 for PCle
<txvr_block_N+1>_TX/RX_CH1N | PMAChannel1 | PCSChannel1
<txvr_block_N+1>_TX/RX_CHON | PMA Channel 0 PCS Channel 0
<txvr_block_N>_TX/RX_CH5N| PMA Channel 5 PCS Channel 5
<txvr_block_N>_TX/RX_CH4N| PMA Channel 4 PCS Channel 4 Hard IP Ch0
PMA Channel 3 PCS Channel 3
PMA Channel 2 PCS Channel 2
PMA Channel 1 PCS Channel 1
PMA Channel 0 PCS Channel 0
Figure 26. Arria 10 Genl, Gen2, and Gen3 x8 Channel and Pin Placement
<txvr_block_N+1>_TX/RX_CH5N | PMA Channel 5 | PCSChannel 5
<txvr_block_N+1>_TX/RX_CH4N | PMA Channel 4 PCS Channel 4
<txvr_block_N+1>_TX/RX_CH3N | PMA Channel3 | PCSChannel3 Hard IP
<txvr_block_N+1>_TX/RX_CH2N | PMAChannel2 | PCS Channel 2 ol
<txvr_block_N+1>_TX/RX_CH1N | PMA Channel 1 PCS Channel 1
<txvr_block_N+1>_TX/RX_CHON | PMA Channel 0 PCS Channel 0
<txvr_block_N>_TX/RX_CH5N | PMA Channel 5 PCS Channel 5
<txvr_block_N>_TX/RX_CH4N | PMA Channel 4 PCS Channel 4 Hard IP ChO

PMA Channel 3

PCS Channel 3

PMA Channel 2

PCS Channel 2

PMA Channel 1

PCS Channel 1

PMA Channel 0

PCS Channel 0

5.2 Channel Placement and fPLL Usage for the Genl and Gen2 Data
Rates

The following figures illustrate the x1, x2, x4, and x8 channel placement for the
Arria 10 Hard IP for PCI Express. In these figures, channels that are not used for the
PCI Express protocol are available for other protocols. Unused channels are shown in
gray.
Note: In all configurations, physical channel 4 in the PCS connects to logical channel 0 in the
hard IP. You cannot change the channel placements illustrated below.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
52

5 Physical Layout of Hard IP In Arria 10 Devices

Figure 27.

Figure 28.

Figure 29.

Arria 10 Genl and Gen2 x1 Channel Placement

Arria 10 Genl1 and Gen2 x2

Arria 10 Genl1 and Gen2 x4

fPLL1 PMA Channel 5 PCS Channel 5
PMA Channel 4 PCS Channel 4
ATKTPLL PMA Channel 3 PCS Channel 3 fl(-)l;a Ir)dql:
fPLLO PMA Channel 2 PCS Channel 2
PMA Channel 1 PCS Channel 1
S PMA Channel 0 PCS Channel 0
fPLL1 PMA Channel 5 PCS Channel 5
PMA Channel 4 PCS Channel 4 Hard IP ChO
ADCTPLL PMA Channel 3 PCS Channel 3
fPLLO PMA Channel 2 PCS Channel 2
PMA Channel 1 PCS Channel 1
ATOPLL PMA Channel 0 PCS Channel 0
Channel Placement
fPLL1 PMA Channel 5 PCS Channel 5
PMA Channel 4 PCS Channel 4
AR PMA Channel 3 PCS Channel 3 fﬂ? ;dGIeP
fPLLO PMA Channel 2 PCS Channel 2
PMA Channel 1 PCS Channel 1
ATXOPLL PMA Channel0 | PGS Channel 0
PLLT PMA Channel 5 PCS Channel 5
ATX1 PLL PMA Channel 4 PCS Channel 4 Hard IP ChO
PMA Channel 3 PCS Channel 3
fPLLO PMA Channel 2 PCS Channel 2
PMA Channel 1 PCS Channel 1
L PMA Channel 0 PCS Channel 0
Channel Placement
fPLL1 PMA Channel 5 PCS Channel 5
PMA Channel 4 PCS Channel 4
ADETPLL PMA Channel3 | PCS Channel 3 Hard IP
LL0 PMA Channel2 | PCS Channel 2 fikee
PMA Channel 1 PCS Channel 1
ATOPLL PMA Channel 0 PCS Channel 0
fPLL1 PMA Channel 5 PCS Channel 5
PMA Channel 4 PCS Channel 4 Hard IP ChO
ATTPLL PMA Channel 3 PCS Channel 3
fPLLO PMA Channel 2 PCS Channel 2
ATXOPLL PMA Channel 1 PCS Channel 1

PMA Channel 0

PCS Channel 0

ntel)

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

53

5 Physical Layout of Hard IP In Arria 10 Devices

Figure 30. Genl and Gen2 x8 Channel Placement

fPLL1 PMA Channel 5 PCS Channel 5
PMA Channel 4 PCS Channel 4
ATX1 PLL
PMA Channel3 | PCS Channel 3 Hard IP
L0 PMA Channel 2| PCS Channel 2 for PCle
PMA Channel 1 PCS Channel 1
WYL PMA Channel 0 PCS Channel 0
fPLL1 PMA Channel 5 PCS Channel 5
PMA Channel 4 PCS Channel 4 Hard IP ChO
ADCTPLL PMA Channel 3 PCS Channel 3
fPLLO PMA Channel 2 PCS Channel 2
PMA Channel 1 PCS Channel 1
ATOPLL PMA Channel 0 PCS Channel 0

5.3 Channel Placement and fPLL and ATX PLL Usage for the Gen3
Data Rate

The following figures illustrate the x1, x2, x4, and x8 channel placement for the
Arria 10 Hard IP for PCI Express.

Gen3 variants must initially train at the Gen1 data rate. Consequently, Gen3 variants
require an fPLL to generate the 2.5 and 5.0 Gbps clocks, and an ATX PLL to generate
the 8.0 Gbps clock. In these figures, channels that are not used for the PCI Express
protocol are available for other protocols. Unused channels are shown in gray.

Note: In all configurations, physical channel 4 in the PCS connects to logical channel 0 in the
hard IP. You cannot change the channel placements illustrated below.

Figure 31. Arria 10 Gen3 x1 Channel Placement

fPLL1 PMA Channel 5 PCS Channel 5
PMA Channel 4 PCS Channel 4
ATKTPLL PMA Channel 3 PCS Channel 3
fPLLO PMA Channel 2 PCS Channel 2 Hard IP
PMA Channel 1 PCS Channel 1 for PCle
ATKOPLL PMA Channel 0 PCS Channel 0
fPLL1 PMA Channel 5 PCS Channel 5
ATXT PLL PMA Channel 4 | PCS Channel 4 Hard IP ChO
PMA Channel 3 PCS Channel 3
fPLLO PMA Channel 2 PCS Channel 2
PMA Channel 1 PCS Channel 1
ATKOPLL PMA Channel 0 PCS Channel 0

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

54

5 Physical Layout of Hard IP In Arria 10 Devices

Figure 32.

Figure 33.

Figure 34.

Arria 10 Gen3 x2 Channel Placement

Arria 10 Gen3 x4 Channel P

Gen3 x8 Channel Placement

fPLL1 PMA Channel 5 PCS Channel 5
ATXT PLL PMA Channel 4 PCS Channel 4
PMA Channel 3 PCS Channel 3
fPLLO PMA Channel 2 PCS Channel 2 Hard IP
ATXO PLL PMA Channel 1 PCS Channel 1 for PCle
PMA Channel 0 PCS Channel 0
fPLL1 PMA Channel 5 PCS Channel 5
ATXT PLL vester || PMA Channel 4 PCS Channel 4 Hard IP ChO
PMA Channel 3 PCS Channel 3
fPLLO PMA Channel 2 PCS Channel 2
ATXOPLL PMA Channel 1 PCS Channel 1
PMA Channel 0 PCS Channel 0
lacement
fPLL1 PMA Channel 5 PCS Channel 5
PMA Channel 4 PCS Channel 4
ATKTPLL PMA Channel 3 PCS Channel 3
fPLLO PMA Channel 2 PCS Channel 2 Hard IP
Mxorll PMA Channel 1| PCS Channel 1 for PCle
PMA Channel 0 PCS Channel 0
fPLL1 PMA Channel 5 PCS Channel 5
PMA Channel 4 PCS Channel 4 Hard IP ChO
ATTPLL PMA Channel 3 PCS Channel 3
fPLLO PMA Channel 2 PCS Channel 2
PMA Channel 1 PCS Channel 1
ATKOPLL PMA Channel 0 PCS Channel 0
fPLL1 PMA Channel 5 PCS Channel 5
PMA Channel 4 PCS Channel 4
ATCTPLL PMA Channel 3 PCS Channel 3
fPLLO PMA Channel 2 PCS Channel 2 Hard IP
- PMA Channel 1 PCS Channel 1 for PCle
PMA Channel 0 PCS Channel 0
fPLL1 PMA Channel 5 PCS Channel 5
PMA Channel 4 PCS Channel 4 Hard IP ChO
ATKTPLL PMA Channel 3 PCS Channel 3
fPLLO PMA Channel 2 PCS Channel 2
ATXOPLL PMA Channel 1 PCS Channel 1

PMA Channel 0

PCS Channel 0

ntel)

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

55

| | ®
‘ l n tel) 5 Physical Layout of Hard IP In Arria 10 Devices

5.4 PCI Express Gen3 Bank Usage Restrictions

Any transceiver channels that share a bank with active PCI Express interfaces that are
Gen3 capable have the following restrictions. This includes both Hard IP and Soft IP
implementations:

e When VCCR_GXB and VCCT_GXB are set to 1.03 V or 1.12 V, the maximum data
rate supported for the non-PCIe channels in those banks is 12.5 Gbps for chip-to-
chip applications. These channels cannot be used to drive backplanes or for GT
rates.

e When VCCR_GXB and VCCT_GXB are set to 0.95 V, the non-PCle channels in
those banks cannot be used.

PCI Express interfaces that are only Genl or Gen2 capable are not affected.
Status

Affects all Arria 10 ES and production devices. No fix is planned.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

56

6 Interfaces and Signal Descriptions

6 Interfaces and Signal Descriptions

Figure 35.

D
-
-
Avalon-ST { ——|
—
RXPort
—»
Component <
Sp‘;uf(<+
—>
e
—
—>
-
Avalon-ST
—>
—> b
TXPort
-
e
Component R]
Speuﬂz —
—
(redlr 4>
-—
—>
Clocks —>
D
—>
<+
D a—
—>
<+
—>
Reset & D B
Link Status |
D
R Emm—
-
D
R E—
-
-
-~
ECCError |
-
—>
-«
Interrupt { e—
for Endpoints | e
4>
/nrermprs —
furRuotPartx -
Completion —l|
Interface B
. <
Transaction Layer | emm—
(onfiguration’) <emm—
E—

Avalon-ST Hard IP for PCI Express Top-Level Signals

Hard IP for Express, Avalon-ST Interface

rx_st_data[63:0], [127:0], [255:0]
rx_st_sop [1:0]

rx_st_eop [1:0]
x_st_empty[1:0]

rx_st_ready

—— rx_st_valid
— n_st_err

rx_st_mask

_st_bar[7:0]
1x_st_parity(7:0], [15:0], [31:0
xfc_cplbuf_ovf

tx_st_data[63:0], [127:0], [255:0]
tx_st_sop [1:0]

tx_st_eop [1:0]

tx_st_ready

tx_st_valid

tx_st_emptyh :0]

x_st_err
tx_st_parity(7:0], [15:0], [31:0]

tx_cred_data_fc[11:0]
tx_cred_fc_hip_cons[5:0]
tx_cred_fc_infinite[5:0]
tx_cred_fc_sel[1:0]
tx_cred_hdr_fc[7:0]
tx_cred_cons_sel
ko_cpl_spc_header(7:0]
ko_cpl_spc_data[11:0]

refclk
pld_clk
curecl kout_hip

npor
dr_st

reset_status
pin_perst
serdes_pll_locked
pld_core_ready
pld_dk_inuse
dlup

dlup_exit

ev128ns

evlus

hotrst_exit
12_exit
current_speed[1:0]
Itssmstate[4:0]

derr_cor_ext_rcv0
derr_rpl
derr_cor_ext_rpl0
app_msi_req
app_msi_ack
app_msi_tc[2:0]
app_msi_num[4:0]
app_int_sts
4—— app_int_ack
int_status[3:0]
serr_out

cpl_er[6:0]
cpl_pending
tl_cfg_add[3:0]
tl_cfg_ctl[31:0]
tl_cfg_sts[52:0]
hpg_ctrler[4:0]

tx_par_err[1:0]
Tx_par_err
cfg_par_err
Imi_dout(7:0]
Imi_rden
Imi_wren
Imi_ack
Imi_addr[11:0]
Imi_din[7:0]

hip_reconfig_clk
hip_reconfig_rst_n
hip_reconfig_address[9:0]
hip_reconfig_read
hip_reconfig_readdata[15:0]}
hip_reconfig_write

hip_reconfig_writedata[15:0}

hip_reconfig_byte_en[1:0]
ser_shift_load
interface_sel

pme_to_cr
pme_to_sr
pm_event
pm_data[9:0]
pm_auxpwr

tx_out[7:0]
rx_in[7:0]

txdata0[31:0]
txdatak0[3:0]
txblkst0

txcompl0
txdataskip0
txdeemph0
trdetectry0
telectidle0
txmargin0[2:0]
trswing0
txsynchdo[1:0]
rxdata0[31:0]
rxdatak(3:0]
rxblkst0
rxdataskip0
reelecidle0
rxpolarity0
rxstatus0[2:0]
rxsynchd0[1:0]
rxvalid0
phystatus0
powerdown0[1:0]
currentcoeff0[17:0]
currentrxpreset0[2:0]
simu_mode_pipe
rate[1:0]
sim_pipe_rate[1:0]
sim_pipe_pclk_in
sim_ltssmstate[4:0]
eidleinfersel0[2:0]

test_in[31:0]
testin_zero
lane_act[3:0]

devkit_ctrl[255:0]
devkit_status[255:0]

ALl NHWT HWIM

It lHlHIIIWWIIUIMM

)
-
|
}

|

Receive Data

Parity Error

Hard IP
Reconfiguration
(Optional)

Power
Managementt

}Selm/ IFto PIPE

} Transmit Data

PIPE
Interface
for Simulation
and Hardware
Debug Using
dl_Itssm[4:0]

in SignalTap

Test

Development Kit
Design Example

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in

accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel.

Intel

customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

Iso
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

] ®
l n tel 6 Interfaces and Signal Descriptions

6.1 Avalon-ST RX Interface

The following table describes the signals that comprise the Avalon-ST RX Datapath.
The RX data signal can be 64, 128, or 256 bits.

Table 27. 64-, 128-, or 256-Bit Avalon-ST RX Datapath

Signal Direction Description

rx_st_data[<n>-1:0] Output Receive data bus. Refer to figures following this table for the mapping of
the Transaction Layer’s TLP information to rx_st_data and examples of
the timing of this interface. Note that the position of the first payload
dword depends on whether the TLP address is qword aligned. The mapping
of message TLPs is the same as the mapping of TLPs with 4-dword
headers. When using a 64-bit Avalon-ST bus, the width of rx_st_data is
64. When using a 128-bit Avalon-ST bus, the width of rx_st_data is
128. When using a 256-bit Avalon-ST bus, the width of rx_st_data is
256 bits.

rx_st_sop[1:0] Output Indicates that this is the first cycle of the TLP when rx_st_valid is
asserted. When using a 256-bit Avalon-ST bus the following
correspondences apply:

When you turn on Enable multiple packets per cycle,
e bit 0 indicates that a TLP begins in rx_st_data[127:0]
e bit 1 indicates that a TLP begins in rx_st_data[255:128]

In single packet per cycle mode, this signal is a single bit which indicates
that a TLP begins in this cycle.

rx_st_eop[1:0] Output Indicates that this is the last cycle of the TLP when rx_st_valid is
asserted.

When using a 256-bit Avalon-ST bus the following correspondences apply:
When you turn on Enable multiple packets per cycle,

e bit 0 indicates that a TLP ends in rx_st_data[127:0]

e bit 1 indicates that a TLP ends in rx_st_data[255:128]

In single packet per cycle mode, this signal is a single bit which indicates
that a TLP ends in this cycle.

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
58

6 Interfaces and Signal Descriptions

intel.

Signal Direction Description
rx_st_empty[1:0] Output Indicates the number of empty gwords in rx_st_data. Not used when
rx_st_data is 64 bits. Valid only when rx_st_eop is asserted in 128-bit
and 256-bit modes.
For 128-bit data, only bit 0 applies; this bit indicates whether the upper
qword contains data. For 256-bit data single packet per cycle mode, both
bits are used to indicate whether 0-3 upper qwords contain data, resulting
in the following encodings for the 128-and 256-bit interfaces:
e 128-Bit interface:
— rx_st_empty = 0, rx_st_data[127:0]contains valid data
— rx_st_empty = 1, rx_st _data[63:0] contains valid data
e 256-bit interface: single packet per cycle mode
— rx_st_empty =0, rx_st_data[255:0] contains valid data
— rx_st_empty = 1, rx_st_data[191:0] contains valid data
— rx_st_empty = 2, rx_st_data[127:0] contains valid data
— rx_st_empty = 3, rx_st_data[63:0] contains valid data
e For 256-bit data, when you turn on Enable multi ple packets per
cycle, the following correspondences apply:
— bit 1 applies to the eop occurring in rx_st_data[255:128]
— bit 0 applies to the eop occurring in rx_st_data[127:0]
e When the TLP ends in the lower 128 bits, the following equations
apply:
— rx_st_eop[0]=1 & rx_st_empty[0]=0, rx_st_data[127:0]
contains valid data
— rx_st_eop[0]=1 & rx_st_empty[0]=1, rx_st_data[63:0]
contains valid data, rx_st_data[127:64] is empty
e When TLP ends in the upper 128bits, the following equations apply:
— rx_st_eop[1]=1 & rx_st_empty[1]=0,
rx_st_data[255:128] contains valid data
— rx_st_eop[1]=1 & rx_st_empty[1]=1,
rx_st_data[191:128] contains valid data,
rx_st_data[255:192] is empty
rx_st_ready Input Indicates that the Application Layer is ready to accept data. The
Application Layer deasserts this signal to throttle the data stream.
If rx_st_ready is asserted by the Application Layer on cycle <n>, then
<n + > readylLatency > is a ready cycle, during which the Transaction
Layer may assert val id and transfer data.
The RX interface supports a readyLatency of 2 cycles.
rx_st_valid Output Clocks rx_st_data into the Application Layer. Deasserts within 2 clocks
of rx_st_ready deassertion and reasserts within 2 clocks of
rx_st_ready assertion if more data is available to send.
For 256-bit data, when you turn on Enable multiple packets per cycle,
bit 0 applies to the entire bus rx_st_data[255:0]. Bit 1 is not used.
rx_st_err[<n>-1:0] Output Indicates that there is an uncorrectable error correction coding (ECC) error

in the internal RX buffer. Active when ECC is enabled. ECC is automatically
enabled by the Quartus Prime assembler. ECC corrects single-bit errors
and detects double-bit errors on a per byte basis.

When an uncorrectable ECC error is detected, rx_st_err is asserted for
at least 1 cycle while rx_st_valid is asserted.

For 256-bit data, when you turn on Enable multiple packets per cycle,
bit 0 applies to the entire bus rx_st_data[255:0]. Bit 1 is not used.

Intel recommends resetting the Arria 10 Hard IP for PCI Express when an
uncorrectable double-bit ECC error is detected.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
59

intel.

6 Interfaces and Signal Descriptions

Attention: If you instantiate this IP core as a separate component from the Quartus Prime IP
Catalog, the Message pane reports the following warning messages:

pcie_alO.pcie_alO_hip_O.tx.st Interface must have an associated reset
pcie_alO.pcie_alO_hip_O.rx.st Interface must have an associated reset

You can safely ignore these warnings because the IP core has a dedicated hard reset
pin that is not part of the Avalon-ST TX or RX interface.

Related Links

Avalon Interface Specifications
For information about the Avalon-ST interface protocol.

6.1.1 Avalon-ST RX Component Specific Signals

Table 28. Avalon-ST RX Component Specific Signals

Signal

Direction

Description

rx_st_mask

Input

The Application Layer asserts this signal to tell the Hard IP to stop sending
non-posted requests. This signal can be asserted at any time. The total
number of non-posted requests that can be transferred to the Application
Layer after rx_st_mask is asserted is not more than 10.

This signal stalls only non-posted TLPs. All others continue to be forwarded
to the Application Layer. The stalled non-posted TLPs are held in the RX
buffer until the mask signal is deasserted. They are not be discarded. If
used in a Root Port mode, asserting the rx_st_mask signal stops all I/O
and MemRd and configuration accesses because these are all non-posted
transactions.

rx_st_bar[7:0]

Output

The decoded BAR bits for the TLP. Valid for MRd, MWr, I10WR, and 10RD
TLPs. Ignored for the completion or message TLPs. Valid during the cycle
in which rx_st_sop is asserted.

Refer to 64-Bit Avalon-ST rx_st_data<n> Cycle Definitions for 4-Dword
Header TLPs with Non-Qword Addresses and 128-Bit Avalon-ST
rx_st_data<n> Cycle Definition for 3-Dword Header TLPs with Qword
Aligned Addresses for the timing of this signal for 64- and 128-bit data,
respectively.

The following encodings are defined for Endpoints:
e Bit0: BARO

e Bit1l: BAR1

e Bit2: BAR 2

e Bit3: BAR 3

e Bit4: BAR 4

e Bit5: BAR5

e Bit 6: Expansion ROM

e Bit 7: Reserved

The following encodings are defined for Root Ports:
e Bit0: BARO

e Bit1l: BAR1

e Bit 2: Primary Bus number

e Bit 3: Secondary Bus number

e Bit 4: Secondary Bus number to Subordinate Bus number window
e Bit 5: I/0 window

e Bit 6: Non-Prefetchable window

e Bit 7: Prefetchable window

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

60

https://www.altera.com/documentation/nik1412467993397.html#nik1412467963376

] ®
6 Interfaces and Signal Descriptions l n tel)

Signal Direction Description

For multiple packets per cycle, this signal is undefined. If you turn on
Enable multiple packets per cycle, do not use this signal to identify the
address BAR hit.

rx_st_parity[<n>-1:0] Output The IP core generates byte parity when you turn on Enable byte parity

ports on Avalon-ST interface on the System Settings tab of the
parameter editor. Each bit represents odd parity of the associated byte of
the rx_st_datarx_st_data bus. For example, bit[0] corresponds to
rx_st_data[7:0] rx_st_data[7:0], bit[1] corresponds to
rx_st_data[15:8].

rxfc_cplbuf_ovf] Output When asserted indicates that the internal RX buffer has overflowed.

For more information about the Avalon-ST protocol, refer to the Avalon Interface
Specifications.

Related Links

Avalon Interface Specifications
For information about the Avalon-ST interface protocol.

6.1.2 Data Alignment and Timing for the 64-Bit Avalon-ST RX Interface

To facilitate the interface to 64-bit memories, the Arria 10 Hard IP for PCI Express
aligns data to the qword or 64 bits by default. Consequently, if the header presents an
address that is not qword aligned, the Hard IP block shifts the data within the qword
to achieve the correct alignment.

Qword alignment applies to all types of request TLPs with data, including the following
TLPs:

e Memory writes

e Configuration writes

e I/O writes

The alignment of the request TLP depends on bit 2 of the request address. For
completion TLPs with data, alignment depends on bit 2 of the lower address field.

This bit is always 0 (aligned to gqword boundary) for completion with data TLPs that
are for configuration read or I/0O read requests.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
61

https://www.altera.com/documentation/nik1412467993397.html#nik1412467963376

] ®
l n tel) 6 Interfaces and Signal Descriptions

Figure 36. Qword Alignment
The following figure shows how an address that is not qword aligned, 0x4, is stored in
memory. The byte enables only qualify data that is being written. This means that the
byte enables are undefined for 0x0-0x3. This example corresponds to 64-Bit Avalon-
ST rx_st_data<n> Cycle Definition for 3-Dword Header TLPs with Non-Qword Aligned
Address.
PCB Memory
——— 64bits ——»
0x18
0x10
08 Valid Data
00 | Valid Data
Header Addr=0x4 |
The following table shows the byte ordering for header and data packets.
Table 29. Mapping Avalon-ST Packets to PCI Express TLPs
Packet TLP
Header0Q pcie_hdr_byte0, pcie_hdr _bytel, pcie_hdr _byte2, pcie_hdr _byte3
Headerl pcie_hdr _byte4, pcie_hdr _byte5, pcie_hdr byte6, pcie_hdr _byte7
Header2 pcie_hdr _byte8, pcie_hdr _byte9, pcie_hdr _bytel0, pcie_hdr _bytell
Header3 pcie_hdr _bytel2, pcie_hdr _bytel3, header_bytel4, pcie_hdr _bytel5
Data0 pcie_data_byte3, pcie_data_byte2, pcie_data_bytel, pcie_data_byte0
Datal pcie_data_byte7, pcie_data_byte6, pcie_data_byte5, pcie_data_byte4
Data2 pcie_data_bytel1l, pcie_data_bytel0, pcie_data_byte9, pcie_data_byte8
Data<n> pcie_data_byte<4n+3>, pcie_data_byte<4n+2>, pcie_data_byte<4n+1>, pcie_data_byte<n>
The following figure illustrates the mapping of Avalon-ST RX packets to PCI Express
TLPs for a three dword header with non-qword aligned addresses with a 64-bit bus. In
this example, the byte address is unaligned and ends with 0x4, causing the first data
to correspond to rx_st_data[63:32] .
Note: The Avalon-ST protocol, as defined in Avalon Interface Specifications, is big endian,

while the Hard IP for PCI Express packs symbols into words in little endian format.
Consequently, you cannot use the standard data format adapters available in Qsys.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

62

] ®
6 Interfaces and Signal Descriptions l n tel)

Figure 37.

Figure 38.

Figure 39.

Figure 40.

64-Bit Avalon-ST rx_st_data<n> Cycle Definition for 3-Dword Header TLPs
with Non-Qword Aligned Address

pld_clk

rx_st_data[63:32] - Header1 | Data0 | Data2

rx_st_data[31:0] - Header0 | Header2 | Datal
nstsop | \

nCst_eop / |

The following figure illustrates the mapping of Avalon-ST RX packets to PCI Express
TLPs for a three dword header with qword aligned addresses. Note that the byte
enables indicate the first byte of data is not valid and the last dword of data has a
single valid byte.

64-Bit Avalon-ST rx_st_data<n> Cycle Definition for 3-Dword Header TLPs
with Qword Aligned Address

a L L] — L

n_st_data[63:32] I Header1 Datal [Data3 e
n_st_data[31:0] I Header0 [Header2 [Data0 [Dat2 s

n_st_sop | \

rx_st_eop [\

64-Bit Avalon-ST rx_st_data<n> Cycle Definitions for 4-Dword Header TLPs

with Qword Aligned Addresses

The following figure shows the mapping of Avalon-ST RX packets to PCI Express TLPs

for TLPs for a four dword header with qword aligned addresses with a 64-bit bus.

pld_clk I—, I—,

n_st_datal63:32 [header1 | header3 | datal

n_st_data31:0] T header0 | header2 | data0
mstsop | \

rX_st_eop [|

64-Bit Avalon-ST rx_st_data<n> Cycle Definitions for 4-Dword Header TLPs

with Non-Qword Addresses

The following figure shows the mapping of Avalon-ST RX packet to PCI Express TLPs
for TLPs for a four dword header with non-qword addresses with a 64-bit bus. Note

that the address of the first dword is 0x4. The address of the first enabled byte is 0xC.

pld_ck |]

rx_st_data[63:32] l headerT | header3 I data0 | data
I

n_st._data[31:0] l header0 X header2 \

n_stsop | \

rx_st_eop

, ‘
st _bat7

1

I

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

63

] ®
l n tel) 6 Interfaces and Signal Descriptions

Figure 41. 64-Bit Application Layer Backpressures Transaction Layer

The following figure illustrates the timing of the RX interface when the Application
Layer backpressures the Arria 10 Hard IP for PCI Express by deasserting rx

_st_ready. The rx_st_valid signal deasserts within three cycles after
rx_st_ready is deasserted. In this example, rx_st_valid is deasserted in the next
cycle. rx_st_data is held until the Application Layer is able to accept it.

pae[L L L L L L LT L L L LS L
r_st_datals3:0] 000 Jo10 Jccccoonaccccooon oo Yoo Jeo Jeo Ny Jo)
rxﬁstﬁsop/—\ “
rx_st_eop “ /—\
rx_st_ready —\‘\ \\
rx_st_valid '\d\ /_Z/ \\

Figure 42. 64-Bit Avalon-ST Interface Back-to-Back Transmission

The following figure illustrates back-to-back transmission on the 64-bit Avalon-ST RX
interface with no idle cycles between the assertion of rx_st_eop and rx_st_sop.

m_st_datale3:0] ¢|CJc.[c.) ccccoosgooa... e JcJcfcfcfc)c)
nstsop_ | |
ocst_eop | |
nstready L
wstoaid L]

Related Links

Avalon Interface Specifications
For information about the Avalon-ST interface protocol.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
64

https://www.altera.com/documentation/nik1412467993397.html#nik1412467963376

] ®
6 Interfaces and Signal Descriptions < l n tel)

6.1.3 Data Alignment and Timing for the 128-Bit Avalon-ST RX Interface

Figure 43. 128-Bit Avalon-ST rx_st_data<n> Cycle Definition for 3-Dword Header TLPs
with Qword Aligned Addresses

The following figure shows the mapping of 128-bit Avalon-ST RX packets to PCI
Express TLPs for TLPs with a three dword header and qword aligned addresses. The

assertion of rx_st_empty in a rx_st_eop cycle, indicates valid data on the lower 64
bits of rx_st _data.
[T A\ O A R

k|

rx_st_data[127:96]_ a3 | _
o st_datalosioa) | | | _
rx_st_data[63:32]- headet | data1 | W <o
_st_datal31:0] LAY header0 | I W decnr>
_s_ba) [o e
\!

|\ T N W
W |
) I

Figure 44. 128-Bit Avalon-ST rx_st_data<n> Cycle Definition for 3-Dword Header TLPs
with non-Qword Aligned Addresses

header2

data0

Ix_st_sop

rx_st_eop

rx_st_empty

I

rx_st_valid

The following figure shows the mapping of 128-bit Avalon-ST RX packets to PCI
Express TLPs for TLPs with a 3 dword header and non-gword aligned addresses. In
this case, bits[127:96] represent Data0 because address[2] in the TLP header is set.
The assertion of rx_st_empty in a rx_st_eop cycle indicates valid data on the lower
64 bits of rx_st_data.

R S I I Y A\ O A I I N
rx_st_valid / 1)) | I

n_st_data[127:96] [Data0 | Data4 | W e
n_st_data[95:64] [Header2 | Data3 | N
n_st_data[63:32] [Header1 | Data2 | W | Data(n) [
rx_st_data[31:0] [Header0 | Datal | W [Data(0-1) [

mstsop [)
rx_st_eop |\ I
rx_st_empty “ | \

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
65

] ®
< l n tel) 6 Interfaces and Signal Descriptions

Figure 45. 128-Bit Avalon-ST rx_st_data Cycle Definition for 4-Dword Header TLPs with
non-Qword Aligned Addresses

The following figure shows the mapping of 128-bit Avalon-ST RX packets to PCI
Express TLPs for a four dword header with non-qword aligned addresses. In this
example, rx_st_empty is low because the data is valid for all 128 bits in the
rx_st_eop cycle.

pld_clk [A A | W A O B
rx_st_valid / \}
rx_st_data[127:96) DM Header3 | Dataz | \\ (N
rx_st_data[95:64] [N Header2 | Datal | \\~ | Datan
n_st_data[63:32] [Header1 | Data0 | \W] Datan-T
rx_st_data[31:0] W | Datan-2
rx_st_sop 4/—\ “
r_st_eop w

rx_st_empty “

(

Figure 46. 128-Bit Avalon-ST rx_st_data Cycle Definition for 4-Dword Header TLPs with
Qword Aligned Addresses

The following figure shows the mapping of 128-bit Avalon-ST RX packets to PCI
Express TLPs for a four dword header with gqword aligned addresses. In this example,
rx_st_empty is low because data is valid for all 128-bits in the rx_st_eop cycle.

ok — L[| [LT N T 1 T 1 |
rx_st_valid | 1)) |

n_st_data[127:96] [Header3 | Data3 | \\ | Datan
n_st_data[95:64] [Header2 | Data2 | \W | Datan-1
n_st_data[63:32] [Header1 | Datal | \\ | Datan-2

r_st_data[31:0] [Header0 | Data0 | W | Datan3

nstsop [) i\
rx_st_eop) W N W

rx_st_empty “

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
66

] ®
6 Interfaces and Signal Descriptions l n tel)

Figure 47.

Figure 48.

128-Bit Application Layer Backpressures Hard IP Transaction Layer for RX
Transactions

The following figure illustrates the timing of the RX interface when the Application
Layer backpressures the Hard IP by deasserting rx_st_ready. The rx_st_valid
signal deasserts within three cycles after rx_st_ready is deasserted. In this
example, rx_st_valid is deasserted in the next cycle. rx_st _data is held until the
Application Layer is able to accept it.

wea [L L L L LWL L
n_st_data[127:0] | 4562... | c1%a.... 000a7896c000bc34... [34s8ece... [247ce. N\ 0217b. Ju3ac... Jooas .. |
s [\)
o st_eop)\ [L
o st_empy \
ey =)
sl | 1) L

The following figure illustrates back-to-back transmission on the 128-bit Avalon-ST RX
interface with no idle cycles between the assertion of rx_st_eop and rx_st_sop.

128-Bit Avalon-ST Interface Back-to-Back Transmission

The following figure illustrates back-to-back transmission on the 128-bit Avalon-ST RX
interface with no idle cycles between the assertion of rx_st_eop and rx_st_sop.

wa | LI L L LT L LT
x_st_data[127:0] Je8 .. |8 ... [85 ..)8 ..\\a .. [B5 .. (B8 .. [B5 .. B ... [B5 .. B ..)%B... [BB ..
rX_st_sop [“ [“
x_st_eop “ [“ [
. st_empy \)
o st_ready) W
rsid |) W
st \! \

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
67

] ®
l n tel) 6 Interfaces and Signal Descriptions

Figure 49. 128-Bit Packet Examples of rx_st_empty and Single-Cycle Packet

The following figure illustrates a two-cycle packet with valid data in the lower qword
(rx_st_data[63:0]) and a one-cycle packet where the rx_st_sop and rx_st_eop
occur in the same cycle.

e S A R [O I S O s

rx_st_data[127:0] X 0000090 X 1€0020000F0000000100004 X 450AC89000012FE0D10004

rx_st_sop / \ / \

rx_st_eop | \ / \ _
rx_st_empty /—\
rx_st_ready

rx_st_valid [\ / \

6.1.4 Data Alighment and Timing for 256-Bit Avalon-ST RX Interface

Figure 50. Location of Headers and Data for Avalon-ST 256-Bit Interface

The following figure shows the location of headers and data for the 256-bit Avalon-ST
packets. This Iiyout_of data applies to both the TX and RX bu_ses.

4DW header, 255 | p3 4DW header, 255| pp D 3DW header, 255 | p3 3DW header, 255?]
Aligned data I |— Unaligneddata | | Aligned data I |—{ \Unaligneddata | | |
D2 D1 D9 D2 D3
o1 | | b 00 | [Ds | o1 | |9 | [
o w i o w o]
| v ol i] o]
w2 | [oe | w2 | [os | W | |6 | | (o7]
| [os | | 4| | [os | Wi | |06 |
ol o J o]] Jfw] [

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
68

] ®
6 Interfaces and Signal Descriptions < l n tel)

Figure 51.

256-Bit Avalon-ST RX Packets Use of rx_st_empty and Single-Cycle Packets

The following figure illustrates two single-cycle 256-bit packets. The first packet has
two empty dwords, rx_st_data[191:0] is valid. The second packet has four empty
dwords; rx_st_data[127:0] is valid.

o i N I O R R O B R B R
_st_datal255:0] XXKOXKKXXKKXXKKX. . 4592001487DF08876210...

R I W

wsen | L[)

rx_st_empty[1:0] X 1 X 0 X 2 X

rx_st_ready

rx_st_valid [\ [\

6.1.5 Tradeoffs to Consider when Enabling Multiple Packets per Cycle

If you enable Multiple Packets Per Cycle under the Systems Settings heading, a
TLP can start on a 128-bit boundary. This mode supports multiple start of packet and
end of packet signals in a single cycle when the Avalon-ST interface is 256 bits wide.
It reduces the wasted bandwidth for small packets.

A comparison of the largest and smallest packet sizes illustrates this point. Large
packets using the full 256 bits achieve the following throughput:

256/256*8 = 8 GBytes/sec

The smallest PCle packet, such as a 3-dword memory read, uses 96 bits of the
256-bits bus and achieve the following throughput:

96/256*8 = 3 GBytes/sec

If you enable mMultiple Packets Per Cycle, when a TLP ends in the upper 128 bits
of the Avalon-ST bus, a new TLP can start in the lower 128 bits Consequently, the
bandwidth of small packets doubles:

96*2/256*8 = 6 GBytes/sec

This mode adds complexity to the Application Layer user decode logic. However, it
could result in higher throughput.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
69

] ®
l n tel 6 Interfaces and Signal Descriptions

Figure 52.

256-Bit Avalon-ST RX Interface with Multiple Packets Per Cycle

The following figure illustrates this mode for a 256-bit Avalon-ST RX interface. In this
figure rx_st_eop[0] and rx_st_sop[1] are asserted in the same cycle.
st_data2ss 0112, 12 12 Joz Ji2e Joz Jooe iz Jooo Joz Yoo Joao Yro Yoo Jaao Jro. Joosse

rx_st_sop[0] /—\
x_st_eop[0] /—\
rx_st_sop[1] /—\
rx_st_eop[1] l—\

rx_st_ready

rx_st_valid / \
rx_st_bar[7:0] 00

rx_st_empty[1:0]

Tx_st_err

rx_st_mask

6.2 Avalon-ST TX Interface

Table 30.

The following table describes the signals that comprise the Avalon-ST TX Datapath.
The TX data signal can be 64, 128, or 256 bits.

64-, 128-, or 256-Bit Avalon-ST TX Datapath

Signal Direction Description

tx_st_data[<n>-1:0] Input Data for transmission. Transmit data bus. Refer to the following sections

on data alignment for the 64-, 128-, and 256-bit interfaces for the
mapping of TLP packets to tx_st_data and examples of the timing of
this interface. When using a 64-bit Avalon-ST bus, the width of tx_st_d
ata is 64. When using a 128-bit Avalon-ST bus, the width of tx_st_data
is 128 bits. When using a 256-bit Avalon-ST bus, the width of
tx_st_data is 256 bits. The Application Layer must provide a properly
formatted TLP on the TX interface. The mapping of message TLPs is the
same as the mapping of Transaction Layer TLPs with 4 dword headers. The
number of data cycles must be correct for the length and address fields in
the header. Issuing a packet with an incorrect number of data cycles
results in the TX interface hanging and becoming unable to accept further
requests.

<n> = 64, 128, or 256.

tx_st_sop[<n>-1:0] Input Indicates first cycle of a TLP when asserted together with tx_st_valid.

<n>=1or2.

When using a 256-bit Avalon-ST bus with Multiple packets per cycle, bit
0 indicates that a TLP begins in tx_st_data[127:0], bit 1 indicates that a
TLP begins in tx_st_data[255:128].

tx_st_eop[<n>-1:0] Input Indicates last cycle of a TLP when asserted together with tx_st_valid.

<n>=1or2.

When using a 256-bit Avalon-ST bus with Multiple packets per cycle, bit
0 indicates that a TLP ends with tx_st_data[127:0], bit 1 indicates that a
TLP ends with tx_st_data[255:128].

tx_st_ready Output Indicates that the Transaction Layer is ready to accept data for

transmission. The core deasserts this signal to throttle the data stream.
tx_st_ready may be asserted during reset. The Application Layer should

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

70

6 Interfaces and Signal Descriptions

intel.

Signal

Direction

Description

wait at least 2 clock cycles after the reset is released before issuing
packets on the Avalon-ST TX interface. The reset_status signal can also
be used to monitor when the IP core has come out of reset.

If tx_st_ready is asserted by the Transaction Layer on cycle <n>, then
<n + readylLatency> is a ready cycle, during which the Application
Layer may assert valid and transfer data.

When tx_st_ready, tx_st_valid and tx_st_data are registered
(the typical case), Intel recommends a readyLatency of 2 cycles to
facilitate timing closure; however, a readyLatency of 1 cycle is possible.
If no other delays are added to the read-valid latency, the resulting delay
corresponds to a readyLatency of 2.

tx_st_valid

Input

Clocks tx_st_data to the core when tx_st_ready is also asserted.
Between tx_st_sop and tx_st_eop, tx_st_valid must not be
deasserted in the middle of a TLP except in response to tx_st_ready
deassertion. When tx_st_ready deasserts, this signal must deassert
within 1 or 2 clock cycles. When tx_st_ready reasserts, and
tx_st_data is in mid-TLP, this signal must reassert within 2 cycles. The
figure entitled64-Bit Transaction Layer Backpressures the Application
Layer illustrates the timing of this signal.

For 256-bit data, when you turn on Enable multiple packets per cycle,
the bit 0 applies to the entire bus tx_st_data[255:0]. Bit 1 is not used.

To facilitate timing closure, Intel recommends that you register both the
tx_st_ready and tx_st_valid signals. If no other delays are added to
the ready-valid latency, the resulting delay corresponds to a
readylLatency of 2.

tx_st_empty[1:0]

Input

Indicates the number of gqwords that are empty during cycles that contain

the end of a packet. When asserted, the empty dwords are in the

high-order bits. Valid only when tx_st_eop is asserted.

Not used when tx_st_data is 64 bits. For 128-bit data, only bit 0 applies

and indicates whether the upper qword contains data. For 256-bit data,

both bits are used to indicate the number of upper words that contain

data, resulting in the following encodings for the 128-and 256-bit

interfaces:

128-Bit interface:tx_st_empty = 0, tx_st_data[127:0]contains valid

datatx_st_empty = 1, tx_st_data[63:0] contains valid data

256-bit interface:tx_st_empty = 0, tx_st_data[255:0] contains valid

datatx_ st_empty = 1, tx_st_data[191:0] contains valid

datatx_st_empty = 2, tx_st_data[127:0] contains valid

datatx_st_empty = 3, tx_st_data[63:0] contains valid data

For 256-bit data, when you turn on Enable multiple packets per cycle,

the following correspondences apply:

e bit 1 applies to the eop occurring in rx_st_data[255:128]

e bit 0 applies to the eop occurring in rx_st_data[127:0]

When the TLP ends in the lower 128bits, the following equations apply:

e tx_st eop[0]=1 & tx_st _empty[0]=0, tx_st data[127:0]
contains valid data

e 1tx st _eop[0]=1 & tx_st_empty[0]=1, tx_st_data[63:0]
contains valid data, tx_st_data[127:64] is empty

When TLP ends in the upper 128bits, the following equations apply:

o tx_st_eop[1l]=1 & tx_st_empty[1]=0, tx_st_data[255:128]
contains valid data

e tx_st_eop[l]=1 & tx_st_empty[1l]=1, tx_st_data[191:128]
contains valid data, tx_st_data[255:192] is empty

tx_st_err

Input

Indicates an error on transmitted TLP. This signal is used to nullify a
packet. It should only be applied to posted and completion TLPs with
payload. To nullify a packet, assert this signal for 1 cycle after the SOP and

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
71

®
l n tel 6 Interfaces and Signal Descriptions

Signal Direction Description

before the EOP. When a packet is nullified, the following packet should not
be transmitted until the next clock cycle. tx_st_err is not available for
packets that are 1 or 2 cycles long.

For 256-bit data, when you turn on Enable multiple packets per cycle,
bit 0 applies to the entire bus tx_st_data[255:0]. Bit 1 is not used.
Refer to the figure entitled 128-Bit Avalon-ST tx_st _data Cycle Definition
for 3-Dword Header TLP with non-Qword Aligned Address for a timing
diagram that illustrates the use of the error signal. Note that it must be
asserted while the valid signal is asserted.

tx_st _parity[<n>-1:0] Output Byte parity is generated when you turn on Enable byte parity ports on
Avalon ST interface on the System Settings tab of the parameter
editor.Each bit represents odd parity of the associated byte of the
tx_st_data bus. For example, bit[0] corresponds to tx_st_data[7:0],
bit[1] corresponds to tx_st_data[15:8], and so on.

<n> =8, 16, or 32.

Component Specific Signals

tx_cred_data_fc[11:0] Output Data credit limit for the credit type specified by tx_cred_fc_sel. Each
credit is 16 bytes. There is a latency of two pld_clk clocks between a
change on tx_cred_fc_sel and the corresponding data appearing on
tx_cred_data_fc and tx_cred_hdr_fc.

tx_cred_fc_hip_cons[5:0 Output Asserted for 1 cycle each time the Hard IP consumes a credit. These
1 credits are from messages that the Hard IP for PCle generates for the
following reasons:

e To respond to memory read requests
e To send error messages

This signal is not asserted when an Application Layer credit is consumed.
For optimum performance the Application Layer can track of its own
consumed credits. (The hard IP also tracks credits and deasserts
tx_st_ready if it runs out of credits of any type.) To calculate the total
credits consumed, the Application Layer can add its own credits consumed
to those consumed by the Hard IP for PCle. The credit signals are valid
after the link is up.

The 6 bits of this vector correspond to the following 6 types of credit
types:

e [5]: posted headers

e [4]: posted data

e [3]: non-posted header
e [2]: non-posted data

e [1]: completion header
e [0]: completion data

During a single cycle, the IP core can consume either a single header
credit or both a header and a data credit.

tx_cred_fc_infinite[5:0 Output When asserted, indicates that the corresponding credit type has infinite
] credits available and does not need to calculate credit limits. The 6 bits of
this vector correspond to the following 6 types of credit types:

e [5]: posted headers

e [4]: posted data

e [3]: non-posted header
e [2]: non-posted data

e [1]: completion header
e [0]: completion data

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
72

6 Interfaces and Signal Descriptions

intel.

Signal

Direction

Description

tx_cred_fc_sel[1:0]

Input

Signal to select between which credit type is displayed on the
tx_cred_hdr_fc and tx_cred_data_fc outputs. There is a latency of
two pld_clk clocks between a change on tx_cred_fc_sel and the
corresponding data appearing on tx_cred_data_fc and
tx_cred_hdr_fc. The following encoding are defined:

e 2'b00: Output Posted credits

e 2'b01: Output Non-Posted credits

e 2'b10: Output Completions

tx_cred_hdr_fc[7:0]

Output

Header credit limit for the credit type selected by tx_cred_fc_sel. Each
credit is 20 bytes. There is a latency of two pld_clk clocks between a
change on tx_cred_Tfc_sel and the corresponding data appearing on
tx_cred_data_fc and tx_cred_hdr_fc.

tx_cred_cons_sel

Input

When 1, the tx_cred_* output signals specify the value of the hard IP
internal credits-consumed counter. When 0, the output signals tx_cred_*
specify the credit limit value.

ko_cpl_spc_header[7:0]

Output

The Application Layer can use this signal to build circuitry to prevent RX
buffer overflow for completion headers. Endpoints must advertise infinite
space for completion headers; however, RX buffer space is finite.
ko_cpl_spc_header is a static signal that indicates the total number of
completion headers that can be stored in the RX buffer.

ko_cpl_spc_data[11:0]

Output

The Application Layer can use this signal to build circuitry to prevent RX
buffer overflow for completion data. Endpoints must advertise infinite
space for completion data; however, RX buffer space is finite.
ko_cpl_spc_data is a static signal that reflects the total number of 16
byte completion data units that can be stored in the completion RX buffer.

Related Links

e Data Alignment and Timing for the 64-Bit Avalon-ST TX Interface on page 73

e Data Alignment and Timing for the 128-Bit Avalon-ST TX Interface on page 76

e Data Alignment and Timing for the 256-Bit Avalon-ST TX Interface on page 79

6.2.1 Avalon-ST Packets to PCI Express TLPs

The following figures illustrate the mappings between Avalon-ST packets and PCI
Express TLPs. These mappings apply to all types of TLPs, including posted,
non-posted, and completion TLPs. Message TLPs use the mappings shown for four
dword headers. TLP data is always address-aligned on the Avalon-ST interface
whether or not the lower dwords of the header contains a valid address, as may be
the case with TLP type (message request with data payload).

For additional information about TLP packet headers, refer to Section 2.2.1 Common
Packet Header Fields in the PCI Express Base Specification .

6.2.2 Data Alignment and Timing for the 64-Bit Avalon-ST TX Interface

The following figure illustrates the mapping between Avalon-ST TX packets and PCI
Express TLPs for three dword header TLPs with non-qword aligned addresses on a 64-

bit bus.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
73

] ®
l n tel) 6 Interfaces and Signal Descriptions

Figure 53. 64-Bit Avalon-ST tx_st_data Cycle Definition for 3-Dword Header TLP with
Non-Qword Aligned Address

i [L LI
tx_st_datal63:32] 1 Header1 | Data0 | Data2
tx_st_data[31:0] [Header0 | Header2 | Datal
bstsop | \
tx_st_eop / L

This figure illustrates the storage of hon-qword aligned data.) Non-qword aligned
address occur when address[2] is set. When address[2] is set,

tx_st _data[63:32]contains Datal and tx_st data[31:0] contains dword
header?2. In this figure, the headers are formed by the following bytes:

HO ={pcie_hdr_byte0O, pcie_hdr _bytel, pcie_hdr _byte2, pcie_hdr _byte3}

H1 = {pcie_hdr_byte4, pcie_hdr _byte5, header pcie_hdr byte6, pcie_hdr _byte7}
H2 = {pcie_hdr _byte8, pcie_hdr _byte9, pcie_hdr _bytelO, pcie_hdr _bytell}
Data0 = {pcie_data byte3, pcie_data byte2, pcie_data bytel, pcie_data_ byteO}
Datal = {pcie_data byte7, pcie_data byte6, pcie_data byte5, pcie_data_ byte4}
Data2 = {pcie_data_bytell, pcie_data_bytelO, pcie_data byte9, pcie_data byte8}

The following figure illustrates the mapping between Avalon-ST TX packets and PCI
Express TLPs for three dword header TLPs with qword aligned addresses on a 64-bit
bus.

Figure 54. 64-Bit Avalon-ST tx_st_data Cycle Definition for 3-Dword Header TLP with
Qword Aligned Address

dk | [— [— I N S
tx_st_data[63:32] I0) Header1 J Datal [Data3 s
tx_st_data[31:0] I Header0 [Header2 [Data0 [Data e

tx_st_sop __| \
tx_st_eop J I

The following figure illustrates the mapping between Avalon-ST TX packets and PCI
Express TLPs for a four dword header with gqword aligned addresses on a 64-bit bus

Figure 55. 64-Bit Avalon-ST tx_st_data Cycle Definition for 4-Dword TLP with Qword
Aligned Address

N s IR mn SN B A
o st_datal332] [, Header1 | Header3 I Data
tx_st_data[31:0] [Header0 | Header2 | Data0
ostsop | \
b steop / \

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
74

] ®
6 Interfaces and Signal Descriptions l n tel)

In this figure, the headers are formed by the following bytes.

HO = {pcie_hdr_byte0, pcie_hdr _bytel, pcie_hdr _byte2, pcie_hdr _byte3}

H1 = {pcie_hdr _byte4, pcie_hdr _byte5, pcie_hdr byte6, pcie_hdr _byte7}

H2 = {pcie_hdr _byte8, pcie_hdr _byte9, pcie_hdr _bytelO, pcie_hdr _bytell}
H3 = pcie_hdr _bytel2, pcie_hdr _bytel3, header_bytel4, pcie_hdr _bytel5}, 4
dword header only

Data0 = {pcie_data_byte3, pcie_data_byte2, pcie_data_bytel, pcie_data_byteO}
Datal = {pcie_data_byte7, pcie_data byte6, pcie_data_byte5, pcie_data_byte4}

Figure 56. 64-Bit Avalon-ST tx_st_data Cycle Definition for TLP 4-Dword Header with
Non-Qword Aligned Address

pld_clk I A A O N O D
tx_st_data[63:32] [N Header1 | Header3 | Data0 | Data2 finn
tx_st_data[31:0] ISR Header0) Header2

tkstsop_ [
tx_st_eop [

Figure 57. 64-Bit Transaction Layer Backpressures the Application Layer

The following figure illustrates the timing of the TX interface when the Arria 10 Hard IP
for PCI Express pauses transmission by the Application Layer by deasserting

tx_st ready. Because the readylLatency is two cycles, the Application Layer
deasserts tx_st_valid after two cycles and holds tx_st_data until two cycles after
tx_st ready is asserted.

coreclkout jg
txﬁstﬁdata[63:0]X00. .XOOA...XBB....XBB.... XBBBBO306BBBO305 AXBB... .XBB.. .XBB XBB “BB.... XBB XBB...AX

wstam| % /
st eon| % [\

tx_st_ready \ / “
FJeadyLatency»{

sl \ / (
tx_st_err “

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
75

] ®
< l n tel) 6 Interfaces and Signal Descriptions

Figure 58. 64-Bit Back-to-Back Transmission on the TX Interface

The following figure illustrates back-to-back transmission of 64-bit packets with no idle
cycles between the assertion of tx_st_eop and tx_st_sop.

coreclkout “ “

tx_st_data(63:0)[01 ... 00 ...| BB .. BB ..)BB ..)BB .|B .3Y..|BB ..f01 .)oo .)cc ..fec) M . fec e]

wstsopl | W {\ |
ox_st_eop| W)) [
t_st_ready ! h)
ostald \)

tx_st_ermr \\ \\

6.2.3 Data Alignment and Timing for the 128-Bit Avalon-ST TX Interface

Figure 59. 128-Bit Avalon-ST tx_st_data Cycle Definition for 3-Dword Header TLP with
Qword Aligned Address

The following figure shows the mapping of 128-bit Avalon-ST TX packets to PCI
Express TLPs for a three dword header with qword aligned addresses. Assertion of
t>x_st_empty in an rx_st_eop cycle indicates valid data in the lower 64 bits of
tx_st data.

pld_dk N Y YO O B B
tx_st_data[127:96] _ Data3 X _
o st data[95:64] LMMMMMNN Heade2 | Data2 | \\ .

)
)

b st_datal63:32) DM Headerl | Datal W [Data(n)
x_st_data[31:0] I Headero | Data0 W\ | Data(n-1)
wstsp 1\)
tX_st_eop W o
t_st_empty .
tx_st_valid g \\ \—

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
76

] ®
6 Interfaces and Signal Descriptions l n tel)

Figure 60. 128-Bit Avalon-ST tx_st_data Cycle Definition for 3-Dword Header TLP with
non-Qword Aligned Address

The following figure shows the mapping of 128-bit Avalon-ST TX packets to PCI
Express TLPs for a 3 dword header with non-qword aligned addresses. It also shows
X _st_err assertion.

pld_clk [A A O YOO O B N
oCst datal127:06) MMM Data0 Y Datad)\ (NN

tx_st_data[95:64] - Header 2 X Data 3 X 5_
tx_st_data[63:32] DD Header1) Data2 M)(TData (n)
tst_data31:0] [ONNRY Header0) Data1l J \\) Data(n-1)

estsop [\ \\
t_st_eop N
tx_st_valid g \\ \—
t_st_empty N

t_st_err A\

Figure 61. 128-Bit Avalon-ST tx_st_data Cycle Definition for 4-Dword Header TLP with
Qword Aligned Address

pd_ck | [|

t_st_data[127:96] | Header3 |
b st_data[95:64]) Header2 [Data2

I

]

[
:

tx_st_data[63:32] _ Header 1
tx_st_data[31:0] _ Header 0
wstsop [

tx_st_eop

Data 0 [Data4

|

tx_st_empty

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

77

] ®
< l n tel) 6 Interfaces and Signal Descriptions

Figure 62. 128-Bit Avalon-ST tx_st_data Cycle Definition for 4-Dword Header TLP with
non-Qword Aligned Address

The following figure shows the mapping of 128-bit Avalon-ST TX packets to PCI
Express TLPs for a four dword header TLP with non-qword aligned addresses. In this
example, tx_st_empty is low because the data ends in the upper 64 bits of
tx_st data.

pld_lk I I | Y N O
st data(127:96] | Header3 | Data2 |
B st data[95:64] DRI Header2 | Datal | W T natan [
B st data[63:32] DD Header1 | Data0 | W T oatan (N
tx_st_data[31:0] | Header0) W T oatan2 [
wstsop [) \!
tx_st_eop W o
tx_st_valid | \\ \

tx_st_empty “

Figure 63. 128-Bit Back-to-Back Transmission on the Avalon-ST TX Interface

The following figure illustrates back-to-back transmission of 128-bit packets with idle
dead cycles between the assertion of tx_st_eop and tx_st_sop.

pld_clk
ost_daatizzop UL L L L L LB L
tx_st_sop /_\ /_\
tx_st_eop /_\ /_\ /_

tx_st_empty

tx_st_ready

tx_st_valid

tx_st_err

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
78

] ®
6 Interfaces and Signal Descriptions < l n tel)

Figure 64.

128-Bit Hard IP Backpressures the Application Layer for TX Transactions

The following figure illustrates the timing of the TX interface when the Arria 10 Hard IP
for PCI Express pauses the Application Layer by deasserting tx_st_ready. Because
the readylLatency is two cycles, the Application Layer deasserts tx_st_valid after
two cycles and holds tx_st_data until two cycles after tx_st_ready is reasserted

wiol [1L L L L L L L LT
BCst_datal12700 000 J (o |G JCCo JC.. MG JC S J Ve Jeo. Jeo

wssop [| “

bsteop | i\ [

tx_st_empty “
s — \
t_st_valid — \\
tx_st_err \\

6.2.4 Data Alignment and Timing for the 256-Bit Avalon-ST TX Interface

Refer to Figure 8-16 on page 8-15 layout of headers and data for the 256-bit
Avalon-ST packets with qword aligned and qword unaligned addresses.

Single Packet Per Cycle

In single packer per cycle mode, all received TLPs start at the lower 128-bit boundary
on a 256-bit Avalon-ST interface. Turn on Enable Multiple Packets per Cycle on the
System Settings tab of the parameter editor to change multiple packets per cycle.

Single packet per cycle mode requires simpler Application Layer packet decode logic
on the TX and RX paths because packets always start in the lower 128-bits of the
Avalon-ST interface. Although this mode simplifies the Application Layer logic, failure
to use the full 256-bit Avalon-ST may slightly reduce the throughput of a design.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
79

] ®
l n tel) 6 Interfaces and Signal Descriptions

Figure 65. 256-Bit Avalon-ST tx_st_data Cycle Definition for 3-Dword Header TLP with
Qword Addresses

The following figure illustrates the layout of header and data for a three dword header
on a 256-bit bus with aligned and unaligned data.
Aligned Data Unaligned Data

dk

tx_st_data[63:0] _ Header 1 Header 0
tx_st_data[127:64] _ XXXXXXXX Header 2
tx_st_data[191:128] _ XXXXXXXX Data 0
tx_st_data[255:192] _ XXXXXXXXX XXXXXXXX

tx_st_sop /

Header 1 Header 0

Data0 Header2

XXXXXXXXX XXXXXXXX

XXXXXXXXX XXXXXXXX

|
|
|
|

tx_st_eop /
bc_st_empty(10 o X 10

Figure 66. 256-Bit Avalon-ST tx_st_data Cycle Definition for 4-Dword Header TLP with
Qword Addresses

i TN

The following figure illustrates the layout of header and data for a four dword header
on a 256-bit bus with aligned and unaligned data.
Aligned Data Unaligned Data

clk

ox_st_datals30] | Header 1 Header0 |
tx_st_data[127:64] _ Header3 Header 2 X Header3 Header2

Header 1 Header 0

o st_dataior126) I 000000 Data0
bc_st_cata255:192) | LA XORRKXOOX XOORARKX

tx_st_sop /

Data 0 XXXXXXXX

XXXXXXXXX XXXXXXXX

tx_st_eop /

ocst_empy(10] o X o

6.2.4.1 Single Packet Per Cycle

i Hnn

In single packer per cycle mode, all received TLPs start at the lower 128-bit boundary
on a 256-bit Avalon-ST interface. Turn on Enable Multiple Packets per Cycle on the
System Settings tab of the parameter editor to change multiple packets per cycle.

Single packet per cycle mode requires simpler Application Layer packet decode logic
on the TX and RX paths because packets always start in the lower 128-bits of the
Avalon-ST interface. Although this mode simplifies the Application Layer logic, failure
to use the full 256-bit Avalon-ST may slightly reduce the throughput of a design.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
80

] ®
6 Interfaces and Signal Descriptions < l n tEI)

Figure 67.

The following figure illustrates the layout of header and data for a three dword header
on a 256-bit bus with aligned and unaligned data.

256-Bit Avalon-ST tx_st_data Cycle Definition for 3-Dword Header TLP with
Qword Addresses

Aligned Data Unaligned Data

ck

tx_st_data[63:0] _ Header 1 Header 0
tx_st_data[127:64] _ XXXXXXXX Header 2
tx_st_data[191:128] _ XXXXXXXX Data 0
t_st_data[255:192] _ XXXXXXXXX XXXXXXXX

tx_st_sop /

Header 1 Header 0

Data0 Header2

XXXXXXXXX XXXXXXXX

|
|
|
|

XXXXXXXXX XXXXXXXX

tx_st_eop /

o st_empy (o[o [

LN

6.2.4.2 Multiple Packets per Cycle on the Avalon-ST TX 256-Bit Interface

Figure 68.

If you enable Multiple Packets Per Cycle under the Systems Settings heading, a
TLP can start on a 128-bit boundary. This mode supports multiple start of packet and
end of packet signals in a single cycle when the Avalon-ST interface is 256 bits wide.
The following figure illustrates this mode for a 256-bit Avalon-ST TX interface. In this
figure tx_st _eop[0] and tx_st _sop[1] are asserted in the same cycle. Using this
mode increases the complexity of the Application Layer logic but results in higher
throughput, depending on the TX traffic. Refer to Tradeoffs to Consider when Enabling
Multiple Packets per Cycle for an example of the bandwidth when Multiple Packets
Per Cycle is enabled and disabled.

256-Bit Avalon-ST TX Interface with Multiple Packets Per Cycle

tst_data255:0] [12.. Lo Jr2. Jr2. Jr2w Jo2o Jr2. Jr2. Joo. Jsa. [sn.. [sa. Jsa. Jsn.. [[sa. Jsa.. |

tx_st_sop[0] / \ /
tx_st_eop[0] | \
tx_st_sop[1] / \

]

tx_st_eop[1]

tx_st_empty[1:0]

tx_st_ready

tx_st_valid /

Related Links
Tradeoffs to Consider when Enabling Multiple Packets per Cycle on page 69

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
81

] ®
l n tel 6 Interfaces and Signal Descriptions

6.2.5 Root Port Mode Configuration Requests

If your Application Layer implements ECRC forwarding, it should not apply ECRC
forwarding to Configuration Type 0 packets that it issues on the Avalon-ST interface.
There should be no ECRC appended to the TLP, and the TD bit in the TLP header
should be set to 0. These packets are processed internally by the Hard IP block and
are not transmitted on the PCI Express link.

To ensure proper operation when sending Configuration Type 0 transactions in Root
Port mode, the application should wait for the Configuration Type 0 transaction to be
transferred to the Hard IP for PCI Express Configuration Space before issuing another
packet on the Avalon-ST TX port. You can do this by waiting for the core to respond
with a completion on the Avalon-ST RX port before issuing the next Configuration Type
0 transaction.

6.3 Clock Signals

Table 31. Clock Signals
Signal Direction Description

refclk Input Reference clock for the IP core. It must have the frequency specified under
the System Settings heading in the parameter editor. This is a dedicated
free running input clock to the dedicated REFCLK pin.

pld_clk Input Clocks the Application Layer. You can drive this clock with
coreclkout_hip. If you drive pld_clk with another clock source, it
must be equal to or faster than coreclkout_hip.

coreclkout_hip Output This is a fixed frequency clock used by the Data Link and Transaction
Layers.

Related Links
Clocks on page 123

6.4 Reset, Status, and Link Training Signals

Table 32.

Refer to Reset and Clocks for more information about the reset sequence and a block
diagram of the reset logic.

Reset Signals

Signal Direction Description

npor

Input Active low reset signal. In the Intel hardware example designs, npor is
the OR of pin_perst and local_rstn coming from the software
Application Layer. If you do not drive a soft reset signal from the
Application Layer, this signal must be derived from pin_perst. You
cannot disable this signal. Resets the entire IP Core and transceiver.
Asynchronous.

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

82

] ®
6 Interfaces and Signal Descriptions l n tel

Signal Direction Description

This signal is edge, not level sensitive; consequently, you cannot use a low
value on this signal to hold custom logic in reset. For more information
about the reset controller, refer to Reset.

clr_st Output This optional reset signal has the same effect as reset_status. You
enable this signal by turning On the Enable Avalon-ST reset output
port in the parameter editor.

reset_status Output Active high reset status signal. When asserted, this signal indicates that
the Hard IP clock is in reset. The reset_status signal is synchronous to
the pld_clk clock and is deasserted only when the npor is deasserted
and the Hard IP for PCI Express is not in reset (reset_status_hip = 0).
You should use reset_status to drive the reset of your application. This
reset is used for the Hard IP for PCI Express IP Core with the Avalon-ST
interface.

pin_perst Input Active low reset from the PCle reset pin of the device. pin_perst resets
the datapath and control registers. Configuration over PCI Express (CvP)
requires this signal. For more information about CvP refer to Arria 10 CvP
Initialization and Partial Reconfiguration over PCI Express User Guide.
Arria 10 devices can have up to 4 instances of the Hard IP for PCI Express.
Each instance has its own pin_perst signal. You must connect the
pin_perst of each Hard IP instance to the corresponding nPERST pin of
the device. These pins have the following locations:

¢ NPERSTLO: bottom left Hard IP and CvP blocks

e NPERSTLZ1: top left Hard IP block

¢ NPERSTRO: bottom right Hard IP block

e NPERSTRL1: top right Hard IP block

For example, if you are using the Hard IP instance in the bottom left
corner of the device, you must connect pin_perst to NPERSLO.

For maximum use of the Arria 10 device, Intel recommends that you use
the bottom left Hard IP first. This is the only location that supports CvP
over a PCle link. If your design does not require CvP, you may select other
Hard IP blocks.

Refer to the Arria 10 GX, GT, and SX Device Family Pin Connection
Guidelines for more detailed information about these pins.

Figure 69. Reset and Link Training Timing Relationships

The following figure illustrates the timing relationship between npor and the LTSSM LO
state.

npor —\—/ \\
10_POF_Load \\ “
PCle_LinkTraining_Enumeration <‘/ \\

dl_Itssm[4:0] detectXdetect.activ%poIIing.activ% \\ X Lo X

Note: To meet the 100 ms system configuration time, you must use the fast passive parallel
configuration scheme with CvP and a 32-bit data width (FPP x32) or use the Arria 10
Hard IP for PCI Express in autonomous mode.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
83

] ®
l n tel 6 Interfaces and Signal Descriptions

Table 33. Status and Link Training Signals

Signal Direction Description

serdes_pll_locked Output When asserted, indicates that the PLL that generates the
coreclkout_hip clock signal is locked. In pipe simulation mode this
signal is always asserted.

pld_core_ready Input When asserted, indicates that the Application Layer is ready for operation
and is providing a stable clock to the pld_clk input. If the
coreclkout_hip Hard IP output clock is sourcing the pld_clk Hard IP
input, this input can be connected to the serdes_pl1_locked output.

pld_clk_inuse Output When asserted, indicates that the Hard IP Transaction Layer is using the
pld_clk as its clock and is ready for operation with the Application Layer.
For reliable operation, hold the Application Layer in reset until
pld_clk_inuse is asserted.

dlup Output When asserted, indicates that the Hard IP block is in the Data Link Control
and Management State Machine (DLCMSM) DL_Up state.

dlup_exit Output This signal is asserted low for one pld_clk cycle when the IP core exits
the DLCMSM DL_Up state, indicating that the Data Link Layer has lost
communication with the other end of the PCIe link and left the Up state.
When this pulse is asserted, the Application Layer should generate an
internal reset signal that is asserted for at least 32 cycles.

evl28ns Output Asserted every 128 ns to create a time base aligned activity.
evlus Output Asserted every 1ps to create a time base aligned activity.
hotrst_exit Output Hot reset exit. This signal is asserted for 1 clock cycle when the LTSSM

exits the hot reset state. This signal should cause the Application Layer to
be reset. This signal is active low. When this pulse is asserted, the
Application Layer should generate an internal reset signal that is asserted
for at least 32 cycles.

12_exit Output L2 exit. This signal is active low and otherwise remains high. It is asserted
for one cycle (changing value from 1 to 0 and back to 1) after the LTSSM
transitions from [2.idle to detect. When this pulse is asserted, the
Application Layer should generate an internal reset signal that is asserted
for at least 32 cycles.

lane_act[3:0] Output Lane Active Mode: This signal indicates the number of lanes that
configured during link training. The following encodings are defined:

e 4’b0001: 1 lane

e 4’b0010: 2 lanes
e 4'b0100: 4 lanes
e 4’b1000: 8 lanes

currentspeed[1:0] Output Indicates the current speed of the PCle link. The following encodings are
defined:

e 2b’00: Undefined
e 2b’01: Genl
e 2b'10: Gen2
e 2b'l1l: Gen3

Itssmstate[4:0] Output LTSSM state: The LTSSM state machine encoding defines the following
states:

e 00000: Detect.Quiet

e 00001: Detect.Active

e 00010: Polling.Active

e 00011: Polling.Compliance

e 00100: Polling.Configuration
e 00101: Polling.Speed

e 00110: config.Linkwidthstart

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
84

] ®
6 Interfaces and Signal Descriptions l n tel)

Signal Direction Description

00111: Config.Linkaccept

01000: Config.Lanenumaccept

01001: Config.Lanenumwait

01010: Config.Complete

01011: Config.Idle

01100: Recovery.Rcvlock

01101: Recovery.Rcvconfig

01110: Recovery.Idle

01111: L0

10000: Disable

10001: Loopback.Entry

10010: Loopback.Active

10011: Loopback.Exit

10100: Hot.Reset

10101: LOs

11001: L2.transmit.Wake

11010: Speed.Recovery

11011: Recovery.Equalization, Phase O
11100: Recovery.Equalization, Phase 1
11101: Recovery.Equalization, Phase 2
11110: Recovery.Equalization, Phase 3

Related Links
e PCI Express Card Electromechanical Specification 2.0

e Arria 10 GX, GT, and SX Device Family Pin Connection Guidelines
For information about connecting pins on the PCB including required resistor
values and voltages.

6.5 ECRC Forwarding

On the Avalon-ST interface, the ECRC field follows the same alignment rules as
payload data. For packets with payload, the ECRC is appended to the data as an extra
dword of payload. For packets without payload, the ECRC field follows the address
alignment as if it were a one dword payload. The position of the ECRC data for data
depends on the address alignment. For packets with no payload data, the ECRC
position corresponds to the position of DataO.

6.6 Error Signals

The following table describes the ECC error signals. These signals are all valid for one
clock cycle. They are synchronous to coreclkout_hip.

ECC for the RX and retry buffers is implemented with MRAM. These error signals are
flags. If a specific location of MRAM has errors, as long as that data is in the ECC
decoder, the flag indicates the error.

When a correctable ECC error occurs, the Arria 10 Hard IP for PCI Express recovers
without any loss of information. No Application Layer intervention is required. In the
case of uncorrectable ECC error, Intel recommends that you reset the core.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
85

http://www.pcisig.com/home
https://documentation.altera.com/#/link/wtw1404286459773/iwtw1420187605772

] ®
l n tel 6 Interfaces and Signal Descriptions

Table 34. Error Signals

Signal I/0 Description

derr_cor_ext_rcv0 Output Indicates a corrected error in the RX buffer. This signal is for debug only. It
is not valid until the RX buffer is filled with data. This is a pulse, not a
level, signal. Internally, the pulse is generated with the 500 MHz clock. A
pulse extender extends the signal so that the FPGA fabric running at

250 MHz can capture it. Because the error was corrected by the IP core,
no Application Layer intervention is required. (1)

derr_rpl Output Indicates an uncorrectable error in the retry buffer. This signal is for debug
only. ()
derr_cor_ext_rpl0 Output Indicates a corrected ECC error in the retry buffer. This signal is for debug

only. Because the error was corrected by the IP core, no Application Layer
intervention is required. ()

Notes:

1. Debug signals are not rigorously verified and should only be used to observe behavior. Debug signals should not be
used to drive logic custom logic.

Related Links
Avalon-ST RX Interface on page 58
6.7 Interrupts for Endpoints
Refer to Interrupts for detailed information about all interrupt mechanisms.

Table 35. Interrupt Signals for Endpoints

Signal Direction Description

app_msi_req Input Application Layer MSI request. Assertion causes an MSI posted write TLP
to be generated based on the MSI configuration register values and the
app_msi_tc and app_msi_num input ports.

app_msi_ack Output Application Layer MSI acknowledge. This signal acknowledges the
Application Layer's request for an MSI interrupt.

app_msi_tc[2:0] Input Application Layer MSI traffic class. This signal indicates the traffic class
used to send the MSI (unlike INTX interrupts, any traffic class can be used
to send MSIs).

app_msi_num[4:0] Input MSI number of the Application Layer. This signal provides the low order
message data bits to be sent in the message data field of MSI messages
requested by app_msi_req. Only bits that are enabled by the MSI
Message Control register apply.

app_int_sts Input Controls legacy interrupts. Assertion of app_int_sts causes an
Assert_INTA message TLP to be generated and sent upstream.
Deassertion of app_int_sts causes a Deassert_INTA message TLP to be
generated and sent upstream.

app_int_ack Output This signal is the acknowledge for app_int_sts. It is asserted for at least

one cycle either when either of the following events occur:

* The Assert_INTA message TLP has been transmitted in response to
the assertion of the app_int_sts.

* The Deassert_INTA message TLP has been transmitted in response
to the deassertion of the app_int_sts signal.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
86

®
6 Interfaces and Signal Descriptions l n tel

6.8 Interrupts for Root Ports

Table 36.

Interrupt Signals for Root Ports

Signal Direction Description

int_status[3:0] Output These signals drive legacy interrupts to the Application Layer as follows:

e int_status[0]: interrupt signal A
e int_status[1]: interrupt signal B
e int_status[2]: interrupt signal C
e int_status[3]: interrupt signal D

serr_out

Output System Error: This signal only applies to Root Port designs that report
each system error detected, assuming the proper enabling bits are
asserted in the Root Control and Device Control registers. If
enabled, serr_out is asserted for a single clock cycle when a system
error occurs. System errors are described in the PCI Express Base
Specification 2.1 or 3.0 in the Root Control register.

Related Links
PCI Express Base Specification 3.0

6.9 Completion Side Band Signals

The following table describes the signals that comprise the completion side band
signals for the Avalon-ST interface. The Arria 10 Hard IP for PCI Express provides a
completion error interface that the Application Layer can use to report errors, such as
programming model errors. When the Application Layer detects an error, it can assert
the appropriate cpl_err bit to indicate what kind of error to log. If separate requests
result in two errors, both are logged. The Hard IP sets the appropriate status bits for
the errors in the Configuration Space, and automatically sends error messages in
accordance with the PCI Express Base Specification. Note that the Application Layer is
responsible for sending the completion with the appropriate completion status value
for non-posted requests. Refer to Error Handling for information on errors that are
automatically detected and handled by the Hard IP.

For a description of the completion rules, the completion header format, and
completion status field values, refer to Section 2.2.9 of the PCI Express Base
Specification.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
87

http://www.pcisig.com/home

Table 37.

intel.

6 Interfaces and Signal Descriptions

Completion Signals for the Avalon-ST Interface

Signal

Directi
on

Description

cpl_err[6:0]

Input

Completion error. This signal reports completion errors to the Configuration Space.
When an error occurs, the appropriate signal is asserted for one cycle.

cpl_err[0]: Completion timeout error with recovery. This signal should be
asserted when a master-like interface has performed a non-posted request that
never receives a corresponding completion transaction after the 50 ms timeout
period when the error is correctable. The Hard IP automatically generates an
advisory error message that is sent to the Root Complex.

cpl_err[1]: Completion timeout error without recovery. This signal should be
asserted when a master-like interface has performed a non-posted request that
never receives a corresponding completion transaction after the 50 ms time-out
period when the error is not correctable. The Hard IP automatically generates a non-
advisory error message that is sent to the Root Complex.

cpl_err[2]: Completer abort error. The Application Layer asserts this signal to
respond to a non-posted request with a Completer Abort (CA) completion. The
Application Layer generates and sends a completion packet with Completer Abort
(CA) status to the requestor and then asserts this error signal to the Hard IP. The
Hard IP automatically sets the error status bits in the Configuration Space register
and sends error messages in accordance with the PCI Express Base Specification.

cpl_err[3]: Unexpected completion error. This signal must be asserted when an
Application Layer master block detects an unexpected completion transaction. Many
cases of unexpected completions are detected and reported internally by the
Transaction Layer. For a list of these cases, refer to Transaction Layer Errors.

cpl_err[4]: Unsupported Request (UR) error for posted TLP. The Application Layer
asserts this signal to treat a posted request as an Unsupported Request. The Hard
IP automatically sets the error status bits in the Configuration Space register and
sends error messages in accordance with the PCI Express Base Specification. Many
cases of Unsupported Requests are detected and reported internally by the
Transaction Layer. For a list of these cases, refer to Transaction Layer Errors.
cpl_err[5]: Unsupported Request error for non-posted TLP. The Application Layer
asserts this signal to respond to a non-posted request with an Request (UR)
completion. In this case, the Application Layer sends a completion packet with the
Unsupported Request status back to the requestor, and asserts this error signal. The
Hard IP automatically sets the error status bits in the Configuration Space Register
and sends error messages in accordance with the PCI Express Base Specification.
Many cases of Unsupported Requests are detected and reported internally by the
Transaction Layer. For a list of these cases, refer to Transaction Layer Errors.
cpl_err[6]: Log header. If header logging is required, this bit must be set in the
every cycle in which any of cpl_err[2], cpl_err[3], cpl_err[4], or
cpl_err[5]is set. The Application Layer presents the header to the Hard IP by
writing the following values to the following 4 registers using LMI before asserting
cpl_err[6]:. The Application Layer presents the header to the Hard IP by writing
the following values to the following 4 registers using LMI before asserting
cpl_err[6]:

— Imi_addr: 12'h81C, Imi_din: err_desc_func0[127:96]

— Imi_addr: 12'h820, Imi_din: err_desc_func0[95:64]

— Imi_addr: 12'h824, Imi_din: err_desc_func0[63:32]

— Imi_addr: 12'h828, Imi_din: err_desc_funcO[31:0]

cpl_pending

Input

Completion pending. The Application Layer must assert this signal when a master block
is waiting for completion, for example, when a Non-Posted Request is pending. The
state of this input is reflected by the Transactions Pending bit of the Device
Status Register as defined in Section 7.8.5 of the PCI Express Base Specification.

Related Links

Transaction Layer Errors on page 134

PCI Express Base Specification Rev 3.0

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

88

http:/www.pcisig.com

] ®
6 Interfaces and Signal Descriptions l n tel

6.10 Parity Signals

Table 38.

Parity protection provides some data protection in systems that do not use ECRC
checking. Parity is odd. This option is not available for the Avalon-MM Arria 10 Hard IP
for PCI Express.

On the RX datapath, parity is computed on the incoming TLP prior to the LCRC check
in the Data Link Layer. Up to 32 parity bits are propagated to the Application Layer
along with the RX Avalon-ST data. The RX datapath also propagates up to 32 parity
bits to the Transaction Layer for Configuration TLPs. On the TX datapath, parity
generated in the Application Layer is checked in Transaction Layer and the Data Link
Layer.

The following table lists the signals that indicate parity errors. When an error is
detected, parity error signals are asserted for one cycle.

Parity Signals

Signal Name Direction Description

tx_par_err[1:0] Output When asserted for a single cycle, indicates a parity error during TX TLP

transmission. These errors are logged in the VSEC register. The following
encodings are defined:

e 2'b10: A parity error was detected by the TX Transaction Layer. The
TLP is nullified and logged as an uncorrectable internal error in the
VSEC registers. For more information, refer to Uncorrectable Internal
Error Status Register.

e 2'b01: Some time later, the parity error is detected by the TX Data Link
Layer which drives 2'b01 to indicate the error. Intel recommends
resetting the Arria 10 Hard IP for PCI Express when this error is
detected. Contact Intel if resetting becomes unworkable.

Note that not all simulation models assert the Transaction Layer error bit

in conjunction with the Data Link Layer error bit.

rx_par_err Output When asserted for a single cycle, indicates that a parity error was detected

in a TLP at the input of the RX buffer. This error is logged as an
uncorrectable internal error in the VSEC registers. For more information,
refer to Uncorrectable Internal Error Status Register. If this error occurs,
you must reset the Hard IP if this error occurs because parity errors can
leave the Hard IP in an unknown state.

cfg_par_err Output When asserted for a single cycle, indicates that a parity error was detected

in a TLP that was routed to internal Configuration Space or to the
Configuration Space Shadow Extension Bus. This error is logged as an
uncorrectable internal error in the VSEC registers. For more information,
refer to Uncorrectable Internal Error Status Register. If this error occurs,
you must reset the core because parity errors can put the Hard IP in an
unknown state.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
89

™ ®
l n tel) 6 Interfaces and Signal Descriptions

6.11 LMI Signals
LMI interface is used to write log error descriptor information in the TLP header log
registers. The LMI access to other registers is intended for debugging, not normal
operation.

Figure 70. Local Management Interface

Hard IP for PCle
< Imi_dout 8
Imi_ack
< LMI
Imi_rden >
Imi_wren
> Configuration Space
Imi_addr 12 > <4 128 32-bit registers
(4 KBytes)
Imi_di 8
mi_din >
A

pld_dlk T

The LMI interface is synchronized to pld_clk and runs at frequencies up to 250 MHz.
The LMI address is the same as the Configuration Space address. The LMI interface
provides the same access to Configuration Space registers as Configuration TLP
requests. Register bits have the same attributes, (read only, read/write, and so on) for
accesses from the LMI interface and from Configuration TLP requests. The 32-bit read
and write data is driven, LSB to MSB over 4 consecutive cycles.

Note: You can also use the Configuration Space signals to read Configuration Space
registers. For more information, refer to Transaction Layer Configuration Space
Signals.

When a LMI write has a timing conflict with configuration TLP access, the configuration
TLP accesses have higher priority. LMI writes are held and executed when
configuration TLP accesses are no longer pending. An acknowledge signal is sent back
to the Application Layer when the execution is complete.

All LMI reads are also held and executed when no configuration TLP requests are
pending. The LMI interface supports two operations: local read and local write. The
timing for these operations complies with the Avalon-MM protocol described in the
Avalon Interface Specifications. LMI reads can be issued at any time to obtain the
contents of any Configuration Space register. LMI write operations are not
recommended for use during normal operation. The Configuration Space registers are
written by requests received from the PCI Express link and there may be unintended
consequences of conflicting updates from the link and the LMI interface. LMI Write
operations are provided for AER header logging, and debugging purposes only.

e In Root Port mode, do not access the Configuration Space using TLPs and the LMI
bus simultaneously.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
90

] ®
6 Interfaces and Signal Descriptions l n tel

Table 39. LMI Interface

Signal Direction Description
Imi_dout[7:0] Output Data outputs. Data is driven from LSB, [7:0], to MSB,[31:24]. The LSB
coincides withImi_ack.
Imi_rden Input Read enable input.
Imi_wren Input Write enable input.
Imi_ack Output Write execution done/read data valid.
Imi_addr[11:0] Input Address inputs, [1:0] not used.
Imi_din[7:0] Input Data inputs. Data is driven from LSB, [7:0], to MSB,[31:24]. The LSB

coincides with Iim_wren.

Figure 71. LMI Read

ok [\ I D I I N B N
read_en j “
addr_in[11:0] |
dotwoutz0] I S b0 | bitsiss] | bisidel | bisBi24]
rd_wr_ack “ /—\

Figure 72. LMI Write

Only writable configuration bits are overwritten by this operation. Read-only bits are
not affected. LMI write operations are not recommended for use during normal
operation with the exception of AER header logging.

/SN S S
Imi_wrenj “
imi_acorrr.o) O (——
imi_din(7:0) [bits7:0] | bits[1s:8] | bitsi2316] | bits(31:24] NN S
Imi_ack _/i

Related Links
Avalon Interface Specifications

For information about the Avalon-MM interfaces to implement read and write
interfaces for master and slave components.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
91

https://www.altera.com/documentation/nik1412467993397.html#nik1412467936351

] ®
l n tel 6 Interfaces and Signal Descriptions

6.12 Transaction Layer Configuration Space Signals

Table 40. Configuration Space Signals
These signals are not available if Configuration Space Bypass mode is enabled.

Signal Direction Description

tl_cfg_add[3:0] Output Address of the register that has been updated. This signal is an index
indicating which Configuration Space register information is being driven
onto tl_cfg_ctl.The indexing is defined in Multiplexed Configuration
Register Information Available on ti_cfg_ctl.

The index increments every 8 pld_clk cycles

tl_cfg_ctl[31:0] Output The tl_cfg_ctl signal is multiplexed and contains the contents of the
Configuration Space registers. The indexing is defined in Multiplexed
Configuration Register Information Available on ti_cfg_ctl.

tl_cfg_sts[52:0] Output Configuration status bits. This information updates every pld_clk cycle.
The following table provides detailed descriptions of the status bits.

hpg_ctrler[4:0] Input The hpg_ctrler signals are only available in Root Port mode and when
the Slot capability register is enabled. Refer to the Slot register and Slot
capability register parameters in Table 6-9 on page 6-10. For Endpoint
variations the hpg_ctrler input should be hardwired to 0s. The bits
have the following meanings:

Input e [0]: Attention button pressed. This signal should be asserted when the
attention button is pressed. If no attention button exists for the slot,
this bit should be hardwired to 0, and the Attention Button
Present bit (bit[0]) in the Slot capability register parameter is set to
0.

Input e [1]: Presence detect. This signal should be asserted when a presence
detect circuit detects a presence detect change in the slot.

Input e [2]: Manually-operated retention latch (MRL) sensor changed. This
signal should be asserted when an MRL sensor indicates that the MRL
is Open. If an MRL Sensor does not exist for the slot, this bit should be
hardwired to 0, and the MRL Sensor Present bit (bit[2]) in the Slot
capability register parameter is set to 0.

Input e [3]: Power fault detected. This signal should be asserted when the
power controller detects a power fault for this slot. If this slot has no
power controller, this bit should be hardwired to 0, and the Power
Controller Present bit (bit[1]) in the Slot capability register
parameter is set to 0.

Input e [4]: Power controller status. This signal is used to set the command
completed bit of the Slot Status register. Power controller status is
equal to the power controller control signal. If this slot has no power
controller, this bit should be hardwired to 0 and the Power
Controller Present bit (bit[1]) in the Slot capability register is set
to 0.

Table 41. Mapping Between tl_cfg_sts and Configuration Space Registers

tl_cfg_sts Configuration Space Register Description

[52:49] Device Status Register[3:0] Records the following errors:

e Bit 3: unsupported request detected
e Bit 2: fatal error detected

e Bit 1: non-fatal error detected

e Bit 0: correctable error detected

[48] Slot Status Register[8] Data Link Layer state changed

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
92

6 Interfaces and Signal Descriptions

intel.

tl_cfg_sts

Configuration Space Register

Description

[47]

Slot Status Register[4]

Command completed. (The hot plug controller
completed a command.)

[46:31]

Link Status Register[15:0]

Records the following link status information:
e Bit 15: link autonomous bandwidth status
e Bit 14: link bandwidth management status

e Bit 13: Data Link Layer link active - This bit is
only available for Root Ports. It is always 0 for
Endpoints.

e Bit 12: Slot clock configuration

e Bit 11: Link Training

e Bit 10: Undefined

e Bits[9:4]: Negotiated Link Width
e Bits[3:0] Link Speed

[30]

Link Status 2 Register[0]

Current de-emphasis level.

[29:25]

Status Register[15:11]

Records the following 5 primary command status
errors:

e Bit 15: detected parity error
e Bit 14: signaled system error
e Bit 13: received master abort
e Bit 12: received target abort
e Bit 11: signaled target abort

[24]

Secondary Status Register[8]

Master data parity error

[23:6]

Root Status Register[17:0]

Records the following PME status information:
e Bit 17: PME pending

e Bit 16: PME status

e Bits[15:0]: PME request ID[15:0]

[5:1]

Secondary Status Register[15:11]

Records the following 5 secondary command status
errors:

e Bit 15: detected parity error
e Bit 14: received system error
e Bit 13: received master abort
e Bit 12: received target abort
e Bit 11: signaled target abort

(0]

Secondary Status Register[8]

Master Data Parity Error

6.12.1 Configuration Space Register Access Timing

The signals of the tl1_cfg_* interface include multi-cycle paths. Depending on the
parameterization, the tl_cfg_add and tl_cfg_ctl signals update every four or

eight coreclkout_hip cycles.

To ensure correct values are captured, your Application RTL must include code to force
sampling to the middle of this window. The RTL shown below detects the change of
address. A new strobe signal, cfgctl _addr_strobe, forces sampling to the middle

of the window.

// detect the address transition

always @(posedge coreclkout_hip)

begin
// detect address change

cfgctl_addr_change <= cfg_addr_reg[3:0] !'= tl_cfg_add[3:0];
// delay two clocks and use as strobe to sample the input 32-bit data
cfgctl_addr_change2 <= cfgctl_addr_change;

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

93

] ®
l n tel) 6 Interfaces and Signal Descriptions

cfgctl_addr_strobe <= cfgctl_addr_change2;

end

// captured cfg ctl addr/data bus with the strobe
always @(posedge coreclkout_hip)
if(cfgctl_addr_strobe)

begin

captured_cfg_addr_reg[3:0] <= tl_cfg_add[3:0];
captured_cfg_data reg[31:0] <= tl_cfg_ctl[31:0];
end

Note: Before Quartus Prime version 16.0.1, the multi-cycle paths did not include proper
timing constraints. If you use this interface, you must upgrade to 16.0.1 or later to
ensure proper sampling of the tl_cfg_ctl bus.

Figure 73. Sample tl_cfg_ctl in the Middle of Eight-Cycle Window
coreclkout_hip

tl_cfg_add[3:0] __addr addr1 | addr2 |
tl_cfg_ctl[31:0] __data0 datal | data2 |
b4
cfgctl_addr_strobe s [[
captured_cfg_addr_req[3:0] addr0 | addr2 | addr2
captured_cfg_data_reg[31:0] data0 | datal | data2

6.12.2 Configuration Space Register Access

The tl_cfg_ctl signal is a multiplexed bus that contains the contents of
Configuration Space registers as shown in the figure below. Information stored in the
Configuration Space is accessed in round robin order where tl_cfg_add indicates
which register is being accessed. The following table shows the layout of configuration
information that is multiplexed on tl_cfg ctl.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
94

6 Interfaces and Signal Descriptions

intel)

Figure 74. Multiplexed Configuration Register Information Available on tl_cfg_ctl
Fields in blue are available only for Root Ports.
31 U5 16 15 87 0
cfg_dev_ctrl[15:0] cfg_dev_ctrl2[15:0]
0 fg_dev_ctrl[14:12] = fg_dev_ctrl[7:5] =
Max Read Req Size Max Payload
1 16'h0000 cfg_slot_ctrl[15:0]
2 cfg_link_ctrl[15:0] cfg_link_ctrl2[15:0]
3 8'h00 ‘ cfg_prm_cmd[15:0] cfg_root_ctrl[7:0]
4 cfg_sec_ctrl[15:0] ‘ cfg_sechus[7:0] cfg_subbus(7:0]
5 cfg_msi_addr[11:0] cfg_io_bas[19:0]
6 cfg_msi_addr[43:32] cfg_io_lim[19:0]
7 8'h00 ‘ fg_np_bas[11:0] ‘ cfg_np_lim[11:0]
8 cfg_pr_bas[31:0]
9 cfg_msi_addr[31:12] ‘ cfg_pr_bas[43:32]
A cfg_pr_lim[31:0]
B fg_msi_addr[63:44] ‘ fg_pr_lim[43:32]
C cfg_pmasr[31:0]
D cfg_msixcsr[15:0] ‘ cfg_msicsr[15:0]
6’00, tx_ecrcgen[25],)
E rx_ecrccheck[24] cfg_tcvemap(23:0]
: cfg_msi_data[15:0] ‘ 3'b000 | cfg_busdev[12:0]
Table 42. Configuration Space Register Descriptions
Register Width Direction Description
cfg_dev_ctrl 16 Output cfg_devctrl[15:0] is Device Control for the PCI Express
capability structure.
cfg_dev_ctri2 16 Output cfg_dev2ctrl[15:0] is Device Control 2 for the PCI
Express capability structure.
cfg_slot_ctrl 16 Output cfg_slot_ctrl[15:0] is the Slot Status of the PCI
Express capability structure. This register is only available in
Root Port mode.
cfg_link_ctrl 16 Output cfg_link_ctrl[15:0]is the primary Link Control of the
PCI Express capability structure.
For Gen2 or Gen3 operation, you must write a 1'b1 to the
Retrain Link bit (Bit[5] of the cfg_link_ctrl) of the Root
Port to initiate retraining to a higher data rate after the
initial link training to Gen1 LO state. Retraining directs the
Link Training and Status State Machine (LTSSM) to the
Recovery state. Retraining to a higher data rate is not
automatic for the Arria 10 Hard IP for PCI Express IP Core
even if both devices on the link are capable of a higher data
rate.
cfg_link_ctrl2 16 Output cfg_link_ctrl2[31:16] is the secondary Link Control
register of the PCI Express capability structure for Gen2
operation.

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

95

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

96

intel.

6 Interfaces and Signal Descriptions

Register

Width

Direction

Description

When tl_cfg_addr=4"b0010, tl_cfg_ctl returns the
primary and secondary Link Control registers,

{ {cfg_link_ctrl[15:0], cfg_link_ctrl2[15:0]}.
The primary Link Status register contents are available on
tl_cfg_sts[46:31].

For Gen1 variants, the link bandwidth notification bit is
always set to 0. For Gen2 variants, this bit is set to 1.

cfg_prm_cmd

16

Output

Base/Primary Command register for the PCI Configuration
Space.

cfg_root_ctrl

Output

Root control and status register of the PCI Express
capability. This register is only available in Root Port mode.

cfg_sec_ctrl

16

Output

Secondary bus Control and Status register of the PCI
Express capability. This register is available only in Root Port
mode.

cfg_secbus

Output

Secondary bus number. This register is available only in
Root Port mode.

cfg_subbus

Output

Subordinate bus number. This register is available only in
Root Port mode.

cfg_msi_addr

64

Output

cfg_msi_add[63:32] is the message signaled interrupt
(MSI) upper message address. cfg_msi_add[31:0] is the
MSI message address.

cfg_io0_bas

20

Output

The upper 20 bits of the I/O limit registers of the Typel
Configuration Space. This register is only available in Root
Port mode.

cfg_io_lim

20

Output

The upper 20 bits of the IO limit registers of the Typel
Configuration Space. This register is only available in Root
Port mode.

cfg_np_bas

12

Output

The upper 12 bits of the memory base register of the Typel
Configuration Space. This register is only available in Root
Port mode.

cfg_np_lim

12

Output

The upper 12 bits of the memory limit register of the Typel
Configuration Space. This register is only available in Root
Port mode.

cfg_pr_bas

44

Output

The upper 44 bits of the prefetchable base registers of the
Typel Configuration Space. This register is only available in
Root Port mode.

cfg_pr_lim

44

Output

The upper 44 bits of the prefetchable limit registers of the
Typel Configuration Space. Available in Root Port mode.

cfg_pmcsr

32

Output

cfg_pmcsr[31:16] is Power Management Control and
cfg_pmcsr[15:0]is the Power Management Status
register.

cfg_msixcsr

16

Output

MSI-X message control.

cfg_msicsr

16

Output

MSI message control. Refer to the following table for the
fields of this register.

continued...

6 Interfaces and Signal Descriptions

intel.

Register Width

Direction Description

cfg_tcvcmap 24

Output Configuration traffic class (TC)/virtual channel (VC)
mapping. The Application Layer uses this signal to generate
a TLP mapped to the appropriate channel based on the
traffic class of the packet.

e cfg_tcvcmap[2:0]: Mapping for TCO (always 0).
e cfg_tcvcmap[5:3]: Mapping for TC1.

e cfg_tcvcmap[8:6]: Mapping for TC2.

e cfg_tcvcmap[11:9]: Mapping for TC3.

e cfg_tcvcmap[14:12]: Mapping for TC4.

e cfg_tcvcmap[17:15]: Mapping for TC5.

e cfg_tcvcmap[20:18]: Mapping for TC6.

e cfg_tcvcmap[23:21]: Mapping for TC7.

cfg_msi_data 16

Output cfg_msi_data[15:0] is message data for MSI.

cfg_busdev 13

Output Bus/Device Number captured by or programmed in the Hard
IP.

Figure 75.

Table 43.

Configuration MSI Control Status Register

Field and Bit Map

15 9 8

7 6 4 13 1 0

mask

reserved capability

64-bit
address multiple message enable | multiple message capable
capability

MSI
enable

Configuration MSI Control Status Register Field Descriptions

Bit(s)

Field

Description

[15:9]

Reserved

N/A

(8]

mask capability

Per-vector masking capable. This bit is hardwired to 0 because the function
does not support the optional MSI per-vector masking using the Mask_Bits
and Pending_Bits registers defined in the PCI Local Bus Specification.
Per-vector masking can be implemented using Application Layer registers.

[7]

64-bit address
capability

64-bit address capable.
e 1: function capable of sending a 64-bit message address
e 0: function not capable of sending a 64-bit message address

[6:4]

multiple message
enable

This field indicates permitted values for MSI signals. For example, if "100” is
written to this field 16 MSI signals are allocated.

e 3’b000: 1 MSI allocated
e 3'b001: 2 MSI allocated
e 3'b010: 4 MSI allocated
e 3'b011: 8 MSI allocated
e 3'b100: 16 MSI allocated
e 3'b101: 32 MSI allocated
e 3'b110: Reserved

e 3'bl11: Reserved

[3:1]

multiple message
capable

This field is read by system software to determine the number of requested
MSI messages.

e 3'b000: 1 MSI requested
e 3'b001: 2 MSI requested
e 3'b010: 4 MSI requested
e 3'b011: 8 MSI requested

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
97

6 Interfaces and Signal Descriptions

Bit(s) Field Description
e 3'b100: 16 MSI requested
e 3’b101: 32 MSI requested
e 3'b110: Reserved
[0] MSI Enable If set to 0, this component is not permitted to use MSI.

6.13 Hard IP Reconfiguration Interface

The Hard IP reconfiguration interface is an Avalon-MM slave interface with a 10-bit
address and 16-bit data bus. You can use this bus to dynamically modify the value of
configuration registers that are read-only at run time. To ensure proper system
operation, reset or repeat device enumeration of the PCI Express link after changing
the value of read-only configuration registers of the Hard IP.

Table 44. Hard IP Reconfiguration Signals
Signal Direction Description

hip_reconfig_clk Input Reconfiguration clock. The frequency range for this clock is 100-125 MHz.

hip_reconfig_rst_n Input Active-low Avalon-MM reset. Resets all of the dynamic reconfiguration
registers to their default values as described in Hard IP Reconfiguration
Registers.

hip_reconfig_address[9: Input The 10-bit reconfiguration address.

0]

hip_reconfig_read Input Read signal. This interface is not pipelined. You must wait for the return of
the hip_reconfig_readdata[15:0] from the current read before
starting another read operation.

hip_reconfig_readdata[l Output 16-bit read data. hip_reconfig_readdata[15:0] is valid on the third

5:0] cycle after the assertion of hip_reconfig_read.

hip_reconfig_write Input Write signal.

hip_reconfig_writedata[Input 16-bit write model.

15:0]

hip_reconfig_byte_en[1: Input Byte enables, currently unused.

0]

ser_shift_load Input You must toggle this signal once after changing to user mode before the
first access to read-only registers. This signal should remain asserted for a
minimum of 324 ns after switching to user mode.

interface_sel Input A selector which must be asserted when performing dynamic

reconfiguration. Drive this signal low 4 clock cycles after the release of
ser_shif t_load.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

98

] ®
6 Interfaces and Signal Descriptions l n tEI

Figure 76. Hard IP Reconfiguration Bus Timing of Read-Only Registers

anmac UL
hip_reconﬁg_rst_r\—/
user_mode | s\

Fsuns $|F 4 dks Aﬁ
ser_shift_load sg

——

interface_sel “ \

UL

avmm_wr “
ovnm_ e 15) | VA [o o |
% 4clks —ﬂ
avmm_rd “ H /—\

avmm_rdata[15:0] _) 0 \ ’

For a detailed description of the Avalon-MM protocol, refer to the Avalon Memory
Mapped Interfaces chapter in the Avalon Interface Specifications.

Related Links

Avalon Interface Specifications
For information about the Avalon-MM interfaces to implement read and write
interfaces for master and slave components.

6.14 Power Management Signals

Table 45. Power Management Signals

Signal Direction Description

pme_to_cr Input Power management turn off control register.

Root Port—When this signal is asserted, the Root Port sends the
PME_turn_off message.

Endpoint—This signal is asserted to acknowledge the PME_turn_off
message by sending pme_to_ack to the Root Port.

pme_to_sr Output Power management turn off status register.

Root Port—This signal is asserted for 1 clock cycle when the Root Port
receives the pme_turn_off acknowledge message.

Endpoint—This signal is asserted for 1 cycle when the Endpoint receives
the PME_turn_off message from the Root Port.

pm_event Input Power Management Event. This signal is only available for Endpoints.

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

99

https://documentation.altera.com/#/link/nik1412467993397/nik1412467936351

®
l n tel 6 Interfaces and Signal Descriptions

Signal Direction Description

The Endpoint initiates a a power_management_event message
(PM_PME) that is sent to the Root Port. If the Hard IP is in a low power
state, the link exits from the low-power state to send the message. This
signal is positive edge-sensitive.

pm_data[9:0] Input Power Management Data.

This bus indicates power consumption of the component. This bus can only

be implemented if all three bits of AUX_power (part of the Power

Management Capabilities structure) are set to 0. This bus includes the

following bits:

e pm_data[9:2]: Data Register: This register maintains a value
associated with the power consumed by the component. (Refer to the
example below)

e pm_data[1:0]: Data Scale: This register maintains the scale used to
find the power consumed by a particular component and can include
the following values:

e 2b’00: unknown

e 2b’01: 0.1 x

e 2b’10: 0.01 x

e 2b’11: 0.001 x

For example, the two registers might have the following values:

e pm_data[9:2]: b’'1110010 = 114

e pm_data[1:0]: b'10, which encodes a factor of 0.01

To find the maximum power consumed by this component, multiply the

data value by the data Scale (114 x .01 = 1.14). 1.14 watts is the

maximum power allocated to this component in the power state selected
by the data_select field.

pm_auxpwr Input Power Management Auxiliary Power: This signal can be tied to 0 because
the L2 power state is not supported.

Figure 77. Layout of Power Management Capabilities Register

31 24123 16 15 14 1312 9 8 7 2|1 0

data
register

reserved PME_status | data_scale | data_select PME_EN reserved PM_state

Table 46. Power Management Capabilities Register Field Descriptions

Bits Field Description
[31:24] Data register This field indicates in which power states a function can assert the PME#
message.
[23:16] reserved -
[15] PME_status When set to 1, indicates that the function would normally assert the PME#

message independently of the state of the PME_en bit.

[14:13] data_scale This field indicates the scaling factor when interpreting the value retrieved
from the data register. This field is read-only.

[12:9] data_select This field indicates which data should be reported through the data
register and the data_scale field.

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
100

] ®
6 Interfaces and Signal Descriptions l n tel)

Bits

Field Description

(8]

PME_EN 1: indicates that the function can assert PME#0: indicates that the
function cannot assert PME#

[7:2]

reserved -

[1:0]

PM_state Specifies the power management state of the operating condition being
described. The following encodings are defined:

e 2b’00 DO
e 2b'01D1
e 2b'10 D2
e 2b'11 D3

A device returns 2b’11 in this field and Aux or PME Aux in the type
register to specify the D3-Cold PM state. An encoding of 2b’11 along with
any other type register value specifies the D3-Hot state.

Figure 78.

pme_to_sr and pme_to_cr in an Endpoint IP core

The following figure illustrates the behavior of pme_to_sr and pme_to_cr in an
Endpoint. First, the Hard IP receives the PME_turn_off message which causes
pme_to_sr to assert. Then, the Application Layer sends the PME_to_ack message to
the Root Port by asserting pme_to_cr.

hard pme_to_sr

P 1 pme_to_cr / \

6.15 Physical Layer Interface Signals

Intel provides an integrated solution with the Transaction, Data Link and Physical
Layers. The IP Parameter Editor generates a SERDES variation file,

<vari ati on>_serdes.v or .vhd , in addition to the Hard IP variation file,

<vari ation>.v or .vhd. The SERDES entity is included in the library files for PCI
Express.

6.15.1 Serial Data Signals

This differential, serial interface is the physical link between a Root Port and an
Endpoint.

The PCle IP Core supports 1, 2, 4, or 8 lanes. Each lane includes a TX and RX
differential pair. Data is striped across all available lanes.

Table 47. 1-Bit Interface Signals
The following table shows the signals for the x8 IP core.
Signal Direction Description
tx_out[7:0] Output Transmit output. These signals are the serial outputs of lanes 7-0.
rx_in[7:0] Input Receive input. These signals are the serial inputs of lanes 7-0.

Refer to Pin-out Files for Intel Devices for pin-out tables for all Intel devices
in .pdf, .txt, and .xls formats.

Transceiver channels are arranged in groups of six. For GX devices, the lowest six
channels on the left side of the device are labeled GXB_LO, the next group is GXB_L1,
and so on. Channels on the right side of the device are labeled GXB_R0, GXB_R1, and

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
101

®
l n tel 6 Interfaces and Signal Descriptions

so on. Be sure to connect the Hard IP for PCI Express on the left side of the device to
appropriate channels on the left side of the device, as specified in the Pin-out Files for
Intel Devices.

Related Links

e Physical Layout of Hard IP In Arria 10 Devices on page 48
Arria 10 devices include 1-4 hard IP blocks for PCI Express.

e Pin-out Files for Intel Devices

6.15.2 PIPE Interface Signals

These PIPE signals are available for Genl, Gen2, and Gen3 variants so that you can
simulate using either the serial or the PIPE interface. Simulation is much faster using
the PIPE interface because the PIPE simulation bypasses the SERDES model . By
default, the PIPE interface is 8 bits for Genl and Gen2 and 32 bits for Gen3. You can
use the PIPE interface for simulation even though your actual design includes a serial
interface to the internal transceivers. However, it is not possible to use the Hard IP
PIPE interface in hardware, including probing these signals using SignalTap® II
Embedded Logic Analyzer.

Note: The Intel Root Port BFM bypasses Gen3 Phase 2 and Phase 3 Equalization. However,
Gen3 variants can perform Phase 2 and Phase 3 equalization if instructed by a third-
party BFM.

In the following table, signals that include lane nhumber 0 also exist for lanes 1-7. For
Genl and Gen2 operation, Gen3 outputs can be left floating.

Table 48. PIPE Interface Signals

Signal Direction Description
txdataO[31:0] Output Transmit data <n>. This bus transmits data on lane <n>.
txdatakO[3:0] Output Transmit data control <n>. This signal serves as the control bit for

txdata <n>. Bit 0 corresponds to the lowest-order byte of txdata, and
so on. A value of 0 indicates a data byte. A value of 1 indicates a control
byte. For Genl and Gen2 only.

txblkst0 Output For Gen3 operation, indicates the start of a block in the transmit direction.

txcomplO Output Transmit compliance <n>. This signal forces the running disparity to
negative in Compliance Mode (negative COM character).

txdataskipO Output For Gen3 operation. Allows the MAC to instruct the TX interface to ignore
the TX data interface for one clock cycle. The following encodings are
defined:

e 1'b0: TX data is invalid
e 1'bl: TX data is valid

txdeemphO Output Transmit de-emphasis selection. The Arria 10 Hard IP for PCI Express sets
the value for this signal based on the indication received from the other
end of the link during the Training Sequences (TS). You do not need to
change this value.

txdetectrx0 Output Transmit detect receive <n>. This signal tells the PHY layer to start a
receive detection operation or to begin loopback.
txelecidlel Output Transmit electrical idle <n>. This signal forces the TX output to electrical
idle.
continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
102

https://www.altera.com/support/literature/lit-dp.html

] ®
6 Interfaces and Signal Descriptions l n tel

Signal Direction Description
txswing Output When asserted, indicates full swing for the transmitter voltage. When
deasserted indicates half swing.
txmargin[2:0] Output Transmit Vop margin selection. The value for this signal is based on the
value from the Link Control 2 Register. Available for simulation
only.
txsynchdO[1:0] Output For Gen3 operation, specifies the transmit block type. The following

encodings are defined:

e 2'b01: Ordered Set Block

e 2'b10: Data Block

Designs that do not support Gen3 can let this signal float.

rxdataO[31:0] Input Receive data <n>. This bus receives data on lane <n>.

rxdatak[3:0] Input Receive data >n>. This bus receives data on lane <n>. Bit 0 corresponds
to the lowest-order byte of rxdata, and so on. A value of 0 indicates a
data byte. A value of 1 indicates a control byte. For Gen1 and Gen2 only.

rxblkst0 Input For Gen3 operation, indicates the start of a block in the receive direction.

rxdataskipO Output For Gen3 operation. Allows the PCS to instruct the RX interface to ignore
the RX data interface for one clock cycle. The following encodings are
defined:

e 1'b0: RX data is invalid
e 1'b1: RX data is valid

rxelecidle0 Input Receive electrical idle <n>. When asserted, indicates detection of an
electrical idle.

rxpolarityO Output Receive polarity <n>. This signal instructs the PHY layer to invert the
polarity of the 8B/10B receiver decoding block.

rxstatusO[2:0] Input Receive status <n>. This signal encodes receive status, including error
codes for the receive data stream and receiver detection.

rxsynchd0o[1:0] Input For Gen3 operation, specifies the receive block type. The following
encodings are defined:

e 2'b01: Ordered Set Block
e 2'b10: Data Block
Designs that do not support Gen3 can ground this signal.

rxvalido Input Receive valid <n>. This signal indicates symbol lock and valid data on
rxdata<n> and rxdatak <n>.

phystatusO Input PHY status <n>. This signal communicates completion of several PHY
requests.

powerdownO[1:0] Output Power down <n>. This signal requests the PHY to change its power state
to the specified state (PO, POs, P1, or P2).

currentcoeffO[17:0] Output For Gen3, specifies the coefficients to be used by the transmitter. The 18
bits specify the following coefficients:
e [5:0]: C4
e [11:6]: Co
e [17:12]: Cyy

currentrxpreset0[2:0] Output For Gen3 designs, specifies the current preset.

simu_mode_pipe Input When set to 1, the PIPE interface is in simulation mode.

sim_pipe_rate[1:0] Output The 2-bit encodings have the following meanings:

e 2'b00: Gen1l rate (2.5 Gbps)
e 2'b01: Gen2 rate (5.0 Gbps)
e 2'b10: Gen3 rate (8.0 Gbps)

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
103

] ®
l n tel 6 Interfaces and Signal Descriptions

Signal Direction Description

rate[1:0] Output The 2-bit encodings have the following meanings:
e 2'b00: Genl rate (2.5 Gbps)
e 2'b01: Gen2 rate (5.0 Gbps)
e 2'b1X: Gen3 rate (8.0 Gbps)

sim_pipe_pclk_in Input This clock is used for PIPE simulation only, and is derived from the
refclk. It is the PIPE interface clock used for PIPE mode simulation.

sim_pipe_ltssmstate0[4:0 | Inputand | LTSSM state: The LTSSM state machine encoding defines the following
Output states:

e 5'b00000: Detect.Quiet

e 5b00001: Detect.Active

e 5'b00010: Polling.Active

e 5’b 00011: Polling.Compliance

e 5’b 00100: Polling.Configuration

e 5'b00101: Polling.Speed

e 5'b00110: config.LinkwidthsStart

e 5’b 00111: Config.Linkaccept

e 5’b 01000: Config.Lanenumaccept

e 5'b01001: Config.Lanenumwait

e 5’b01010: Config.Complete

e 5b01011: Config.Idle

e 5'b01100: Recovery.Rcvlock

e 5'b01101: Recovery.Rcvconfig

e 5'b01110: Recovery.Idle

e 5b01111:L0

e 5'b10000: Disable

e 5'b10001: Loopback.Entry

e 5'b10010: Loopback.Active

e 5'b10011: Loopback.Exit

e 5'b10100: Hot.Reset

e 5b10101: LOs

e 5b11001: L2.transmit.Wake

e 5'b11010: Recovery.Speed

e 5'b11011: Recovery.Equalization, Phase 0
e 5'b11100: Recovery.Equalization, Phase 1
e 5'b11101: Recovery.Equalization, Phase 2
e 5'b11110: Recovery.Equalization, Phase 3
e 5’b11111: Recovery.Equalization, Done

rxfreqlockedO Input When asserted indicates that the pclk_in used for PIPE simulation is
valid.
eidleinfersel0[2:0] Output Electrical idle entry inference mechanism selection. The following

encodings are defined:
e 3'b0Oxx: Electrical Idle Inference not required in current LTSSM state

e 3'b100: Absence of COM/SKP Ordered Set in the 128 us window for
Genl or Gen2

e 3'b101: Absence of TS1/TS2 Ordered Set in a 1280 UI interval for
Genl or Gen2

e 3'b110: Absence of Electrical Idle Exit in 2000 UI interval for Gen1 and
16000 UI interval for Gen2

e 3'b111: Absence of Electrical idle exit in 128 us window for Gen1

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
104

6 Interfaces and Signal Descriptions

6.15.3 Test Signals

Table 49. Test Interface Signals

The test_in bus provides run-time control and monitoring of the internal state of the IP core.

Signal

Direction

Description

test_in[31:0]

Input

The bits of the test_in bus have the following definitions. Set this bus to

0x00000188.

e [0]: Simulation mode. This signal can be set to 1 to accelerate
initialization by reducing the value of many initialization counters.

e [1]: Reserved. Must be set to 1'b0.

e [2]: Descramble mode disable. This signal must be set to 1 during
initialization in order to disable data scrambling. You can use this bit in
simulation for Gen1 and Gen2 Endpoints and Root Ports to observe
descrambled data on the link. Descrambled data cannot be used in
open systems because the link partner typically scrambles the data.

e [4:3]: Reserved. Must be set to 2'b01.

e [5]: Compliance test mode. Set this bit to 1'b0. Setting this bit to 1'b1
prevents the LTSSM from entering compliance mode. Toggling this bit
controls the entry and exit from the compliance state, enabling the
transmission of Gen1, Gen2 and Gen3 compliance patterns.

e [6]: Forces entry to compliance mode when a timeout is reached in the
polling.active state and not all lanes have detected their exit condition.

e [7]: Disable low power state negotiation. Intel recommends setting this
bit.

e [8]: Set this bit to 1'b1.

e [31:9]: Reserved. Set to all Os.

testin_zero

Output

When asserted, indicates accelerated initialization for simulation is active.

lane_act[3:0]

Output

Lane Active Mode: This signal indicates the number of lanes that
configured during link training. The following encodings are defined:

e 4'b0001: 1 lane

e 4'b0010: 2 lanes
e 4'b:0100: 4 lanes
e 4'b:1000: 8 lanes

6.15.4 Arria 10 Development Kit Conduit Interface

The Arria 10 Development Kit conduit interface signals are optional signals that allow
you to connect your design to the Arria 10 FPGA Development Kit. Enable this
interface by selecting Enable Arria 10 FPGA Development Kit connection on the
Configuration, Debug, and Extension Options tab of the component GUI. The
devkit_status output port includes signals useful for debugging.

Table 50.

Signal Name

Direction

Description

devkit_status[255:0]

Output

The devkit_status[255:0] bus comprises the following status signals :
e devkit_status[1:0]: current_speed

e devkit_status[2]: derr_cor_ext_rcv

e devkit_status[3]: derr_cor_ext_rpl

e devkit_status[4]: derr_err

e devkit_status[5]: rx_par_err

e devkit_status[7:6]: tx_par_err

e devkit_status[8]: cfg_par_err

e devkit_status[9]: dlup

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
105

intel.

6 Interfaces and Signal Descriptions

Signal Name

Direction

Description

devkit_status[10]: dlup_exit
devkit_status[11]: ev128ns
devkit_status[12]: evlus

devkit_status[13]: hotrst_exit
devkit_status[17:14]: int_status[3:0]
devkit_status[18]: 12_exit
devkit_status[22:19]: lane_act[3:0]
devkit_status[27:23]: ltssmstate[4:0]
devkit_status[35:28]: ko_cpl_spc_header[7:0]
devkit_status[47:36]: ko_cpl_spc_data[11:0]
devkit_status[48]: rxfc_cplbuf_ovf
devkit_status[49]: reset_status
devkit_status[255:50]: Reserved

devkit_ctrl[255:0]

Input

The devkit_ctrl[255:0] bus comprises the following status signals.
You can optionally connect these pins to an on-board switch for PCI-SIG
compliance testing, such as bypass compliance testing.

devkit_ctrl[0]:test_in[0] is typically set to 1"b0
devkit_ctri[4:1]:test_in[4:1] is typically set to
4"b0100

devkit_ctrl[6:5]:test_in[6:5] is typically set to
2"b01

devkit_ctri[31:7]:test_in[31:7] is typically set to
25"h3

devkit_ctrl[63:32]:is typically set to 32"b0
devkit _ctrl[255:64]:is typically set to 192"b0

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

106

®
7 Registers l n tel

7 Registers

7.1 Correspondence between Configuration Space Registers and the
PCIe Specification

Table 51. Correspondence between Configuration Space Capability Structures and PCIe
Base Specification Description

For the Type 0 and Type 1 Configuration Space Headers, the first line of each entry lists Type 0 values and the
second line lists Type 1 values when the values differ.

Byte Address Hard IP Configuration Space Register Corresponding Section in PCIe Specification

0x000:0x03C

PCI Header Type 0 Configuration Registers

Type 0 Configuration Space Header

0x000:0x03C

PCI Header Type 1 Configuration Registers

Type 1 Configuration Space Header

0x040:0x04C

Reserved

N/A

0x050:0x05C

MSI Capability Structure

MSI Capability Structure

0x068:0x070

MSI-X Capability Structure

MSI-X Capability Structure

0x070:0x074

Reserved

N/A

0x078:0x07C

Power Management Capability Structure

PCI Power Management Capability Structure

0x080:0x0B8

PCI Express Capability Structure

PCI Express Capability Structure

0x0B8:0x0FC

Reserved

N/A

0x094:0x0FF

Root Port

N/A

0x100:0x16C

Virtual Channel Capability Structure (Reserved)

Virtual Channel Capability

0x170:0x17C

Reserved

N/A

0x180:0x1FC

Virtual channel arbitration table (Reserved)

VC Arbitration Table

0x200:0x23C

Port VCO arbitration table (Reserved)

Port Arbitration Table

0x240:0x27C

Port VC1 arbitration table (Reserved)

Port Arbitration Table

0x280:0x2BC

Port VC2 arbitration table (Reserved)

Port Arbitration Table

0x2C0:0x2FC

Port VC3 arbitration table (Reserved)

Port Arbitration Table

0x300:0x33C

Port VC4 arbitration table (Reserved)

Port Arbitration Table

0x340:0x37C

Port VC5 arbitration table (Reserved)

Port Arbitration Table

0x380:0x3BC

Port VC6 arbitration table (Reserved)

Port Arbitration Table

0x3C0:0x3FC

Port VC7 arbitration table (Reserved)

Port Arbitration Table

0x400:0x7FC

Reserved

PCIe spec corresponding section name

0x800:0x834

Advanced Error Reporting AER (optional)

Advanced Error Reporting Capability

0x838:0xFFF

Reserved

N/A

continued...

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any

Iso

information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

intel.

7 Registers

Byte Address |

Hard IP Configuration Space Register

Corresponding Section in PCIe Specification

Overview of Configuration Space Register Fields

0x000 Device ID, Vendor ID Type 0 Configuration Space Header
Type 1 Configuration Space Header
0x004 Status, Command Type 0 Configuration Space Header
Type 1 Configuration Space Header
0x008 Class Code, Revision ID Type 0 Configuration Space Header
Type 1 Configuration Space Header
0x00C BIST, Header Type, Primary Latency Timer, Type 0 Configuration Space Header
Cache Line Size Type 1 Configuration Space Header
0x010 Base Address 0 Base Address Registers
0x014 Base Address 1 Base Address Registers
0x018 Base Address 2 Base Address Registers
Secondary Latency Timer, Subordinate Bus Secondary Latency Timer, Type 1 Configuration
Number, Secondary Bus Number, Primary Bus Space Header, Primary Bus Number
Number
0x01C Base Address 3 Base Address Registers
Secondary Status, I/0 Limit, I/O Base Secondary Status Register ,Type 1 Configuration
Space Header
0x020 Base Address 4 Base Address Registers
Memory Limit, Memory Base Type 1 Configuration Space Header
0x024 Base Address 5 Base Address Registers
Prefetchable Memory Limit, Prefetchable Memory | Prefetchable Memory Limit, Prefetchable Memory
Base Base
0x028 Reserved N/A
Prefetchable Base Upper 32 Bits Type 1 Configuration Space Header
0x02C Subsystem ID, Subsystem Vendor ID Type 0 Configuration Space Header
Prefetchable Limit Upper 32 Bits Type 1 Configuration Space Header
0x030 Expansion ROM base address Type 0 Configuration Space Header
I/0 Limit Upper 16 Bits, I/O Base Upper 16 Bits Type 1 Configuration Space Header
0x034 Reserved, Capabilities PTR Type 0 Configuration Space Header
Type 1 Configuration Space Header
0x038 Reserved N/A
Expansion ROM Base Address Type 1 Configuration Space Header
0x03C Interrupt Pin, Interrupt Line Type 0 Configuration Space Header
Bridge Control, Interrupt Pin, Interrupt Line Type 1 Configuration Space Header
0x050 MSI-Message Control Next Cap Ptr Capability ID MSI and MSI-X Capability Structures
0x054 Message Address MSI and MSI-X Capability Structures
0x058 Message Upper Address MSI and MSI-X Capability Structures
0x05C Reserved Message Data MSI and MSI-X Capability Structures
0x068 MSI-X Message Control Next Cap Ptr Capability MSI and MSI-X Capability Structures
ID
0x06C MSI-X Table Offset BIR MSI and MSI-X Capability Structures
0x070 Pending Bit Array (PBA) Offset BIR MSI and MSI-X Capability Structures

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

108

7 Registers

intel.

Byte Address Hard IP Configuration Space Register Corresponding Section in PCIe Specification
0x078 Capabilities Register Next Cap PTR Cap ID PCI Power Management Capability Structure
0x07C Data PM Control/Status Bridge Extensions Power | PCI Power Management Capability Structure

Management Status & Control
0x800 PCI Express Enhanced Capability Header Advanced Error Reporting Enhanced Capability
Header
0x804 Uncorrectable Error Status Register Uncorrectable Error Status Register
0x808 Uncorrectable Error Mask Register Uncorrectable Error Mask Register
0x80C Uncorrectable Error Severity Register Uncorrectable Error Severity Register
0x810 Correctable Error Status Register Correctable Error Status Register
0x814 Correctable Error Mask Register Correctable Error Mask Register
0x818 Advanced Error Capabilities and Control Register | Advanced Error Capabilities and Control Register
0x81C Header Log Register Header Log Register
0x82C Root Error Command Root Error Command Register
0x830 Root Error Status Root Error Status Register
0x834 Error Source Identification Register Correctable Error Source Identification Register
Error Source ID Register

Related Links
PCI Express Base Specification 3.0

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

109

http://www.pcisig.com/

7.2 Type 0 Configuration Space Registers

Figure 79.

7 Registers

Type 0 Configuration Space Registers - Byte Address Offsets and Layout

Endpoints store configuration data in the Type 0 Configuration Space. The
Correspondence between Configuration Space Registers and the PCle Specification on
page 107 lists the appropriate section of the PCI Express Base Specification that
describes these registers.

0x000
0x004
0x008
0x00C
0x010
0x014
0x018
0x01C

0x020
0x024
0x028
0x02C

0x030
0x034
0x038
0x03C

24 23 16 15 87 0
Device ID | Vendor ID
Status Command
(lass Code Revision ID
0x00 Header Type 0x00 Cache Line Size
BAR Registers
BAR Registers
BAR Registers
BAR Registers
BAR Registers
BAR Registers
Reserved
Subsystem Device ID \ Subsystem Vendor ID
Expansion ROM Base Address
Reserved (apabilities Pointer
Reserved
0x00 \ Interrupt Pin | Interrupt Line

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

110

7 Registers

7.3 Type 1 Configuration Space Registers

Figure 80.

Type 1 Configuration Space Registers (Root Ports)

0x0000
0x004
0x008
0x00C
0x010
0x014
0x018
0x01C
0x020
0x024
0x028
0x02C
0x030
0x034
0x038

0x03C

31

2423

16 15 87

ntel)

Device ID

Vendor ID

Status

Command

(lass Code

Revision ID

BIST \

Header Type

Primary Latency Timer

Cache Line Size

BAR Registers

BAR Registers

Secondary Latency Timer ‘ Subordinate Bus Number

Secondary Bus Number

Primary Bus Number

Secondary Status

1/0 Limit

1/0 Base

Memory Limit

Memory Base

Prefetchable Memory Limit

Prefetchable Memory Base

Prefetchable Base Upper 32 Bits

Prefetchable Limit Upper 32 Bits

I/0 Limit Upper 16 Bits

‘ 1/0 Base Upper 16 Bits

Reserved

‘ Capabilities Pointer

Expansion ROM Base Address

Bridge Control

‘ Interrupt Pin ‘

7.4 PCI Express Capability Structures

Figure 81.

Interrupt Line

The layout of the most basic Capability Structures are provided below. Refer to the PCI
Express Base Specification for more information about these registers.

MSI Capability Structure

0x050

0x054
0x058

0x05C

31 2423 16 15 87 0
Message Control
Configuration MSI Control Status Next Cap Ptr (apability ID
Register Field Descriptions
Message Address
Message Upper Address
Reserved Message Data

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

111

intel®>

Figure 82. MSI-X Capability Structure

31 24 23 16 15 87 32 0

0x068 Message Control Next Cap Ptr (apability ID
MSI-X
0x06C MSI-X Table Offset Table BAR
Indicator

MSI-X
Pending
0x070 MSI-X Pending Bit Array (PBA) Offset Bit Array

-BAR
Indicator

Figure 83. Power Management Capability Structure - Byte Address Offsets and Layout

31 24 23 16 15 87 0
0x078 (apabilities Register Next Cap Ptr (apability ID
PM Control/Status
0x07C Data . . Power Management Status and Control
Bridge Extensions
Figure 84. PCI Express AER Extended Capability Structure
Byte Offs et 31224 ‘ 23:16 ‘ 15:8 ‘ 7:0
0x800 PCl Express Enhanced Capability Register
0x804 Uncorrectable Error Status Register
0x808 Uncorrectable Error Mask Register
0x80C Uncorrectable Error Severity Register
0x810 Correctable Error Status Register
0x814 Correctable Error Mask Register
0x818 Advanced Error Capabilities and Control Register
0x81C Header Log Register
0x82C Root Error Command Register
0x830 Root Error Status Register
0x834 Error Source Identification Register Correctable Error Source Identification Register

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
112

7 Registers

Figure 85.

(intela

PCI Express Capability Structure - Byte Address Offsets and Layout

In the following table showing the
not applicable to a device are rese

PCI Express Capability Structure, registers that are
rved.

31 24 23 16 15 87 0
0x080 | PCl Express Capabilities Register Next Cap Pointer CF;CpIaEinIpi’IfggD
0x084 Device Capabilities
0x088 Device Status \ Device Control
0x08C Link Capabilities
0x090 Link Status | Link Control
0x094 Slot Capabilities
0x098 Slot Status Slot Control
0x09C Root Capabilities Root Control
0x0A0 Root Status
0x0A4 Device Compatibilities 2
0x0A8 Device Status 2 \ Device Control 2
0x0AC Link Capabilities 2
0x0B0 Link Status 2 \ Link Control 2
0x0B4 Slot Capabilities 2
0x0B8 Slot Status 2 \ Slot Control 2

Related Links

e PCI Express Base Specification 3.0

e PCI Local Bus Specification

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
113

http://www.pcisig.com/
http://www.pcisig.com/

(intel”)

7.5 Intel-Defined VSEC Registers

Figure 86. VSEC Registers

This extended capability structure supports Configuration via Protocol (CvP)
programming and detailed internal error reporting.

31 20 19 16 15 87 0
0x200 Next Capability Offset Version | Intel-Defined VSEC Capability Header
0204 VSEC Length RZ\?iEicon Intel-Defined, Ve\deocr—lgpecific Header
0x208 Intel Marker
0x20C JTAG Silicon ID DWO JTAG Silicon ID
0x210 JTAG Silicon ID DW1 JTAG Silicon ID
0x214 JTAG Silicon ID DW2 JTAG Silicon ID
0x218 JTAG Silicon ID DW3 JTAG Silicon ID
0x21C (vP Status User Device or Board Type ID
0x220 (vP Mode Control
0x224 (vP Data2 Register
0x228 (vP Data Register
0x22(C (vP Programming Control Register
0x230 Reserved
0x234 Uncorrectable Internal Error Status Register
0x238 Uncorrectable Internal Error Mask Register
0x23(C Correctable Internal Error Status Register
0x240 Correctable Internal Error Mask Register

Table 52. Intel-Defined VSEC Capability Register, 0x200

The Intel-Defined Vendor Specific Extended Capability. This extended capability structure supports
Configuration via Protocol (CvP) programming and detailed internal error reporting.

Bits Register Description Value Acces
s
[15:0] PCI Express Extended Capability ID. Intel-defined value for VSEC 0x000B RO
Capability ID.
[19:16] Version. Intel-defined value for VSEC version. Ox1 RO
[31:20] Next Capability Offset. Starting address of the next Capability Structure Variable RO
implemented, if any.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
114

7 Registers

intel.

Table 53. Intel-Defined Vendor Specific Header
You can specify these values when you instantiate the Hard IP. These registers are read-only at run-time.
Bits Register Description Value Acces
s
[15:0] VSEC ID. A user configurable VSEC ID. User entered RO
[19:16] VSEC Revision. A user configurable VSEC revision. Variable RO
[31:20] VSEC Length. Total length of this structure in bytes. 0x044 RO
Table 54. Intel Marker Register
Bits Register Description Value Acces
s
[31:0] Intel Marker. This read only register is an additional marker. If you use | A Device Value RO
the standard Intel Programmer software to configure the device with CvP,
this marker provides a value that the programming software reads to
ensure that it is operating with the correct VSEC.
Table 55. JTAG Silicon ID Register
Bits Register Description Value Acces
s
[127:96] JTAG Silicon ID DW3 Application RO
Specific
[95:64] JTAG Silicon 1D DW2 Application RO
Specific
[63:32] JTAG Silicon ID DW1 Application RO
Specific
[31:0] JTAG Silicon ID DWO. This is the JTAG Silicon ID that CvP Application RO
programming software reads to determine that the correct SRAM object Specific
file (.sof) is being used.
Table 56. User Device or Board Type ID Register
Bits Register Description Value Acces
s
[15:0] Configurable device or board type ID to specify to CvP the correct .sof. Variable RO
7.6 CvP Registers
Table 57. CvP Status
The CvP Status register allows software to monitor the CvP status signals.
Bits Register Description Reset Value Acces
s
[31:26] Reserved 0x00 RO
[25] PLD_CORE_READY. From FPGA fabric. This status bit is provided for Variable RO
debug.
[24] PLD_CLK_IN_USE. From clock switch module to fabric. This status bit is Variable RO
provided for debug.
[23] CVP_CONFIG_DONE. Indicates that the FPGA control block has completed Variable RO
the device configuration via CvP and there were no errors.
continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

115

intel.

7 Registers
Bits Register Description Reset Value Acces
s
[22] Reserved Variable RO
[21] USERMODE. Indicates if the configurable FPGA fabric is in user mode. Variable RO
[20] CVP_EN. Indicates if the FPGA control block has enabled CvP mode. Variable RO
[19] CVP_CONFIG_ERROR. Reflects the value of this signal from the FPGA Variable RO
control block, checked by software to determine if there was an error
during configuration.
[18] CVP_CONFIG_READY. Reflects the value of this signal from the FPGA Variable RO
control block, checked by software during programming algorithm.
[17:0] Reserved Variable RO
Table 58. CvP Mode Control
The CvP Mode Control register provides global control of the CvP operation.
Bits Register Description Reset Value Acces
s
[31:16] Reserved. 0x0000 RO
[15:8] CVP_NUMCLKS. 0x00 RW
This is the number of clocks to send for every CvP data write. Set this field
to one of the values below depending on your configuration image:
e 0x01 for uncompressed and unencrypted images
e 0x04 for uncompressed and encrypted images
e 0x08 for all compressed images
[7:3] Reserved. 0x0 RO
[2] CVP_FULLCONFIG. Request that the FPGA control block reconfigure the 1'b0 RW
entire FPGA including the Arria 10 Hard IP for PCI Express, bring the PCle
link down.
[1] HIP_CLK_SEL. Selects between PMA and fabric clock when USER_MODE = 1'b0 RW
1 and PLD_CORE_READY = 1. The following encodings are defined:
e 1: Selects internal clock from PMA which is required for CVP_MODE.
e 0: Selects the clock from soft logic fabric. This setting should only be
used when the fabric is configured in USER_MODE with a configuration
file that connects the correct clock.
To ensure that there is no clock switching during CvP, you should only
change this value when the Hard IP for PCI Express has been idle for
10 ps and wait 10 ps after changing this value before resuming activity.
[0] CVP_MODE. Controls whether the IP core is in CVP_MODE or normal mode. 1'b0 RW
The following encodings are defined:
e 1:CVP_MODE is active. Signals to the FPGA control block active and all
TLPs are routed to the Configuration Space. This CVP_MODE cannot be
enabled if CVP_EN = 0.
e 0: The IP core is in normal mode and TLPs are routed to the FPGA
fabric.

Table 59. CvP Data Registers

The following table defines the CvP Data registers. For 64-bit data, the optional CvP Data?2 stores the upper
32 bits of data. Programming software should write the configuration data to these registers. If you Every write
to these register sets the data output to the FPGA control block and generates <n> clock cycles to the FPGA
control block as specified by the CVP_NUM_CLKS field in the CvP Mode Control register. Software must
ensure that all bytes in the memory write dword are enabled. You can access this register using configuration

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
116

intel.

7 Registers
writes, alternatively, when in CvP mode, these registers can also be written by a memory write to any address
defined by a memory space BAR for this device. Using memory writes should allow for higher throughput than
configuration writes.
Bits Register Description Reset Value Acces
s
[31:0] Upper 32 bits of configuration data to be transferred to the FPGA control 0x00000000 RW
block to configure the device. You can choose 32- or 64-bit data.
[31:0] Lower 32 bits of configuration data to be transferred to the FPGA control 0x00000000 RW
block to configure the device.
Table 60. CvP Programming Control Register
This register is written by the programming software to control CvP programming.
Bits Register Description Reset Value Acces
s
[31:2] Reserved. 0x0000 RO
[1] START_XFER. Sets the CvP output to the FPGA control block indicating the 1'b0 RW
start of a transfer.
[0] CVP_CONFIG. When asserted, instructs that the FPGA control block begin 1’'b0 RW
a transfer via CvP.

7.7 Uncorrectable Internal Error Mask Register

Table 61. Uncorrectable Internal Error Mask Register
The Uncorrectable Internal Error Mask register controls which errors are forwarded as internal
uncorrectable errors. With the exception of the configuration error detected in CvP mode, all of the errors are
severe and may place the device or PCIe link in an inconsistent state. The configuration error detected in CvP
mode may be correctable depending on the design of the programming software. The access code RWS stands
for Read Write Sticky meaning the value is retained after a soft reset of the IP core.

Bits Register Description Reset Value Access
[31:12] Reserved. 1b’0 RO
[11] Mask for RX buffer posted and completion overflow error. 1b’0 RWS
[10] Reserved 1b’1 RO
[9] Mask for parity error detected on Configuration Space to TX bus interface. 1b1 RWS
[8] Mask for parity error detected on the TX to Configuration Space bus 1b'1 RWS

interface.
[7]1 Mask for parity error detected at TX Transaction Layer error. 1b’1 RWS
[6] Reserved 1b'1 RO
[5] Mask for configuration errors detected in CvP mode. 1b’0 RWS
[4] Mask for data parity errors detected during TX Data Link LCRC generation. 1b'1 RWS
[3] Mask for data parity errors detected on the RX to Configuration Space Bus 1b'1 RWS
interface.
[2] Mask for data parity error detected at the input to the RX Buffer. 1b'1 RWS
[1] Mask for the retry buffer uncorrectable ECC error. 1b1 RWS
[0] Mask for the RX buffer uncorrectable ECC error. 1b1 RWS

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

117

] ®
l n te I 7 Registers

7.8 Uncorrectable Internal Error Status Register

Table 62. Uncorrectable Internal Error Status Register

This register reports the status of the internally checked errors that are uncorrectable. When specific errors are
enabled by the Uncorrectable Internal Error Mask register, they are handled as Uncorrectable Internal
Errors as defined in the PCI Express Base Specification 3.0. This register is for debug only. It should only be
used to observe behavior, not to drive custom logic. The access code RW1CS represents Read Write 1 to Clear

Sticky.
Bits Register Description Reset Access
Value

[31:12] Reserved. 0 RO

[11] When set, indicates an RX buffer overflow condition in a posted request or 0 RW1CS
Completion

[10] Reserved. 0 RO

[9] When set, indicates a parity error was detected on the Configuration 0 RW1CS
Space to TX bus interface

[8] When set, indicates a parity error was detected on the TX to Configuration 0 RW1CS
Space bus interface

[7] When set, indicates a parity error was detected in a TX TLP and the TLP is 0 RW1CS
not sent.

[6] When set, indicates that the Application Layer has detected an 0 RW1CS
uncorrectable internal error.

[5] When set, indicates a configuration error has been detected in CvP mode 0 RW1CS
which is reported as uncorrectable. This bit is set whenever a
CVP_CONFIG_ERROR rises while in CVP_MODE.

[4] When set, indicates a parity error was detected by the TX Data Link Layer. 0 RW1CS

[3] When set, indicates a parity error has been detected on the RX to 0 RW1CS
Configuration Space bus interface.

[2] When set, indicates a parity error was detected at input to the RX Buffer. 0 RW1CS

[1] When set, indicates a retry buffer uncorrectable ECC error. 0 RW1CS

[0] When set, indicates a RX buffer uncorrectable ECC error. 0 RW1CS

Related Links
PCI Express Base Specification 3.0

7.9 Correctable Internal Error Mask Register
Table 63. Correctable Internal Error Mask Register

The Correctable Internal Error Mask register controls which errors are forwarded as Internal
Correctable Errors. This register is for debug only.

Bits Register Description Reset Value Acces

s

[31:8] Reserved. 0 RO

[7] Reserved. 1 RO
[6] Mask for Corrected Internal Error reported by the Application Layer. 1 RWS
[5] Mask for configuration error detected in CvP mode. 1 RWS
continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
118

http://www.pcisig.com/

7 Registers

intel.

Bits Register Description Reset Value Acces

s

[4:2] Reserved. 0 RO
[1] Mask for retry buffer correctable ECC error. 1 RWS
[0] Mask for RX Buffer correctable ECC error. 1 RWS

7.10 Correctable Internal Error Status Register

Table 64. Correctable Internal Error Status Register
The Correctable Internal Error Status register reports the status of the internally checked errors that
are correctable. When these specific errors are enabled by the Correctable Internal Error Mask
register, they are forwarded as Correctable Internal Errors as defined in the PCI Express Base Specification 3.0.
This register is for debug only. Only use this register to observe behavior, not to drive logic custom logic.
Bits Register Description Reset Access
Value
[31:7] Reserved. 0 RO
[6] Corrected Internal Error reported by the Application Layer. 0 RW1CS
[5] When set, indicates a configuration error has been detected in CvP 0 RW1CS
mode which is reported as correctable. This bit is set whenever a
CVP_CONFIG_ERROR occurs while in CVP_MODE.
[4:2] Reserved. 0 RO
[1] When set, the retry buffer correctable ECC error status indicates an 0 RW1CS
error.
[0] When set, the RX buffer correctable ECC error status indicates an error. 0 RW1CS

Related Links
PCI Express Base Specification 3.0

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
119

http://www.pcisig.com/

®
8 Arria 10 Reset and Clocks l n tel

8 Arria 10 Reset and Clocks

Figure 87. Reset Controller in Arria 10 Devices

Hard IP for PCI Express
<instance_name>_altera_pcie_a10_hip_<version>
_<generated_string>.v

altpcie_<dev>_hip_256_pipenib.v

Transceiver Hard
Reset Logic/Soft Reset
Controller
altpcie_rs_serdes.v

srst A
arst

tx_digitalrst

reset_status n_analogrst
rx_digitalrst

pld_dlk_inuse

coreclkout_hip
pld_dk

SERDES

Configuration Space
Sticky Registers

Configuration Space
Non-Sticky Registers

Datapath State
Machines of
Hard IP Core

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in 1so
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 9005":2008
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

] ®
8 Arria 10 Reset and Clocks < l n tel)

8.1 Reset Sequence for Hard IP for PCI Express IP Core and
Application Layer

Figure 88. Hard IP for PCI Express and Application Logic Reset Sequence

Your Application Layer can instantiate a module similar to the one in this figure to
generate app_rstn, which resets the Application Layer logic.

pin_perst /

pld_clk_inuse /

»— 32 cycles 4.‘
\

srst \3
\\

}»— 32 cycles —»‘
app_rstn /

This reset sequence includes the following steps:

serdes_pll_locked

ast

reset_status

1. After pin_perst or npor is released, the Hard IP reset controller waits for
pld_clk_inuse to be asserted.

2. csrt and srst are released 32 cycles after pld_clk_inuse is asserted.

The Hard IP for PCI Express deasserts the reset_status output to the
Application Layer.

4. The altpcied_<devi ce>v_hwtcl.sv deasserts app_rstn 32 pld_clkcycles
after reset_status is released.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
121

] ®
l n tel) 8 Arria 10 Reset and Clocks

Figure 89. RX Transceiver Reset Sequence

busy_xcvr_reconfig

rx_pll_locked

rx_analogreset

Itssmstate[4:0] 01 X

txdetectrx_loopback /_\S\
pipe_phystatus \

pipe_rxstatus[2:0]

—
w

—
o

rx_signaldetect

rx_freglocked
rx_digitalreset \

The RX transceiver reset sequence includes the following steps:

1. After rx_pll_locked is asserted, the LTSSM state machine transitions from the
Detect.Quiet to the Detect.Active state.

2. When the pipe_phystatus pulse is asserted and pipe_rxstatus[2:0] = 3,
the receiver detect operation has completed.

3. The LTSSM state machine transitions from the Detect.Active state to the
Polling.Active state.

4. The Hard IP for PCI Express asserts rx_digitalreset. The rx_digitalreset
signal is deasserted after rx_signaldetect is stable for a minimum of 3 ms.

Figure 90. TX Transceiver Reset Sequence

npor /
pll_locked 127 cycles >
npor_serdes /
tx_digitalreset _

The TX transceiver reset sequence includes the following steps:

1. After npor is deasserted, the IP core deasserts the npor_serdes input to the TX
transceiver.

2. The SERDES reset controller waits for pll_locked to be stable for a minimum of
127 pld_clKk cycles before deasserting tx_digitalreset.

For descriptions of the available reset signals, refer to Reset Signals, Status, and Link
Training Signals.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
122

] ®
8 Arria 10 Reset and Clocks l n tel)

Related Links
Reset, Status, and Link Training Signals on page 82

8.2 Clocks

The Hard IP contains a clock domain crossing (CDC) synchronizer at the interface
between the PHY/MAC and the DLL layers. The synchronizer allows the Data Link and
Transaction Layers to run at frequencies independent of the PHY/MAC. The CDC
synchronizer provides more flexibility for the user clock interface. Depending on
parameters you specify, the core selects the appropriate coreclkout_hip. You can
use these parameters to enhance performance by running at a higher frequency for
latency optimization or at a lower frequency to save power.

In accordance with the PCI Express Base Specification, you must provide a 100 MHz
reference clock that is connected directly to the transceiver.

Related Links
PCI Express Base Specification 3.0

8.2.1 Clock Domains

Figure 91. Clock Domains and Clock Generation for the Application Layer

The following illustrates the clock domains when using coreclkout_hip to drive the
Application Layer and the pld_clk of the IP core. The Intel-provided example design
connects coreclkout_hip to the pld_clk. However, this connection is not
mandatory.

Hard IP for PCl Express Application

pld_core_ready Layer

Clack Data Link
Domain and serdes_pll_locked

PHY/MAC p (rosping Transaction i

(CDO) Layers pld_clk

(62.5,125
or 250 MHz)
pclk ? ? ? ? coreclkout_hip

Transceiver

\ 4

VAN

As this figure indicates, the IP core includes the following clock domains:
8.2.1.1 coreclkout_hip

Table 65. Application Layer Clock Frequency for All Combinations of Link Width, Data
Rate and Application Layer Interface Widths
The coreclkout_hip signal is derived from pclk. The following table lists frequencies for coreclkout_hip,

which are a function of the link width, data rate, and the width of the Application Layer to Transaction Layer
interface. The frequencies and widths specified in this table are maintained throughout operation. If the link

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
123

http://www.pcisig.com/

intel.

8 Arria 10 Reset and Clocks

downtrains to a lesser link width or changes to a different maximum link rate, it maintains the frequencies it
was originally configured for as specified in this table. (The Hard IP throttles the interface to achieve a lower

throughput.)

Link Width Maximum Link Rate Avalon Interface Width coreclkout_hip
x1 Genl 64 62.5 MHz3
x1 Genl 64 125 MHz
X2 Genl 64 125 MHz
x4 Genl 64 125 MHz
x8 Genl 64 250 MHz
x8 Genl 128 125 MHz
x1 Gen2 64 125 MHz
x2 Gen2 64 125 MHz
x4 Gen2 64 250 MHz
x4 Gen2 128 125 MHz
x8 Gen2 128 250 MHz
x8 Gen2 256 125 MHz
x1 Gen3 64 125 MHz
x2 Gen3 64 125 MHz
x2 Gen3 128 125 MHz
x2 Gen3 64 250 MHz
x4 Gen3 128 250 MHz
x4 Gen3 256 125 MHz
x8 Gen3 256 250 MHz

8.2.1.2 pld_clk

coreclkout_hip can drive the Application Layer clock along with the pld_clk input
to the IP core. The pld_clk can optionally be sourced by a different clock than
coreclkout_hip. The pld_clk minimum frequency cannot be lower than the
coreclkout_hip frequency. Based on specific Application Layer constraints, a PLL
can be used to derive the desired frequency.

3 This mode saves power

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

124

8 Arria 10 Reset and Clocks

8.2.2 Clock Summary

Table 66. Clock Summary

Name

Frequency

Clock Domain

coreclkout_hip

62.5, 125 or 250 MHz

Layers.

Avalon-ST interface between the Transaction and Application

pld_clk

62.5, 125, or 250 MHz

Application and Transaction Layers.

refclk

100 MHz

the SERDES block.

SERDES (transceiver). Dedicated free running input clock to

hip_reconfig_clk

Avalon-MM interface for Hard IP dynamic reconfiguration
interface which you can use to change the value of

is optional. It is not required for Arria 10 devices.

read-only configuration registers at run-time. This interface

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

125

9 Interrupts

9 Interrupts

9.1 Interrupts for Endpoints

Note:

The Arria 10 Hard IP for PCI Express provides support for PCI Express MSI, MSI-X,
and legacy interrupts when configured in Endpoint mode. The MSI, MSI-X, and legacy
interrupts are mutually exclusive. After power up, the Hard IP block starts in legacy
interrupt mode. Then, software decides whether to switch to MSI or MSI-X mode. To
switch to MSI mode, software programs the msi_enable bit of the MS1 Message
Control Register to 1, (bit[16] of 0x050). You enable MSI-X mode, by turning on
Implement MSI-X under the PCI Express/PCI Capabilities tab using the
parameter editor. If you turn on the Implement MSI-X option, you should implement
the MSI-X table structures at the memory space pointed to by the BARs.

Refer to section 6.1 of PCI Express Base Specification for a general description of PCI
Express interrupt support for Endpoints.

Related Links
PCI Express Base Specification 3.0

9.1.1 MSI and Legacy Interrupts

The IP core generates single dword Memory Write TLPs to signal MSI interrupts on the
PCI Express link. The Application Layer Interrupt Handler Module app_msi_req
output port controls MSI interrupt generation. When asserted, it causes an MSI posted
Memory Write TLP to be generated. The IP core constructs the TLP using information
from the following sources:

e The MSI Capability registers
e The traffic class (app_msi_tc)
e The message data specified by app_msi_num

To enable MSI interrupts, the Application Layer must first set the MS1 enable bit.
Then, it must disable legacy interrupts by setting the Interrupt Disable, bit 10 of
the Command register.

The Application Layer Interrupt Handler Module also generates legacy interrupts. The
app_int_sts signal controls legacy interrupt assertion and deassertion.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

Iso
9001:2008
Registered

http://www.pcisig.com/home
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

] ®
9 Interrupts l n tel

Figure 92. Interrput Handler Module in the Application Layer

app_msi_req

< app_msi_ack Interrupt
PP ms! tc[2:0r Handler
20D i num[4:0 Module
- Pex_msi_num

<3P int_sts

cfg_msicsr[15:0]

The following figure illustrates a possible implementation of the Interrupt Handler
Module with a per vector enable bit. Alternatively, the Application Layer could
implement a global interrupt enable instead of this per vector MSI.

Figure 93. Example Implementation of the Interrupt Handler Block

j app_int_sts

Vector0 pmm T N 1
| app_int_en0 ‘ .
[PP app_msi_req0 msi_enable & Master Enable
i app_int_sts0 3 app_msi_re
| 1| Arbitration |~ app_msi_ack I
Vector 1 app_int_en .
app_msi_req1
R/W

IRQ app_int_sts1
Generation

App Layer

There are 32 possible MSI messages. The humber of messages requested by a
particular component does not necessarily correspond to the number of messages
allocated. For example, in the following figure, the Endpoint requests eight MSIs but is
only allocated two. In this case, you must design the Application Layer to use only two
allocated messages.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
127

] ®
l n tel 9 Interrupts

Figure 94.

MSI Request Example

Root Complex
i < Root

Endpoint > Por <) U
8 Requested
2 Allocated Interrupt

Block

\ 4

CT 1 [1T 1

Interrupt Register

The following table describes three example implementations. The first example
allocates all 32 MSI messages. The second and third examples only allocate 4
interrupts.

Table 67. MSI Messages Requested, Allocated, and Mapped
MSI Allocated
32 4 4
System Error 31 3 3
Hot Plug and Power Management Event 30 2 3
Application Layer 29:0 1:0 2:0

MSI interrupts generated for Hot Plug, Power Management Events, and System Errors
always use Traffic Class 0. MSI interrupts generated by the Application Layer can use
any Traffic Class. For example, a DMA that generates an MSI at the end of a
transmission can use the same traffic control as was used to transfer data.

The following figure illustrates the interactions among MSI interrupt signals for the
Root Port. The minimum latency possible between app_msi_req and app_msi_ack
is one clock cycle. In this timing diagram app_msi_req can extend beyond
app_msi_ack before deasserting. However, app_msi_req must be deasserted before
or within the same clock as app_msi_ack is deasserted to avoid inferring a new
interrupt.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

128

] ®
9 Interrupts l n tel

Figure 95. MSI Interrupt Signals Timing
1 2 3 4 5 6
R N O O A O T
spp_ms._te [
app_ms_1620) | wal

: I
app_msi_ack /—\—

Related Links

Correspondence between Configuration Space Registers and the PCle Specification on
page 107

9.1.2 MSI-X

You can enable MSI-X interrupts by turning on Implement MSI-X under the PCI
Express/PCI Capabilities heading using the parameter editor. If you turn on the
Implement MSI-X option, you should implement the MSI-X table structures at the
memory space pointed to by the BARs as part of your Application Layer.

The Application Layer transmits MSI-X interrupts on the Avalon®-ST TX interface. MSI-
X interrupts are single dword Memory Write TLPs. Consequently, the Last DW Byte
Enable in the TLP header must be set to 4b’0000. MSI-X TLPs should be sent only
when enabled by the MSI-X enable and the function mask bits in the Message
Control for the MSI-X Configuration register. These bits are available on the
tl_cfg_ctl output bus.

Related Links

e PCI Local Bus Specification
e PCI Express Base Specification 3.0

9.1.3 Implementing MSI-X Interrupts

Section 6.8.2 of the PCI Local Bus Specification describes the MSI-X capability and
table structures. The MSI-X capability structure points to the MSI-X Table structure
and MSI-X Pending Bit Array (PBA) registers. The BIOS sets up the starting address
offsets and BAR associated with the pointer to the starting address of the MSI-X Table
and PBA registers.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
129

http://www.pcisig.com/home
http://www.pcisig.com/home

intel)

Figure 96.

Figure 97.

MSI-X Interrupt Components

9 Interrupts

PCle with Avalon-ST I/F Host SW Programs Add,

Data and Vector Control

Application Layer

il

Host

Addr,Data | MSI-XTable

Memory Write,
kﬂ‘ |

Memory Write TLP

MSI-XPBA ' ¢— IRQ Source
A
IRQ Monitor & Clr
Processor ‘—f

1. Host software sets up the MSI-X interrupts
the following steps:

in the Application Layer by completing

a. Host software reads the Message Control register at 0x050 register to
determine the MSI-X Table size. The number of table entries is the <value

read> + 1.

The maximum table size is 2048 entries. Each 16-byte entry is divided in 4
fields as shown in the figure below. The MSI-X table can reside in any BAR.
The base address of the MSI-X table must be aligned to a 4 KB boundary.

b. The host sets up the MSI-X table. It programs MSI-X address, data, and
masks bits for each entry as shown in the figure below.

Format of MSI-X Table

DWORD 3 DWORD 2 DWORD 1 DWORD 0 Host Byte Addresses
Vector Control | Message Data | Message Upper Address | Message Address | Entry 0 Base
Vector Control | Message Data | Message Upper Address | Message Address | Entry 1 Base +1x 16
Vector Control | Message Data | Message Upper Address | Message Address | Entry 2 Base +2x 16
.

[Vector Control [Message Data | Message Upper Address

| Message Address | Entry (V-1) Base+ (N-1)x 16

c. The host calculates the address of the <nt"> entry using the following

formula:

nth_address =

base address[BAR]

+ 16<n>

2. When Application Layer has an interrupt, it drives an interrupt request to the IRQ

Source module.
3. The IRQ Source sets appropriate bit in the

The PBA can use gword or dword accesses.

MSI-X PBA table.

For gword accesses, the IRQ Source

calculates the address of the <mt"> bit using the following formulas:

qgqword address =
qword bit = <m> mod 64

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

130

<PBA base addr> + 8(fl oor(<np/64))

9 Interrupts

Figure 98.

intel)

MSI-X PBA Table

Pending Bit Array (PBA) Address
Pending Bits 0 through 63 QWORD 0 Base
Pending Bits 64 through 127 QWORD 1 Base +1x8

| Pending Bits (N - 1) div 64) X 64 throughN -1 | QWORD ((N -1)div64) Base + (N - 1) div 64) x 8

4. The IRQ Processor reads the entry in the MSI-X table.

a. If the interrupt is masked by the Vector_Control field of the MSI-X table,
the interrupt remains in the pending state.

b. If the interrupt is not masked, IRQ Processor sends Memory Write Request to
the TX slave interface. It uses the address and data from the MSI-X table. If
Message Upper Address = 0, the IRQ Processor creates a three-dword
header. If the Message Upper Address > O, it creates a 4-dword header.

5. The host interrupt service routine detects the TLP as an interrupt and services it.

Related Links
e Floor and ceiling functions

e PCI Local Bus Specification, Rev. 3.0

9.1.4 Legacy Interrupts

Figure 99.

Legacy interrupts mimic the original PCI level-sensitive interrupts using virtual wire
messages. The Arria 10signals legacy interrupts on the PCIe link using Message TLPs.
The term, INTX, refers collectively to the four legacy interrupts, INTA#, INTB#, INTC#
and INTD#. The Arria 10 asserts app_int_sts to cause an Assert_INTX Message
TLP to be generated and sent upstream. Deassertion of app_int_sts causes a
Deassert_INTx Message TLP to be generated and sent upstream. To use legacy
interrupts, you must clear the Interrupt Disable bit, which is bit 10 of the
Command register. Then, turn off the MS1 Enable bit.

The following figures illustrates interrupt timing for the legacy interface. The legacy
interrupt handler asserts app_int_sts to instruct the Hard IP for PCI Express to
send a Assert_INTX message TLP.

Legacy Interrupt Assertion

/S R O \ Y A O A I
app_int_sts / “

app_int_ack “ / \

The following figure illustrates the timing for deassertion of legacy interrupts. The

legacy interrupt handler asserts app_int_sts causing the Hard IP for PCI Express to
send a Deassert_INTX message.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
131

http://en.wikipedia.org/wiki/Floor_and_ceiling_functions
http://www.pcisig.com/home

] ®
l n tel) 9 Interrupts

Figure 100. Legacy Interrupt Deassertion

SN O R s\ I O I O

app_int_sts \ “

app_int_ack “ /—\—

Related Links

e Correspondence between Configuration Space Registers and the PCle Specification
on page 107

e target-title
Delete element if none

9.2 Interrupts for Root Ports

In Root Port mode, the Arria 10 Hard IP for PCI Express receives interrupts through
two different mechanisms:

e MSI—Root Ports receive MSI interrupts through the Avalon-ST RX Memory Write
TLP. This is a memory mapped mechanism.

e Legacy—Legacy interrupts are translated into Message Interrupt TLPs and sent to
the Application Layer using the int_status pins.

Normally, the Root Port services rather than sends interrupts; however, in two
circumstances the Root Port can send an interrupt to itself to record error conditions:

¢ When the AER option is enabled, the aer_msi_num[4:0] signal indicates which
MSI is being sent to the root complex when an error is logged in the AER
Capability structure. This mechanism is an alternative to using the serr_out
signal. The aer_msi_n um[4:0] is only used for Root Ports and you must set it
to a constant value. It cannot toggle during operation.

e If the Root Port detects a Power Management Event, the pex_msi_num[4:0]
signal is used by Power Management or Hot Plug to determine the offset between
the base message interrupt number and the message interrupt number to send
through MSI. The user must set pex_msi_num[4:0]to a fixed value.

The Root Error Status register reports the status of error messages. The Root
Error Status register is part of the PCI Express AER Extended Capability structure.
It is located at offset 0x830 of the Configuration Space registers.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
132

https://www.altera.com/documentation/map-id.html#topic-id

®
10 Error Handling l n te l

10 Error Handling

Each PCI Express compliant device must implement a basic level of error management
and can optionally implement advanced error management. The IP core implements
both basic and advanced error reporting. Error handling for a Root Port is more
complex than that of an Endpoint.

Table 68. Error Classification
The PCI Express Base Specification defines three types of errors, outlined in the following table.
Type Responsible Agent Description
Correctable Hardware While correctable errors may affect system performance, data

integrity is maintained.

Uncorrectable, non-fatal Device software Uncorrectable, non-fatal errors are defined as errors in which

data is lost, but system integrity is maintained. For example, the
fabric may lose a particular TLP, but it still works without
problems.

Uncorrectable, fatal System software Errors generated by a loss of data and system failure are

considered uncorrectable and fatal. Software must determine
how to handle such errors: whether to reset the link or
implement other means to minimize the problem.

Related Links
PCI Express Base Specification 3.0

10.1 Physical Layer Errors

Table 69. Errors Detected by the Physical Layer
The following table describes errors detected by the Physical Layer. Physical Layer error reporting is optional in
the PCI Express Base Specification.
Error Type Description
Receive port error Correctable This error has the following 3 potential causes:

lane PIPE interface input receive status signals,

encodings:

— 3'b100: 8B/10B Decode Error
— 3'b101: Elastic Buffer Overflow
— 3'b110: Elastic Buffer Underflow
— 3'bl11: Disparity Error

FIFO.
e Control symbol received in wrong lane.

e Physical coding sublayer error when a lane is in LO state.
These errors are reported to the Hard IP block via the per

rxstatus<lane_number>[2:0] using the following

e Deskew error caused by overflow of the multilane deskew

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

Iso
9001:2008
Registered

http://www.pcisig.com/
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

intel.

10.2 Data Link Layer Errors

10 Error Handling

Table 70. Errors Detected by the Data Link Layer
Error Type Description
Bad TLP Correctable This error occurs when a LCRC verification fails or when a
sequence number error occurs.
Bad DLLP Correctable This error occurs when a CRC verification fails.

Replay timer

Correctable

This error occurs when the replay timer times out.

Replay num rollover

Correctable

This error occurs when the replay number rolls over.

Data Link Layer protocol

Uncorrectable(fatal)

This error occurs when a sequence number specified by the
Ack/Nak block in the Data Link Layer (AckNak_Seq_Num) does
not correspond to an unacknowledged TLP.

10.3 Transaction Layer Errors

Table 71.

Errors Detected by the Transaction Layer

Error

Type

Description

Poisoned TLP received

Uncorrectable (non-
fatal)

This error occurs if a received Transaction Layer packet has the
EP poison bit set.

The received TLP is passed to the Application Layer and the
Application Layer logic must take appropriate action in response
to the poisoned TLP. Refer to “2.7.2.2 Rules for Use of Data
Poisoning” in the PCI Express Base Specification for more
information about poisoned TLPs.

ECRC check failed (1)

Uncorrectable (non-
fatal)

This error is caused by an ECRC check failing despite the fact
that the TLP is not malformed and the LCRC check is valid.

The Hard IP block handles this TLP automatically. If the TLP is a
non-posted request, the Hard IP block generates a completion
with completer abort status. In all cases the TLP is deleted in the
Hard IP block and not presented to the Application Layer.

Unsupported Request for
Endpoints

Uncorrectable (non-
fatal)

This error occurs whenever a component receives any of the
following Unsupported Requests:

e Type 0 Configuration Requests for a non-existing function.

e Completion transaction for which the Requester ID does not
match the bus, device and function number.

e Unsupported message.

e A Type 1 Configuration Request TLP for the TLP from the PCle
link.

e A locked memory read (MEMRDLK) on native Endpoint.

e A locked completion transaction.

e A 64-bit memory transaction in which the 32 MSBs of an
address are set to 0.

e A memory or I/O transaction for which there is no BAR
match.

¢ A memory transaction when the Memory Space Enable bit
(bit [1] of the PCI Command register at Configuration Space
offset 0x4) is set to 0.

* A poisoned configuration write request (CfgWro0)

In all cases the TLP is deleted in the Hard IP block and not

presented to the Application Layer. If the TLP is a non-posted

request, the Hard IP block generates a completion with

Unsupported Request status.

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

134

10 Error Handling

intel.

Error

Type

Description

Unsupported Requests for Root
Port

Uncorrectable (fatal)

This error occurs whenever a component receives an
Unsupported Request including:

e Unsupported message

e A Type 0 Configuration Request TLP

e A 64-bit memory transaction which the 32 MSBs of an
address are set to 0.

e A memory transaction that does not match the address range
defined by the Base and Limit Address registers

Completion timeout

Uncorrectable (non-
fatal)

This error occurs when a request originating from the Application
Layer does not generate a corresponding completion TLP within
the established time. It is the responsibility of the Application
Layer logic to provide the completion timeout mechanism. The
completion timeout should be reported from the Transaction
Layer using the cpl_err[0] signal.

Completer abort ()

Uncorrectable (non-
fatal)

The Application Layer reports this error using the
cpl_err[2]signal when it aborts receipt of a TLP.

Unexpected completion

Uncorrectable (non-
fatal)

This error is caused by an unexpected completion transaction.

The Hard IP block handles the following conditions:

e The Requester ID in the completion packet does not match
the Configured ID of the Endpoint.

e The completion packet has an invalid tag number. (Typically,
the tag used in the completion packet exceeds the number of
tags specified.)

e The completion packet has a tag that does not match an
outstanding request.

e The completion packet for a request that was to I/0O or
Configuration Space has a length greater than 1 dword.

e The completion status is Configuration Retry Status (CRS) in
response to a request that was not to Configuration Space.

In all of the above cases, the TLP is not presented to the

Application Layer; the Hard IP block deletes it.

The Application Layer can detect and report other unexpected

completion conditions using the cpl_err[2] signal. For

example, the Application Layer can report cases where the total
length of the received successful completions do not match the
original read request length.

Receiver overflow (1)

Uncorrectable (fatal)

This error occurs when a component receives a TLP that violates
the FC credits allocated for this type of TLP. In all cases the hard
IP block deletes the TLP and it is not presented to the Application
Layer.

Flow control protocol error
(FCPE) (1)

Uncorrectable (fatal)

This error occurs when a component does not receive update
flow control credits with the 200 ps limit.

Malformed TLP

Uncorrectable (fatal)

This error is caused by any of the following conditions:

e The data payload of a received TLP exceeds the maximum
payload size.

e The TD field is asserted but no TLP digest exists, or a TLP
digest exists but the TD bit of the PCI Express request header
packet is not asserted.

e A TLP violates a byte enable rule. The Hard IP block checks
for this violation, which is considered optional by the PCI
Express specifications.

* ATLP in which the type and length fields do not
correspond with the total length of the TLP.

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

135

®
l n te I 10 Error Handling

Error Type Description

e A TLP in which the combination of format and type is not
specified by the PCI Express specification.

e A request specifies an address/length combination that
causes a memory space access to exceed a 4 KB boundary.
The Hard IP block checks for this violation, which is
considered optional by the PCI Express specification.

e Messages, such as Assert_INTX, Power Management, Error
Signaling, Unlock, and Set Power Slot Limit, must be
transmitted across the default traffic class.

The Hard IP block deletes the malformed TLP; it is not presented

to the Application Layer.

Note:

1. Considered optional by the PCI Express Base Specification Revision.

10.4 Error Reporting and Data Poisoning

How the Endpoint handles a particular error depends on the configuration registers of
the device.

Refer to the PCI Express Base Specification 3.0 for a description of the device
signaling and logging for an Endpoint.

The Hard IP block implements data poisoning, a mechanism for indicating that the
data associated with a transaction is corrupted. Poisoned TLPs have the error/poisoned
bit of the header set to 1 and observe the following rules:

e Received poisoned TLPs are sent to the Application Layer and status bits are
automatically updated in the Configuration Space.

e Received poisoned Configuration Write TLPs are not written in the Configuration
Space.

e The Configuration Space never generates a poisoned TLP; the error/poisoned bit of
the header is always set to 0.

Poisoned TLPs can also set the parity error bits in the PCI Configuration Space Status
register.

Table 72. Parity Error Conditions
Status Bit Conditions
Detected parity error (status Set when any received TLP is poisoned.
register bit 15)
Master data parity error (status This bit is set when the command register parity enable bit is set and one of the
register bit 8) following conditions is true:

e The poisoned bit is set during the transmission of a Write Request TLP.
e The poisoned bit is set on a received completion TLP.

Poisoned packets received by the Hard IP block are passed to the Application Layer.
Poisoned transmit TLPs are similarly sent to the link.

Related Links
PCI Express Base Specification 3.0

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

136

http://www.pcisig.com/

n ®
10 Error Handling l n te I

10.5 Uncorrectable and Correctable Error Status Bits

The following section is reprinted with the permission of PCI-SIG. Copyright 2010
PCI-SIG.

Figure 101. Uncorrectable Error Status Register

The default value of all the bits of this register is 0. An error status bit that is set
indicates that the error condition it represents has been detected. Software may clear
the error status by writing a 1 to the appropriate bit.

31 26 2524 232212019 1817 16 15 14 13 1211 6 5 4 3 1 0

wd [[L L[[[] [|]
AAA A AAAAddrraa A A A

TLP Prefix Blocked Error Status JA
AtomicOp Egress Blocked Status
MCBlocked TLP Status
Uncorrectable Internal Error Status
ACS Violation Status
Unsupported Request Error Status
ECRCError Status
Malformed TLP Status
Receiver Overflow Status
Unexpected Completion Status
Completer Abort Status
Completion Timeout Status
Flow Control Protocol Status
Poisoned TLP Status
Surprise Down Error Status
Data Link Protocol Error Status
Undefined

Figure 102. Correctable Error Status Register

The default value of all the bits of this register is 0. An error status bit that is set
indicates that the error condition it represents has been detected. Software may clear
the error status by writing a 1 to the appropriate bit.
31 6 15 14 13 12119 8 7 6 5 10
Rsvd | I | | |Rsvd | ‘ | ‘ Rsvd | ‘
T A A A A A

Header Log Overflow Status

Corrected Internal Error Status
Advisory Non-Fatal Error Status

Replay Timer Timeout Status
REPLAY_NUM Rollover Status

Bad DLLP Status

Bad TLP Status

Receiver Error Status

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
137

11 IP Core Architecture l

11 IP Core Architecture

ntel.

The Arria 10 Hard IP for PCI Express implements the complete PCI Express protocol
stack as defined in the PCI Express Base Specification. The protocol stack includes the

following layers:

e Transaction Layer—The Transaction Layer contains the Configuration Space, which
manages communication with the Application Layer, the RX and TX channels, the

RX buffer, and flow control credits.

e Data Link Layer—The Data Link Layer, located between the Physical Layer and the

Transaction Layer, manages packet transmission and maintains data inte

grity at

the link level. Specifically, the Data Link Layer performs the following tasks:

— Manages transmission and reception of Data Link Layer Packets (DLLPs)

— Generates all transmission cyclical redundancy code (CRC) values an
all CRCs during reception

d checks

— Manages the retry buffer and retry mechanism according to received ACK/NAK

Data Link Layer packets

— Initializes the flow control mechanism for DLLPs and routes flow control credits

to and from the Transaction Layer

e Physical Layer—The Physical Layer initializes the speed, lane numbering,
width of the PCI Express link according to packets received from the link
directives received from higher layers.

The following figure provides a high-level block diagram.

Figure 103. Arria 10 Hard IP for PCI Express Using the Avalon-ST Interface

Clock & Reset

and lane
and

A
\/

Selection

Application

Layer

Block <
A
PHY IP Core for Hard IP for PCl Express Configuration via PCle Link (CvP)
PCl Express (PIPE) g
Physical Layer Transaction Layer (TL) Avalon-STTX
(Transceivers) < >
PP Clock Data R Buffer _ | AvalonsTRY
> | PHYMAC Domain Llél;]gr Configuration - "
Crossin i
PMA|| | |PCS ((D()g (L) Space < Side Band >
A Local

Interface (LMI)
&

Hard IP Reconfiguration ~

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

Iso
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

11 IP Core Architecture

intel)

Table 73. Application Layer Clock Frequencies
Lanes Genl Gen2 Gen3
x1 125 MHz @ 64 bits or 125 MHz @ 64 bits 125 MHz @64 bits
62.5 MHz @ 64 bits
x2 125 MHz @ 64 bits 125 MHz @ 128 bits 250 MHz @ 64 bits or
125 MHz @ 128 bits
x4 125 MHz @ 64 bits 250 MHz @ 64 bits or 250 MHz @ 128 bits or
125 MHz @ 128 bits 125 MHz @ 256 bits
x8 250 MHz @ 64 bits or 250 MHz @ 128 bits or 250 MHz @ 256 bits
125 MHz @ 128 bits 125 MHz @ 256 bits

The following interfaces provide access to the Application Layer’s Configuration Space
Registers:

e The LMI interface

e The Avalon-MM PCle reconfiguration interface, which can access any read-only
Configuration Space Register

e In Root Port mode, you can also access the Configuration Space Registers with a
Configuration TLP using the Avalon-ST interface. A Type 0 Configuration TLP is
used to access the Root Port configuration Space Registers, and a Type 1
Configuration TLP is used to access the Configuration Space Registers of
downstream components, typically Endpoints on the other side of the link.

The Hard IP includes dedicated clock domain crossing logic (CDC) between the
PHYMAC and Data Link Layers.

Related Links
PCI Express Base Specification 3.0

11.1 Top-Level Interfaces

11.1.1 Avalon-ST Interface

An Avalon-ST interface connects the Application Layer and the Transaction Layer. This
is a point-to-point, streaming interface designed for high throughput applications. The
Avalon-ST interface includes the RX and TX datapaths.

For more information about the Avalon-ST interface, including timing diagrams, refer
to the Avalon Interface Specifications.

RX Datapath

The RX datapath transports data from the Transaction Layer to the Application Layer’s
Avalon-ST interface. Masking of non-posted requests is partially supported. Refer to
the description of the rx_st_mask signal for further information about masking.

TX Datapath

The TX datapath transports data from the Application Layer's Avalon-ST interface to
the Transaction Layer. The Hard IP provides credit information to the Application Layer
for posted headers, posted data, non-posted headers, non-posted data, completion
headers and completion data.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
139

http://www.pcisig.com

’ ® >
n te I 11 IP Core Architecture

The Application Layer may track credits consumed and use the credit limit information
to calculate the number of credits available. However, to enforce the PCI Express Flow
Control (FC) protocol, the Hard IP also checks the available credits before sending a
request to the link, and if the Application Layer violates the available credits for a TLP
it transmits, the Hard IP blocks that TLP and all future TLPs until credits become
available. By tracking the credit consumed information and calculating the credits
available, the Application Layer can optimize performance by selecting for
transmission only the TLPs that have credits available.

Related Links
e Avalon-ST RX Interface on page 58
e Avalon-ST TX Interface on page 70

e Avalon Interface Specifications
For information about the Avalon-ST interface protocol.

11.1.2 Clocks and Reset

The PCI Express Base Specification requires an input reference clock, which is called
refclk in this design. The PCI Express Base Specification stipulates that the
frequency of this clock be 100 MHz.

The PCI Express Base Specification also requires a system configuration time of
100 ms. To meet this specification, IP core includes an embedded hard reset
controller. This reset controller exits the reset state after the periphery of the device is

initialized.

Related Links

e Clock Signals on page 82

e Reset, Status, and Link Training Signals on page 82

11.1.3 Local Management Interface (LMI Interface)

The LMI bus provides access to the PCI Express Configuration Space in the Transaction
Layer.

Related Links
LMI Signals on page 90

11.1.4 Hard IP Reconfiguration

The PCI Express reconfiguration bus allows you to dynamically change the read-only
values stored in the Configuration Registers.

Related Links
Hard IP Reconfiguration Interface on page 98

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

140

https://www.altera.com/documentation/nik1412467993397.html#nik1412467963376

™ ®
11 IP Core Architecture l n tel :

11.1.5 Interrupts

The Hard IP for PCI Express offers the following interrupt mechanisms:

e Message Signaled Interrupts (MSI)— MSI uses the TLP single dword memory
writes to to implement interrupts. This interrupt mechanism conserves pins
because it does not use separate wires for interrupts. In addition, the single dword
provides flexibility in data presented in the interrupt message. The MSI Capability
structure is stored in the Configuration Space and is programmed using
Configuration Space accesses.

e MSI-X—The Transaction Layer generates MSI-X messages which are single dword
memory writes. The MSI-X Capability structure points to an MSI-X table structure
and MSI-X PBA structure which are stored in memory. This scheme is in contrast
to the MSI capability structure, which contains all of the control and status
information for the interrupt vectors.

e legacy interrupts—The app_int_sts port controls legacy interrupt generation.
When app_int_sts is asserted, the Hard IP generates an Assert_INT<n>
message TLP.

Related Links

e Interrupts for Endpoints on page 86

e Interrupts for Root Ports on page 87

11.1.6 PIPE

The PIPE interface implements the Intel-designed PIPE interface specification. You can
use this parallel interface to speed simulation; however, you cannot use the PIPE
interface in actual hardware.

e The Genl, Gen2, and Gen3 simulation models support PIPE and serial simulation.

e For Gen3, the Intel BFM bypasses Gen3 Phase 2 and Phase 3 Equalization.
However, Gen3 variants can perform Phase 2 and Phase 3 equalization if
instructed by a third-party BFM.

Related Links
PIPE Interface Signals on page 102

11.2 Transaction Layer

The Transaction Layer is located between the Application Layer and the Data Link
Layer. It generates and receives Transaction Layer Packets. The following illustrates
the Transaction Layer. The Transaction Layer includes three sub-blocks: the TX
datapath, Configuration Space, and RX datapath.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
141

| | ®
l n tel] 11 IP Core Architecture

Tracing a transaction through the RX datapath includes the following steps:
1. The Transaction Layer receives a TLP from the Data Link Layer.

2. The Configuration Space determines whether the TLP is well formed and directs
the packet based on traffic class (TC).

3. TLPs are stored in a specific part of the RX buffer depending on the type of
transaction (posted, non-posted, and completion).

The TLP FIFO block stores the address of the buffered TLP.

5. The receive reordering block reorders the queue of TLPs as needed, fetches the
address of the highest priority TLP from the TLP FIFO block, and initiates the
transfer of the TLP to the Application Layer.

6. When ECRC generation and forwarding are enabled, the Transaction Layer
forwards the ECRC dword to the Application Layer.
Tracing a transaction through the TX datapath involves the following steps:

1. The Transaction Layer informs the Application Layer that sufficient flow control
credits exist for a particular type of transaction using the TX credit signals. The
Application Layer may choose to ignore this information.

2. The Application Layer requests permission to transmit a TLP. The Application Layer
must provide the transaction and must be prepared to provide the entire data
payload in consecutive cycles.

3. The Transaction Layer verifies that sufficient flow control credits exist and
acknowledges or postpones the request.

4. The Transaction Layer forwards the TLP to the Data Link Layer.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
142

11 IP Core Architecture

Figure 104. Architecture of the Transaction Layer: Dedicated Receive Buffer

11.2.1 Configuration Space

Transaction Layer TX Datapath
< to Application Layer TX Flow
Control
Avalon-ST Width
TX Data Adapter
> (<256
bits)
TLPs to the
AEa;I:sznt ™ Data Link Layer
) Control >
ConfigurationRequests
Configuration Space
A
Transaction Layer RX Datapath
Avalon-ST R Dat, RX Rk uffer
valon- ata
< Control [Posted & Completion g
TLPs from the
p Non=Posted - - - - -1 Data Link Layer

Avalon-ST Transaction Layer

RX Control] Packet FIFO <

P Reordering
—| Flow Control Update >

The Configuration Space implements the following configuration registers and
associated functions:

Header Type 0 Configuration Space for Endpoints

Header Type 1 Configuration Space for Root Ports

PCI Power Management Capability Structure

Virtual Channel Capability Structure

Message Signaled Interrupt (MSI) Capability Structure

Message Signaled Interrupt-X (MSI-X) Capability Structure

PCI Express Capability Structure

Advanced Error Reporting (AER) Capability Structure
Vendor Specific Extended Capability (VSEC)

The Configuration Space also generates all messages (PME#, INT, error, slot power
limit), MSI requests, and completion packets from configuration requests that flow in
the direction of the root complex, except slot power limit messages, which are

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

143

| | ®
l n tel] 11 IP Core Architecture

generated by a downstream port. All such transactions are dependent upon the
content of the PCI Express Configuration Space as described in the PCI Express Base
Specification.

Related Links

e Type 0 Configuration Space Registers on page 110

e Type 1 Configuration Space Registers on page 111

e PCI Express Base Specification 3.0

11.2.2.1 Error Checking and Handling in Configuration Space Bypass Mode

Note:

In Configuration Space Bypass mode, the Application Layer receives all TLPs that are
not malformed. The Transaction Layer detects and drops malformed TLPs. The
Transaction Layer also detects Internal Errors and Corrected Errors. Real-time error
status signals report Internal Errors and Correctable Errors to the Application Layer.
The Transaction Layer also records these errors in the AER registers. You can access
the AER registers using the LMI interface.

Because the AER header log is not available in Configuration Space Bypass Mode, the
Application Layer must implement logic to read the AER header log using the LMI
interface. You may need to arbitrate between Configuration Space Requests to the
AER registers of the Hard IP for PCI Express and Configuration Space Requests to your
own Configuration Space. Or, you can avoid arbitration logic by deasserting the ready
signal until each LMI access completes.

Intel does not support the use of the LMI interface to read and write the other
registers in function0 of the Hard IP for PCI Express Configuration Space. You must
create your own functionO in your application logic.

In Configuration Space Bypass mode, the Transaction Layer disables checks for
Unsupported Requests and Unexpected Completions. The Application Layer must
implement these checks. The Transaction Layer also disables error Messages and
completion generation, which the Application Layer must implement.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

144

http://www.pcisig.com/home

11 IP Core Architecture

Figure 105.

intel)

Error Handing in Configuration Space Bypass Mode

This figure shows the division of error checking between the Transaction Layer of the
hard IP for PCI Express and the Application Layer. The real-time error flags assert for
one pld_clk as the errors are detected by the Transaction Layer.

Application Layer
(Soft Logic)

Transaction Layer of the Hard IP for PCl Express

Error Detect (Corrected Errs,
Malformed TLPs)

Error Detect
(UR, Unexpected
Completion)

Avalon-ST RX RX Buffer & Drop Malformed

Flow Control TLPs

Config TLPs
Y Errors

Real-Time Error Flags
(Malformed, Corrected)

Custom Configuration
Space
and Error Handling

LMI

AER Registers

Completions,
Messages
A4

Avalon-STTX

»

This list summarizes the behavior of the Transaction Layer error handling in
Configuration Space Bypass Mode:

The Translation Layer discards malformed TLPs. The err_tlImalf output signal is
asserted to indicate this error. The Transaction Layer also logs this error in the
Uncorrectable Error Status, AER Header Log, and First Error
Pointer Registers. The Transaction Layer’s definition of malformed TLPs is
same in normal and Configuration Space Bypass modes.

Unsupported Requests are not recognized by the Transaction Layer. The
Application Layer must identify unsupported requests.

Unexpected completions are not recognized by the Transaction Layer. The
Application Layer must identify unexpected completions.

You can use the Transaction Layer’s ECRC checker in Configuration Space Bypass
mode. If you enable ECRC checking with the r x_ecrcchk_pld input signal and
the Transaction Layer detects an ECRC error, the Transaction Layer asserts the
rx_st_ecrcerr output signal with the TLP on the Avalon-ST RX interface. The
Application Layer must handle the error. If ECRC generation is enabled, the core
generates ECRC and appends it to the end of the TX TLP from the Application
Layer.

The Transaction Layer sends poisoned TLPs on the Avalon-ST RX interface for
completions and error handling by the Application Layer. These errors are not
logged in the Configuration Space error registers.

The Transaction Layer discards TLPs that violate RX credit limits. The Transaction
Layers signals this error by asserting the err_tlrcvovf output signal and
logging it in the Uncorrectable Error Status, AER Header Log, and
First Error Pointer Registers.

The Transaction Layer indicates Data Link and internal errors with the real-time
error output signals cfgbp_err_*. These errors are also logged in the
Uncorrectable Error Status, AER Header Log, and First Error
Pointer Registers.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
145

| | ®
l n tel] 11 IP Core Architecture

The Transaction Layer uses error flags to signal the Application Layer with real-time
error status output signals. The Application Layer can monitor these flags to determine
when the Transaction Layer has detected a Malformed TLP, Corrected Error, or internal
error. In addition, the Application Layer can read the Transaction Layer’s AER
information such as AER Header Log and First Error Pointer Registers
using the LMI bus.

e Real-time error signals are routed to the Application Layer using the error status
output signals listed in the “Configuration Space Bypass Mode Output Signals” on
page 8-44.

e Two sideband signals uncorr_err_reg_sts and corr_err_reg_sts indicate
that an error has been logged in the Uncorrectable Error Status or
Correctable Error Status Register. The Application Layer can read these
Uncorrectable or Correctable Error Status Registers, AER Header
Log, and First Error Pointers using the LMI bus to retrieve information. The
uncorr_err_reg_sts and corr_err_red_sts signals remain asserted until
the Application Layer clears the corresponding status register. Proper logging
requires that the Application Layer set the appropriate Configuration Space
registers in the Transaction Layer using the LMI bus. The Application Layer must
set the Uncorrectable and Correctable Error Mask and Uncorrec table
Error Severity error reporting bits appropriately so that the errors are logged
appropriately internal to the Arria 10 Hard IP for PCI Express. The settings of the
Uncorrectable and Correctable Error Mask, and Uncorrectable Error
Severity error reporting bits do not affect the real-time error output signals. The
Application Layer must also log these errors in the soft Configuration Space and
send error Messages.

e For more information about error handling, refer to the PCI Express Base
Specification, Revision 2.0 or 3.0.

e The sideband signal root_err_reg_sts indicates that an error is logged in the
Root Error Status Register. The Application Layer can read the Root
Error Status Register and the Error Source ldentification
Register using the LMI bus to retrieve information about the errors. The
root_err_reg_sts signal remains asserted until the Application Layer clears
the corresponding status register using the LMI bus. The Application Layer must
set the Uncorrectable and Correctable Error Mask, Uncorrectable
Error Severity, and Device Control Register error reporting bits
appropriately so that the errors are logged appropriately in the Arria 10 Hard IP
for PCI Express IP Core. The settings of the Uncorrectable and Correctable
Error Mask, Uncorrectable Error Severity, and Device Control
Register error reporting bits do not affect the real-time error output signals. The
Application Layer must also log these errors in the soft Configuration Space and
send error Messages.

Related Links
PCI Express Base Specification 3.0

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
146

http://www.pcisig.com

™ ®
11 IP Core Architecture ‘ l n tel :

11.2.2.2 Protocol Extensions Supported

The Transaction Layer supports the following protocol extensions:

TLP Processing Hints (TPH)—Supports both a Requester and Completer. The
Application Layer should implement the TPH Requester Capabilities Structure using
the soft logic in the Application Layer Extended Configuration Space. The
Transaction Layer supports both Protocol Hint (PH) bits and Steering Tags (ST).
The Transaction Layer does not support the optional Extended TPH TLP prefix.

Atomic Operations—Supports both Requester and Completer. The RX buffer
supports two, four, or eight non-posted data credits depending on the performance
level you selected for the RX buffer credit allocation—performance for
received requests under the System Settings heading of the parameter editor.
The Transaction Layer also supports Atomic Operation Egress Blocking to prevent
forwarding of AtomicOp Requests to components that should not receive them.

ID-Based Ordering (IDO)—The Transaction Layer supports ID-Based Ordering to
permit certain ordering restrictions to be relaxed to improve performance.
However, the Transaction Layer does reorder the TLPs. On the RX side, ID-Based
reordering should be implemented in soft logic. On the TX side, the Application
Layer should set the IDO bit, which is bit 8 the Device Control Register 2,
in the TLPs that it generates.

11.3 Data Link Layer

The Data Link Layer is located between the Transaction Layer and the Physical Layer.
It maintains packet integrity and communicates (by DLL packet transmission) at the
PCI Express link level.

The DLL implements the following functions:

Link management through the reception and transmission of DLL packets (DLLP),
which are used for the following functions:

— Power management of DLLP reception and transmission
— To transmit and receive ACK/NAK packets
— Data integrity through generation and checking of CRCs for TLPs and DLLPs

— TLP retransmission in case of NAK DLLP reception or replay timeout, using the
retry (replay) buffer

— Management of the retry buffer

— Link retraining requests in case of error through the Link Training and Status
State Machine (LTSSM) of the Physical Layer

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
147

intel)

11 IP Core Architecture

Figure 106. Data Link Layer

To Transaction Layer To Physical Layer

Tx Transaction Layer

Packet Description & Data Tx Arbitration

Transaction Layer »
Packet Generator >j—> Tx Packets

+ I

DLLP

Retry Buffer | Generator TX Datapath
 —
A A
Ack/Nack
Packets y
A Data Link Control | Control
Configuration Space Power and Management | &Status
< P Management <@ StateMachine —|[€—>
Tx Flow Control Credit Information Function
Rx Flow Control Credit Information DLLP < RX Datapath
< Checker
A Transaction Layer ~ ——
Packet Checker Rx Packets

Rx Transation Layer
Packet Description & Data

The DLL has the following sub-blocks:

Data Link Control and Management State Machine—This state machine connects to
both the Physical Layer’s LTSSM state machine and the Transaction Layer. It
initializes the link and flow control credits and reports status to the Transaction
Layer.

Power Management—This function handles the handshake to enter low power
mode. Such a transition is based on register values in the Configuration Space and
received Power Management (PM) DLLPs. None of Arria 10 Hard IP for PCle IP
core variants support low power modes.

Data Link Layer Packet Generator and Checker—This block is associated with the
DLLP’s 16-bit CRC and maintains the integrity of transmitted packets.

Transaction Layer Packet Generator—This block generates transmit packets,
including a sequence number and a 32-bit Link CRC (LCRC). The packets are also
sent to the retry buffer for internal storage. In retry mode, the TLP generator
receives the packets from the retry buffer and generates the CRC for the transmit
packet.

Retry Buffer—The retry buffer stores TLPs and retransmits all unacknowledged
packets in the case of NAK DLLP reception. In case of ACK DLLP reception, the
retry buffer discards all acknowledged packets.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

148

™ ®
11 IP Core Architecture ‘ l n tel :

ACK/NAK Packets—The ACK/NAK block handles ACK/NAK DLLPs and generates the
sequence number of transmitted packets.

Transaction Layer Packet Checker—This block checks the integrity of the received
TLP and generates a request for transmission of an ACK/NAK DLLP.

TX Arbitration—This block arbitrates transactions, prioritizing in the following
order:

— Initialize FC Data Link Layer packet
— ACK/NAK DLLP (high priority)

— Update FC DLLP (high priority)

— PM DLLP

— Retry buffer TLP

— TLP

— Update FC DLLP (low priority)

— ACK/NAK FC DLLP (low priority)

11.4 Physical Layer

The Physical Layer is the lowest level of the PCI Express protocol stack. It is the layer
closest to the serial link. It encodes and transmits packets across a link and accepts
and decodes received packets. The Physical Layer connects to the link through a
high-speed SERDES interface running at 2.5 Gbps for Genl implementations, at 2.5 or
5.0 Gbps for Gen2 implementations, and at 2.5, 5.0 or 8.0 Gbps for Gen3
implementations.

The Physical Layer is responsible for the following actions:

Training the link

Scrambling/descrambling and 8B/10B encoding/decoding for 2.5 Gbps (Genl),
5.0 Gbps (Gen2), or 128b/130b encoding/decoding of 8.0 Gbps (Gen3) per lane

Serializing and deserializing data

Equalization (Gen3)

Operating the PIPE 3.0 Interface

Implementing auto speed negotiation (Gen2 and Gen3)
Transmitting and decoding the training sequence
Providing hardware autonomous speed control

Implementing auto lane reversal

The Physical Layer is subdivided by the PIPE Interface Specification into two layers
(bracketed horizontally in above figure):

PHYMAC—The MAC layer includes the LTSSM and the scrambling/descrambling.
byte reordering, and multilane deskew functions.

PHY Layer—The PHY layer includes the 8B/10B encode and decode functions for
Gen1l and Gen2. It includes 128b/130b encode and decode functions for Gen3.
The PHY also includes elastic buffering and serialization/deserialization functions.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
149

| | ®
l n tel] 11 IP Core Architecture

The Physical Layer integrates both digital and analog elements. Intel designed the
PIPE interface to separate the PHYMAC from the PHY. The Arria 10 Hard IP for PCI
Express complies with the PIPE interface specification.

Note: The internal PIPE interface is visible for simulation. It is not available for debugging in

hardware using a logic analyzer such as Signal Tap. If you try to connect Signal Tap to
this interface you will not be able to compile your design.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
150

™ ®
11 IP Core Architecture l n tel :

Figure 107. Physical Layer Architecture

To Data Link Layer To Link
< PHYMAC Layer PIPE PHY Layer >
Interface
Tlanen T Gen3” """ 1'2;[;/'13'0'b """"" .
1 (on) :
. ™ 5| 8B/108 Encoder/ '
- —» Encoder Decoder ! -
. i | -/ TX-
TX Packets %é . . o GemGen2 4 —
— S R | T
=z Lane 0 Gen3 .
=& : (o,)l— 1280/1301 - g“"‘g"h
| — '
1 Sambler <D » Encoder/ ' IO
+ > o> | Encoder Decoder f g L >
(R D Gent,Gen2 a
(=)
SKIp =
Generation 2
TX MAC 2
—ontrol & status Issm - [— <
State Machine | RXMAC s
___ ~
1 Lanen Genl Gen2 -.g
88/108 | Genl, Gen =
y § Descrambler Decoder ' E
S 3] v | B RX+/RX-
= = Elastic ' =
= e 128b/130b Buffer [g <+
RX Packets | 5 =] Encoder/ <_| 2
< £ -z Decoder | Gen3 =
=] ' k=]
&3 g S e EERET I - Receive
e I o P Ty : . Data ath
[-2) 1 + -
Descrambler 88108 Gen1, Gen2 E <«
L - Decoder ¢
Elastic | 1
128b/130b Buffer [+
Encoder/ qj
Decoder Gen3

The PHYMAC block comprises four main sub-blocks:
e MAC Lane—Both the RX and the TX path use this block.

— On the RX side, the block decodes the Physical Layer packet and reports to the
LTSSM the type and number of TS1/TS2 ordered sets received.

— On the TX side, the block multiplexes data from the DLL and the Ordered Set
and SKP sub-block (LTSTX). It also adds lane specific information, including
the lane number and the force PAD value when the LTSSM disables the lane
during initialization.

e LTSSM—This block implements the LTSSM and logic that tracks TX and RX training
sequences on each lane.

e For transmission, it interacts with each MAC lane sub-block and with the LTSTX
sub-block by asserting both global and per-lane control bits to generate specific
Physical Layer packets.

— On the receive path, it receives the Physical Layer packets reported by each
MAC lane sub-block. It also enables the multilane deskew block. This block
reports the Physical Layer status to higher layers.

— LTSTX (Ordered Set and SKP Generation)—This sub-block generates the
Physical Layer packet. It receives control signals from the LTSSM block and
generates Physical Layer packet for each lane. It generates the same Physical
Layer Packet for all lanes and PAD symbols for the link or lane number in the
corresponding TS1/TS2 fields. The block also handles the receiver detection
operation to the PCS sub-layer by asserting predefined PIPE signals and
waiting for the result. It also generates a SKP Ordered Set at every predefined
timeslot and interacts with the TX alignment block to prevent the insertion of a
SKP Ordered Set in the middle of packet.

. Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
— Deskew—This sub-block performs the multilane deskew function and the RX151

alignment between the initialized lanes and the datapath. The multilane
deskew implements an eight-word FIFO buffer for each lane to store symbols.
Each symbol includes eight data bits, one disparity bit, and one control bit.

®
12 Transaction Layer Protocol (TLP) Details l n tel

12 Transaction Layer Protocol (TLP) Details

12.1 Supported Message Types

12.1.1 INTX Messages

Table 74. INTX Messages

Message Root Endpoint Generated by Comments
Port
App Core Core
Layer (with
App
Layer
input)
Assert_INTA | Receive | Transmit No Yes No For Root Port, legacy interrupts are translated into
- - message interrupt TLPs which triggers the
Assert_INTB | Receive | Transmit No No No int_status[3:0] signals to the Application Layer.
Assert_INTC | Receive | Transmit No No No * int_status[0]: Interrupt signal A
e int_status[1]: Interrupt signal B
Assert_INTD | Receive | Transmit No No No int_status[2]: Interrupt signal C
Deassert_IN | Receive | Transmit No Yes No e int_status[3]: Interrupt signal D
TA
Deassert_IN | Receive | Transmit No No No
B
Deassert_IN | Receive | Transmit No No No
TC
Deassert_IN | Receive | Transmit No No No
TD

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in 1so .
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services :OOEI..tZOOg
egistere

at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

®
12 Transaction Layer Protocol (TLP) Details l n tel

12.1.2 Power Management Messages

Table 75. Power Management Messages

Message Root Endpoi Generated by Comments
Port nt
App Core Core (with
Layer App Layer
input)
PM_Active_S | TX RX No Yes No —
tate_Nak
PM_PME RX X No No Yes —
PME_Turn_O | TX RX No No Yes The pme_to_cr signal sends and
ff acknowledges this message:

* Root Port: When pme_to_cr is
asserted, the Root Port sends the
PME_turn_off message.

* Endpoint: When PME_to_cr is
asserted, the Endpoint acknowledges
the PME_turn_off message by
sending a pme_to_ack message to the

Root Port.

PME_TO_Ack | RX X No No Yes —

12.1.3 Error Signaling Messages
Table 76. Error Signaling Messages
Message Root Endpoi Generated by Comments
Port nt
App Core Core
Layer (with App
Layer
input)

ERR_COR RX X No Yes No In addition to detecting errors, a Root Port also
gathers and manages errors sent by
downstream components through the ERR_COR,
ERR_NONFATAL, AND ERR_FATAL Error
Messages. In Root Port mode, there are two
mechanisms to report an error event to the
Application Layer:

e serr_out output signal. When set, indicates
to the Application Layer that an error has
been logged in the AER capability structure

* aer_msi_num input signal. When the
Implement advanced error reporting
option is turned on, you can set
aer_msi_num to indicate which MSI is being
sent to the root complex when an error is
logged in the AER Capability structure.

ERR_NONFATA | RX TX No Yes No —

L

ERR_FATAL RX TX No Yes No —

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
153

] ®
l n tel 12 Transaction Layer Protocol (TLP) Details

12.1.4 Locked Transaction Message

Table 77. Locked Transaction Message

Message Root Port Endpoint Generated by Comments
App Core Core
Layer (with App
Layer
input)
Unlock Transmit Receive Yes No No
Message

12.1.5 Slot Power Limit Message

The PCI Express Base Specification Revision states that this message is not mandatory
after link training.

Table 78. Slot Power Message

Message Root Port Endpoint Generated by Comments
App Core Core
Layer (with
App
Layer
input)
Set Slot Transmit Receive No Yes No In Root Port mode, through software.
Power Limit

Related Links

PCI Express Base Specification Revision 3.0

12.1.6 Vendor-Defined Messages

Table 79. Vendor-Defined Message

Message Root Port Endpoint Generated by Comments
App Core Core
Layer (with App
Layer
input)
Vendor Transmit Transmit Yes No No
Defined Type | Receive Receive
Vendor Transmit Transmit Yes No No
Defined Type | Receive Receive
1

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
154

http://www.pcisig.com/home

12 Transaction Layer Protocol (TLP) Details

12.1.7 Hot Plug Messages

intel)

Table 80. Locked Transaction Message
Message Root Port Endpoint Generated by Comments
App Core Core
Layer (with
App
Layer
input)
Attention_in | Transmit Receive No Yes No Per the recommendations in the PCI
dicator On Express Base Specification Revision ,
these messages are not transmitted to

Attention_In | Transmit Receive No Yes No the Application Layer.
dicator Blink
Attention_in | Transmit Receive No Yes No
dicator Off
Power_Indic | Transmit Receive No Yes No
ator On
Power_Indic | Transmit Receive No Yes No
ator Blink
Power_Indic | Transmit Receive No Yes No
ator Off
Attention Receive Transmit No No Yes N/A
Button_Pres
sed
(Endpoint
only)

12.2 Transaction Layer Routing Rules

Related Links

PCI Express Base Specification Revision 3.0

Transactions adhere to the following routing rules:

In the receive direction (from the PCI Express link), memory and I/O requests that
match the defined base address register (BAR) contents and vendor-defined
messages with or without data route to the receive interface. The Application
Layer logic processes the requests and generates the read completions, if needed.

In Endpoint mode, received Type 0 Configuration requests from the PCI Express
upstream port route to the internal Configuration Space and the Arria 10 Hard IP
for PCI Express generates and transmits the completion.

The Hard IP handles supported received message transactions (Power
Management and Slot Power Limit) internally. The Endpoint also supports the
Unlock and Type 1 Messages. The Root Port supports Interrupt, Type 1, and error
Messages.

Vendor-defined Type 0 and Type 1 Message TLPs are passed to the Application

Layer.

The Transaction Layer treats all other received transactions (including memory or
I/0 requests that do not match a defined BAR) as Unsupported Requests. The
Transaction Layer sets the appropriate error bits and transmits a completion, if
needed. These Unsupported Requests are not made visible to the Application
Layer; the header and data are dropped.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

155

http://www.pcisig.com/home

12 Transaction Layer Protocol (TLP) Details

For memory read and write request with addresses below 4 GB, requestors must
use the 32-bit format. The Transaction Layer interprets requests using the 64-bit
format for addresses below 4 GB as an Unsupported Request and does not send
them to the Application Layer. If Error Messaging is enabled, an error Message TLP
is sent to the Root Port. Refer to Transaction Layer Errors for a comprehensive list
of TLPs the Hard IP does not forward to the Application Layer.

The Transaction Layer sends all memory and I/0 requests, as well as completions
generated by the Application Layer and passed to the transmit interface, to the
PCI Express link.

The Hard IP can generate and transmit power management, interrupt, and error
signaling messages automatically under the control of dedicated signals.
Additionally, it can generate MSI requests under the control of the dedicated
signals.

In Root Port mode, the Application Layer can issue Type 0 or Type 1 Configuration
TLPs on the Avalon-ST TX bus.

The Type 0 Configuration TLPs are only routed to the Configuration Space of the
Hard IP and are not sent downstream on the PCI Express link.

The Type 1 Configuration TLPs are sent downstream on the PCI Express link. If the
bus number of the Type 1 Configuration TLP matches the Secondary Bus Number
register value in the Root Port Configuration Space, the TLP is converted to a Type
0 TLP.

For more information about routing rules in Root Port mode, refer to Section 7.3.3
Configuration Request Routing Rules in the PCI Express Base Specification .

Related Links

Transaction Layer Errors on page 134

PCI Express Base Specification Revision 3.0

12.3 Receive Buffer Reordering

The PCI, PCI-X and PCI Express protocols include ordering rules for concurrent TLPs.
Ordering rules are necessary for the following reasons:

To guarantee that TLPs complete in the intended order
To avoid deadlock
To maintain computability with ordering used on legacy buses

To maximize performance and throughput by minimizing read latencies and
managing read/write ordering

To avoid race conditions in systems that include legacy PCI buses by guaranteeing
that reads to an address do not complete before an earlier write to the same
address

PCI uses a strongly-ordered model with some exceptions to avoid potential deadlock
conditions. PCI-X added a relaxed ordering (RO) bit in the TLP header. It is bit 5 of
byte 2 in the TLP header, or the high-order bit of the attributes field in the TLP
header. If this bit is set, relaxed ordering is permitted. If software can guarantee that
no dependencies exist between pending transactions, you can safely set the relaxed
ordering bit.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

156

http://www.pcisig.com/home

| | ®
12 Transaction Layer Protocol (TLP) Details l n tel)

The following table summarizes the ordering rules from the PCI specification. In this
table, the entries have the following meanings:

Columns represent the first transaction issued.
Rows represent the next transaction.

At each intersection, the implicit question is: should this row packet be allowed to
pass the column packet? The following three answers are possible:

— Yes: the second transaction must be allowed to pass the first to avoid
deadlock.

— Y/N: There are no requirements. A device may allow the second transaction to
pass the first.

— No: The second transaction must not be allowed to pass the first.

The following transaction ordering rules apply to the table below.

A Memory Write or Message Request with the Relaxed Ordering Attribute bit clear
(b’0) must not pass any other Memory Write or Message Request.

A Memory Write or Message Request with the Relaxed Ordering Attribute bit set
(b’1) is permitted to pass any other Memory Write or Message Request.

Endpoints, Switches, and Root Complex may allow Memory Write and Message
Requests to pass Completions or be blocked by Completions.

Memory Write and Message Requests can pass Completions traveling in the PCI
Express to PCI directions to avoid deadlock.

If the Relaxed Ordering attribute is not set, then a Read Completion cannot pass a
previously enqueued Memory Write or Message Request.

If the Relaxed Ordering attribute is set, then a Read Completion is permitted to
pass a previously enqueued Memory Write or Message Request.

Read Completion associated with different Read Requests are allowed to be
blocked by or to pass each other.

Read Completions for Request (same Transaction ID) must return in address order.
Non-posted requests cannot pass other non-posted requests.

CFgRdOCfgRdO can pass 10Rd or MRd.

CFgWrO can 10Rd or MRd.

CFgRdO can pass 10Rd or MRd.

CFrWrO can pass 10Wr.

Table 81. Transaction Ordering Rules
Can the Row Pass Posted Req Non Posted Req Completion
the Column?
Memory Write or Read Request I/0 or Cfg Write Req
Message Req

Spec Hard IP Spec Hard IP Spec Hard IP Spec Hard IP

P Posted No No Yes Yes Yes Yes Y/N No

Req Y/N No Yes No
NP Read Req | No No Y/N No Y/N No Y/N No
continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
157

] ®
l n tel) 12 Transaction Layer Protocol (TLP) Details

Can the Row Pass Posted Req Non Posted Req Completion
the Column?
Memory Write or Read Request I/0 or Cfg Write Req
Message Req
Non- No No Y/N No Y/N No Y/N No
Posted
Req with
data
Cmpl Cmpl No No Yes Yes Yes Yes Y/N No
Y/N No No No
1/0 or Y/N No Yes Yes Yes Yes Y/N No
Configura
tion Write
Cmpl
As the table above indicates, the RX datapath implements an RX buffer reordering
function that allows Posted and Completion transactions to pass Non-Posted
transactions (as allowed by PCI Express ordering rules) when the Application Layer is
unable to accept additional Non-Posted transactions.
The Application Layer dynamically enables the RX buffer reordering by asserting the
rx_mask signal. The rx_mask signal blocks non-posted Req transactions made to the
Application Layer interface so that only posted and completion transactions are
presented to the Application Layer.
Note: MSI requests are conveyed in exactly the same manner as PCI Express memory write

requests and are indistinguishable from them in terms of flow control, ordering, and
data integrity.

Related Links
PCI Express Base Specification Revision 3.0

12.3.1 Using Relaxed Ordering

Transactions from unrelated threads are unlikely to have data dependencies.
Consequently, you may be able to use relaxed ordering to improve system
performance. The drawback is that only some transactions can be optimized for
performance. Complete the following steps to decide whether to enable relaxed
ordering in your design:

1. Create a system diagram showing all PCI Express and legacy devices.

2. Analyze the relationships between the components in your design to identify the
following hazards:

a. Race conditions: A race condition exists if a read to a location can occur before
a previous write to that location completes. The following figure shows a data
producer and data consumer on opposite sides of a PCI-to-PCI bridge. The
producer writes data to the memory through a PCI-to-PCI bridge. The
consumer must read a flag to confirm the producer has written the new data
into the memory before reading the data. However, because the PCI-to-PCI
bridge includes a write buffer, the flag may indicate that it is safe to read data
while the actual data remains in the PCI-to-PCI bridge posted write buffer.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

158

http://www.pcisig.com/home

] ®
12 Transaction Layer Protocol (TLP) Details l n tel)

Figure 108. Design Including Legacy PCI Buses Requiring Strong Ordering

Consumer Memory
< PCl Bus i 1 >
......... Reﬂd
Request
PCl-toPCl Bridge
Posted
Write Buffer
1
I
< PCl Bus 1 i >
Producer Flag

b. A shared memory architecture where more than one thread accesses the same
locations in memory.

If either of these conditions exists, relaxed ordering will lead to incorrect results.

3. If your analysis determines that relaxed ordering does not lead to possible race
conditions or read or write hazards, you can enable relaxed ordering by setting the
RO bit in the TLP header.

4. The following figure shows two PCIe Endpoints and Legacy Endpoint connected to
a switch. The three PCIe Endpoints are not likely to have data dependencies.
Consequently, it would be safe to set the relaxed ordering bit for devices
connected to the switch. In this system, if relax ordering is not enabled, a memory
read to the legacy Endpoint is blocked. The legacy Endpoint read is blocked
because an earlier posted write cannot be completed as the write buffer is full. .

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
159

] ®
< l n tel) 12 Transaction Layer Protocol (TLP) Details

Figure 109. PCI Express Design Using Relaxed Ordering

(PU

Write Buffer Root Memor
Full Complex y

Blocked by
Full WR Buffer -s:..... |

] PCl PCle Bridge t
] e e Bridge to
L — J Endpoint | | PClorPCIX

Completion

Posted = | || e for Memory

Write Read
PCle PCle Legacy < PCl/PCI-X
Endpoint | | Endpoint | | Endpoint

5. 1If your analysis indicates that you can enable relaxed ordering, simulate your
system with and without relaxed ordering enabled. Compare the results and

performance.
6. If relaxed ordering improves performance without introducing errors, you can
enable it in your system.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
160

13 Throughput Optimization l n tel

13 Throughput Optimization

The PCI Express Base Specification defines a flow control mechanism to ensure
efficient transfer of TLPs.

Each transmitter, the write requester in this case, maintains a credit limit register
and a credits consumed register. The credit limit register is the sum of all
credits received by the receiver, the write completer in this case. The credit limit
register is initialized during the flow control initialization phase of link initialization and
then updated during operation by Flow Control (FC) Update DLLPs. The credits
consumed register is the sum of all credits consumed by packets transmitted.
Separate credit limit and credits consumed registers exist for each of the six
types of Flow Control:

e Posted Headers

e Posted Data

¢ Non-Posted Headers

¢ Non-Posted Data

e Completion Headers

e Completion Data

Each receiver also maintains a credit allocated counter which is initialized to the
total available space in the RX buffer (for the specific Flow Control class) and then

incremented as packets are pulled out of the RX buffer by the Application Layer. The
value of this register is sent as the FC Update DLLP value.

Figure 110. Flow Control Update Loop

i Credit
TXCredit | b Control Limit M FCUpdate Credit
Signals Gating Logic FCUpdate | FUUpdateDLLP |p)pGenerate ¢ Allocated
(Credit Check) | | Credit Consumed P @
Counter
Y @ @ Incren%
@ Allow @ Increment @
A > RX Data
Data Packet Buffer Packet
Application Transaction Datalink Physical PCl Physical Data Link Transaction Application
Layer Layer Layer Layer Express Layer Layer Layer Layer
Link
-_ o _— -~
Data Source Data Sink

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2008
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

intel)

13 Throughput Optimization

The following numbered steps describe each step in the Flow Control Update loop. The
corresponding numbers in the figure show the general area to which they correspond.

1.

When the Application Layer has a packet to transmit, the number of credits
required is calculated. If the current value of the credit limit minus credits
consumed is greater than or equal to the required credits, then the packet can be
transmitted immediately. However, if the credit limit minus credits consumed is
less than the required credits, then the packet must be held until the credit limit is
increased to a sufficient value by an FC Update DLLP. This check is performed
separately for the header and data credits; a single packet consumes only a single
header credit.

After the packet is selected for transmission the credits consumed register is
incremented by the number of credits consumed by this packet. This increment
happens for both the header and data credit consumed registers.

The packet is received at the other end of the link and placed in the RX buffer.

At some point the packet is read out of the RX buffer by the Application Layer.
After the entire packet is read out of the RX buffer, the credit al located
register can be incremented by the number of credits the packet has used. There
are separate credit al located registers for the header and data credits.

The value in the credit al located register is used to create an FC Update
DLLP.

After an FC Update DLLP is created, it arbitrates for access to the PCI Express link.
The FC Update DLLPs are typically scheduled with a low priority; consequently, a
continuous stream of Application Layer TLPs or other DLLPs (such as ACKs) can
delay the FC Update DLLP for a long time. To prevent starving the attached
transmitter, FC Update DLLPs are raised to a high priority under the following
three circumstances:

a. When the last sent credit allocated counter minus the amount of
received data is less than MAX_PAYLOAD and the current credit allocated
counter is greater than the last sent credit counter. Essentially, this means the
data sink knows the data source has less than a full MAX_PAYLOAD worth of
credits, and therefore is starving.

b. When an internal timer expires from the time the last FC Update DLLP was
sent, which is configured to 30 us to meet the PCI Express Base Specification
for resending FC Update DLLPs.

C. When the credit allocated counter minus the last sent credit
allocated counter is greater than or equal to 25% of the total credits
available in the RX buffer, then the FC Update DLLP request is raised to high
priority.

After arbitrating, the FC Update DLLP that won the arbitration to be the next
item is transmitted. In the worst case, the FC Update DLLP may need to wait
for a maximum sized TLP that is currently being transmitted to complete
before it can be sent.

The original write requester receives the FC Update DLLP. The credit limit
value is updated. If packets are stalled waiting for credits, they can now be
transmitted.

Note: You must keep track of the credits consumed by the Application Layer.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

162

™ ®
13 Throughput Optimization < l n tel)

13.1 Throughput of Posted Writes

The throughput of posted writes is limited primarily by the Flow Control Update loop
as shown in Figure 110 on page 161. If the write requester sources the data as quickly
as possible, and the completer consumes the data as quickly as possible, then the
Flow Control Update loop may be the biggest determining factor in write throughput,
after the actual bandwidth of the link.

The figure below shows the main components of the Flow Control Update loop with
two communicating PCI Express ports:

e Write Requester
e Write Completer

To allow the write requester to transmit packets continuously, the credit

allocated and the credit limit counters must be initialized with sufficient credits
to allow multiple TLPs to be transmitted while waiting for the FC Update DLLP that
corresponds to the freeing of credits from the very first TLP transmitted.

You can use the RX Buffer space allocation - Desired performance for received
requests to configure the RX buffer with enough space to meet the credit
requirements of your system.

Related Links
PCI Express Base Specification 3.0

13.2 Throughput of Non-Posted Reads

To support a high throughput for read data, you must analyze the overall delay from
the time the Application Layer issues the read request until all of the completion data
is returned. The Application Layer must be able to issue enough read requests, and
the read completer must be capable of processing these read requests quickly enough
(or at least offering enough non-posted header credits) to cover this delay.

However, much of the delay encountered in this loop is well outside the IP core and is
very difficult to estimate. PCI Express switches can be inserted in this loop, which
makes determining a bound on the delay more difficult.

Nevertheless, maintaining maximum throughput of completion data packets is
important. Endpoints must offer an infinite number of completion credits. Endpoints
must buffer this data in the RX buffer until the Application Layer can process it.
Because the Endpoint is no longer managing the RX buffer for Completions through
the flow control mechanism, the Application Layer must manage the RX buffer by the
rate at which it issues read requests.

To determine the appropriate settings for the amount of space to reserve for
completions in the RX buffer, you must make an assumption about the length of time
until read completions are returned. This assumption can be estimated in terms of an
additional delay, beyond the FC Update Loop Delay, as discussed in the section
Throughput of Posted Writes. The paths for the read requests and the completions are
not exactly the same as those for the posted writes and FC Updates in the PCI Express
logic. However, the delay differences are probably small compared with the inaccuracy
in the estimate of the external read to completion delays.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
163

http://www.pcisig.com/

n tel) 13 Throughput Optimization

With multiple completions, the number of available credits for completion headers
must be larger than the completion data space divided by the maximum packet size.
Instead, the credit space for headers must be the completion data space (in bytes)
divided by 64, because this is the smallest possible read completion boundary. Setting
the RX Buffer space allocation—Desired performance for received completions
to High under the System Settings heading when specifying parameter settings
configures the RX buffer with enough space to meet this requirement. You can adjust
this setting up or down from the High setting to tailor the RX buffer size to your
delays and required performance.

You can also control the maximum amount of outstanding read request data. This
amount is limited by the number of header tag values that can be issued by the
Application Layer and by the maximum read request size that can be issued. The
number of header tag values that can be in use is also limited by the IP core. You can
specify 32 or 64 tags though configuration software to restrict the Application Layer to
use only 32 tags. In commercial PC systems, 32 tags are usually sufficient to maintain
optimal read throughput.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

164

] ®
14 Design Implementation l n tel)

14 Desigh Implementation

Completing your design includes additional steps to specify analog properties, pin
assignments, and timing constraints.

14.1 Making Pin Assignments to Assign I/0 Standard to Serial Data
Pins
Before running Quartus Prime compilation, use the Pin Planner to assign I/O
standards to the pins of the device.

1. On the Quartus Prime Assignments menu, select Pin Planner.
The Pin Planner appears.

In the Node Name column, locate the PCle serial data pins.

In the I/0 Standard column, double-click the right-hand corner of the box to
bring up a list of available I/O standards.

4. Select the appropriate standard from the following table.

Table 82. I/0 Standards for HSSI Pins

Pin Type I/0 Standard
HSSI REFCLK Current Mode Logic (CML), HCSL
HSSI RX Current Mode Logic (CML)
HSSI TX High Speed Differential I/0

The Quartus Prime software adds instance assignments to your Quartus Prime
Settings File (*.qgs¥). The assignment is in the form set_instance_assignment -
name 10_STANDARD <"| O STANDARD NAME"> -to <si gnal _nanme>. The *.qgsf
is in your synthesis directory.

Related Links

Arria 10 GX, GT, and SX Device Family Pin Connection Guidelines
For information about connecting pins on the PCB including required resistor values
and voltages.

14.2 Recommended Reset Sequence to Avoid Link Training Issues

Successful link training can only occur after the FPGA is configured. Designs using CvP
for configuration initially load the I/O ring and periphery image. Arria 10 devices
include a Nios II Hard Calibration IP core that automatically calibrates transceivers to
optimize signal quality after CvP completes and before entering user mode. Link
training occurs after calibration. Refer to Reset Sequence for Hard IP for PCI Express
IP Core and Application Layer for a description of the key signals that reset, control

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2008
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

https://documentation.altera.com/#/link/wtw1404286459773/iwtw1420187605772
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

] ®
l n tel) 14 Design Implementation

Figure 111.

dynamic reconfiguration, and link training. Intel recommends separate control of reset
signals for the Endpoint and Root Port. Successful reset sequence includes the
following steps:

1. Wait until the FPGA is configured as indicated by the assertion of CONF1G_DONE
from the FPGA block controller.

2. Wait 1 ms after the assertion of CONFI1G_DONE, then deassert the Endpoint reset.
3. Wait approximately 100 ms, then deassert the Root Port reset.
Deassert the reset output to the Application Layer.

Recommended Reset Sequence

CONF_DONE % \\
F1 ms ﬂ
Endpoint Reset / \\

% 100 ms 4%
Root Port Reset “ /

Related Links

Intel FPGA Arria 10 Transceiver PHY IP Core User Guide
For information about requirements for the CLKUSR pin used during automatic
calibration.

14.3 Creating a Signal Tap II Debug File to Match Your Design
Hierarchy

For Arria 10 devices, the Quartus Prime Standard Edition software generates two files,
build_stp.tcl and <i p_core_nane>.xml. You can use these files to generate a
Signal Tap II file with probe points matching your design hierarchy.

The Quartus Prime software stores these files in the <I P core directory>/synth/
debug/stp/ directory.

Synthesize your design using the Quartus Prime software.

1. To open the Tcl console, click View O Utility Windows 00 Tcl Console.

2. Type the following command in the Tcl console:
source <IP core directory>/synth/debug/stp/build_stp.tcl

3. To generate the STP file, type the following command:
main -stp_Ffile <output stp file name>.stp -xml_file <input
xm _file name>.xml -mode build

4. To add this Signal Tap II file (.stp) to your project, select Project 0 Add/
Remove Files in Project. Then, compile your design.

5. To program the FPGA, click Tools O Programmer.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

166

https://documentation.altera.com/#/link/nik1398707230472/nik1398706768037

] ®
14 Design Implementation l n tel)

6. To start the Signal Tap II Logic Analyzer, click Quartus Prime 0O Tools 0 Signal
Tap II Logic Analyzer.

The software generation script may not assign the Signal Tap II acquisition clock in
<out put stp file nanme>.stp. Consequently, the Quartus Prime software
automatically creates a clock pin called auto_stp_external_clock. You may
need to manually substitute the appropriate clock signal as the Signal Tap II
sampling clock for each STP instance.

Recompile your design.
To observe the state of your IP core, click Run Analysis.

You may see signals or Signal Tap II instances that are red, indicating they are not
available in your design. In most cases, you can safely ignore these signals and
instances. They are present because software generates wider buses and some
instances that your design does not include.

14.4 SDC Timing Constraints

Example 1.

Your top-level Synopsys Design Constraints file (.sdc) must include the following
timing constraint macro for the Arria 10 Hard IP for PCle IP core.

SDC Timing Constraints Required for the Arria 10 Hard IP for PCIe and Design
Example

Constraints required for the Arria 10 Hard IP for PCl Express
derive_pll_clock is used to calculate all clock derived

from PCle refclk. It must be applied once across all

of the SDC files used In a project

derive_pll_clocks -create_base_clocks

You should only include this constraint in one location across all of the SDC files in
your project. Differences between Fitter timing analysis and TimeQuest timing analysis
arise if these constraints are applied multiple times.

Related Links

What assignments do I need for a PCle Genl, Gen2 or Gen3 design that targets an
Arria 10 ES2, ES3 or production device?
Starting with the Quartus Prime Software Release 17.0, these assignments are
automatically included in the design. You do not have to add them.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
167

https://www.altera.com/support/support-resources/knowledge-base/ip/2017/what-assignments-do-i-need-for-a-pcie-gen1--gen2-or-gen3-design-.html
https://www.altera.com/support/support-resources/knowledge-base/ip/2017/what-assignments-do-i-need-for-a-pcie-gen1--gen2-or-gen3-design-.html

15 Optional Features l n tel

15 Optional Features

15.1 Configuration over Protocol (CvP)

The Hard IP for PCI Express architecture has an option to configure the FPGA and
initialize the PCI Express link. In prior devices, a single Program Object File (.pof)
programmed the I/0 ring and FPGA fabric before the PCle link training and
enumeration began. The .pof file is divided into two parts:

e The I/O bitstream contains the data to program the I/0O ring, the Hard IP for PCI
Express, and other elements that are considered part of the periphery image.

e The core bitstream contains the data to program the FPGA fabric.

When you select the CvP design flow, the I/O ring and PCI Express link are
programmed first, allowing the PCI Express link to reach the LO state and begin
operation independently, before the rest of the core is programmed. After the PCI
Express link is established, it can be used to program the rest of the device. The
following figure shows the blocks that implement CvP.

Figure 112. CvP in Arria 10 Devices

Host CPU
Serial or
Quad Flash
Active Serial,
Fast Passive Parallel (FPP), or
Active Quad
Device Configuration
Config Cntl
Block
PCle Port |
PCle Link
used for
. Hard IP
Configuration
via Protocol (CvP) for PCle
Intel FPGA

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso .
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services :00}.‘:2003
egistere

at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

m ®
15 Optional Features l n tel :

CvP has the following advantages:

e Provides a simpler software model for configuration. A smart host can use the
PClIe protocol and the application topology to initialize and update the FPGA fabric.

e Improves security for the proprietary core bitstream.

e Reduces system costs by reducing the size of the flash device to store the .pof.

e May reduce system size because a single CvP link can be used to configure
multiple FPGAs.

Related Links

Arria 10 CvP Initialization and Partial Reconfiguration over PCI Express User Guide

15.2 Autonomous Mode

Autonomous mode allows the PCIe IP core to operate before the device enters user
mode, while the core is being configured.

Intel’'s FPGA devices always receive the configuration bits for the periphery image first,
then for the core image. After the core image configures, the device enters user
mode. In autonomous mode, the hard IP for PCI Express begins operation when the
periphery configuration completes, before it enters user mode.

In autonomous mode, after completing link training, the Hard IP for PCI Express
responds to Configuration Requests from the host with a Configuration Request Retry
Status (CRRS). Autonomous mode is when you must meet the 100 ms PCle wake-up
time.

The hard IP for PCle responds with CRRS under the following conditions:

e Before the core fabric is programmed when you enable autonomous mode.

e Before the core fabric is programmed when you enable initialization of the core
fabric using the PCle link.

All PCIe IP cores on a device can operate in autonomous mode. However, only the
bottom Hard IP for PCI Express on either side can satisfy the 100 ms PCle wake up
time requirement. Tansceiver calibration begins with the bottom PCIe IP core on each
side of the device. Consequently, this IP core has a faster wake up time.

Arria V, Cyclone V, Stratix V, and Arria 10 devices are the first to offer autonomous
mode. In earlier devices, the PCI Express Hard IP Core exits reset only after full FPGA
configuration.

Related Links

e Enabling Autonomous Mode on page 169
These steps specify autonomous mode in the Quartus Prime software.

e Enabling CvP Initialization on page 170
These steps enable CvP initialization mode in the Quartus Prime software.

15.2.1 Enabling Autonomous Mode

These steps specify autonomous mode in the Quartus Prime software.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
169

https://documentation.altera.com/#/link/dsu1441819344145/dsu1442269728522

| | ®
l n tel] 15 Optional Features

1. On the Quartus Prime Assignments menu, select Device O Device and Pin
Options.

2. Under Category O General turn on Enable autonomous PCIe HIP mode.
The Enable autonomous PCIe HIP mode option has an effect if your design has
the following two characteristics:

e You are using the Flash device or Ethernet controller, instead of the PCle link
to load the core image.

¢ You have not turned on Enable Configuration via the PCIe link in the Hard
IP for PCI Express GUI.

15.2.2 Enabling CvP Initialization

These steps enable CvP initialization mode in the Quartus Prime software.
1. On the Assignments menu select Device [0 Device and Pin Options.
2. Under Category, select CvP Settings.

3. For Configuration via Protocol, select Core initialization from the drop-down
menu.

15.3 ECRC

ECRC ensures end-to-end data integrity for systems that require high reliability. You
can specify this option under the Error Reporting heading. The ECRC function
includes the ability to check and generate ECRC. In addition, the ECRC function can
forward the TLP with ECRC to the RX port of the Application Layer. When using ECRC
forwarding mode, the ECRC check and generation are performed in the Application
Layer.

You must turn on Advanced error reporting (AER), ECRC checking, and ECRC
generation under the PCI Express/PCI Capabilities heading using the parameter
editor to enable this functionality.

For more information about error handling, refer to Error Signaling and Logging in
Section 6.2 of the PCI Express Base Specification.

Related Links
PCI Express Base Specification 3.0

15.3.1 ECRC on the RX Path

When the ECRC generation option is turned on, errors are detected when receiving
TLPs with a bad ECRC. If the ECRC generation option is turned off, no error detection
occurs. If the ECRC forwarding option is turned on, the ECRC value is forwarded to
the Application Layer with the TLP. If the ECRC forwarding option is turned off, the
ECRC value is not forwarded.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
170

http://www.pcisig.com/home

15 Optional Features

intel.

Table 83. ECRC Operation on RX Path
ECRC Forwarding ECRC Check Enable ECRC Status Error TLP Forward to Application
4 Layer
No No none No Forwarded
good No Forwarded without its ECRC
bad No Forwarded without its ECRC
Yes none No Forwarded
good No Forwarded without its ECRC
bad Yes Not forwarded
Yes No none No Forwarded
good No Forwarded with its ECRC
bad No Forwarded with its ECRC
Yes none No Forwarded
good No Forwarded with its ECRC
bad Yes Not forwarded

15.3.2 ECRC on the TX Path

When the ECRC generation option is on, the TX path generates ECRC. If you turn on
ECRC forwarding, the ECRC value is forwarded with the TLP. The following table
summarizes the TX ECRC generation and forwarding. All unspecified cases are
unsupported and the behavior of the Hard IP is unknown.In this table, if TD is 1, the
TLP includes an ECRC. TD is the TL digest bit of the TL packet.

Table 84. ECRC Generation and Forwarding on TX Path
All unspecified cases are unsupported and the behavior of the Hard IP is unknown.
ECRC Forwarding ECRC Generation TLP on TLP on Link Comments
Enable 5 Application

No No TD=0, without TD=0, without
ECRC ECRC
TD=1, without TD=0, without
ECRC ECRC

Yes TD=0, without TD=1, with ECRC is generated

ECRC ECRC
TD=1, without TD=1, with
ECRC ECRC

Yes No TD=0, without TD=0, without Core forwards the ECRC
ECRC ECRC

continued...

4 The ECRC Check Enable field is in the Configuration Space Advanced Error
Capabilities and Control Register.

5 The ECRC Generation Enable field is in the Configuration Space Advanced Error
Capabilities and Control Register.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
171

intel.

15 Optional Features

ECRC Forwarding ECRC Generation TLP on TLP on Link Comments
Enable 5 Application
TD=1, with TD=1, with
ECRC ECRC
Yes TD=0, without TD=0, without
ECRC ECRC
TD=1, with TD=1, with
ECRC ECRC

Capabilities and Control Register.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

172

5 The ECRC Generation Enable field is in the Configuration Space Advanced Error

16 Hard IP Reconfiguration l n tel

16 Hard IP Reconfiguration

The Arria 10 Hard IP for PCI Express reconfiguration block allows you to dynamically
change the value of configuration registers that are read-only. You access this block
using its Avalon-MM slave interface. You must enable this optional functionality by
turning on Enable Hard IP Reconfiguration in the parameter editor. For a complete
description of the signals in this interface, refer to Hard IP Reconfiguration Interface.

The Hard IP reconfiguration block provides access to read-only configuration registers,
including Configuration Space, Link Configuration, MSI and MSI-X capabilities, Power
Management, and Advanced Error Reporting (AER). This interface does not support
simulation.

The procedure to dynamically reprogram these registers includes the following three
steps:

1. Bring down the PCI Express link by asserting the hip_reconfig_rst_n reset
signal, if the link is already up. (Reconfiguration can occur before the link has
been established.)

2. Reprogram configuration registers using the Avalon-MM slave Hard IP
reconfiguration interface.

3. Release the npor reset signal.
Note: You can use the LMI interface to change the values of configuration registers that are

read/write at run time. For more information about the LMI interface, refer to LMI
Signals.

Contact your Intel representative for descriptions of the read-only, reconfigurable
registers.

Related Links
LMI Signals on page 90

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2008
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

™ ®
17 Testbench and Design Example l n tel)

17 Testbench and Design Example

This chapter introduces the Root Port or Endpoint design example including a
testbench, BFM, and a test driver module. You can create this design example for
using design flows described in Getting Started with the Arria 10 Hard IP for PCI
Express .

When configured as an Endpoint variation, the testbench instantiates a design
example and a Root Port BFM, which provides the following functions:

e A configuration routine that sets up all the basic configuration registers in the
Endpoint. This configuration allows the Endpoint application to be the target and
initiator of PCI Express transactions.

e A Verilog HDL procedure interface to initiate PCI Express transactions to the
Endpoint.

The testbench uses a test driver module, altpcietb_bfm_driver_chaining to
exercise the chaining DMA of the design example. The test driver module displays
information from the Endpoint Configuration Space registers, so that you can correlate
to the parameters you specified using the parameter editor.

When configured as a Root Port, the testbench instantiates a Root Port design example
and an Endpoint model, which provides the following functions:

¢ A configuration routine that sets up all the basic configuration registers in the Root
Port and the Endpoint BFM. This configuration allows the Endpoint application to
be the target and initiator of PCI Express transactions.

e A Verilog HDL procedure interface to initiate PCI Express transactions to the
Endpoint BFM.

This testbench simulates a single Endpoint or Root Port DUT.

The testbench uses a test driver module, altpcietb_bfm_driver_rp, to exercise the
target memory and DMA channel in the Endpoint BFM. The test driver module displays
information from the Root Port Configuration Space registers, so that you can
correlate to the parameters you specified using the parameter editor. The Endpoint
model consists of an Endpoint variation combined with the chaining DMA application
described above.

Note: The Intel testbench and Root Port or Endpoint BFM provide a simple method to do
basic testing of the Application Layer logic that interfaces to the variation. This BFM
allows you to create and run simple task stimuli with configurable parameters to
exercise basic functionality of the Intel example design. The testbench and Root Port
BFM are not intended to be a substitute for a full verification environment. Corner
cases and certain traffic profile stimuli are not covered. Refer to the items listed below
for further details. To ensure the best verification coverage possible, Intel suggests
strongly that you obtain commercially available PCI Express verification IP and tools,
or do your own extensive hardware testing or both.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2008
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

™ ®
17 Testbench and Design Example l n tel)

Your Application Layer design may need to handle at least the following scenarios that
are not possible to create with the Intel testbench and the Root Port BFM:

e It is unable to generate or receive Vendor Defined Messages. Some systems
generate Vendor Defined Messages and the Application Layer must be designed to
process them. The Hard IP block passes these messages on to the Application
Layer which, in most cases should ignore them.

e It can only handle received read requests that are less than or equal to the
currently set Maximum payload size option specified under PCI Express/PCI
Capabilities heading under the Device tab using the parameter editor. Many
systems are capable of handling larger read requests that are then returned in
multiple completions.

e It always returns a single completion for every read request. Some systems split
completions on every 64-byte address boundary.

e It always returns completions in the same order the read requests were issued.
Some systems generate the completions out-of-order.

e It is unable to generate zero-length read requests that some systems generate as
flush requests following some write transactions. The Application Layer must be
capable of generating the completions to the zero length read requests.

e It uses fixed credit allocation.
e It does not support parity.

e It does not support multi-function designs which are available when using
Configuration Space Bypass mode.

e It does not support Single Root I/0 Virtualization (SR-IOV).

e It does not support multiple physical functions and virtual functions available when
you select the SR-IOV variant.

Related Links

AN-811: Using the Avery BFM for PCI Express Gen3x16 Simulation on Intel Stratix 10
Devices

17.1 Endpoint Testbench

After you install the Quartus Prime software, you can copy any of the example designs
from the <i nstal | _di r>/ip/altera/Zaltera_pcie/altera pcie al0 _ed/
example_design/al0 directory.

This testbench simulates up to an x8 PCI Express link using either the PIPE interfaces
of the Root Port and Endpoints or the serial PCI Express interface. The testbench
design does not allow more than one PCI Express link to be simulated at a time. The
following figure presents a high level view of the design example.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
175

https://www.altera.com/documentation/zoz1492100248719.html#sjb1492100458182
https://www.altera.com/documentation/zoz1492100248719.html#sjb1492100458182

intel)

Figure 113. Design Example for Endpoint Designs

Note:

APPS
altpcied <dev>hwtd.v

Avalon-STTX
Avalon-STRX
reset

status

DuT
<instance_name>_altera_pcie
_a10_hip_<version>
_<generated_string>.v

Avalon-STTX
Avalon-STRX
reset

status

17 Testbench and Design Example

Root Port Model
altpcie_thed<dev> hwtdl.v

Root Port BFM
altpcietb_bfm_rpvar_64b_x8_pipen1b

Root Port Driver and Monitor
altpcieth_bfm_vc_intf

The top-level of the testbench instantiates four main modules:

e <gsys_systemname>— This is the example Endpoint design. For more information
about this module, refer to Chaining DMA Design Examples.

e altpcietb_bfm_top_rp.v—This is the Root Port PCI Express BFM. For more
information about this module, refer to Root Port BFM.

o altpcietb_pipe_phy—There are eight instances of this module, one per lane.
These modules interconnect the PIPE MAC layer interfaces of the Root Port and the
Endpoint. The module mimics the behavior of the PIPE PHY layer to both MAC
interfaces.

e altpcietb_bfm_driver_chaining—This module drives transactions to the Root
Port BFM. This is the module that you modify to vary the transactions sent to the
example Endpoint design or your own design. For more information about this
module, refer to Root Port Design Example.

In addition, the testbench has routines that perform the following tasks:

e Generates the reference clock for the Endpoint at the required frequency.

e Provides a PCI Express reset at start up.

Before running the testbench, you should set the following parameters in

<instantiation_nane>_tb/sim/<i nstantiati on_name> tb.v:

e serial_sim_hwtcl: Set to 1 for serial simulation and 0 for PIPE simulation.

e enable pipe32_sim _hwtcl: Set to 0 for serial simulation and 1 for PIPE
simulation.

Related Links

e Quick Start Guide on page 17

e Getting Started with the Arria 10 Hard IP for PCI Express on page 24
This Genl x8 Endpoint design example illustrates a chaining DMA application.
It provides instructions to help you quickly customize, simulate, and compile
the Arria 10 Hard IP for PCI Express IP Core.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

176

™ ®
17 Testbench and Design Example l n tel)

17.2 Root Port Testbench

Note:

This testbench simulates up to an x8 PCI Express link using either the PIPE interfaces
of the Root Port and Endpoints or the serial PCI Express interface. The testbench
design does not allow more than one PCI Express link to be simulated at a time. The
top-level of the testbench instantiates four main modules:

e <gsys_systemname>— Name of Root Port This is the example Root Port design.
For more information about this module, refer to Root Port Design Example.

e altpcietb_bfm_ep_example_chaining_pipenlb—This is the Endpoint PCI
Express mode described in the section Chaining DMA Design Examples.

e altpcietb_pipe_phy—There are eight instances of this module, one per lane.
These modules connect the PIPE MAC layer interfaces of the Root Port and the
Endpoint. The module mimics the behavior of the PIPE PHY layer to both MAC
interfaces.

e altpcietb_bfm_driver_rp—This module drives transactions to the Root Port BFM.
This is the module that you modify to vary the transactions sent to the example
Endpoint design or your own design. For more information about this module, see
Test Driver Module.

The testbench has routines that perform the following tasks:
e Generates the reference clock for the Endpoint at the required frequency.

e Provides a reset at start up.

Before running the testbench, you should set the following parameters:

e serial_sim _hwtcl: Set this parameter in <instantiation name>_tb.v . This
parameter controls whether the testbench simulates in PIPE mode or serial mode.
When is set to 0, the simulation runs in PIPE mode; when set to 1, it runs in serial
mode. Although the serial_sim_hwtcl parameter is available in other files, if
you set this parameter at the lower level, then it will get overwritten by the tb.v
level.

e serial_sim_hwtcl: Set to 1 for serial simulation and 0 for PIPE simulation.

e enable pipe32_sim _hwtcl: Set to 0 for serial simulation and 1 for PIPE
simulation.

17.3 Chaining DMA Design Examples

This design example shows how to create a chaining DMA native Endpoint which
supports simultaneous DMA read and write transactions. The write DMA module
implements write operations from the Endpoint memory to the root complex (RC)
memory. The read DMA implements read operations from the RC memory to the
Endpoint memory.

When operating on a hardware platform, the DMA is typically controlled by a software
application running on the root complex processor. In simulation, the generated
testbench, along with this design example, provides a BFM driver module in Verilog
HDL that controls the DMA operations. Because the example relies on no other
hardware interface than the PCI Express link, you can use the design example for the
initial hardware validation of your system.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
177

™ ®
l n tel) 17 Testbench and Design Example

Note:

Note:

The design example includes the following two main components:
e The Root Port variation
e An Application Layer design example

The DUT variant is generated in the language (Verilog HDL or VHDL) that you selected
for the variation file. The testbench files are only generated in Verilog HDL in the
current release. If you choose to use VHDL for your variant, you must have a mixed-
language simulator to run this testbench.

The chaining DMA design example requires setting BAR 2 or BAR 3 to a minimum of
256 bytes. To run the DMA tests using MSI, you must set the Number of MSI
messages requested parameter under the PCI Express/PCI Capabilities page to
at least 2.

The chaining DMA design example uses an architecture capable of transferring a large
amount of fragmented memory without accessing the DMA registers for every memory
block. For each block of memory to be transferred, the chaining DMA design example
uses a descriptor table containing the following information:

e Length of the transfer
e Address of the source
e Address of the destination

e Control bits to set the handshaking behavior between the software application or
BFM driver and the chaining DMA module

The chaining DMA design example only supports dword-aligned accesses. The chaining
DMA design example does not support ECRC forwarding.

The BFM driver writes the descriptor tables into BFM shared memory, from which the
chaining DMA design engine continuously collects the descriptor tables for DMA read,
DMA write, or both. At the beginning of the transfer, the BFM programs the Endpoint
chaining DMA control register. The chaining DMA control register indicates the total
number of descriptor tables and the BFM shared memory address of the first
descriptor table. After programming the chaining DMA control register, the chaining
DMA engine continuously fetches descriptors from the BFM shared memory for both
DMA reads and DMA writes, and then performs the data transfer for each descriptor.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

178

™ ®
17 Testbench and Design Example l n tel)

The following figure shows a block diagram of the design example connected to an
external RC CPU. For a description of the DMA write and read registers, Chaining DMA
Control and Status Registers.

Figure 114. Top-Level Chaining DMA Example for Simulation

Chaining DMA Root Complex

Memory

Endpoint Memory Read Write

Descriptor Descriptor
Table Table

Avalon-ST

Hard IP for |

’DMAWrite H DMA Read ‘ PCl Express PCl Express

Avalon-MM
interfaces

Root Port

DMA Control/Status Register |

DMAWr Cntl (0x0-4) Configuration

DMARd Cntl (0x10-1C) U

I
’ RCSlave ‘

The block diagram contains the following elements:

Endpoint DMA write and read requester modules.

The chaining DMA design example connects to the Avalon-ST interface of the
Arria 10 Hard IP for PCI Express. The connections consist of the following
interfaces:

— The Avalon-ST RX receives TLP header and data information from the Hard IP
block

— The Avalon-ST TX transmits TLP header and data information to the Hard IP
block

— The Avalon-ST MSI port requests MSI interrupts from the Hard IP block

— The sideband signal bus carries static information such as configuration
information

The descriptor tables of the DMA read and the DMA write are located in the BFM
shared memory.

A RC CPU and associated PCI Express PHY link to the Endpoint design example,
using a Root Port and a north/south bridge.

The example Endpoint design Application Layer accomplishes the following objectives:

Shows you how to interface to the Arria 10 Hard IP for PCI Express using the
Avalon-ST protocol.

Provides a chaining DMA channel that initiates memory read and write
transactions on the PCI Express link.

If the ECRC forwarding functionality is enabled, provides a CRC Compiler IP core
to check the ECRC dword from the Avalon-ST RX path and to generate the ECRC
for the Avalon-ST TX path.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
179

n tel) 17 Testbench and Design Example

The following modules are included in the design example and located in the
subdirectory <qsys_syst emmane>/testbench/<qgsys_syst em nane>_tb/
simulation/submodules :

e <gsys_systemname> —This module is the top level of the example Endpoint
design that you use for simulation.

This module provides both PIPE and serial interfaces for the simulation
environment. This module has a test_in debug ports. Refer to Test Signals
which allow you to monitor and control internal states of the Hard IP.

For synthesis, the top level module is <qsys_syst emmane>/synthesis/
submodules. This module instantiates the top-level module and propagates only
a small sub-set of the test ports to the external I/Os. These test ports can be used
in your design.

e <variation name>.v or <variation name>.vhd— Because Intel provides many
sample parameterizations, you may have to edit one of the provided examples to
create a simulation that matches your requirements. <variation name>.v or
<variation name>.vhd— Because Intel provides many sample parameterizations,
you may have to edit one of the provided examples to create a simulation that
matches your requirements.

The chaining DMA design example hierarchy consists of these components:
e A DMA read and a DMA write module

¢ An on-chip Endpoint memory (Avalon-MM slave) which uses two Avalon-MM
interfaces for each engine

The RC slave module is used primarily for downstream transactions which target the
Endpoint on-chip buffer memory. These target memory transactions bypass the DMA
engines. In addition, the RC slave module monitors performance and acknowledges
incoming message TLPs. Each DMA module consists of these components:

e Control register module—The RC programs the control register (four dwords) to
start the DMA.

e Descriptor module—The DMA engine fetches four dword descriptors from BFM
shared memory which hosts the chaining DMA descriptor table.

e Requester module—For a given descriptor, the DMA engine performs the memory
transfer between Endpoint memory and the BFM shared memory.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

180

™ ®
17 Testbench and Design Example l n tel)

The following modules are provided in both Verilog HDL:

altpcierd_example_app_chaining—This top level module contains the logic
related to the Avalon-ST interfaces as well as the logic related to the sideband
bus. This module is fully register bounded and can be used as an incremental re-
compile partition in the Quartus Prime compilation flow.

altpcierd_cdma_ast_rx, altpcierd_cdma_ast_rx_64,
altpcierd_cdma_ast_rx_128—These modules implement the Avalon-ST receive
port for the chaining DMA. The Avalon-ST receive port converts the Avalon-ST
interface of the IP core to the descriptor/data interface used by the chaining DMA
submodules. altpcierd_cdma_ast_rx is used with the descriptor/data IP core
(through the ICM). a ltpcierd_cdma_ast_rx_64 is used with the 64-bit Avalon-
ST IP core. altpcierd_cdma_ast_rx_128 is used with the 128-bit Avalon-ST IP
core.

altpcierd_cdma_ast_tx, altpcierd_cdma_ast_tx_64,
altpcierd_cdma_ast_tx_128—These modules implement the Avalon-ST
transmit port for the chaining DMA. The Avalon-ST transmit port converts the
descriptor/data interface of the chaining DMA submodules to the Avalon-ST
interface of the IP core. altpcierd_cdma_ast_tx is used with the descriptor/data
IP core (through the ICM). altpcierd_cdma_ast_tx_64 is used with the 64-bit
Avalon-ST IP core. altpcierd_cdma_ast_tx_128 is used with the 128-bit
Avalon-ST IP core.

altpcierd_cdma_ast_msi—This module converts MSI requests from the chaining
DMA submodules into Avalon-ST streaming data.

alpcierd_cdma_app_icm—This module arbitrates PCI Express packets for the
modules altpcierd_dma_dt (read or write) and altpcierd_rc_slave.
alpcierd_cdma_app_icm instantiates the Endpoint memory used for the DMA
read and write transfer.

alt pcierd_compliance_test.v—This module provides the logic to perform CBB
via a push button.

altpcierd_rc_slave—This module provides the completer function for all
downstream accesses. It instantiates the altpcierd_rxtx_downstream_intf and
altpcierd_reg_ access modules. Downstream requests include programming of
chaining DMA control registers, reading of DMA status registers, and direct read
and write access to the Endpoint target memory, bypassing the DMA.

altpcierd_rx_tx_downstream_intf—This module processes all downstream
read and write requests and handles transmission of completions. Requests
addressed to BARs 0, 1, 4, and 5 access the chaining DMA target memory space.
Requests addressed to BARs 2 and 3 access the chaining DMA control and status
register space using the altpcierd_reg_access module.

altpcierd_reg_access—This module provides access to all of the chaining DMA
control and status registers (BAR 2 and 3 address space). It provides address
decoding for all requests and multiplexing for completion data. All registers are
32-bits wide. Control and status registers include the control registers in the
altpcierd_dma_prg_reg module, status registers in the
altpcierd_read_dma_requester and altpcierd_write_dma_requester
modules, as well as other miscellaneous status registers.

altpcierd_dma_dt—This module arbitrates PCI Express packets issued by the
submodules altpcierd_dma_prg_reg, altpcierd_read_dma_requester,
altpcierd_write_dma_requester and altpcierd_dma_descriptor.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
181

17 Testbench and Design Example

altpcierd_dma_prg_reg —This module contains the chaining DMA control
registers which get programmed by the software application or BFM driver.

altpcierd_dma_descriptor—This module retrieves the DMA read or write
descriptor from the BFM shared memory, and stores it in a descriptor FIFO. This
module issues upstream PCI Express TLPs of type MRd.

altpcierd_read_dma_requester, altpcierd_read_dma_requester_128—For
each descriptor located in the altpcierd_descriptor FIFO, this module transfers
data from the BFM shared memory to the Endpoint memory by issuing MRd PCI
Express transaction layer packets. altpcierd_read_dma_requester is used with
the 64-bit Avalon-ST IP core. altpcierd_read_dma_requester_128 is used with
the 128-bit Avalon-ST IP core.

altpcie rd_write_dma_requester, altpcierd_write_dma_requester_128—
For each descriptor located in the altpcierd_descriptor FIFO, this module
transfers data from the Endpoint memory to the BFM shared memory by issuing
MWr PCI Express transaction layer packets. altpcierd_write_dma_requester is
used with the 64-bit Avalon-ST IP core. altpcierd_write_dma_requester_128
is used with the 128-bit Avalon-ST IP core.ls

altpcierd_cpld_rx_buffer—This modules monitors the available space of the RX
Buffer; It prevents RX Buffer overflow by arbitrating memory read request issued
by the application.

altpcierd_cplerr_Imi—This module transfers the err_desc_func0 from the
application to the Hard IP block using the LMI interface. It also retimes the
cpl_err bits from the application to the Hard IP block.

altpcierd_tl_cfg_sample—This module demultiplexes the Configuration Space
signals from the tl_c¥g_ctl bus from the Hard IP block and synchronizes this
information, along with the tl_cfg_sts bus to the user clock (pld_clk)
domain.

Related Links

Test Signals on page 105
Chaining DMA Control and Status Registers on page 183

17.3.1 BAR/Address Map

The design example maps received memory transactions to either the target memory
block or the control register block based on which BAR the transaction matches. There
are multiple BARs that map to each of these blocks to maximize interoperability with
different variation files. The following table shows the mapping.

Table 85. BAR Map

Memory BAR Mapping
32-bit BARO Maps to 32 KB target memory block. Use the rc_slave module to bypass the chaining
32-bit BAR1 DMA.
64-bit BAR1:0
32-bit BAR2 Maps to DMA Read and DMA write control and status registers, a minimum of 256
32-bit BAR3 bytes.
64-bit BAR3:2
32-bit BAR4 Maps to 32 KB target memory block. Use the rc_slave module to bypass the chaining

DMA.

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

182

17 Testbench and Design Example

Memory BAR

Mapping

32-bit BARS
64-bit BAR5:4

Expansion ROM BAR

Not implemented by design example; behavior is unpredictable.

I/0 Space BAR (any)

Not implemented by design example; behavior is unpredictable.

17.3.2 Chaining DMA Control and Status Registers

The software application programs the chaining DMA control register located in the
Endpoint application. The following table describes the control registers which consists
of four dwords for the DMA write and four dwords for the DMA read. The DMA control
registers are read/write.

In this table, Addr specifies the Endpoint byte address offset from BAR2 or BAR3.

Table 86. Chaining DMA Control Register Definitions

Addr Register Name Bits[31:]24 Bit[23:16] Bit[15:0]
0x0 DMA Wr Cntl DWO Control Field Number of descriptors
in descriptor table
0x4 DMA Wr Cntl DW1 Base Address of the Write Descriptor Table (BDT) in the RC Memory-Upper
DWORD
0x8 DMA Wr Cntl DW2 Base Address of the Write Descriptor Table (BDT) in the RC Memory-Lower
DWORD
0xC DMA Wr Cntl DW3 Reserved Reserved RCLAST-1dx of last
descriptor to process
0x10 DMA Rd Cntl DWO Control Field (described in the next table) Number of descriptors
in descriptor table
0x14 DMA Rd Cntl DW1 Base Address of the Read Descriptor Table (BDT) in the RC Memory-Upper
DWORD
0x18 DMA Rd Cntl DW2 Base Address of the Read Descriptor Table (BDT) in the RC Memory-Lower
DWORD
0x1C DMA Rd Cntl DW3 Reserved Reserved RCLAST-1dx of the last
descriptor to process

The following table describes the control fields of the of the DMA read and DMA write

control registers.

Table 87. Bit Definitions for the Control Field in the DMA Write Control Register and
DMA Read Control Register

Bit Field

Description

16 Reserved

17 MS1_ENA

Enables interrupts of all descriptors. When 1, the Endpoint DMA module
issues an interrupt using MSI to the RC when each descriptor is
completed. Your software application or BFM driver can use this interrupt
to monitor the DMA transfer status.

18 EPLAST_ENA

Enables the Endpoint DMA module to write the number of each descriptor
back to the EPLAST field in the descriptor table.

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
183

intel.

17 Testbench and Design Example

Bit Field Description

[24:20] MS1 Number When your RC reads the MSI capabilities of the Endpoint, these register
bits map to the back-end MSI signals app_msi_num [4:0]. If there is
more than one MSI, the default mapping if all the MSIs are available, is:
e MSIO = Read
e MSI1 = Write

[30:28] MSI Traffic Class When the RC application software reads the MSI capabilities of the
Endpoint, this value is assigned by default to MSI traffic class 0. These
register bits map to the back-end signal app_msi_tc[2:0].

31 DT RC Last Sync When 0, the DMA engine stops transfers when the last descriptor has
been executed. When 1, the DMA engine loops infinitely restarting with
the first descriptor when the last descriptor is completed. To stop the
infinite loop, set this bit to 0.

The following table defines the DMA status registers. These registers are read only. In
this table, Addr specifies the Endpoint byte address offset from BAR2 or BAR3.
Table 88. Chaining DMA Status Register Definitions
Addr Register Name Bits[31:24] Bits[23:16] Bits[15:0]
0x20 DMA Wr Status Hi For field definitions refer to Fields in the DMA Write Status High Register
below.

0x24 DMA Wr Status Lo Target Mem Address Write DMA Performance Counter. (Clock cycles

Width from time DMA header programmed until last
descriptor completes, including time to fetch
descriptors.)

0x28 DMA Rd Status Hi For field definitions refer to Fields in the DMA Read Status High Register

below.

0x2C DMA Rd Status Lo Max No. of Tags Read DMA Performance Counter. The number of

clocks from the time the DMA header is
programmed until the last descriptor
completes, including the time to fetch
descriptors.

0x30 Error Status Reserved Error Counter. Number

of bad ECRCs detected
by the Application
Layer. Valid only when
ECRC forwarding is
enabled.

The following table describes the fields of the DMA write status register. All of these

fields are read only.

Table 89. Fields in the DMA Write Status High Register
Bit Field Description

[31:28] CDMA version Identifies the version of the chaining DMA example design.

[27:24] Reserved —

[23:21] Max payload size The following encodings are defined:

e 001 128 bytes
e 001 256 bytes
e 010 512 bytes
e 011 1024 bytes
e 100 2048 bytes

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

184

] ®
17 Testbench and Design Example l n tel

Bit Field Description
[20:17] Reserved —
16 Write DMA descriptor Indicates that there are no more descriptors pending in the write DMA.
FIFO empty

[15:0] Write DMA EPLAS Indicates the number of the last descriptor completed by the write DMA.
For simultaneous DMA read and write transfers, EPLAST is only supported
for the final descriptor in the descriptor table.

The following table describes the fields in the DMA read status high register. All of
these fields are read only.
Table 90. Fields in the DMA Read Status High Register
Bit Field Description

[31:24] Reserved -

[23:21] Max Read Request Size The following encodings are defined:
e (001 128 bytes
e 001 256 bytes
e 010 512 bytes
e 011 1024 bytes
e 100 2048 bytes

[20:17] Negotiated Link Width The following encodings are defined:
e 4'b0001 x1
e 4'b0010 x2
e 4'b0100 x4
e 4'h1000 x8

16 Read DMA Descriptor FIFO Indicates that there are no more descriptors pending in the read DMA.

Empty

[15:0] Read DMA EPLAST Indicates the number of the last descriptor completed by the read DMA. For
simultaneous DMA read and write transfers, EPLAST is only supported for
the final descriptor in the descriptor table.

17.3.3 Chaining DMA Descriptor Tables

Note:

The following table describes the Chaining DMA descriptor table. This table is stored in
the BFM shared memory. It consists of a four-dword descriptor header and a
contiguous list of <n> four-dword descriptors. The Endpoint chaining DMA application
accesses the Chaining DMA descriptor table for two reasons:

e To iteratively retrieve four-dword descriptors to start a DMA

e To send update status to the RP, for example to record the number of descriptors
completed to the descriptor header

Each subsequent descriptor consists of a minimum of four dwords of data and
corresponds to one DMA transfer. (A dword equals 32 bits.)

The chaining DMA descriptor table should not cross a 4 KB boundary.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
185

] ®
l n tel 17 Testbench and Design Example

Table 91. Chaining DMA Descriptor Table

Byte Address Descriptor Type Description
Offset to Base
Source
0x0 Descriptor Header Reserved
0x4 Reserved
0x8 Reserved
0xC EPLAST - when enabled by the EPLAST_ENA bit in the control
register or descriptor, this location records the number of the last
descriptor completed by the chaining DMA module.
0x10 Descriptor 0 Control fields, DMA length
0x14 Endpoint address
0x18 RC address upper dword
0x1C RC address lower dword
0x20 Descriptor 1 Control fields, DMA length
0x24 Endpoint address
0x28 RC address upper dword
0x2C RC address lower dword
0x ..0 Descriptor <n> Control fields, DMA length
Ox ..4 Endpoint address
Ox ..8 RC address upper dword
0x ..C RC address lower dword

The following table shows the layout of the descriptor fields following the descriptor
header.

Table 92. Chaining DMA Descriptor Format Map

Bits[31:22] Bits[21:16] Bits[15:0]

Reserved Control Fields (refer to Table 18-9) DMA Length

Endpoint Address

RC Address Upper DWORD

RC Address Lower DWORD

The following table shows the layout of the control fields of the chaining DMA
descriptor.

Table 93. Chaining DMA Descriptor Format Map (Control Fields)

Bits[21:18] Bit[17] Bit[16]

Reserved EPLAST_ENA MSI

Each descriptor provides the hardware information on one DMA transfer. The following
table describes each descriptor field.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
186

] ®
17 Testbench and Design Example l n tel)

Table 94. Chaining DMA Descriptor Fields

Descriptor Field

Endpoint RC Access Description
Access

Endpoint Address

R R/W A 32-bit field that specifies the base address of the memory
transfer on the Endpoint site.

RC Address R R/W Specifies the upper base address of the memory transfer on

Upper DWORD the RC site.

RC Address R R/W Specifies the lower base address of the memory transfer on

Lower DWORD the RC site.

DMA Length R R/W Specifies the number of DMA DWORDs to transfer.

EPLAST_ENA R R/W This bit is OR’d with the EPLAST_ENA bit of the control
register. When EPLAST_ENA is set, the Endpoint DMA module
updates the EPLAST field of the descriptor table with the
number of the last completed descriptor, in the form <0 - n>.
Refer to Chaining DMA Descriptor Tables on page 185 for more
information.

MSI1_ENA R R/W This bit is OR’d with the MSI bit of the descriptor header.

When this bit is set the Endpoint DMA module sends an
interrupt when the descriptor is completed.

17.4 Test Driver Module

The BFM driver module, altpcietb_bfm_driver_chaining.v is configured to test the
chaining DMA example Endpoint design. The BFM driver module configures the
Endpoint Configuration Space registers and then tests the example Endpoint chaining
DMA channel. This file is stored in the <wor ki ng_di r >/t est bench/

<vari ati on_nane>/ si mul ati on/ subnodul es directory.

The BFM test driver module performs the following steps in sequence:

1. Configures the Root Port and Endpoint Configuration Spaces, which the BFM test
driver module does by calling the procedure ebfm_cfg_rp_ep, which is part of
altpcietb_bfm_configure.

2. Finds a suitable BAR to access the example Endpoint design Control Register
space. Either BARs 2 or 3 must be at least a 256-byte memory BAR to perform the
DMA channel test. The Find_mem_bar procedure in the
altpcietb_bfm_driver_chaining does this.

3. If a suitable BAR is found in the previous step, the driver performs the following
tasks:

a.

DMA read—The driver programs the chaining DMA to read data from the BFM
shared memory into the Endpoint memory. The descriptor control fields are
specified so that the chaining DMA completes the following steps to indicate
transfer completion:

* The chaining DMA writes the EPLast bit of the Chaining DMA Descriptor
Table after finishing the data transfer for the first and last descriptors.

e The chaining DMA issues an MSI when the last descriptor has completed.

DMA write—The driver programs the chaining DMA to write the data from its
Endpoint memory back to the BFM shared memory. The descriptor control
fields are specified so that the chaining DMA completes the following steps to
indicate transfer completion:

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
187

Note:

17 Testbench and Design Example

* The chaining DMA writes the EPLast bit of the Chaining DMA Descriptor
Table after completing the data transfer for the first and last descriptors.

e The chaining DMA issues an MSI when the last descriptor has completed.

e The data written back to BFM is checked against the data that was read
from the BFM.

e The driver programs the chaining DMA to perform a test that
demonstrates downstream access of the chaining DMA Endpoint memory.

Edit this file if you want to add your own custom PCle transactions. Insert your own
custom function after the find_mem_bar function. You can use the functions in the
BFM Procedures and Functions section.

Related Links

e Chaining DMA Descriptor Tables on page 185

e BFM Procedures and Functions on page 202

17.5 DMA Write Cycles

The procedure dma_wr_test used for DMA writes uses the following steps:

1. Configures the BFM shared memory. Configuration is accomplished with three
descriptor tables described below.

Table 95. Write Descriptor 0
Offset in BFM Value Description
in Shared
Memory
DWO 0x810 82 Transfer length in dwords and control bits as described in Bit
Definitions for the Control Field in the DMA Write Control Register and
DMA Read Control Register.
DW1 0x814 3 Endpoint address
DW2 0x818 0 BFM shared memory data buffer 0 upper address value
DW3 0x81c 0x1800 BFM shared memory data buffer 1 lower address value
Data Buffer | 0x1800 Increment by 1 Data content in the BFM shared memory from address: 0x01800-

0 from 0x1840
0x1515_0001
Table 96. Write Descriptor 1
Offset in BFM Value Description
Shared
Memory
DWO 0x820 1,024 Transfer length in dwords and control bits as described in Bit
Definitions for the Control Field in the DMA Write Control Register and
DMA Read Control Register .
DW1 0x824 0 Endpoint address

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

188

17 Testbench and Design Example

intel.

Offset in BFM Value Description
Shared
Memory
DW2 0x828 0 BFM shared memory data buffer 1 upper address value
DW3 0x82c 0x2800 BFM shared memory data buffer 1 lower address value
Data Buffer | 0x02800 Increment by 1 Data content in the BFM shared memory from address: 0x02800
1 from
0x2525_0001
Table 97. Write Descriptor 2
Offset in BFM Value Description
Shared
Memory
DWO 0x830 644 Transfer length in dwords and control bits as described in Bit
Definitions for the Control Field in the DMA Write Control Register and
DMA Read Control Register.
DW1 0x834 0 Endpoint address
DW2 0x838 0 BFM shared memory data buffer 2 upper address value
DW3 0x83c 0x057A0 BFM shared memory data buffer 2 lower address value
Data Buffer | 0x057A0 Increment by 1 Data content in the BFM shared memory from address: 0x057A0
2 from
0x3535_0001
2. Sets up the chaining DMA descriptor header and starts the transfer data from the
Endpoint memory to the BFM shared memory. The transfer calls the procedure
dma_set_header which writes four dwords, DW0:DW3, into the DMA write
register module.
Table 98. DMA Control Register Setup for DMA Write
Offset in DMA Value Description
Control
Register
(BAR2)
DWO 0x0 3 Number of descriptors and control bits as described in Chaining DMA
Control Register Definitions.
DW1 0x4 0 BFM shared memory descriptor table upper address value
DW2 0x8 0x800 BFM shared memory descriptor table lower address value
DW3 Oxc 2 Last valid descriptor

After writing the last dword, DW3, of the descriptor header, the DMA write starts
the three subsequent data transfers.

3. Waits for the DMA write completion by polling the BFM share memory location
0x80c, where the DMA write engine is updating the value of the number of
completed descriptor. Calls the procedures rcmem_poll and msi_poll to
determine when the DMA write transfers have completed.

Related Links

Chaining DMA Control and Status Registers on page 183

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
189

intel.

17.6 DMA Read Cycles

17 Testbench and Design Example

The procedure dma_rd_test used for DMA read uses the following three steps:

1. Configures the BFM shared memory with a call to the procedure
dma_set_rd_desc_data which sets the following three descriptor tables. .

Table 99. Read Descriptor 0
Offset in BFM Value Description

Shared

Memory
DWO 0x910 82 Transfer length in dwords and control bits as described in on

page 18-15
DW1 0x914 3 Endpoint address value
DW2 0x918 0 BFM shared memory data buffer 0 upper address value
DW3 0x91c 0x8DFO BFM shared memory data buffer 0 lower address value
Data Buffer | 0x8DFO0 Increment by 1 Data content in the BFM shared memory from address: 0x89F0
0 from
0xAAA0_0001
Table 100. Read Descriptor 1
Offset in BFM Value Description

Shared

Memory
DWO 0x920 1,024 Transfer length in dwords and control bits as described in on

page 18-15

DW1 0x924 0 Endpoint address value
DW2 0x928 10 BFM shared memory data buffer 1 upper address value
DW3 0x92c 0x10900 BFM shared memory data buffer 1 lower address value
Data Buffer | 0x10900 Increment by 1 Data content in the BFM shared memory from address: 0x10900

1

from
0xBBBB_0001

Table 101. Read Descriptor 2
Offset in BFM Value Description
Shared
Memory
DWO 0x930 644 Transfer length in dwords and control bits as described in on
page 18-15
DW1 0x934 0 Endpoint address value
DW2 0x938 0 BFM shared memory upper address value
DW3 0x93c 0x20EFO0 BFM shared memory lower address value
Data Buffer | Ox20EFO Increment by 1 Data content in the BFM shared memory from address: 0x20EFO

2

from
0xCCCC_0001

2. Sets up the chaining DMA descriptor header and starts the transfer data from the

BFM shared memory to the Endpoint memory by calling the procedure
dma_set_header which writes four dwords, DW0:DW3 into the DMA read

register module.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
190

] ®
17 Testbench and Design Example l n tel)

Table 102. DMA Control Register Setup for DMA Read
Offset in DMA Control Value Description
Registers (BAR2)
DWO | 0x0 3 Number of descriptors and control bits as described in Chaining DMA
Control Register Definitions.

DW1 | 0x14 0 BFM shared memory upper address value
DW2 | 0x18 0x900 | BFM shared memory lower address value
DW3 | Oxlc 2 Last descriptor written

After writing the last dword of the Descriptor header (DW3), the DMA read starts
the three subsequent data transfers.

Waits for the DMA read completion by polling the BFM shared memory location
0x90c, where the DMA read engine is updating the value of the number of
completed descriptors. Calls the procedures rcmem_poll and msi_poll to
determine when the DMA read transfers have completed.

17.7 Root Port Design Example

The design example includes the following primary components:

Root Port variation (<gsys_systemname>.

Avalon-ST Interfaces (altpcietb_bfm_vc_intf_ast)—handles the transfer of TLP
requests and completions to and from the Arria 10 Hard IP for PCI Express
variation using the Avalon-ST interface.

Root Port BFM tasks—contains the high-level tasks called by the test driver,
low-level tasks that request PCI Express transfers from
altpcietb_bfm_vc_intf_ast, the Root Port memory space, and simulation
functions such as displaying messages and stopping simulation.

Test Driver (altpcietb_bfm_driver_rp.v)—the chaining DMA Endpoint test driver
which configures the Root Port and Endpoint for DMA transfer and checks for the
successful transfer of data. Refer to the Test Driver Modulefor a detailed
description.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
191

] ®
l n tel 17 Testbench and Design Example

Figure 115. Root Port Design Example

altpcieth_bfm_ep_example_chaining_pipe1b.v

Root Port BFM Tasks and Shared Memory

BFM Shared Memory BFM Read/Write Shared Request Procedures
(altpcietb_bfm_shmem
Test Driver P ~ i) BFM Configuration Procedures
(altpcieth_bfm_| % >
driver_rp.v) BFM Log Interface BFM Request Interface
(altpcieth_bfm_req_intf_common)

(altpcieth_bfm_log

A

Avalon-ST

vy

Avalon-ST Interface
(altpcieth_bfm_vc_intf) |

Root Port PCl Express
Variation Link

(variation_name.v)

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
192

™ ®
17 Testbench and Design Example < l n tel)

You can use the example Root Port design for Verilog HDL simulation. All of the
modules necessary to implement the example design with the variation file are
contained in altpcietb_bfm_ep_example_chaining_pipenlb.v.

The top-level of the testbench instantiates the following key files:

o altlpcietb_bfm_top_ep.v— this is the Endpoint BFM. This file also instantiates
the SERDES and PIPE interface.

e altpcietb_pipe_phy.v—used to simulate the PIPE interface.

e altp cietb_bfm_ep_example_chaining_pipenlb.v—the top-level of the Root
Port design example that you use for simulation. This module instantiates the Root
Port variation, <variation_name> .v, and the Root Port application
altpcietb_bfm_vc_intf _<application_width> . This module provides both PIPE
and serial interfaces for the simulation environment. This module has two debug
ports named test_out_icm_(which is the test_out signal from the Hard IP)
and test_in which allows you to monitor and control internal states of the Hard
IP variation.

o altpcietb_bfm_vc_intf_ast.v—a wrapper module which instantiates either
altpcietb_vc_intf_64 or altpcietb_vc_intf_ <application_width> based on the
type of Avalon-ST interface that is generated.

e altpcietb_vc_intf__ <application_width> .v—provide the interface between the
Arria 10 Hard IP for PCI Express variant and the Root Port BFM tasks. They
provide the same function as the altpcietb_bfm_vc_intf.v module, transmitting
requests and handling completions. Refer to the Root Port BFM for a full
description of this function. This version uses Avalon-ST signaling with either a 64-
or 128-bit data bus interface.

e altpcierd_tl_cfg_sample.v—accesses Configuration Space signals from the
variant. Refer to the Chaining DMA Design Examples for a description of this
module.

Files in subdirectory <gsys_systemname> [testbench/simulation/submodules:

e altpcietb_bfm_ep_example_chaining_pipenlb.v—the simulation model for
the chaining DMA Endpoint.

e altpcietb_bfm_driver_rp.v-this file contains the functions to implement the
shared memory space, PCI Express reads and writes, initialize the Configuration
Space registers, log and display simulation messages, and define global constants.

Related Links

e Test Driver Module on page 187

e Chaining DMA Design Examples on page 177

17.8 Root Port BFM

The basic Root Port BFM provides Verilog HDL task-based interface for requesting
transactions that are issued to the PCI Express link. The Root Port BFM also handles
requests received from the PCI Express link. The following figure provides an overview
of the Root Port BFM.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
193

intel)

17 Testbench and Design Example

Figure 116. Root Port BFM

Root Port BFM

BFM Shared Memory
(altpcietb_bfm_shmem BFM Read/Write Shared Request Procedures
_common)

BFM Configuration Procedures

BFM Log Interface
(altpcietb_bfm_log
_common)

BFM Request Interface
(altpcietb_bfm_req_intf_common)

Root Port RTL Model (altpcietb_bfm_rp_top_x8_pipen1b)

IP Functional Simulation
Model of the Root Avalon-ST Interface
Port Interface (altpcietb_bfm_vc_intf)

(altpcietb_bfm_driver_rp)

The functionality of each of the modules included is explained below.

BFM shared memory (altpcietb_bfm shmem_common Verilog HDL include file)
—The Root Port BFM is based on the BFM memory that is used for the following
purposes:

Storing data received with all completions from the PCI Express link.

Storing data received with all write transactions received from the PCI Express
link.

Sourcing data for all completions in response to read transactions received from
the PCI Express link.

Sourcing data for most write transactions issued to the PCI Express link. The only
exception is certain BFM write procedures that have a four-byte field of write data
passed in the call.

Storing a data structure that contains the sizes of and the values programmed in
the BARs of the Endpoint.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

194

™ ®
17 Testbench and Design Example l n tel)

A set of procedures is provided to read, write, fill, and check the shared memory from
the BFM driver. For details on these procedures, see BFM Shared Memory Access
Procedures.

e BFM Read/Write Request Functions(altpcietb _bfm driver_rp.v)—These
functions provide the basic BFM calls for PCI Express read and write requests. For
details on these procedures, refer to BFM Read and Write Procedures.

e BFM Configuration Functions(altpcietb_bfm driver_rp.v)—These functions
provide the BFM calls to request configuration of the PCI Express link and the
Endpoint Configuration Space registers. For details on these procedures and
functions, refer to BFM Configuration Procedures.

* BFM Log Interface(altpcietb_bfm_driver_rp.v)—The BFM log functions
provides routines for writing commonly formatted messages to the simulator
standard output and optionally to a log file. It also provides controls that stop
simulation on errors. For details on these procedures, refer to BFM Log and
Message Procedures.

e BFM Request Interface(altpcietb_bfm_driver_rp.v)—This interface provides
the low-level interface between the altpcietb_bfm_rdwr and
altpcietb_bfm_configure procedures or functions and the Root Port RTL
Model. This interface stores a write-protected data structure containing the sizes
and the values programmed in the BAR registers of the Endpoint, as well as, other
critical data used for internal BFM management. You do not need to access these
files directly to adapt the testbench to test your Endpoint application.

e Avalon-ST Interfaces (altpcietb_bfm_vc_intf.v)—These interface modules
handle the Root Port interface model. They take requests from the BFM request
interface and generate the required PCI Express transactions. They handle
completions received from the PCI Express link and notify the BFM request
interface when requests are complete. Additionally, they handle any requests
received from the PCI Express link, and store or fetch data from the shared
memory before generating the required completions.

Related Links

e Test Signals on page 105
e BFM Shared Memory Access Procedures on page 208

17.8.1 BFM Memory Map

The BFM shared memory is configured to be two MBs. The BFM shared memory is
mapped into the first two MBs of I/O space and also the first two MBs of memory
space. When the Endpoint application generates an I/O or memory transaction in this
range, the BFM reads or writes the shared memory.

17.8.2 Configuration Space Bus and Device Numbering

The Root Port interface is assigned to be device number 0 on internal bus number 0.
The Endpoint can be assigned to be any device number on any bus number (greater
than 0) through the call to procedure ebfm_cfg_rp_ep. The specified bus number is
assigned to be the secondary bus in the Root Port Configuration Space.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
195

™ ®
< l n tel) 17 Testbench and Design Example

17.8.3 Configuration of Root Port and Endpoint

Before you issue transactions to the Endpoint, you must configure the Root Port and
Endpoint Configuration Space registers. To configure these registers, call the
procedure ebfm_cfg_rp_ep, which is included in altpcietb_bfm_driver_rp.v.

The ebfm_cfg_rp_ep executes the following steps to initialize the Configuration
Space:

1. Sets the Root Port Configuration Space to enable the Root Port to send
transactions on the PCI Express link.

2. Sets the Root Port and Endpoint PCI Express Capability Device Control registers as
follows:

a. Disables Error Reporting in both the Root Port and Endpoint. BFM does not
have error handling capability.

b. Enables Relaxed Ordering in both Root Port and Endpoint.
Enables Extended Tags for the Endpoint, if the Endpoint has that capability.

d. Disables Phantom Functions, Aux Power PM, and No Snoop in both the
Root Port and Endpoint.

e. Sets the Max Payload Size to what the Endpoint supports because the Root
Port supports the maximum payload size.

f. Sets the Root Port Max Read Request Size to 4 KB because the example
Endpoint design supports breaking the read into as many completions as
necessary.

g. Sets the Endpoint Max Read Request Size equal to the Max Payload Size
because the Root Port does not support breaking the read request into
multiple completions.

3. Assigns values to all the Endpoint BAR registers. The BAR addresses are assigned
by the algorithm outlined below.

a. I/0O BARs are assigned smallest to largest starting just above the ending
address of BFM shared memory in I/O space and continuing as needed
throughout a full 32-bit I/O space.

b. The 32-bit non-prefetchable memory BARs are assigned smallest to largest,
starting just above the ending address of BFM shared memory in memory
space and continuing as needed throughout a full 32-bit memory space.

c. Assignment of the 32-bit prefetchable and 64-bit prefetchable memory BARS
are based on the value of the addr_map_4GB_limit input to the
ebfm_cfg_rp_ep. The default value of the addr_map_4GB_limit is O.

If the addr_map_4GB_limit input to the ebfm_cfg_rp_ep is set to 0, then
the 32-bit prefetchable memory BARs are assigned largest to smallest,
starting at the top of 32-bit memory space and continuing as needed down to
the ending address of the last 32-bit non-prefetchable BAR.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

196

] ®
17 Testbench and Design Example l n tel)

However, if the addr_map_4GB_limit input is set to 1, the address map is
limited to 4 GB, the 32-bit and 64-bit prefetchable memory BARs are assigned
largest to smallest, starting at the top of the 32-bit memory space and
continuing as needed down to the ending address of the last 32-bit non-
prefetchable BAR.

If the addr_map_4GB_limit input to the ebfm_cfg_rp_ep is set to 0, then
the 64-bit prefetchable memory BARs are assigned smallest to largest starting
at the 4 GB address assigning memory ascending above the 4 GB limit
throughout the full 64-bit memory space.

If the addr_map_4 GB_limit input to the ebfm_cfg _rp_ep is set to 1, then
the 32-bit and the 64-bit prefetchable memory BARs are assigned largest to
smallest starting at the 4 GB address and assigning memory by descending
below the 4 GB address to addresses memory as needed down to the ending
address of the last 32-bit non-prefetchable BAR.

The above algorithm cannot always assign values to all BARs when there are a
few very large (1 GB or greater) 32-bit BARs. Although assigning addresses to
all BARs may be possible, a more complex algorithm would be required to
effectively assign these addresses. However, such a configuration is unlikely to
be useful in real systems. If the procedure is unable to assign the BARs, it
displays an error message and stops the simulation.

Based on the above BAR assignments, the Root Port Configuration Space address
windows are assigned to encompass the valid BAR address ranges.

The Endpoint PCI control register is set to enable master transactions, memory
address decoding, and I/O address decoding.

The ebfm_cfg_rp_ep procedure also sets up a bar_table data structure in BFM
shared memory that lists the sizes and assigned addresses of all Endpoint BARs. This
area of BFM shared memory is write-protected, which means any user write accesses
to this area cause a fatal simulation error. This data structure is then used by
subsequent BFM procedure calls to generate the full PCI Express addresses for read
and write requests to particular offsets from a BAR. This procedure allows the
testbench code that accesses the Endpoint Application Layer to be written to use
offsets from a BAR and not have to keep track of the specific addresses assigned to
the BAR. The following table shows how those offsets are used.

Table 103. BAR Table Structure
Offset (Bytes) Description
+0 PCI Express address in BARO
+4 PCI Express address in BAR1
+8 PCI Express address in BAR2
+12 PCI Express address in BAR3
+16 PCI Express address in BAR4
+20 PCI Express address in BARS
+24 PCI Express address in Expansion ROM BAR
+28 Reserved
+32 BARO read back value after being written with all 1’s (used to compute size)
+36 BAR1 read back value after being written with all 1’s
continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
197

intel.

17 Testbench and Design Example

Offset (Bytes)

Description

+40 BAR2 read back value after being written with all 1's

+44 BAR3 read back value after being written with all 1's

+48 BAR4 read back value after being written with all 1's

+52 BARS read back value after being written with all 1's

+56 Expansion ROM BAR read back value after being written with all 1's
+60 Reserved

The configuration routine does not configure any advanced PCI Express capabilities
such as the AER capability.

Besides the ebfm_cTg_rp_ep procedure in altpcietb_bfm_driver_rp.v, routines to
read and write Endpoint Configuration Space registers directly are available in the
Verilog HDL include file. After the ebfm_cfg_rp_ep procedure is run the PCI Express
I/O and Memory Spaces have the layout as described in the following three figures.
The memory space layout is dependent on the value of the add r_map_4GB_limit
input parameter. If addr_map_4GB_limit is 1 the resulting memory space map is
shown in the following figure.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

198

17 Testbench and Design Example

Figure 117.

Memory Space Layout—4 GB Limit

Address
0x0000 0000

0x001F FF80

0x001F FFCO

0x0020 0000

OXFFFF FFFF

Root Complex
Shared Memory

Configuration Scratch
Space Used by
BFM Routines - Not
Writeable by User
Calls or Endpoint

BAR Table
Used by BFM
Routines - Not
Writeable by User
Calls or End Point

Endpoint Non-
Prefetchable Memory
Space BARs
Assigned Smallest
to Largest

Unused

Endpoint Memory
Space BARs
Prefetchable 32-bit
and 64-bit
Assigned Smallest
to Largest

If addr_map_4GB_limit is 0, the resulting memory space map is shown in the

following figure.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

199

intel)

Figure 118. Memory Space Layout—No Limit

Address
0x0000 0000

0x001F FF80

0x001F FFOO

0x0020 0000

BAR-Size Dependent

BAR-Size Dependent

0x0000 0001 0000 0000

BAR-Size Dependent

OXFFFF FFFF FFFF FFFF

17 Testbench and Design Example

Root Complex
Shared Memory

Configuration Scratch
Space Used by
Routines - Not

Writeable by User
Calls or Endpoint

BAR Table
Used by BFM
Routines - Not

Writeable by User
Calls or Endpoint

Endpoint Non-
Prefetchable Memory
Space BARs
Assigned Smallest
to Largest

Unused

Endpoint Memory
Space BARs
Prefetchable 32-bit
Assigned Smallest
to Largest

Endpoint Memory
Space BARs
Prefetchable 64-bit
Assigned Smallest
to Largest

Unused

The following figure shows the I/O address space.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

200

] ®
17 Testbench and Design Example l n tel)

Figure 119. I/0 Address Space

Address
0x0000 0000

Root Complex
Shared Memory

0x001F FF80

Configuration Scratch
Space Used by BFM
Routines - Not
Writeable by User
0x001F FFCO Calls or Endpoint
BAR Table
Used by BFM
Routines - Not
Writeable by User
0x0020 0000 Calls or Endpoint

Endpoint
I/O Space BARs
Assigned Smallest
to Largest

BAR-Size Dependent

Unused

OXFFFF FFFF

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
201

™ ®
< l n tel) 17 Testbench and Design Example

17.8.4 Issuing Read and Write Transactions to the Application Layer

Read and write transactions are issued to the Endpoint Application Layer by calling one
of the ebfm_bar procedures in altpcietb_bfm_driver_rp.v. The procedures and
functions listed below are available in the Verilog HDL include file
altpcietb_bfm_driver_rp.v. The complete list of available procedures and functions
is as follows:

e ebfm_barwr—writes data from BFM shared memory to an offset from a specific
Endpoint BAR. This procedure returns as soon as the request has been passed to
the VC interface module for transmission.

e ebfm_barwr_imm—writes a maximum of four bytes of immediate data (passed in
a procedure call) to an offset from a specific Endpoint BAR. This procedure returns
as soon as the request has been passed to the VC interface module for
transmission.

e ebfm_barrd_wait—reads data from an offset of a specific Endpoint BAR and
stores it in BFM shared memory. This procedure blocks waiting for the completion
data to be returned before returning control to the caller.

e ebfm_barrd_nowt—reads data from an offset of a specific Endpoint BAR and
stores it in the BFM shared memory. This procedure returns as soon as the request
has been passed to the VC interface module for transmission, allowing subsequent
reads to be issued in the interim.

These routines take as parameters a BAR number to access the memory space and
the BFM shared memory address of the bar_table data structure that was set up by
the ebfm_cFfg_rp_ep procedure. (Refer to Configuration of Root Port and Endpoint.)
Using these parameters simplifies the BFM test driver routines that access an offset
from a specific BAR and eliminates calculating the addresses assigned to the specified
BAR.

The Root Port BFM does not support accesses to Endpoint I/O space BARs.

Related Links
Configuration of Root Port and Endpoint on page 196

17.9 BFM Procedures and Functions

The BFM includes procedures, functions, and tasks to drive Endpoint application
testing. It also includes procedures to run the chaining DMA design example.

The BFM read and write procedures read and write data among BFM shared memory,
Endpoint BARs, and specified configuration registers. The procedures and functions are
available in the Verilog HDL. They are in the include file altpcietb_bfm_driver.v.
These procedures and functions support issuing memory and configuration
transactions on the PCI Express link.

17.9.1 ebfm_barwr Procedure

The ebfm_barwr procedure writes a block of data from BFM shared memory to an
offset from the specified Endpoint BAR. The length can be longer than the configured
MAXIMUM_PAYLOAD_SIZE; the procedure breaks the request up into multiple
transactions as needed. This routine returns as soon as the last transaction has been
accepted by the VC interface module.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
202

17 Testbench an

d Design Example

intel.

Location

altpcietb_bfm_rdwr.v

Syntax

ebfm_barwr(bar_table, bar_num, pcie_offset,

Icladdr, byte_len, tclass)

Arguments

bar_table

Address of the Endpoint bar_table structure in BFM shared memory.
The bar_table structure stores the address assigned to each BAR so
that the driver code does not need to be aware of the actual assigned
addresses only the application specific offsets from the BAR.

bar_num

Number of the BAR used with pcie_offset to determine PCI Express
address.

pcie_offset

Address offset from the BAR base.

Icladdr BFM shared memory address of the data to be written.

byte_len Length, in bytes, of the data written. Can be 1 to the minimum of the
bytes remaining in the BAR space or BFM shared memory.

tclass Traffic class used for the PCI Express transaction.

17.9.2 ebfm_barwr_imm Procedure

The ebfm_barwr_imm procedure writes up to four bytes of data to an offset from the

specified Endpoint BAR.

Location

altpcietb_bfm_driver_rp.v

Syntax

ebfm_barwr_imm(bar_table, bar_num, pcie_offset,

imm_data, byte_len, tclass)

Arguments

bar_table

Address of the Endpoint bar_table structure in BFM shared memory.
The bar_table structure stores the address assigned to each BAR so
that the driver code does not need to be aware of the actual assigned
addresses only the application specific offsets from the BAR.

bar_num

Number of the BAR used with pcie_offset to determine PCI Express
address.

pcie_offset

Address offset from the BAR base.

imm_data

Data to be written. In Verilog HDL, this argument is reg [31:0].In
both languages, the bits written depend on the length as follows:

Length Bits Written
e 4:31downto 0
23 downto 0
15 downto 0
7 downto O

e 3:
o« 2:
1:

byte_len

Length of the data to be written in bytes. Maximum length is 4 bytes.

tclass

Traffic class to be used for the PCI Express transaction.

17.9.3 ebfm_barrd_wait Procedure

The ebfm_barrd_wait procedure reads a block of data from the offset of the
specified Endpoint BAR and stores it in BFM shared memory. The length can be longer
than the configured maximum read request size; the procedure breaks the request up
into multiple transactions as needed. This procedure waits until all of the completion
data is returned and places it in shared memory.

Location

altpcietb_bfm_driver_rp.v

Syntax

ebfm_barrd_wait(bar_table, bar_num, pcie_offset,

Icladdr, byte_len, tclass)

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
203

] ®
l n tel 17 Testbench and Design Example

Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.
The bar_table structure stores the address assigned to each BAR so that
the driver code does not need to be aware of the actual assigned
addresses only the application specific offsets from the BAR.

bar_num Number of the BAR used with pcie_offset to determine PCI Express
address.

pcie_offset Address offset from the BAR base.

Icladdr BFM shared memory address where the read data is stored.

byte_len Length, in bytes, of the data to be read. Can be 1 to the minimum of

the bytes remaining in the BAR space or BFM shared memory.

tclass Traffic class used for the PCI Express transaction.

17.9.4 ebfm_barrd_nowt Procedure

The ebfm_barrd_nowt procedure reads a block of data from the offset of the
specified Endpoint BAR and stores the data in BFM shared memory. The length can be
longer than the configured maximum read request size; the procedure breaks the
request up into multiple transactions as needed. This routine returns as soon as the
last read transaction has been accepted by the VC interface module, allowing
subsequent reads to be issued immediately.

Location altpcietb_b fm_driver_rp.v
Syntax ebfm_barrd_nowt(bar_table, bar_num, pcie_offset, Icladdr, byte len, tclass)
Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.
bar_num Number of the BAR used with pcie_offset to determine PCI Express
address.
pcie_offset Address offset from the BAR base.
Icladdr BFM shared memory address where the read data is stored.
byte_len Length, in bytes, of the data to be read. Can be 1 to the minimum of
the bytes remaining in the BAR space or BFM shared memory.
tclass Traffic Class to be used for the PCI Express transaction.

17.9.5 ebfm_cfgwr_imm_wait Procedure

The ebfm_cFfgwr_imm_wait procedure writes up to four bytes of data to the
specified configuration register. This procedure waits until the write completion has
been returned.

Location altpcietb_bfm_driver_rp.v
Syntax ebfm_cfgwr_imm_wait(bus_num, dev_num, fnc_num, imm_regb_ad, regb_In, imm_data,
compl_status
Arguments bus_num PCI Express bus number of the target device.
dev_num PCI Express device number of the target device.
fnc_num Function number in the target device to be accessed.
regb_ad Byte-specific address of the register to be written.

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
204

17 Testbench and Design Example

intel.

Location

altpcietb_bfm_driver_rp.v

regb_In

Length, in bytes, of the data written. Maximum length is four bytes. The
regb_In and the regb_ad arguments cannot cross a DWORD
boundary.

imm_data

Data to be written.

This argument is reg [31:0].

The bits written depend on the length:
: 31 downto 0

1 23 downto O

: 15 downto 0

: 7 downto 0

= N W N

compl_status

This argument is reg [2:0].

This argument is the completion status as specified in the PCI Express
specification. The following encodings are defined:

e 3'b000: SC— Successful completion

e 3'b001: UR— Unsupported Request

e 3’b010: CRS — Configuration Request Retry Status
e 3'b100: CA — Completer Abort

17.9.6 ebfm_cfgwr_imm_nowt Procedure

The ebfm_cfgwr_imm_nowt procedure writes up to four bytes of data to the
specified configuration register. This procedure returns as soon as the VC interface
module accepts the transaction, allowing other writes to be issued in the interim. Use
this procedure only when successful completion status is expected.

Location altpcietb_bfm_driver_rp.v
Syntax ebfm_cfgwr_imm_nowt(bus_num, dev_num, fnc_num, imm_regb_adr, regb_len,
imm_data)
Arguments bus_num PCI Express bus number of the target device.
dev_num PCI Express device humber of the target device.
fnc_num Function number in the target device to be accessed.
regb_ad Byte-specific address of the register to be written.
regb_In Length, in bytes, of the data written. Maximum length is four bytes, The
regb_In the regb_ad arguments cannot cross a DWORD boundary.
imm_data Data to be written
This argument is reg [31:0].
In both languages, the bits written depend on the length. The following
encodes are defined.
e 4:[31:0]
e 3:[23:0]
e 2:[15:0]
e 1:[7:0]

17.9.7 ebfm_cfgrd_wait Procedure

The ebfm_cfgrd_wait procedure reads up to four bytes of data from the specified
configuration register and stores the data in BFM shared memory. This procedure
waits until the read completion has been returned.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
205

] ®
l n tel 17 Testbench and Design Example

Location altpcietb_bfm_driver_rp.v
Syntax ebfm_cfgrd_wait(bus_num, dev_num, fnc_num, regb_ad, regb_In, Icladdr,
compl_status)
Arguments bus_num PCI Express bus number of the target device.
dev_num PCI Express device number of the target device.
fnc_num Function number in the target device to be accessed.
regb_ad Byte-specific address of the register to be written.
regb_In Length, in bytes, of the data read. Maximum length is four bytes. The
regb_In and the regb_ad arguments cannot cross a DWORD
boundary.
Icladdr BFM shared memory address of where the read data should be placed.
compl_status Completion status for the configuration transaction.
This argument is reg [2:0].
In both languages, this is the completion status as specified in the PCI
Express specification. The following encodings are defined.
e 3'b000: SC— Successful completion
e 3'b001: UR— Unsupported Request
e 3'b010: CRS — Configuration Request Retry Status
e 3'b100: CA — Completer Abort

17.9.8 ebfm_cfgrd_nowt Procedure

The ebfm_cfgrd_nowt procedure reads up to four bytes of data from the specified
configuration register and stores the data in the BFM shared memory. This procedure
returns as soon as the VC interface module has accepted the transaction, allowing
other reads to be issued in the interim. Use this procedure only when successful
completion status is expected and a subsequent read or write with a wait can be used
to guarantee the completion of this operation.

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_cfgrd_nowt(bus_num, dev_num, fnc_num, regb_ad, regb_In, Icladdr)

Arguments bus_num PCI Express bus number of the target device.
dev_num PCI Express device number of the target device.
fnc_num Function number in the target device to be accessed.
regb_ad Byte-specific address of the register to be written.
regb_1In Length, in bytes, of the data written. Maximum length is four bytes. The

regb_In and regb_ad arguments cannot cross a DWORD boundary.

Icladdr BFM shared memory address where the read data should be placed.

17.9.9 BFM Configuration Procedures

The BFM configuration procedures are available in altpcietb_bfm_driver_rp.v.
These procedures support configuration of the Root Port and Endpoint Configuration
Space registers.

All Verilog HDL arguments are type integer and are input-only unless specified
otherwise.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
206

17 Testbench and Design Example

intel.

17.9.9.1 ebfm_cfg_rp_ep Procedure

The ebfm_cfg_rp_ep procedure configures the Root Port and Endpoint Configuration
Space registers for operation.

Location altpcietb_bfm_driver_rp.v
Syntax ebfm_cfg_rp_ep(bar_table, ep_bus_num, ep_dev_num, rp_max_rd_req_size,
display_ep_config, addr_map_4GB_limit)
Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.

This routine populates the bar_table structure. The bar_table
structure stores the size of each BAR and the address values assigned to
each BAR. The address of the bar_table structure is passed to all
subsequent read and write procedure calls that access an offset from a
particular BAR.

ep_bus_num

PCI Express bus number of the target device. This number can be any
value greater than 0. The Root Port uses this as its secondary bus
number.

ep_dev_num

PCI Express device number of the target device. This number can be
any value. The Endpoint is automatically assigned this value when it
receives its first configuration transaction.

rp_max_rd_req_size

Maximum read request size in bytes for reads issued by the Root Port.
This parameter must be set to the maximum value supported by the
Endpoint Application Layer. If the Application Layer only supports reads
of the MAXIMUM_PAYLOAD_SIZE, then this can be set to 0 and the read
request size will be set to the maximum payload size. Valid values for
this argument are 0, 128, 256, 512, 1,024, 2,048 and 4,096.

display_ep_config

When set to 1 many of the Endpoint Configuration Space registers are
displayed after they have been initialized, causing some additional reads
of registers that are not normally accessed during the configuration
process such as the Device ID and Vendor ID.

addr_map_4GB_limit

When set to 1 the address map of the simulation system will be limited
to 4 GB. Any 64-bit BARs will be assigned below the 4 GB limit.

17.9.9.2 ebfm_cfg_decode_bar Procedure

The ebfm_cfg_decode bar procedure analyzes the information in the BAR table for
the specified BAR and returns details about the BAR attributes.

Location altpcietb_bfm_driver_rp.v
Syntax ebfm_cfg_decode_bar(bar_table, bar_num, log2_size, is_mem, is_pref, is_64b)
Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.
bar_num BAR number to analyze.
log2_size This argument is set by the procedure to the log base 2 of the size of
the BAR. If the BAR is not enabled, this argument will be set to 0.
is_mem The procedure sets this argument to indicate if the BAR is a memory
space BAR (1) or I/O Space BAR (0).
is_pref The procedure sets this argument to indicate if the BAR is a prefetchable
BAR (1) or non-prefetchable BAR (0).
is_64b The procedure sets this argument to indicate if the BAR is a 64-bit BAR
(1) or 32-bit BAR (0). This is set to 1 only for the lower numbered BAR
of the pair.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
207

] ®
l n tel 17 Testbench and Design Example

17.9.10 BFM Shared Memory Access Procedures
The BFM shared memory access procedures and functions are in the Verilog HDL

include file altpcietb_bfm_driver.v. These procedures and functions support
accessing the BFM shared memory.

17.9.10.1 Shared Memory Constants

The following constants are defined in altpcietb_bfm_driver.v. They select a data
pattern in the shmem_Ffill and shmem_chk ok routines. These shared memory
constants are all Verilog HDL type integer.

Table 104. Constants: Verilog HDL Type INTEGER

Constant Description

SHMEM_FILL_ZEROS Specifies a data pattern of all zeros

SHMEM_FILL_BYTE_INC Specifies a data pattern of incrementing 8-bit bytes (0x00, 0x01, 0x02,
etc.)

SHMEM_FILL_WORD_INC Specifies a data pattern of incrementing 16-bit words (0x0000, 0x0001,
0x0002, etc.)

SHMEM_FILL_DWORD_ INC Specifies a data pattern of incrementing 32-bit dwords (0x00000000,
0x00000001, 0x00000002, etc.)

SHMEM_FILL_QWORD_INC Specifies a data pattern of incrementing 64-bit qwords
(0x0000000000000000, 0x0000000000000001, 0x0000000000000002,
etc.)

SHMEM_FILL_ONE Specifies a data pattern of all ones

17.9.10.2 shmem_write

The shmem_write procedure writes data to the BFM shared memory.

Location altpcietb_bfm_driver_rp.v
Syntax shmem_write(addr, data, leng)
Arguments addr BFM shared memory starting address for writing data
data Data to write to BFM shared memory.

This parameter is implemented as a 64-bit vector. leng is 1-8 bytes.
Bits 7 downto O are written to the location specified by addr; bits 15
downto 8 are written to the addr+1 location, etc.

length Length, in bytes, of data written

17.9.10.3 shmem_read Function

The shmem_read function reads data to the BFM shared memory.

Location altpcietb_bfm_driver_rp.v
Syntax data:= shmem_read(addr, leng)
Arguments addr BFM shared memory starting address for reading data
leng Length, in bytes, of data read
Return data Data read from BFM shared memory.
continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
208

17 Testbench and Design Example

intel.

Location

altpcietb_bfm_driver_rp.v

This parameter is implemented as a 64-bit vector. leng is 1- 8 bytes. If
leng is less than 8 bytes, only the corresponding least significant bits of
the returned data are valid.

Bits 7 downto O are read from the location specified by addr; bits 15
downto 8 are read from the addr+1 location, etc.

17.9.10.4 shmem_display Verilog HDL Function

The shmem_display Verilog HDL function displays a block of data from the BFM
shared memory.

Location altpcietb_bfm_driver_rp.v
Syntax Verilog HDL: dummy_return:=shmem_display(addr, leng, word_size, flag_addr,
msg_type) ;
Arguments addr BFM shared memory starting address for displaying data.
leng Length, in bytes, of data to display.
word_size Size of the words to display. Groups individual bytes into words. Valid
values are 1, 2, 4, and 8.
flag_addr Adds a <== flag to the end of the display line containing this address.
Useful for marking specific data. Set to a value greater than 2**21 (size
of BFM shared memory) to suppress the flag.
msg_type Specifies the message type to be displayed at the beginning of each

line. See "BFM Log and Message Procedures” on page 18-37 for more
information about message types. Set to one of the constants defined in
Table 18-36 on page 18-41.

17.9.10.5 shmem_fill Procedure

The shmem_Fi 1l procedure fills a block of BFM shared memory with a specified data

pattern.
Location altpcietb_bfm_driver_rp.v
Syntax shmem_fill(addr, mode, leng, init)
Arguments addr BFM shared memory starting address for filling data.
mode Data pattern used for filling the data. Should be one of the constants
defined in section Shared Memory Constants.
leng Length, in bytes, of data to fill. If the length is not a multiple of the
incrementing data pattern width, then the last data pattern is truncated
to fit.
init Initial data value used for incrementing data pattern modes. This

argument is reg [63:0].

The necessary least significant bits are used for the data patterns that
are smaller than 64 bits.

Related Links
Shared Memory Constants on page 208

17.9.10.6 shmem_chk_ok Function

The shmem_chk_ok function checks a block of BFM shared memory against a
specified data pattern.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
209

intel.

17 Testbench and Design Example

Location altpcietb_bfm_shmem.v
Syntax result:= shmem_chk_ok(addr, mode, leng, init, display_error)
Arguments addr BFM shared memory starting address for checking data.
mode Data pattern used for checking the data. Should be one of the constants
defined in section “Shared Memory Constants” on page 18-35.
leng Length, in bytes, of data to check.
init This argument is reg [63:0].The necessary least significant bits are
used for the data patterns that are smaller than 64-bits.
display_error When set to 1, this argument displays the miscomparing data on the
simulator standard output.
Return Result Result is 1-bit.
e 1'bl — Data patterns compared successfully
e 1'b0 — Data patterns did not compare successfully

17.9.11 BFM Log and Message Procedures

The following procedures and functions are available in the Verilog HDL include file
altpcietb_bfm_driver_rp.v.

These procedures provide support for displaying messages in a common format,
suppressing informational messages, and stopping simulation on specific message
types.

The following constants define the type of message and their values determine
whether a message is displayed or simulation is stopped after a specific message.
Each displayed message has a specific prefix, based on the message type in the
following table.

You can suppress the display of certain message types. The default values determining
whether a message type is displayed are defined in the following table. To change the
default message display, modify the display default value with a procedure call to
ebfm_log_set _suppressed_msg_mask.

Certain message types also stop simulation after the message is displayed. The
following table shows the default value determining whether a message type stops
simulation. You can specify whether simulation stops for particular messages with the
procedure ebfm_log_set _stop_on_msg_mask.

All of these log message constants type integer.

Table 105. Log Messages
Constant Description Mask Bit Display Simulation Message
(Message No by Default Stops by Prefix
Type) Default
EBFM_MSG_D | Specifies debug messages. 0 No No DEBUG:
EBUG
EBFM_MSG_1 | Specifies informational messages, 1 Yes No INFO:
NFO such as configuration register
values, starting and ending of tests.
continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

210

17 Testbench and Design Example

intel.

Constant Description Mask Bit Display Simulation Message
(Message No by Default Stops by Prefix
Type) Default
EBFM_MSG_W | Specifies warning messages, such 2 Yes No WARNING:
ARNING as tests being skipped due to the
specific configuration.
EBFM_MSG_E | Specifies additional information for | 3 Yes No ERROR:
RROR_INFO | an error. Use this message to
display preliminary information
before an error message that stops
simulation.
EBFM_MSG_E | Specifies a recoverable error that 4 Yes No ERROR:
RROR_CONTI allows simulation to continue. Use
NUE this error for data miscompares.
EBFM_MSG_E | Specifies an error that stops N/A Yes Yes FATAL:
RROR_FATAL | simulation because the error leaves Cannot Cannot suppress
the testbench in a state where suppress
further simulation is not possible.
EBFM_MSG_E | Used for BFM test driver or Root N/A Y Y FATAL :
RROR_FATAL | Port BFM fatal errors. Specifies an Cannot Cannot suppress
TB ERR error that stops simulation because suppress

the error leaves the testbench in a
state where further simulation is
not possible. Use this error
message for errors that occur due
to a problem in the BFM test driver
module or the Root Port BFM, that
are not caused by the Endpoint
Application Layer being tested.

17.9.11.1 ebfm_display Verilog HDL Function

The ebfm_display procedure or function displays a message of the specified type to
the simulation standard output and also the log file if ebfm_log_open is called.

A message can be suppressed, simulation can be stopped or both based on the default
settings of the message type and the value of the bit mask when each of the

procedures listed below is called. You can call one or both of these procedures based
on what messages you want displayed and whether or not you want simulation to stop
for specific messages.

When ebfm_log_set suppressed_msg_mask is called, the display of the

message might be suppressed based on the value of the bit mask.

When ebfm_log_set_stop_on_msg_mask is called, the simulation can be
stopped after the message is displayed, based on the value of the bit mask.

Location altpcietb_bfm_driver_rp.v

Syntax Verilog HDL: dummy_return:=ebfm_display(msg_type, message);

Argument msg_type Message type for the message. Should be one of the constants defined
in Table 18-36 on page 18-41.

message The message string is limited to a maximum of 100 characters. Also,

because Verilog HDL does not allow variable length strings, this routine
strips off leading characters of 8'h00 before displaying the message.

Return always 0 Applies only to the Verilog HDL routine.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

211

] ®
l n tel 17 Testbench and Design Example

17.9.11.2 ebfm_log_stop_sim Verilog HDL Function

The ebfm_log_stop_sim procedure stops the simulation.

Location altpcietb_bfm_driver_rp.v
Syntax Verilog HDL: return:=ebfm_log_stop_sim(success);
Argument success When set to a 1, this process stops the simulation with a message
indicating successful completion. The message is prefixed with
SUCCESS:.

Otherwise, this process stops the simulation with a message indicating
unsuccessful completion. The message is prefixed with FAILURE:.

Return Always 0 This value applies only to the Verilog HDL function.

17.9.11.3 ebfm_log_set_suppressed_msg_mask #Verilog HDL Function

The ebfm_log_set suppressed_msg _mask procedure controls which message
types are suppressed.

Location altpcietb_bfm_driver_rp.v
Syntax bfm_log_set_suppressed_msg_mask (msg_mask)
Argument msg_mask This argument is reg [EBFM_MSG_ERROR_CONT INUE:

EBFM_MSG_DEBUG] -

A 1 in a specific bit position of the msg_mask causes messages of the
type corresponding to the bit position to be suppressed.

17.9.11.4 ebfm_log_set_stop_on_msg_mask Verilog HDL Function

The ebfm_log_set stop_on_msg_mask procedure controls which message types
stop simulation. This procedure alters the default behavior of the simulation when
errors occur as described in the BFM Log and Message Procedures.

Location al tpcietb_bfmdriver_rp.v
Syntax ebfm_log_set_stop_on_msg_mask (msg_mask)
Argument msg_mask This argument is reg

[EBFM_MSG_ERROR_CONT INUE : EBFM_MSG_DEBUG].

A 1 in a specific bit position of the msg_mask causes messages of the
type corresponding to the bit position to stop the simulation after the
message is displayed.

Related Links
BFM Log and Message Procedures on page 210

17.9.11.5 ebfm_log_open Verilog HDL Function

The ebfm_log_open procedure opens a log file of the specified name. All displayed
messages are called by ebfm_display and are written to this log file as simulator
standard output.

Location altpcietb_bfm_driver_rp.v
Syntax ebfm_log_open (fn)
Argument fn This argument is type string and provides the file name of log file to
be opened.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
212

17 Testbench and Design Example

intel.

17.9.11.6 ebfm_log_close Verilog HDL Function

The ebfm_log_close procedure closes the log file opened by a previous call to
ebfm_log_open.

Location

altpcietb_bfm_driver_rp.v

Syntax

ebfm_log_close

Argument

NONE

17.9.12 Verilog HDL Formatting Functions

The Verilog HDL Formatting procedures and functions are available in the
altpcietb_bfm_driver_rp.v. The formatting functions are only used by Verilog HDL.
All these functions take one argument of a specified length and return a vector of a
specified length.

17.9.12.1 himagel

This function creates a one-digit hexadecimal string representation of the input
argument that can be concatenated into a larger message string and passed to
ebfm_display.

Location altpcietb_bfm_driver_rp.v
Syntax string:= himage(vec)
Argument vec Input data type reg with a range of 3:0.
Return range string Returns a 1-digit hexadecimal representation of the input argument.

Return data is type reg with a range of 8:1

17.9.12.2 himage2

This function creates a two-digit hexadecimal string representation of the input
argument that can be concatenated into a larger message string and passed to
ebfm_display.

Location altpcietb_bfm_driver_rp.v
Syntax string:= himage(vec)
Argument range | vec Input data type reg with a range of 7:0.
Return range string Returns a 2-digit hexadecimal presentation of the input argument,

padded with leading Os, if they are needed. Return data is type reg with
a range of 16:1

17.9.12.3 himage4

This function creates a four-digit hexadecimal string representation of the input
argument can be concatenated into a larger message string and passed to
ebfm_display.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
213

] ®
l n tel 17 Testbench and Design Example

Location altpcietb_bfm_driver_rp.v
Syntax string:= himage(vec)
Argument range | vec Input data type reg with a range of 15:0.
Return range Returns a four-digit hexadecimal representation of the input argument, padded with leading Os, if they
are needed. Return data is type reg with a range of 32:1.

17.9.12.4 himage8

This function creates an 8-digit hexadecimal string representation of the input
argument that can be concatenated into a larger message string and passed to
ebfm_display.

Location altpcietb_bfm_driver_rp.v
Syntax string:= himage(vec)
Argument range | vec Input data type reg with a range of 31:0.
Return range string Returns an 8-digit hexadecimal representation of the input argument,
padded with leading Os, if they are needed. Return data is type reg with
a range of 64:1.

17.9.12.5 himage16

This function creates a 16-digit hexadecimal string representation of the input
argument that can be concatenated into a larger message string and passed to
ebfm_display.

Location al tpcietb_bfmdriver_rp.v
Syntax string:= himage(vec)
Argument range | vec Input data type reg with a range of 63:0.
Return range string Returns a 16-digit hexadecimal representation of the input argument,
padded with leading Os, if they are needed. Return data is type reg with
a range of 128:1.

17.9.12.6 dimagel

This function creates a one-digit decimal string representation of the input argument
that can be concatenated into a larger message string and passed to ebfm_display.

Location altpcietb_bfm_driver_rp.v
Syntax string:= dimage(vec)
Argument range | vec Input data type reg with a range of 31:0.
Return range string Returns a 1-digit decimal representation of the input argument that is
padded with leading Os if necessary. Return data is type reg with a
range of 8:1.
Returns the letter U if the value cannot be represented.

17.9.12.7 dimage2

This function creates a two-digit decimal string representation of the input argument
that can be concatenated into a larger message string and passed to ebfm_display.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
214

17 Testbench and Design Example

Location

al tpcietb_bfmdriver_rp.v

Syntax string:= dimage(vec)

Argument range | vec

Input data type reg with a range of 31:0.

Return range string

Returns a 2-digit decimal representation of the input argument that is
padded with leading Os if necessary. Return data is type reg with a
range of 16:1.

Returns the letter U if the value cannot be represented.

17.9.12.8 dimage3

This function creates a three-digit decimal string representation of the input argument
that can be concatenated into a larger message string and passed to ebfm_display.

Location

altpcietb_bfmdriver_rp.v

Syntax string:= dimage(vec)

Argument range | vec

Input data type reg with a range of 31:0.

Return range string

Returns a 3-digit decimal representation of the input argument that is
padded with leading Os if necessary. Return data is type reg with a
range of 24:1.

Returns the letter U if the value cannot be represented.

17.9.12.9 dimage4

This function creates a four-digit decimal string representation of the input argument
that can be concatenated into a larger message string and passed to ebfm_display.

Location

al tpcietb_bfmdriver_rp.v

Syntax string:= dimage(vec)

Argument range | vec

Input data type reg with a range of 31:0.

Return range string

Returns a 4-digit decimal representation of the input argument that is
padded with leading Os if necessary. Return data is type reg with a
range of 32:1.

Returns the letter U if the value cannot be represented.

17.9.12.10 dimage5

This function creates a five-digit decimal string representation of the input argument
that can be concatenated into a larger message string and passed to ebfm_display.

Location

al tpcietb_bfmdriver_rp.v

Syntax string:= dimage(vec)

Argument range | vec

Input data type reg with a range of 31:0.

Return range string

Returns a 5-digit decimal representation of the input argument that is
padded with leading Os if necessary. Return data is type reg with a
range of 40:1.

Returns the letter U if the value cannot be represented.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
215

intel.

17.9.12.11 dimage6

17 Testbench and Design Example

This function creates a six-digit decimal string representation of the input argument
that can be concatenated into a larger message string and passed to ebfm_display.

Location

altpcietb_bfmlog.v

Syntax

string:= dimage(vec)

Argument range | vec

Input data type reg with a range of 31:0.

Return range

string

Returns a 6-digit decimal representation of the input argument that is
padded with leading Os if necessary. Return data is type reg with a
range of 48:1.

Returns the letter U if the value cannot be represented.

17.9.12.12 dimage?7

This function creates a seven-digit decimal string representation of the input argument

that

can be concatenated into a larger message string and passed to ebfm_display.

Location

al tpcietb_bfmlog.v

Syntax

string:= dimage(vec)

Argument range | vec

Input data type reg with a range of 31:0.

Return range

string

Returns a 7-digit decimal representation of the input argument that is
padded with leading Os if necessary. Return data is type reg with a
range of 56:1.

Returns the letter <U> if the value cannot be represented.

17.9.13 Procedures and Functions Specific to the Chaining DMA Design

Example

The procedures specific to the chaining DMA design example are in the Verilog HDL
module file altpcietb_bfm_driver_rp.v.

17.9.13.1 chained_dma_test Procedure

The chained_dma_test procedure is the top-level procedure that runs the chaining
DMA read and the chaining DMA write

Location altpcietb_bfm_driver_rp.v
Syntax chained_dma_test (bar_table, bar_num, direction, use_msi, use_eplast)
Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.
bar_num BAR number to analyze.
direction When 0 the direction is read.
When 1 the direction is write.
Use_msi When set, the Root Port uses native PCI Express MSI to detect the DMA

completion.

Use_eplast

When set, the Root Port uses BFM shared memory polling to detect the
DMA completion.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

216

17 Testbench and Design Example

17.9.13.2 dma_rd_test Procedure

intel.

Use the dma_rd_test procedure for DMA reads from the Endpoint memory to the
BFM shared memory.

Location altpcietb_bfmdriver_rp.v
Syntax dma_rd_test (bar_table, bar_num, use_msi, use_eplast)
Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.
bar_num BAR number to analyze.
Use_msi When set, the Root Port uses native PCI express MSI to detect the DMA
completion.
Use_eplast When set, the Root Port uses BFM shared memory polling to detect the

DMA completion.

17.9.13.3 dma_wr_test Procedure

Use the dma_wr_test procedure for DMA writes from the BFM shared memory to the
Endpoint memory.

Location altpcietb_bfm_driver_rp.v
Syntax dma_wr_test (bar_table, bar_num, use_msi, use_eplast)
Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.
bar_num BAR number to analyze.
Use_msi When set, the Root Port uses native PCI Express MSI to detect the DMA
completion.
Use_eplast When set, the Root Port uses BFM shared memory polling to detect the

DMA completion.

17.9.13.4 dma_set_rd_desc_data Procedure

Use the dma_set_rd_desc_data procedure to configure the BFM shared memory for
the DMA read.

Location altpcietb_bfm_driver_rp.v
Syntax dma_set_rd_desc_data (bar_table, bar_num)
Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.
bar_num BAR number to analyze.

17.9.13.5 dma_set_wr_desc_data Procedure

Use the dma_set_wr_desc_data procedure to configure the BFM shared memory for
the DMA write.

Location altpcietb_bfm_driver_rp.v
Syntax dma_set_wr_desc_data_header (bar_table, bar_num)
Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.
bar_num BAR number to analyze.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
217

] ®
l n tel 17 Testbench and Design Example

17.9.13.6 dma_set_header Procedure

Use the dma_set header procedure to configure the DMA descriptor table for DMA
read or DMA write.

Location altpcietb_bfm_driver_rp.v

Syntax dma_set_header (bar_table, bar_num, Descriptor_size, direction, Use_msi,
Use_eplast, Bdt_msb, Bdt_lab, Msi_number, Msi_traffic_class,
Multi_message_enable)

Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.
bar_num BAR number to analyze.
Descriptor_size Number of descriptor.
direction When 0 the direction is read.

When 1 the direction is write.

Use_msi When set, the Root Port uses native PCI Express MSI to detect the DMA
completion.

Use_eplast When set, the Root Port uses BFM shared memory polling to detect the
DMA completion.

Bdt_msb BFM shared memory upper address value.

Bdt_Isb BFM shared memory lower address value.

Msi_number When use_msi is set, specifies the number of the MSI which is set by

the dma_set_msi procedure.

Msi_traffic_class When use_msi is set, specifies the MSI traffic class which is set by the
dma_set_msi procedure.

Multi_message _enable When use_msi is set, specifies the MSI traffic class which is set by the
dma_set_msi procedure.

17.9.13.7 rc_mempoll Procedure

Use the rc_mempol I procedure to poll a given dword in a given BFM shared memory

location.
Location altpcietb_bfm_driver_rp.v
Syntax rc_mempoll (rc_addr, rc_data, rc_mask)
Arguments rc_addr Address of the BFM shared memory that is being polled.
rc_data Expected data value of the that is being polled.
rc_mask Mask that is logically ANDed with the shared memory data before it is
compared with rc_data.

17.9.13.8 msi_poll Procedure

The msi_poll procedure tracks MSI completion from the Endpoint.

Location altpcietb_bfm_driver_rp.v

Syntax msi_poll(max_number_of_msi,msi_address,msi_expected_dmawr,msi_expected_dmard,d
ma_write,dma_read)

Arguments max_number_of_msi Specifies the number of MSI interrupts to wait for.

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
218

] ®
17 Testbench and Design Example l n tel

Location altpcietb_bfm_driver_rp.v

msi_address The shared memory location to which the MSI messages will be written.

msi_expected_dmawr When dma_write is set, this specifies the expected MSI data value for
the write DMA interrupts which is set by the dma_set_msi procedure.

msi_expected_dmard When the dma_read is set, this specifies the expected MSI data value
for the read DMA interrupts which is set by the dma_set_msi
procedure.

Dma_write When set, poll for MSI from the DMA write module.

Dma_read When set, poll for MSI from the DMA read module.

17.9.13.9 dma_set_msi Procedure

The dma_set_msi procedure sets PCI Express native MSI for the DMA read or the
DMA write.

Location altpcietb_bfm_driver_rp.v

Syntax dma_set_msi(bar_table, bar_num, bus_num, dev_num, fun_num, direction,
msi_address, msi_data, msi_number, msi_traffic_class, multi_message_enable,
msi_expected)

Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.
bar_num BAR number to analyze.
Bus_num Set configuration bus number.
dev_num Set configuration device nhumber.
Fun_num Set configuration function number.
Direction When 0 the direction is read.

When 1 the direction is write.

msi_address Specifies the location in shared memory where the MSI message data
will be stored.

msi_data The 16-bit message data that will be stored when an MSI message is
sent. The lower bits of the message data will be modified with the
message number as per the PCI specifications.

Msi_number Returns the MSI number to be used for these interrupts.
Msi_traffic_class Returns the MSI traffic class value.

Multi_message_enable Returns the MSI multi message enable status.

msi_expected Returns the expected MSI data value, which is msi_data modified by

the msi_number chosen.

17.9.13.10 find_mem_bar Procedure

The Find_mem_bar procedure locates a BAR which satisfies a given memory space
requirement.

Location altpcietb_bfm_driver_rp.v
Syntax Find_mem_bar(bar_table,allowed_bars,min_log2_size, sel_bar)
Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory
continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
219

] ®
l n tel 17 Testbench and Design Example

Location altpcietb_bfm_driver_rp.v
allowed_bars One hot 6 bits BAR selection
min_log2_size Number of bit required for the specified address space
sel_bar BAR number to use

17.9.13.11 dma_set_rclast Procedure

The dma_set_rclast procedure starts the DMA operation by writing to the Endpoint
DMA register the value of the last descriptor to process (RCLast).

Location altpcietb_bfm_driver_rp.v
Syntax Dma_set_rclast(bar_table, setup_bar, dt_direction, dt_rclast)
Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory
setup_bar BAR number to use
dt_direction When 0 read, When 1 write
dt_rclast Last descriptor number

17.9.13.12 ebfm_display_verb Procedure

The ebfm_display_verb procedure calls the procedure ebfm_display when the
global variable DISPLAY_ALL is set to 1.

Location altpcietb_bfm_driver_chaining.v
Syntax ebfm_display_verb(msg_type, message)
Arguments msg_type Message type for the message. Should be one of the constants defined

in BFM Log and Message Procedures.

message The message string is limited to a maximum of 100 characters. Also,
because Verilog HDL does not allow variable length strings, this routine
strips off leading characters of 8'h00 before displaying the message.

Related Links
BFM Log and Message Procedures on page 210

17.10 Setting Up Simulation

Changing the simulation parameters reduces simulation time and provides greater
visibility.

17.10.1 Changing Between Serial and PIPE Simulation

By default, the Intel testbench runs a serial simulation. You can change between serial
and PIPE simulation by editing the top-level testbench file. For Endpoint designs, the
top-level testbench file is <wor ki ng_di r >/ <i nst anti ati on_nane>_tb/
<instantiation_name>_tb/sim/<i nstanti ati on_name>_tb.v

The serial_sim_hwtcl and enable_pipe32_sim_hwtcl parameters control serial
mode or PIPE simulation mode. To change to PIPE mode, change
enable_pipe32_sim_hwtcl to 1'b1 and serial_sim_hwtcl to 1'b0.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
220

] ®
17 Testbench and Design Example < l n tel)

Table 106. Controlling Serial and PIPE Simulations

Data Rates Parameter Settings
serial_sim_hwtcl enable_pipe32_sim_hwtcl
Serial simulation 1 0
PIPE simulation 0 1

17.10.2 Using the PIPE Interface for Genl and Gen2 Variants

Running the simulation in PIPE mode reduces simulation time and provides greater
visibility.
Complete the following steps to simulate using the PIPE interface:

1. Change to your simulation directory, <wor k_di r >/<vari ant >/testbench/
<vari ant >_tb/simulation

2. Open <variant>_tb.v.

3. Search for the string, serial_sim_hwtcl. Set the value of this parameter to 0 if
itis 1.

4. Save <variant>_tb.v.

17.10.3 Viewing the Important PIPE Interface Signals

You can view the most important PIPE interface signals, txdata, txdatak, rxdata,
and rxdatak at the following level of the design hierarchy:
altpcie_<devi ce>_hip_pipenlb|twentynm_hssi_<gen>_<l| anes>_ pcie_hip.

17.10.4 Disabling the Scrambler for Genl and Gen2 Simulations

The encoding scheme implemented by the scrambler applies a binary polynomial to
the data stream to ensure enough data transitions between 0 and 1 to prevent clock
drift. The data is decoded at the other end of the link by running the inverse
polynomial.

Complete the following steps to disable the scrambler:

1. Open <wor k_di r>/ <vari ant >/testbench/<vari ant >_tb/simulation/
submodules/altpcie_tbed _<dev> hwtcl.v.

2. Search for the string, test_in.
To disable the scrambler, set test_in[2] = 1.
4. Save altpcie_tbed_sv_hwtcl.v.

17.10.5 Disabling 8B/10B Encoding and Decoding for Genl1l and Gen2
Simulations
You can disable 8B/10B encoding and decoding to facilitate debugging.

For Genl and Gen?2 variants, you can disable 8B/10B encoding and decoding by
setting test_in[2] = 1 in altpcietb_bfm_top_rp.v.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
221

®
18 Debugging l n tel

18 Debugging

As you bring up your PCI Express system, you may face a number of issues related to
FPGA configuration, link training, BIOS enumeration, data transfer, and so on. This
chapter suggests some strategies to resolve the common issues that occur during
hardware bring-up.

18.1 Simulation Fails To Progress Beyond Polling.Active State

If your PIPE simulation cycles between the Detect.Quiet, Detect.Active, and
Polling.Active LTSSM states, the PIPE interface width may be incorrect.

Make the changes shown in the following table for the 32-bit PIPE interface.

Table 107. Changes for 32-Bit PIPE Interface
8-Bit PIPE Interface 32-Bit PIPE Interface

output wire [7:0] output wire [31:0]
pcie_al0_hip_O0_hip_pipe_txdatal pcie_al0_hip_O0_hip_pipe_txdatal
input wire [7:0] input wire [31:0]
pcie_al0_hip_O_hip_pipe_rxdata0 pcie_al0_hip_0_hip_pipe_rxdata0
output wire output wire [3:0]
pcie_alO_simulation_inst_pcie_al0 _hip_O_hip_p | pcie_alO_simulation_inst _pcie_alO_hip_O_hip_p
ipe_txdatakO ipe_txdatakO
input wire input wire [3:0]
pcie_alO_simulation_inst_pcie_alO_hip_O_hip_p | pcie_alO_simulation_inst_pcie_al0_hip_0_hip_p
ipe_rxdatakO ipe_rxdatakO

18.2 Hardware Bring-Up Issues

Typically, PCI Express hardware bring-up involves the following steps:
1. System reset

2. Link training

3. BIOS enumeration

The following sections describe how to debug the hardware bring-up flow. Intel

recommends a systematic approach to diagnosing bring-up issues as illustrated in the
following figure.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in 1so
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2008
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

®
18 Debugging l n tel

Figure 120. Debugging Link Training Issues

Successful
05/BI0S
Enumeration?

System Reset Does Link Yes

— Train
Correctly?

LNO

Check LTSSM Check PIPE Use PCle Protocol Soft Reset System to ‘

Check Configuration
Space

Status Interface Analyzer Force Enumeration

18.3 Link Training

The Physical Layer automatically performs link training and initialization without
software intervention. This is a well-defined process to configure and initialize the
device's Physical Layer and link so that PCIe packets can be transmitted. If you
encounter link training issues, viewing the actual data in hardware should help you
determine the root cause. You can use the following tools to provide hardware
visibility:

e Signal Tap Embedded Logic Analyzer

e Third-party PCIe protocol analyzer

You can use Signal Tap Embedded Logic Analyzer to diagnose the LTSSM state
transitions that are occurring on the PIPE interface. The Itssmstate bus encodes the
status of LTSSM. The LTSSM state machine reflects the Physical Layer’s progress
through the link training process. For a complete description of the states these
signals encode, refer to Reset, Status, and Link Training Signals. When link training
completes successfully and the link is up, the LTSSM should remain stable in the LO
state. When link issues occur, you can monitor Itssmstate to determine the cause.

Related Links
Reset, Status, and Link Training Signals on page 82
18.3.1 Link Hangs in LO State

There are many reasons that link may stop transmitting data. The following table lists
some possible causes.

Table 108. Link Hangs in LO

Possible Causes Symptoms and Root Causes Workarounds and Solutions
Avalon-ST signaling Avalon-ST protocol violations Add logic to detect situations where tx_st_ready
violates Avalon-ST include the following errors: remains deasserted for more than 100 cycles. Set
protocol e More than one tx_st_sop per | Post-triggering conditions to check for the Avalon-ST

tx_st_eop. - signaling of last two TLPs to verify correct tx_st_sop

e Two or more tx_st_eop’s and tx_st_eop signaling.

without a corresponding
tx_st_sop.

e rx_st valid is not asserted
with tx_st_sop or
tx_st_eop.

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
223

intel.

18 Debugging

Possible Causes

Symptoms and Root Causes

Workarounds and Solutions

These errors are applicable to both
simulation and hardware.

Incorrect payload size

Determine if the length field of the
last TLP transmitted by End Point
is greater than the InitFC credit
advertised by the link partner. For
simulation, refer to the log file and
simulation dump. For hardware,
use a third-party logic analyzer
trace to capture PCle transactions.

If the payload is greater than the initFC credit
advertised, you must either increase the InitFC of the
posted request to be greater than the max payload
size or reduce the payload size of the requested TLP to
be less than the InitFC value.

Flow control credit
overflows

Determine if the credit field
associated with the current TLP
type in the tx_cred bus is less
than the requested credit value.
When insufficient credits are
available, the core waits for the
link partner to release the correct
credit type. Sufficient credits may
be unavailable if the link partner
increments credits more than
expected, creating a situation
where the Arria 10 Hard IP for PCI
Express IP Core credit calculation
is out-of-sync with its link partner.

Add logic to detect conditions where the tx_st_ready
signal remains deasserted for more than 100 cycles.
Set post-triggering conditions to check the value of the
tx_cred_* and tx_st_* interfaces. Add a FIFO status
signal to determine if the TXFIFO is full.

Malformed TLP is
transmitted

Refer to the error log file to find
the last good packet transmitted
on the link. Correlate this packet
with TLP sent on Avalon-ST
interface. Determine if the last TLP
sent has any of the following
errors:

e The actual payload sent does
not match the length field.

e The format and type fields are
incorrectly specified.

e TD field is asserted, indicating
the presence of a TLP digest
(ECRC), but the ECRC dword is
not present at the end of TLP.

e The payload crosses a 4KByte
boundary.

Revise the Application Layer logic to correct the error
condition.

Insufficient Posted credits
released by Root Port

If a Memory Write TLP is
transmitted with a payload greater
than the maximum payload size,
the Root Port may release an
incorrect posted data credit to the
Endpoint in simulation. As a result,
the Endpoint does not have
enough credits to send additional
Memory Write Requests.

Make sure Application Layer sends Memory Write
Requests with a payload less than or equal the value
specified by the maximum payload size.

Missing completion
packets or dropped
packets

The RX Completion TLP might
cause the RX FIFO to overflow.
Make sure that the total
outstanding read data of all
pending Memory Read Requests is
smaller than the allocated
completion credits in RX buffer.

You must ensure that the data for all outstanding read
requests does not exceed the completion credits in the
RX buffer.

Related Links
e PIPE Interface Signals on page 102

e Avalon Interface Specifications

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

224

https://www.altera.com/documentation/nik1412467993397.html#nik1412467963376

18 Debugging

intel)

For information about the Avalon-ST interface protocol.

e PCI Express Base Specification 3.0

18.4 Use Third-Party PCIe Analyzer

A third-party logic analyzer for PCI Express records the traffic on the physical link and
decodes traffic, saving you the trouble of translating the symbols yourself. A
third-party logic analyzer can show the two-way traffic at different levels for different
requirements. For high-level diagnostics, the analyzer shows the LTSSM flows for
devices on both side of the link side-by-side. This display can help you see the link
training handshake behavior and identify where the traffic gets stuck. A traffic
analyzer can display the contents of packets so that you can verify the contents. For
complete details, refer to the third-party documentation.

18.5 BIOS Enumeration Issues

Both FPGA programming (configuration) and the initialization of a PCle link require
time. Potentially, an Intel FPGA including a Hard IP block for PCI Express may not be
ready when the OS/BIOS begins enumeration of the device tree. If the FPGA is not
fully programmed when the OS/BIOS begins its enumeration, the OS does not include
the Hard IP for PCI Express in its device map.

You can use either of the following two methods to eliminate this issue:

¢ You can perform a soft reset of the system to retain the FPGA programming while
forcing the OS/BIOS to repeat its enumeration.

e You can use CvP to program the device.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
225

http://www.pcisig.com/

®
A Transaction Layer Packet (TLP) Header Formats l n tel

A Transaction Layer Packet (TLP) Header Formats

The following figures show the header format for TLPs without a data payload.

For more information about the alignment of 3- and 4-dword headers refer to the
related links below for Data Alignment and Timing for the Avalon-ST TX and RX
Interfaces.

Figure 121. Memory Read Request, 32-Bit Addressing
Memory Read Request, 32-Bit Addressing

+0 +1 +2 +3
lels[als]afifo7l6fs B P 7 Je [s e [s]2]i]olr]els a3 2] o
ByteO {00 0|0 0 0 0 0|0 TC |0f0|0|0|TD|EP|Attr [0]0 Length
Byte 4 Requester 1D Tag | Last BE I First BE
Byte 8 Address[31:2] |0 0
Byte 12 Reserved
Figure 122. Memory Read Request, Locked 32-Bit Addressing
Memory Read Request, Locked 32-Bit Addressing
+0 +1 +2 +3
Tlels[as[2]r o7 e s [e3[2n]o]7 [6 [s[as]a]r]o]7]e[s[¢ 3] Jo
Byte 0 00 0/0 0 0 0 1/0|TC 0{0|0|0|TD [EP [Attr |0 |0 |Length
Byte 4 Requester ID Tag ‘ Last BE I First BE
Byte8 Address[31:2] [0 0
Byte 12 Reserved
Figure 123. Memory Read Request, 64-Bit Addressing
Memory Read Request, 64-Bit Addressing
+0 +1 +2 +3
les[a32]r]ol7]s]s]a]3]2]1]o]7 [6 [s[e[s]a]r[o]r]s]s][¢]3]2]1]o
Byte 0 0{0 0jo 000 0f0o| TC |o|o|ofo|TD|EP A:too Length
Byte 4 Requester ID Tag | Last BE | First BE
Byte 8 Address[63:32]
Byte 12 Address[31:2] |0 0

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in 1so
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2008
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

] ®
A Transaction Layer Packet (TLP) Header Formats l n tel

Figure 124. Memory Read Request, Locked 64-Bit Addressing

Memory Read Request, Locked 64-Bit Addressing

+0 +1 +2 +3
e fslas ooz [e]s[e]s]2[]o]7]e [s]a[s]a]n]o]7]e]s]e]3]2]1]0
ByteO |0f0 1[0 0 0 0 1]|0| TC OOOOTEPA:tOO Length
Byte 4 Requester 1D Tag | Last BE | First BE
Byte 8 Address[63:32]
Byte 12 Address[31:2] |o 0
Figure 125. Configuration Read Request Root Port (Type 1)
Configuration Read Request Root Port (Type 1)
+0 +1 +2 +3
1lels a2t]o]7]e]s[a3[2]1]o]7 [6 [s[a[s]2[1]o]7]6[s[s[3]2] [o
Byte 0 00 0f0 0 10 1|ofofo|ofofofo|o|TD|EP|0O|0|0|0|0O 0 0 0 0 0 0 0 0|1
Byte 4 Requester 1D Tag 000 0 \First BE
Byte 8 Bus Number | Device No Func | O ‘ 0 |0|0| Ext Reg Register No |0 0
Byte 12 Reserved
Figure 126. I/0O Read Request
1/0 Read Request
+0 +1) +3
7 6|5 4|3\2|1|0 7lels]als]2]1]ol7 6 [s]a]3]2 1|o 7|6|5|4\3|2|1 0
Byte 0 00 00 0 01 0f0f0[0|0|0|0[0|0|TD|EP|O|[0[0|0|0O 0O 0 0 0 0 0 0 0|1
Byte 4 Requester ID Tag |0 00 0 ‘First BE
Byte 8 Address[31:2] [0 0
Byte 12 Reserved
Figure 127. Message without Data
Message without Data
+0 +1 +2 +3
7 6|S 4\3|2|1|0 7 6|5|4 slafafo]7 J6 [s]a]3]2 1|0 7|5|5|4|3|2\1\0
Byte 0 00110;;:)0TC ofofofo|To|EP |[olo]ofo]o o 0 0 0000 0 0
Byte 4 Requester 1D Tag ‘ Message Code
Byte 8 Vendor defined or all zeros
Byte 12 Vendor defined or all zeros
Note

(1) Not supported in Avalon-MM.

Figure 128. Completion without Data

Completion without Data

+0 +1 +2 +3
lels[e[s]2]1]o]7]6]s]a[3][2]1]o]7 [6 [s]a[s[2[1]o]r]e]s][s]3]2]1]0
Byte 0 0(0 0{0 17 0 1 00(TC 0(0]|0|0|TD |EP ﬁtt 010 Length
Byte 4 Completer ID Status | B Byte Count
Byte 8 Requester ID Tag ‘0 ‘ Lower Address
Byte 12 Reserved

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
227

] ®
l n tel A Transaction Layer Packet (TLP) Header Formats

Figure 129. Completion Locked without Data

Completion Locked without Data

+0 +1 +2 +3
Tlefs[app b [7]s]s]a]3]2[i]o]7 J6 [s[a]3]2a]1]o]r]s]s][¢]3]2]1]0
Byte0 |00 ojo 1011]o] TC |ofofo|o|TD|EP A:too Length
Byte 4 Completer ID Status |B Byte Count
Byte 8 Requester ID Tag |0 ‘ Lower Address
Byte 12 Reserved

Related Links

e Data Alignment and Timing for the 64-Bit Avalon-ST RX Interface on page 61
e Data Alignment and Timing for the 128-Bit Avalon-ST RX Interface on page 65
e Data Alignment and Timing for 256-Bit Avalon-ST RX Interface on page 68

e Data Alignment and Timing for the 64-Bit Avalon-ST TX Interface on page 73
e Data Alignment and Timing for the 128-Bit Avalon-ST TX Interface on page 76
e Data Alignment and Timing for the 256-Bit Avalon-ST TX Interface on page 79

A.1 TLP Packet Formats with Data Payload

Figure 130. Memory Write Request, 32-Bit Addressing
Memory Write Request, 32-Bit Addressing

+0 +1 +2 +3
7le[s|al3]2]1]o]7]e]s]a[3]2]1]o]7 [6 [s[e]3]2[1]o]7]6]s]a]3]2]1]o0
Byte 0 0[1 00 000 0[0|TC OOOOTDEPﬁttOO Length
Byte Requester ID Tag | Last BE | First BE
Byte 8 Address[31:2] |0 0
Byte 12 Reserved
Figure 131. Memory Write Request, 64-Bit Addressing
Memory Write Request, 64-Bit Addressing
+0 +1 +2 +3
Tlelsla3a[ipo b [s[e3lafio]7 6 [s[a[s]a]i]o]r]s[sa]3]2]1]o
Byte 0 01 1/0 000 0]0| TC |0]0]0|0|TD |EP /:tt 010 Length
Byte 4 Requester ID Tag | Last BE | First BE
Byte 8 Address[63:32]
Byte 12 Address[31:2] [0 0
Figure 132. Configuration Write Request Root Port (Type 1)
Configuration Write Request Root Port (Type 1)
+0 +1 +2 3
les[als]a]]o]7]e]s]a]3]2]r]o]7 6 [s]als]2|r]o]7]s]s]a]3]2]1]0
ByteO (0|1 0f0 0 1 0 1]/0|0f0f0|0|0[0|0|TD |EP [0|0]0O|0O[0 0O O 0 0 0 0 0 0]1
Byte 4 Requester 1D Tag 00 0 0|First BE
Byte 8 Bus Number ‘ Device No 0 |0 ‘0 ‘0 | Ext Reg Register No |0 0
Byte 12 Reserved

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
228

A Transaction Layer Packet (TLP) Header Formats

Figure 133. I/0 Write Request

intel.

1/0 Write Request
+0 +1 +2 +3
lels[a3]2[1]o]7s]s[a3]2]r]o]7 6 [s]al3]2[1]ol7]e]s]4]3]2]1]0
Byte 0 0(1 0f0 0 0 1 0|0|O|O|O|O(O|OfO(TD |EP (OfO[O|O]|0O O O O 0 0 0O O 0|1
Byte 4 Requester ID Tag ‘0 00 0 ‘First BE
Byte 8 Address[31:2] |0 0
Byte 12 Reserved
Figure 134. Completion with Data
Completion with Data
+0 +1 +2 +3
lels[a[s2n]o]7 s [s[a3]2]r]o]7 s [s[a[s[an]o]7]6]s[a]3]2]1]o
Byte 0 017 0/0 1.0 1 0|0 TC 0(0[0|0|TD |EP ﬁtt 010 Length
Byte 4 Completer ID Status | B Byte Count
Byte 8 Requester 1D Tag ’0 | Lower Address
Byte 12 Reserved
Figure 135. Completion Locked with Data
Completion Locked with Data
+0 +1 +2 +3
lelslas]a]n]o]7]e s a]3]2]1]o]7 [o [s]a[s]2[n]o[7]e]s]4]3]2]1]0
Byte 0 0|1 0{0 1T 0 1 1(0 TC 0{0|0|0|TD|EP A:t 010 Length
Byte 4 Completer ID Status ‘B Byte Count
Byte 8 Requester 1D Tag |0 | Lower Address
Byte 12 Reserved
Figure 136. Message with Data
Message with Data
+0 +1 +2 +3
lels[al3]a]1]o]7]s]s]a[3]2]1]o]7 [6 [s]a3[afr]o]r]s]s [4]3]2]1]0
Byte 0 011102250 ¢ |ofololo|TD|EP |0 000 Length
Byte 4 Requester 1D Tag | Message Code
Byte 8 Vendor defined or all zeros for Slot Power Limit
Byte 12 Vendor defined or all zeros for Slots Power Limit

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

229

B Lane Initialization and Reversal

B Lane Initialization and Reversal

Connected components that include IP blocks for PCI Express need not support the
same number of lanes. The x4 variations support initialization and operation with
components that have 1, 2, or 4 lanes. The x8 variant supports initialization and
operation with components that have 1, 2, 4, or 8 lanes.

Lane reversal permits the logical reversal of lane numbers for the x1, x2, x4, and x8
configurations. Lane reversal allows more flexibility in board layout, reducing the

number of signals that must cross over each other when routing the PCB.

Table 109. Lane Assignments without Lane Reversal
Lane Number 7 6 5 4 3 V]
x8 IP core 7 6 5 4 3 0
x4 IP core — — — — 3 0
— — - - - - 0
x1 IP core - - - - - 0
Table 110. Lane Assignments with Lane Reversal
Core Config 8 4
Slot Size 8 4 2 1 8 4 2 1 8
Lane 7:0,6:1,5 3:4,2: | 1:6, 0:7 7:0,6 3:0,2 3:0, 3:0 | 7:0
pairings 2,4:3, 5, 0:7 1, 1, 2:1
3:4,2:5, 1:6,0 5:2,4: |1:2,0
1:6,0:7 7 3 3
Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in 1so .
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900?"2008
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered

information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.
*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

] ®
B Lane Initialization and Reversal l n tel)

Figure 137. Using Lane Reversal to Solve PCB Routing Problems

The following figure illustrates a PCI Express card with x4 IP Root Port and a x4
Endpoint on the top side of the PCB. Connecting the lanes without lane reversal
creates routing problems. Using lane reversal solves the problem.

No Lane Reversal With Lane Reversal
Results in PCB Routing Challenge Signals Route Easily
Root Port Endpoint Root Port Endpoint
0 3 0 0
1 2 nolane 1 T\ lane
2 1 reversal 2 2 (" reversal
3 0 3 3

igip ipip

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
231

C Arria 10 Avalon-ST Interface for PCIe Solutions User Guide Archive

C Arria 10 Avalon-ST Interface for PCIe Solutions User

Guide Archive

If an IP core version is not listed, the user guide for the previous IP core version applies.

IP Core Version User Guide
16.1.1 Arria 10 Avalon-ST Interface for PCIe Solutions User Guide
16.1 Arria 10 Avalon-ST Interface for PCle Solutions User Guide
16.0 Arria 10 Avalon-ST Interface for PCIe Solutions User Guide
15.1 Arria 10 Avalon-ST Interface for PCle Solutions User Guide
15.0 Arria 10 Avalon-ST Interface for PCIe Solutions User Guide
14.1 Arria 10 Avalon-ST Interface for PCle Solutions User Guide

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.
*QOther names and brands may be claimed as the property of others.

Iso
9001:2008
Registered

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/archives/ug-a10-pcie-avst-16.1.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/archives/ug-a10-pcie-avst-16.1.1.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/archives/ug-a10-pcie-avst-16.0.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/archives/ug-a10-pcie-avst-15.1.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/archives/ug-a10-pcie-avst-15.0.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/archives/ug-a10-pcie-avst-14.1.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

D Revision History

D Revision History

D.1 Revision History for the Avalon-ST Interface

Date Version Changes Made
2017.05.26 Made the following changes to the user guide:

e Added note that starting with the Quartus Prime Pro Edition Software,
version 17.0, the QSF assignments in the following answer What
assignments do I need for a PCle Genl1, Gen2 or Gen3 design that targets
an Arria 10 ES2, ES3 or production device? are already included in the
design.

2017.05.12 17.0 Made the following changes the IP core:

e Added option soft DFE Controller IP on the PHY tab of the parameter editor
to improve BER margin. The default for this option is off because it is
typically not required. Short reflective links may benefit from this soft DFE
controller IP. This parameter is available only for Gen3 configurations. It is
not supported when CvP or autonomous modes are enabled.

Made the following changes to the user guide:

e Updated PCI Express Gen3 Bank Usage Restrictions status. These
restrictions affect all Aria 10 ES and production devices.

e Added statement that Arria 10 devices do not support the Create timing
and resource estimates for third-party EDA synthesis tools option on
the Generate [Generate HDL menu.

e Corrected default values for the Uncorrectable Internal Error Mask Register
and Correctable Internal Error Mask Register registers.

e Corrected Feature Comparison for all Hard IP for PCI Express IP Cores table.
Out-of-order Completions are not supported transparently for the
Avalon-MM with DMA interface.

e Revised discussion of Application Layer Interrupt Handler Module to include
legacy interrupt generation.

e Corrected minor errors and typos.

2017.03.15 16.1.1 Made the following changes:

e Restored Configuration Space Register Access topic which was inadvertently
removed form previous versions.

e Improved definitions of tx_cred_data_fc[11:0],
tx_cred_fc_sel[1:0] and tx_cred_fdr_fc[7:0].

e Added missing signal definition for tx_cred_fc_sel.

e Added statement that Arria 10 devices do not support the Create timing
and resource estimates for third-party EDA synthesis tools option on
the Generate U Generate HDL menu.

e Rebranded as Intel.

2016.10.31 16.1 Made the following changes to the IP core:

e Changed timing models support to final for most Arria 10 device packages.
Exceptions include some military and automotive speed grades with
extended temperature ranges.

e Added parameter to select the requested preset for Phase2 and Phase3 far-
end TX equalization.

continued...

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services

IsO
9001:2008

at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

ntel.

D Revision History

Date Version Changes Made

Made the following changes to the user guide:

e Corrected the number of tags supported in the Feature Comparison for all
Hard IP for PCI Express IP Cores table.

* Removed recommendations about connecting pin_perst. These
recommendations do not apply to Arria 10 devices.

e Added PClIe bifurcation to the Feature Comparison for all Hard IP for PCI
Express IP Cores table. PCI bifurcation is not supported.

* Corrected description of tl_cfg* bus. Provided sample RTL code to show
how sample tl_cfg_ctl.Corrected t/_cfg_ctl Timing diagram.

* Changed the recommended value of test_in[31:0] from 0xa8 to 0x188.

e Added instructions for turning on autonomous mode in the Quartus Prime
software.

e Added -3 to recommended speed grades for the 125 MHz interface.

2016.05.02 16.0 Made the following changes:

e The PIO Design Examples included in the Quick Start Guide now support 64-
and 128-bit interfaces to the Application Layer. (The 15.1 release supported
only a 256-bit interface to the Application Layer interface.)

e The Quick Start Guide no longer supports the DMA design example.

e Added support for OpenCore Plus IP evaluation in the Quartus Prime Pro
Edition software.

e Added automatic generation of basic SignalTap Logic Analyzer files to
facilitate debugging.

e Added figure for TX 3-dword header with qword aligned data.

e Added Gen3 x2 128-bit interface with 125 MHz clock to the
coreclkout_hip Application Layer Clock Frequency for All Combinations
of Link Width, Data Rate and Application Layer Interface Widths table.

e In the Getting Started with the Hard IP for PCI Express chapter, changed
the instructions to use specify the 10AX115S52F4511SG device which is used
on the Arria 10 GX FPGA Development Kit - Production (not ES2) Edition.

e Added statement that the testbench can only simulate a single Endpoint or
Root Port at a time.

e Enhanced statements covering the deficiencies of the Intel-provided
testbench.

e Added simulation support for Gen3 PIPE mode using the ModelSim, VCS,
and NCSim simulators.

* Added definition for rxfc_cplbuf_ovf.

e Added Vendor Specific Extended Capability (VSEC) Revision and User
Device or Board Type ID register from the Vendor Specific Extended
Capability: to the VSEC tab of the component GUI.

e Updated figures in Physical Layout of Hard IP in Arria 10 Devices to include
more detail about transceiver banks and channel restrictions.

e Added transceiver bank usage placement restrictions for Gen3 devices.

e Removed support for -3 speed grade devices.

e Added transceiver bank usage placement restrictions for Gen3 devices.

e Added -3 to recommended speed grades with qualifying statement.

e Corrected minor errors and typos.

2015.11.30 15.1 Made the following changes:

* Added definition for tx_fifo_empty signal.

e Added figure illustrating data alignment for the TX 3-dword header with
gword aligned address.

e Added TLP Support Comparison for all Hard IP for PCI Express IP Cores in
Datasheet chapter.

e Added new topic on Autonomous Mode in which the Hard IP for PCI Express
begins operation when the periphery configuration completes.

2015.11.02 15.1 Made the following changes:

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

234

D Revision History

intel.

Date Version Changes Made

e Added auto generation of example designs for Endpoints that use the
parameters you specify. Generation creates both simulation and hardware
testbenches that you can download to the Arria 10 FPGA Development Kit
ES2 Edition. This new feature is described in the Arria 10 Avalon-ST Quick
Start Guide chapter of this user guide.

¢ Added latency between tx_cred_fc_sel and tx_cred_data_fc and
tx_cred_hdr_fc to the signal definitions.

e Corrected instructions for changing between a serial and PIPE simulation.

* Updated definitions of rxsynchd0[1:0] and rxblkstO to say these
signals can be grounded for Gen1 and Gen2 operation.

e Improved the definition of npor.

e Added note saying that the Hard IP for PCI Express supports autonomous
mode when CvP is enabled.

e In Transaction Layer Routing Rules, added Type 1 Message TLPs are also
passed to the Application Layer.

* Enhanced the definition of rx_st_mask.

e Added x2 to the Lane Assignments without Lane Reversal table.

* Removed signal definition for rx_st_be. This signal is not supported for
Arria 10 devices.

e Changed the app_msi_req signal to X (don't care) in cycles 4 and 5 of the
timing diagram, MSI Interrupt Signals Timing.

¢ Removed Legacy Endpoint option for Port type parameters. The Legacy
Endpoint is no longer supported for Arria 10 devices.

e Revised discussion on possible conflict between LMI writes and Host writes
to the Configuration Space.

e Removed Getting Started with the Configuration Space Bypass Model Qsys
Example Design chapter. This example design is no longer supported.

e Removed invalid warning about missing resets when this IP core is
instantiated as a separate component from the Quartus Prime IP Catalog.

e Corrected Avalon-ST Hard IP for PCI Express Top-Level Signals figure and
missing signal definitions.

2015.06.05 15.0 Added note in Physical Layout of Hard IP in Arria 10 Devices to explain Arria 10
design constraint that requires that if the lower HIP on one side of the device is
configured with a Gen3 x4 or Gen3 x8 IP core, and the upper HIP on the same
side of the device is also configured with a Gen3 IP core, then the upper HIP
must be configured with a x4 or x8 IP core.

2015.05.04 15.0 Made the following changes to the Arria 10 user guide:

e Added to description of Data Link Layer link active bit. It is only available for
Root Ports. It is always 0 for Endpoints.

e Corrected link to Arria 10 Avalon-MM DMA Interface for PCle Solutions User
Guide.

e Added Enable Altera Debug Master Endpoint (ADME) parameter to
support optional Native PHY register programming with the Altera System
Console.

e Added information about the custom example designs. This feature is
available for this IP core starting in the IP core release 14.1.

L]

e Enhanced descriptions of channel placement, added fPLL placement for
Genl and Gen2 data rates, and added master CGB location, in Physical
Layout of Hard IP In Arria 10 Devices.

e Added column for Avalon-ST Interface with SR-IOV variations in Feature
Comparison for all Hard IP for PCI Express IP Cores table in Features
section. Moved supported TLPs information to separate table. Updated
information in tables.

e Removed Migration and TLP Format appendices, and added new appendix
Frequently Asked Questions.

e Corrected LMI Write figure in LMI Signals.

e Corrected MSI-X Interrupt Components figure in Implementing MSI-X
Interrupts.

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
235

ntel.

D Revision History

Date Version Changes Made

e Corrected width of rx_st_sop and rx_st_eop to 1 or two bits. If you turn
on Enable multiple packets per cycle these signals have two bits;
otherwise, they have one bit each. Refer to Avalon-ST RX Interface.

e Removed non-existent signals rx_st_barl and rx_st_bar2. If you turn
on Enable multiple packets per cycle, the IP core still has only a single
rx_st_bar[7:0] signal. Do not use this signal if you turn on Enable
multiple packets per cycle. Refer to iAvalon-ST RX Component Specific
Signals.

e Updated DUT module name in testbench and example design figures.

e Reorganized sections in iDebugging and nik1410565029488.

e Updated information in SDC Timing Constraints .

e Fixed minor errors and typos.

2014.12.15 14.1 Made the following changes to the user guide:

e Added simulation log file,
altpcie_monitor_<dev>_dlhip_tlp_file_log.log in your
simulation directory. Generation of the log file requires the following
simulation file, <i nstal | _di r >altera/Zaltera_pcie/
altera_pcie_<dev>_hip/Zaltpcie_monitor_<dev>_dlhip_sim.syv,
that was not present in earlier releases of the Quartus II software.

e Changed device part number for Getting Started chapter to
10AX115R2F40I2LG.

e Added statement that the bottom left hard IP block includes the CvP
functionality for flip chip packages. For other package types, the CvP
functionality is in the bottom right block.

e Removed 125 MHz clock as optional refclk frequency in Arria 10 devices.
Arria 10 devices support an 100 MHz reference clock as specified by the PCI
Express Base Specification, Rev 3.0.

e Corrected bit definitions for CvP Status register.

e Updated definition of CVP_NUMCLKS in the CvP Mode Control register.

* Added definitions for test_in[2], test_in[6] and test_in[7].

e Enhanced instructions Compiling the Design to include steps necessary to
download to Altera development Kits.

2014.08.18 14.0a10 Made the following changes to the Arria 10 Hard IP for PCI Express:

e Changed the PIPE interface to 32 bits for all data rates. This change
requires you to recompile your 13.1 variant in 14.0.

e Made fPLL available as the TX PLL for all data rates. This change allows you
to use the ATX PLLs for higher data rate protocols if necessary.

Made the following changes to the user guide:

e Added statement that the bottom left hard IP block includes the CvP
functionality for flip chip packages. For other package types, the CvP
functionality is in the bottom right block.

2014.06.30 14.0 Added the following new features to the Arria 10 Hard IP for PCI Express:

e Added parameters to enable 256 completion tags with completion tag
checking performed in Application Layer.

e Added simulation log file,
altpcie_monitor_sv_dlhip_tlp_file_log.-log, that is automatically
generated in your simulation directory. To simulation in the Quartus II 14.0
software release, you must regenerate your IP core to create the supporting
monitor file the generates
altpcie_monitor_sv_dlhip_tlp_file_log.log. Refer to
Understanding Simulation Dump File Generation for details.

e Added support for new parameter,User ID register from the Vendor
Specific Extended Capability, for Endpoints.

e Added parameter to create a reset pulse at power-up when the soft reset
controller is enabled.

e Simulation support for Phase 2 and Phase 3 equalization when requested by
third-party BFM.

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

236

n ®
D Revision History l n tel

Date Version Changes Made

e Increased size of Imi_addr to 15 bits.

e Changed the directory structure for generated files. Refer to Files Generated
for Intel FPGA IP Cores Targeting Arria 10 for more information.

e In the Getting Started with the Arria 10 Hard IP for PCI Express chapter,
changed the recommended device to 10AX115R2F40I2LG (Advanced).

Made the following changes to the user guide:

e Added Next Steps in Creating a Design for PCI Express to Datasheet
chapter.

e Corrected frequency range for hip_reconfig_clk. It should be 100-125
MHz.

e Corrected Maximum payload size values listed in Reconfigurable Read-
Only Registers table. The maximum size is 2048 bytes.

e Enhanced definition of Device ID and Sub-system Vendor ID to say that
these registers are only valid in the Type 0 (Endpoint) Configuration Space.

e Changed the default reset controller settings. By default Gen1 devices use
the Hard Reset Controller. Gen2 and Gen3 devices use the Soft Reset
Controller.

* Corrected frequencies of pclk in Reset and Clocks chapter.

¢ Removed txdataval idO signal from the PIPE interface. This signal is not
available.

e Removed references to the MegaWizard® Plug-In Manager. In 14.0 the IP
Parameter Editor Powered by Qsys has replaced the MegaWizard Plug-In
Manager.

e Made the following changes to the timing diagram, Hard IP Reconfiguration
Bus Timing of Read-Only Registers:

— Added hip_reconfig_rst_n.

— Changed timing of avmm_rdata[15:0]. Valid data returns 4 cycles
after avmm_rd.

e Added link to a Knowledge Base Solution that shows how to observe the
test_in bus for debugging.

e Removed optional 125 MHz reference clock frequency. This option has not
been tested extensively in hardware.

e Corrected channel placement diagrams for Gen3 x2 and Gen3 x4. The CMU
PLL should be shown in the Channel 4 location. For Gen3 x2, the second
data channel is Ch1l. For Gen3 x4, the data channels are Ch0O - Ch3.

e Corrected figure showing physical placement of PCle Hard IP modules for
Arria V GZ devices.

e Added definition for test_in[6] and link to Knowledge Base Solution on
observing the PIPE interface signals on the test_out bus.

e Removed references to Gen2 x1 62.5 MHz configuration. This configuration
is not supported.

e Removed statement that Gen1 and Gen2 designs do not require transceiver
reconfiguration. Genl and Gen2 designs may require transceiver
reconfiguration to improve signal quality.

¢ Removed reconfig_busy port from connect between PHY IP Core for PCI
Express and the Transceiver Reconfiguration Controller in the Altera
Transceiver Reconfiguration Controller Connectivity figure. The Transceiver
Reconfiguration Controller drives reconfig_busy port to the Altera PCle
Reconfig Driver.

¢ Removed soft reset controller .sdc constraints from the
<instal |l _dir>/ip/altera/altera_pcie/
altera_pcie_hip_ast_ed/altpcied_<dev>.sdc example. These
constraints are now in a separate file in the synthesis/submodules
directory.

e Updated Power Supply Voltage Requirements table.

e For Arria 10 devices, updated Physical Placement of the Arria 10 Hard IP for
PCIe IP and Channels to show GT devices instead of GX devices.

* For Arria 10 devices, corrected frequency of hip_reconfig_Ick. I should
be 125 MHz.

continued...

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide
237

intel.

D Revision History

Date

Version

Changes Made

2013.12.20

13.1

Made the following changes:

Divided user guide into 3 separate documents by interface type.

Added Design Implementation chapter.

In the Debugging chapter, removed section explaining how to turn off the
scrambler for Gen3 because it does not work.

In the Debugging chapter, corrected filename that you must change to
reduce counter values in simulation.

In Getting Started with the Avalon-MM Hard IP for PCI Express chapter,
corrected connects for the Transceiver Reconfiguration Controller IP Core
reset signal, alt_xcvr_reconfig_0 mgmt_rst_reset. This reset input
connects to clk_0 clk_reset.

In Transaction Layer Routing Rules and Programming Model for Avalon-MM
Root Port added the fact that Type 0 Configuration Requests sent to the
Root Port are not filtered by the device number. Application Layer software
must filter out requests for device number greater than 0.

Added illustration showing the location of the Hard IP Cores in the Arria 10
devices.

Added limitation for rxm_irqg_<n>[<nm>:0]when interrupts are received on
consecutive cycles.

Corrected description of cfg_prm_cmr. It is the Base/Primary Command
register for the PCI Configuration Space.

Revised channel placement illustrations.

2013.05.06

Added support for Configuration Space Bypass Mode, allowing you to design
a custom Configuration Space and support multiple functions

Added preliminary support for a Avalon-MM 256-Bit Hard IP for PCI Express
that is capable of running at the Gen3 x8 data rate. This new IP Core. Refer
to the Avalon-MM 256-Bit Hard IP for PCI Express User Guide for more
information.

Added Gen3 PIPE simulation support.

Added support for 64-bit address in the Avalon-MM Hard IP for PCI Express
IP Core, making address translation unnecessary

Added instructions for running the Single Dword variant.

Timing models are now final.

Updated the definition of refclk to include constraints when CvP is
enabled.

Added section covering clock connectivity for reconfiguration when CvP is
enabled.

Corrected access field in Root Port TLP Data registers.

Added Getting Started chapter for Configuration Space Bypass mode.
Added signal and register descriptions for the Gen3 PIPE simulation.
Added 64-bit addressing for the Avalon-MM IP Cores for PCI Express.
Changed descriptions of rx_st_err[1:0], tx_st_err[1:0],
rx_st_valid[1:0], and tx_st _valid[1:0] buses. Bit 1 is not used.
Corrected definitions of RP_RXCPL_STATUS.SOP and
RP_RXCPL_STATUS.EOP bits. SOP is 0x2010, bit[0] and EOP is 0x2010,
bit[1].

Improved explanation of relaxed ordering of transactions and provided
examples.

Revised discussion of Transceiver Reconfiguration Controller IP Core. Offset
cancellation is not required for Genl or Gen2 operation.

2011.07.30

11.01

Corrected typographical errors.

2011.05.06

11.0

First release.

Intel® Arria® 10 Avalon-ST Interface for PCle* Solutions User Guide

238

	Intel Arria 10 Avalon-ST Interface for PCIe Solutions User Guide
	Contents
	1 Datasheet
	1.1 Arria 10 Avalon-ST Interface for PCIe Datasheet
	1.1.1 Arria 10 Features

	1.2 Release Information
	1.3 Device Family Support
	1.4 Configurations
	1.5 Debug Features
	1.6 IP Core Verification
	1.6.1 Compatibility Testing Environment

	1.7 Performance and Resource Utilization
	1.8 Recommended Speed Grades
	1.9 Creating a Design for PCI Express

	2 Quick Start Guide
	2.1 Directory Structure
	2.2 Design Components
	2.3 Generating the Design
	2.4 Simulating the Design
	2.5 Compiling and Testing the Design in Hardware

	3 Getting Started with the Arria 10 Hard IP for PCI Express
	3.1 Qsys Design Flow
	3.1.1 Generating the Testbench
	3.1.2 Simulating the Example Design
	3.1.3 Generating Synthesis Files
	3.1.4 Understanding the Files Generated
	3.1.5 Understanding Simulation Log File Generation
	3.1.6 Understanding Physical Placement of the PCIe IP Core
	3.1.7 Adding Virtual Pin Assignment to the Quartus II Settings File (.qsf)
	3.1.8 Compiling the Design in the Qsys Design Flow
	3.1.9 Modifying the Example Design
	3.1.10 Using the IP Catalog To Generate Your Arria 10 Hard IP for PCI Express as a Separate Component
	3.1.11 IP Core Generation Output (Quartus Prime Pro Edition)

	4 Arria 10 Parameter Settings
	4.1 Parameters
	4.2 Arria 10 Avalon-ST Settings
	4.3 Base Address Register (BAR) and Expansion ROM Settings
	4.4 Base and Limit Registers for Root Ports
	4.5 Device Identification Registers
	4.6 PCI Express and PCI Capabilities Parameters
	4.6.1 PCI Express and PCI Capabilities
	4.6.2 Error Reporting
	4.6.3 Link Capabilities
	4.6.4 MSI and MSI-X Capabilities
	4.6.5 Slot Capabilities
	4.6.6 Power Management

	4.7 Vendor Specific Extended Capability (VSEC)
	4.8 Configuration, Debug, and Extension Options
	4.9 PHY Characteristics
	4.10 Arria 10 Example Designs

	5 Physical Layout of Hard IP In Arria 10 Devices
	5.1 Channel and Pin Placement for the Gen1, Gen2, and Gen3 Data Rates
	5.2 Channel Placement and fPLL Usage for the Gen1 and Gen2 Data Rates
	5.3 Channel Placement and fPLL and ATX PLL Usage for the Gen3 Data Rate
	5.4 PCI Express Gen3 Bank Usage Restrictions

	6 Interfaces and Signal Descriptions
	6.1 Avalon‑ST RX Interface
	6.1.1 Avalon-ST RX Component Specific Signals
	6.1.2 Data Alignment and Timing for the 64‑Bit Avalon‑ST RX Interface
	6.1.3 Data Alignment and Timing for the 128‑Bit Avalon‑ST RX Interface
	6.1.4 Data Alignment and Timing for 256‑Bit Avalon‑ST RX Interface
	6.1.5 Tradeoffs to Consider when Enabling Multiple Packets per Cycle

	6.2 Avalon-ST TX Interface
	6.2.1 Avalon-ST Packets to PCI Express TLPs
	6.2.2 Data Alignment and Timing for the 64‑Bit Avalon-ST TX Interface
	6.2.3 Data Alignment and Timing for the 128‑Bit Avalon‑ST TX Interface
	6.2.4 Data Alignment and Timing for the 256‑Bit Avalon‑ST TX Interface
	6.2.4.1 Single Packet Per Cycle
	6.2.4.2 Multiple Packets per Cycle on the Avalon-ST TX 256-Bit Interface

	6.2.5 Root Port Mode Configuration Requests

	6.3 Clock Signals
	6.4 Reset, Status, and Link Training Signals
	6.5 ECRC Forwarding
	6.6 Error Signals
	6.7 Interrupts for Endpoints
	6.8 Interrupts for Root Ports
	6.9 Completion Side Band Signals
	6.10 Parity Signals
	6.11 LMI Signals
	6.12 Transaction Layer Configuration Space Signals
	6.12.1 Configuration Space Register Access Timing
	6.12.2 Configuration Space Register Access

	6.13 Hard IP Reconfiguration Interface
	6.14 Power Management Signals
	6.15 Physical Layer Interface Signals
	6.15.1 Serial Data Signals
	6.15.2 PIPE Interface Signals
	6.15.3 Test Signals
	6.15.4 Arria 10 Development Kit Conduit Interface

	7 Registers
	7.1 Correspondence between Configuration Space Registers and the PCIe Specification
	7.2 Type 0 Configuration Space Registers
	7.3 Type 1 Configuration Space Registers
	7.4 PCI Express Capability Structures
	7.5 Intel-Defined VSEC Registers
	7.6 CvP Registers
	7.7 Uncorrectable Internal Error Mask Register
	7.8 Uncorrectable Internal Error Status Register
	7.9 Correctable Internal Error Mask Register
	7.10 Correctable Internal Error Status Register

	8 Arria 10 Reset and Clocks
	8.1 Reset Sequence for Hard IP for PCI Express IP Core and Application Layer
	8.2 Clocks
	8.2.1 Clock Domains
	8.2.1.1 coreclkout_hip
	8.2.1.2 pld_clk

	8.2.2 Clock Summary

	9 Interrupts
	9.1 Interrupts for Endpoints
	9.1.1 MSI and Legacy Interrupts
	9.1.2 MSI-X
	9.1.3 Implementing MSI-X Interrupts
	9.1.4 Legacy Interrupts

	9.2 Interrupts for Root Ports

	10 Error Handling
	10.1 Physical Layer Errors
	10.2 Data Link Layer Errors
	10.3 Transaction Layer Errors
	10.4 Error Reporting and Data Poisoning
	10.5 Uncorrectable and Correctable Error Status Bits

	11 IP Core Architecture
	11.1 Top-Level Interfaces
	11.1.1 Avalon-ST Interface
	11.1.2 Clocks and Reset
	11.1.3 Local Management Interface (LMI Interface)
	11.1.4 Hard IP Reconfiguration
	11.1.5 Interrupts
	11.1.6 PIPE

	11.2 Transaction Layer
	11.2.1 Configuration Space
	11.2.2.1 Error Checking and Handling in Configuration Space Bypass Mode
	11.2.2.2 Protocol Extensions Supported

	11.3 Data Link Layer
	11.4 Physical Layer

	12 Transaction Layer Protocol (TLP) Details
	12.1 Supported Message Types
	12.1.1 INTX Messages
	12.1.2 Power Management Messages
	12.1.3 Error Signaling Messages
	12.1.4 Locked Transaction Message
	12.1.5 Slot Power Limit Message
	12.1.6 Vendor-Defined Messages
	12.1.7 Hot Plug Messages

	12.2 Transaction Layer Routing Rules
	12.3 Receive Buffer Reordering
	12.3.1 Using Relaxed Ordering

	13 Throughput Optimization
	13.1 Throughput of Posted Writes
	13.2 Throughput of Non-Posted Reads

	14 Design Implementation
	14.1 Making Pin Assignments to Assign I/O Standard to Serial Data Pins
	14.2 Recommended Reset Sequence to Avoid Link Training Issues
	14.3 Creating a Signal Tap II Debug File to Match Your Design Hierarchy
	14.4 SDC Timing Constraints

	15 Optional Features
	15.1 Configuration over Protocol (CvP)
	15.2 Autonomous Mode
	15.2.1 Enabling Autonomous Mode
	15.2.2 Enabling CvP Initialization

	15.3 ECRC
	15.3.1 ECRC on the RX Path
	15.3.2 ECRC on the TX Path

	16 Hard IP Reconfiguration
	17 Testbench and Design Example
	17.1 Endpoint Testbench
	17.2 Root Port Testbench
	17.3 Chaining DMA Design Examples
	17.3.1 BAR/Address Map
	17.3.2 Chaining DMA Control and Status Registers
	17.3.3 Chaining DMA Descriptor Tables

	17.4 Test Driver Module
	17.5 DMA Write Cycles
	17.6 DMA Read Cycles
	17.7 Root Port Design Example
	17.8 Root Port BFM
	17.8.1 BFM Memory Map
	17.8.2 Configuration Space Bus and Device Numbering
	17.8.3 Configuration of Root Port and Endpoint
	17.8.4 Issuing Read and Write Transactions to the Application Layer

	17.9 BFM Procedures and Functions
	17.9.1 ebfm_barwr Procedure
	17.9.2 ebfm_barwr_imm Procedure
	17.9.3 ebfm_barrd_wait Procedure
	17.9.4 ebfm_barrd_nowt Procedure
	17.9.5 ebfm_cfgwr_imm_wait Procedure
	17.9.6 ebfm_cfgwr_imm_nowt Procedure
	17.9.7 ebfm_cfgrd_wait Procedure
	17.9.8 ebfm_cfgrd_nowt Procedure
	17.9.9 BFM Configuration Procedures
	17.9.9.1 ebfm_cfg_rp_ep Procedure
	17.9.9.2 ebfm_cfg_decode_bar Procedure

	17.9.10 BFM Shared Memory Access Procedures
	17.9.10.1 Shared Memory Constants
	17.9.10.2 shmem_write
	17.9.10.3 shmem_read Function
	17.9.10.4 shmem_display Verilog HDL Function
	17.9.10.5 shmem_fill Procedure
	17.9.10.6 shmem_chk_ok Function

	17.9.11 BFM Log and Message Procedures
	17.9.11.1 ebfm_display Verilog HDL Function
	17.9.11.2 ebfm_log_stop_sim Verilog HDL Function
	17.9.11.3 ebfm_log_set_suppressed_msg_mask #Verilog HDL Function
	17.9.11.4 ebfm_log_set_stop_on_msg_mask Verilog HDL Function
	17.9.11.5 ebfm_log_open Verilog HDL Function
	17.9.11.6 ebfm_log_close Verilog HDL Function

	17.9.12 Verilog HDL Formatting Functions
	17.9.12.1 himage1
	17.9.12.2 himage2
	17.9.12.3 himage4
	17.9.12.4 himage8
	17.9.12.5 himage16
	17.9.12.6 dimage1
	17.9.12.7 dimage2
	17.9.12.8 dimage3
	17.9.12.9 dimage4
	17.9.12.10 dimage5
	17.9.12.11 dimage6
	17.9.12.12 dimage7

	17.9.13 Procedures and Functions Specific to the Chaining DMA Design Example
	17.9.13.1 chained_dma_test Procedure
	17.9.13.2 dma_rd_test Procedure
	17.9.13.3 dma_wr_test Procedure
	17.9.13.4 dma_set_rd_desc_data Procedure
	17.9.13.5 dma_set_wr_desc_data Procedure
	17.9.13.6 dma_set_header Procedure
	17.9.13.7 rc_mempoll Procedure
	17.9.13.8 msi_poll Procedure
	17.9.13.9 dma_set_msi Procedure
	17.9.13.10 find_mem_bar Procedure
	17.9.13.11 dma_set_rclast Procedure
	17.9.13.12 ebfm_display_verb Procedure

	17.10 Setting Up Simulation
	17.10.1 Changing Between Serial and PIPE Simulation
	17.10.2 Using the PIPE Interface for Gen1 and Gen2 Variants
	17.10.3 Viewing the Important PIPE Interface Signals
	17.10.4 Disabling the Scrambler for Gen1 and Gen2 Simulations
	17.10.5 Disabling 8B/10B Encoding and Decoding for Gen1 and Gen2 Simulations

	18 Debugging
	18.1 Simulation Fails To Progress Beyond Polling.Active State
	18.2 Hardware Bring-Up Issues
	18.3 Link Training
	18.3.1 Link Hangs in L0 State

	18.4 Use Third-Party PCIe Analyzer
	18.5 BIOS Enumeration Issues

	A Transaction Layer Packet (TLP) Header Formats
	A.1 TLP Packet Formats with Data Payload

	B Lane Initialization and Reversal
	C Arria 10 Avalon-ST Interface for PCIe Solutions User Guide Archive
	D Revision History
	D.1 Revision History for the Avalon-ST Interface

