
Intel® Arria® 10 Avalon-ST Interface
for PCIe* Solutions User Guide
UG-01145_avst
2017.05.15

Last updated for Intel® Quartus® Prime Design Suite: 17.0

Subscribe
Send Feedback

https://www.altera.com/servlets/subscriptions/alert?id=UG-01145_avst
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Arria%2010%20Avalon-ST%20Interface%20for%20PCIe%20Solutions%20User%20Guide%20(UG-01145_avst%202017.05.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1 Datasheet.. 7
1.1 Arria 10 Avalon-ST Interface for PCIe Datasheet... 7

1.1.1 Arria 10 Features ...8
1.2 Release Information ... 10
1.3 Device Family Support ..11
1.4 Configurations ...11
1.5 Debug Features ... 13
1.6 IP Core Verification .. 13

1.6.1 Compatibility Testing Environment ..13
1.7 Performance and Resource Utilization ... 13
1.8 Recommended Speed Grades .. 13
1.9 Creating a Design for PCI Express... 15

2 Quick Start Guide...17
2.1 Directory Structure... 18
2.2 Design Components.. 18
2.3 Generating the Design...18
2.4 Simulating the Design... 19
2.5 Compiling and Testing the Design in Hardware..21

3 Getting Started with the Arria 10 Hard IP for PCI Express .. 24
3.1 Qsys Design Flow..25

3.1.1 Generating the Testbench ..25
3.1.2 Simulating the Example Design ..26
3.1.3 Generating Synthesis Files... 27
3.1.4 Understanding the Files Generated.. 27
3.1.5 Understanding Simulation Log File Generation...27
3.1.6 Understanding Physical Placement of the PCIe IP Core 28
3.1.7 Adding Virtual Pin Assignment to the Quartus II Settings File (.qsf)................. 28
3.1.8 Compiling the Design in the Qsys Design Flow ... 28
3.1.9 Modifying the Example Design ... 32
3.1.10 Using the IP Catalog To Generate Your Arria 10 Hard IP for PCI Express as

a Separate Component... 32
3.1.11 IP Core Generation Output (Quartus Prime Pro Edition)................................ 33

4 Arria 10 Parameter Settings.. 36
4.1 Parameters ... 36
4.2 Arria 10 Avalon-ST Settings ...38
4.3 Base Address Register (BAR) and Expansion ROM Settings .. 38
4.4 Base and Limit Registers for Root Ports ...39
4.5 Device Identification Registers ...39
4.6 PCI Express and PCI Capabilities Parameters ... 40

4.6.1 PCI Express and PCI Capabilities .. 40
4.6.2 Error Reporting ..41
4.6.3 Link Capabilities ...42
4.6.4 MSI and MSI-X Capabilities ... 42
4.6.5 Slot Capabilities ...43
4.6.6 Power Management ..44

Contents

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
2

4.7 Vendor Specific Extended Capability (VSEC)... 45
4.8 Configuration, Debug, and Extension Options... 45
4.9 PHY Characteristics .. 46
4.10 Arria 10 Example Designs..47

5 Physical Layout of Hard IP In Arria 10 Devices.. 48
5.1 Channel and Pin Placement for the Gen1, Gen2, and Gen3 Data Rates......................... 50
5.2 Channel Placement and fPLL Usage for the Gen1 and Gen2 Data Rates.........................52
5.3 Channel Placement and fPLL and ATX PLL Usage for the Gen3 Data Rate...................... 54
5.4 PCI Express Gen3 Bank Usage Restrictions...56

6 Interfaces and Signal Descriptions ...57
6.1 Avalon-ST RX Interface ...58

6.1.1 Avalon-ST RX Component Specific Signals ... 60
6.1.2 Data Alignment and Timing for the 64-Bit Avalon-ST RX Interface 61
6.1.3 Data Alignment and Timing for the 128-Bit Avalon-ST RX Interface65
6.1.4 Data Alignment and Timing for 256-Bit Avalon-ST RX Interface 68
6.1.5 Tradeoffs to Consider when Enabling Multiple Packets per Cycle69

6.2 Avalon-ST TX Interface ...70
6.2.1 Avalon-ST Packets to PCI Express TLPs ... 73
6.2.2 Data Alignment and Timing for the 64-Bit Avalon-ST TX Interface73
6.2.3 Data Alignment and Timing for the 128-Bit Avalon-ST TX Interface76
6.2.4 Data Alignment and Timing for the 256-Bit Avalon-ST TX Interface79
6.2.5 Root Port Mode Configuration Requests ... 82

6.3 Clock Signals ...82
6.4 Reset, Status, and Link Training Signals... 82
6.5 ECRC Forwarding ... 85
6.6 Error Signals ... 85
6.7 Interrupts for Endpoints ..86
6.8 Interrupts for Root Ports ... 87
6.9 Completion Side Band Signals ..87
6.10 Parity Signals .. 89
6.11 LMI Signals ... 90
6.12 Transaction Layer Configuration Space Signals ... 92

6.12.1 Configuration Space Register Access Timing ...93
6.12.2 Configuration Space Register Access ... 94

6.13 Hard IP Reconfiguration Interface ...98
6.14 Power Management Signals ... 99
6.15 Physical Layer Interface Signals ..101

6.15.1 Serial Data Signals ... 101
6.15.2 PIPE Interface Signals ... 102
6.15.3 Test Signals ... 105
6.15.4 Arria 10 Development Kit Conduit Interface.. 105

7 Registers... 107
7.1 Correspondence between Configuration Space Registers and the PCIe Specification107
7.2 Type 0 Configuration Space Registers ..110
7.3 Type 1 Configuration Space Registers ..111
7.4 PCI Express Capability Structures..111
7.5 Intel-Defined VSEC Registers..114
7.6 CvP Registers... 115
7.7 Uncorrectable Internal Error Mask Register .. 117

Contents

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
3

7.8 Uncorrectable Internal Error Status Register .. 118
7.9 Correctable Internal Error Mask Register ... 118
7.10 Correctable Internal Error Status Register ..119

8 Arria 10 Reset and Clocks.. 120
8.1 Reset Sequence for Hard IP for PCI Express IP Core and Application Layer 121
8.2 Clocks .. 123

8.2.1 Clock Domains ..123
8.2.2 Clock Summary ...125

9 Interrupts.. 126
9.1 Interrupts for Endpoints...126

9.1.1 MSI and Legacy Interrupts .. 126
9.1.2 MSI-X ...129
9.1.3 Implementing MSI-X Interrupts...129
9.1.4 Legacy Interrupts ...131

9.2 Interrupts for Root Ports ... 132

10 Error Handling .. 133
10.1 Physical Layer Errors ...133
10.2 Data Link Layer Errors .. 134
10.3 Transaction Layer Errors ..134
10.4 Error Reporting and Data Poisoning ...136
10.5 Uncorrectable and Correctable Error Status Bits ..137

11 IP Core Architecture.. 138
11.1 Top-Level Interfaces ... 139

11.1.1 Avalon-ST Interface .. 139
11.1.2 Clocks and Reset .. 140
11.1.3 Local Management Interface (LMI Interface) .. 140
11.1.4 Hard IP Reconfiguration ...140
11.1.5 Interrupts ..141
11.1.6 PIPE ... 141

11.2 Transaction Layer ... 141
11.2.1 Configuration Space ..143
11.2.2.1 Error Checking and Handling in Configuration Space Bypass Mode144
11.2.2.2 Protocol Extensions Supported ...147

11.3 Data Link Layer ..147
11.4 Physical Layer ..149

12 Transaction Layer Protocol (TLP) Details... 152
12.1 Supported Message Types ..152

12.1.1 INTX Messages ...152
12.1.2 Power Management Messages .. 153
12.1.3 Error Signaling Messages ...153
12.1.4 Locked Transaction Message .. 154
12.1.5 Slot Power Limit Message .. 154
12.1.6 Vendor-Defined Messages ..154
12.1.7 Hot Plug Messages ..155

12.2 Transaction Layer Routing Rules ... 155
12.3 Receive Buffer Reordering ..156

12.3.1 Using Relaxed Ordering ... 158

Contents

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
4

13 Throughput Optimization... 161
13.1 Throughput of Posted Writes .. 163
13.2 Throughput of Non-Posted Reads ..163

14 Design Implementation..165
14.1 Making Pin Assignments to Assign I/O Standard to Serial Data Pins165
14.2 Recommended Reset Sequence to Avoid Link Training Issues165
14.3 Creating a Signal Tap II Debug File to Match Your Design Hierarchy166
14.4 SDC Timing Constraints..167

15 Optional Features.. 168
15.1 Configuration over Protocol (CvP) ... 168
15.2 Autonomous Mode...169

15.2.1 Enabling Autonomous Mode.. 169
15.2.2 Enabling CvP Initialization...170

15.3 ECRC ..170
15.3.1 ECRC on the RX Path .. 170
15.3.2 ECRC on the TX Path ...171

16 Hard IP Reconfiguration ... 173

17 Testbench and Design Example ...174
17.1 Endpoint Testbench .. 175
17.2 Root Port Testbench ..177
17.3 Chaining DMA Design Examples ..177

17.3.1 BAR/Address Map ...182
17.3.2 Chaining DMA Control and Status Registers ..183
17.3.3 Chaining DMA Descriptor Tables ..185

17.4 Test Driver Module ..187
17.5 DMA Write Cycles ... 188
17.6 DMA Read Cycles ..190
17.7 Root Port Design Example ..191
17.8 Root Port BFM ..193

17.8.1 BFM Memory Map ... 195
17.8.2 Configuration Space Bus and Device Numbering 195
17.8.3 Configuration of Root Port and Endpoint .. 196
17.8.4 Issuing Read and Write Transactions to the Application Layer202

17.9 BFM Procedures and Functions ... 202
17.9.1 ebfm_barwr Procedure .. 202
17.9.2 ebfm_barwr_imm Procedure .. 203
17.9.3 ebfm_barrd_wait Procedure ... 203
17.9.4 ebfm_barrd_nowt Procedure .. 204
17.9.5 ebfm_cfgwr_imm_wait Procedure ... 204
17.9.6 ebfm_cfgwr_imm_nowt Procedure .. 205
17.9.7 ebfm_cfgrd_wait Procedure ..205
17.9.8 ebfm_cfgrd_nowt Procedure .. 206
17.9.9 BFM Configuration Procedures... 206
17.9.10 BFM Shared Memory Access Procedures ...208
17.9.11 BFM Log and Message Procedures ... 210
17.9.12 Verilog HDL Formatting Functions ... 213
17.9.13 Procedures and Functions Specific to the Chaining DMA Design Example..... 216

Contents

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
5

17.10 Setting Up Simulation.. 220
17.10.1 Changing Between Serial and PIPE Simulation .. 220
17.10.2 Using the PIPE Interface for Gen1 and Gen2 Variants221
17.10.3 Viewing the Important PIPE Interface Signals.. 221
17.10.4 Disabling the Scrambler for Gen1 and Gen2 Simulations 221
17.10.5 Disabling 8B/10B Encoding and Decoding for Gen1 and Gen2 Simulations... 221

18 Debugging .. 222
18.1 Simulation Fails To Progress Beyond Polling.Active State... 222
18.2 Hardware Bring-Up Issues ... 222
18.3 Link Training ..223

18.3.1 Link Hangs in L0 State... 223
18.4 Use Third-Party PCIe Analyzer ..225
18.5 BIOS Enumeration Issues .. 225

A Transaction Layer Packet (TLP) Header Formats .. 226
A.1 TLP Packet Formats with Data Payload .. 228

B Lane Initialization and Reversal ..230

C Arria 10 Avalon-ST Interface for PCIe Solutions User Guide Archive232

D Revision History.. 233
D.1 Revision History for the Avalon-ST Interface... 233

Contents

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
6

1 Datasheet

1.1 Arria 10 Avalon-ST Interface for PCIe Datasheet

Intel® Arria® 10 FPGAs include a configurable, hardened protocol stack for PCI
Express® that is compliant with PCI Express Base Specification 3.0. The Hard IP for
PCI Express using the Avalon® Streaming (Avalon-ST) interface is the most flexible
variant. However, this variant requires a thorough understanding of the PCIe®

Protocol.

Figure 1. Arria 10 PCIe Variant with Avalon-ST Interface

Application
Layer

(User Logic)

Avalon-ST
Interface PCIe Hard IP

Block

PIPE
Interface PHY IP Core

for PCIe
(PCS/PMA)

Serial Data
Transmission

Table 1. PCI Express Data Throughput

The following table shows the aggregate bandwidth of a PCI Express link for Gen1, Gen2, and Gen3 for 1, 2, 4,
and 8 lanes. This table provides bandwidths for a single transmit (TX) or receive (RX) channel. The numbers
double for duplex operation. The protocol specifies 2.5 giga-transfers per second for Gen1, 5.0 giga-transfers
per second for Gen2, and 8.0 giga-transfers per second for Gen3. Gen1 and Gen2 use 8B/10B encoding which
introduces a 20% overhead. In contrast, Gen3 uses 128b/130b encoding which reduces the data throughput
lost to encoding to about 1.5%.

Link Width

×1 ×2 ×4 ×8

PCI Express Gen1
(2.5 Gbps)

2 4 8 16

PCI Express Gen2
(5.0 Gbps)

4 8 16 32

PCI Express Gen3
(8.0 Gbps)

7.87 15.75 31.51 63

Refer to the AN 456: PCI Express High Performance Reference Design for more
information about calculating bandwidth for the hard IP implementation of PCI Express
in many Intel FPGAs, including the Arria 10 Hard IP for PCI Express IP core.

Devices

Related Links

• Arria 10 Avalon-ST Interface for PCIe Solutions User Guide Archive on page 232

1 Datasheet

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

• Introduction to Intel FPGA IP Cores
Provides general information about all Intel FPGA IP cores, including
parameterizing, generating, upgrading, and simulating IP cores.

• Creating Version-Independent IP and Qsys Simulation Scripts
Create simulation scripts that do not require manual updates for software or IP
version upgrades.

• Project Management Best Practices
Guidelines for efficient management and portability of your project and IP files.

• PCI Express High Performance Reference Design
For a design example demonstrating DMA performance that you can download
to an Intel Development Kit.

• PCI Express Base Specification 3.0

1.1.1 Arria 10 Features

New features in the Quartus® Prime 17.0 software release:

• Added optional soft DFE controller IP to improve bit error rate (BER) margin. This
option is available on the PHY tab of the parameter editor. The default for this
option is off because it is typically not required. Short reflective links may benefit
from this soft DFE controller IP. This parameter is available only for Gen3
configurations.

The Arria 10 Hard IP for PCI Express supports the following features:

• Complete protocol stack including the Transaction, Data Link, and Physical Layers
implemented as hard IP.

• Support for ×1, ×2, ×4, and ×8 configurations with Gen1, Gen2, or Gen3 lane
rates for Root Ports and Native Endpoints.

• Dedicated 16 KB receive buffer.

• Optional support for Configuration via Protocol (CvP) using the PCIe link allowing
the I/O and core bitstreams to be stored separately.

• Qsys example designs demonstrating parameterization, design modules, and
connectivity.

• Extended credit allocation settings to better optimize the RX buffer space based on
application type.

• Support for multiple packets per cycle with the 256-bit Avalon-ST interface.

• Optional end-to-end cyclic redundancy code (ECRC) generation and checking and
advanced error reporting (AER) for high reliability applications.

• Easy to use:

— Flexible configuration.

— Substantial on-chip resource savings and guaranteed timing closure.

— No license requirement.

— Example designs to get started.

1 Datasheet

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
8

https://www.altera.com/documentation/mwh1409960636914.html#mwh1409958250601
https://www.altera.com/documentation/mwh1409960636914.html#mwh1409958301774
https://www.altera.com/documentation/mwh1409960181641.html#esc1444754592005
https://www.altera.com/documentation/nik1412473924913.html#nik1412473905263
http://www.pcisig.com/

Table 2. Feature Comparison for all Hard IP for PCI Express IP Cores
The table compares the features for three variants of the Hard IP for PCI Express IP Core. An SR-IOV variant is
also available, but not included because it is very specialized product. Consult the Arria 10 Avalon-ST Interface
with SR-IOV PCIe Solutions User Guide for features of this IP core.

Feature Avalon-ST Interface Avalon-MM Interface Avalon-MM DMA

IP Core License Free Free Free

Native Endpoint Supported Supported Supported

Root port Supported Supported Not Supported

Gen1 ×1, ×2, ×4, ×8 ×1, ×2, ×4, ×8 Not Supported

Gen2 ×1, ×2, ×4, ×8 ×1, ×2, ×4, ×8 ×4, ×8

Gen3 ×1, ×2, ×4, ×8 ×1, ×2, ×4 ×2, ×4, ×8

64-bit Application Layer interface Supported Supported Not supported

128-bit Application Layer interface Supported Supported Supported

256-bit Application Layer interface Supported Not Supported Supported

Maximum payload size 128, 256, 512, 1024, 2048
bytes

128, 256 bytes 128, 256 bytes

Number of tags supported for non-posted
requests

32, 64, 128, 256 8 for 64-bit interface
16 for 128-bit interface

16 or 256

Automatically handle out-of-order
completions (transparent to the
Application Layer)

Not supported Supported Not Supported

Automatically handle requests that cross 4
KB address boundary (transparent to the
Application Layer)

Not supported Supported Supported

Polarity Inversion of PIPE interface signals Supported Supported Supported

Number of MSI requests 1, 2, 4, 8, 16, or 32 1, 2, 4, 8, 16, or 32 1, 2, 4, 8, 16, or 32

MSI-X Supported Supported Supported

Legacy interrupts Supported Supported Supported

Expansion ROM Supported Not supported Not supported

PCIe bifurcation Not supported Not supported Not supported

Table 3. TLP Support Comparison for all Hard IP for PCI Express IP Cores
The table compares the TLP types that the variants of the Hard IP for PCI Express IP Cores can transmit. Each
entry indicates whether this TLP type is supported (for transmit) by Endpoints (EP), Root Ports (RP), or both
(EP/RP).

Transaction Layer Packet type (TLP) (transmit
support)

Avalon-ST Interface Avalon-MM Interface Avalon-MM
DMA

Memory Read Request (Mrd) EP/RP EP/RP EP

Memory Read Lock Request (MRdLk) EP/RP EP

Memory Write Request (MWr) EP/RP EP/RP EP

I/O Read Request (IORd) EP/RP EP/RP

I/O Write Request (IOWr) EP/RP EP/RP

Config Type 0 Read Request (CfgRd0) RP RP

continued...

1 Datasheet

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
9

Transaction Layer Packet type (TLP) (transmit
support)

Avalon-ST Interface Avalon-MM Interface Avalon-MM
DMA

Config Type 0 Write Request (CfgWr0) RP RP

Config Type 1 Read Request (CfgRd1) RP RP

Config Type 1 Write Request (CfgWr1) RP RP

Message Request (Msg) EP/RP EP/RP

Message Request with Data (MsgD) EP/RP EP/RP

Completion (Cpl) EP/RP EP/RP EP

Completion with Data (CplD) EP/RP EP

Completion-Locked (CplLk) EP/RP

Completion Lock with Data (CplDLk) EP/RP

Fetch and Add AtomicOp Request (FetchAdd) EP

The Arria 10 Avalon-ST Interface for PCIe Solutions User Guide explains how to use
this IP core and not the PCI Express protocol. Although there is inevitable overlap
between these two purposes, use this document only in conjunction with an
understanding of the PCI Express Base Specification.

Note: This release provides separate user guides for the different variants. The Related
Information provides links to all versions.

Related Links

• Arria 10 Avalon-MM DMA Interface for PCIe Solutions User Guide
For the Avalon-MM interface and DMA functionality.

• Arria 10 Avalon-MM Interface for PCIe Solutions User Guide
For the Avalon-MM interface with no DMA.

• Arria 10 Avalon-ST Interface with SR-IOV PCIe Solutions User Guide
For the Avalon-ST interface with Single Root I/O Virtualization (SR-IOV).

1.2 Release Information

Table 4. Hard IP for PCI Express Release Information

Item Description

Version 17.0

Release Date May 2017

Ordering Codes No ordering code is required

Product IDs There are no encrypted files for the Arria 10 Hard IP for PCI Express. The Product ID and Vendor ID are
not required because this IP core does not require a license.

Vendor ID

Intel verifies that the current version of the Quartus Prime software compiles the
previous version of each IP core, if this IP core was included in the previous release.
Intel reports any exceptions to this verification in the Intel IP Release Notes or clarifies
them in the Quartus Prime IP Update tool. Intel does not verify compilation with IP
core versions older than the previous release.

1 Datasheet

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
10

https://www.altera.com/documentation/lbl1415138844137.html#nik1410905278518
https://www.altera.com/documentation/lbl1415230609011.html#nik1410905278518
https://www.altera.com/documentation/lbl1415123763821.html#nik1410905278518

Related Links

• Errata for the Arria 10 Hard IP for PCI Express IP Core in the Knowledge Base

• Intel FPGA IP Release Notes
Provides release notes for the current and past versions Intel FPGA IP cores.

1.3 Device Family Support

The following terms define device support levels for Intel® FPGA IP cores:

• Advance support—the IP core is available for simulation and compilation for this
device family. Timing models include initial engineering estimates of delays based
on early post-layout information. The timing models are subject to change as
silicon testing improves the correlation between the actual silicon and the timing
models. You can use this IP core for system architecture and resource utilization
studies, simulation, pinout, system latency assessments, basic timing assessments
(pipeline budgeting), and I/O transfer strategy (data-path width, burst depth, I/O
standards tradeoffs).

• Preliminary support—the IP core is verified with preliminary timing models for
this device family. The IP core meets all functional requirements, but might still be
undergoing timing analysis for the device family. It can be used in production
designs with caution.

• Final support—the IP core is verified with final timing models for this device
family. The IP core meets all functional and timing requirements for the device
family and can be used in production designs.

Table 5. Device Family Support

Device Family Support Level

Arria 10 Final.

Other device families Refer to the Intel's PCI Express IP Solutions web page for support information on other device
families.

Related Links

PCI Express Solutions Web Page

1.4 Configurations

The Arria 10 Hard IP for PCI Express includes a full hard IP implementation of the PCI
Express stack including the following layers:

• Physical (PHY), including:

— Physical Media Attachment (PMA)

— Physical Coding Sublayer (PCS)

• Media Access Control (MAC)

• Data Link Layer (DL)

• Transaction Layer (TL)

The Hard IP supports all memory, I/O, configuration, and message transactions. It is
optimized for Intel devices. The Application Layer interface is also optimized to achieve
maximum effective throughput. You can customize the Hard IP to meet your design
requirements.

1 Datasheet

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
11

http://www.altera.com/support/kdb/kdb-browse.jsp?keyword=pcie+a10+ki
https://www.altera.com/documentation/hco1421698042087.html#hco1421697689300
https://www.altera.com/solutions/technology/transceiver/protocols/pro-pci_exp.html

Figure 2. PCI Express Application with a Single Root Port and Endpoint
The following figure shows a PCI Express link between two Arria 10 FPGAs.

Intel FPGA

User Application
Logic

PCIe
Hard IP

RP

PCIe
Hard IP

EP

User Application
 LogicPCI Express Link

Intel FPGA

Figure 3. PCI Express Application Using Configuration via Protocol
The Arria 10 design below includes the following components:

• A Root Port that connects directly to a second FPGA that includes an Endpoint.

• Two Endpoints that connect to a PCIe switch.

• A host CPU that implements CvP using the PCI Express link connects through the
switch.

PCIe Link

PCIe Hard IP

RP Switch

PCIe
Hard IP

EP

User Application
Logic

PCIe Hard IP

EP

PCIe LinkPCIe LinkUser Application
Logic

Intel FPGA with Hard IP for PCI Express

Intel FPGA with Hard IP for PCI Express

Active Serial or
Active Quad

Device Configuration

Configuration over via Protol (CvP)
 using PCI Express

Serial or
Quad Flash

USB

Download
cable

PCIe
Hard IP

EP
User

Application
 Logic

Intel FPGA with Hard IP for PCI Express

Config
Control

CVP

USB

Host CPU

PCIe

Related Links

Arria 10 CvP Initialization and Partial Reconfiguration over PCI Express User Guide

1 Datasheet

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
12

https://documentation.altera.com/#/link/dsu1441819344145/dsu1442269728522

1.5 Debug Features

Debug features allow observation and control of the Hard IP for faster debugging of
system-level problems.

Related Links

Debugging on page 222

1.6 IP Core Verification

To ensure compliance with the PCI Express specification, Intel performs extensive
verification. The simulation environment uses multiple testbenches that consist of
industry-standard bus functional models (BFMs) driving the PCI Express link interface.
Intel performs the following tests in the simulation environment:

• Directed and pseudorandom stimuli test the Application Layer interface,
Configuration Space, and all types and sizes of TLPs

• Error injection tests inject errors in the link, TLPs, and Data Link Layer Packets
(DLLPs), and check for the proper responses

• PCI-SIG® Compliance Checklist tests that specifically test the items in the checklist

• Random tests that test a wide range of traffic patterns

Intel provides example designs that you can leverage to test your PCBs and complete
compliance base board testing (CBB testing) at PCI-SIG, upon request.

1.6.1 Compatibility Testing Environment

Intel has performed significant hardware testing to ensure a reliable solution. In
addition, Intel internally tests every release with motherboards and PCI Express
switches from a variety of manufacturers. All PCI-SIG compliance tests are run with
each IP core release.

1.7 Performance and Resource Utilization

Because the PCIe protocol stack is implemented in hardened logic, it uses no core
device resources (no ALMs and no embedded memory).

Related Links

• Fitter Resources Reports
For numerous reports on hardware resources such as Differential I/O,PLLs,
RAM usage, and GXB RX and TX channels.

• Running the Fitter
For information on Fitter constraints.

1.8 Recommended Speed Grades

Recommended speed grades are pending characterization of production Arria 10
devices.

1 Datasheet

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
13

https://www.altera.com/documentation/mwh1465496482416.html#mwh1465496449900
https://documentation.altera.com/#/link/jbr1437426657605/jbr1443213804950/en-us

Table 6. Arria 10 Recommended Speed Grades for All Link Widths and Application
Layer Clock Frequencies
Intel recommends setting the Quartus Prime Analysis & Synthesis Settings Optimization Technique to
Speed when the Application Layer clock frequency is 250 MHz. For information about optimizing synthesis,
refer to Setting Up and Running Analysis and Synthesis in Quartus II Help. For more information about how to
effect the Optimization Technique settings, refer to Area and Timing Optimization in volume 2 of the
Quartus Prime Handbook.

Link Rate Link Width Interface
Width

Application Clock Frequency
(MHz)

Recommended Speed Grades

Gen1 x1 64 bits 62.51,125 –1, –2 , –3

x2 64 bits 125 –1, –2, –3

x4 64 bits 125 –1, –2, –3

x8 64 bits 250 –1, –2

x8 128 Bits 125 –1, –2, –3

Gen2 x1 64 bits 125 –1, –2, –3

x2 64 bits 125 –1, –2, –3

x4 64 bits 250 –1, –2

x4 128 bits 125 –1, –2, –3

x8 128 bits 250 –1, –2

x8 256 bits 125 –1, –2, –3

Gen3 x1 64 bits 125 –1, –2, –3

x2 64 bits 250 –1, –2

x2 128 bits 125 –1, –2, –3

x4 128 bits 250 –1, –2

x4 256 bits 125 –1, –2, –3

x8 256 bits 250 –1, –2

Related Links

• Intel FPGA Software Installation and Licensing
Provides comprehensive information for installing and licensing Intel FPGA
software.

• Running Synthesis
For settings that affect timing closure.

1 This is a power-saving mode of operation

1 Datasheet

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
14

https://www.altera.com/documentation/esc1425946071433.html#esc1426013042774
https://documentation.altera.com/#/link/jbr1437426657605/jbr1443212316061/en-us

1.9 Creating a Design for PCI Express

Select the PCIe variant that best meets your design requirements.

• Is your design an Endpoint or Root Port?

• What Generation do you intend to implement?

• What link width do you intend to implement?

• What bandwidth does your application require?

• Does your design require Configuration via Protocol (CvP)?

1. Select parameters for that variant.

2. For Arria 10 devices, you can use the new Example Design tab of the component
GUI to generate a design that you specify. Then, you can simulate this example
and also download it to an Arria 10 FPGA Development Kit. Refer to the Arria 10
PCI Express IP Core Quick Start Guide for details.

3. For all devices, you can simulate using an Intel-provided example design. All static
PCI Express example designs are available under <install_dir>/ip/altera/
altera_pcie/altera_pcie_<dev>_ed/example_design/<dev>.
Alternatively, generate an example design that matches your parameter settings,
or create a simulation model and use your own custom or third-party BFM. The
Qsys Generate menu generates simulation models. Intel supports ModelSim* -
Intel FPGA Edition for all IP. The PCIe cores support the Aldec RivieraPro, Cadence
NCsim, Mentor Graphics ModelSim, and Synopsys* VCS and VCS-MX simulators.

The Intel testbench and Root Port or Endpoint BFM provide a simple method to do
basic testing of the Application Layer logic that interfaces to the variation.
However, the testbench and Root Port BFM are not intended to be a substitute for
a full verification environment. To thoroughly test your application, Intel suggests
that you obtain commercially available PCI Express verification IP and tools, or do
your own extensive hardware testing, or both.

4. Compile your design using the Quartus Prime software. If the versions of your
design and the Quartus Prime software you are running do not match, regenerate
your PCIe design.

5. Download your design to an Intel development board or your own PCB. Click on
the All Development Kits link below for a list of Intel's development boards.

6. Test the hardware. You can use Intel's SignalTap® Logic Analyzer or a third-party
protocol analyzer to observe behavior.

7. Substitute your Application Layer logic for the Application Layer logic in Intel's
testbench. Then repeat Steps 3–6. In Intel's testbenches, the PCIe core is typically
called the DUT (device under test). The Application Layer logic is typically called
APPS.

Related Links

• Arria 10 Parameter Settings on page 36

• Getting Started with the Arria 10 Hard IP for PCI Express on page 24
For a design example that illustrates a chaining DMA application.

• Quick Start Guide on page 17

• All Development Kits

• Intel Wiki PCI Express

1 Datasheet

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
15

http://www.altera.com/products/devkits/kit-dev_platforms.jsp
http://www.alterawiki.com/wiki/Category:PCI_Express

For complete design examples and help creating new projects and specific
functions, such as MSI or MSI-X related to PCI Express. Intel Applications
engineers regularly update content and add new design examples. These
examples help designers like you get more out of the Intel PCI Express IP core
and may decrease your time-to-market. The design examples of the Intel Wiki
page provide useful guidance for developing your own design. However, the
content of the Intel Wiki is not guaranteed by Intel.

1 Datasheet

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
16

2 Quick Start Guide
The Intel Arria 10 Hard IP for PCI Express* IP core includes a programmed I/O (PIO)
design example to help you understand usage. The PIO example transfers memory
from a host processor to a target device. It is appropriate for low-bandwidth
applications. The design example includes an Avalon-ST to Avalon-MM Bridge. This
component translates the TLPs received on the PCIe* link to Avalon-MM memory
reads and writes to the on-chip memory.

This design example automatically creates the files necessary to simulate and compile
in the Quartus Prime software. You can download the compiled design to the Arria 10
GX FPGA Development Kit. The design examples cover a wide range of parameters.
However, the automatically generated design examples do not cover all possible
parameterizations of the PCIe IP Core. If you select an unsupported parameter set,
generations fails and provides an error message.

In addition, many static design examples for simulation are only available in the
<install_dir>/ip/altera/altera_pcie/altera_pcie_a10_ed/
example_design/a10 directory.

Figure 4. Development Steps for the Design Example

Design
Example

Generation

Compilation
(Simulator)

Functional
Simulation

Compilation
(Quartus Prime)

Hardware
Testing

2 Quick Start Guide

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

2.1 Directory Structure

Figure 5. Directory Structure for the Generated Design Example

<pcie_a10_hip_0_example_design>

pcie_example_design pcie_example_design.qpf

Altera_PCIe_Interop_test.zip

Readme_Altera_PCIe_interop_Test.txt

<design component>

 synth

.

.
.
.

.

.

pcie_example_design_tb

<simulator>

<simulator>

software

windows

interop

<design component>
<component simulation model>

<component simulation model>

 sim

 sim

pcie_example_design_tb

<Simulation Script>

pcie_example_design.qsf

pcie_example_design.sdc

pcie_example_design.qsys
(Quartus Prime Standard, only)
pcie_example_design.ip
(Quartus Prime Pro, only)

<Simulation Script>

2.2 Design Components

Figure 6. Block Diagram for the Qsys PIO Design Example Simulation Testbench

Avalon-ST
data

Generated PCIe
Endpoint

Variant (DUT)

On-Chip
Memory

(MEM)

PCIe Example Design

Avalon-ST to
Avalon-MM

Bridge (Apps)

hip_serial

hip_pipe

OR

Root Port BFM
(RP_BFM)

PCIe Example Design Simulation Testbench

Avalon-MM
data

Related Links

Arria 10 Development Kit Conduit Interface on page 105
The Arria 10 Development Kit conduit interface signals are optional signals that
allow you to connect your design to the Arria 10 FPGA Development Kit.

2.3 Generating the Design

Figure 7. Procedure

Start Parameter
Editor

Specify IP Variation
and Select Device

Select
Design Parameters

Initiate
Design Generation

Specify
Example Design

2 Quick Start Guide

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
18

Follow these steps to generate the design from the IP Parameter Editor:

1. In the IP Catalog (Tools ➤ IP Catalog) locate and select the Arria 10 Hard IP
for PCI Express.

2. Starting with the Quartus Prime Pro 16.1 software, the New IP Variation dialog
box appears.

3. Specify a top-level name and the folder for your custom IP variation, and the
target device. Click OK

4. On the IP Settings tabs, specify the parameters for your IP variation.

5. On the Example Designs tab, the PIO design is available for your IP variation.

Figure 8. Example Design Tab

Initiates Design
Generation

Select Arria 10 FPGA
Development Kit

6. For Example Design Files, select the Simulation and Synthesis options.

7. For Generated HDL Format, only Verilog is available.

8. For Target Development Kit select the Arria 10 FPGA Development Kit
option.

9. Click the Generate Example Design button. The software generates all files
necessary to run simulations and hardware tests on the Arria 10 FPGA
Development Kit.Click Close when generation completes.

10. Click Finish.

11. The prompt, Recent changes have not been generated. Generate now?,
allows you to create files for simulation and synthesis. Click No to continue to
simulate the design example you just generated.

2.4 Simulating the Design

Figure 9. Procedure

Change to
Testbench
Directory

Run
<Simulation Script>

Analyze
Results

1. Change to the testbench simulation directory.

2. Run the simulation script for the simulator of your choice. Refer to the table below.

3. Analyze the results.

2 Quick Start Guide

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
19

Table 7. Steps to Run Simulation

Simulator Working Directory Instructions

ModelSim <example_design>/
pcie_example_design_tb/
pcie_example_design_tb/sim/mentor/

1. do msim_setup.tcl

2. ld_debug

3. run -all

4. A successful simulation ends with the following
message, "Simulation stopped due to
successful completion!"

VCS* <example_design>/
pcie_example_design_tb/
pcie_example_design_tb/sim/
synopsys/vcs

1. sh vcs_setup.sh
USER_DEFINED_SIM_OPTIONS=""

2. A successful simulation ends with the following
message, "Simulation stopped due to
successful completion!"

Cadence* <example_design>/
pcie_example_design_tb/
pcie_example_design_tb/sim/cadence

1. sh ncsim_setup.sh
USER_DEFINED_SIM_OPTIONS=""

2. A successful simulation ends with the following
message, "Simulation stopped due to
successful completion!"

Figure 10. Partial Transcript from Successful Avalon-ST PIO Simulation Testbench

2 Quick Start Guide

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
20

Related Links

AN-811: Using the Avery BFM for PCI Express Gen3x16 Simulation on Intel Stratix 10
Devices

2.5 Compiling and Testing the Design in Hardware

Figure 11. Procedure

Compile Design
in Quartus Prime

Software

Set up Hardware Program Device Test Design
in Hardware

Figure 12. Software Application to Test the PCI Express Design Example on the Arria 10
GX FPGA Development Kit
A software application running on a Windows PC performs the same hardware test for
all of the PCI Express Design Examples.

The software application to test the PCI Express Design Example on the Arria 10 GX
FPGA Development Kit is available on both 32- and 64-bit Windows platforms. This
program performs the following tasks:

1. Prints the Configuration Space, lane rate, and lane width.

2. Writes 0x00000000 to the specified BAR at offset 0x00000000 to initialize the
memory and read it back.

3. Writes 0xABCD1234 at offset 0x00000000 of the specified BAR. Reads it back and
compares.

2 Quick Start Guide

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
21

https://www.altera.com/documentation/zoz1492100248719.html#sjb1492100458182
https://www.altera.com/documentation/zoz1492100248719.html#sjb1492100458182

If successful, the test program displays the message 'PASSED'

Follow these steps to compile the design example in the Quartus Prime software:

1. Launch the Quartus Prime software and open
<example_design>pcie_example_design.qpf.

2. On the Processing > menu, select Start Compilation).

The timing constraints for the design example and the design components are
automatically loaded during compilation.

Follow these steps to test the design example in hardware:

1. In the <example_design>/software/windows/interop directory, unzip
Altera_PCIe_Interop_Test.zip.

Note: You can also refer to readme_Altera_PCIe_interop_Test.txt file in
this same directory for instructions on running the hardware test.

2. Install the Intel FPGA Windows Demo Driver for PCIe on the Windows host
machine, using altera_pcie_win_driver.inf.

Note: If you modified the default Vendor ID or Device ID specified in the
component GUI, you must also modify them in
altera_pcie_win_driver.inf.

a. In the <example_design> directory, launch the Quartus Prime software and
compile the design (Processing > Start Compilation).

b. Connect the development board to the host computer.

c. Configure the FPGA on the development board using the generated .sof file
(Tools > Programmer).

d. Open the Windows Device Manager and scan for hardware changes.

e. Select the Intel FPGA listed as an unknown PCI device and point to the
appropriate 32- or 64-bit driver (altera_pice_win_driver.inf) in the
Windows_driver directory.

f. After the driver loads successfully, a new device named Altera PCI API
Device appears in the Windows Device Manager.

g. Determine the bus, device, and function number for the Altera PCI API
Device listed in the Windows Device Manager.

i. Expand the tab, Altera PCI API Driver under the devices.

ii. Right click on Altera PCI API Device and select Properties.

iii. Note the bus, device, and function number for the device. The following
figure shows one example.

2 Quick Start Guide

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
22

Figure 13. Determining the Bus, Device, and Function Number for New PCIe Device

3. In the <example_desing/software/windows/interop/
Altera_PCIe_Interop_Test/Interop_software directory, click
Alt_Test.exe.

4. When prompted, type the bus, device, and function numbers and select the BAR
number (0-5) you specified when parameterizing the IP core.

Note: The bus, device, and function numbers for your hardware setup may be
different.

5. The test displays the message, PASSED, if the test is successful.

Related Links

• Arria 10 Development Kit Conduit Interface on page 105
The Arria 10 Development Kit conduit interface signals are optional signals that
allow you to connect your design to the Arria 10 FPGA Development Kit.

• Arria 10 GX FPGA Development Kit

2 Quick Start Guide

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
23

https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-a10-gx-fpga.html

3 Getting Started with the Arria 10 Hard IP for PCI
Express

This Gen1 x8 Endpoint design example illustrates a chaining DMA application. It
provides instructions to help you quickly customize, simulate, and compile the Arria 10
Hard IP for PCI Express IP Core.This design examples creates the files required for
simulation and synthesis, but does not generate all the files necessary to download
the design to hardware. The Quick Start Guide described in the previous chapter does
include all files necessary to download your design to the Arria 10 GX FPGA
Development Kit

When you install the Quartus Prime software you also install the IP Library. This
installation includes design examples for Hard IP for PCI Express under the
<install_dir>/ip/altera/altera_pcie/ directory.

After you install the Quartus Prime software, you can copy the design examples from
the <install_dir>/ip/altera/altera_pcie/altera_pcie_a10_ed/
example_design/a10 directory. This walkthrough uses the Gen1 ×8 Endpoint,
ep_g1x8.qsys. The following figure illustrates the top-level modules of the testbench
in which the DUT, a Gen1 Endpoint, connects to a chaining DMA engine, labeled APPS
in the following figure, and a Root Port model. The simulation can use the parallel PHY
Interface for PCI Express (PIPE) or serial interface.

Figure 14. Testbench for an Endpoint

APPS
altpcied_<dev>_hwtcl.v

Hard IP for PCI Express Testbench for Endpoints

Avalon-ST TX
Avalon-ST RX

reset
status

Avalon-ST TX
Avalon-ST RX
reset
status

DUT
<instance_name>_altera_pcie
_a10_hip_<version>
_<generated_string>.v

Root Port Model
altpcie_tbed_<dev>_hwtcl.v

PIPE or
Serial

Interface

Root Port BFM
altpcietb_bfm_rpvar_64b_x8_pipen1b

Root Port Driver and Monitor
altpcietb_bfm_vc_intf

Note: The Quartus Prime software automatically creates a simulation log file,
altpcie_monitor_<dev>_dlhip_tlp_file_log.log, in your simulation
directory. Refer to Understanding Simulation Log File Generation for details.

Intel provides example designs to help you get started with the Arria 10 Hard IP for
PCI Express IP Core. You can use example designs as a starting point for your own
design. The example designs include scripts to compile and simulate the Arria 10 Hard
IP for PCI Express IP Core. This example design provides a simple method to perform
basic testing of the Application Layer logic that interfaces to the Hard IP for PCI
Express.

3 Getting Started with the Arria 10 Hard IP for PCI Express

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

For a detailed explanation of this example design, refer to the Testbench and Design
Example chapter. If you choose the parameters specified in this chapter, you can run
all of the tests included in Testbench and Design Example chapter.

For more information about Qsys, refer to System Design with Qsys in the Quartus
Prime Handbook. For more information about the Qsys GUI, refer to About Qsys in
Quartus Prime Help.

Related Links

• Testbench and Design Example on page 174

• Understanding Simulation Log File Generation on page 27

3.1 Qsys Design Flow

Copy the ep_g1x8.qsys design example from the <install_dir>/ip/altera/
altera_pcie/altera_pcie/altera_pcie_a10_ed/example_designs/a10 to
your working directory.

The following figure illustrates this Qsys system.

Figure 15. Complete Gen1 ×8 Endpoint (DUT) Connected to Example Design (APPS)

The example design includes the following components:

• DUT—This is Gen1 ×8 Endpoint. For your own design, you can select the data rate,
number of lanes, and either Endpoint or Root Port mode.

• APPS—This Root Port BFM configures the DUT and drives read and write TLPs to
test DUT functionality. An Endpoint BFM is available if your PCI Express design
implements a Root Port.

3.1.1 Generating the Testbench

1. On the Generate menu, select Generate Testbench System. Specify the
parameters listed in the following table.

3 Getting Started with the Arria 10 Hard IP for PCI Express

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
25

Table 8. Parameters to Specify on the Generation Tab in Qsys

Parameter Value

Testbench System

Create testbench Qsys system Standard, BFMs for standard Qsys interfaces

Create testbench simulation model Verilog

Allow mixed-language simulation Turn this option off

Output Directory

Clear output directories for selected generation targets Turn this option off

Testbench <working_dir>/ep_g1x8_tb/

2. Click the Generate button at the bottom of the Generation tab to create the
testbench.
This testbench assumes that you are running the DMA application that the
example design available in the installation directory creates. Otherwise, the
testbench tests will probably fail unless your own testbench has equivalent
functionality.

Note: Arria 10 devices do not support the Create timing and resource
estimates for third-party EDA synthesis tools option on the Generate
➤ Generate HDL menu. You can select this menu item, but generation
fails.

3.1.2 Simulating the Example Design

1. Start your simulation tool. This example uses the ModelSim® software.

2. From the ModelSim transcript window, in the testbench directory,
<working_dir>/ep_g1x8_tb/ep_g1x8_tb/sim/mentor, type the following
commands:

a. do msim_setup.tcl

b. ld_debug (This command compiles all design files and elaborates the
top-level design without any optimization.)

c. run -all

The simulation includes the following stages:

• Link training

• Configuration

• DMA reads and writes

• Root Port to Endpoint memory reads and writes

3 Getting Started with the Arria 10 Hard IP for PCI Express

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
26

Disabling Scrambling for Gen1 and Gen2 to Interpret TLPs at the PIPE
Interface

1. Go to <project_directory/ep_g1x8_tb/ep_g1x8_tb/
altera_pcie_a10_tbed_140/sim/.

2. Open altpcietb_bfm_top_rp.v.

3. Locate the assignment for test_in[2:1]. Set test_in[2] = 1 and
test_in[1] = 0. Changing test_in[2] = 1 disables data scrambling on the
PIPE interface.

4. Save altpcietb_bfm_top_rp.v.

3.1.3 Generating Synthesis Files

1. On the Generate menu, select Generate HDL.

2. For Create HDL design files for synthesis, select Verilog.

You can leave the default settings for all other items.

3. Click Generate to generate files for synthesis.

4. Click Finish when the generation completes.

Related Links

What assignments do I need for a PCIe Gen1, Gen2 or Gen3 design that targets an
Arria 10 ES2, ES3 or production device?

Starting with the Quartus Prime Software Release 17.0, these assignments are
automatically included in the design. You do not have to add them.

3.1.4 Understanding the Files Generated

Table 9. Overview of Qsys Generation Output Files

Directory Description

<testbench_dir>/<variant_name>/synth Includes the top-level HDL file for the Hard IP for PCI Express.

<testbench_dir>/<variant_name>/sim/
<cad_vendor>

Includes the HDL source files and scripts for the simulation testbench.

For a more detailed listing of the directories and files the Quartus Prime software
generates, refer to Files Generated for Intel IP Cores in Compiling the Design in the
Qsys Design Flow.

3.1.5 Understanding Simulation Log File Generation

Starting with the Quartus II 14.0 software release, simulation automatically creates a
log file, altpcie_monitor_<dev>_dlhip_tlp_file_log.log in your simulation
directory.

3 Getting Started with the Arria 10 Hard IP for PCI Express

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
27

https://www.altera.com/support/support-resources/knowledge-base/ip/2017/what-assignments-do-i-need-for-a-pcie-gen1--gen2-or-gen3-design-.html
https://www.altera.com/support/support-resources/knowledge-base/ip/2017/what-assignments-do-i-need-for-a-pcie-gen1--gen2-or-gen3-design-.html

Table 10. Sample Simulation Log File Entries

Time TLP Type Payload
(Bytes)

TLP Header

17989 RX CfgRd0 0004 04000001_0000000F_01080008

17989 RX MRd 0000 00000000_00000000_01080000

18021 RX CfgRd0 0004 04000001_0000010F_0108002C

18053 RX CfgRd0 0004 04000001_0000030F_0108003C

18085 RX MRd 0000 00000000_00000000_0108000C

3.1.6 Understanding Physical Placement of the PCIe IP Core

For more information about physical placement of the PCIe blocks, refer to the links
below. Contact your Intel sales representative for detailed information about channel
and PLL usage.

Related Links

• Channel Placement and fPLL Usage for the Gen1 and Gen2 Data Rates on page
52

For channel placement of x1, x2, x4, and x8 configurations.

• Channel Placement and fPLL and ATX PLL Usage for the Gen3 Data Rate on page
54

For channel placement of x1, x2, x4, and x8 configurations.

3.1.7 Adding Virtual Pin Assignment to the Quartus II Settings File (.qsf)

To compile successfully you must add a virtual pin assignment statement for the PIPE
interface to your .qsf file. The PIPE interface is useful for debugging, but is not a top-
level interface of the IP core.

1. Browse to the synthesis directory that includes the .qsf for your project,
<project_dir>/ep_g1x8/

2. Open ep_g1x8.qsf.

3. Add the following assignment statement:

set_instance_assignment -name VIRTUAL_PIN ON -to hip_pipe_*

4. Save the .qsf file.

3.1.8 Compiling the Design in the Qsys Design Flow

To compile the Qsys design example in the Quartus Prime software, you must create a
Quartus Prime project and add your Qsys files to that project.

1. Before compiling, you can optionally turn on two parameters in the testbench. The
first parameter specifies pin assignments that match those for the Intel
Development Kit board I/Os. The second parameter enables the Compliance Base
Board (CBB) logic on the development board. In the Gen1 x8 example design,
complete the following steps if you want to enable these parameters:

3 Getting Started with the Arria 10 Hard IP for PCI Express

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
28

a. Right-click the APPS component and select Edit.

b. Turn on Enable FPGA Dev kit board I/Os.

c. Turn on Enable FPGA Dev kit board CBB logic.

d. Click Finish.

e. On the Generate menu, select Generate Testbench System and then click
Generate.

f. On the Generate menu, select Generate HDL and then click Generate. (You
can use the same parameters that are specified in Generating the Testbench
earlier in this chapter).

2. In the Quartus Prime software, click the New Project Wizard icon.

3. Click Next in the New Project Wizard: Introduction (The introduction does not
appear if you previously turned it off.)

4. On the Directory, Name, Top-Level Entity page, enter the following
information:

a. The working directory shown is correct. You do not have to change it.

b. For the project name, click the browse button browse to the synthesis
directory that includes your Qsys project, <working_dir>/ep_g1x8/synth
and click Choose. If the top-level design entity and Qsys system names are
identical, theQuartus Prime software treats the Qsys system as the top-level
design entity.

c. For What is the name of this project, select your variant name ep_g1x8.
Then click Open. If the top-level design entity and Qsys system names are
identical, the Quartus Prime software treats the Qsys system as the top-level
design entity.

d. For Project Type select Empty project.

5. Click Next to display the Add Files page.

6. Complete the following steps to add the Quartus Prime IP File (.qip)to the
project:

a. Click the browse button. The Select File dialog box appears.

b. Browse up one level to <working_dir>/ep_g1x8/ button.

c. In the Files of type list, select IP Variation Files (*.qip).

d. Click ep_g1x8.qip and then click Open.

e. On the Add Files page, click Add.

7. Click Next to display the Device page.

8. On the Family & Device Settings page, choose the following target device family
and options:

a. In the Family list, select Arria 10 (GX/SX/GT).

b. In the Devices list, select Arria 10 All.

c. In the Devices list, select All.

d. In the Available devices list, select the appropriate device. For Arria 10 GX
FPGA Development Kit, select 10AX115S2F45I1SG.

9. Click Next to close this page and display the EDA Tool Settings page.

3 Getting Started with the Arria 10 Hard IP for PCI Express

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
29

10. From the Simulation list, select ModelSim®. From the Format list, select the
HDL language you intend to use for simulation.

11. Click Next to display the Summary page.

12. Check the Summary page to ensure that you have entered all the information
correctly.

13. Click Finish to create the Quartus Prime project.

14. Before compiling, you must assign I/O standards to the pins of the device. Refer
to Making Pin Assignments to Assign I/O Standard to Serial Data Pins for
instructions.

15. You must connect the pin_perst reset signal to the corresponding nPERST pin of
the device. Refer to the definition of pin_perst in the Reset, Status, and Link
Training Signals section for more information.

16. Next, set the value of the test_in bus to a value that is compatible for hardware
testing. In Qsys design example provided, test_in is a top-level port.

a. Comment out the test_in port in the top-level Verilog generated file.

b. Add the following declaration, wire[31:0] test_in, to the same top-level
Verilog file.

c. Assign hip_ctrl_test_in = 32'h188.

d. Connect test_in to hip_ctrl_test_in.

Refer to the definition of test_in in the Test Signals section for more information
about the bits of the test_in bus.

17. To compile your design using the Quartus Prime software, on the Processing
menu, click Start Compilation. The Quartus Prime software then performs all the
steps necessary to compile your design.

3 Getting Started with the Arria 10 Hard IP for PCI Express

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
30

Files Generated for Intel IP Cores

Figure 16. IP Core Generated Files

<Project Directory>

<your_ip>_inst.v or .vhd - Lists file for IP core synthesis

<your_ip>.qip - Lists files for IP core synthesis

synth - IP synthesis files

<IP Submodule>_<version> - IP Submodule Library

sim

<your_ip>.v or .vhd - Top-level IP synthesis file

sim - IP simulation files

<simulator vendor> - Simulator setup scripts
<simulator_setup_scripts>

<your_ip> - IP core variation files

<your_ip>.ip - Top-level IP variation file

<your_ip>_generation.rpt - IP generation report

<your_ip>.bsf - Block symbol schematic file

<your_ip>.ppf - XML I/O pin information file

<your_ip>.spd - Simulation startup scripts

*

<your_ip>.cmp - VHDL component declaration

<your_ip>.v or vhd - Top-level simulation file

synth

 - IP submodule 1 simulation files

 - IP submodule 1 synthesis files

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<HDL files>

<HDL files>

<your_ip>_tb - IP testbench system *

<your_testbench>_tb.qsys - testbench system file
<your_ip>_tb - IP testbench files

your_testbench> _tb.csv or .spd - testbench file

sim - IP testbench simulation files
 * If supported and enabled for your IP core variation.

<your_ip>.qgsimc - Simulation caching file (Qsys Pro)

<your_ip>.qgsynthc - Synthesis caching file (Qsys Pro)

Related Links

• Making Pin Assignments to Assign I/O Standard to Serial Data Pins on page 165
Before running Quartus Prime compilation, use the Pin Planner to assign I/O
standards to the pins of the device.

• Test Signals on page 105

• Reset, Status, and Link Training Signals on page 82

• Generating the Testbench on page 25

• Simulating the Example Design on page 26

3 Getting Started with the Arria 10 Hard IP for PCI Express

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
31

3.1.9 Modifying the Example Design

To use this example design as the basis of your own design, replace the Chaining DMA
Example shown in the following figure with your own Application Layer design. Then
modify the Root Port BFM driver to generate the transactions needed to test your
Application Layer.

Figure 17. Testbench for PCI Express

Hard IP for PCI Express

Intel FPGA

PCB

Root
Port
BFM

 perstn (npor) Reset

APPS DUT

Chaining DMA
(User Application) Transaction Layer

 Data Link Layer

PHY MAC Layer

PHY IP Core for PCI Express

3.1.10 Using the IP Catalog To Generate Your Arria 10 Hard IP for PCI
Express as a Separate Component

You can also instantiate the Arria 10 Hard IP for PCI Express IP Core as a separate
component for integration into your project.

You can use the Quartus Prime IP Catalog and IP Parameter Editor to select,
customize, and generate files representing your custom IP variation. The IP Catalog
(Tools ➤ IP Catalog) automatically displays IP cores available for your target device.
Double-click any IP core name to launch the parameter editor and generate files
representing your IP variation.

For more information about the customizing and generating IP Cores refer to
Specifying IP Core Parameters and Options in Introduction to Intel FPGA IP Cores. For
more information about upgrading older IP cores to the current release, refer to
Upgrading Outdated IP Cores in Introduction to Intel FPGA IP Cores.

Related Links

Qsys Design Flow on page 25

3 Getting Started with the Arria 10 Hard IP for PCI Express

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
32

3.1.11 IP Core Generation Output (Quartus Prime Pro Edition)

The Quartus Prime software generates the following output file structure for individual
IP cores that are not part of a Qsys Pro system.

Figure 18. Individual IP Core Generation Output (Quartus Prime Pro Edition)

<Project Directory>

<your_ip>_inst.v or .vhd - Lists file for IP core synthesis

<your_ip>.qip - Lists files for IP core synthesis

synth - IP synthesis files

<IP Submodule>_<version> - IP Submodule Library

sim

<your_ip>.v or .vhd - Top-level IP synthesis file

sim - IP simulation files

<simulator vendor> - Simulator setup scripts
<simulator_setup_scripts>

<your_ip> - IP core variation files

<your_ip>.ip - Top-level IP variation file

<your_ip>_generation.rpt - IP generation report

<your_ip>.bsf - Block symbol schematic file

<your_ip>.ppf - XML I/O pin information file

<your_ip>.spd - Simulation startup scripts

*

<your_ip>.cmp - VHDL component declaration

<your_ip>.v or vhd - Top-level simulation file

synth

 - IP submodule 1 simulation files

 - IP submodule 1 synthesis files

<your_ip>_bb.v - Verilog HDL black box EDA synthesis file

<HDL files>

<HDL files>

<your_ip>_tb - IP testbench system *

<your_testbench>_tb.qsys - testbench system file
<your_ip>_tb - IP testbench files

your_testbench> _tb.csv or .spd - testbench file

sim - IP testbench simulation files
 * If supported and enabled for your IP core variation.

<your_ip>.qgsimc - Simulation caching file (Qsys Pro)

<your_ip>.qgsynthc - Synthesis caching file (Qsys Pro)

3 Getting Started with the Arria 10 Hard IP for PCI Express

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
33

Table 11. Files Generated for IP Cores

File Name Description

<your_ip>.ip Top-level IP variation file that contains the parameterization of an IP core in
your project. If the IP variation is part of a Qsys Pro system, the parameter
editor also generates a .qsys file.

<your_ip>.cmp The VHDL Component Declaration (.cmp) file is a text file that contains local
generic and port definitions that you use in VHDL design files.

<your_ip>_generation.rpt IP or Qsys Pro generation log file. Displays a summary of the messages during
IP generation.

<your_ip>.qgsimc (Qsys Pro systems
only)

Simulation caching file that compares the .qsys and .ip files with the current
parameterization of the Qsys Pro system and IP core. This comparison
determines if Qsys Pro can skip regeneration of the HDL.

<your_ip>.qgsynth (Qsys Pro
systems only)

Synthesis caching file that compares the .qsys and .ip files with the current
parameterization of the Qsys Pro system and IP core. This comparison
determines if Qsys Pro can skip regeneration of the HDL.

<your_ip>.qip Contains all information to integrate and compile the IP component.

<your_ip>.csv Contains information about the upgrade status of the IP component.

<your_ip>.bsf A symbol representation of the IP variation for use in Block Diagram Files
(.bdf).

<your_ip>.spd Required input file for ip-make-simscript to generate simulation scripts for
supported simulators. The .spd file contains a list of files you generate for
simulation, along with information about memories that you initialize.

<your_ip>.ppf The Pin Planner File (.ppf) stores the port and node assignments for IP
components you create for use with the Pin Planner.

<your_ip>_bb.v Use the Verilog blackbox (_bb.v) file as an empty module declaration for use
as a blackbox.

<your_ip>_inst.v or _inst.vhd HDL example instantiation template. Copy and paste the contents of this file
into your HDL file to instantiate the IP variation.

<your_ip>.regmap If the IP contains register information, the Quartus Prime software generates
the .regmap file. The .regmap file describes the register map information of
master and slave interfaces. This file complements the .sopcinfo file by
providing more detailed register information about the system. This file enables
register display views and user customizable statistics in System Console.

<your_ip>.svd Allows HPS System Debug tools to view the register maps of peripherals that
connect to HPS within a Qsys Pro system.
During synthesis, the Quartus Prime software stores the .svd files for slave
interface visible to the System Console masters in the .sof file in the debug
session. System Console reads this section, which Qsys Pro queries for register
map information. For system slaves, Qsys Pro accesses the registers by name.

<your_ip>.v <your_ip>.vhd HDL files that instantiate each submodule or child IP core for synthesis or
simulation.

mentor/ Contains a script msim_setup.tcl to set up and run a simulation.

aldec/ Contains a Riviera*-PRO script rivierapro_setup.tcl to setup and run a
simulation.

/synopsys/vcs

/synopsys/vcsmx

Contains a shell script vcs_setup.sh to set up and run a VCS* simulation.
Contains a shell script vcsmx_setup.sh and synopsys_sim.setup file to
set up and run a VCS MX* simulation.

continued...

3 Getting Started with the Arria 10 Hard IP for PCI Express

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
34

File Name Description

/cadence Contains a shell script ncsim_setup.sh and other setup files to set up and
run an NCSIM simulation.

/submodules Contains HDL files for the IP core submodule.

<IP submodule>/ For each generated IP submodule directory, Qsys Pro generates /synth
and /sim sub-directories.

3 Getting Started with the Arria 10 Hard IP for PCI Express

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
35

4 Arria 10 Parameter Settings

4.1 Parameters

This chapter provides a reference for all the parameters of the Arria 10 Hard IP for PCI
Express IP core.

Table 12. System Settings

Parameter Value Description

Application
Interface Type

Avalon-ST
Avalon-MM

Avalon-MM with DMA
Avalon-ST with SR-IOV

Selects the interface to the Application Layer.

Hard IP mode Gen3x8, Interface: 256-bit, 250 MHz
Gen3x4, Interface: 256-bit, 125 MHz
Gen3x4, Interface: 128-bit, 250 MHz
Gen3x2, Interface: 128-bit, 125 MHz
Gen3x2, Interface: 64-bit, 250 MHz
Gen3x1, Interface: 64-bit, 125 MHz

Gen2x8, Interface: 256-bit, 125 MHz
Gen2x8, Interface: 128-bit, 250 MHz

Gen2x4, Interface: 128-bit, 125
MHzGen2x2, Interface: 64-bit, 125
MHz Gen2x4, Interface: 64-bit, 250
MHz Gen2x1, Interface: 64-bit, 125

MHz Gen1x8, Interface: 128-bit, 125
MHz Gen1x8, Interface: 64-bit, 250
MHz Gen1x4, Interface: 64-bit, 125
MHz Gen1x2, Interface: 64-bit, 125
MHz Gen1x1, Interface: 64-bit, 125
MHz Gen1x1, Interface: 64-bit, 62.5

MHz

Selects the following elements:
• The lane data rate. Gen1, Gen2, and Gen3 are

supported
• The width of the data interface between the hard IP

Transaction Layer and the Application Layer
implemented in the FPGA fabric

• The Application Layer interface frequency
The interface supports only the 256-bit modes.

Port type Native Endpoint
Root Port

Specifies the port type.
The Endpoint stores parameters in the Type 0
Configuration Space. The Root Port stores parameters in
the Type 1 Configuration Space.
The interface supports only Native Endpoint operation.

RX Buffer credit
allocation -
performance for
received requests

Minimum
Low

Balanced
High

Maximum

Determines the allocation of posted header credits,
posted data credits, non-posted header credits,
completion header credits, and completion data credits
in the 16 KB RX buffer. The settings allow you to adjust
the credit allocation to optimize your system.
The credit allocation for the selected setting displays in
the Message pane. The Message pane dynamically
updates the number of credits for Posted, Non-Posted
Headers and Data, and Completion Headers and Data as
you change this selection.
Refer to the Throughput Optimization chapter for more
information about optimizing your design.

continued...

4 Arria 10 Parameter Settings

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Parameter Value Description

Refer to the RX Buffer Allocation Selections Available by
Interface Type below for the availability of these
settings by interface type.
Minimum—configures the minimum PCIe specification
allowed for non-posted and posted request credits,
leaving most of the RX Buffer space for received
completion header and data. Select this option for
variations where application logic generates many read
requests and only infrequently receives single requests
from the PCIe link.
Low—configures a slightly larger amount of RX Buffer
space for non-posted and posted request credits, but
still dedicates most of the space for received completion
header and data. Select this option for variations where
application logic generates many read requests and
infrequently receives small bursts of requests from the
PCIe link. This option is recommended for typical
endpoint applications where most of the PCIe traffic is
generated by a DMA engine that is located in the
endpoint application layer logic.
Balanced—configures approximately half the RX Buffer
space to received requests and the other half of the RX
Buffer space to received completions. Select this option
for variations where the received requests and received
completions are roughly equal.
High—configures most of the RX Buffer space for
received requests and allocates a slightly larger than
minimum amount of space for received completions.
Select this option where most of the PCIe requests are
generated by the other end of the PCIe link and the
local application layer logic only infrequently generates
a small burst of read requests. This option is
recommended for typical root port applications where
most of the PCIe traffic is generated by DMA engines
located in the endpoints.
Maximum—configures the minimum PCIe specification
allowed amount of completion space, leaving most of
the RX Buffer space for received requests. Select this
option when most of the PCIe requests are generated by
the other end of the PCIe link and the local application
layer logic never or only infrequently generates single
read requests. This option is recommended for control
and status endpoint applications that don't generate any
PCIe requests of their own and only are the target of
write and read requests from the root complex.

RX Buffer
completion
credits

Header credits, Data credits Displays the number of completion credits in the 16 KB
RX buffer resulting from the credit allocation parameter.
Each header credit is 16 bytes. Each data credit is 20
bytes.

Related Links

PCI Express Base Specification 3.0

4 Arria 10 Parameter Settings

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
37

http://www.pcisig.com/

4.2 Arria 10 Avalon-ST Settings

Table 13. System Settings for PCI Express

Parameter Value Description

Enable Avalon-ST
reset output port

On/Off When On, the generated reset output port has the same functionality that
the reset_status port included in the Reset and Link Status interface.

Enable byte parity
ports on Avalon-
ST interface

On/Off When On, the RX and TX datapaths are parity protected. Parity is odd. The
Application Layer must provide valid byte parity in the Avalon-ST TX
direction.
This parameter is only available for the Avalon-ST Arria 10 Hard IP for PCI
Express.

Enable multiple
packets per cycle
for the 256-bit
interface

On/Off When On, the 256-bit Avalon-ST interface supports the transmission of TLPs
starting at any 128-bit address boundary, allowing support for multiple
packets in a single cycle. To support multiple packets per cycle, the
Avalon-ST interface includes 2 start of packet and end of packet signals for
the 256-bit Avalon-ST interfaces. This is not supported for the Avalon-ST
with SR-IOV interface.

Enable credit
consumed
selection port

On/Off When you turn on this option, the core includes the tx_cons_cred_sel
port. This parameter does not apply to the Avalon-MM interface.

Enable
Configuration
bypass (CfgBP)

On/Off When On, the Arria 10 Hard IP for PCI Express bypasses the Transaction
Layer Configuration Space registers included as part of the Hard IP, allowing
you to substitute a custom Configuration Space implemented in soft logic.
This parameter is not available for the Avalon-MM IP Cores.

Enable local
management
interface (LMI)

On/Off When On, your variant includes the optional LMI interface. This interface is
used to log error descriptor information in the TLP header log registers. The
LMI interface provides the same access to Configuration Space registers as
Configuration TLP requests.

Related Links

• Throughput Optimization on page 161

• PCI Express Base Specification 3.0

4.3 Base Address Register (BAR) and Expansion ROM Settings

The type and size of BARs available depend on port type.

Table 14. BAR Registers

Parameter Value Description

Type Disabled
64-bit prefetchable memory
32-bit non-prefetchable memory
32-bit prefetchable memory
I/O address space

If you select 64-bit prefetchable memory, 2 contiguous BARs
are combined to form a 64-bit prefetchable BAR; you must
set the higher numbered BAR to Disabled. A non-
prefetchable 64-bit BAR is not supported because in a typical
system, the Root Port Type 1 Configuration Space sets the
maximum non-prefetchable memory window to 32 bits. The
BARs can also be configured as separate 32-bit memories.
Defining memory as prefetchable allows contiguous data to
be fetched ahead. Prefetching memory is advantageous
when the requestor may require more data from the same

continued...

4 Arria 10 Parameter Settings

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
38

http://www.pcisig.com/

Parameter Value Description

region than was originally requested. If you specify that a
memory is prefetchable, it must have the following 2
attributes:
• Reads do not have side effects such as changing the

value of the data read
• Write merging is allowed
The 32-bit prefetchable memory and I/O address space
BARs are only available for the Legacy Endpoint.

Size 16 Bytes–8 EB Supports the following memory sizes:
• 128 bytes–2 GB or 8 EB: Endpoint and Root Port

variants
• 6 bytes–4 KB: Legacy Endpoint variants

Expansion
ROM

Disabled–16 MB Specifies the size of the optional ROM.
The expansion ROM is only available for the Avalon-ST
interface.

4.4 Base and Limit Registers for Root Ports

Table 15. Base and Limit Registers
The following table describes the Base and Limit registers which are available in the Type 1 Configuration
Space for Root Ports. These registers are used for TLP routing and specify the address ranges assigned to
components that are downstream of the Root Port or bridge.

Parameter Value Description

Input/Output Disabled
16-bit I/O addressing
32-bit I/O addressing

Specifies the address widths for the IO base and IO limit
registers.

Prefetchable
memory

Disabled
16-bit memory addressing
32-bit memory addressing

Specifies the address widths for the Prefetchable Memory
Base register and Prefetchable Memory Limit register.

Note: The Avalon-MM Hard IP for PCI Express Root Port does not filter addresses.

Related Links

PCI to PCI Bridge Architecture Specification

4.5 Device Identification Registers

Table 16. Device ID Registers
The following table lists the default values of the read-only Device ID registers. You can use the parameter
editor to change the values of these registers. At run time, you can change the values of these registers using
the optional reconfiguration block signals. You can specify Device ID registers for each Physical Function.

Register Name Default Value Description

Vendor ID 0x00001172 Sets the read-only value of the Vendor ID register. This parameter can not
be set to 0xFFFF per the PCI Express Specification.
Address offset: 0x000.

Device ID Custom value Sets the read-only value of the Device ID register.
Address offset: 0x000.

Revision ID Custom value Sets the read-only value of the Revision ID register.

continued...

4 Arria 10 Parameter Settings

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
39

http://www.pcisig.com/home

Register Name Default Value Description

Address offset: 0x008.

Class code Custom value Sets the read-only value of the Class Code register.
Address offset: 0x008.

Subsystem
Vendor ID

Custom value Sets the read-only value of the ` register in the PCI Type 0 Configuration
Space. This parameter cannot be set to 0xFFFF per the PCI Express Base
Specification. This value is assigned by PCI-SIG to the device manufacturer.
Address offset: 0x02C.

Subsystem Device
ID

Custom value Sets the read-only value of the Subsystem Device ID register in the PCI
Type 0 Configuration Space.
Address offset: 0x02C

Related Links

PCI Express Base Specification 2.1 or 3.0

4.6 PCI Express and PCI Capabilities Parameters

This group of parameters defines various capability properties of the IP core. Some of
these parameters are stored in the PCI Configuration Space - PCI Compatible
Configuration Space. The byte offset indicates the parameter address.

4.6.1 PCI Express and PCI Capabilities

Table 17. Capabilities Registers

Parameter Possible
Values

Default Value Description

Maximum
payload size

128 bytes
256 bytes
512 bytes

1024 bytes
2048 bytes

128 bytes Specifies the maximum payload size supported. This parameter
sets the read-only value of the max payload size supported field
of the Device Capabilities register (0x084[2:0]). Address: 0x084.

Number of
Tags
supported

32
64

32 Indicates the number of tags supported for non-posted requests
transmitted by the Application Layer. This parameter sets the
values in the Device Control register (0x088) of the PCI Express
capability structure described in Table 9–9 on page 9–5.
The Transaction Layer tracks all outstanding completions for
non-posted requests made by the Application Layer. This
parameter configures the Transaction Layer for the maximum
number of Tags supported to track. The Application Layer must
set the tag values in all non-posted PCI Express headers to be
less than this value. Values greater than 32 also set the
extended tag field supported bit in the Configuration Space
Device Capabilities register. The Application Layer can only use
tag numbers greater than 31 if configuration software sets the
Extended Tag Field Enable bit of the Device Control register. This
bit is available to the Application Layer on the tl_cfg_ctl
output signal as cfg_devcsr[8].

Completion
timeout range

ABCD
BCD
ABC
AB
B
A

ABCD Indicates device function support for the optional completion
timeout programmability mechanism. This mechanism allows
system software to modify the completion timeout value. This
field is applicable only to Root Ports and Endpoints that issue
requests on their own behalf. Completion timeouts are specified
and enabled in the Device Control 2 register (0x0A8) of the PCI

continued...

4 Arria 10 Parameter Settings

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
40

http://www.pcisig.com/home

Parameter Possible
Values

Default Value Description

None Express Capability Structure Version. For all other functions this
field is reserved and must be hardwired to 0x0000b. Four time
value ranges are defined:
• Range A: 50 us to 10 ms
• Range B: 10 ms to 250 ms
• Range C: 250 ms to 4 s
• Range D: 4 s to 64 s
Bits are set to show timeout value ranges supported. The
function must implement a timeout value in the range 50 s to
50 ms. The following values specify the range:
• None—Completion timeout programming is not supported
• 0001 Range A
• 0010 Range B
• 0011 Ranges A and B
• 0110 Ranges B and C
• 0111 Ranges A, B, and C
• 1110 Ranges B, C and D
• 1111 Ranges A, B, C, and D
All other values are reserved. Intel recommends that the
completion timeout mechanism expire in no less than 10 ms.

Disable
completion
timeout

On/Off On Disables the completion timeout mechanism. When On, the core
supports the completion timeout disable mechanism via the PCI
Express Device Control Register 2. The Application Layer
logic must implement the actual completion timeout mechanism
for the required ranges.

4.6.2 Error Reporting

Table 18. Error Reporting

Parameter Value Default Value Description

Enable
Advanced
Error
Reporting
(AER)

On/Off Off When On, enables the Advanced Error Reporting (AER)
capability.

Enable ECRC
checking

On/Off Off When On, enables ECRC checking. Sets the read-only value of
the ECRC check capable bit in the Advanced Error
Capabilities and Control Register. This parameter
requires you to enable the AER capability.

Enable ECRC
generation

On/Off Off When On, enables ECRC generation capability. Sets the read-
only value of the ECRC generation capable bit in the Advanced
Error Capabilities and Control Register. This
parameter requires you to enable the AER capability.

Enable ECRC
forwarding on
the Avalon-ST
interface

On/Off Off When On, enables ECRC forwarding to the Application Layer. On
the Avalon-ST RX path, the incoming TLP contains the ECRC
dword(1) and the TD bit is set if an ECRC exists. On the transmit
the TLP from the Application Layer must contain the ECRC dword
and have the TD bit set.

Track RX
completion
buffer

On/Off Off When On, the core includes the rxfc_cplbuf_ovf output
status signal to track the RX posted completion buffer overflow
status.

continued...

4 Arria 10 Parameter Settings

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
41

Parameter Value Default Value Description

overflow on
the Avalon-ST
interface

Note:
1. Throughout this user guide, the terms word, dword and qword have the same meaning that they have in the PCI

Express Base Specification. A word is 16 bits, a dword is 32 bits, and a qword is 64 bits.

4.6.3 Link Capabilities

Table 19. Link Capabilities

Parameter Value Description

Link port number
(Root Port only)

0x01 Sets the read-only value of the port number field in the Link
Capabilities register. This parameter is for Root Ports only. It should
not be changed.

Data link layer
active reporting
(Root Port only)

On/Off Turn On this parameter for a Root Port, if the attached Endpoint
supports the optional capability of reporting the DL_Active state of the
Data Link Control and Management State Machine. For a hot-plug
capable Endpoint (as indicated by the Hot Plug Capable field of the
Slot Capabilities register), this parameter must be turned On.
For Root Port components that do not support this optional capability,
turn Off this option.

Surprise down
reporting (Root Port
only)

On/Off When your turn this option On, an Endpoint supports the optional
capability of detecting and reporting the surprise down error condition.
The error condition is read from the Root Port.

Slot clock
configuration

On/Off When you turn this option On, indicates that the Endpoint or Root Port
uses the same physical reference clock that the system provides on the
connector. When Off, the IP core uses an independent clock regardless
of the presence of a reference clock on the connector. This parameter
sets the Slot Clock Configuration bit (bit 12) in the PCI Express
Link Status register.

4.6.4 MSI and MSI-X Capabilities

Table 20. MSI and MSI-X Capabilities

Parameter Value Description

MSI messages
requested

1, 2, 4, 8, 16, 32 Specifies the number of messages the Application Layer can
request. Sets the value of the Multiple Message Capable field
of the Message Control register,
Address: 0x050[31:16].

MSI-X Capabilities

Implement MSI-X On/Off When On, adds the MSI-X functionality.

Bit Range

Table size [15:0] System software reads this field to determine the MSI-X Table size
<n>, which is encoded as <n–1>. For example, a returned value of
2047 indicates a table size of 2048. This field is read-only. Legal
range is 0–2047 (216).
Address offset: 0x068[26:16]

Table offset [31:0] Points to the base of the MSI-X Table. The lower 3 bits of the table
BAR indicator (BIR) are set to zero by software to form a 64-bit
qword-aligned offset. This field is read-only.

continued...

4 Arria 10 Parameter Settings

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
42

Parameter Value Description

Table BAR indicator [2:0] Specifies which one of a function’s BARs, located beginning at 0x10
in Configuration Space, is used to map the MSI-X table into memory
space. This field is read-only. Legal range is 0–5.

Pending bit array (PBA)
offset

[31:0] Used as an offset from the address contained in one of the
function’s Base Address registers to point to the base of the MSI-X
PBA. The lower 3 bits of the PBA BIR are set to zero by software to
form a 32-bit qword-aligned offset. This field is read-only. 2

Pending BAR indicator [2:0] Specifies the function Base Address registers, located beginning at
0x10 in Configuration Space, that maps the MSI-X PBA into memory
space. This field is read-only. Legal range is 0–5.

4.6.5 Slot Capabilities

Table 21. Slot Capabilities

Parameter Value Description

Use Slot register On/Off This parameter is only supported in Root Port mode. The slot capability is
required for Root Ports if a slot is implemented on the port. Slot status is
recorded in the PCI Express Capabilities register.
Defines the characteristics of the slot. You turn on this option by selecting
Enable slot capability. Refer to the figure below for bit definitions.

Slot power scale 0–3 Specifies the scale used for the Slot power limit. The following coefficients
are defined:
• 0 = 1.0x
• 1 = 0.1x
• 2 = 0.01x
• 3 = 0.001x
The default value prior to hardware and firmware initialization is b’00. Writes
to this register also cause the port to send the Set_Slot_Power_Limit
Message.
Refer to Section 6.9 of the PCI Express Base Specification Revision for more
information.

Slot power limit 0–255 In combination with the Slot power scale value, specifies the upper limit in
watts on power supplied by the slot. Refer to Section 7.8.9 of the PCI Express
Base Specification for more information.

Slot number 0-8191 Specifies the slot number.

2 Throughout this user guide, the terms word, dword and qword have the same meaning that
they have in the PCI Express Base Specification. A word is 16 bits, a dword is 32 bits, and a
qword is 64 bits.

4 Arria 10 Parameter Settings

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
43

Figure 19. Slot Capability

31 19 18 17 16 15 14 7 6 5

Physical Slot Number

No Command Completed Support
Electromechanical Interlock Present

Slot Power Limit Scale
Slot Power Limit Value

Hot-Plug Capable
Hot-Plug Surprise

Power Indicator Present
Attention Indicator Present

MRL Sensor Present
Power Controller Present
Attention Button Present

04 3 2 1

4.6.6 Power Management

Table 22. Power Management Parameters

Parameter Value Description

Endpoint L0s
acceptable latency

Maximum of 64 ns
Maximum of 128 ns
Maximum of 256 ns
Maximum of 512 ns
Maximum of 1 us
Maximum of 2 us
Maximum of 4 us
No limit

This design parameter specifies the maximum acceptable latency that
the device can tolerate to exit the L0s state for any links between the
device and the root complex. It sets the read-only value of the
Endpoint L0s acceptable latency field of the Device Capabilities
Register (0x084).
This Endpoint does not support the L0s or L1 states. However, in a
switched system there may be links connected to switches that have
L0s and L1 enabled. This parameter is set to allow system configuration
software to read the acceptable latencies for all devices in the system
and the exit latencies for each link to determine which links can enable
Active State Power Management (ASPM). This setting is disabled for
Root Ports.
The default value of this parameter is 64 ns. This is the safest setting
for most designs.

Endpoint L1
acceptable latency

Maximum of 1 us
Maximum of 2 us
Maximum of 4 us
Maximum of 8 us
Maximum of 16 us
Maximum of 32 us
No limit

This value indicates the acceptable latency that an Endpoint can
withstand in the transition from the L1 to L0 state. It is an indirect
measure of the Endpoint’s internal buffering. It sets the read-only value
of the Endpoint L1 acceptable latency field of the Device
Capabilities Register.
This Endpoint does not support the L0s or L1 states. However, a
switched system may include links connected to switches that have L0s
and L1 enabled. This parameter is set to allow system configuration
software to read the acceptable latencies for all devices in the system
and the exit latencies for each link to determine which links can enable
Active State Power Management (ASPM). This setting is disabled for
Root Ports.
The default value of this parameter is 1 µs. This is the safest setting for
most designs.

4 Arria 10 Parameter Settings

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
44

4.7 Vendor Specific Extended Capability (VSEC)

Table 23. VSEC

Parameter Value Description

Vendor Specific
Extended Capability
(VSEC) ID:

0x00001172 Sets the read-only value of the 16-bit User ID register from the Vendor
Specific Extended Capability.

Vendor Specific
Extended Capability
(VSEC) Revision:

0x00000000 Sets the read-only value of the 4-bit VSEC Revision register from the
Vendor Specific Extended Capability.

User Device or
Board Type ID
register from the
Vendor Specific
Extended Capability:

0x00000000 Sets the read-only value of the 16-bit Device or Board Type ID register
from the Vendor Specific Extended Capability.

4.8 Configuration, Debug, and Extension Options

Table 24. System Settings for PCI Express

Parameter Value Description

Enable
configuration via
Protocol (CvP)

On/Off When On, the Quartus Prime software places the Endpoint in the location
required for configuration via protocol (CvP). For more information about
CvP, click the Configuration via Protocol (CvP) link below.

Enable dynamic
reconfiguration of
PCIe read-only
registers

On/Off When On, you can use the Hard IP reconfiguration bus to dynamically
reconfigure Hard IP read-only registers. For more information refer to Hard
IP Reconfiguration Interface.

Enable
transceiver
dynamic
reconfiguration

On/Off When on, creates an Avalon-MM slave interface that software can drive to
update transceiver registers.

Enable Altera
Debug Master
Endpoint (ADME)

On/Off When On, an embedded Altera Debug Master Endpoint connects internally to
the Avalon-MM slave interface for dynamic reconfiguration. The ADME can
access the reconfiguration space of the transceiver. It uses JTAG via the
System Console to run tests and debug functions.

Enable Arria 10
FPGA
Development Kit
connection

On/Off When On, add control and status conduit interface to the top level variant,
to be connected a PCIe Development Kit component.

Related Links

Configuration over Protocol (CvP) on page 168

4 Arria 10 Parameter Settings

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
45

4.9 PHY Characteristics

Table 25. PHY Characteristics

Parameter Value Description

Gen2 TX de-
emphasis

3.5dB
6dB

Specifies the transmit de-emphasis for Gen2. Intel recommends the
following settings:
• 3.5dB: Short PCB traces
• 6.0dB: Long PCB traces.

Requested
equalization far-end
TX preset

Preset0-Preset9 Specifies the requested TX preset for Phase 2 and 3 far-end
transmitter. The default value Preset8 provides the best signal quality
for most designs.

Enable soft DFE
controller IP

On
Off

When On, the PCIe Hard IP core includes a decision feedback
equalization (DFE) soft controller in the FPGA fabric to improve the bit
error rate (BER) margin. The default for this option is Off because the
DFE controller is typically not required. However, short reflective links
may benefit from this soft DFE controller IP.
This parameter is available only for Gen3 mode. It is not supported
when CvP or autonomous modes are enabled.

4 Arria 10 Parameter Settings

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
46

4.10 Arria 10 Example Designs

Table 26. Example Designs

Parameter Value Description

Available Example
Designs

DMA
PIO

When you select the DMA option, the generated example design includes a
direct memory access application. This application includes upstream and
downstream transactions. When you select the PIO option, the generated
design includes a target application including only downstream transactions.

Simulation On/Off When On, the generated output includes a simulation model.

Synthesis On/Off When On, the generated output includes a synthesis model.

Generated HDL
format

Verilog Only Verilog HDL is supported.

Target
Development Kit

Arria 10 GX FPGA
Development Kit
Arria 10 GX FPGA
Development Kit

ES2
None

Select Arria 10 FPGA Development Kit for Arria 10 production devices.
Select Arria 10 FPGA Development Kit ES for engineering sample (ES) or
ES2 devices. Select None if you are targeting your own development board.

4 Arria 10 Parameter Settings

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
47

5 Physical Layout of Hard IP In Arria 10 Devices
Arria 10 devices include 1–4 hard IP blocks for PCI Express. The bottom left hard IP
block includes the CvP functionality for flip chip packages. For other package types,
the CvP functionality is in the bottom right block.

Note: Arria 10 devices do not support configurations that configure a bottom (left or right)
hard IP block with a Gen3 x4 or Gen3 x8 IP core and also configure the top hard IP
block on the same side with a Gen3 x1 or Gen3 x2 IP core variation.

Figure 20. Arria 10 Devices with 72 Transceiver Channels and Four PCIe Hard IP Blocks

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank (3)

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

GT 115 SF45
GT 090 SF45

GT Channels
Capable of Short
Reach 25.8 Gbps

GXBL1C

GXBL1D

GXBL1E

GXBL1F

GXBL1G

GXBL1H

GXBR4C

GXBR4D

GXBR4E

GXBR4F

GXBR4G

GXBR4H

Notes:
(1) Nomenclature of left column bottom transceiver banks always end with “C”.
(2) Nomenclature of right column bottom transceiver banks may end with “C”, “D”, or “E”.
(3) If a GT channel is used in transceiver bank GXBL1E, the PCIe Hard IP adjacent to GXBL1F and GXBL1E cannot be used.

(1) (2)

GX or Restricted
GT or GX
GT or GX
GX or Restricted

CH5
CH4
CH3
CH2
CH1
CH0 PCIe

Gen1 - Gen3
Hard IP

PCIe
Gen1 - Gen3

Hard IP

PCIe
Gen1 - Gen3

Hard IP

PCIe
Gen1 - Gen3

(with CvP)
Hard IP

Legend:

GX transceiver channels (channel 2 and 5) with usage restrictions.

GT transceiver channels (channel 0, 1, 3, and 4).

PCIe Gen1 - Gen3 Hard IP blocks with Configuration via Protocol (CvP) capabilities.

PCIe Gen1 - Gen3 Hard IP blocks without Configuration via Protocol (CvP) capabilities.

GX transceiver channels without usage restrictions.

GX or Restricted

GX or Restricted
GT or GX
GT or GX

CH5
CH4
CH3
CH2
CH1
CH0

GX or Restricted
GX or Restricted

GX or Restricted
GX or Restricted

5 Physical Layout of Hard IP In Arria 10 Devices

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Figure 21. Arria 10 Devices with 96 Transceiver Channels and Four PCIe Hard IP Blocks

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

GXBL1J

Transceiver
Bank

GXBL1I

Transceiver
Bank

GXBL1H

Transceiver
Bank

GXBL1G

Transceiver
BankGXBL1F

Transceiver
Bank

Transceiver
Bank

GXBL1D

Transceiver
Bank

GXBL1C

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

GXBR4C

GT 115 UF45
GT 090 UF45

Transceiver
Bank

GT Channels
Capable of Short
Reach 28.3 Gbps

GXBL1E

GXBR4D

GXBR4E

GXBR4F

GXBR4G

GXBR4H

GXBR4I

GXBR4J

Notes:
(1) Nomenclature of left column bottom transceiver banks always ends with “C”.
(2) Nomenclature of right column bottom transceiver banks may end with “C”, “D”, or “E”.

(1) (2)

Legend:

GX transceiver channels (channel 2 and 5) with usage restrictions.

GT transceiver channels (channel 0, 1, 3, and 4)

GX or Restricted
GT or GX
GT or GX
GX or Restricted
GT or GX
GT or GX

CH5
CH4
CH3
CH2
CH1
CH0

PCIe
Gen1 - Gen3

Hard IP

PCIe
Gen1 - Gen3

Hard IP

PCIe
Gen1 - Gen3

(with CvP)
Hard IP

PCIe
Gen1 - Gen3

Hard IP

PCIe Gen1 - Gen3 Hard IP blocks with Configuration via Protocol (CvP) capabilities.

PCIe Gen1 - Gen3 Hard IP blocks without Configuration via Protocol (CvP) capabilities.

GX transceiver channels without usage restrictions.

5 Physical Layout of Hard IP In Arria 10 Devices

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
49

Figure 22. Arria 10 GT Devices with 48 Transceiver Channels and Two PCIe Hard IP
Blocks

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

Transceiver
Bank

GT 115 NF40
GT 090 NF40GT Channels

Capable of Short
Reach 28.3 Gbps

GXBL1C

GXBL1D

GXBL1E

GXBL1F

GXBL1G

GXBL1H

GXBL1I

GXBL1J

Notes:
(1) Nomenclature of left column bottom transceiver banks always end with “C”.
(2) These devices have transceivers only on left hand side of the device.

(1)

Legend:

PCIe Gen3 HIP blocks with Configuration via Protocol (CvP) capabilities.

PCIe Gen3 HIP blocks without Configuration via Protocol (CvP) capabilities.

GX transceiver channels (channel 2 and 5) with usage restrictions.

GT transceiver channels (channel 0, 1, 3, and 4).

GX or Restricted
GT or GX
GT or GX
GX or Restricted
GT or GX
GT or GX

CH5
CH4
CH3
CH2
CH1
CH0

PCIe
Gen1 - Gen3

Hard IP

PCIe
Gen1 - Gen3

(with CvP)
Hard IP

GX transceiver channels without usage restrictions.

Refer to the Arria 10 Transceiver Layout in the Intel FPGA Arria 10 Transceiver PHY
User Guide for comprehensive figures for Arria 10 GT, GX, and SX devices.

Related Links

Intel FPGA Arria 10 Transceiver PHY IP Core User Guide
For information about the transceiver physical (PHY) layer architecture, PLLs, clock
networks, and transceiver PHY IP.

5.1 Channel and Pin Placement for the Gen1, Gen2, and Gen3 Data
Rates

The following figures illustrate the x1, x2, x4, and x8 channel and pin placements for
the Arria 10 Hard IP for PCI Express.

5 Physical Layout of Hard IP In Arria 10 Devices

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
50

https://www.altera.com/documentation/nik1398707230472.html#nik1398706768037

In these figures, channels that are not used for the PCI Express protocol are available
for other protocols. Unused channels are shown in gray.

Note: In all configurations, physical channel 4 in the PCS connects to logical channel 0 in the
hard IP. You cannot change the channel placements illustrated below.

For the possible values of <txvr_block_N> and <txvr_block_N+1>, refer to the
figures that show the physical location of the Hard IP PCIe blocks in the different types
of Arria 10 devices, at the start of this chapter. For each HIP block, the transceiver
block that is adjacent and extends below the HIP block, is <txvr_block_N>, and the
transceiver block that is directly above <txvr_block_N> is <txvr_block_N+1>. For
example, in an Arria 10 device with 96 transceiver channels and four PCIe HIP blocks,
if your design uses the HIP block that supports CvP, <txvr_block_N> is GXB1C and
<txvr_block_N+1> is GXB1D.

Figure 23. Arria 10 Gen1, Gen2, and Gen3 x1 Channel and Pin Placement

PMA Channel 5
PMA Channel 4
PMA Channel 3
PMA Channel 2

PMA Channel 0

PMA Channel 3
PMA Channel 2
PMA Channel 1
PMA Channel 0

PCS Channel 5
PCS Channel 4
PCS Channel 3
PCS Channel 2

PCS Channel 0

PCS Channel 3
PCS Channel 2
PCS Channel 1
PCS Channel 0

Hard IP Ch0

PMA Channel 1 PCS Channel 1

PMA Channel 4 PCS Channel 4
PMA Channel 5 PCS Channel 5

Hard IP
for PCIe

<txvr_block_N>_TX/RX_CH4N

Figure 24. Arria 10 Gen1 Gen2, and Gen3 x2 Channel and Pin Placement

PMA Channel 5
PMA Channel 4
PMA Channel 3
PMA Channel 2

PMA Channel 0

PMA Channel 3
PMA Channel 2
PMA Channel 1
PMA Channel 0

PCS Channel 5
PCS Channel 4
PCS Channel 3
PCS Channel 2

PCS Channel 0

PCS Channel 3
PCS Channel 2
PCS Channel 1
PCS Channel 0

Hard IP Ch0

PMA Channel 1 PCS Channel 1

PMA Channel 4 PCS Channel 4
PMA Channel 5 PCS Channel 5

Hard IP
for PCIe

<txvr_block_N>_TX/RX_CH4N
<txvr_block_N>_TX/RX_CH5N

5 Physical Layout of Hard IP In Arria 10 Devices

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
51

Figure 25. Arria 10 Gen1, Gen2, and Gen3 x4 Channel and Pin Placement

PMA Channel 5
PMA Channel 4
PMA Channel 3

PMA Channel 0

PMA Channel 3
PMA Channel 2
PMA Channel 1
PMA Channel 0

PCS Channel 5
PCS Channel 4
PCS Channel 3

PCS Channel 0

PCS Channel 3
PCS Channel 2
PCS Channel 1
PCS Channel 0

Hard IP Ch0

PMA Channel 1 PCS Channel 1

PMA Channel 4 PCS Channel 4
PMA Channel 5 PCS Channel 5

PMA Channel 2 PCS Channel 2

Hard IP
for PCIe

<txvr_block_N>_TX/RX_CH4N
<txvr_block_N>_TX/RX_CH5N

<txvr_block_N+1>_TX/RX_CH0N
<txvr_block_N+1>_TX/RX_CH1N

Figure 26. Arria 10 Gen1, Gen2, and Gen3 x8 Channel and Pin Placement

PMA Channel 5
PMA Channel 4
PMA Channel 3

PMA Channel 0

PMA Channel 3
PMA Channel 2
PMA Channel 1
PMA Channel 0

PCS Channel 5
PCS Channel 4
PCS Channel 3

PCS Channel 0

PCS Channel 3
PCS Channel 2
PCS Channel 1
PCS Channel 0

Hard IP
for PCIe

Hard IP Ch0

PMA Channel 1 PCS Channel 1

PMA Channel 4 PCS Channel 4
PMA Channel 5 PCS Channel 5

PMA Channel 2 PCS Channel 2

<txvr_block_N>_TX/RX_CH4N
<txvr_block_N>_TX/RX_CH5N

<txvr_block_N+1>_TX/RX_CH0N
<txvr_block_N+1>_TX/RX_CH1N
<txvr_block_N+1>_TX/RX_CH2N

<txvr_block_N+1>_TX/RX_CH3N
<txvr_block_N+1>_TX/RX_CH4N

<txvr_block_N+1>_TX/RX_CH5N

5.2 Channel Placement and fPLL Usage for the Gen1 and Gen2 Data
Rates

The following figures illustrate the x1, x2, x4, and x8 channel placement for the
Arria 10 Hard IP for PCI Express. In these figures, channels that are not used for the
PCI Express protocol are available for other protocols. Unused channels are shown in
gray.

Note: In all configurations, physical channel 4 in the PCS connects to logical channel 0 in the
hard IP. You cannot change the channel placements illustrated below.

5 Physical Layout of Hard IP In Arria 10 Devices

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
52

Figure 27. Arria 10 Gen1 and Gen2 x1 Channel Placement

PMA Channel 5
PMA Channel 4
PMA Channel 3
PMA Channel 2

PMA Channel 0

PMA Channel 3
PMA Channel 2
PMA Channel 1
PMA Channel 0

PCS Channel 5
PCS Channel 4
PCS Channel 3
PCS Channel 2

PCS Channel 0

PCS Channel 3
PCS Channel 2
PCS Channel 1
PCS Channel 0

Hard IP Ch0

PMA Channel 1 PCS Channel 1

PMA Channel 4 PCS Channel 4
PMA Channel 5 PCS Channel 5

Hard IP
for PCIe

fPLL1

ATX1 PLL

fPLL0

ATX0 PLL

fPLL1

ATX1 PLL

fPLL0

ATX0 PLL

Master
CGB

Master
CGB indicates the location of the master clock generation block (CGB)Figure 28. Arria 10 Gen1 and Gen2 x2 Channel Placement

PMA Channel 5
PMA Channel 4
PMA Channel 3
PMA Channel 2

PMA Channel 0

PMA Channel 3
PMA Channel 2
PMA Channel 1
PMA Channel 0

PCS Channel 5
PCS Channel 4
PCS Channel 3
PCS Channel 2

PCS Channel 0

PCS Channel 3
PCS Channel 2
PCS Channel 1
PCS Channel 0

Hard IP Ch0

PMA Channel 1 PCS Channel 1

PMA Channel 4 PCS Channel 4
PMA Channel 5 PCS Channel 5

Hard IP
for PCIe

fPLL1

ATX1 PLL

fPLL0

ATX0 PLL

ATX1 PLL

fPLL0

ATX0 PLL

fPLL1 Master
CGB

Master
CGB indicates the location of the master clock generation block (CGB)Figure 29. Arria 10 Gen1 and Gen2 x4 Channel Placement

PMA Channel 5
PMA Channel 4
PMA Channel 3

PMA Channel 0

PMA Channel 3
PMA Channel 2
PMA Channel 1
PMA Channel 0

PCS Channel 5
PCS Channel 4
PCS Channel 3

PCS Channel 0

PCS Channel 3
PCS Channel 2
PCS Channel 1
PCS Channel 0

Hard IP Ch0

PMA Channel 1 PCS Channel 1

PMA Channel 4 PCS Channel 4
PMA Channel 5 PCS Channel 5

PMA Channel 2 PCS Channel 2

Hard IP
for PCIe

fPLL1

ATX1 PLL

ATX0 PLL

fPLL0

ATX1 PLL

fPLL0

ATX0 PLL

Master
CGB

fPLL1

Master
CGB indicates the location of the master clock generation block (CGB)

5 Physical Layout of Hard IP In Arria 10 Devices

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
53

Figure 30. Gen1 and Gen2 x8 Channel Placement

PMA Channel 5
PMA Channel 4
PMA Channel 3

PMA Channel 0

PMA Channel 3
PMA Channel 2
PMA Channel 1
PMA Channel 0

PCS Channel 5
PCS Channel 4
PCS Channel 3

PCS Channel 0

PCS Channel 3
PCS Channel 2
PCS Channel 1
PCS Channel 0

Hard IP
for PCIe

Hard IP Ch0

PMA Channel 1 PCS Channel 1

PMA Channel 4 PCS Channel 4
PMA Channel 5 PCS Channel 5

PMA Channel 2 PCS Channel 2

fPLL1

ATX1 PLL

ATX0 PLL

ATX1 PLL

fPLL0

ATX0 PLL

fPLL1

fPLL0 Master
CGB

Master
CGB indicates the location of the master clock generation block (CGB)

5.3 Channel Placement and fPLL and ATX PLL Usage for the Gen3
Data Rate

The following figures illustrate the x1, x2, x4, and x8 channel placement for the
Arria 10 Hard IP for PCI Express.

Gen3 variants must initially train at the Gen1 data rate. Consequently, Gen3 variants
require an fPLL to generate the 2.5 and 5.0 Gbps clocks, and an ATX PLL to generate
the 8.0 Gbps clock. In these figures, channels that are not used for the PCI Express
protocol are available for other protocols. Unused channels are shown in gray.

Note: In all configurations, physical channel 4 in the PCS connects to logical channel 0 in the
hard IP. You cannot change the channel placements illustrated below.

Figure 31. Arria 10 Gen3 x1 Channel Placement

PMA Channel 5
PMA Channel 4
PMA Channel 3

PMA Channel 0

PMA Channel 4
PMA Channel 3
PMA Channel 2
PMA Channel 1
PMA Channel 0

PCS Channel 5
PCS Channel 4
PCS Channel 3

PCS Channel 0

PCS Channel 4
PCS Channel 3
PCS Channel 2
PCS Channel 1
PCS Channel 0

Hard IP
for PCIe

fPLL1

ATX1 PLL

fPLL0

ATX0 PLL

fPLL0

ATX0 PLL

Hard IP Ch0

PMA Channel 1 PCS Channel 1
PMA Channel 2 PCS Channel 2

PMA Channel 5 PCS Channel 5fPLL1

ATX1 PLL
Master

CGB

Master
CGB indicates the location of the master clock generation block (CGB)

5 Physical Layout of Hard IP In Arria 10 Devices

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
54

Figure 32. Arria 10 Gen3 x2 Channel Placement

PMA Channel 5
PMA Channel 4
PMA Channel 3

PMA Channel 0

PMA Channel 4
PMA Channel 3
PMA Channel 2
PMA Channel 1
PMA Channel 0

PCS Channel 5
PCS Channel 4
PCS Channel 3

PCS Channel 0

PCS Channel 4
PCS Channel 3
PCS Channel 2
PCS Channel 1
PCS Channel 0

Hard IP
for PCIe

fPLL1

ATX1 PLL

fPLL0

ATX0 PLL

fPLL0

ATX0 PLL

Hard IP Ch0

PMA Channel 1 PCS Channel 1
PMA Channel 2 PCS Channel 2

PMA Channel 5 PCS Channel 5fPLL1

ATX1 PLL
Master

CGB

Master
CGB indicates the location of the master clock generation block (CGB)Figure 33. Arria 10 Gen3 x4 Channel Placement

PMA Channel 5
PMA Channel 4
PMA Channel 3

PMA Channel 0
PMA Channel 5
PMA Channel 4
PMA Channel 3
PMA Channel 2
PMA Channel 1
PMA Channel 0

PCS Channel 5
PCS Channel 4
PCS Channel 3

PCS Channel 0
PCS Channel 5
PCS Channel 4
PCS Channel 3
PCS Channel 2
PCS Channel 1
PCS Channel 0

Hard IP
for PCIe

fPLL1

ATX1 PLL

fPLL0

ATX0 PLL

fPLL1

ATX1 PLL

fPLL0

ATX0 PLL

Hard IP Ch0

PMA Channel 1 PCS Channel 1
PMA Channel 2 PCS Channel 2

Master
CGB

Master
CGB indicates the location of the master clock generation block (CGB)

Figure 34. Gen3 x8 Channel Placement

PMA Channel 5
PMA Channel 4
PMA Channel 3

PMA Channel 0
PMA Channel 5
PMA Channel 4
PMA Channel 3
PMA Channel 2
PMA Channel 1
PMA Channel 0

PCS Channel 5
PCS Channel 4
PCS Channel 3

PCS Channel 0
PCS Channel 5
PCS Channel 4
PCS Channel 3
PCS Channel 2
PCS Channel 1
PCS Channel 0

Hard IP
for PCIe

fPLL1

ATX1 PLL

fPLL1

ATX1 PLL

fPLL0

ATX0 PLL

Hard IP Ch0

PMA Channel 1 PCS Channel 1
PMA Channel 2 PCS Channel 2fPLL0

ATX0 PLL
Master

CGB

Master
CGB indicates the location of the master clock generation block (CGB)

5 Physical Layout of Hard IP In Arria 10 Devices

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
55

5.4 PCI Express Gen3 Bank Usage Restrictions

Any transceiver channels that share a bank with active PCI Express interfaces that are
Gen3 capable have the following restrictions. This includes both Hard IP and Soft IP
implementations:

• When VCCR_GXB and VCCT_GXB are set to 1.03 V or 1.12 V, the maximum data
rate supported for the non-PCIe channels in those banks is 12.5 Gbps for chip-to-
chip applications. These channels cannot be used to drive backplanes or for GT
rates.

• When VCCR_GXB and VCCT_GXB are set to 0.95 V, the non-PCIe channels in
those banks cannot be used.

PCI Express interfaces that are only Gen1 or Gen2 capable are not affected.

Status

Affects all Arria 10 ES and production devices. No fix is planned.

5 Physical Layout of Hard IP In Arria 10 Devices

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
56

6 Interfaces and Signal Descriptions
Figure 35. Avalon-ST Hard IP for PCI Express Top-Level Signals

rx_st_data[63:0], [127:0], [255:0]
rx_st_sop [1:0]
rx_st_eop [1:0]
rx_st_empty[1:0]
rx_st_ready
rx_st_valid
rx_st_err
rx_st_mask
rx_st_bar[7:0]
rx_st_parity[7:0], [15:0], [31:0]
rxfc_cplbuf_ovf

Hard IP for Express, Avalon-ST Interface

Test

Development Kit
Design Example

tx_st_data[63:0], [127:0], [255:0]
tx_st_sop [1:0]
tx_st_eop [1:0]
tx_st_ready
tx_st_valid
tx_st_empty[1:0]
tx_st_err
tx_st_parity[7:0], [15:0], [31:0]

tx_cred_data_fc[11:0]
tx_cred_fc_hip_cons[5:0]
tx_cred_fc_infinite[5:0]

tx_cred_hdr_fc[7:0]
tx_cred_cons_sel
ko_cpl_spc_header[7:0]
ko_cpl_spc_data[11:0]

Clocks

TX Port

RX Port

Parity Error

Power
Managementt

LMI

test_in[31:0]
testin_zero

lane_act[3:0]

devkit_ctrl[255:0]
devkit_status[255:0]

tl_cfg_add[3:0]
tl_cfg_ctl[31:0]
tl_cfg_sts[52:0]
hpg_ctrler[4:0]

lmi_dout[7:0]
lmi_rden
lmi_wren

lmi_ack
lmi_addr[11:0]

lmi_din[7:0]

Hard IP
Reconfiguration
(Optional)

tx_out[7:0]
rx_in[7:0] Serial IF to PIPE

Avalon-ST

Avalon-ST

Component
Specific

Component
Specific

TX
Credit

derr_cor_ext_rcv0
derr_rpl
derr_cor_ext_rpl0

int_status[3:0]
serr_out

cpl_err[6:0]
cpl_pending

tx_par_err[1:0]
rx_par_err

cfg_par_err

hip_reconfig_clk
hip_reconfig_rst_n

hip_reconfig_address[9:0]
hip_reconfig_read

hip_reconfig_readdata[15:0]
hip_reconfig_write

hip_reconfig_writedata[15:0]
hip_reconfig_byte_en[1:0]

ser_shift_load
interface_sel

npor

reset_status
pin_perst
serdes_pll_locked
pld_core_ready
pld_clk_inuse
dlup
dlup_exit
ev128ns
ev1us
hotrst_exit
l2_exit
current_speed[1:0]
ltssmstate[4:0]

Reset &
Link Status

ECC Error

Completion
Interface

Transaction Layer
Configuration

Interrupts
for Root Ports

Interrupt
for Endpoints

app_msi_req
app_msi_ack
app_msi_tc[2:0]
app_msi_num[4:0]
app_int_sts
app_int_ack

pme_to_cr
pme_to_sr
pm_event

pm_data[9:0]
pm_auxpwr

refclk
pld_clk
coreclkout_hip

txdata0[31:0]
txdatak0[3:0]

rxdata0[31:0]
rxdatak[3:0]

txdetectrx0
txelectidle0

txcompl0

rxpolarity0

powerdown0[1:0]

txmargin0[2:0]
txswing0

rxvalid0
phystatus0

rxelecidle0

rxstatus0[2:0]

simu_mode_pipe

sim_pipe_rate[1:0]
sim_pipe_pclk_in

sim_ltssmstate[4:0]
eidleinfersel0[2:0]

txdeemph0

txblkst0

txdataskip0
Transmit Data

Receive Data

tx_cred_fc_sel[1:0]

PIPE
Interface

 for Simulation
and Hardware
Debug Using
dl_ltssm[4:0]
in SignalTap

tx_st_empty[1:0]

clr_st

rxdataskip0
rxblkst0

txsynchd0[1:0]

currentcoeff0[17:0]
currentrxpreset0[2:0]

rxsynchd0[1:0]

rate[1:0]

6 Interfaces and Signal Descriptions

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

6.1 Avalon-ST RX Interface

The following table describes the signals that comprise the Avalon-ST RX Datapath.
The RX data signal can be 64, 128, or 256 bits.

Table 27. 64-, 128-, or 256-Bit Avalon-ST RX Datapath

Signal Direction Description

rx_st_data[<n>-1:0] Output Receive data bus. Refer to figures following this table for the mapping of
the Transaction Layer’s TLP information to rx_st_data and examples of
the timing of this interface. Note that the position of the first payload
dword depends on whether the TLP address is qword aligned. The mapping
of message TLPs is the same as the mapping of TLPs with 4-dword
headers. When using a 64-bit Avalon-ST bus, the width of rx_st_data is
64. When using a 128-bit Avalon-ST bus, the width of rx_st_data is
128. When using a 256-bit Avalon-ST bus, the width of rx_st_data is
256 bits.

rx_st_sop[1:0] Output Indicates that this is the first cycle of the TLP when rx_st_valid is
asserted. When using a 256-bit Avalon-ST bus the following
correspondences apply:
When you turn on Enable multiple packets per cycle,
• bit 0 indicates that a TLP begins in rx_st_data[127:0]
• bit 1 indicates that a TLP begins in rx_st_data[255:128]
In single packet per cycle mode, this signal is a single bit which indicates
that a TLP begins in this cycle.

rx_st_eop[1:0] Output Indicates that this is the last cycle of the TLP when rx_st_valid is
asserted.
When using a 256-bit Avalon-ST bus the following correspondences apply:
When you turn on Enable multiple packets per cycle,
• bit 0 indicates that a TLP ends in rx_st_data[127:0]
• bit 1 indicates that a TLP ends in rx_st_data[255:128]
In single packet per cycle mode, this signal is a single bit which indicates
that a TLP ends in this cycle.

continued...

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
58

Signal Direction Description

rx_st_empty[1:0] Output Indicates the number of empty qwords in rx_st_data. Not used when
rx_st_data is 64 bits. Valid only when rx_st_eop is asserted in 128-bit
and 256-bit modes.
For 128-bit data, only bit 0 applies; this bit indicates whether the upper
qword contains data. For 256-bit data single packet per cycle mode, both
bits are used to indicate whether 0-3 upper qwords contain data, resulting
in the following encodings for the 128-and 256-bit interfaces:
• 128-Bit interface:

— rx_st_empty = 0, rx_st_data[127:0]contains valid data
— rx_st_empty = 1, rx_st_data[63:0] contains valid data

• 256-bit interface: single packet per cycle mode
— rx_st_empt y = 0, rx_st_data[255:0] contains valid data
— rx_st_empty = 1, rx_st_data[191:0] contains valid data
— rx_st_empty = 2, rx_st_data[127:0] contains valid data
— rx_st_empty = 3, rx_st_data[63:0] contains valid data

• For 256-bit data, when you turn on Enable multi ple packets per
cycle, the following correspondences apply:
— bit 1 applies to the eop occurring in rx_st_data[255:128]
— bit 0 applies to the eop occurring in rx_st_data[127:0]

• When the TLP ends in the lower 128 bits, the following equations
apply:
— rx_st_eop[0]=1 & rx_st_empty[0]=0, rx_st_data[127:0]

contains valid data
— rx_st_eop[0]=1 & rx_st_empty[0]=1, rx_st_data[63:0]

contains valid data, rx_st_data[127:64] is empty
• When TLP ends in the upper 128bits, the following equations apply:

— rx_st_ eop[1]=1 & rx_st_empty[1]=0,
rx_st_data[255:128] contains valid data

— rx_st_eop[1]=1 & rx_st_empty[1]=1,
rx_st_data[191:128] contains valid data,
rx_st_data[255:192] is empty

rx_st_ready Input Indicates that the Application Layer is ready to accept data. The
Application Layer deasserts this signal to throttle the data stream.
If rx_st_ready is asserted by the Application Layer on cycle <n> , then
<n + > readyLatency > is a ready cycle, during which the Transaction
Layer may assert valid and transfer data.
The RX interface supports a readyLatency of 2 cycles.

rx_st_valid Output Clocks rx_st_data into the Application Layer. Deasserts within 2 clocks
of rx_st_ready deassertion and reasserts within 2 clocks of
rx_st_ready assertion if more data is available to send.
For 256-bit data, when you turn on Enable multiple packets per cycle,
bit 0 applies to the entire bus rx_st_data[255:0]. Bit 1 is not used.

rx_st_err[<n>-1:0] Output Indicates that there is an uncorrectable error correction coding (ECC) error
in the internal RX buffer. Active when ECC is enabled. ECC is automatically
enabled by the Quartus Prime assembler. ECC corrects single-bit errors
and detects double-bit errors on a per byte basis.
When an uncorrectable ECC error is detected, rx_st_err is asserted for
at least 1 cycle while rx_st_valid is asserted.
For 256-bit data, when you turn on Enable multiple packets per cycle,
bit 0 applies to the entire bus rx_st_data[255:0]. Bit 1 is not used.
Intel recommends resetting the Arria 10 Hard IP for PCI Express when an
uncorrectable double-bit ECC error is detected.

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
59

Attention: If you instantiate this IP core as a separate component from the Quartus Prime IP
Catalog, the Message pane reports the following warning messages:

pcie_a10.pcie_a10_hip_0.tx.st Interface must have an associated reset
pcie_a10.pcie_a10_hip_0.rx.st Interface must have an associated reset

You can safely ignore these warnings because the IP core has a dedicated hard reset
pin that is not part of the Avalon-ST TX or RX interface.

Related Links

Avalon Interface Specifications
For information about the Avalon-ST interface protocol.

6.1.1 Avalon-ST RX Component Specific Signals

Table 28. Avalon-ST RX Component Specific Signals

Signal Direction Description

rx_st_mask Input The Application Layer asserts this signal to tell the Hard IP to stop sending
non-posted requests. This signal can be asserted at any time. The total
number of non-posted requests that can be transferred to the Application
Layer after rx_st_mask is asserted is not more than 10.
This signal stalls only non-posted TLPs. All others continue to be forwarded
to the Application Layer. The stalled non-posted TLPs are held in the RX
buffer until the mask signal is deasserted. They are not be discarded. If
used in a Root Port mode, asserting the rx_st_mask signal stops all I/O
and MemRd and configuration accesses because these are all non-posted
transactions.

rx_st_bar[7:0] Output The decoded BAR bits for the TLP. Valid for MRd, MWr, IOWR, and IORD
TLPs. Ignored for the completion or message TLPs. Valid during the cycle
in which rx_st_sop is asserted.
Refer to 64-Bit Avalon-ST rx_st_data<n> Cycle Definitions for 4-Dword
Header TLPs with Non-Qword Addresses and 128-Bit Avalon-ST
rx_st_data<n> Cycle Definition for 3-Dword Header TLPs with Qword
Aligned Addresses for the timing of this signal for 64- and 128-bit data,
respectively.
The following encodings are defined for Endpoints:
• Bit 0: BAR 0
• Bit 1: BAR 1
• Bit 2: BAR 2
• Bit 3: BAR 3
• Bit 4: BAR 4
• Bit 5: BAR 5
• Bit 6: Expansion ROM
• Bit 7: Reserved
The following encodings are defined for Root Ports:
• Bit 0: BAR 0
• Bit 1: BAR 1
• Bit 2: Primary Bus number
• Bit 3: Secondary Bus number
• Bit 4: Secondary Bus number to Subordinate Bus number window
• Bit 5: I/O window
• Bit 6: Non-Prefetchable window
• Bit 7: Prefetchable window

continued...

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
60

https://www.altera.com/documentation/nik1412467993397.html#nik1412467963376

Signal Direction Description

For multiple packets per cycle, this signal is undefined. If you turn on
Enable multiple packets per cycle, do not use this signal to identify the
address BAR hit.

rx_st_parity[<n>-1:0] Output The IP core generates byte parity when you turn on Enable byte parity
ports on Avalon-ST interface on the System Settings tab of the
parameter editor. Each bit represents odd parity of the associated byte of
the rx_st_datarx_st_data bus. For example, bit[0] corresponds to
rx_st_data[7:0] rx_st_data[7:0], bit[1] corresponds to
rx_st_data[15:8].

rxfc_cplbuf_ovf] Output When asserted indicates that the internal RX buffer has overflowed.

For more information about the Avalon-ST protocol, refer to the Avalon Interface
Specifications.

Related Links

Avalon Interface Specifications
For information about the Avalon-ST interface protocol.

6.1.2 Data Alignment and Timing for the 64-Bit Avalon-ST RX Interface

To facilitate the interface to 64-bit memories, the Arria 10 Hard IP for PCI Express
aligns data to the qword or 64 bits by default. Consequently, if the header presents an
address that is not qword aligned, the Hard IP block shifts the data within the qword
to achieve the correct alignment.

Qword alignment applies to all types of request TLPs with data, including the following
TLPs:

• Memory writes

• Configuration writes

• I/O writes

The alignment of the request TLP depends on bit 2 of the request address. For
completion TLPs with data, alignment depends on bit 2 of the lower address field.
This bit is always 0 (aligned to qword boundary) for completion with data TLPs that
are for configuration read or I/O read requests.

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
61

https://www.altera.com/documentation/nik1412467993397.html#nik1412467963376

Figure 36. Qword Alignment
The following figure shows how an address that is not qword aligned, 0x4, is stored in
memory. The byte enables only qualify data that is being written. This means that the
byte enables are undefined for 0x0–0x3. This example corresponds to 64-Bit Avalon-
ST rx_st_data<n> Cycle Definition for 3-Dword Header TLPs with Non-Qword Aligned
Address.

.

.

.

0x0

0x8

0x10

0x18

Header Addr = 0x4

64 bits
PCB Memory

Valid Data

Valid Data

The following table shows the byte ordering for header and data packets.

Table 29. Mapping Avalon-ST Packets to PCI Express TLPs

Packet TLP

Header0 pcie_hdr_byte0, pcie_hdr _byte1, pcie_hdr _byte2, pcie_hdr _byte3

Header1 pcie_hdr _byte4, pcie_hdr _byte5, pcie_hdr byte6, pcie_hdr _byte7

Header2 pcie_hdr _byte8, pcie_hdr _byte9, pcie_hdr _byte10, pcie_hdr _byte11

Header3 pcie_hdr _byte12, pcie_hdr _byte13, header_byte14, pcie_hdr _byte15

Data0 pcie_data_byte3, pcie_data_byte2, pcie_data_byte1, pcie_data_byte0

Data1 pcie_data_byte7, pcie_data_byte6, pcie_data_byte5, pcie_data_byte4

Data2 pcie_data_byte11, pcie_data_byte10, pcie_data_byte9, pcie_data_byte8

Data<n> pcie_data_byte<4n+3>, pcie_data_byte<4n+2>, pcie_data_byte<4n+1>, pcie_data_byte<n>

The following figure illustrates the mapping of Avalon-ST RX packets to PCI Express
TLPs for a three dword header with non-qword aligned addresses with a 64-bit bus. In
this example, the byte address is unaligned and ends with 0x4, causing the first data
to correspond to rx_st_data[63:32] .

Note: The Avalon-ST protocol, as defined in Avalon Interface Specifications, is big endian,
while the Hard IP for PCI Express packs symbols into words in little endian format.
Consequently, you cannot use the standard data format adapters available in Qsys.

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
62

Figure 37. 64-Bit Avalon-ST rx_st_data<n> Cycle Definition for 3-Dword Header TLPs
with Non-Qword Aligned Address

pld_clk

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

Header1 Data0 Data2

Header0 Header2 Data1

The following figure illustrates the mapping of Avalon-ST RX packets to PCI Express
TLPs for a three dword header with qword aligned addresses. Note that the byte
enables indicate the first byte of data is not valid and the last dword of data has a
single valid byte.

Figure 38. 64-Bit Avalon-ST rx_st_data<n> Cycle Definition for 3-Dword Header TLPs
with Qword Aligned Address

clk

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

Header 1 Data1 Data3

Header 0 Header2 Data0 Data2

Figure 39. 64-Bit Avalon-ST rx_st_data<n> Cycle Definitions for 4-Dword Header TLPs
with Qword Aligned Addresses
The following figure shows the mapping of Avalon-ST RX packets to PCI Express TLPs
for TLPs for a four dword header with qword aligned addresses with a 64-bit bus.

pld_clk

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

header1 header3 data1

header0 header2 data0

Figure 40. 64-Bit Avalon-ST rx_st_data<n> Cycle Definitions for 4-Dword Header TLPs
with Non-Qword Addresses
The following figure shows the mapping of Avalon-ST RX packet to PCI Express TLPs
for TLPs for a four dword header with non-qword addresses with a 64-bit bus. Note
that the address of the first dword is 0x4. The address of the first enabled byte is 0xC.

pld_clk

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

rx_st_bar[7:0]

header1 header3 data0 data2

header0 header2 data1

10

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
63

Figure 41. 64-Bit Application Layer Backpressures Transaction Layer
The following figure illustrates the timing of the RX interface when the Application
Layer backpressures the Arria 10 Hard IP for PCI Express by deasserting rx
_st_ready. The rx_st_valid signal deasserts within three cycles after
rx_st_ready is deasserted. In this example, rx_st_valid is deasserted in the next
cycle. rx_st_data is held until the Application Layer is able to accept it.

pld_clk

rx_st_data[63:0]

rx_st_sop

rx_st_eop

rx_st_ready

rx_st_valid

000 . 010 . CCCC0002CCCC0001 CC . CC . CC . CC . CC . CC .

Figure 42. 64-Bit Avalon-ST Interface Back-to-Back Transmission

The following figure illustrates back-to-back transmission on the 64-bit Avalon-ST RX
interface with no idle cycles between the assertion of rx_st_eop and rx_st_sop.

pld_clk

rx_st_data[63:0]

rx_st_sop

rx_st_eop

rx_st_ready

rx_st_valid

C. C. C. C. CCCC0089002... C C

Related Links

Avalon Interface Specifications
For information about the Avalon-ST interface protocol.

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
64

https://www.altera.com/documentation/nik1412467993397.html#nik1412467963376

6.1.3 Data Alignment and Timing for the 128-Bit Avalon-ST RX Interface

Figure 43. 128-Bit Avalon-ST rx_st_data<n> Cycle Definition for 3-Dword Header TLPs
with Qword Aligned Addresses

The following figure shows the mapping of 128-bit Avalon-ST RX packets to PCI
Express TLPs for TLPs with a three dword header and qword aligned addresses. The
assertion of rx_st_empty in a rx_st_eop cycle, indicates valid data on the lower 64
bits of rx_st _data.

pld_clk

rx_st_valid

rx_st_data[127:96]

rx_st_data[95:64]

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_bar[7:0]

rx_st_sop

rx_st_eop

rx_st_empty

data3

header2 data2

header1 data1 data<n>

header0 data0 data<n-1>

01

Figure 44. 128-Bit Avalon-ST rx_st_data<n> Cycle Definition for 3-Dword Header TLPs
with non-Qword Aligned Addresses

The following figure shows the mapping of 128-bit Avalon-ST RX packets to PCI
Express TLPs for TLPs with a 3 dword header and non-qword aligned addresses. In
this case, bits[127:96] represent Data0 because address[2] in the TLP header is set.
The assertion of rx_st_empty in a rx_st_eop cycle indicates valid data on the lower
64 bits of rx_st_data.

rx_st_valid

rx_st_data[127:96]

rx_st_data[95:64]

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

rx_st_empty

Data0 Data 4

Header 2 Data 3

Header 1 Data 2 Data (n)

Header 0 Data 1 Data (n-1)

pld_clk

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
65

Figure 45. 128-Bit Avalon-ST rx_st_data Cycle Definition for 4-Dword Header TLPs with
non-Qword Aligned Addresses

The following figure shows the mapping of 128-bit Avalon-ST RX packets to PCI
Express TLPs for a four dword header with non-qword aligned addresses. In this
example, rx_st_empty is low because the data is valid for all 128 bits in the
rx_st_eop cycle.

pld_clk

rx_st_valid

rx_st_data[127:96]

rx_st_data[95:64]

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

rx_st_empty

Header 3 Data 2

Header 2 Data 1 Data n

Header 1 Data 0 Data n-1

Header 0 Data n-2

Figure 46. 128-Bit Avalon-ST rx_st_data Cycle Definition for 4-Dword Header TLPs with
Qword Aligned Addresses

The following figure shows the mapping of 128-bit Avalon-ST RX packets to PCI
Express TLPs for a four dword header with qword aligned addresses. In this example,
rx_st_empty is low because data is valid for all 128-bits in the rx_st_eop cycle.

pld_clk

rx_st_valid

rx_st_data[127:96]

rx_st_data[95:64]

rx_st_data[63:32]

rx_st_data[31:0]

rx_st_sop

rx_st_eop

rx_st_empty

Header3 Data3 Data n

Header 2 Data 2 Data n-1

Header 1 Data 1 Data n-2

Header 0 Data 0 Data n-3

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
66

Figure 47. 128-Bit Application Layer Backpressures Hard IP Transaction Layer for RX
Transactions

The following figure illustrates the timing of the RX interface when the Application
Layer backpressures the Hard IP by deasserting rx_st_ready. The rx_st_valid
signal deasserts within three cycles after rx_st_ready is deasserted. In this
example, rx_st_valid is deasserted in the next cycle. rx_st_data is held until the
Application Layer is able to accept it.

pld_clk

rx_st_data[127:0]

rx_st_sop

rx_st_eop

rx_st_empty

rx_st_ready

rx_st_valid

4562 . . . c19a . . . 0217b . . . 134c . . . 8945 . . .3458ce. . . 2457ce. . .000a7896c000bc34...

The following figure illustrates back-to-back transmission on the 128-bit Avalon-ST RX
interface with no idle cycles between the assertion of rx_st_eop and rx_st_sop.

Figure 48. 128-Bit Avalon-ST Interface Back-to-Back Transmission

The following figure illustrates back-to-back transmission on the 128-bit Avalon-ST RX
interface with no idle cycles between the assertion of rx_st_eop and rx_st_sop.

pld_clk

rx_st_data[127:0]

rx_st_sop

rx_st_eop

rx_st_empty

rx_st_ready

rx_st_valid

rx_st_err

BB ... BB ... BB ... BB ... BB ... BB ... BB ... BB ... BB ... BB ... BB ... BBBB

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
67

Figure 49. 128-Bit Packet Examples of rx_st_empty and Single-Cycle Packet

The following figure illustrates a two-cycle packet with valid data in the lower qword
(rx_st_data[63:0]) and a one-cycle packet where the rx_st_sop and rx_st_eop
occur in the same cycle.

pld_clk

rx_st_data[127:0]

rx_st_sop

rx_st_eop

rx_st_empty

rx_st_ready

rx_st_valid

0000090 1C0020000F0000000100004 450AC89000012FE0D10004

6.1.4 Data Alignment and Timing for 256-Bit Avalon-ST RX Interface

Figure 50. Location of Headers and Data for Avalon-ST 256-Bit Interface

The following figure shows the location of headers and data for the 256-bit Avalon-ST
packets. This layout of data applies to both the TX and RX buses.

D3 255

0

255

0

255

0

255

0

4DW header,
Aligned data

D2

D1

D0

H3

H2

H1

H0

D9

D8

D7

D6

D5

D4

D24DW header,
Unaligned data

D1

D0

H3

H2

H1

H0

D9

D8

D7

D6

D5

D4

D3

D33DW header,
Aligned data

D2

D1

D0

H2

H1

H0

D9

D8

D7

D6

D5

D4

D43DW header,
Unaligned data

D3

D2

D0

H2

H1

H0

D9

D8

D7

D6

D5

D1

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
68

Figure 51. 256-Bit Avalon-ST RX Packets Use of rx_st_empty and Single-Cycle Packets

The following figure illustrates two single-cycle 256-bit packets. The first packet has
two empty dwords, rx_st_data[191:0] is valid. The second packet has four empty
dwords; rx_st_data[127:0] is valid.

pld_clk

rx_st_data[255:0]

rx_st_sop

rx_st_eop

rx_st_empty[1:0]

rx_st_ready

rx_st_valid

XX..BE ...

1 0 2

XXXXXXXXXXXXXXXX. . . 4592001487DF08876210...

6.1.5 Tradeoffs to Consider when Enabling Multiple Packets per Cycle

If you enable Multiple Packets Per Cycle under the Systems Settings heading, a
TLP can start on a 128-bit boundary. This mode supports multiple start of packet and
end of packet signals in a single cycle when the Avalon-ST interface is 256 bits wide.
It reduces the wasted bandwidth for small packets.

A comparison of the largest and smallest packet sizes illustrates this point. Large
packets using the full 256 bits achieve the following throughput:

256/256*8 = 8 GBytes/sec

The smallest PCIe packet, such as a 3-dword memory read, uses 96 bits of the
256-bits bus and achieve the following throughput:

96/256*8 = 3 GBytes/sec

If you enable mMultiple Packets Per Cycle, when a TLP ends in the upper 128 bits
of the Avalon-ST bus, a new TLP can start in the lower 128 bits Consequently, the
bandwidth of small packets doubles:

96*2/256*8 = 6 GBytes/sec

This mode adds complexity to the Application Layer user decode logic. However, it
could result in higher throughput.

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
69

Figure 52. 256-Bit Avalon-ST RX Interface with Multiple Packets Per Cycle

The following figure illustrates this mode for a 256-bit Avalon-ST RX interface. In this
figure rx_st_eop[0] and rx_st_sop[1] are asserted in the same cycle.

rx_st_sop[0]

rx_st_eop[0]

rx_st_sop[1]

rx_st_eop[1]

rx_st_data[255:0]

rx_st_bar[7:0]

rx_st_empty[1:0]

rx_st_err

rx_st_mask

rx_st_ready

rx_st_valid

.. 12... 12... 12... 12... 12... 12... 12... 12... 00... 12... 12... 12... 12... 12... 12... 12... 003458

00

6.2 Avalon-ST TX Interface

The following table describes the signals that comprise the Avalon-ST TX Datapath.
The TX data signal can be 64, 128, or 256 bits.

Table 30. 64-, 128-, or 256-Bit Avalon-ST TX Datapath

Signal Direction Description

tx_st_data[<n>-1:0] Input Data for transmission. Transmit data bus. Refer to the following sections
on data alignment for the 64-, 128-, and 256-bit interfaces for the
mapping of TLP packets to tx_st_data and examples of the timing of
this interface. When using a 64-bit Avalon-ST bus, the width of tx_st_d
ata is 64. When using a 128-bit Avalon-ST bus, the width of tx_st_data
is 128 bits. When using a 256-bit Avalon-ST bus, the width of
tx_st_data is 256 bits. The Application Layer must provide a properly
formatted TLP on the TX interface. The mapping of message TLPs is the
same as the mapping of Transaction Layer TLPs with 4 dword headers. The
number of data cycles must be correct for the length and address fields in
the header. Issuing a packet with an incorrect number of data cycles
results in the TX interface hanging and becoming unable to accept further
requests.
<n> = 64, 128, or 256.

tx_st_sop[<n>-1:0] Input Indicates first cycle of a TLP when asserted together with tx_st_valid.
<n> = 1 or 2.
When using a 256-bit Avalon-ST bus with Multiple packets per cycle, bit
0 indicates that a TLP begins in tx_st_data[127:0], bit 1 indicates that a
TLP begins in tx_st_data[255:128].

tx_st_eop[<n>-1:0] Input Indicates last cycle of a TLP when asserted together with tx_st_valid.
<n> = 1 or 2.
When using a 256-bit Avalon-ST bus with Multiple packets per cycle, bit
0 indicates that a TLP ends with tx_st_data[127:0], bit 1 indicates that a
TLP ends with tx_st_data[255:128].

tx_st_ready Output Indicates that the Transaction Layer is ready to accept data for
transmission. The core deasserts this signal to throttle the data stream.
tx_st_ready may be asserted during reset. The Application Layer should

continued...

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
70

Signal Direction Description

wait at least 2 clock cycles after the reset is released before issuing
packets on the Avalon-ST TX interface. The reset_status signal can also
be used to monitor when the IP core has come out of reset.
If tx_st_ready is asserted by the Transaction Layer on cycle <n> , then
<n + readyLatency> is a ready cycle, during which the Application
Layer may assert valid and transfer data.
When tx_st_ready, tx_st_valid and tx_st_data are registered
(the typical case), Intel recommends a readyLatency of 2 cycles to
facilitate timing closure; however, a readyLatency of 1 cycle is possible.
If no other delays are added to the read-valid latency, the resulting delay
corresponds to a readyLatency of 2.

tx_st_valid Input Clocks tx_st_data to the core when tx_st_ready is also asserted.
Between tx_st_sop and tx_st_eop, tx_st_valid must not be
deasserted in the middle of a TLP except in response to tx_st_ready
deassertion. When tx_st_ready deasserts, this signal must deassert
within 1 or 2 clock cycles. When tx_st_ready reasserts, and
tx_st_data is in mid-TLP, this signal must reassert within 2 cycles. The
figure entitled64-Bit Transaction Layer Backpressures the Application
Layer illustrates the timing of this signal.
For 256-bit data, when you turn on Enable multiple packets per cycle,
the bit 0 applies to the entire bus tx_st_data[255:0]. Bit 1 is not used.
To facilitate timing closure, Intel recommends that you register both the
tx_st_ready and tx_st_valid signals. If no other delays are added to
the ready-valid latency, the resulting delay corresponds to a
readyLatency of 2.

tx_st_empty[1:0] Input Indicates the number of qwords that are empty during cycles that contain
the end of a packet. When asserted, the empty dwords are in the
high-order bits. Valid only when tx_st_eop is asserted.
Not used when tx_st_data is 64 bits. For 128-bit data, only bit 0 applies
and indicates whether the upper qword contains data. For 256-bit data,
both bits are used to indicate the number of upper words that contain
data, resulting in the following encodings for the 128-and 256-bit
interfaces:
128-Bit interface:tx_st_empty = 0, tx_st_data[127:0]contains valid
datatx_st_empty = 1, tx_st_data[63:0] contains valid data
256-bit interface:tx_st_empty = 0, tx_st_data[255:0] contains valid
datatx_ st_empty = 1, tx_st_data[191:0] contains valid
datatx_st_empty = 2, tx_st_data[127:0] contains valid
datatx_st_empty = 3, tx_st_data[63:0] contains valid data
For 256-bit data, when you turn on Enable multiple packets per cycle,
the following correspondences apply:
• bit 1 applies to the eop occurring in rx_st_data[255:128]
• bit 0 applies to the eop occurring in rx_st_data[127:0]
When the TLP ends in the lower 128bits, the following equations apply:
• tx_st_eop[0]=1 & tx_st_empty[0]=0, tx_st_data[127:0]

contains valid data
• tx_st_eop[0]=1 & tx_st_empty[0]=1, tx_st_data[63:0]

contains valid data, tx_st_data[127:64] is empty
When TLP ends in the upper 128bits, the following equations apply:
• tx_st_eop[1]=1 & tx_st_empty[1]=0, tx_st_data[255:128]

contains valid data
• tx_st_eop[1]=1 & tx_st_empty[1]=1, tx_st_data[191:128]

contains valid data, tx_st_data[255:192] is empty

tx_st_err Input Indicates an error on transmitted TLP. This signal is used to nullify a
packet. It should only be applied to posted and completion TLPs with
payload. To nullify a packet, assert this signal for 1 cycle after the SOP and

continued...

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
71

Signal Direction Description

before the EOP. When a packet is nullified, the following packet should not
be transmitted until the next clock cycle. tx_st_err is not available for
packets that are 1 or 2 cycles long.
For 256-bit data, when you turn on Enable multiple packets per cycle,
bit 0 applies to the entire bus tx_st_data[255:0]. Bit 1 is not used.
Refer to the figure entitled 128-Bit Avalon-ST tx_st_data Cycle Definition
for 3-Dword Header TLP with non-Qword Aligned Address for a timing
diagram that illustrates the use of the error signal. Note that it must be
asserted while the valid signal is asserted.

tx_st_parity[<n>-1:0] Output Byte parity is generated when you turn on Enable byte parity ports on
Avalon ST interface on the System Settings tab of the parameter
editor.Each bit represents odd parity of the associated byte of the
tx_st_data bus. For example, bit[0] corresponds to tx_st_data[7:0],
bit[1] corresponds to tx_st_data[15:8], and so on.
<n> = 8, 16, or 32.

Component Specific Signals

tx_cred_data_fc[11:0] Output Data credit limit for the credit type specified by tx_cred_fc_sel. Each
credit is 16 bytes. There is a latency of two pld_clk clocks between a
change on tx_cred_fc_sel and the corresponding data appearing on
tx_cred_data_fc and tx_cred_hdr_fc.

tx_cred_fc_hip_cons[5:0
]

Output Asserted for 1 cycle each time the Hard IP consumes a credit. These
credits are from messages that the Hard IP for PCIe generates for the
following reasons:
• To respond to memory read requests
• To send error messages
This signal is not asserted when an Application Layer credit is consumed.
For optimum performance the Application Layer can track of its own
consumed credits. (The hard IP also tracks credits and deasserts
tx_st_ready if it runs out of credits of any type.) To calculate the total
credits consumed, the Application Layer can add its own credits consumed
to those consumed by the Hard IP for PCIe. The credit signals are valid
after the link is up.
The 6 bits of this vector correspond to the following 6 types of credit
types:
• [5]: posted headers
• [4]: posted data
• [3]: non-posted header
• [2]: non-posted data
• [1]: completion header
• [0]: completion data
During a single cycle, the IP core can consume either a single header
credit or both a header and a data credit.

tx_cred_fc_infinite[5:0
]

Output When asserted, indicates that the corresponding credit type has infinite
credits available and does not need to calculate credit limits. The 6 bits of
this vector correspond to the following 6 types of credit types:
• [5]: posted headers
• [4]: posted data
• [3]: non-posted header
• [2]: non-posted data
• [1]: completion header
• [0]: completion data

continued...

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
72

Signal Direction Description

tx_cred_fc_sel[1:0] Input Signal to select between which credit type is displayed on the
tx_cred_hdr_fc and tx_cred_data_fc outputs. There is a latency of
two pld_clk clocks between a change on tx_cred_fc_sel and the
corresponding data appearing on tx_cred_data_fc and
tx_cred_hdr_fc. The following encoding are defined:
• 2'b00: Output Posted credits
• 2'b01: Output Non-Posted credits
• 2'b10: Output Completions

tx_cred_hdr_fc[7:0] Output Header credit limit for the credit type selected by tx_cred_fc_sel. Each
credit is 20 bytes. There is a latency of two pld_clk clocks between a
change on tx_cred_fc_sel and the corresponding data appearing on
tx_cred_data_fc and tx_cred_hdr_fc.

tx_cred_cons_sel Input When 1, the tx_cred_* output signals specify the value of the hard IP
internal credits-consumed counter. When 0, the output signals tx_cred_*
specify the credit limit value.

ko_cpl_spc_header[7:0] Output The Application Layer can use this signal to build circuitry to prevent RX
buffer overflow for completion headers. Endpoints must advertise infinite
space for completion headers; however, RX buffer space is finite.
ko_cpl_spc_header is a static signal that indicates the total number of
completion headers that can be stored in the RX buffer.

ko_cpl_spc_data[11:0] Output The Application Layer can use this signal to build circuitry to prevent RX
buffer overflow for completion data. Endpoints must advertise infinite
space for completion data; however, RX buffer space is finite.
ko_cpl_spc_data is a static signal that reflects the total number of 16
byte completion data units that can be stored in the completion RX buffer.

Related Links

• Data Alignment and Timing for the 64-Bit Avalon-ST TX Interface on page 73

• Data Alignment and Timing for the 128-Bit Avalon-ST TX Interface on page 76

• Data Alignment and Timing for the 256-Bit Avalon-ST TX Interface on page 79

6.2.1 Avalon-ST Packets to PCI Express TLPs

The following figures illustrate the mappings between Avalon-ST packets and PCI
Express TLPs. These mappings apply to all types of TLPs, including posted,
non-posted, and completion TLPs. Message TLPs use the mappings shown for four
dword headers. TLP data is always address-aligned on the Avalon-ST interface
whether or not the lower dwords of the header contains a valid address, as may be
the case with TLP type (message request with data payload).

For additional information about TLP packet headers, refer to Section 2.2.1 Common
Packet Header Fields in the PCI Express Base Specification .

6.2.2 Data Alignment and Timing for the 64-Bit Avalon-ST TX Interface

The following figure illustrates the mapping between Avalon-ST TX packets and PCI
Express TLPs for three dword header TLPs with non-qword aligned addresses on a 64-
bit bus.

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
73

Figure 53. 64-Bit Avalon-ST tx_st_data Cycle Definition for 3-Dword Header TLP with
Non-Qword Aligned Address

pld_clk

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_eop

Header1 Data0 Data2

Header0 Header2 Data1

This figure illustrates the storage of non-qword aligned data.) Non-qword aligned
address occur when address[2] is set. When address[2] is set,
tx_st_data[63:32]contains Data0 and tx_st_data[31:0] contains dword
header2. In this figure, the headers are formed by the following bytes:

H0 ={pcie_hdr_byte0, pcie_hdr _byte1, pcie_hdr _byte2, pcie_hdr _byte3}
H1 = {pcie_hdr_byte4, pcie_hdr _byte5, header pcie_hdr byte6, pcie_hdr _byte7}
H2 = {pcie_hdr _byte8, pcie_hdr _byte9, pcie_hdr _byte10, pcie_hdr _byte11}
Data0 = {pcie_data_byte3, pcie_data_byte2, pcie_data_byte1, pcie_data_byte0}
Data1 = {pcie_data_byte7, pcie_data_byte6, pcie_data_byte5, pcie_data_byte4}
Data2 = {pcie_data_byte11, pcie_data_byte10, pcie_data_byte9, pcie_data_byte8}

The following figure illustrates the mapping between Avalon-ST TX packets and PCI
Express TLPs for three dword header TLPs with qword aligned addresses on a 64-bit
bus.

Figure 54. 64-Bit Avalon-ST tx_st_data Cycle Definition for 3-Dword Header TLP with
Qword Aligned Address

clk

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_eop

Header 1 Data1 Data3

Header 0 Header2 Data0 Data2

The following figure illustrates the mapping between Avalon-ST TX packets and PCI
Express TLPs for a four dword header with qword aligned addresses on a 64-bit bus

Figure 55. 64-Bit Avalon-ST tx_st_data Cycle Definition for 4-Dword TLP with Qword
Aligned Address

pld_clk

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_eop

Header1 Header3 Data1

Header0 Header2 Data0

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
74

In this figure, the headers are formed by the following bytes.

H0 = {pcie_hdr_byte0, pcie_hdr _byte1, pcie_hdr _byte2, pcie_hdr _byte3}
H1 = {pcie_hdr _byte4, pcie_hdr _byte5, pcie_hdr byte6, pcie_hdr _byte7}
H2 = {pcie_hdr _byte8, pcie_hdr _byte9, pcie_hdr _byte10, pcie_hdr _byte11}
H3 = pcie_hdr _byte12, pcie_hdr _byte13, header_byte14, pcie_hdr _byte15}, 4
dword header only
Data0 = {pcie_data_byte3, pcie_data_byte2, pcie_data_byte1, pcie_data_byte0}
Data1 = {pcie_data_byte7, pcie_data_byte6, pcie_data_byte5, pcie_data_byte4}

Figure 56. 64-Bit Avalon-ST tx_st_data Cycle Definition for TLP 4-Dword Header with
Non-Qword Aligned Address

pld_clk

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_eop

Header 1 Header3 Data0 Data2

Header 0 Header2 Data1

Figure 57. 64-Bit Transaction Layer Backpressures the Application Layer

The following figure illustrates the timing of the TX interface when the Arria 10 Hard IP
for PCI Express pauses transmission by the Application Layer by deasserting
tx_st_ready. Because the readyLatency is two cycles, the Application Layer
deasserts tx_st_valid after two cycles and holds tx_st_data until two cycles after
tx_st_ready is asserted.

coreclkout

tx_st_sop

tx_st_eop

tx_st_ready

tx_st_valid

tx_st_err

tx_st_data[63:0]

readyLatency

 00. . 00 ... BB... BB ... BBBB0306BBB0305 BB... BB.. BB ... BB ... BB ... BB ... BB... .

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
75

Figure 58. 64-Bit Back-to-Back Transmission on the TX Interface
The following figure illustrates back-to-back transmission of 64-bit packets with no idle
cycles between the assertion of tx_st_eop and tx_st_sop.

coreclkout

tx_st_sop

tx_st_eop

tx_st_ready

tx_st_valid

tx_st_err

tx_st_data[63:0] 01 ... 00 ... BB ... BB ... BB ... BB ... B BB ... 01 ... 00 ... CC ... CC ... CC ... CC ... CC ... CC ...

6.2.3 Data Alignment and Timing for the 128-Bit Avalon-ST TX Interface

Figure 59. 128-Bit Avalon-ST tx_st_data Cycle Definition for 3-Dword Header TLP with
Qword Aligned Address

The following figure shows the mapping of 128-bit Avalon-ST TX packets to PCI
Express TLPs for a three dword header with qword aligned addresses. Assertion of
tx_st_empty in an rx_st_eop cycle indicates valid data in the lower 64 bits of
tx_st_data.

Data3

Header2 Data 2

Header1 Data1 Data(n)

Header0 Data0 Data(n-1)

pld_clk

tx_st_valid

tx_st_data[127:96]

tx_st_data[95:64]

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_eop

tx_st_empty

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
76

Figure 60. 128-Bit Avalon-ST tx_st_data Cycle Definition for 3-Dword Header TLP with
non-Qword Aligned Address

The following figure shows the mapping of 128-bit Avalon-ST TX packets to PCI
Express TLPs for a 3 dword header with non-qword aligned addresses. It also shows
tx_st_err assertion.

pld_clk

tx_st_valid

tx_st_data[127:96]

tx_st_data[95:64]

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_err

tx_st_eop

tx_st_empty

Data0 Data 4

Header 2 Data 3

Header 1 Data 2 Data (n)

Header 0 Data 1 Data (n-1)

Figure 61. 128-Bit Avalon-ST tx_st_data Cycle Definition for 4-Dword Header TLP with
Qword Aligned Address

pld_clk

tx_st_data[127:96]

tx_st_data[95:64]

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_eop

tx_st_empty

Header 3 Data 3

Header 2 Data 2

Header 1 Data 1

Header 0 Data 0 Data 4

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
77

Figure 62. 128-Bit Avalon-ST tx_st_data Cycle Definition for 4-Dword Header TLP with
non-Qword Aligned Address

The following figure shows the mapping of 128-bit Avalon-ST TX packets to PCI
Express TLPs for a four dword header TLP with non-qword aligned addresses. In this
example, tx_st_empty is low because the data ends in the upper 64 bits of
tx_st_data.

Header 3 Data 2

Header 2 Data 1 Data n

Header 1 Data 0 Data n-1

Header 0 Data n-2

pld_clk

tx_st_valid

tx_st_data[127:96]

tx_st_data[95:64]

tx_st_data[63:32]

tx_st_data[31:0]

tx_st_sop

tx_st_eop

tx_st_empty

Figure 63. 128-Bit Back-to-Back Transmission on the Avalon-ST TX Interface

The following figure illustrates back-to-back transmission of 128-bit packets with idle
dead cycles between the assertion of tx_st_eop and tx_st_sop.

pld_clk

tx_st_data[127:0]

tx_st_sop

tx_st_eop

tx_st_empty

tx_st_ready

tx_st_valid

tx_st_err

.. .

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
78

Figure 64. 128-Bit Hard IP Backpressures the Application Layer for TX Transactions

The following figure illustrates the timing of the TX interface when the Arria 10 Hard IP
for PCI Express pauses the Application Layer by deasserting tx_st_ready. Because
the readyLatency is two cycles, the Application Layer deasserts tx_st_valid after
two cycles and holds tx_st_data until two cycles after tx_st_ready is reasserted

pld_clk

tx_st_data[127:0]

tx_st_sop

tx_st_eop

tx_st_empty

tx_st_ready

tx_st_valid

tx_st_err

000 CC... CC... CC... CC... CC... CC... CC... CC... CC... CC... CC...

6.2.4 Data Alignment and Timing for the 256-Bit Avalon-ST TX Interface

Refer to Figure 8–16 on page 8–15 layout of headers and data for the 256-bit
Avalon-ST packets with qword aligned and qword unaligned addresses.

Single Packet Per Cycle

In single packer per cycle mode, all received TLPs start at the lower 128-bit boundary
on a 256-bit Avalon-ST interface. Turn on Enable Multiple Packets per Cycle on the
System Settings tab of the parameter editor to change multiple packets per cycle.

Single packet per cycle mode requires simpler Application Layer packet decode logic
on the TX and RX paths because packets always start in the lower 128-bits of the
Avalon-ST interface. Although this mode simplifies the Application Layer logic, failure
to use the full 256-bit Avalon-ST may slightly reduce the throughput of a design.

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
79

Figure 65. 256-Bit Avalon-ST tx_st_data Cycle Definition for 3-Dword Header TLP with
Qword Addresses

The following figure illustrates the layout of header and data for a three dword header
on a 256-bit bus with aligned and unaligned data.

01 10

clk

tx_st_data[63:0]

Aligned Data Unaligned Data

tx_st_data[127:64]

tx_st_data[191:128]

tx_st_data[255:192]

tx_st_sop

tx_st_eop

tx_st_empty[1:0]

Header 1 Header 0

XXXXXXXX Header 2

XXXXXXXX Data 0

XXXXXXXXX XXXXXXXX

Header 1 Header 0

Data 0 Header 2

XXXXXXXXX XXXXXXXX

XXXXXXXXX XXXXXXXX

Figure 66. 256-Bit Avalon-ST tx_st_data Cycle Definition for 4-Dword Header TLP with
Qword Addresses

The following figure illustrates the layout of header and data for a four dword header
on a 256-bit bus with aligned and unaligned data.

01 01

clk

tx_st_data[63:0]

Aligned Data Unaligned Data

tx_st_data[127:64]

tx_st_data[191:128]

tx_st_data[255:192]

tx_st_sop

tx_st_eop

tx_st_empty[1:0]

Header 1 Header 0

Header3 Header 2

XXXXXXXX Data 0

XXXXXXXXX XXXXXXXX

Header 1 Header 0

Header3 Header 2

XXXXXXXXX XXXXXXXX

Data 0 XXXXXXXX

6.2.4.1 Single Packet Per Cycle

In single packer per cycle mode, all received TLPs start at the lower 128-bit boundary
on a 256-bit Avalon-ST interface. Turn on Enable Multiple Packets per Cycle on the
System Settings tab of the parameter editor to change multiple packets per cycle.

Single packet per cycle mode requires simpler Application Layer packet decode logic
on the TX and RX paths because packets always start in the lower 128-bits of the
Avalon-ST interface. Although this mode simplifies the Application Layer logic, failure
to use the full 256-bit Avalon-ST may slightly reduce the throughput of a design.

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
80

The following figure illustrates the layout of header and data for a three dword header
on a 256-bit bus with aligned and unaligned data.

Figure 67. 256-Bit Avalon-ST tx_st_data Cycle Definition for 3-Dword Header TLP with
Qword Addresses

01 10

clk

tx_st_data[63:0]

Aligned Data Unaligned Data

tx_st_data[127:64]

tx_st_data[191:128]

tx_st_data[255:192]

tx_st_sop

tx_st_eop

tx_st_empty[1:0]

Header 1 Header 0

XXXXXXXX Header 2

XXXXXXXX Data 0

XXXXXXXXX XXXXXXXX

Header 1 Header 0

Data 0 Header 2

XXXXXXXXX XXXXXXXX

XXXXXXXXX XXXXXXXX

6.2.4.2 Multiple Packets per Cycle on the Avalon-ST TX 256-Bit Interface

If you enable Multiple Packets Per Cycle under the Systems Settings heading, a
TLP can start on a 128-bit boundary. This mode supports multiple start of packet and
end of packet signals in a single cycle when the Avalon-ST interface is 256 bits wide.
The following figure illustrates this mode for a 256-bit Avalon-ST TX interface. In this
figure tx_st_eop[0] and tx_st_sop[1] are asserted in the same cycle. Using this
mode increases the complexity of the Application Layer logic but results in higher
throughput, depending on the TX traffic. Refer to Tradeoffs to Consider when Enabling
Multiple Packets per Cycle for an example of the bandwidth when Multiple Packets
Per Cycle is enabled and disabled.

Figure 68. 256-Bit Avalon-ST TX Interface with Multiple Packets Per Cycle

tx_st_sop[0]

tx_st_eop[0]

tx_st_sop[1]

tx_st_eop[1]

tx_st_ready

tx_st_valid

tx_st_data[255:0] 12 ... 12... 12... 12... 12... 12... 12... 12... 00... 5A... 5A... 5A... 5A... 5A... 5A... 5A... 5A...

tx_st_empty[1:0]

Related Links

Tradeoffs to Consider when Enabling Multiple Packets per Cycle on page 69

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
81

6.2.5 Root Port Mode Configuration Requests

If your Application Layer implements ECRC forwarding, it should not apply ECRC
forwarding to Configuration Type 0 packets that it issues on the Avalon-ST interface.
There should be no ECRC appended to the TLP, and the TD bit in the TLP header
should be set to 0. These packets are processed internally by the Hard IP block and
are not transmitted on the PCI Express link.

To ensure proper operation when sending Configuration Type 0 transactions in Root
Port mode, the application should wait for the Configuration Type 0 transaction to be
transferred to the Hard IP for PCI Express Configuration Space before issuing another
packet on the Avalon-ST TX port. You can do this by waiting for the core to respond
with a completion on the Avalon-ST RX port before issuing the next Configuration Type
0 transaction.

6.3 Clock Signals

Table 31. Clock Signals

Signal Direction Description

refclk Input Reference clock for the IP core. It must have the frequency specified under
the System Settings heading in the parameter editor. This is a dedicated
free running input clock to the dedicated REFCLK pin.

pld_clk Input Clocks the Application Layer. You can drive this clock with
coreclkout_hip. If you drive pld_clk with another clock source, it
must be equal to or faster than coreclkout_hip.

coreclkout_hip Output This is a fixed frequency clock used by the Data Link and Transaction
Layers.

Related Links

Clocks on page 123

6.4 Reset, Status, and Link Training Signals

Refer to Reset and Clocks for more information about the reset sequence and a block
diagram of the reset logic.

Table 32. Reset Signals

Signal Direction Description

npor Input Active low reset signal. In the Intel hardware example designs, npor is
the OR of pin_perst and local_rstn coming from the software
Application Layer. If you do not drive a soft reset signal from the
Application Layer, this signal must be derived from pin_perst. You
cannot disable this signal. Resets the entire IP Core and transceiver.
Asynchronous.

continued...

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
82

Signal Direction Description

This signal is edge, not level sensitive; consequently, you cannot use a low
value on this signal to hold custom logic in reset. For more information
about the reset controller, refer to Reset.

clr_st Output This optional reset signal has the same effect as reset_status. You
enable this signal by turning On the Enable Avalon-ST reset output
port in the parameter editor.

reset_status Output Active high reset status signal. When asserted, this signal indicates that
the Hard IP clock is in reset. The reset_status signal is synchronous to
the pld_clk clock and is deasserted only when the npor is deasserted
and the Hard IP for PCI Express is not in reset (reset_status_hip = 0).
You should use reset_status to drive the reset of your application. This
reset is used for the Hard IP for PCI Express IP Core with the Avalon-ST
interface.

pin_perst Input Active low reset from the PCIe reset pin of the device. pin_perst resets
the datapath and control registers. Configuration over PCI Express (CvP)
requires this signal. For more information about CvP refer to Arria 10 CvP
Initialization and Partial Reconfiguration over PCI Express User Guide.
Arria 10 devices can have up to 4 instances of the Hard IP for PCI Express.
Each instance has its own pin_perst signal. You must connect the
pin_perst of each Hard IP instance to the corresponding nPERST pin of
the device. These pins have the following locations:
• NPERSTL0: bottom left Hard IP and CvP blocks
• NPERSTL1: top left Hard IP block
• NPERSTR0: bottom right Hard IP block
• NPERSTR1: top right Hard IP block
For example, if you are using the Hard IP instance in the bottom left
corner of the device, you must connect pin_perst to NPERSL0.
For maximum use of the Arria 10 device, Intel recommends that you use
the bottom left Hard IP first. This is the only location that supports CvP
over a PCIe link. If your design does not require CvP, you may select other
Hard IP blocks.
Refer to the Arria 10 GX, GT, and SX Device Family Pin Connection
Guidelines for more detailed information about these pins.

Figure 69. Reset and Link Training Timing Relationships

The following figure illustrates the timing relationship between npor and the LTSSM L0
state.

npor

IO_POF_Load

PCIe_LinkTraining_Enumeration

dl_ltssm[4:0] detect detect.active polling.active L0

Note: To meet the 100 ms system configuration time, you must use the fast passive parallel
configuration scheme with CvP and a 32-bit data width (FPP x32) or use the Arria 10
Hard IP for PCI Express in autonomous mode.

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
83

Table 33. Status and Link Training Signals

Signal Direction Description

serdes_pll_locked Output When asserted, indicates that the PLL that generates the
coreclkout_hip clock signal is locked. In pipe simulation mode this
signal is always asserted.

pld_core_ready Input When asserted, indicates that the Application Layer is ready for operation
and is providing a stable clock to the pld_clk input. If the
coreclkout_hip Hard IP output clock is sourcing the pld_clk Hard IP
input, this input can be connected to the serdes_pll_locked output.

pld_clk_inuse Output When asserted, indicates that the Hard IP Transaction Layer is using the
pld_clk as its clock and is ready for operation with the Application Layer.
For reliable operation, hold the Application Layer in reset until
pld_clk_inuse is asserted.

dlup Output When asserted, indicates that the Hard IP block is in the Data Link Control
and Management State Machine (DLCMSM) DL_Up state.

dlup_exit Output This signal is asserted low for one pld_clk cycle when the IP core exits
the DLCMSM DL_Up state, indicating that the Data Link Layer has lost
communication with the other end of the PCIe link and left the Up state.
When this pulse is asserted, the Application Layer should generate an
internal reset signal that is asserted for at least 32 cycles.

ev128ns Output Asserted every 128 ns to create a time base aligned activity.

ev1us Output Asserted every 1µs to create a time base aligned activity.

hotrst_exit Output Hot reset exit. This signal is asserted for 1 clock cycle when the LTSSM
exits the hot reset state. This signal should cause the Application Layer to
be reset. This signal is active low. When this pulse is asserted, the
Application Layer should generate an internal reset signal that is asserted
for at least 32 cycles.

l2_exit Output L2 exit. This signal is active low and otherwise remains high. It is asserted
for one cycle (changing value from 1 to 0 and back to 1) after the LTSSM
transitions from l2.idle to detect. When this pulse is asserted, the
Application Layer should generate an internal reset signal that is asserted
for at least 32 cycles.

lane_act[3:0] Output Lane Active Mode: This signal indicates the number of lanes that
configured during link training. The following encodings are defined:
• 4’b0001: 1 lane
• 4’b0010: 2 lanes
• 4’b0100: 4 lanes
• 4’b1000: 8 lanes

currentspeed[1:0] Output Indicates the current speed of the PCIe link. The following encodings are
defined:
• 2b’00: Undefined
• 2b’01: Gen1
• 2b’10: Gen2
• 2b’11: Gen3

ltssmstate[4:0] Output LTSSM state: The LTSSM state machine encoding defines the following
states:
• 00000: Detect.Quiet
• 00001: Detect.Active
• 00010: Polling.Active
• 00011: Polling.Compliance
• 00100: Polling.Configuration
• 00101: Polling.Speed
• 00110: config.Linkwidthstart

continued...

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
84

Signal Direction Description

• 00111: Config.Linkaccept
• 01000: Config.Lanenumaccept
• 01001: Config.Lanenumwait
• 01010: Config.Complete
• 01011: Config.Idle
• 01100: Recovery.Rcvlock
• 01101: Recovery.Rcvconfig
• 01110: Recovery.Idle
• 01111: L0
• 10000: Disable
• 10001: Loopback.Entry
• 10010: Loopback.Active
• 10011: Loopback.Exit
• 10100: Hot.Reset
• 10101: LOs
• 11001: L2.transmit.Wake
• 11010: Speed.Recovery
• 11011: Recovery.Equalization, Phase 0
• 11100: Recovery.Equalization, Phase 1
• 11101: Recovery.Equalization, Phase 2
• 11110: Recovery.Equalization, Phase 3

Related Links

• PCI Express Card Electromechanical Specification 2.0

• Arria 10 GX, GT, and SX Device Family Pin Connection Guidelines
For information about connecting pins on the PCB including required resistor
values and voltages.

6.5 ECRC Forwarding

On the Avalon-ST interface, the ECRC field follows the same alignment rules as
payload data. For packets with payload, the ECRC is appended to the data as an extra
dword of payload. For packets without payload, the ECRC field follows the address
alignment as if it were a one dword payload. The position of the ECRC data for data
depends on the address alignment. For packets with no payload data, the ECRC
position corresponds to the position of Data0.

6.6 Error Signals

The following table describes the ECC error signals. These signals are all valid for one
clock cycle. They are synchronous to coreclkout_hip.

ECC for the RX and retry buffers is implemented with MRAM. These error signals are
flags. If a specific location of MRAM has errors, as long as that data is in the ECC
decoder, the flag indicates the error.

When a correctable ECC error occurs, the Arria 10 Hard IP for PCI Express recovers
without any loss of information. No Application Layer intervention is required. In the
case of uncorrectable ECC error, Intel recommends that you reset the core.

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
85

http://www.pcisig.com/home
https://documentation.altera.com/#/link/wtw1404286459773/iwtw1420187605772

Table 34. Error Signals

Signal I/O Description

derr_cor_ext_rcv0 Output Indicates a corrected error in the RX buffer. This signal is for debug only. It
is not valid until the RX buffer is filled with data. This is a pulse, not a
level, signal. Internally, the pulse is generated with the 500 MHz clock. A
pulse extender extends the signal so that the FPGA fabric running at
250 MHz can capture it. Because the error was corrected by the IP core,
no Application Layer intervention is required. (1)

derr_rpl Output Indicates an uncorrectable error in the retry buffer. This signal is for debug
only. (1)

derr_cor_ext_rpl0 Output Indicates a corrected ECC error in the retry buffer. This signal is for debug
only. Because the error was corrected by the IP core, no Application Layer
intervention is required. (1)

Notes:
1. Debug signals are not rigorously verified and should only be used to observe behavior. Debug signals should not be

used to drive logic custom logic.

Related Links

Avalon-ST RX Interface on page 58

6.7 Interrupts for Endpoints

Refer to Interrupts for detailed information about all interrupt mechanisms.

Table 35. Interrupt Signals for Endpoints

Signal Direction Description

app_msi_req Input Application Layer MSI request. Assertion causes an MSI posted write TLP
to be generated based on the MSI configuration register values and the
app_msi_tc and app_msi_num input ports.

app_msi_ack Output Application Layer MSI acknowledge. This signal acknowledges the
Application Layer's request for an MSI interrupt.

app_msi_tc[2:0] Input Application Layer MSI traffic class. This signal indicates the traffic class
used to send the MSI (unlike INTX interrupts, any traffic class can be used
to send MSIs).

app_msi_num[4:0] Input MSI number of the Application Layer. This signal provides the low order
message data bits to be sent in the message data field of MSI messages
requested by app_msi_req. Only bits that are enabled by the MSI
Message Control register apply.

app_int_sts Input Controls legacy interrupts. Assertion of app_int_sts causes an
Assert_INTA message TLP to be generated and sent upstream.
Deassertion of app_int_sts causes a Deassert_INTA message TLP to be
generated and sent upstream.

app_int_ack Output This signal is the acknowledge for app_int_sts. It is asserted for at least
one cycle either when either of the following events occur:
• The Assert_INTA message TLP has been transmitted in response to

the assertion of the app_int_sts.
• The Deassert_INTA message TLP has been transmitted in response

to the deassertion of the app_int_sts signal.

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
86

6.8 Interrupts for Root Ports

Table 36. Interrupt Signals for Root Ports

Signal Direction Description

int_status[3:0] Output These signals drive legacy interrupts to the Application Layer as follows:
• int_status[0]: interrupt signal A
• int_status[1]: interrupt signal B
• int_status[2]: interrupt signal C
• int_status[3]: interrupt signal D

serr_out Output System Error: This signal only applies to Root Port designs that report
each system error detected, assuming the proper enabling bits are
asserted in the Root Control and Device Control registers. If
enabled, serr_out is asserted for a single clock cycle when a system
error occurs. System errors are described in the PCI Express Base
Specification 2.1 or 3.0 in the Root Control register.

Related Links

PCI Express Base Specification 3.0

6.9 Completion Side Band Signals

The following table describes the signals that comprise the completion side band
signals for the Avalon-ST interface. The Arria 10 Hard IP for PCI Express provides a
completion error interface that the Application Layer can use to report errors, such as
programming model errors. When the Application Layer detects an error, it can assert
the appropriate cpl_err bit to indicate what kind of error to log. If separate requests
result in two errors, both are logged. The Hard IP sets the appropriate status bits for
the errors in the Configuration Space, and automatically sends error messages in
accordance with the PCI Express Base Specification. Note that the Application Layer is
responsible for sending the completion with the appropriate completion status value
for non-posted requests. Refer to Error Handling for information on errors that are
automatically detected and handled by the Hard IP.

For a description of the completion rules, the completion header format, and
completion status field values, refer to Section 2.2.9 of the PCI Express Base
Specification.

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
87

http://www.pcisig.com/home

Table 37. Completion Signals for the Avalon-ST Interface

Signal Directi
on

Description

cpl_err[6:0] Input Completion error. This signal reports completion errors to the Configuration Space.
When an error occurs, the appropriate signal is asserted for one cycle.
• cpl_err[0]: Completion timeout error with recovery. This signal should be

asserted when a master-like interface has performed a non-posted request that
never receives a corresponding completion transaction after the 50 ms timeout
period when the error is correctable. The Hard IP automatically generates an
advisory error message that is sent to the Root Complex.

• cpl_err[1]: Completion timeout error without recovery. This signal should be
asserted when a master-like interface has performed a non-posted request that
never receives a corresponding completion transaction after the 50 ms time-out
period when the error is not correctable. The Hard IP automatically generates a non-
advisory error message that is sent to the Root Complex.

• cpl_err[2]: Completer abort error. The Application Layer asserts this signal to
respond to a non-posted request with a Completer Abort (CA) completion. The
Application Layer generates and sends a completion packet with Completer Abort
(CA) status to the requestor and then asserts this error signal to the Hard IP. The
Hard IP automatically sets the error status bits in the Configuration Space register
and sends error messages in accordance with the PCI Express Base Specification.

• cpl_err[3]: Unexpected completion error. This signal must be asserted when an
Application Layer master block detects an unexpected completion transaction. Many
cases of unexpected completions are detected and reported internally by the
Transaction Layer. For a list of these cases, refer to Transaction Layer Errors.

• cpl_err[4]: Unsupported Request (UR) error for posted TLP. The Application Layer
asserts this signal to treat a posted request as an Unsupported Request. The Hard
IP automatically sets the error status bits in the Configuration Space register and
sends error messages in accordance with the PCI Express Base Specification. Many
cases of Unsupported Requests are detected and reported internally by the
Transaction Layer. For a list of these cases, refer to Transaction Layer Errors.

• cpl_err[5]: Unsupported Request error for non-posted TLP. The Application Layer
asserts this signal to respond to a non-posted request with an Request (UR)
completion. In this case, the Application Layer sends a completion packet with the
Unsupported Request status back to the requestor, and asserts this error signal. The
Hard IP automatically sets the error status bits in the Configuration Space Register
and sends error messages in accordance with the PCI Express Base Specification.
Many cases of Unsupported Requests are detected and reported internally by the
Transaction Layer. For a list of these cases, refer to Transaction Layer Errors.

• cpl_err[6]: Log header. If header logging is required, this bit must be set in the
every cycle in which any of cpl_err[2], cpl_err[3], cpl_err[4], or
cpl_err[5]is set. The Application Layer presents the header to the Hard IP by
writing the following values to the following 4 registers using LMI before asserting
cpl_err[6]:. The Application Layer presents the header to the Hard IP by writing
the following values to the following 4 registers using LMI before asserting
cpl_err[6]:

— lmi_addr: 12'h81C, lmi_din: err_desc_func0[127:96]
— lmi_addr: 12'h820, lmi_din: err_desc_func0[95:64]
— lmi_addr: 12'h824, lmi_din: err_desc_func0[63:32]
— lmi_addr: 12'h828, lmi_din: err_desc_func0[31:0]

cpl_pending Input Completion pending. The Application Layer must assert this signal when a master block
is waiting for completion, for example, when a Non-Posted Request is pending. The
state of this input is reflected by the Transactions Pending bit of the Device
Status Register as defined in Section 7.8.5 of the PCI Express Base Specification.

Related Links

• Transaction Layer Errors on page 134

• PCI Express Base Specification Rev 3.0

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
88

http:/www.pcisig.com

6.10 Parity Signals

Parity protection provides some data protection in systems that do not use ECRC
checking. Parity is odd. This option is not available for the Avalon-MM Arria 10 Hard IP
for PCI Express.

On the RX datapath, parity is computed on the incoming TLP prior to the LCRC check
in the Data Link Layer. Up to 32 parity bits are propagated to the Application Layer
along with the RX Avalon-ST data. The RX datapath also propagates up to 32 parity
bits to the Transaction Layer for Configuration TLPs. On the TX datapath, parity
generated in the Application Layer is checked in Transaction Layer and the Data Link
Layer.

The following table lists the signals that indicate parity errors. When an error is
detected, parity error signals are asserted for one cycle.

Table 38. Parity Signals

Signal Name Direction Description

tx_par_err[1:0] Output When asserted for a single cycle, indicates a parity error during TX TLP
transmission. These errors are logged in the VSEC register. The following
encodings are defined:
• 2’b10: A parity error was detected by the TX Transaction Layer. The

TLP is nullified and logged as an uncorrectable internal error in the
VSEC registers. For more information, refer to Uncorrectable Internal
Error Status Register.

• 2’b01: Some time later, the parity error is detected by the TX Data Link
Layer which drives 2’b01 to indicate the error. Intel recommends
resetting the Arria 10 Hard IP for PCI Express when this error is
detected. Contact Intel if resetting becomes unworkable.

Note that not all simulation models assert the Transaction Layer error bit
in conjunction with the Data Link Layer error bit.

rx_par_err Output When asserted for a single cycle, indicates that a parity error was detected
in a TLP at the input of the RX buffer. This error is logged as an
uncorrectable internal error in the VSEC registers. For more information,
refer to Uncorrectable Internal Error Status Register. If this error occurs,
you must reset the Hard IP if this error occurs because parity errors can
leave the Hard IP in an unknown state.

cfg_par_err Output When asserted for a single cycle, indicates that a parity error was detected
in a TLP that was routed to internal Configuration Space or to the
Configuration Space Shadow Extension Bus. This error is logged as an
uncorrectable internal error in the VSEC registers. For more information,
refer to Uncorrectable Internal Error Status Register. If this error occurs,
you must reset the core because parity errors can put the Hard IP in an
unknown state.

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
89

6.11 LMI Signals

LMI interface is used to write log error descriptor information in the TLP header log
registers. The LMI access to other registers is intended for debugging, not normal
operation.

Figure 70. Local Management Interface

Configuration Space
128 32-bit registers

(4 KBytes)

LMI

8lmi_dout

lmi_ack

12lmi_addr

8lmi_din

lmi_rden

lmi_wren

pld_clk

 Hard IP for PCIe

The LMI interface is synchronized to pld_clk and runs at frequencies up to 250 MHz.
The LMI address is the same as the Configuration Space address. The LMI interface
provides the same access to Configuration Space registers as Configuration TLP
requests. Register bits have the same attributes, (read only, read/write, and so on) for
accesses from the LMI interface and from Configuration TLP requests. The 32-bit read
and write data is driven, LSB to MSB over 4 consecutive cycles.

Note: You can also use the Configuration Space signals to read Configuration Space
registers. For more information, refer to Transaction Layer Configuration Space
Signals.

When a LMI write has a timing conflict with configuration TLP access, the configuration
TLP accesses have higher priority. LMI writes are held and executed when
configuration TLP accesses are no longer pending. An acknowledge signal is sent back
to the Application Layer when the execution is complete.

All LMI reads are also held and executed when no configuration TLP requests are
pending. The LMI interface supports two operations: local read and local write. The
timing for these operations complies with the Avalon-MM protocol described in the
Avalon Interface Specifications. LMI reads can be issued at any time to obtain the
contents of any Configuration Space register. LMI write operations are not
recommended for use during normal operation. The Configuration Space registers are
written by requests received from the PCI Express link and there may be unintended
consequences of conflicting updates from the link and the LMI interface. LMI Write
operations are provided for AER header logging, and debugging purposes only.

• In Root Port mode, do not access the Configuration Space using TLPs and the LMI
bus simultaneously.

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
90

Table 39. LMI Interface

Signal Direction Description

lmi_dout[7:0] Output Data outputs. Data is driven from LSB, [7:0], to MSB,[31:24]. The LSB
coincides withlmi_ack.

lmi_rden Input Read enable input.

lmi_wren Input Write enable input.

lmi_ack Output Write execution done/read data valid.

lmi_addr[11:0] Input Address inputs, [1:0] not used.

lmi_din[7:0] Input Data inputs. Data is driven from LSB, [7:0], to MSB,[31:24]. The LSB
coincides with lim_wren.

Figure 71. LMI Read

clk

read_en

addr_in[11:0]

dataout[7:0]

rd_wr_ack

bits[7:0] bits[15:8] bits[23:16] bits[31:24]

Figure 72. LMI Write
Only writable configuration bits are overwritten by this operation. Read-only bits are
not affected. LMI write operations are not recommended for use during normal
operation with the exception of AER header logging.

clk

lmi_wren

lmi_addr[11:0]

lmi_din[7:0]

lmi_ack

bits[7:0] bits[15:8] bits[23:16] bits[31:24]

Related Links

Avalon Interface Specifications

For information about the Avalon-MM interfaces to implement read and write
interfaces for master and slave components.

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
91

https://www.altera.com/documentation/nik1412467993397.html#nik1412467936351

6.12 Transaction Layer Configuration Space Signals

Table 40. Configuration Space Signals
These signals are not available if Configuration Space Bypass mode is enabled.

Signal Direction Description

tl_cfg_add[3:0] Output Address of the register that has been updated. This signal is an index
indicating which Configuration Space register information is being driven
onto tl_cfg_ctl.The indexing is defined in Multiplexed Configuration
Register Information Available on tl_cfg_ctl.
The index increments every 8 pld_clk cycles

tl_cfg_ctl[31:0] Output The tl_cfg_ctl signal is multiplexed and contains the contents of the
Configuration Space registers. The indexing is defined in Multiplexed
Configuration Register Information Available on tl_cfg_ctl.

tl_cfg_sts[52:0] Output Configuration status bits. This information updates every pld_clk cycle.
The following table provides detailed descriptions of the status bits.

hpg_ctrler[4:0] Input The hpg_ctrler signals are only available in Root Port mode and when
the Slot capability register is enabled. Refer to the Slot register and Slot
capability register parameters in Table 6–9 on page 6–10. For Endpoint
variations the hpg_ctrler input should be hardwired to 0s. The bits
have the following meanings:

Input • [0]: Attention button pressed. This signal should be asserted when the
attention button is pressed. If no attention button exists for the slot,
this bit should be hardwired to 0, and the Attention Button
Present bit (bit[0]) in the Slot capability register parameter is set to
0.

Input • [1]: Presence detect. This signal should be asserted when a presence
detect circuit detects a presence detect change in the slot.

Input • [2]: Manually-operated retention latch (MRL) sensor changed. This
signal should be asserted when an MRL sensor indicates that the MRL
is Open. If an MRL Sensor does not exist for the slot, this bit should be
hardwired to 0, and the MRL Sensor Present bit (bit[2]) in the Slot
capability register parameter is set to 0.

Input • [3]: Power fault detected. This signal should be asserted when the
power controller detects a power fault for this slot. If this slot has no
power controller, this bit should be hardwired to 0, and the Power
Controller Present bit (bit[1]) in the Slot capability register
parameter is set to 0.

Input • [4]: Power controller status. This signal is used to set the command
completed bit of the Slot Status register. Power controller status is
equal to the power controller control signal. If this slot has no power
controller, this bit should be hardwired to 0 and the Power
Controller Present bit (bit[1]) in the Slot capability register is set
to 0.

Table 41. Mapping Between tl_cfg_sts and Configuration Space Registers

tl_cfg_sts Configuration Space Register Description

[52:49] Device Status Register[3:0] Records the following errors:
• Bit 3: unsupported request detected
• Bit 2: fatal error detected
• Bit 1: non-fatal error detected
• Bit 0: correctable error detected

[48] Slot Status Register[8] Data Link Layer state changed

continued...

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
92

tl_cfg_sts Configuration Space Register Description

[47] Slot Status Register[4] Command completed. (The hot plug controller
completed a command.)

[46:31] Link Status Register[15:0] Records the following link status information:
• Bit 15: link autonomous bandwidth status
• Bit 14: link bandwidth management status
• Bit 13: Data Link Layer link active - This bit is

only available for Root Ports. It is always 0 for
Endpoints.

• Bit 12: Slot clock configuration
• Bit 11: Link Training
• Bit 10: Undefined
• Bits[9:4]: Negotiated Link Width
• Bits[3:0] Link Speed

[30] Link Status 2 Register[0] Current de-emphasis level.

[29:25] Status Register[15:11] Records the following 5 primary command status
errors:
• Bit 15: detected parity error
• Bit 14: signaled system error
• Bit 13: received master abort
• Bit 12: received target abort
• Bit 11: signaled target abort

[24] Secondary Status Register[8] Master data parity error

[23:6] Root Status Register[17:0] Records the following PME status information:
• Bit 17: PME pending
• Bit 16: PME status
• Bits[15:0]: PME request ID[15:0]

[5:1] Secondary Status Register[15:11] Records the following 5 secondary command status
errors:
• Bit 15: detected parity error
• Bit 14: received system error
• Bit 13: received master abort
• Bit 12: received target abort
• Bit 11: signaled target abort

[0] Secondary Status Register[8] Master Data Parity Error

6.12.1 Configuration Space Register Access Timing

The signals of the tl_cfg_* interface include multi-cycle paths. Depending on the
parameterization, the tl_cfg_add and tl_cfg_ctl signals update every four or
eight coreclkout_hip cycles.

To ensure correct values are captured, your Application RTL must include code to force
sampling to the middle of this window. The RTL shown below detects the change of
address. A new strobe signal, cfgctl_addr_strobe, forces sampling to the middle
of the window.

// detect the address transition
 always @(posedge coreclkout_hip)
 begin
 // detect address change
 cfgctl_addr_change <= cfg_addr_reg[3:0] != tl_cfg_add[3:0];
 // delay two clocks and use as strobe to sample the input 32-bit data
 cfgctl_addr_change2 <= cfgctl_addr_change;

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
93

 cfgctl_addr_strobe <= cfgctl_addr_change2;
 end
 // captured cfg ctl addr/data bus with the strobe
 always @(posedge coreclkout_hip)
 if(cfgctl_addr_strobe)
 begin
 captured_cfg_addr_reg[3:0] <= tl_cfg_add[3:0];
 captured_cfg_data_reg[31:0] <= tl_cfg_ctl[31:0];
 end

Note: Before Quartus Prime version 16.0.1, the multi-cycle paths did not include proper
timing constraints. If you use this interface, you must upgrade to 16.0.1 or later to
ensure proper sampling of the tl_cfg_ctl bus.

Figure 73. Sample tl_cfg_ctl in the Middle of Eight-Cycle Window

coreclkout_hip

tl_cfg_add[3:0]

tl_cfg_ctl[31:0]

cfgctl_addr_strobe

captured_cfg_addr_reg[3:0]

addr addr1 addr2

data0 data1 data2

addr0 addr2 addr2

4
cycles

data0 data1 data2captured_cfg_data_reg[31:0]

6.12.2 Configuration Space Register Access

The tl_cfg_ctl signal is a multiplexed bus that contains the contents of
Configuration Space registers as shown in the figure below. Information stored in the
Configuration Space is accessed in round robin order where tl_cfg_add indicates
which register is being accessed. The following table shows the layout of configuration
information that is multiplexed on tl_cfg_ctl.

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
94

Figure 74. Multiplexed Configuration Register Information Available on tl_cfg_ctl
Fields in blue are available only for Root Ports.

0

1

cfg_dev_ctrl[15:0]
31 24 23 16 15 8 7 0

2
3
4
5
6
7
8
9
A
B
C
D

E

F

cfg_dev_ctrl2[15:0]

cfg_link_ctrl[15:0] cfg_link_ctrl2[15:0]

cfg_dev_ctrl[14:12] =
Max Read Req Size

16’h0000 cfg_slot_ctrl[15:0]

8’h00 cfg_root_ctrl[7:0]
cfg_secbus[7:0] cfg_subbus[7:0]cfg_sec_ctrl[15:0]

cfg_msi_addr[11:0] cfg_io_bas[19:0]

cfg_dev_ctrl[7:5] =
Max Payload

cfg_prm_cmd[15:0]

cfg_msi_addr[43:32] cfg_io_lim[19:0]
8’h00 cfg_np_bas[11:0] cfg_np_lim[11:0]

cfg_msi_addr[31:12] cfg_pr_bas[43:32]
cfg_pr_bas[31:0]

cfg_msi_addr[63:44] cfg_pr_lim[43:32]
cfg_pr_lim[31:0]

cfg_msixcsr[15:0] cfg_msicsr[15:0]
cfg_pmcsr[31:0]

6’h00, tx_ecrcgen[25],
rx_ecrccheck[24] cfg_tcvcmap[23:0]

cfg_msi_data[15:0] 3’b00 0 cfg_busdev[12:0]

Table 42. Configuration Space Register Descriptions

Register Width Direction Description

cfg_dev_ctrl 16 Output cfg_devctrl[15:0] is Device Control for the PCI Express
capability structure.

cfg_dev_ctrl2 16 Output cfg_dev2ctrl[15:0] is Device Control 2 for the PCI
Express capability structure.

cfg_slot_ctrl 16 Output cfg_slot_ctrl[15:0] is the Slot Status of the PCI
Express capability structure. This register is only available in
Root Port mode.

cfg_link_ctrl 16 Output cfg_link_ctrl[15:0]is the primary Link Control of the
PCI Express capability structure.
For Gen2 or Gen3 operation, you must write a 1’b1 to the
Retrain Link bit (Bit[5] of the cfg_link_ctrl) of the Root
Port to initiate retraining to a higher data rate after the
initial link training to Gen1 L0 state. Retraining directs the
Link Training and Status State Machine (LTSSM) to the
Recovery state. Retraining to a higher data rate is not
automatic for the Arria 10 Hard IP for PCI Express IP Core
even if both devices on the link are capable of a higher data
rate.

cfg_link_ctrl2 16 Output cfg_link_ctrl2[31:16] is the secondary Link Control
register of the PCI Express capability structure for Gen2
operation.

continued...

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
95

Register Width Direction Description

When tl_cfg_addr=4'b0010, tl_cfg_ctl returns the
primary and secondary Link Control registers,
{ {cfg_link_ctrl[15:0], cfg_link_ctrl2[15:0]}.
The primary Link Status register contents are available on
tl_cfg_sts[46:31].
For Gen1 variants, the link bandwidth notification bit is
always set to 0. For Gen2 variants, this bit is set to 1.

cfg_prm_cmd 16 Output Base/Primary Command register for the PCI Configuration
Space.

cfg_root_ctrl 8 Output Root control and status register of the PCI Express
capability. This register is only available in Root Port mode.

cfg_sec_ctrl 16 Output Secondary bus Control and Status register of the PCI
Express capability. This register is available only in Root Port
mode.

cfg_secbus 8 Output Secondary bus number. This register is available only in
Root Port mode.

cfg_subbus 8 Output Subordinate bus number. This register is available only in
Root Port mode.

cfg_msi_addr 64 Output cfg_msi_add[63:32] is the message signaled interrupt
(MSI) upper message address. cfg_msi_add[31:0] is the
MSI message address.

cfg_io_bas 20 Output The upper 20 bits of the I/O limit registers of the Type1
Configuration Space. This register is only available in Root
Port mode.

cfg_io_lim 20 Output The upper 20 bits of the IO limit registers of the Type1
Configuration Space. This register is only available in Root
Port mode.

cfg_np_bas 12 Output The upper 12 bits of the memory base register of the Type1
Configuration Space. This register is only available in Root
Port mode.

cfg_np_lim 12 Output The upper 12 bits of the memory limit register of the Type1
Configuration Space. This register is only available in Root
Port mode.

cfg_pr_bas 44 Output The upper 44 bits of the prefetchable base registers of the
Type1 Configuration Space. This register is only available in
Root Port mode.

cfg_pr_lim 44 Output The upper 44 bits of the prefetchable limit registers of the
Type1 Configuration Space. Available in Root Port mode.

cfg_pmcsr 32 Output cfg_pmcsr[31:16] is Power Management Control and
cfg_pmcsr[15:0]is the Power Management Status
register.

cfg_msixcsr 16 Output MSI-X message control.

cfg_msicsr 16 Output MSI message control. Refer to the following table for the
fields of this register.

continued...

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
96

Register Width Direction Description

cfg_tcvcmap 24 Output Configuration traffic class (TC)/virtual channel (VC)
mapping. The Application Layer uses this signal to generate
a TLP mapped to the appropriate channel based on the
traffic class of the packet.
• cfg_tcvcmap[2:0]: Mapping for TC0 (always 0).
• cfg_tcvcmap[5:3]: Mapping for TC1.
• cfg_tcvcmap[8:6]: Mapping for TC2.
• cfg_tcvcmap[11:9]: Mapping for TC3.
• cfg_tcvcmap[14:12]: Mapping for TC4.
• cfg_tcvcmap[17:15]: Mapping for TC5.
• cfg_tcvcmap[20:18]: Mapping for TC6.
• cfg_tcvcmap[23:21]: Mapping for TC7.

cfg_msi_data 16 Output cfg_msi_data[15:0] is message data for MSI.

cfg_busdev 13 Output Bus/Device Number captured by or programmed in the Hard
IP.

Figure 75. Configuration MSI Control Status Register

Field and Bit Map

0134678951

reserved mask
capability

64-bit
address

capability
multiple message enable multiple message capable MSI

enable

Table 43. Configuration MSI Control Status Register Field Descriptions

Bit(s) Field Description

[15:9] Reserved N/A

[8] mask capability Per-vector masking capable. This bit is hardwired to 0 because the function
does not support the optional MSI per-vector masking using the Mask_Bits
and Pending_Bits registers defined in the PCI Local Bus Specification.
Per-vector masking can be implemented using Application Layer registers.

[7] 64-bit address
capability

64-bit address capable.
• 1: function capable of sending a 64-bit message address
• 0: function not capable of sending a 64-bit message address

[6:4] multiple message
enable

This field indicates permitted values for MSI signals. For example, if “100” is
written to this field 16 MSI signals are allocated.
• 3’b000: 1 MSI allocated
• 3’b001: 2 MSI allocated
• 3’b010: 4 MSI allocated
• 3’b011: 8 MSI allocated
• 3’b100: 16 MSI allocated
• 3’b101: 32 MSI allocated
• 3’b110: Reserved
• 3’b111: Reserved

[3:1] multiple message
capable

This field is read by system software to determine the number of requested
MSI messages.
• 3’b000: 1 MSI requested
• 3’b001: 2 MSI requested
• 3’b010: 4 MSI requested
• 3’b011: 8 MSI requested

continued...

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
97

Bit(s) Field Description

• 3’b100: 16 MSI requested
• 3’b101: 32 MSI requested
• 3’b110: Reserved

[0] MSI Enable If set to 0, this component is not permitted to use MSI.

6.13 Hard IP Reconfiguration Interface

The Hard IP reconfiguration interface is an Avalon-MM slave interface with a 10-bit
address and 16-bit data bus. You can use this bus to dynamically modify the value of
configuration registers that are read-only at run time. To ensure proper system
operation, reset or repeat device enumeration of the PCI Express link after changing
the value of read-only configuration registers of the Hard IP.

Table 44. Hard IP Reconfiguration Signals

Signal Direction Description

hip_reconfig_clk Input Reconfiguration clock. The frequency range for this clock is 100–125 MHz.

hip_reconfig_rst_n Input Active-low Avalon-MM reset. Resets all of the dynamic reconfiguration
registers to their default values as described in Hard IP Reconfiguration
Registers.

hip_reconfig_address[9:
0]

Input The 10-bit reconfiguration address.

hip_reconfig_read Input Read signal. This interface is not pipelined. You must wait for the return of
the hip_reconfig_readdata[15:0] from the current read before
starting another read operation.

hip_reconfig_readdata[1
5:0]

Output 16-bit read data. hip_reconfig_readdata[15:0] is valid on the third
cycle after the assertion of hip_reconfig_read.

hip_reconfig_write Input Write signal.

hip_reconfig_writedata[
15:0]

Input 16-bit write model.

hip_reconfig_byte_en[1:
0]

Input Byte enables, currently unused.

ser_shift_load Input You must toggle this signal once after changing to user mode before the
first access to read-only registers. This signal should remain asserted for a
minimum of 324 ns after switching to user mode.

interface_sel Input A selector which must be asserted when performing dynamic
reconfiguration. Drive this signal low 4 clock cycles after the release of
ser_shif t_load.

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
98

Figure 76. Hard IP Reconfiguration Bus Timing of Read-Only Registers

avmm_clk

hip_reconfig_rst_n

user_mode

ser_shift_load

interface_sel

avmm_wr

avmm_wrdata[15:0]

avmm_rd

avmm_rdata[15:0]

D0

D0

D1

D1

D2 D3

324 ns 4 clks

4 clks

4 clks

For a detailed description of the Avalon-MM protocol, refer to the Avalon Memory
Mapped Interfaces chapter in the Avalon Interface Specifications.

Related Links

Avalon Interface Specifications
For information about the Avalon-MM interfaces to implement read and write
interfaces for master and slave components.

6.14 Power Management Signals

Table 45. Power Management Signals

Signal Direction Description

pme_to_cr Input Power management turn off control register.
Root Port—When this signal is asserted, the Root Port sends the
PME_turn_off message.
Endpoint—This signal is asserted to acknowledge the PME_turn_off
message by sending pme_to_ack to the Root Port.

pme_to_sr Output Power management turn off status register.
Root Port—This signal is asserted for 1 clock cycle when the Root Port
receives the pme_turn_off acknowledge message.
Endpoint—This signal is asserted for 1 cycle when the Endpoint receives
the PME_turn_off message from the Root Port.

pm_event Input Power Management Event. This signal is only available for Endpoints.

continued...

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
99

https://documentation.altera.com/#/link/nik1412467993397/nik1412467936351

Signal Direction Description

The Endpoint initiates a a power_management_event message
(PM_PME) that is sent to the Root Port. If the Hard IP is in a low power
state, the link exits from the low-power state to send the message. This
signal is positive edge-sensitive.

pm_data[9:0] Input Power Management Data.
This bus indicates power consumption of the component. This bus can only
be implemented if all three bits of AUX_power (part of the Power
Management Capabilities structure) are set to 0. This bus includes the
following bits:
• pm_data[9:2]: Data Register: This register maintains a value

associated with the power consumed by the component. (Refer to the
example below)

• pm_data[1:0]: Data Scale: This register maintains the scale used to
find the power consumed by a particular component and can include
the following values:

• 2b’00: unknown
• 2b’01: 0.1 ×
• 2b’10: 0.01 ×
• 2b’11: 0.001 ×
For example, the two registers might have the following values:
• pm_data[9:2]: b’1110010 = 114
• pm_data[1:0]: b’10, which encodes a factor of 0.01
To find the maximum power consumed by this component, multiply the
data value by the data Scale (114 × .01 = 1.14). 1.14 watts is the
maximum power allocated to this component in the power state selected
by the data_select field.

pm_auxpwr Input Power Management Auxiliary Power: This signal can be tied to 0 because
the L2 power state is not supported.

Figure 77. Layout of Power Management Capabilities Register

data_selectdata_scale PM_statePME_ENPME_status reserved

15 011623 8 2791213142431

reserveddata
register

Table 46. Power Management Capabilities Register Field Descriptions

Bits Field Description

[31:24] Data register This field indicates in which power states a function can assert the PME#
message.

[23:16] reserved —

[15] PME_status When set to 1, indicates that the function would normally assert the PME#
message independently of the state of the PME_en bit.

[14:13] data_scale This field indicates the scaling factor when interpreting the value retrieved
from the data register. This field is read-only.

[12:9] data_select This field indicates which data should be reported through the data
register and the data_scale field.

continued...

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
100

Bits Field Description

[8] PME_EN 1: indicates that the function can assert PME#0: indicates that the
function cannot assert PME#

[7:2] reserved —

[1:0] PM_state Specifies the power management state of the operating condition being
described. The following encodings are defined:
• 2b’00 D0
• 2b’01 D1
• 2b’10 D2
• 2b’11 D3
A device returns 2b’11 in this field and Aux or PME Aux in the type
register to specify the D3-Cold PM state. An encoding of 2b’11 along with
any other type register value specifies the D3-Hot state.

Figure 78. pme_to_sr and pme_to_cr in an Endpoint IP core
The following figure illustrates the behavior of pme_to_sr and pme_to_cr in an
Endpoint. First, the Hard IP receives the PME_turn_off message which causes
pme_to_sr to assert. Then, the Application Layer sends the PME_to_ack message to
the Root Port by asserting pme_to_cr.

pme_to_sr

pme_to_cr
hard

IP

6.15 Physical Layer Interface Signals

Intel provides an integrated solution with the Transaction, Data Link and Physical
Layers. The IP Parameter Editor generates a SERDES variation file,
<variation>_serdes.v or .vhd , in addition to the Hard IP variation file,
<variation>.v or .vhd. The SERDES entity is included in the library files for PCI
Express.

6.15.1 Serial Data Signals

This differential, serial interface is the physical link between a Root Port and an
Endpoint.

The PCIe IP Core supports 1, 2, 4, or 8 lanes. Each lane includes a TX and RX
differential pair. Data is striped across all available lanes.

Table 47. 1-Bit Interface Signals
The following table shows the signals for the x8 IP core.

Signal Direction Description

tx_out[7:0] Output Transmit output. These signals are the serial outputs of lanes 7–0.

rx_in[7:0] Input Receive input. These signals are the serial inputs of lanes 7–0.

Refer to Pin-out Files for Intel Devices for pin-out tables for all Intel devices
in .pdf, .txt, and .xls formats.

Transceiver channels are arranged in groups of six. For GX devices, the lowest six
channels on the left side of the device are labeled GXB_L0, the next group is GXB_L1,
and so on. Channels on the right side of the device are labeled GXB_R0, GXB_R1, and

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
101

so on. Be sure to connect the Hard IP for PCI Express on the left side of the device to
appropriate channels on the left side of the device, as specified in the Pin-out Files for
Intel Devices.

Related Links

• Physical Layout of Hard IP In Arria 10 Devices on page 48
Arria 10 devices include 1–4 hard IP blocks for PCI Express.

• Pin-out Files for Intel Devices

6.15.2 PIPE Interface Signals

These PIPE signals are available for Gen1, Gen2, and Gen3 variants so that you can
simulate using either the serial or the PIPE interface. Simulation is much faster using
the PIPE interface because the PIPE simulation bypasses the SERDES model . By
default, the PIPE interface is 8 bits for Gen1 and Gen2 and 32 bits for Gen3. You can
use the PIPE interface for simulation even though your actual design includes a serial
interface to the internal transceivers. However, it is not possible to use the Hard IP
PIPE interface in hardware, including probing these signals using SignalTap® II
Embedded Logic Analyzer.

Note: The Intel Root Port BFM bypasses Gen3 Phase 2 and Phase 3 Equalization. However,
Gen3 variants can perform Phase 2 and Phase 3 equalization if instructed by a third-
party BFM.

In the following table, signals that include lane number 0 also exist for lanes 1-7. For
Gen1 and Gen2 operation, Gen3 outputs can be left floating.

Table 48. PIPE Interface Signals

Signal Direction Description

txdata0[31:0] Output Transmit data <n>. This bus transmits data on lane <n>.

txdatak0[3:0] Output Transmit data control <n>. This signal serves as the control bit for
txdata <n>. Bit 0 corresponds to the lowest-order byte of txdata, and
so on. A value of 0 indicates a data byte. A value of 1 indicates a control
byte. For Gen1 and Gen2 only.

txblkst0 Output For Gen3 operation, indicates the start of a block in the transmit direction.

txcompl0 Output Transmit compliance <n>. This signal forces the running disparity to
negative in Compliance Mode (negative COM character).

txdataskip0 Output For Gen3 operation. Allows the MAC to instruct the TX interface to ignore
the TX data interface for one clock cycle. The following encodings are
defined:
• 1’b0: TX data is invalid
• 1’b1: TX data is valid

txdeemph0 Output Transmit de-emphasis selection. The Arria 10 Hard IP for PCI Express sets
the value for this signal based on the indication received from the other
end of the link during the Training Sequences (TS). You do not need to
change this value.

txdetectrx0 Output Transmit detect receive <n>. This signal tells the PHY layer to start a
receive detection operation or to begin loopback.

txelecidle0 Output Transmit electrical idle <n>. This signal forces the TX output to electrical
idle.

continued...

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
102

https://www.altera.com/support/literature/lit-dp.html

Signal Direction Description

txswing Output When asserted, indicates full swing for the transmitter voltage. When
deasserted indicates half swing.

txmargin[2:0] Output Transmit VOD margin selection. The value for this signal is based on the
value from the Link Control 2 Register. Available for simulation
only.

txsynchd0[1:0] Output For Gen3 operation, specifies the transmit block type. The following
encodings are defined:
• 2'b01: Ordered Set Block
• 2'b10: Data Block
Designs that do not support Gen3 can let this signal float.

rxdata0[31:0] Input Receive data <n>. This bus receives data on lane <n>.

rxdatak[3:0] Input Receive data >n>. This bus receives data on lane <n>. Bit 0 corresponds
to the lowest-order byte of rxdata, and so on. A value of 0 indicates a
data byte. A value of 1 indicates a control byte. For Gen1 and Gen2 only.

rxblkst0 Input For Gen3 operation, indicates the start of a block in the receive direction.

rxdataskip0 Output For Gen3 operation. Allows the PCS to instruct the RX interface to ignore
the RX data interface for one clock cycle. The following encodings are
defined:
• 1’b0: RX data is invalid
• 1’b1: RX data is valid

rxelecidle0 Input Receive electrical idle <n>. When asserted, indicates detection of an
electrical idle.

rxpolarity0 Output Receive polarity <n>. This signal instructs the PHY layer to invert the
polarity of the 8B/10B receiver decoding block.

rxstatus0[2:0] Input Receive status <n>. This signal encodes receive status, including error
codes for the receive data stream and receiver detection.

rxsynchd0[1:0] Input For Gen3 operation, specifies the receive block type. The following
encodings are defined:
• 2'b01: Ordered Set Block
• 2'b10: Data Block
Designs that do not support Gen3 can ground this signal.

rxvalid0 Input Receive valid <n>. This signal indicates symbol lock and valid data on
rxdata<n> and rxdatak <n>.

phystatus0 Input PHY status <n>. This signal communicates completion of several PHY
requests.

powerdown0[1:0] Output Power down <n>. This signal requests the PHY to change its power state
to the specified state (P0, P0s, P1, or P2).

currentcoeff0[17:0] Output For Gen3, specifies the coefficients to be used by the transmitter. The 18
bits specify the following coefficients:
• [5:0]: C-1

• [11:6]: C0

• [17:12]: C+1

currentrxpreset0[2:0] Output For Gen3 designs, specifies the current preset.

simu_mode_pipe Input When set to 1, the PIPE interface is in simulation mode.

sim_pipe_rate[1:0] Output The 2-bit encodings have the following meanings:
• 2’b00: Gen1 rate (2.5 Gbps)
• 2’b01: Gen2 rate (5.0 Gbps)
• 2’b10: Gen3 rate (8.0 Gbps)

continued...

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
103

Signal Direction Description

rate[1:0] Output The 2-bit encodings have the following meanings:
• 2’b00: Gen1 rate (2.5 Gbps)
• 2’b01: Gen2 rate (5.0 Gbps)
• 2’b1X: Gen3 rate (8.0 Gbps)

sim_pipe_pclk_in Input This clock is used for PIPE simulation only, and is derived from the
refclk. It is the PIPE interface clock used for PIPE mode simulation.

sim_pipe_ltssmstate0[4:0
]

Input and
Output

LTSSM state: The LTSSM state machine encoding defines the following
states:
• 5’b00000: Detect.Quiet
• 5’b00001: Detect.Active
• 5’b00010: Polling.Active
• 5’b 00011: Polling.Compliance
• 5’b 00100: Polling.Configuration
• 5’b00101: Polling.Speed
• 5’b00110: config.LinkwidthsStart
• 5’b 00111: Config.Linkaccept
• 5’b 01000: Config.Lanenumaccept
• 5’b01001: Config.Lanenumwait
• 5’b01010: Config.Complete
• 5’b 01011: Config.Idle
• 5’b01100: Recovery.Rcvlock
• 5’b01101: Recovery.Rcvconfig
• 5’b01110: Recovery.Idle
• 5’b 01111: L0
• 5’b10000: Disable
• 5’b10001: Loopback.Entry
• 5’b10010: Loopback.Active
• 5’b10011: Loopback.Exit
• 5’b10100: Hot.Reset
• 5’b10101: L0s
• 5’b11001: L2.transmit.Wake
• 5’b11010: Recovery.Speed
• 5’b11011: Recovery.Equalization, Phase 0
• 5’b11100: Recovery.Equalization, Phase 1
• 5’b11101: Recovery.Equalization, Phase 2
• 5’b11110: Recovery.Equalization, Phase 3
• 5’b11111: Recovery.Equalization, Done

rxfreqlocked0 Input When asserted indicates that the pclk_in used for PIPE simulation is
valid.

eidleinfersel0[2:0] Output Electrical idle entry inference mechanism selection. The following
encodings are defined:
• 3'b0xx: Electrical Idle Inference not required in current LTSSM state
• 3'b100: Absence of COM/SKP Ordered Set in the 128 us window for

Gen1 or Gen2
• 3'b101: Absence of TS1/TS2 Ordered Set in a 1280 UI interval for

Gen1 or Gen2
• 3'b110: Absence of Electrical Idle Exit in 2000 UI interval for Gen1 and

16000 UI interval for Gen2
• 3'b111: Absence of Electrical idle exit in 128 us window for Gen1

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
104

6.15.3 Test Signals

Table 49. Test Interface Signals
The test_in bus provides run-time control and monitoring of the internal state of the IP core.

Signal Direction Description

test_in[31:0] Input The bits of the test_in bus have the following definitions. Set this bus to
0x00000188.
• [0]: Simulation mode. This signal can be set to 1 to accelerate

initialization by reducing the value of many initialization counters.
• [1]: Reserved. Must be set to 1’b0.
• [2]: Descramble mode disable. This signal must be set to 1 during

initialization in order to disable data scrambling. You can use this bit in
simulation for Gen1 and Gen2 Endpoints and Root Ports to observe
descrambled data on the link. Descrambled data cannot be used in
open systems because the link partner typically scrambles the data.

• [4:3]: Reserved. Must be set to 2’b01.
• [5]: Compliance test mode. Set this bit to 1'b0. Setting this bit to 1'b1

prevents the LTSSM from entering compliance mode. Toggling this bit
controls the entry and exit from the compliance state, enabling the
transmission of Gen1, Gen2 and Gen3 compliance patterns.

• [6]: Forces entry to compliance mode when a timeout is reached in the
polling.active state and not all lanes have detected their exit condition.

• [7]: Disable low power state negotiation. Intel recommends setting this
bit.

• [8]: Set this bit to 1'b1.
• [31:9]: Reserved. Set to all 0s.

testin_zero Output When asserted, indicates accelerated initialization for simulation is active.

lane_act[3:0] Output Lane Active Mode: This signal indicates the number of lanes that
configured during link training. The following encodings are defined:
• 4'b0001: 1 lane
• 4'b0010: 2 lanes
• 4'b:0100: 4 lanes
• 4'b:1000: 8 lanes

6.15.4 Arria 10 Development Kit Conduit Interface

The Arria 10 Development Kit conduit interface signals are optional signals that allow
you to connect your design to the Arria 10 FPGA Development Kit. Enable this
interface by selecting Enable Arria 10 FPGA Development Kit connection on the
Configuration, Debug, and Extension Options tab of the component GUI. The
devkit_status output port includes signals useful for debugging.

Table 50.

Signal Name Direction Description

devkit_status[255:0] Output The devkit_status[255:0] bus comprises the following status signals :
• devkit_status[1:0]: current_speed
• devkit_status[2]: derr_cor_ext_rcv
• devkit_status[3]: derr_cor_ext_rpl
• devkit_status[4]: derr_err
• devkit_status[5]: rx_par_err
• devkit_status[7:6]: tx_par_err
• devkit_status[8]: cfg_par_err
• devkit_status[9]: dlup

continued...

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
105

Signal Name Direction Description

• devkit_status[10]: dlup_exit
• devkit_status[11]: ev128ns
• devkit_status[12]: ev1us
• devkit_status[13]: hotrst_exit
• devkit_status[17:14]: int_status[3:0]
• devkit_status[18]: l2_exit
• devkit_status[22:19]: lane_act[3:0]
• devkit_status[27:23]: ltssmstate[4:0]
• devkit_status[35:28]: ko_cpl_spc_header[7:0]
• devkit_status[47:36]: ko_cpl_spc_data[11:0]
• devkit_status[48]: rxfc_cplbuf_ovf
• devkit_status[49]: reset_status
• devkit_status[255:50]: Reserved

devkit_ctrl[255:0] Input The devkit_ctrl[255:0] bus comprises the following status signals.
You can optionally connect these pins to an on-board switch for PCI-SIG
compliance testing, such as bypass compliance testing.
• devkit_ctrl[0]:test_in[0] is typically set to 1'b0

• devkit_ctrl[4:1]:test_in[4:1] is typically set to
4'b0100

• devkit_ctrl[6:5]:test_in[6:5] is typically set to
2'b01

• devkit_ctrl[31:7]:test_in[31:7] is typically set to
25'h3

• devkit_ctrl[63:32]:is typically set to 32'b0

• devkit_ctrl[255:64]:is typically set to 192'b0

6 Interfaces and Signal Descriptions

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
106

7 Registers

7.1 Correspondence between Configuration Space Registers and the
PCIe Specification

Table 51. Correspondence between Configuration Space Capability Structures and PCIe
Base Specification Description
For the Type 0 and Type 1 Configuration Space Headers, the first line of each entry lists Type 0 values and the
second line lists Type 1 values when the values differ.

Byte Address Hard IP Configuration Space Register Corresponding Section in PCIe Specification

0x000:0x03C PCI Header Type 0 Configuration Registers Type 0 Configuration Space Header

0x000:0x03C PCI Header Type 1 Configuration Registers Type 1 Configuration Space Header

0x040:0x04C Reserved N/A

0x050:0x05C MSI Capability Structure MSI Capability Structure

0x068:0x070 MSI-X Capability Structure MSI-X Capability Structure

0x070:0x074 Reserved N/A

0x078:0x07C Power Management Capability Structure PCI Power Management Capability Structure

0x080:0x0B8 PCI Express Capability Structure PCI Express Capability Structure

0x0B8:0x0FC Reserved N/A

0x094:0x0FF Root Port N/A

0x100:0x16C Virtual Channel Capability Structure (Reserved) Virtual Channel Capability

0x170:0x17C Reserved N/A

0x180:0x1FC Virtual channel arbitration table (Reserved) VC Arbitration Table

0x200:0x23C Port VC0 arbitration table (Reserved) Port Arbitration Table

0x240:0x27C Port VC1 arbitration table (Reserved) Port Arbitration Table

0x280:0x2BC Port VC2 arbitration table (Reserved) Port Arbitration Table

0x2C0:0x2FC Port VC3 arbitration table (Reserved) Port Arbitration Table

0x300:0x33C Port VC4 arbitration table (Reserved) Port Arbitration Table

0x340:0x37C Port VC5 arbitration table (Reserved) Port Arbitration Table

0x380:0x3BC Port VC6 arbitration table (Reserved) Port Arbitration Table

0x3C0:0x3FC Port VC7 arbitration table (Reserved) Port Arbitration Table

0x400:0x7FC Reserved PCIe spec corresponding section name

0x800:0x834 Advanced Error Reporting AER (optional) Advanced Error Reporting Capability

0x838:0xFFF Reserved N/A

continued...

7 Registers

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Byte Address Hard IP Configuration Space Register Corresponding Section in PCIe Specification

Overview of Configuration Space Register Fields

0x000 Device ID, Vendor ID Type 0 Configuration Space Header
Type 1 Configuration Space Header

0x004 Status, Command Type 0 Configuration Space Header
Type 1 Configuration Space Header

0x008 Class Code, Revision ID Type 0 Configuration Space Header
Type 1 Configuration Space Header

0x00C BIST, Header Type, Primary Latency Timer,
Cache Line Size

Type 0 Configuration Space Header
Type 1 Configuration Space Header

0x010 Base Address 0 Base Address Registers

0x014 Base Address 1 Base Address Registers

0x018 Base Address 2
Secondary Latency Timer, Subordinate Bus
Number, Secondary Bus Number, Primary Bus
Number

Base Address Registers
Secondary Latency Timer, Type 1 Configuration
Space Header, Primary Bus Number

0x01C Base Address 3
Secondary Status, I/O Limit, I/O Base

Base Address Registers
Secondary Status Register ,Type 1 Configuration
Space Header

0x020 Base Address 4
Memory Limit, Memory Base

Base Address Registers
Type 1 Configuration Space Header

0x024 Base Address 5
Prefetchable Memory Limit, Prefetchable Memory
Base

Base Address Registers
Prefetchable Memory Limit, Prefetchable Memory
Base

0x028 Reserved
Prefetchable Base Upper 32 Bits

N/A
Type 1 Configuration Space Header

0x02C Subsystem ID, Subsystem Vendor ID
Prefetchable Limit Upper 32 Bits

Type 0 Configuration Space Header
Type 1 Configuration Space Header

0x030 Expansion ROM base address
I/O Limit Upper 16 Bits, I/O Base Upper 16 Bits

Type 0 Configuration Space Header
Type 1 Configuration Space Header

0x034 Reserved, Capabilities PTR Type 0 Configuration Space Header
Type 1 Configuration Space Header

0x038 Reserved
Expansion ROM Base Address

N/A
Type 1 Configuration Space Header

0x03C Interrupt Pin, Interrupt Line
Bridge Control, Interrupt Pin, Interrupt Line

Type 0 Configuration Space Header
Type 1 Configuration Space Header

0x050 MSI-Message Control Next Cap Ptr Capability ID MSI and MSI-X Capability Structures

0x054 Message Address MSI and MSI-X Capability Structures

0x058 Message Upper Address MSI and MSI-X Capability Structures

0x05C Reserved Message Data MSI and MSI-X Capability Structures

0x068 MSI-X Message Control Next Cap Ptr Capability
ID

MSI and MSI-X Capability Structures

0x06C MSI-X Table Offset BIR MSI and MSI-X Capability Structures

0x070 Pending Bit Array (PBA) Offset BIR MSI and MSI-X Capability Structures

continued...

7 Registers

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
108

Byte Address Hard IP Configuration Space Register Corresponding Section in PCIe Specification

0x078 Capabilities Register Next Cap PTR Cap ID PCI Power Management Capability Structure

0x07C Data PM Control/Status Bridge Extensions Power
Management Status & Control

PCI Power Management Capability Structure

0x800 PCI Express Enhanced Capability Header Advanced Error Reporting Enhanced Capability
Header

0x804 Uncorrectable Error Status Register Uncorrectable Error Status Register

0x808 Uncorrectable Error Mask Register Uncorrectable Error Mask Register

0x80C Uncorrectable Error Severity Register Uncorrectable Error Severity Register

0x810 Correctable Error Status Register Correctable Error Status Register

0x814 Correctable Error Mask Register Correctable Error Mask Register

0x818 Advanced Error Capabilities and Control Register Advanced Error Capabilities and Control Register

0x81C Header Log Register Header Log Register

0x82C Root Error Command Root Error Command Register

0x830 Root Error Status Root Error Status Register

0x834 Error Source Identification Register Correctable
Error Source ID Register

Error Source Identification Register

Related Links

PCI Express Base Specification 3.0

7 Registers

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
109

http://www.pcisig.com/

7.2 Type 0 Configuration Space Registers

Figure 79. Type 0 Configuration Space Registers - Byte Address Offsets and Layout
Endpoints store configuration data in the Type 0 Configuration Space. The
Correspondence between Configuration Space Registers and the PCIe Specification on
page 107 lists the appropriate section of the PCI Express Base Specification that
describes these registers.

0x000
0x004
0x008
0x00C
0x010
0x014
0x018
0x01C
0x020
0x024
0x028
0x02C
0x030
0x034
0x038
0x03C

Device ID Vendor ID
Status Command

Class Code Revision ID

0x00 Header Type 0x00 Cache Line Size
BAR Registers
BAR Registers
BAR Registers
BAR Registers
BAR Registers
BAR Registers

Reserved
Subsystem Device ID Subsystem Vendor ID

Expansion ROM Base Address
Reserved

Reserved

Capabilities Pointer

0x00 Interrupt Pin Interrupt Line

31 24 23 16 15 8 7 0

7 Registers

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
110

7.3 Type 1 Configuration Space Registers

Figure 80. Type 1 Configuration Space Registers (Root Ports)

0x0000
0x004

Device ID
31 24 23 16 15 8 7 0

0x008
0x00C
0x010
0x014
0x018
0x01C
0x020
0x024
0x028
0x02C
0x030
0x034
0x038

0x03C

Vendor ID

BIST Header Type Primary Latency Timer Cache Line Size

Status Command
Class Code Revision ID

BAR Registers
BAR Registers

Secondary Latency Timer Subordinate Bus Number Secondary Bus Number Primary Bus Number
Secondary Status I/O Limit I/O Base

Memory Limit Memory Base

Prefetchable Base Upper 32 Bits
Prefetchable Limit Upper 32 Bits

I/O Limit Upper 16 Bits I/O Base Upper 16 Bits
Reserved Capabilities Pointer

Expansion ROM Base Address
Bridge Control Interrupt Pin Interrupt Line

Prefetchable Memory Limit Prefetchable Memory Base

7.4 PCI Express Capability Structures

The layout of the most basic Capability Structures are provided below. Refer to the PCI
Express Base Specification for more information about these registers.

Figure 81. MSI Capability Structure

0x050

0x054
0x058

Message Control
Configuration MSI Control Status

Register Field Descriptions
Next Cap Ptr

Message Address
Message Upper Address

Reserved Message Data

31 24 23 16 15 8 7 0

0x05C

Capability ID

7 Registers

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
111

Figure 82. MSI-X Capability Structure

0x068

0x06C

0x070

Message Control Next Cap Ptr

MSI-X Table Offset

MSI-X Pending Bit Array (PBA) Offset

31 24 23 16 15 8 7 0
Capability ID

3 2

MSI-X
Table BAR

Indicator
MSI-X

Pending
Bit Array

- BAR
Indicator

Figure 83. Power Management Capability Structure - Byte Address Offsets and Layout

0x078

0x07C

Capabilities Register Next Cap Ptr

Data

31 24 23 16 15 8 7 0
Capability ID

Power Management Status and ControlPM Control/Status
Bridge Extensions

Figure 84. PCI Express AER Extended Capability Structure

B yte Offs et 31:2 4 23:16 15: 8 7:0

0x800

0x804 Uncorrectable Error Status Register

PCI Express Enhanced Capability Register

Uncorrectable Error Severity Register

Uncorrectable Error Mask Register0x808

0x80C

0x810

0x814

0x818

0x81C

0x82C

0x830

0x834

Correctable Error Status Register

Correctable Error Mask Register

Advanced Error Capabilities and Control Register

Header Log Register

Root Error Command Register

Root Error Status Register

Error Source Identification Register Correctable Error Source Identification Register

7 Registers

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
112

Figure 85. PCI Express Capability Structure - Byte Address Offsets and Layout
In the following table showing the PCI Express Capability Structure, registers that are
not applicable to a device are reserved.

0x080

0x084
0x088
0x08C
0x090
0x094
0x098
0x09C
0x0A0
0x0A4
0x0A8
0x0AC
0x0B0
0x0B4

0x0B8

PCI Express Capabilities Register Next Cap Pointer

Device Capabilities
Device Status Device Control

Slot Capabilities

Root Status
Device Compatibilities 2

Link Capabilities 2
Link Status 2 Link Control 2

Slot Capabilities 2

Slot Status 2 Slot Control 2

31 24 23 16 15 8 7 0
PCI Express

Capabilities ID

Link Capabilities
Link Status Link Control

Slot Status Slot Control

Device Status 2 Device Control 2

Root Capabilities Root Control

Related Links

• PCI Express Base Specification 3.0

• PCI Local Bus Specification

7 Registers

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
113

http://www.pcisig.com/
http://www.pcisig.com/

7.5 Intel-Defined VSEC Registers

Figure 86. VSEC Registers
This extended capability structure supports Configuration via Protocol (CvP)
programming and detailed internal error reporting.

0x200

0x204

Next Capability Offset Version

VSEC Length

31 20 19 16 15 8 7 0
Intel-Defined VSEC Capability Header

VSEC ID
Intel-Defined, Vendor-Specific Header

VSEC
Revision

Intel Marker0x208
JTAG Silicon ID DW0 JTAG Silicon ID0x20C
JTAG Silicon ID DW1 JTAG Silicon ID0x210
JTAG Silicon ID DW2 JTAG Silicon ID0x214
JTAG Silicon ID DW3 JTAG Silicon ID0x218

CvP Status0x21C
CvP Mode Control0x220

CvP Data2 Register0x224
CvP Data Register0x228

CvP Programming Control Register0x22C
Reserved0x230

Uncorrectable Internal Error Status Register0x234
Uncorrectable Internal Error Mask Register0x238
Correctable Internal Error Status Register0x23C

User Device or Board Type ID

Correctable Internal Error Mask Register0x240

Table 52. Intel-Defined VSEC Capability Register, 0x200
The Intel-Defined Vendor Specific Extended Capability. This extended capability structure supports
Configuration via Protocol (CvP) programming and detailed internal error reporting.

Bits Register Description Value Acces
s

[15:0] PCI Express Extended Capability ID. Intel-defined value for VSEC
Capability ID.

0x000B RO

[19:16] Version. Intel-defined value for VSEC version. 0x1 RO

[31:20] Next Capability Offset. Starting address of the next Capability Structure
implemented, if any.

Variable RO

7 Registers

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
114

Table 53. Intel-Defined Vendor Specific Header
You can specify these values when you instantiate the Hard IP. These registers are read-only at run-time.

Bits Register Description Value Acces
s

[15:0] VSEC ID. A user configurable VSEC ID. User entered RO

[19:16] VSEC Revision. A user configurable VSEC revision. Variable RO

[31:20] VSEC Length. Total length of this structure in bytes. 0x044 RO

Table 54. Intel Marker Register

Bits Register Description Value Acces
s

[31:0] Intel Marker. This read only register is an additional marker. If you use
the standard Intel Programmer software to configure the device with CvP,
this marker provides a value that the programming software reads to
ensure that it is operating with the correct VSEC.

A Device Value RO

Table 55. JTAG Silicon ID Register

Bits Register Description Value Acces
s

[127:96] JTAG Silicon ID DW3 Application
Specific

RO

[95:64] JTAG Silicon ID DW2 Application
Specific

RO

[63:32] JTAG Silicon ID DW1 Application
Specific

RO

[31:0] JTAG Silicon ID DW0. This is the JTAG Silicon ID that CvP
programming software reads to determine that the correct SRAM object
file (.sof) is being used.

Application
Specific

RO

Table 56. User Device or Board Type ID Register

Bits Register Description Value Acces
s

[15:0] Configurable device or board type ID to specify to CvP the correct .sof. Variable RO

7.6 CvP Registers

Table 57. CvP Status
The CvP Status register allows software to monitor the CvP status signals.

Bits Register Description Reset Value Acces
s

[31:26] Reserved 0x00 RO

[25] PLD_CORE_READY. From FPGA fabric. This status bit is provided for
debug.

Variable RO

[24] PLD_CLK_IN_USE. From clock switch module to fabric. This status bit is
provided for debug.

Variable RO

[23] CVP_CONFIG_DONE. Indicates that the FPGA control block has completed
the device configuration via CvP and there were no errors.

Variable RO

continued...

7 Registers

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
115

Bits Register Description Reset Value Acces
s

[22] Reserved Variable RO

[21] USERMODE. Indicates if the configurable FPGA fabric is in user mode. Variable RO

[20] CVP_EN. Indicates if the FPGA control block has enabled CvP mode. Variable RO

[19] CVP_CONFIG_ERROR. Reflects the value of this signal from the FPGA
control block, checked by software to determine if there was an error
during configuration.

Variable RO

[18] CVP_CONFIG_READY. Reflects the value of this signal from the FPGA
control block, checked by software during programming algorithm.

Variable RO

[17:0] Reserved Variable RO

Table 58. CvP Mode Control
The CvP Mode Control register provides global control of the CvP operation.

Bits Register Description Reset Value Acces
s

[31:16] Reserved. 0x0000 RO

[15:8] CVP_NUMCLKS.
This is the number of clocks to send for every CvP data write. Set this field
to one of the values below depending on your configuration image:
• 0x01 for uncompressed and unencrypted images
• 0x04 for uncompressed and encrypted images
• 0x08 for all compressed images

0x00 RW

[7:3] Reserved. 0x0 RO

[2] CVP_FULLCONFIG. Request that the FPGA control block reconfigure the
entire FPGA including the Arria 10 Hard IP for PCI Express, bring the PCIe
link down.

1’b0 RW

[1] HIP_CLK_SEL. Selects between PMA and fabric clock when USER_MODE =
1 and PLD_CORE_READY = 1. The following encodings are defined:
• 1: Selects internal clock from PMA which is required for CVP_MODE.
• 0: Selects the clock from soft logic fabric. This setting should only be

used when the fabric is configured in USER_MODE with a configuration
file that connects the correct clock.

To ensure that there is no clock switching during CvP, you should only
change this value when the Hard IP for PCI Express has been idle for
10 µs and wait 10 µs after changing this value before resuming activity.

1’b0 RW

[0] CVP_MODE. Controls whether the IP core is in CVP_MODE or normal mode.
The following encodings are defined:
• 1:CVP_MODE is active. Signals to the FPGA control block active and all

TLPs are routed to the Configuration Space. This CVP_MODE cannot be
enabled if CVP_EN = 0.

• 0: The IP core is in normal mode and TLPs are routed to the FPGA
fabric.

1’b0 RW

Table 59. CvP Data Registers

The following table defines the CvP Data registers. For 64-bit data, the optional CvP Data2 stores the upper
32 bits of data. Programming software should write the configuration data to these registers. If you Every write
to these register sets the data output to the FPGA control block and generates <n> clock cycles to the FPGA
control block as specified by the CVP_NUM_CLKS field in the CvP Mode Control register. Software must
ensure that all bytes in the memory write dword are enabled. You can access this register using configuration

7 Registers

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
116

writes, alternatively, when in CvP mode, these registers can also be written by a memory write to any address
defined by a memory space BAR for this device. Using memory writes should allow for higher throughput than
configuration writes.

Bits Register Description Reset Value Acces
s

[31:0] Upper 32 bits of configuration data to be transferred to the FPGA control
block to configure the device. You can choose 32- or 64-bit data.

0x00000000 RW

[31:0] Lower 32 bits of configuration data to be transferred to the FPGA control
block to configure the device.

0x00000000 RW

Table 60. CvP Programming Control Register
This register is written by the programming software to control CvP programming.

Bits Register Description Reset Value Acces
s

[31:2] Reserved. 0x0000 RO

[1] START_XFER. Sets the CvP output to the FPGA control block indicating the
start of a transfer.

1’b0 RW

[0] CVP_CONFIG. When asserted, instructs that the FPGA control block begin
a transfer via CvP.

1’b0 RW

7.7 Uncorrectable Internal Error Mask Register

Table 61. Uncorrectable Internal Error Mask Register
The Uncorrectable Internal Error Mask register controls which errors are forwarded as internal
uncorrectable errors. With the exception of the configuration error detected in CvP mode, all of the errors are
severe and may place the device or PCIe link in an inconsistent state. The configuration error detected in CvP
mode may be correctable depending on the design of the programming software. The access code RWS stands
for Read Write Sticky meaning the value is retained after a soft reset of the IP core.

Bits Register Description Reset Value Access

[31:12] Reserved. 1b’0 RO

[11] Mask for RX buffer posted and completion overflow error. 1b’0 RWS

[10] Reserved 1b’1 RO

[9] Mask for parity error detected on Configuration Space to TX bus interface. 1b’1 RWS

[8] Mask for parity error detected on the TX to Configuration Space bus
interface.

1b’1 RWS

[7] Mask for parity error detected at TX Transaction Layer error. 1b’1 RWS

[6] Reserved 1b’1 RO

[5] Mask for configuration errors detected in CvP mode. 1b’0 RWS

[4] Mask for data parity errors detected during TX Data Link LCRC generation. 1b’1 RWS

[3] Mask for data parity errors detected on the RX to Configuration Space Bus
interface.

1b’1 RWS

[2] Mask for data parity error detected at the input to the RX Buffer. 1b’1 RWS

[1] Mask for the retry buffer uncorrectable ECC error. 1b’1 RWS

[0] Mask for the RX buffer uncorrectable ECC error. 1b’1 RWS

7 Registers

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
117

7.8 Uncorrectable Internal Error Status Register

Table 62. Uncorrectable Internal Error Status Register
This register reports the status of the internally checked errors that are uncorrectable. When specific errors are
enabled by the Uncorrectable Internal Error Mask register, they are handled as Uncorrectable Internal
Errors as defined in the PCI Express Base Specification 3.0. This register is for debug only. It should only be
used to observe behavior, not to drive custom logic. The access code RW1CS represents Read Write 1 to Clear
Sticky.

Bits Register Description Reset
Value

Access

[31:12] Reserved. 0 RO

[11] When set, indicates an RX buffer overflow condition in a posted request or
Completion

0 RW1CS

[10] Reserved. 0 RO

[9] When set, indicates a parity error was detected on the Configuration
Space to TX bus interface

0 RW1CS

[8] When set, indicates a parity error was detected on the TX to Configuration
Space bus interface

0 RW1CS

[7] When set, indicates a parity error was detected in a TX TLP and the TLP is
not sent.

0 RW1CS

[6] When set, indicates that the Application Layer has detected an
uncorrectable internal error.

0 RW1CS

[5] When set, indicates a configuration error has been detected in CvP mode
which is reported as uncorrectable. This bit is set whenever a
CVP_CONFIG_ERROR rises while in CVP_MODE.

0 RW1CS

[4] When set, indicates a parity error was detected by the TX Data Link Layer. 0 RW1CS

[3] When set, indicates a parity error has been detected on the RX to
Configuration Space bus interface.

0 RW1CS

[2] When set, indicates a parity error was detected at input to the RX Buffer. 0 RW1CS

[1] When set, indicates a retry buffer uncorrectable ECC error. 0 RW1CS

[0] When set, indicates a RX buffer uncorrectable ECC error. 0 RW1CS

Related Links

PCI Express Base Specification 3.0

7.9 Correctable Internal Error Mask Register

Table 63. Correctable Internal Error Mask Register
The Correctable Internal Error Mask register controls which errors are forwarded as Internal
Correctable Errors. This register is for debug only.

Bits Register Description Reset Value Acces
s

[31:8] Reserved. 0 RO

[7] Reserved. 1 RO

[6] Mask for Corrected Internal Error reported by the Application Layer. 1 RWS

[5] Mask for configuration error detected in CvP mode. 1 RWS

continued...

7 Registers

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
118

http://www.pcisig.com/

Bits Register Description Reset Value Acces
s

[4:2] Reserved. 0 RO

[1] Mask for retry buffer correctable ECC error. 1 RWS

[0] Mask for RX Buffer correctable ECC error. 1 RWS

7.10 Correctable Internal Error Status Register

Table 64. Correctable Internal Error Status Register
The Correctable Internal Error Status register reports the status of the internally checked errors that
are correctable. When these specific errors are enabled by the Correctable Internal Error Mask
register, they are forwarded as Correctable Internal Errors as defined in the PCI Express Base Specification 3.0.
This register is for debug only. Only use this register to observe behavior, not to drive logic custom logic.

Bits Register Description Reset
Value

Access

[31:7] Reserved. 0 RO

[6] Corrected Internal Error reported by the Application Layer. 0 RW1CS

[5] When set, indicates a configuration error has been detected in CvP
mode which is reported as correctable. This bit is set whenever a
CVP_CONFIG_ERROR occurs while in CVP_MODE.

0 RW1CS

[4:2] Reserved. 0 RO

[1] When set, the retry buffer correctable ECC error status indicates an
error.

0 RW1CS

[0] When set, the RX buffer correctable ECC error status indicates an error. 0 RW1CS

Related Links

PCI Express Base Specification 3.0

7 Registers

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
119

http://www.pcisig.com/

8 Arria 10 Reset and Clocks
Figure 87. Reset Controller in Arria 10 Devices

Example Design

<instance_name>_altera_pcie_a10_hip_<version>
_<generated_string>.v

altpcied_<dev>_hwtcl.sv

Transceiver Hard
Reset Logic/Soft Reset

Controller

Configuration Space
Sticky Registers

Datapath State
 Machines of

 Hard IP Core

SERDES

Configuration Space
Non-Sticky Registers

reset_status

pld_clk

pin_perst

npor

refclk srst
crst

pld_clk_inuse

Hard IP for PCI Express

altpcie_<dev>_hip_256_pipen1b.v

altpcie_rs_serdes.v

coreclkout_hip

top.v

tx_digitalrst
rx_analogrst
rx_digitalrst

APPs

8 Arria 10 Reset and Clocks

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

8.1 Reset Sequence for Hard IP for PCI Express IP Core and
Application Layer

Figure 88. Hard IP for PCI Express and Application Logic Reset Sequence
Your Application Layer can instantiate a module similar to the one in this figure to
generate app_rstn, which resets the Application Layer logic.

pin_perst

pld_clk_inuse

serdes_pll_locked

crst

32 cycles

32 cycles

srst

reset_status

app_rstn

This reset sequence includes the following steps:

1. After pin_perst or npor is released, the Hard IP reset controller waits for
pld_clk_inuse to be asserted.

2. csrt and srst are released 32 cycles after pld_clk_inuse is asserted.

3. The Hard IP for PCI Express deasserts the reset_status output to the
Application Layer.

4. The altpcied_<device>v_hwtcl.sv deasserts app_rstn 32 pld_clkcycles
after reset_status is released.

8 Arria 10 Reset and Clocks

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
121

Figure 89. RX Transceiver Reset Sequence

busy_xcvr_reconfig

rx_pll_locked

rx_analogreset

ltssmstate[4:0]

txdetectrx_loopback

pipe_phystatus

pipe_rxstatus[2:0]

rx_signaldetect

rx_freqlocked

rx_digitalreset

3 0

01

The RX transceiver reset sequence includes the following steps:

1. After rx_pll_locked is asserted, the LTSSM state machine transitions from the
Detect.Quiet to the Detect.Active state.

2. When the pipe_phystatus pulse is asserted and pipe_rxstatus[2:0] = 3,
the receiver detect operation has completed.

3. The LTSSM state machine transitions from the Detect.Active state to the
Polling.Active state.

4. The Hard IP for PCI Express asserts rx_digitalreset. The rx_digitalreset
signal is deasserted after rx_signaldetect is stable for a minimum of 3 ms.

Figure 90. TX Transceiver Reset Sequence

npor

pll_locked

npor_serdes

127 cycles

tx_digitalreset

The TX transceiver reset sequence includes the following steps:

1. After npor is deasserted, the IP core deasserts the npor_serdes input to the TX
transceiver.

2. The SERDES reset controller waits for pll_locked to be stable for a minimum of
127 pld_clk cycles before deasserting tx_digitalreset.

For descriptions of the available reset signals, refer to Reset Signals, Status, and Link
Training Signals.

8 Arria 10 Reset and Clocks

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
122

Related Links

Reset, Status, and Link Training Signals on page 82

8.2 Clocks

The Hard IP contains a clock domain crossing (CDC) synchronizer at the interface
between the PHY/MAC and the DLL layers. The synchronizer allows the Data Link and
Transaction Layers to run at frequencies independent of the PHY/MAC. The CDC
synchronizer provides more flexibility for the user clock interface. Depending on
parameters you specify, the core selects the appropriate coreclkout_hip. You can
use these parameters to enhance performance by running at a higher frequency for
latency optimization or at a lower frequency to save power.

In accordance with the PCI Express Base Specification, you must provide a 100 MHz
reference clock that is connected directly to the transceiver.

Related Links

PCI Express Base Specification 3.0

8.2.1 Clock Domains

Figure 91. Clock Domains and Clock Generation for the Application Layer
The following illustrates the clock domains when using coreclkout_hip to drive the
Application Layer and the pld_clk of the IP core. The Intel-provided example design
connects coreclkout_hip to the pld_clk. However, this connection is not
mandatory.

100 MHz
refclk

pclk

Hard IP for PCI Express

PHY/MAC

Clock
Domain

Crossing
(CDC)

Data Link
 and

Transaction
Layers

TX PLL

PCS

pclk coreclkout_hip

Application
Layer

pld_clk
(62.5, 125

or 250 MHz)

serdes_pll_locked

pld_core_ready

Transceiver

As this figure indicates, the IP core includes the following clock domains:

8.2.1.1 coreclkout_hip

Table 65. Application Layer Clock Frequency for All Combinations of Link Width, Data
Rate and Application Layer Interface Widths
The coreclkout_hip signal is derived from pclk. The following table lists frequencies for coreclkout_hip,
which are a function of the link width, data rate, and the width of the Application Layer to Transaction Layer
interface. The frequencies and widths specified in this table are maintained throughout operation. If the link

8 Arria 10 Reset and Clocks

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
123

http://www.pcisig.com/

downtrains to a lesser link width or changes to a different maximum link rate, it maintains the frequencies it
was originally configured for as specified in this table. (The Hard IP throttles the interface to achieve a lower
throughput.)

Link Width Maximum Link Rate Avalon Interface Width coreclkout_hip

×1 Gen1 64 62.5 MHz3

×1 Gen1 64 125 MHz

×2 Gen1 64 125 MHz

×4 Gen1 64 125 MHz

×8 Gen1 64 250 MHz

×8 Gen1 128 125 MHz

×1 Gen2 64 125 MHz

×2 Gen2 64 125 MHz

×4 Gen2 64 250 MHz

×4 Gen2 128 125 MHz

×8 Gen2 128 250 MHz

×8 Gen2 256 125 MHz

×1 Gen3 64 125 MHz

×2 Gen3 64 125 MHz

×2 Gen3 128 125 MHz

×2 Gen3 64 250 MHz

×4 Gen3 128 250 MHz

×4 Gen3 256 125 MHz

×8 Gen3 256 250 MHz

8.2.1.2 pld_clk

coreclkout_hip can drive the Application Layer clock along with the pld_clk input
to the IP core. The pld_clk can optionally be sourced by a different clock than
coreclkout_hip. The pld_clk minimum frequency cannot be lower than the
coreclkout_hip frequency. Based on specific Application Layer constraints, a PLL
can be used to derive the desired frequency.

3 This mode saves power

8 Arria 10 Reset and Clocks

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
124

8.2.2 Clock Summary

Table 66. Clock Summary

Name Frequency Clock Domain

coreclkout_hip 62.5, 125 or 250 MHz Avalon-ST interface between the Transaction and Application
Layers.

pld_clk 62.5, 125, or 250 MHz Application and Transaction Layers.

refclk 100 MHz SERDES (transceiver). Dedicated free running input clock to
the SERDES block.

hip_reconfig_clk Avalon-MM interface for Hard IP dynamic reconfiguration
interface which you can use to change the value of
read-only configuration registers at run-time. This interface
is optional. It is not required for Arria 10 devices.

8 Arria 10 Reset and Clocks

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
125

9 Interrupts

9.1 Interrupts for Endpoints

The Arria 10 Hard IP for PCI Express provides support for PCI Express MSI, MSI-X,
and legacy interrupts when configured in Endpoint mode. The MSI, MSI-X, and legacy
interrupts are mutually exclusive. After power up, the Hard IP block starts in legacy
interrupt mode. Then, software decides whether to switch to MSI or MSI-X mode. To
switch to MSI mode, software programs the msi_enable bit of the MSI Message
Control Register to 1, (bit[16] of 0x050). You enable MSI-X mode, by turning on
Implement MSI-X under the PCI Express/PCI Capabilities tab using the
parameter editor. If you turn on the Implement MSI-X option, you should implement
the MSI-X table structures at the memory space pointed to by the BARs.

Note:

Refer to section 6.1 of PCI Express Base Specification for a general description of PCI
Express interrupt support for Endpoints.

Related Links

PCI Express Base Specification 3.0

9.1.1 MSI and Legacy Interrupts

The IP core generates single dword Memory Write TLPs to signal MSI interrupts on the
PCI Express link. The Application Layer Interrupt Handler Module app_msi_req
output port controls MSI interrupt generation. When asserted, it causes an MSI posted
Memory Write TLP to be generated. The IP core constructs the TLP using information
from the following sources:

• The MSI Capability registers

• The traffic class (app_msi_tc)

• The message data specified by app_msi_num

To enable MSI interrupts, the Application Layer must first set the MSI enable bit.
Then, it must disable legacy interrupts by setting the Interrupt Disable, bit 10 of
the Command register.

The Application Layer Interrupt Handler Module also generates legacy interrupts. The
app_int_sts signal controls legacy interrupt assertion and deassertion.

9 Interrupts

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.pcisig.com/home
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Figure 92. Interrput Handler Module in the Application Layer

Interrupt
Handler
Module

app_msi_req
app_msi_ack
app_msi_tc[2:0]
app_msi_num[4:0]
pex_msi_num
app_int_sts

cfg_msicsr[15:0]

The following figure illustrates a possible implementation of the Interrupt Handler
Module with a per vector enable bit. Alternatively, the Application Layer could
implement a global interrupt enable instead of this per vector MSI.

Figure 93. Example Implementation of the Interrupt Handler Block

app_int_en0

app_int_sts0

app_msi_req0

app_int_en1

app_int_sts1

app_msi_req1

app_int_sts

Arbitration

msi_enable & Master Enable

app_msi_req
app_msi_ack

Vector 1

Vector 0

IRQ
Generation

App Layer

IRQ
Generation

App Layer

R/W

R/W

There are 32 possible MSI messages. The number of messages requested by a
particular component does not necessarily correspond to the number of messages
allocated. For example, in the following figure, the Endpoint requests eight MSIs but is
only allocated two. In this case, you must design the Application Layer to use only two
allocated messages.

9 Interrupts

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
127

Figure 94. MSI Request Example

Endpoint

8 Requested
2 Allocated

Root Complex

CPU

Interrupt Register

Root
Port

Interrupt
Block

The following table describes three example implementations. The first example
allocates all 32 MSI messages. The second and third examples only allocate 4
interrupts.

Table 67. MSI Messages Requested, Allocated, and Mapped

MSI Allocated

32 4 4

System Error 31 3 3

Hot Plug and Power Management Event 30 2 3

Application Layer 29:0 1:0 2:0

MSI interrupts generated for Hot Plug, Power Management Events, and System Errors
always use Traffic Class 0. MSI interrupts generated by the Application Layer can use
any Traffic Class. For example, a DMA that generates an MSI at the end of a
transmission can use the same traffic control as was used to transfer data.

The following figure illustrates the interactions among MSI interrupt signals for the
Root Port. The minimum latency possible between app_msi_req and app_msi_ack
is one clock cycle. In this timing diagram app_msi_req can extend beyond
app_msi_ack before deasserting. However, app_msi_req must be deasserted before
or within the same clock as app_msi_ack is deasserted to avoid inferring a new
interrupt.

9 Interrupts

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
128

Figure 95. MSI Interrupt Signals Timing

clk

app_msi_req

app_msi_tc[2:0]

app_msi_num[4:0]

app_msi_ack

1 2 3 5 64 7

valid

valid

Related Links

Correspondence between Configuration Space Registers and the PCIe Specification on
page 107

9.1.2 MSI-X

You can enable MSI-X interrupts by turning on Implement MSI-X under the PCI
Express/PCI Capabilities heading using the parameter editor. If you turn on the
Implement MSI-X option, you should implement the MSI-X table structures at the
memory space pointed to by the BARs as part of your Application Layer.

The Application Layer transmits MSI-X interrupts on the Avalon®-ST TX interface. MSI-
X interrupts are single dword Memory Write TLPs. Consequently, the Last DW Byte
Enable in the TLP header must be set to 4b’0000. MSI-X TLPs should be sent only
when enabled by the MSI-X enable and the function mask bits in the Message
Control for the MSI-X Configuration register. These bits are available on the
tl_cfg_ctl output bus.

Related Links

• PCI Local Bus Specification

• PCI Express Base Specification 3.0

9.1.3 Implementing MSI-X Interrupts

Section 6.8.2 of the PCI Local Bus Specification describes the MSI-X capability and
table structures. The MSI-X capability structure points to the MSI-X Table structure
and MSI-X Pending Bit Array (PBA) registers. The BIOS sets up the starting address
offsets and BAR associated with the pointer to the starting address of the MSI-X Table
and PBA registers.

9 Interrupts

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
129

http://www.pcisig.com/home
http://www.pcisig.com/home

Figure 96. MSI-X Interrupt Components

Host

RX

TX

RX

TX

PCIe with Avalon-ST I/F

MSI-X Table

IRQ
Processor

MSI-X PBA IRQ Source

Application LayerHost SW Programs Addr,
Data and Vector Control

Memory Write
 TLP

Memory Write TLP Monitor & Clr

Addr, Data

1. Host software sets up the MSI-X interrupts in the Application Layer by completing
the following steps:

a. Host software reads the Message Control register at 0x050 register to
determine the MSI-X Table size. The number of table entries is the <value
read> + 1.

The maximum table size is 2048 entries. Each 16-byte entry is divided in 4
fields as shown in the figure below. The MSI-X table can reside in any BAR.
The base address of the MSI-X table must be aligned to a 4 KB boundary.

b. The host sets up the MSI-X table. It programs MSI-X address, data, and
masks bits for each entry as shown in the figure below.

Figure 97. Format of MSI-X Table

Vector Control
Vector Control
Vector Control

Vector Control

Message Data
Message Data
Message Data

Message Data

DWORD 3 DWORD 2
Message Upper Address
Message Upper Address
Message Upper Address

Message Upper Address

DWORD 1
Message Address
Message Address
Message Address

Message Address

DWORD 0 Host Byte Addresses
Entry 0
Entry 1
Entry 2

Entry (N - 1)

Base
Base + 1 × 16
Base + 2 × 16

Base + (N - 1) × 16

c. The host calculates the address of the <nth> entry using the following
formula:

 nth_address = base address[BAR] + 16<n>

2. When Application Layer has an interrupt, it drives an interrupt request to the IRQ
Source module.

3. The IRQ Source sets appropriate bit in the MSI-X PBA table.

The PBA can use qword or dword accesses. For qword accesses, the IRQ Source
calculates the address of the <mth> bit using the following formulas:

qword address = <PBA base addr> + 8(floor(<m>/64))
qword bit = <m> mod 64

9 Interrupts

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
130

Figure 98. MSI-X PBA Table

Pending Bits 0 through 63
Pending Bits 64 through 127

Pending Bits ((N - 1) div 64) × 64 through N - 1

QWORD 0
QWORD 1

QWORD ((N - 1) div 64)

Base
AddressPending Bit Array (PBA)

Base + 1 × 8

Base + ((N - 1) div 64) × 8

4. The IRQ Processor reads the entry in the MSI-X table.

a. If the interrupt is masked by the Vector_Control field of the MSI-X table,
the interrupt remains in the pending state.

b. If the interrupt is not masked, IRQ Processor sends Memory Write Request to
the TX slave interface. It uses the address and data from the MSI-X table. If
Message Upper Address = 0, the IRQ Processor creates a three-dword
header. If the Message Upper Address > 0, it creates a 4-dword header.

5. The host interrupt service routine detects the TLP as an interrupt and services it.

Related Links

• Floor and ceiling functions

• PCI Local Bus Specification, Rev. 3.0

9.1.4 Legacy Interrupts

Legacy interrupts mimic the original PCI level-sensitive interrupts using virtual wire
messages. The Arria 10signals legacy interrupts on the PCIe link using Message TLPs.
The term, INTx, refers collectively to the four legacy interrupts, INTA#, INTB#, INTC#
and INTD#. The Arria 10 asserts app_int_sts to cause an Assert_INTx Message
TLP to be generated and sent upstream. Deassertion of app_int_sts causes a
Deassert_INTx Message TLP to be generated and sent upstream. To use legacy
interrupts, you must clear the Interrupt Disable bit, which is bit 10 of the
Command register. Then, turn off the MSI Enable bit.

The following figures illustrates interrupt timing for the legacy interface. The legacy
interrupt handler asserts app_int_sts to instruct the Hard IP for PCI Express to
send a Assert_INTx message TLP.

Figure 99. Legacy Interrupt Assertion

clk

app_int_sts

app_int_ack

The following figure illustrates the timing for deassertion of legacy interrupts. The
legacy interrupt handler asserts app_int_sts causing the Hard IP for PCI Express to
send a Deassert_INTx message.

9 Interrupts

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
131

http://en.wikipedia.org/wiki/Floor_and_ceiling_functions
http://www.pcisig.com/home

Figure 100. Legacy Interrupt Deassertion

clk

app_int_sts

app_int_ack

Related Links

• Correspondence between Configuration Space Registers and the PCIe Specification
on page 107

• target-title
Delete element if none

9.2 Interrupts for Root Ports

In Root Port mode, the Arria 10 Hard IP for PCI Express receives interrupts through
two different mechanisms:

• MSI—Root Ports receive MSI interrupts through the Avalon-ST RX Memory Write
TLP. This is a memory mapped mechanism.

• Legacy—Legacy interrupts are translated into Message Interrupt TLPs and sent to
the Application Layer using the int_status pins.

Normally, the Root Port services rather than sends interrupts; however, in two
circumstances the Root Port can send an interrupt to itself to record error conditions:

• When the AER option is enabled, the aer_msi_num[4:0] signal indicates which
MSI is being sent to the root complex when an error is logged in the AER
Capability structure. This mechanism is an alternative to using the serr_out
signal. The aer_msi_n um[4:0] is only used for Root Ports and you must set it
to a constant value. It cannot toggle during operation.

• If the Root Port detects a Power Management Event, the pex_msi_num[4:0]
signal is used by Power Management or Hot Plug to determine the offset between
the base message interrupt number and the message interrupt number to send
through MSI. The user must set pex_msi_num[4:0]to a fixed value.

The Root Error Status register reports the status of error messages. The Root
Error Status register is part of the PCI Express AER Extended Capability structure.
It is located at offset 0x830 of the Configuration Space registers.

9 Interrupts

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
132

https://www.altera.com/documentation/map-id.html#topic-id

10 Error Handling
Each PCI Express compliant device must implement a basic level of error management
and can optionally implement advanced error management. The IP core implements
both basic and advanced error reporting. Error handling for a Root Port is more
complex than that of an Endpoint.

Table 68. Error Classification
The PCI Express Base Specification defines three types of errors, outlined in the following table.

Type Responsible Agent Description

Correctable Hardware While correctable errors may affect system performance, data
integrity is maintained.

Uncorrectable, non-fatal Device software Uncorrectable, non-fatal errors are defined as errors in which
data is lost, but system integrity is maintained. For example, the
fabric may lose a particular TLP, but it still works without
problems.

Uncorrectable, fatal System software Errors generated by a loss of data and system failure are
considered uncorrectable and fatal. Software must determine
how to handle such errors: whether to reset the link or
implement other means to minimize the problem.

Related Links

PCI Express Base Specification 3.0

10.1 Physical Layer Errors

Table 69. Errors Detected by the Physical Layer
The following table describes errors detected by the Physical Layer. Physical Layer error reporting is optional in
the PCI Express Base Specification.

Error Type Description

Receive port error Correctable This error has the following 3 potential causes:
• Physical coding sublayer error when a lane is in L0 state.

These errors are reported to the Hard IP block via the per
lane PIPE interface input receive status signals,
rxstatus<lane_number>[2:0] using the following
encodings:
— 3'b100: 8B/10B Decode Error
— 3'b101: Elastic Buffer Overflow
— 3'b110: Elastic Buffer Underflow
— 3'b111: Disparity Error

• Deskew error caused by overflow of the multilane deskew
FIFO.

• Control symbol received in wrong lane.

10 Error Handling

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.pcisig.com/
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

10.2 Data Link Layer Errors

Table 70. Errors Detected by the Data Link Layer

Error Type Description

Bad TLP Correctable This error occurs when a LCRC verification fails or when a
sequence number error occurs.

Bad DLLP Correctable This error occurs when a CRC verification fails.

Replay timer Correctable This error occurs when the replay timer times out.

Replay num rollover Correctable This error occurs when the replay number rolls over.

Data Link Layer protocol Uncorrectable(fatal) This error occurs when a sequence number specified by the
Ack/Nak block in the Data Link Layer (AckNak_Seq_Num) does
not correspond to an unacknowledged TLP.

10.3 Transaction Layer Errors

Table 71. Errors Detected by the Transaction Layer

Error Type Description

Poisoned TLP received Uncorrectable (non-
fatal)

This error occurs if a received Transaction Layer packet has the
EP poison bit set.
The received TLP is passed to the Application Layer and the
Application Layer logic must take appropriate action in response
to the poisoned TLP. Refer to “2.7.2.2 Rules for Use of Data
Poisoning” in the PCI Express Base Specification for more
information about poisoned TLPs.

ECRC check failed (1) Uncorrectable (non-
fatal)

This error is caused by an ECRC check failing despite the fact
that the TLP is not malformed and the LCRC check is valid.
The Hard IP block handles this TLP automatically. If the TLP is a
non-posted request, the Hard IP block generates a completion
with completer abort status. In all cases the TLP is deleted in the
Hard IP block and not presented to the Application Layer.

Unsupported Request for
Endpoints

Uncorrectable (non-
fatal)

This error occurs whenever a component receives any of the
following Unsupported Requests:
• Type 0 Configuration Requests for a non-existing function.
• Completion transaction for which the Requester ID does not

match the bus, device and function number.
• Unsupported message.
• A Type 1 Configuration Request TLP for the TLP from the PCIe

link.
• A locked memory read (MEMRDLK) on native Endpoint.
• A locked completion transaction.
• A 64-bit memory transaction in which the 32 MSBs of an

address are set to 0.
• A memory or I/O transaction for which there is no BAR

match.
• A memory transaction when the Memory Space Enable bit

(bit [1] of the PCI Command register at Configuration Space
offset 0x4) is set to 0.

• A poisoned configuration write request (CfgWr0)
In all cases the TLP is deleted in the Hard IP block and not
presented to the Application Layer. If the TLP is a non-posted
request, the Hard IP block generates a completion with
Unsupported Request status.

continued...

10 Error Handling

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
134

Error Type Description

Unsupported Requests for Root
Port

Uncorrectable (fatal) This error occurs whenever a component receives an
Unsupported Request including:
• Unsupported message
• A Type 0 Configuration Request TLP
• A 64-bit memory transaction which the 32 MSBs of an

address are set to 0.
• A memory transaction that does not match the address range

defined by the Base and Limit Address registers

Completion timeout Uncorrectable (non-
fatal)

This error occurs when a request originating from the Application
Layer does not generate a corresponding completion TLP within
the established time. It is the responsibility of the Application
Layer logic to provide the completion timeout mechanism. The
completion timeout should be reported from the Transaction
Layer using the cpl_err[0] signal.

Completer abort (1) Uncorrectable (non-
fatal)

The Application Layer reports this error using the
cpl_err[2]signal when it aborts receipt of a TLP.

Unexpected completion Uncorrectable (non-
fatal)

This error is caused by an unexpected completion transaction.
The Hard IP block handles the following conditions:
• The Requester ID in the completion packet does not match

the Configured ID of the Endpoint.
• The completion packet has an invalid tag number. (Typically,

the tag used in the completion packet exceeds the number of
tags specified.)

• The completion packet has a tag that does not match an
outstanding request.

• The completion packet for a request that was to I/O or
Configuration Space has a length greater than 1 dword.

• The completion status is Configuration Retry Status (CRS) in
response to a request that was not to Configuration Space.

In all of the above cases, the TLP is not presented to the
Application Layer; the Hard IP block deletes it.
The Application Layer can detect and report other unexpected
completion conditions using the cpl_err[2] signal. For
example, the Application Layer can report cases where the total
length of the received successful completions do not match the
original read request length.

Receiver overflow (1) Uncorrectable (fatal) This error occurs when a component receives a TLP that violates
the FC credits allocated for this type of TLP. In all cases the hard
IP block deletes the TLP and it is not presented to the Application
Layer.

Flow control protocol error
(FCPE) (1)

Uncorrectable (fatal) This error occurs when a component does not receive update
flow control credits with the 200 µs limit.

Malformed TLP Uncorrectable (fatal) This error is caused by any of the following conditions:
• The data payload of a received TLP exceeds the maximum

payload size.
• The TD field is asserted but no TLP digest exists, or a TLP

digest exists but the TD bit of the PCI Express request header
packet is not asserted.

• A TLP violates a byte enable rule. The Hard IP block checks
for this violation, which is considered optional by the PCI
Express specifications.

• A TLP in which the type and length fields do not
correspond with the total length of the TLP.

continued...

10 Error Handling

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
135

Error Type Description

• A TLP in which the combination of format and type is not
specified by the PCI Express specification.

• A request specifies an address/length combination that
causes a memory space access to exceed a 4 KB boundary.
The Hard IP block checks for this violation, which is
considered optional by the PCI Express specification.

• Messages, such as Assert_INTX, Power Management, Error
Signaling, Unlock, and Set Power Slot Limit, must be
transmitted across the default traffic class.

The Hard IP block deletes the malformed TLP; it is not presented
to the Application Layer.

Note:
1. Considered optional by the PCI Express Base Specification Revision.

10.4 Error Reporting and Data Poisoning

How the Endpoint handles a particular error depends on the configuration registers of
the device.

Refer to the PCI Express Base Specification 3.0 for a description of the device
signaling and logging for an Endpoint.

The Hard IP block implements data poisoning, a mechanism for indicating that the
data associated with a transaction is corrupted. Poisoned TLPs have the error/poisoned
bit of the header set to 1 and observe the following rules:

• Received poisoned TLPs are sent to the Application Layer and status bits are
automatically updated in the Configuration Space.

• Received poisoned Configuration Write TLPs are not written in the Configuration
Space.

• The Configuration Space never generates a poisoned TLP; the error/poisoned bit of
the header is always set to 0.

Poisoned TLPs can also set the parity error bits in the PCI Configuration Space Status
register.

Table 72. Parity Error Conditions

Status Bit Conditions

Detected parity error (status
register bit 15)

Set when any received TLP is poisoned.

Master data parity error (status
register bit 8)

This bit is set when the command register parity enable bit is set and one of the
following conditions is true:
• The poisoned bit is set during the transmission of a Write Request TLP.
• The poisoned bit is set on a received completion TLP.

Poisoned packets received by the Hard IP block are passed to the Application Layer.
Poisoned transmit TLPs are similarly sent to the link.

Related Links

PCI Express Base Specification 3.0

10 Error Handling

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
136

http://www.pcisig.com/

10.5 Uncorrectable and Correctable Error Status Bits

The following section is reprinted with the permission of PCI-SIG. Copyright 2010
PCI-SIG.

Figure 101. Uncorrectable Error Status Register
The default value of all the bits of this register is 0. An error status bit that is set
indicates that the error condition it represents has been detected. Software may clear
the error status by writing a 1 to the appropriate bit.

Rsvd Rsvd Rsvd

TLP Prefix Blocked Error Status
AtomicOp Egress Blocked Status

MC Blocked TLP Status
Uncorrectable Internal Error Status

ACS Violation Status
Unsupported Request Error Status

ECRC Error Status
Malformed TLP Status

Receiver Overflow Status
Unexpected Completion Status

Completer Abort Status
Completion Timeout Status

Flow Control Protocol Status
Poisoned TLP Status

Surprise Down Error Status
Data Link Protocol Error Status

Undefined

22 21 20 1926 25 24 23 18 17 16 15 14 13 12 11 6 5 4 3 1 031

Figure 102. Correctable Error Status Register
The default value of all the bits of this register is 0. An error status bit that is set
indicates that the error condition it represents has been detected. Software may clear
the error status by writing a 1 to the appropriate bit.

Rsvd Rsvd Rsvd

Header Log Overflow Status
Corrected Internal Error Status

Advisory Non-Fatal Error Status
Replay Timer Timeout Status

REPLAY_NUM Rollover Status
Bad DLLP Status

Bad TLP Status
Receiver Error Status

16 15 14 13 12 11 9 8 7 6 5 1 031

10 Error Handling

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
137

11 IP Core Architecture
The Arria 10 Hard IP for PCI Express implements the complete PCI Express protocol
stack as defined in the PCI Express Base Specification. The protocol stack includes the
following layers:

• Transaction Layer—The Transaction Layer contains the Configuration Space, which
manages communication with the Application Layer, the RX and TX channels, the
RX buffer, and flow control credits.

• Data Link Layer—The Data Link Layer, located between the Physical Layer and the
Transaction Layer, manages packet transmission and maintains data integrity at
the link level. Specifically, the Data Link Layer performs the following tasks:

— Manages transmission and reception of Data Link Layer Packets (DLLPs)

— Generates all transmission cyclical redundancy code (CRC) values and checks
all CRCs during reception

— Manages the retry buffer and retry mechanism according to received ACK/NAK
Data Link Layer packets

— Initializes the flow control mechanism for DLLPs and routes flow control credits
to and from the Transaction Layer

• Physical Layer—The Physical Layer initializes the speed, lane numbering, and lane
width of the PCI Express link according to packets received from the link and
directives received from higher layers.

The following figure provides a high-level block diagram.

Figure 103. Arria 10 Hard IP for PCI Express Using the Avalon-ST Interface

Clock
Domain

Crossing
(CDC)

Data
Link

Layer
(DLL)

Transaction Layer (TL)

PHYMAC

 Hard IP for PCI Express

Avalon-ST TX

Avalon-ST RX

Side Band

Local
Management
Interface (LMI)

&
Hard IP Reconfiguration

PIPE

Application
Layer

Clock & Reset
Selection

Configuration
Block

Configuration
SpacePCSPMA

Physical Layer
(Transceivers)

Configuration via PCIe Link (CvP)

RX Buffer

PHY IP Core for
PCI Express (PIPE)

11 IP Core Architecture

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Table 73. Application Layer Clock Frequencies

Lanes Gen1 Gen2 Gen3

×1 125 MHz @ 64 bits or
62.5 MHz @ 64 bits

125 MHz @ 64 bits 125 MHz @64 bits

×2 125 MHz @ 64 bits 125 MHz @ 128 bits 250 MHz @ 64 bits or
125 MHz @ 128 bits

×4 125 MHz @ 64 bits 250 MHz @ 64 bits or
125 MHz @ 128 bits

250 MHz @ 128 bits or
125 MHz @ 256 bits

×8 250 MHz @ 64 bits or
125 MHz @ 128 bits

250 MHz @ 128 bits or
125 MHz @ 256 bits

250 MHz @ 256 bits

The following interfaces provide access to the Application Layer’s Configuration Space
Registers:

• The LMI interface

• The Avalon-MM PCIe reconfiguration interface, which can access any read-only
Configuration Space Register

• In Root Port mode, you can also access the Configuration Space Registers with a
Configuration TLP using the Avalon-ST interface. A Type 0 Configuration TLP is
used to access the Root Port configuration Space Registers, and a Type 1
Configuration TLP is used to access the Configuration Space Registers of
downstream components, typically Endpoints on the other side of the link.

The Hard IP includes dedicated clock domain crossing logic (CDC) between the
PHYMAC and Data Link Layers.

Related Links

PCI Express Base Specification 3.0

11.1 Top-Level Interfaces

11.1.1 Avalon-ST Interface

An Avalon-ST interface connects the Application Layer and the Transaction Layer. This
is a point-to-point, streaming interface designed for high throughput applications. The
Avalon-ST interface includes the RX and TX datapaths.

For more information about the Avalon-ST interface, including timing diagrams, refer
to the Avalon Interface Specifications.

RX Datapath

The RX datapath transports data from the Transaction Layer to the Application Layer’s
Avalon-ST interface. Masking of non-posted requests is partially supported. Refer to
the description of the rx_st_mask signal for further information about masking.

TX Datapath

The TX datapath transports data from the Application Layer's Avalon-ST interface to
the Transaction Layer. The Hard IP provides credit information to the Application Layer
for posted headers, posted data, non-posted headers, non-posted data, completion
headers and completion data.

11 IP Core Architecture

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
139

http://www.pcisig.com

The Application Layer may track credits consumed and use the credit limit information
to calculate the number of credits available. However, to enforce the PCI Express Flow
Control (FC) protocol, the Hard IP also checks the available credits before sending a
request to the link, and if the Application Layer violates the available credits for a TLP
it transmits, the Hard IP blocks that TLP and all future TLPs until credits become
available. By tracking the credit consumed information and calculating the credits
available, the Application Layer can optimize performance by selecting for
transmission only the TLPs that have credits available.

Related Links

• Avalon-ST RX Interface on page 58

• Avalon-ST TX Interface on page 70

• Avalon Interface Specifications
For information about the Avalon-ST interface protocol.

11.1.2 Clocks and Reset

The PCI Express Base Specification requires an input reference clock, which is called
refclk in this design. The PCI Express Base Specification stipulates that the
frequency of this clock be 100 MHz.

The PCI Express Base Specification also requires a system configuration time of
100 ms. To meet this specification, IP core includes an embedded hard reset
controller. This reset controller exits the reset state after the periphery of the device is
initialized.

Related Links

• Clock Signals on page 82

• Reset, Status, and Link Training Signals on page 82

11.1.3 Local Management Interface (LMI Interface)

The LMI bus provides access to the PCI Express Configuration Space in the Transaction
Layer.

Related Links

LMI Signals on page 90

11.1.4 Hard IP Reconfiguration

The PCI Express reconfiguration bus allows you to dynamically change the read-only
values stored in the Configuration Registers.

Related Links

Hard IP Reconfiguration Interface on page 98

11 IP Core Architecture

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
140

https://www.altera.com/documentation/nik1412467993397.html#nik1412467963376

11.1.5 Interrupts

The Hard IP for PCI Express offers the following interrupt mechanisms:

• Message Signaled Interrupts (MSI)— MSI uses the TLP single dword memory
writes to to implement interrupts. This interrupt mechanism conserves pins
because it does not use separate wires for interrupts. In addition, the single dword
provides flexibility in data presented in the interrupt message. The MSI Capability
structure is stored in the Configuration Space and is programmed using
Configuration Space accesses.

• MSI-X—The Transaction Layer generates MSI-X messages which are single dword
memory writes. The MSI-X Capability structure points to an MSI-X table structure
and MSI-X PBA structure which are stored in memory. This scheme is in contrast
to the MSI capability structure, which contains all of the control and status
information for the interrupt vectors.

• Legacy interrupts—The app_int_sts port controls legacy interrupt generation.
When app_int_sts is asserted, the Hard IP generates an Assert_INT<n>
message TLP.

Related Links

• Interrupts for Endpoints on page 86

• Interrupts for Root Ports on page 87

11.1.6 PIPE

The PIPE interface implements the Intel-designed PIPE interface specification. You can
use this parallel interface to speed simulation; however, you cannot use the PIPE
interface in actual hardware.

• The Gen1, Gen2, and Gen3 simulation models support PIPE and serial simulation.

• For Gen3, the Intel BFM bypasses Gen3 Phase 2 and Phase 3 Equalization.
However, Gen3 variants can perform Phase 2 and Phase 3 equalization if
instructed by a third-party BFM.

Related Links

PIPE Interface Signals on page 102

11.2 Transaction Layer

The Transaction Layer is located between the Application Layer and the Data Link
Layer. It generates and receives Transaction Layer Packets. The following illustrates
the Transaction Layer. The Transaction Layer includes three sub-blocks: the TX
datapath, Configuration Space, and RX datapath.

11 IP Core Architecture

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
141

Tracing a transaction through the RX datapath includes the following steps:

1. The Transaction Layer receives a TLP from the Data Link Layer.

2. The Configuration Space determines whether the TLP is well formed and directs
the packet based on traffic class (TC).

3. TLPs are stored in a specific part of the RX buffer depending on the type of
transaction (posted, non-posted, and completion).

4. The TLP FIFO block stores the address of the buffered TLP.

5. The receive reordering block reorders the queue of TLPs as needed, fetches the
address of the highest priority TLP from the TLP FIFO block, and initiates the
transfer of the TLP to the Application Layer.

6. When ECRC generation and forwarding are enabled, the Transaction Layer
forwards the ECRC dword to the Application Layer.

Tracing a transaction through the TX datapath involves the following steps:

1. The Transaction Layer informs the Application Layer that sufficient flow control
credits exist for a particular type of transaction using the TX credit signals. The
Application Layer may choose to ignore this information.

2. The Application Layer requests permission to transmit a TLP. The Application Layer
must provide the transaction and must be prepared to provide the entire data
payload in consecutive cycles.

3. The Transaction Layer verifies that sufficient flow control credits exist and
acknowledges or postpones the request.

4. The Transaction Layer forwards the TLP to the Data Link Layer.

11 IP Core Architecture

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
142

Figure 104. Architecture of the Transaction Layer: Dedicated Receive Buffer

Transaction Layer TX Datapath

Transaction Layer RX Datapath

Avalon-ST
RX Control

Configuration Space

TLPs to the
Data Link Layer

TLPs from the
 Data Link Layer

Avalon-ST RX Data

Avalon-ST
TX Data

to Application Layer

ConfigurationRequests

Reordering

RX Buffer

Posted & Completion

Non-Posted

Flow Control Update

Transaction Layer
Packet FIFO

Width
Adapter
(<256

bits)

Packet
Alignment TX

Control

RX
Control

TX Flow
 Control

11.2.1 Configuration Space

The Configuration Space implements the following configuration registers and
associated functions:

• Header Type 0 Configuration Space for Endpoints

• Header Type 1 Configuration Space for Root Ports

• PCI Power Management Capability Structure

• Virtual Channel Capability Structure

• Message Signaled Interrupt (MSI) Capability Structure

• Message Signaled Interrupt–X (MSI–X) Capability Structure

• PCI Express Capability Structure

• Advanced Error Reporting (AER) Capability Structure

• Vendor Specific Extended Capability (VSEC)

The Configuration Space also generates all messages (PME#, INT, error, slot power
limit), MSI requests, and completion packets from configuration requests that flow in
the direction of the root complex, except slot power limit messages, which are

11 IP Core Architecture

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
143

generated by a downstream port. All such transactions are dependent upon the
content of the PCI Express Configuration Space as described in the PCI Express Base
Specification.

Related Links

• Type 0 Configuration Space Registers on page 110

• Type 1 Configuration Space Registers on page 111

• PCI Express Base Specification 3.0

11.2.2.1 Error Checking and Handling in Configuration Space Bypass Mode

In Configuration Space Bypass mode, the Application Layer receives all TLPs that are
not malformed. The Transaction Layer detects and drops malformed TLPs. The
Transaction Layer also detects Internal Errors and Corrected Errors. Real-time error
status signals report Internal Errors and Correctable Errors to the Application Layer.
The Transaction Layer also records these errors in the AER registers. You can access
the AER registers using the LMI interface.

Because the AER header log is not available in Configuration Space Bypass Mode, the
Application Layer must implement logic to read the AER header log using the LMI
interface. You may need to arbitrate between Configuration Space Requests to the
AER registers of the Hard IP for PCI Express and Configuration Space Requests to your
own Configuration Space. Or, you can avoid arbitration logic by deasserting the ready
signal until each LMI access completes.

Note: Intel does not support the use of the LMI interface to read and write the other
registers in function0 of the Hard IP for PCI Express Configuration Space. You must
create your own function0 in your application logic.

In Configuration Space Bypass mode, the Transaction Layer disables checks for
Unsupported Requests and Unexpected Completions. The Application Layer must
implement these checks. The Transaction Layer also disables error Messages and
completion generation, which the Application Layer must implement.

11 IP Core Architecture

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
144

http://www.pcisig.com/home

Figure 105. Error Handing in Configuration Space Bypass Mode
This figure shows the division of error checking between the Transaction Layer of the
hard IP for PCI Express and the Application Layer. The real-time error flags assert for
one pld_clk as the errors are detected by the Transaction Layer.

Transaction Layer of the Hard IP for PCI ExpressApplication Layer
(Soft Logic)

Avalon-ST TX

Custom Configuration
Space

and Error Handling

Error Detect (Corrected Errs,
Malformed TLPs)

RX Buffer &
Flow Control

Avalon-ST RX

Real-Time Error Flags
(Malformed, Corrected)

LMI

Config TLPs
Errors

Completions,
Messages

Error Detect
(UR, Unexpected

Completion)
Drop Malformed

TLPs

AER Registers

This list summarizes the behavior of the Transaction Layer error handling in
Configuration Space Bypass Mode:

• The Translation Layer discards malformed TLPs. The err_tlmalf output signal is
asserted to indicate this error. The Transaction Layer also logs this error in the
Uncorrectable Error Status, AER Header Log, and First Error
Pointer Registers. The Transaction Layer’s definition of malformed TLPs is
same in normal and Configuration Space Bypass modes.

• Unsupported Requests are not recognized by the Transaction Layer. The
Application Layer must identify unsupported requests.

• Unexpected completions are not recognized by the Transaction Layer. The
Application Layer must identify unexpected completions.

• You can use the Transaction Layer’s ECRC checker in Configuration Space Bypass
mode. If you enable ECRC checking with the r x_ecrcchk_pld input signal and
the Transaction Layer detects an ECRC error, the Transaction Layer asserts the
rx_st_ecrcerr output signal with the TLP on the Avalon-ST RX interface. The
Application Layer must handle the error. If ECRC generation is enabled, the core
generates ECRC and appends it to the end of the TX TLP from the Application
Layer.

• The Transaction Layer sends poisoned TLPs on the Avalon-ST RX interface for
completions and error handling by the Application Layer. These errors are not
logged in the Configuration Space error registers.

• The Transaction Layer discards TLPs that violate RX credit limits. The Transaction
Layers signals this error by asserting the err_tlrcvovf output signal and
logging it in the Uncorrectable Error Status, AER Header Log, and
First Error Pointer Registers.

• The Transaction Layer indicates Data Link and internal errors with the real-time
error output signals cfgbp_err_*. These errors are also logged in the
Uncorrectable Error Status, AER Header Log, and First Error
Pointer Registers.

11 IP Core Architecture

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
145

The Transaction Layer uses error flags to signal the Application Layer with real-time
error status output signals. The Application Layer can monitor these flags to determine
when the Transaction Layer has detected a Malformed TLP, Corrected Error, or internal
error. In addition, the Application Layer can read the Transaction Layer’s AER
information such as AER Header Log and First Error Pointer Registers
using the LMI bus.

• Real-time error signals are routed to the Application Layer using the error status
output signals listed in the “Configuration Space Bypass Mode Output Signals” on
page 8–44.

• Two sideband signals uncorr_err_reg_sts and corr_err_reg_sts indicate
that an error has been logged in the Uncorrectable Error Status or
Correctable Error Status Register. The Application Layer can read these
Uncorrectable or Correctable Error Status Registers, AER Header
Log, and First Error Pointers using the LMI bus to retrieve information. The
uncorr_err_reg_sts and corr_err_reg_sts signals remain asserted until
the Application Layer clears the corresponding status register. Proper logging
requires that the Application Layer set the appropriate Configuration Space
registers in the Transaction Layer using the LMI bus. The Application Layer must
set the Uncorrectable and Correctable Error Mask and Uncorrec table
Error Severity error reporting bits appropriately so that the errors are logged
appropriately internal to the Arria 10 Hard IP for PCI Express. The settings of the
Uncorrectable and Correctable Error Mask, and Uncorrectable Error
Severity error reporting bits do not affect the real-time error output signals. The
Application Layer must also log these errors in the soft Configuration Space and
send error Messages.

• For more information about error handling, refer to the PCI Express Base
Specification, Revision 2.0 or 3.0.

• The sideband signal root_err_reg_sts indicates that an error is logged in the
Root Error Status Register. The Application Layer can read the Root
Error Status Register and the Error Source Identification
Register using the LMI bus to retrieve information about the errors. The
root_err_reg_sts signal remains asserted until the Application Layer clears
the corresponding status register using the LMI bus. The Application Layer must
set the Uncorrectable and Correctable Error Mask, Uncorrectable
Error Severity, and Device Control Register error reporting bits
appropriately so that the errors are logged appropriately in the Arria 10 Hard IP
for PCI Express IP Core. The settings of the Uncorrectable and Correctable
Error Mask, Uncorrectable Error Severity, and Device Control
Register error reporting bits do not affect the real-time error output signals. The
Application Layer must also log these errors in the soft Configuration Space and
send error Messages.

Related Links

PCI Express Base Specification 3.0

11 IP Core Architecture

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
146

http://www.pcisig.com

11.2.2.2 Protocol Extensions Supported

The Transaction Layer supports the following protocol extensions:

• TLP Processing Hints (TPH)—Supports both a Requester and Completer. The
Application Layer should implement the TPH Requester Capabilities Structure using
the soft logic in the Application Layer Extended Configuration Space. The
Transaction Layer supports both Protocol Hint (PH) bits and Steering Tags (ST).
The Transaction Layer does not support the optional Extended TPH TLP prefix.

• Atomic Operations—Supports both Requester and Completer. The RX buffer
supports two, four, or eight non-posted data credits depending on the performance
level you selected for the RX buffer credit allocation—performance for
received requests under the System Settings heading of the parameter editor.
The Transaction Layer also supports Atomic Operation Egress Blocking to prevent
forwarding of AtomicOp Requests to components that should not receive them.

• ID-Based Ordering (IDO)—The Transaction Layer supports ID-Based Ordering to
permit certain ordering restrictions to be relaxed to improve performance.
However, the Transaction Layer does reorder the TLPs. On the RX side, ID-Based
reordering should be implemented in soft logic. On the TX side, the Application
Layer should set the IDO bit, which is bit 8 the Device Control Register 2,
in the TLPs that it generates.

11.3 Data Link Layer

The Data Link Layer is located between the Transaction Layer and the Physical Layer.
It maintains packet integrity and communicates (by DLL packet transmission) at the
PCI Express link level.

The DLL implements the following functions:

• Link management through the reception and transmission of DLL packets (DLLP),
which are used for the following functions:

— Power management of DLLP reception and transmission

— To transmit and receive ACK/NAK packets

— Data integrity through generation and checking of CRCs for TLPs and DLLPs

— TLP retransmission in case of NAK DLLP reception or replay timeout, using the
retry (replay) buffer

— Management of the retry buffer

— Link retraining requests in case of error through the Link Training and Status
State Machine (LTSSM) of the Physical Layer

11 IP Core Architecture

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
147

Figure 106. Data Link Layer
To Transaction Layer

Tx Transaction Layer
Packet Description & Data Transaction Layer

Packet Generator

Retry Buffer

To Physical Layer

Tx Packets

Ack/Nack
Packets

RX Datapath

TX Datapath

Rx Packets

DLLP
Checker

Transaction Layer
Packet Checker

DLLP
Generator

Tx Arbitration

Data Link Control
and Management

State Machine

Control
& StatusConfiguration Space

Tx Flow Control Credit Information

Rx Flow Control Credit Information

Rx Transation Layer
Packet Description & Data

Power
Management

Function

Note:
(1) The L0s (Standby) or L1 (Low Power Standby) states are not supported. The DLL has the following sub-blocks:

• Data Link Control and Management State Machine—This state machine connects to
both the Physical Layer’s LTSSM state machine and the Transaction Layer. It
initializes the link and flow control credits and reports status to the Transaction
Layer.

• Power Management—This function handles the handshake to enter low power
mode. Such a transition is based on register values in the Configuration Space and
received Power Management (PM) DLLPs. None of Arria 10 Hard IP for PCIe IP
core variants support low power modes.

• Data Link Layer Packet Generator and Checker—This block is associated with the
DLLP’s 16-bit CRC and maintains the integrity of transmitted packets.

• Transaction Layer Packet Generator—This block generates transmit packets,
including a sequence number and a 32-bit Link CRC (LCRC). The packets are also
sent to the retry buffer for internal storage. In retry mode, the TLP generator
receives the packets from the retry buffer and generates the CRC for the transmit
packet.

• Retry Buffer—The retry buffer stores TLPs and retransmits all unacknowledged
packets in the case of NAK DLLP reception. In case of ACK DLLP reception, the
retry buffer discards all acknowledged packets.

11 IP Core Architecture

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
148

• ACK/NAK Packets—The ACK/NAK block handles ACK/NAK DLLPs and generates the
sequence number of transmitted packets.

• Transaction Layer Packet Checker—This block checks the integrity of the received
TLP and generates a request for transmission of an ACK/NAK DLLP.

• TX Arbitration—This block arbitrates transactions, prioritizing in the following
order:

— Initialize FC Data Link Layer packet

— ACK/NAK DLLP (high priority)

— Update FC DLLP (high priority)

— PM DLLP

— Retry buffer TLP

— TLP

— Update FC DLLP (low priority)

— ACK/NAK FC DLLP (low priority)

11.4 Physical Layer

The Physical Layer is the lowest level of the PCI Express protocol stack. It is the layer
closest to the serial link. It encodes and transmits packets across a link and accepts
and decodes received packets. The Physical Layer connects to the link through a
high-speed SERDES interface running at 2.5 Gbps for Gen1 implementations, at 2.5 or
5.0 Gbps for Gen2 implementations, and at 2.5, 5.0 or 8.0 Gbps for Gen3
implementations.

The Physical Layer is responsible for the following actions:

• Training the link

• Scrambling/descrambling and 8B/10B encoding/decoding for 2.5 Gbps (Gen1),
5.0 Gbps (Gen2), or 128b/130b encoding/decoding of 8.0 Gbps (Gen3) per lane

• Serializing and deserializing data

• Equalization (Gen3)

• Operating the PIPE 3.0 Interface

• Implementing auto speed negotiation (Gen2 and Gen3)

• Transmitting and decoding the training sequence

• Providing hardware autonomous speed control

• Implementing auto lane reversal

The Physical Layer is subdivided by the PIPE Interface Specification into two layers
(bracketed horizontally in above figure):

• PHYMAC—The MAC layer includes the LTSSM and the scrambling/descrambling.
byte reordering, and multilane deskew functions.

• PHY Layer—The PHY layer includes the 8B/10B encode and decode functions for
Gen1 and Gen2. It includes 128b/130b encode and decode functions for Gen3.
The PHY also includes elastic buffering and serialization/deserialization functions.

11 IP Core Architecture

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
149

The Physical Layer integrates both digital and analog elements. Intel designed the
PIPE interface to separate the PHYMAC from the PHY. The Arria 10 Hard IP for PCI
Express complies with the PIPE interface specification.

Note: The internal PIPE interface is visible for simulation. It is not available for debugging in
hardware using a logic analyzer such as Signal Tap. If you try to connect Signal Tap to
this interface you will not be able to compile your design.

11 IP Core Architecture

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
150

Figure 107. Physical Layer Architecture

TX+ / TX-

TX+ / TX-

Descrambler 8B/10B
Decoder

128b/130b
Encoder/
Decoder

Lane n

RX+ / RX-Elastic
Buffer

LTSSM
State Machine

SKIP
Generation

Control & Status
RX MAC

Gen1, Gen2

Gen1, Gen2

Gen1, Gen2

Gen1, Gen2

Gen3

Gen3

TX MAC

Lin
k S

er
ial

ize
r

fo
r a

n x
8 L

inkTX Packets

 D
ev

ice
 T

ra
ns

ce
ive

r (
pe

r L
an

e)
 w

ith
 2.

5,
5.0

 , o
r 8

 G
bp

s S
ER

DE
S &

 PL
L

Descrambler

Lane 0
RX+ / RX-

PIPE
Interface

By
te

 Re
or

de
r &

 M
ult

ila
ne

 D
es

ke
w

Lin
k S

er
ial

ize
r f

or
 an

 x8
 Li

nk

RX Packets

Transmit
Data Path

Receive
Data Path

PHYMAC Layer PHY Layer

To LinkTo Data Link Layer

8B10B
Decoder

128b/130b
Encoder/
Decoder

Elastic
Buffer

Lane 0
(or) 128b/130b

Encoder/
Decoder

Scrambler 8B/10B
Encoder

Gen3

Lane n
(or) 128b/130b

Encoder/
Decoder

8B/10B
Encoder

Gen3

Scrambler

The PHYMAC block comprises four main sub-blocks:

• MAC Lane—Both the RX and the TX path use this block.

— On the RX side, the block decodes the Physical Layer packet and reports to the
LTSSM the type and number of TS1/TS2 ordered sets received.

— On the TX side, the block multiplexes data from the DLL and the Ordered Set
and SKP sub-block (LTSTX). It also adds lane specific information, including
the lane number and the force PAD value when the LTSSM disables the lane
during initialization.

• LTSSM—This block implements the LTSSM and logic that tracks TX and RX training
sequences on each lane.

• For transmission, it interacts with each MAC lane sub-block and with the LTSTX
sub-block by asserting both global and per-lane control bits to generate specific
Physical Layer packets.

— On the receive path, it receives the Physical Layer packets reported by each
MAC lane sub-block. It also enables the multilane deskew block. This block
reports the Physical Layer status to higher layers.

— LTSTX (Ordered Set and SKP Generation)—This sub-block generates the
Physical Layer packet. It receives control signals from the LTSSM block and
generates Physical Layer packet for each lane. It generates the same Physical
Layer Packet for all lanes and PAD symbols for the link or lane number in the
corresponding TS1/TS2 fields. The block also handles the receiver detection
operation to the PCS sub-layer by asserting predefined PIPE signals and
waiting for the result. It also generates a SKP Ordered Set at every predefined
timeslot and interacts with the TX alignment block to prevent the insertion of a
SKP Ordered Set in the middle of packet.

— Deskew—This sub-block performs the multilane deskew function and the RX
alignment between the initialized lanes and the datapath. The multilane
deskew implements an eight-word FIFO buffer for each lane to store symbols.
Each symbol includes eight data bits, one disparity bit, and one control bit.
The FIFO discards the FTS, COM, and SKP symbols and replaces PAD and IDL
with D0.0 data. When all eight FIFOs contain data, a read can occur. When the
multilane lane deskew block is first enabled, each FIFO begins writing after the
first COM is detected. If all lanes have not detected a COM symbol after seven
clock cycles, they are reset and the resynchronization process restarts, or else
the RX alignment function recreates a 64-bit data word which is sent to the
DLL.

11 IP Core Architecture

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
151

12 Transaction Layer Protocol (TLP) Details

12.1 Supported Message Types

12.1.1 INTX Messages

Table 74. INTX Messages

Message Root
Port

Endpoint Generated by Comments

App
Layer

Core Core
(with
App

Layer
input)

Assert_INTA Receive Transmit No Yes No For Root Port, legacy interrupts are translated into
message interrupt TLPs which triggers the
int_status[3:0] signals to the Application Layer.
• int_status[0]: Interrupt signal A
• int_status[1]: Interrupt signal B
• int_status[2]: Interrupt signal C
• int_status[3]: Interrupt signal D

Assert_INTB Receive Transmit No No No

Assert_INTC Receive Transmit No No No

Assert_INTD Receive Transmit No No No

Deassert_IN
TA

Receive Transmit No Yes No

Deassert_IN
TB

Receive Transmit No No No

Deassert_IN
TC

Receive Transmit No No No

Deassert_IN
TD

Receive Transmit No No No

12 Transaction Layer Protocol (TLP) Details

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

12.1.2 Power Management Messages

Table 75. Power Management Messages

Message Root
Port

Endpoi
nt

Generated by Comments

App
Layer

Core Core (with
App Layer

input)

PM_Active_S
tate_Nak

TX RX No Yes No —

PM_PME RX TX No No Yes —

PME_Turn_O
ff

TX RX No No Yes The pme_to_cr signal sends and
acknowledges this message:
• Root Port: When pme_to_cr is

asserted, the Root Port sends the
PME_turn_off message.

• Endpoint: When PME_to_cr is
asserted, the Endpoint acknowledges
the PME_turn_off message by
sending a pme_to_ack message to the
Root Port.

PME_TO_Ack RX TX No No Yes —

12.1.3 Error Signaling Messages

Table 76. Error Signaling Messages

Message Root
Port

Endpoi
nt

Generated by Comments

App
Layer

Core Core
(with App

Layer
input)

ERR_COR RX TX No Yes No In addition to detecting errors, a Root Port also
gathers and manages errors sent by
downstream components through the ERR_COR,
ERR_NONFATAL, AND ERR_FATAL Error
Messages. In Root Port mode, there are two
mechanisms to report an error event to the
Application Layer:
• serr_out output signal. When set, indicates

to the Application Layer that an error has
been logged in the AER capability structure

• aer_msi_num input signal. When the
Implement advanced error reporting
option is turned on, you can set
aer_msi_num to indicate which MSI is being
sent to the root complex when an error is
logged in the AER Capability structure.

ERR_NONFATA
L

RX TX No Yes No —

ERR_FATAL RX TX No Yes No —

12 Transaction Layer Protocol (TLP) Details

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
153

12.1.4 Locked Transaction Message

Table 77. Locked Transaction Message

Message Root Port Endpoint Generated by Comments

App
Layer

Core Core
(with App

Layer
input)

Unlock
Message

Transmit Receive Yes No No

12.1.5 Slot Power Limit Message

The PCI Express Base Specification Revision states that this message is not mandatory
after link training.

Table 78. Slot Power Message

Message Root Port Endpoint Generated by Comments

App
Layer

Core Core
(with
App

Layer
input)

Set Slot
Power Limit

Transmit Receive No Yes No In Root Port mode, through software.

Related Links

PCI Express Base Specification Revision 3.0

12.1.6 Vendor-Defined Messages

Table 79. Vendor-Defined Message

Message Root Port Endpoint Generated by Comments

App
Layer

Core Core
(with App

Layer
input)

Vendor
Defined Type
0

Transmit
Receive

Transmit
Receive

Yes No No

Vendor
Defined Type
1

Transmit
Receive

Transmit
Receive

Yes No No

12 Transaction Layer Protocol (TLP) Details

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
154

http://www.pcisig.com/home

12.1.7 Hot Plug Messages

Table 80. Locked Transaction Message

Message Root Port Endpoint Generated by Comments

App
Layer

Core Core
(with
App

Layer
input)

Attention_in
dicator On

Transmit Receive No Yes No Per the recommendations in the PCI
Express Base Specification Revision ,
these messages are not transmitted to
the Application Layer.Attention_In

dicator Blink
Transmit Receive No Yes No

Attention_in
dicator Off

Transmit Receive No Yes No

Power_Indic
ator On

Transmit Receive No Yes No

Power_Indic
ator Blink

Transmit Receive No Yes No

Power_Indic
ator Off

Transmit Receive No Yes No

Attention
Button_Pres
sed
(Endpoint
only)

Receive Transmit No No Yes N/A

Related Links

PCI Express Base Specification Revision 3.0

12.2 Transaction Layer Routing Rules

Transactions adhere to the following routing rules:

• In the receive direction (from the PCI Express link), memory and I/O requests that
match the defined base address register (BAR) contents and vendor-defined
messages with or without data route to the receive interface. The Application
Layer logic processes the requests and generates the read completions, if needed.

• In Endpoint mode, received Type 0 Configuration requests from the PCI Express
upstream port route to the internal Configuration Space and the Arria 10 Hard IP
for PCI Express generates and transmits the completion.

• The Hard IP handles supported received message transactions (Power
Management and Slot Power Limit) internally. The Endpoint also supports the
Unlock and Type 1 Messages. The Root Port supports Interrupt, Type 1, and error
Messages.

• Vendor-defined Type 0 and Type 1 Message TLPs are passed to the Application
Layer.

• The Transaction Layer treats all other received transactions (including memory or
I/O requests that do not match a defined BAR) as Unsupported Requests. The
Transaction Layer sets the appropriate error bits and transmits a completion, if
needed. These Unsupported Requests are not made visible to the Application
Layer; the header and data are dropped.

12 Transaction Layer Protocol (TLP) Details

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
155

http://www.pcisig.com/home

• For memory read and write request with addresses below 4 GB, requestors must
use the 32-bit format. The Transaction Layer interprets requests using the 64-bit
format for addresses below 4 GB as an Unsupported Request and does not send
them to the Application Layer. If Error Messaging is enabled, an error Message TLP
is sent to the Root Port. Refer to Transaction Layer Errors for a comprehensive list
of TLPs the Hard IP does not forward to the Application Layer.

• The Transaction Layer sends all memory and I/O requests, as well as completions
generated by the Application Layer and passed to the transmit interface, to the
PCI Express link.

• The Hard IP can generate and transmit power management, interrupt, and error
signaling messages automatically under the control of dedicated signals.
Additionally, it can generate MSI requests under the control of the dedicated
signals.

• In Root Port mode, the Application Layer can issue Type 0 or Type 1 Configuration
TLPs on the Avalon-ST TX bus.

• The Type 0 Configuration TLPs are only routed to the Configuration Space of the
Hard IP and are not sent downstream on the PCI Express link.

• The Type 1 Configuration TLPs are sent downstream on the PCI Express link. If the
bus number of the Type 1 Configuration TLP matches the Secondary Bus Number
register value in the Root Port Configuration Space, the TLP is converted to a Type
0 TLP.

• For more information about routing rules in Root Port mode, refer to Section 7.3.3
Configuration Request Routing Rules in the PCI Express Base Specification .

Related Links

• Transaction Layer Errors on page 134

• PCI Express Base Specification Revision 3.0

12.3 Receive Buffer Reordering

The PCI, PCI-X and PCI Express protocols include ordering rules for concurrent TLPs.
Ordering rules are necessary for the following reasons:

• To guarantee that TLPs complete in the intended order

• To avoid deadlock

• To maintain computability with ordering used on legacy buses

• To maximize performance and throughput by minimizing read latencies and
managing read/write ordering

• To avoid race conditions in systems that include legacy PCI buses by guaranteeing
that reads to an address do not complete before an earlier write to the same
address

PCI uses a strongly-ordered model with some exceptions to avoid potential deadlock
conditions. PCI-X added a relaxed ordering (RO) bit in the TLP header. It is bit 5 of
byte 2 in the TLP header, or the high-order bit of the attributes field in the TLP
header. If this bit is set, relaxed ordering is permitted. If software can guarantee that
no dependencies exist between pending transactions, you can safely set the relaxed
ordering bit.

12 Transaction Layer Protocol (TLP) Details

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
156

http://www.pcisig.com/home

The following table summarizes the ordering rules from the PCI specification. In this
table, the entries have the following meanings:

• Columns represent the first transaction issued.

• Rows represent the next transaction.

• At each intersection, the implicit question is: should this row packet be allowed to
pass the column packet? The following three answers are possible:

— Yes: the second transaction must be allowed to pass the first to avoid
deadlock.

— Y/N: There are no requirements. A device may allow the second transaction to
pass the first.

— No: The second transaction must not be allowed to pass the first.

The following transaction ordering rules apply to the table below.

• A Memory Write or Message Request with the Relaxed Ordering Attribute bit clear
(b’0) must not pass any other Memory Write or Message Request.

• A Memory Write or Message Request with the Relaxed Ordering Attribute bit set
(b’1) is permitted to pass any other Memory Write or Message Request.

• Endpoints, Switches, and Root Complex may allow Memory Write and Message
Requests to pass Completions or be blocked by Completions.

• Memory Write and Message Requests can pass Completions traveling in the PCI
Express to PCI directions to avoid deadlock.

• If the Relaxed Ordering attribute is not set, then a Read Completion cannot pass a
previously enqueued Memory Write or Message Request.

• If the Relaxed Ordering attribute is set, then a Read Completion is permitted to
pass a previously enqueued Memory Write or Message Request.

• Read Completion associated with different Read Requests are allowed to be
blocked by or to pass each other.

• Read Completions for Request (same Transaction ID) must return in address order.

• Non-posted requests cannot pass other non-posted requests.

• CfgRd0CfgRd0 can pass IORd or MRd.

• CfgWr0 can IORd or MRd.

• CfgRd0 can pass IORd or MRd.

• CfrWr0 can pass IOWr.

Table 81. Transaction Ordering Rules

Can the Row Pass
the Column?

Posted Req Non Posted Req Completion

Memory Write or
Message Req

Read Request I/O or Cfg Write Req

Spec Hard IP Spec Hard IP Spec Hard IP Spec Hard IP

P Posted
Req

No
Y/N

No
No

Yes Yes Yes Yes Y/N
Yes

No
No

NP Read Req No No Y/N No Y/N No Y/N No

continued...

12 Transaction Layer Protocol (TLP) Details

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
157

Can the Row Pass
the Column?

Posted Req Non Posted Req Completion

Memory Write or
Message Req

Read Request I/O or Cfg Write Req

Non-
Posted
Req with
data

No No Y/N No Y/N No Y/N No

Cmpl Cmpl No
Y/N

No
No

Yes Yes Yes Yes Y/N
No

No
No

I/O or
Configura
tion Write
Cmpl

Y/N No Yes Yes Yes Yes Y/N No

As the table above indicates, the RX datapath implements an RX buffer reordering
function that allows Posted and Completion transactions to pass Non-Posted
transactions (as allowed by PCI Express ordering rules) when the Application Layer is
unable to accept additional Non-Posted transactions.

The Application Layer dynamically enables the RX buffer reordering by asserting the
rx_mask signal. The rx_mask signal blocks non-posted Req transactions made to the
Application Layer interface so that only posted and completion transactions are
presented to the Application Layer.

Note: MSI requests are conveyed in exactly the same manner as PCI Express memory write
requests and are indistinguishable from them in terms of flow control, ordering, and
data integrity.

Related Links

PCI Express Base Specification Revision 3.0

12.3.1 Using Relaxed Ordering

Transactions from unrelated threads are unlikely to have data dependencies.
Consequently, you may be able to use relaxed ordering to improve system
performance. The drawback is that only some transactions can be optimized for
performance. Complete the following steps to decide whether to enable relaxed
ordering in your design:

1. Create a system diagram showing all PCI Express and legacy devices.

2. Analyze the relationships between the components in your design to identify the
following hazards:

a. Race conditions: A race condition exists if a read to a location can occur before
a previous write to that location completes. The following figure shows a data
producer and data consumer on opposite sides of a PCI-to-PCI bridge. The
producer writes data to the memory through a PCI-to-PCI bridge. The
consumer must read a flag to confirm the producer has written the new data
into the memory before reading the data. However, because the PCI-to-PCI
bridge includes a write buffer, the flag may indicate that it is safe to read data
while the actual data remains in the PCI-to-PCI bridge posted write buffer.

12 Transaction Layer Protocol (TLP) Details

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
158

http://www.pcisig.com/home

Figure 108. Design Including Legacy PCI Buses Requiring Strong Ordering

Producer

PCI-toPCI Bridge

PCI Bus

Flag

Posted
Write Buffer

Consumer

PCI Bus

Memory

Read
Request

b. A shared memory architecture where more than one thread accesses the same
locations in memory.

If either of these conditions exists, relaxed ordering will lead to incorrect results.

3. If your analysis determines that relaxed ordering does not lead to possible race
conditions or read or write hazards, you can enable relaxed ordering by setting the
RO bit in the TLP header.

4. The following figure shows two PCIe Endpoints and Legacy Endpoint connected to
a switch. The three PCIe Endpoints are not likely to have data dependencies.
Consequently, it would be safe to set the relaxed ordering bit for devices
connected to the switch. In this system, if relax ordering is not enabled, a memory
read to the legacy Endpoint is blocked. The legacy Endpoint read is blocked
because an earlier posted write cannot be completed as the write buffer is full. .

12 Transaction Layer Protocol (TLP) Details

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
159

Figure 109. PCI Express Design Using Relaxed Ordering

Root
Complex

PCIe
EndpointSwitch

Write Buffer
Full

CPU

Memory

PCIe Bridge to
PCI or PCI-X

Legacy
Endpoint

PCIe
Endpoint

PCIe
Endpoint

PCI/PCI-X

Blocked by
Full WR Buffer

Posted
Write

Completion
for Memory
Read

5. If your analysis indicates that you can enable relaxed ordering, simulate your
system with and without relaxed ordering enabled. Compare the results and
performance.

6. If relaxed ordering improves performance without introducing errors, you can
enable it in your system.

12 Transaction Layer Protocol (TLP) Details

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
160

13 Throughput Optimization
The PCI Express Base Specification defines a flow control mechanism to ensure
efficient transfer of TLPs.

Each transmitter, the write requester in this case, maintains a credit limit register
and a credits consumed register. The credit limit register is the sum of all
credits received by the receiver, the write completer in this case. The credit limit
register is initialized during the flow control initialization phase of link initialization and
then updated during operation by Flow Control (FC) Update DLLPs. The credits
consumed register is the sum of all credits consumed by packets transmitted.
Separate credit limit and credits consumed registers exist for each of the six
types of Flow Control:

• Posted Headers

• Posted Data

• Non-Posted Headers

• Non-Posted Data

• Completion Headers

• Completion Data

Each receiver also maintains a credit allocated counter which is initialized to the
total available space in the RX buffer (for the specific Flow Control class) and then
incremented as packets are pulled out of the RX buffer by the Application Layer. The
value of this register is sent as the FC Update DLLP value.

Figure 110. Flow Control Update Loop

Flow Control
Gating Logic

(Credit Check)

Credit
Limit

Credit Consumed
Counter

FC Update
DLLP Decode

FC Update
DLLP Generate

Credit
Allocated

RX
Buffer

FU Update DLLP

Data Packet
Data

Packet

Application
Layer

Transaction
Layer

Data Link
Layer

Physical
Layer

PCI
Express

Link

Application
Layer

Transaction
Layer

Data Link
Layer

Physical
Layer

Data Source Data Sink

Allow Increment

Increment

1 2

7

6

5

4
3

TX Credit
Signals

13 Throughput Optimization

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

The following numbered steps describe each step in the Flow Control Update loop. The
corresponding numbers in the figure show the general area to which they correspond.

1. When the Application Layer has a packet to transmit, the number of credits
required is calculated. If the current value of the credit limit minus credits
consumed is greater than or equal to the required credits, then the packet can be
transmitted immediately. However, if the credit limit minus credits consumed is
less than the required credits, then the packet must be held until the credit limit is
increased to a sufficient value by an FC Update DLLP. This check is performed
separately for the header and data credits; a single packet consumes only a single
header credit.

2. After the packet is selected for transmission the credits consumed register is
incremented by the number of credits consumed by this packet. This increment
happens for both the header and data credit consumed registers.

3. The packet is received at the other end of the link and placed in the RX buffer.

4. At some point the packet is read out of the RX buffer by the Application Layer.
After the entire packet is read out of the RX buffer, the credit allocated
register can be incremented by the number of credits the packet has used. There
are separate credit allocated registers for the header and data credits.

5. The value in the credit allocated register is used to create an FC Update
DLLP.

6. After an FC Update DLLP is created, it arbitrates for access to the PCI Express link.
The FC Update DLLPs are typically scheduled with a low priority; consequently, a
continuous stream of Application Layer TLPs or other DLLPs (such as ACKs) can
delay the FC Update DLLP for a long time. To prevent starving the attached
transmitter, FC Update DLLPs are raised to a high priority under the following
three circumstances:

a. When the last sent credit allocated counter minus the amount of
received data is less than MAX_PAYLOAD and the current credit allocated
counter is greater than the last sent credit counter. Essentially, this means the
data sink knows the data source has less than a full MAX_PAYLOAD worth of
credits, and therefore is starving.

b. When an internal timer expires from the time the last FC Update DLLP was
sent, which is configured to 30 µs to meet the PCI Express Base Specification
for resending FC Update DLLPs.

c. When the credit allocated counter minus the last sent credit
allocated counter is greater than or equal to 25% of the total credits
available in the RX buffer, then the FC Update DLLP request is raised to high
priority.

After arbitrating, the FC Update DLLP that won the arbitration to be the next
item is transmitted. In the worst case, the FC Update DLLP may need to wait
for a maximum sized TLP that is currently being transmitted to complete
before it can be sent.

7. The original write requester receives the FC Update DLLP. The credit limit
value is updated. If packets are stalled waiting for credits, they can now be
transmitted.

Note: You must keep track of the credits consumed by the Application Layer.

13 Throughput Optimization

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
162

13.1 Throughput of Posted Writes

The throughput of posted writes is limited primarily by the Flow Control Update loop
as shown in Figure 110 on page 161. If the write requester sources the data as quickly
as possible, and the completer consumes the data as quickly as possible, then the
Flow Control Update loop may be the biggest determining factor in write throughput,
after the actual bandwidth of the link.

The figure below shows the main components of the Flow Control Update loop with
two communicating PCI Express ports:

• Write Requester

• Write Completer

To allow the write requester to transmit packets continuously, the credit
allocated and the credit limit counters must be initialized with sufficient credits
to allow multiple TLPs to be transmitted while waiting for the FC Update DLLP that
corresponds to the freeing of credits from the very first TLP transmitted.

You can use the RX Buffer space allocation - Desired performance for received
requests to configure the RX buffer with enough space to meet the credit
requirements of your system.

Related Links

PCI Express Base Specification 3.0

13.2 Throughput of Non-Posted Reads

To support a high throughput for read data, you must analyze the overall delay from
the time the Application Layer issues the read request until all of the completion data
is returned. The Application Layer must be able to issue enough read requests, and
the read completer must be capable of processing these read requests quickly enough
(or at least offering enough non-posted header credits) to cover this delay.

However, much of the delay encountered in this loop is well outside the IP core and is
very difficult to estimate. PCI Express switches can be inserted in this loop, which
makes determining a bound on the delay more difficult.

Nevertheless, maintaining maximum throughput of completion data packets is
important. Endpoints must offer an infinite number of completion credits. Endpoints
must buffer this data in the RX buffer until the Application Layer can process it.
Because the Endpoint is no longer managing the RX buffer for Completions through
the flow control mechanism, the Application Layer must manage the RX buffer by the
rate at which it issues read requests.

To determine the appropriate settings for the amount of space to reserve for
completions in the RX buffer, you must make an assumption about the length of time
until read completions are returned. This assumption can be estimated in terms of an
additional delay, beyond the FC Update Loop Delay, as discussed in the section
Throughput of Posted Writes. The paths for the read requests and the completions are
not exactly the same as those for the posted writes and FC Updates in the PCI Express
logic. However, the delay differences are probably small compared with the inaccuracy
in the estimate of the external read to completion delays.

13 Throughput Optimization

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
163

http://www.pcisig.com/

With multiple completions, the number of available credits for completion headers
must be larger than the completion data space divided by the maximum packet size.
Instead, the credit space for headers must be the completion data space (in bytes)
divided by 64, because this is the smallest possible read completion boundary. Setting
the RX Buffer space allocation—Desired performance for received completions
to High under the System Settings heading when specifying parameter settings
configures the RX buffer with enough space to meet this requirement. You can adjust
this setting up or down from the High setting to tailor the RX buffer size to your
delays and required performance.

You can also control the maximum amount of outstanding read request data. This
amount is limited by the number of header tag values that can be issued by the
Application Layer and by the maximum read request size that can be issued. The
number of header tag values that can be in use is also limited by the IP core. You can
specify 32 or 64 tags though configuration software to restrict the Application Layer to
use only 32 tags. In commercial PC systems, 32 tags are usually sufficient to maintain
optimal read throughput.

13 Throughput Optimization

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
164

14 Design Implementation
Completing your design includes additional steps to specify analog properties, pin
assignments, and timing constraints.

14.1 Making Pin Assignments to Assign I/O Standard to Serial Data
Pins

Before running Quartus Prime compilation, use the Pin Planner to assign I/O
standards to the pins of the device.

1. On the Quartus Prime Assignments menu, select Pin Planner.
The Pin Planner appears.

2. In the Node Name column, locate the PCIe serial data pins.

3. In the I/O Standard column, double-click the right-hand corner of the box to
bring up a list of available I/O standards.

4. Select the appropriate standard from the following table.

Table 82. I/O Standards for HSSI Pins

Pin Type I/O Standard

HSSI REFCLK Current Mode Logic (CML), HCSL

HSSI RX Current Mode Logic (CML)

HSSI TX High Speed Differential I/O

The Quartus Prime software adds instance assignments to your Quartus Prime
Settings File (*.qsf). The assignment is in the form set_instance_assignment -
name IO_STANDARD <"IO_STANDARD_NAME"> -to <signal_name>. The *.qsf
is in your synthesis directory.

Related Links

Arria 10 GX, GT, and SX Device Family Pin Connection Guidelines
For information about connecting pins on the PCB including required resistor values
and voltages.

14.2 Recommended Reset Sequence to Avoid Link Training Issues

Successful link training can only occur after the FPGA is configured. Designs using CvP
for configuration initially load the I/O ring and periphery image. Arria 10 devices
include a Nios II Hard Calibration IP core that automatically calibrates transceivers to
optimize signal quality after CvP completes and before entering user mode. Link
training occurs after calibration. Refer to Reset Sequence for Hard IP for PCI Express
IP Core and Application Layer for a description of the key signals that reset, control

14 Design Implementation

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

https://documentation.altera.com/#/link/wtw1404286459773/iwtw1420187605772
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

dynamic reconfiguration, and link training. Intel recommends separate control of reset
signals for the Endpoint and Root Port. Successful reset sequence includes the
following steps:

1. Wait until the FPGA is configured as indicated by the assertion of CONFIG_DONE
from the FPGA block controller.

2. Wait 1 ms after the assertion of CONFIG_DONE, then deassert the Endpoint reset.

3. Wait approximately 100 ms, then deassert the Root Port reset.

4. Deassert the reset output to the Application Layer.

Figure 111. Recommended Reset Sequence

CONF_DONE

Endpoint Reset

Root Port Reset

1 ms

100 ms

Related Links

Intel FPGA Arria 10 Transceiver PHY IP Core User Guide
For information about requirements for the CLKUSR pin used during automatic
calibration.

14.3 Creating a Signal Tap II Debug File to Match Your Design
Hierarchy

For Arria 10 devices, the Quartus Prime Standard Edition software generates two files,
build_stp.tcl and <ip_core_name>.xml. You can use these files to generate a
Signal Tap II file with probe points matching your design hierarchy.

The Quartus Prime software stores these files in the <IP core directory>/synth/
debug/stp/ directory.

Synthesize your design using the Quartus Prime software.

1. To open the Tcl console, click View ➤ Utility Windows ➤ Tcl Console.

2. Type the following command in the Tcl console:
source <IP core directory>/synth/debug/stp/build_stp.tcl

3. To generate the STP file, type the following command:
main -stp_file <output stp file name>.stp -xml_file <input
xml_file name>.xml -mode build

4. To add this Signal Tap II file (.stp) to your project, select Project ➤ Add/
Remove Files in Project. Then, compile your design.

5. To program the FPGA, click Tools ➤ Programmer.

14 Design Implementation

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
166

https://documentation.altera.com/#/link/nik1398707230472/nik1398706768037

6. To start the Signal Tap II Logic Analyzer, click Quartus Prime ➤ Tools ➤ Signal
Tap II Logic Analyzer.

The software generation script may not assign the Signal Tap II acquisition clock in
<output stp file name>.stp. Consequently, the Quartus Prime software
automatically creates a clock pin called auto_stp_external_clock. You may
need to manually substitute the appropriate clock signal as the Signal Tap II
sampling clock for each STP instance.

7. Recompile your design.

8. To observe the state of your IP core, click Run Analysis.

You may see signals or Signal Tap II instances that are red, indicating they are not
available in your design. In most cases, you can safely ignore these signals and
instances. They are present because software generates wider buses and some
instances that your design does not include.

14.4 SDC Timing Constraints

Your top-level Synopsys Design Constraints file (.sdc) must include the following
timing constraint macro for the Arria 10 Hard IP for PCIe IP core.

Example 1. SDC Timing Constraints Required for the Arria 10 Hard IP for PCIe and Design
Example

Constraints required for the Arria 10 Hard IP for PCI Express
derive_pll_clock is used to calculate all clock derived
from PCIe refclk. It must be applied once across all
of the SDC files used in a project
derive_pll_clocks -create_base_clocks

You should only include this constraint in one location across all of the SDC files in
your project. Differences between Fitter timing analysis and TimeQuest timing analysis
arise if these constraints are applied multiple times.

Related Links

What assignments do I need for a PCIe Gen1, Gen2 or Gen3 design that targets an
Arria 10 ES2, ES3 or production device?

Starting with the Quartus Prime Software Release 17.0, these assignments are
automatically included in the design. You do not have to add them.

14 Design Implementation

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
167

https://www.altera.com/support/support-resources/knowledge-base/ip/2017/what-assignments-do-i-need-for-a-pcie-gen1--gen2-or-gen3-design-.html
https://www.altera.com/support/support-resources/knowledge-base/ip/2017/what-assignments-do-i-need-for-a-pcie-gen1--gen2-or-gen3-design-.html

15 Optional Features

15.1 Configuration over Protocol (CvP)

The Hard IP for PCI Express architecture has an option to configure the FPGA and
initialize the PCI Express link. In prior devices, a single Program Object File (.pof)
programmed the I/O ring and FPGA fabric before the PCIe link training and
enumeration began. The .pof file is divided into two parts:

• The I/O bitstream contains the data to program the I/O ring, the Hard IP for PCI
Express, and other elements that are considered part of the periphery image.

• The core bitstream contains the data to program the FPGA fabric.

When you select the CvP design flow, the I/O ring and PCI Express link are
programmed first, allowing the PCI Express link to reach the L0 state and begin
operation independently, before the rest of the core is programmed. After the PCI
Express link is established, it can be used to program the rest of the device. The
following figure shows the blocks that implement CvP.

Figure 112. CvP in Arria 10 Devices

PCIe Port

Intel FPGA

Host CPU

Config Cntl
Block

Active Serial,
Fast Passive Parallel (FPP), or

Active Quad
Device Configuration

PCIe Link
used for

Configuration
via Protocol (CvP)

Serial or
Quad Flash

Hard IP
for PCIe

15 Optional Features

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

CvP has the following advantages:

• Provides a simpler software model for configuration. A smart host can use the
PCIe protocol and the application topology to initialize and update the FPGA fabric.

• Improves security for the proprietary core bitstream.

• Reduces system costs by reducing the size of the flash device to store the .pof.

• May reduce system size because a single CvP link can be used to configure
multiple FPGAs.

Related Links

Arria 10 CvP Initialization and Partial Reconfiguration over PCI Express User Guide

15.2 Autonomous Mode

Autonomous mode allows the PCIe IP core to operate before the device enters user
mode, while the core is being configured.

Intel’s FPGA devices always receive the configuration bits for the periphery image first,
then for the core image. After the core image configures, the device enters user
mode. In autonomous mode, the hard IP for PCI Express begins operation when the
periphery configuration completes, before it enters user mode.

In autonomous mode, after completing link training, the Hard IP for PCI Express
responds to Configuration Requests from the host with a Configuration Request Retry
Status (CRRS). Autonomous mode is when you must meet the 100 ms PCIe wake-up
time.

The hard IP for PCIe responds with CRRS under the following conditions:

• Before the core fabric is programmed when you enable autonomous mode.

• Before the core fabric is programmed when you enable initialization of the core
fabric using the PCIe link.

All PCIe IP cores on a device can operate in autonomous mode. However, only the
bottom Hard IP for PCI Express on either side can satisfy the 100 ms PCIe wake up
time requirement. Tansceiver calibration begins with the bottom PCIe IP core on each
side of the device. Consequently, this IP core has a faster wake up time.

Arria V, Cyclone V, Stratix V, and Arria 10 devices are the first to offer autonomous
mode. In earlier devices, the PCI Express Hard IP Core exits reset only after full FPGA
configuration.

Related Links

• Enabling Autonomous Mode on page 169
These steps specify autonomous mode in the Quartus Prime software.

• Enabling CvP Initialization on page 170
These steps enable CvP initialization mode in the Quartus Prime software.

15.2.1 Enabling Autonomous Mode

These steps specify autonomous mode in the Quartus Prime software.

15 Optional Features

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
169

https://documentation.altera.com/#/link/dsu1441819344145/dsu1442269728522

1. On the Quartus Prime Assignments menu, select Device ➤ Device and Pin
Options.

2. Under Category ➤ General turn on Enable autonomous PCIe HIP mode.
The Enable autonomous PCIe HIP mode option has an effect if your design has
the following two characteristics:

• You are using the Flash device or Ethernet controller, instead of the PCIe link
to load the core image.

• You have not turned on Enable Configuration via the PCIe link in the Hard
IP for PCI Express GUI.

15.2.2 Enabling CvP Initialization

These steps enable CvP initialization mode in the Quartus Prime software.

1. On the Assignments menu select Device ➤ Device and Pin Options.

2. Under Category, select CvP Settings.

3. For Configuration via Protocol, select Core initialization from the drop-down
menu.

15.3 ECRC

ECRC ensures end-to-end data integrity for systems that require high reliability. You
can specify this option under the Error Reporting heading. The ECRC function
includes the ability to check and generate ECRC. In addition, the ECRC function can
forward the TLP with ECRC to the RX port of the Application Layer. When using ECRC
forwarding mode, the ECRC check and generation are performed in the Application
Layer.

You must turn on Advanced error reporting (AER), ECRC checking, and ECRC
generation under the PCI Express/PCI Capabilities heading using the parameter
editor to enable this functionality.

For more information about error handling, refer to Error Signaling and Logging in
Section 6.2 of the PCI Express Base Specification.

Related Links

PCI Express Base Specification 3.0

15.3.1 ECRC on the RX Path

When the ECRC generation option is turned on, errors are detected when receiving
TLPs with a bad ECRC. If the ECRC generation option is turned off, no error detection
occurs. If the ECRC forwarding option is turned on, the ECRC value is forwarded to
the Application Layer with the TLP. If the ECRC forwarding option is turned off, the
ECRC value is not forwarded.

15 Optional Features

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
170

http://www.pcisig.com/home

Table 83. ECRC Operation on RX Path

ECRC Forwarding ECRC Check Enable
4

ECRC Status Error TLP Forward to Application
Layer

No No none No Forwarded

good No Forwarded without its ECRC

bad No Forwarded without its ECRC

Yes none No Forwarded

good No Forwarded without its ECRC

bad Yes Not forwarded

Yes No none No Forwarded

good No Forwarded with its ECRC

bad No Forwarded with its ECRC

Yes none No Forwarded

good No Forwarded with its ECRC

bad Yes Not forwarded

15.3.2 ECRC on the TX Path

When the ECRC generation option is on, the TX path generates ECRC. If you turn on
ECRC forwarding, the ECRC value is forwarded with the TLP. The following table
summarizes the TX ECRC generation and forwarding. All unspecified cases are
unsupported and the behavior of the Hard IP is unknown.In this table, if TD is 1, the
TLP includes an ECRC. TD is the TL digest bit of the TL packet.

Table 84. ECRC Generation and Forwarding on TX Path
All unspecified cases are unsupported and the behavior of the Hard IP is unknown.

ECRC Forwarding ECRC Generation
Enable 5

TLP on
Application

TLP on Link Comments

No No TD=0, without
ECRC

TD=0, without
ECRC

TD=1, without
ECRC

TD=0, without
ECRC

Yes TD=0, without
ECRC

TD=1, with
ECRC

ECRC is generated

TD=1, without
ECRC

TD=1, with
ECRC

Yes No TD=0, without
ECRC

TD=0, without
ECRC

Core forwards the ECRC

continued...

4 The ECRC Check Enable field is in the Configuration Space Advanced Error
Capabilities and Control Register.

5 The ECRC Generation Enable field is in the Configuration Space Advanced Error
Capabilities and Control Register.

15 Optional Features

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
171

ECRC Forwarding ECRC Generation
Enable 5

TLP on
Application

TLP on Link Comments

TD=1, with
ECRC

TD=1, with
ECRC

Yes TD=0, without
ECRC

TD=0, without
ECRC

TD=1, with
ECRC

TD=1, with
ECRC

5 The ECRC Generation Enable field is in the Configuration Space Advanced Error
Capabilities and Control Register.

15 Optional Features

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
172

16 Hard IP Reconfiguration
The Arria 10 Hard IP for PCI Express reconfiguration block allows you to dynamically
change the value of configuration registers that are read-only. You access this block
using its Avalon-MM slave interface. You must enable this optional functionality by
turning on Enable Hard IP Reconfiguration in the parameter editor. For a complete
description of the signals in this interface, refer to Hard IP Reconfiguration Interface.

The Hard IP reconfiguration block provides access to read-only configuration registers,
including Configuration Space, Link Configuration, MSI and MSI-X capabilities, Power
Management, and Advanced Error Reporting (AER). This interface does not support
simulation.

The procedure to dynamically reprogram these registers includes the following three
steps:

1. Bring down the PCI Express link by asserting the hip_reconfig_rst_n reset
signal, if the link is already up. (Reconfiguration can occur before the link has
been established.)

2. Reprogram configuration registers using the Avalon-MM slave Hard IP
reconfiguration interface.

3. Release the npor reset signal.

Note: You can use the LMI interface to change the values of configuration registers that are
read/write at run time. For more information about the LMI interface, refer to LMI
Signals.

Contact your Intel representative for descriptions of the read-only, reconfigurable
registers.

Related Links

LMI Signals on page 90

16 Hard IP Reconfiguration

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

17 Testbench and Design Example
This chapter introduces the Root Port or Endpoint design example including a
testbench, BFM, and a test driver module. You can create this design example for
using design flows described in Getting Started with the Arria 10 Hard IP for PCI
Express .

When configured as an Endpoint variation, the testbench instantiates a design
example and a Root Port BFM, which provides the following functions:

• A configuration routine that sets up all the basic configuration registers in the
Endpoint. This configuration allows the Endpoint application to be the target and
initiator of PCI Express transactions.

• A Verilog HDL procedure interface to initiate PCI Express transactions to the
Endpoint.

The testbench uses a test driver module, altpcietb_bfm_driver_chaining to
exercise the chaining DMA of the design example. The test driver module displays
information from the Endpoint Configuration Space registers, so that you can correlate
to the parameters you specified using the parameter editor.

When configured as a Root Port, the testbench instantiates a Root Port design example
and an Endpoint model, which provides the following functions:

• A configuration routine that sets up all the basic configuration registers in the Root
Port and the Endpoint BFM. This configuration allows the Endpoint application to
be the target and initiator of PCI Express transactions.

• A Verilog HDL procedure interface to initiate PCI Express transactions to the
Endpoint BFM.

This testbench simulates a single Endpoint or Root Port DUT.

The testbench uses a test driver module, altpcietb_bfm_driver_rp, to exercise the
target memory and DMA channel in the Endpoint BFM. The test driver module displays
information from the Root Port Configuration Space registers, so that you can
correlate to the parameters you specified using the parameter editor. The Endpoint
model consists of an Endpoint variation combined with the chaining DMA application
described above.

Note: The Intel testbench and Root Port or Endpoint BFM provide a simple method to do
basic testing of the Application Layer logic that interfaces to the variation. This BFM
allows you to create and run simple task stimuli with configurable parameters to
exercise basic functionality of the Intel example design. The testbench and Root Port
BFM are not intended to be a substitute for a full verification environment. Corner
cases and certain traffic profile stimuli are not covered. Refer to the items listed below
for further details. To ensure the best verification coverage possible, Intel suggests
strongly that you obtain commercially available PCI Express verification IP and tools,
or do your own extensive hardware testing or both.

17 Testbench and Design Example

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Your Application Layer design may need to handle at least the following scenarios that
are not possible to create with the Intel testbench and the Root Port BFM:

• It is unable to generate or receive Vendor Defined Messages. Some systems
generate Vendor Defined Messages and the Application Layer must be designed to
process them. The Hard IP block passes these messages on to the Application
Layer which, in most cases should ignore them.

• It can only handle received read requests that are less than or equal to the
currently set Maximum payload size option specified under PCI Express/PCI
Capabilities heading under the Device tab using the parameter editor. Many
systems are capable of handling larger read requests that are then returned in
multiple completions.

• It always returns a single completion for every read request. Some systems split
completions on every 64-byte address boundary.

• It always returns completions in the same order the read requests were issued.
Some systems generate the completions out-of-order.

• It is unable to generate zero-length read requests that some systems generate as
flush requests following some write transactions. The Application Layer must be
capable of generating the completions to the zero length read requests.

• It uses fixed credit allocation.

• It does not support parity.

• It does not support multi-function designs which are available when using
Configuration Space Bypass mode.

• It does not support Single Root I/O Virtualization (SR-IOV).

• It does not support multiple physical functions and virtual functions available when
you select the SR-IOV variant.

Related Links

AN-811: Using the Avery BFM for PCI Express Gen3x16 Simulation on Intel Stratix 10
Devices

17.1 Endpoint Testbench

After you install the Quartus Prime software, you can copy any of the example designs
from the <install_dir>/ip/altera/altera_pcie/altera_pcie_a10_ed/
example_design/a10 directory.

This testbench simulates up to an ×8 PCI Express link using either the PIPE interfaces
of the Root Port and Endpoints or the serial PCI Express interface. The testbench
design does not allow more than one PCI Express link to be simulated at a time. The
following figure presents a high level view of the design example.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
175

https://www.altera.com/documentation/zoz1492100248719.html#sjb1492100458182
https://www.altera.com/documentation/zoz1492100248719.html#sjb1492100458182

Figure 113. Design Example for Endpoint Designs

APPS
altpcied_<dev>_hwtcl.v

Hard IP for PCI Express Testbench for Endpoints

Avalon-ST TX
Avalon-ST RX

reset
status

Avalon-ST TX
Avalon-ST RX
reset
status

DUT
<instance_name>_altera_pcie
_a10_hip_<version>
_<generated_string>.v

Root Port Model
altpcie_tbed_<dev>_hwtcl.v

PIPE or
Serial

Interface

Root Port BFM
altpcietb_bfm_rpvar_64b_x8_pipen1b

Root Port Driver and Monitor
altpcietb_bfm_vc_intf

The top-level of the testbench instantiates four main modules:

• <qsys_systemname>— This is the example Endpoint design. For more information
about this module, refer to Chaining DMA Design Examples.

• altpcietb_bfm_top_rp.v—This is the Root Port PCI Express BFM. For more
information about this module, refer to Root Port BFM.

• altpcietb_pipe_phy—There are eight instances of this module, one per lane.
These modules interconnect the PIPE MAC layer interfaces of the Root Port and the
Endpoint. The module mimics the behavior of the PIPE PHY layer to both MAC
interfaces.

• altpcietb_bfm_driver_chaining—This module drives transactions to the Root
Port BFM. This is the module that you modify to vary the transactions sent to the
example Endpoint design or your own design. For more information about this
module, refer to Root Port Design Example.

In addition, the testbench has routines that perform the following tasks:

• Generates the reference clock for the Endpoint at the required frequency.

• Provides a PCI Express reset at start up.

Note: Before running the testbench, you should set the following parameters in
<instantiation_name>_tb/sim/<instantiation_name>_tb.v:

• serial_sim_hwtcl: Set to 1 for serial simulation and 0 for PIPE simulation.

• enable_pipe32_sim_hwtcl: Set to 0 for serial simulation and 1 for PIPE
simulation.

Related Links

• Quick Start Guide on page 17

• Getting Started with the Arria 10 Hard IP for PCI Express on page 24
This Gen1 x8 Endpoint design example illustrates a chaining DMA application.
It provides instructions to help you quickly customize, simulate, and compile
the Arria 10 Hard IP for PCI Express IP Core.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
176

17.2 Root Port Testbench

This testbench simulates up to an ×8 PCI Express link using either the PIPE interfaces
of the Root Port and Endpoints or the serial PCI Express interface. The testbench
design does not allow more than one PCI Express link to be simulated at a time. The
top-level of the testbench instantiates four main modules:

• <qsys_systemname>— Name of Root Port This is the example Root Port design.
For more information about this module, refer to Root Port Design Example.

• altpcietb_bfm_ep_example_chaining_pipen1b—This is the Endpoint PCI
Express mode described in the section Chaining DMA Design Examples.

• altpcietb_pipe_phy—There are eight instances of this module, one per lane.
These modules connect the PIPE MAC layer interfaces of the Root Port and the
Endpoint. The module mimics the behavior of the PIPE PHY layer to both MAC
interfaces.

• altpcietb_bfm_driver_rp—This module drives transactions to the Root Port BFM.
This is the module that you modify to vary the transactions sent to the example
Endpoint design or your own design. For more information about this module, see
Test Driver Module.

The testbench has routines that perform the following tasks:

• Generates the reference clock for the Endpoint at the required frequency.

• Provides a reset at start up.

Note: Before running the testbench, you should set the following parameters:

• serial_sim_hwtcl: Set this parameter in <instantiation name>_tb.v . This
parameter controls whether the testbench simulates in PIPE mode or serial mode.
When is set to 0, the simulation runs in PIPE mode; when set to 1, it runs in serial
mode. Although the serial_sim_hwtcl parameter is available in other files, if
you set this parameter at the lower level, then it will get overwritten by the tb.v
level.

• serial_sim_hwtcl: Set to 1 for serial simulation and 0 for PIPE simulation.

• enable_pipe32_sim_hwtcl: Set to 0 for serial simulation and 1 for PIPE
simulation.

17.3 Chaining DMA Design Examples

This design example shows how to create a chaining DMA native Endpoint which
supports simultaneous DMA read and write transactions. The write DMA module
implements write operations from the Endpoint memory to the root complex (RC)
memory. The read DMA implements read operations from the RC memory to the
Endpoint memory.

When operating on a hardware platform, the DMA is typically controlled by a software
application running on the root complex processor. In simulation, the generated
testbench, along with this design example, provides a BFM driver module in Verilog
HDL that controls the DMA operations. Because the example relies on no other
hardware interface than the PCI Express link, you can use the design example for the
initial hardware validation of your system.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
177

The design example includes the following two main components:

• The Root Port variation

• An Application Layer design example

The DUT variant is generated in the language (Verilog HDL or VHDL) that you selected
for the variation file. The testbench files are only generated in Verilog HDL in the
current release. If you choose to use VHDL for your variant, you must have a mixed-
language simulator to run this testbench.

Note: The chaining DMA design example requires setting BAR 2 or BAR 3 to a minimum of
256 bytes. To run the DMA tests using MSI, you must set the Number of MSI
messages requested parameter under the PCI Express/PCI Capabilities page to
at least 2.

The chaining DMA design example uses an architecture capable of transferring a large
amount of fragmented memory without accessing the DMA registers for every memory
block. For each block of memory to be transferred, the chaining DMA design example
uses a descriptor table containing the following information:

• Length of the transfer

• Address of the source

• Address of the destination

• Control bits to set the handshaking behavior between the software application or
BFM driver and the chaining DMA module

Note: The chaining DMA design example only supports dword-aligned accesses. The chaining
DMA design example does not support ECRC forwarding.

The BFM driver writes the descriptor tables into BFM shared memory, from which the
chaining DMA design engine continuously collects the descriptor tables for DMA read,
DMA write, or both. At the beginning of the transfer, the BFM programs the Endpoint
chaining DMA control register. The chaining DMA control register indicates the total
number of descriptor tables and the BFM shared memory address of the first
descriptor table. After programming the chaining DMA control register, the chaining
DMA engine continuously fetches descriptors from the BFM shared memory for both
DMA reads and DMA writes, and then performs the data transfer for each descriptor.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
178

The following figure shows a block diagram of the design example connected to an
external RC CPU. For a description of the DMA write and read registers, Chaining DMA
Control and Status Registers.

Figure 114. Top-Level Chaining DMA Example for Simulation

Root Complex

 CPU

Root Port

 Memory

Write
Descriptor

Table

Data

Chaining DMA

Endpoint Memory

Avalon-MM
interfaces

Hard IP for
PCI Express

DMA Control/Status Register

DMA Read

Avalon-ST

Configuration

PCI Express
DMA Write

DMA Wr Cntl (0x0-4)

DMA Rd Cntl (0x10-1C)

RC Slave

Read
Descriptor

Table

The block diagram contains the following elements:

• Endpoint DMA write and read requester modules.

• The chaining DMA design example connects to the Avalon-ST interface of the
Arria 10 Hard IP for PCI Express. The connections consist of the following
interfaces:

— The Avalon-ST RX receives TLP header and data information from the Hard IP
block

— The Avalon-ST TX transmits TLP header and data information to the Hard IP
block

— The Avalon-ST MSI port requests MSI interrupts from the Hard IP block

— The sideband signal bus carries static information such as configuration
information

• The descriptor tables of the DMA read and the DMA write are located in the BFM
shared memory.

• A RC CPU and associated PCI Express PHY link to the Endpoint design example,
using a Root Port and a north/south bridge.

The example Endpoint design Application Layer accomplishes the following objectives:

• Shows you how to interface to the Arria 10 Hard IP for PCI Express using the
Avalon-ST protocol.

• Provides a chaining DMA channel that initiates memory read and write
transactions on the PCI Express link.

• If the ECRC forwarding functionality is enabled, provides a CRC Compiler IP core
to check the ECRC dword from the Avalon-ST RX path and to generate the ECRC
for the Avalon-ST TX path.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
179

The following modules are included in the design example and located in the
subdirectory <qsys_systemname>/testbench/<qsys_system_name>_tb/
simulation/submodules :

• <qsys_systemname> —This module is the top level of the example Endpoint
design that you use for simulation.

This module provides both PIPE and serial interfaces for the simulation
environment. This module has a test_in debug ports. Refer to Test Signals
which allow you to monitor and control internal states of the Hard IP.

For synthesis, the top level module is <qsys_systemname>/synthesis/
submodules. This module instantiates the top-level module and propagates only
a small sub-set of the test ports to the external I/Os. These test ports can be used
in your design.

• <variation name>.v or <variation name>.vhd— Because Intel provides many
sample parameterizations, you may have to edit one of the provided examples to
create a simulation that matches your requirements. <variation name>.v or
<variation name>.vhd— Because Intel provides many sample parameterizations,
you may have to edit one of the provided examples to create a simulation that
matches your requirements.

The chaining DMA design example hierarchy consists of these components:

• A DMA read and a DMA write module

• An on-chip Endpoint memory (Avalon-MM slave) which uses two Avalon-MM
interfaces for each engine

The RC slave module is used primarily for downstream transactions which target the
Endpoint on-chip buffer memory. These target memory transactions bypass the DMA
engines. In addition, the RC slave module monitors performance and acknowledges
incoming message TLPs. Each DMA module consists of these components:

• Control register module—The RC programs the control register (four dwords) to
start the DMA.

• Descriptor module—The DMA engine fetches four dword descriptors from BFM
shared memory which hosts the chaining DMA descriptor table.

• Requester module—For a given descriptor, the DMA engine performs the memory
transfer between Endpoint memory and the BFM shared memory.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
180

The following modules are provided in both Verilog HDL:

• altpcierd_example_app_chaining—This top level module contains the logic
related to the Avalon-ST interfaces as well as the logic related to the sideband
bus. This module is fully register bounded and can be used as an incremental re-
compile partition in the Quartus Prime compilation flow.

• altpcierd_cdma_ast_rx, altpcierd_cdma_ast_rx_64,
altpcierd_cdma_ast_rx_128—These modules implement the Avalon-ST receive
port for the chaining DMA. The Avalon-ST receive port converts the Avalon-ST
interface of the IP core to the descriptor/data interface used by the chaining DMA
submodules. altpcierd_cdma_ast_rx is used with the descriptor/data IP core
(through the ICM). a ltpcierd_cdma_ast_rx_64 is used with the 64-bit Avalon-
ST IP core. altpcierd_cdma_ast_rx_128 is used with the 128-bit Avalon-ST IP
core.

• altpcierd_cdma_ast_tx, altpcierd_cdma_ast_tx_64,
altpcierd_cdma_ast_tx_128—These modules implement the Avalon-ST
transmit port for the chaining DMA. The Avalon-ST transmit port converts the
descriptor/data interface of the chaining DMA submodules to the Avalon-ST
interface of the IP core. altpcierd_cdma_ast_tx is used with the descriptor/data
IP core (through the ICM). altpcierd_cdma_ast_tx_64 is used with the 64-bit
Avalon-ST IP core. altpcierd_cdma_ast_tx_128 is used with the 128-bit
Avalon-ST IP core.

• altpcierd_cdma_ast_msi—This module converts MSI requests from the chaining
DMA submodules into Avalon-ST streaming data.

• alpcierd_cdma_app_icm—This module arbitrates PCI Express packets for the
modules altpcierd_dma_dt (read or write) and altpcierd_rc_slave.
alpcierd_cdma_app_icm instantiates the Endpoint memory used for the DMA
read and write transfer.

• alt pcierd_compliance_test.v—This module provides the logic to perform CBB
via a push button.

• altpcierd_rc_slave—This module provides the completer function for all
downstream accesses. It instantiates the altpcierd_rxtx_downstream_intf and
altpcierd_reg_ access modules. Downstream requests include programming of
chaining DMA control registers, reading of DMA status registers, and direct read
and write access to the Endpoint target memory, bypassing the DMA.

• altpcierd_rx_tx_downstream_intf—This module processes all downstream
read and write requests and handles transmission of completions. Requests
addressed to BARs 0, 1, 4, and 5 access the chaining DMA target memory space.
Requests addressed to BARs 2 and 3 access the chaining DMA control and status
register space using the altpcierd_reg_access module.

• altpcierd_reg_access—This module provides access to all of the chaining DMA
control and status registers (BAR 2 and 3 address space). It provides address
decoding for all requests and multiplexing for completion data. All registers are
32-bits wide. Control and status registers include the control registers in the
altpcierd_dma_prg_reg module, status registers in the
altpcierd_read_dma_requester and altpcierd_write_dma_requester
modules, as well as other miscellaneous status registers.

• altpcierd_dma_dt—This module arbitrates PCI Express packets issued by the
submodules altpcierd_dma_prg_reg, altpcierd_read_dma_requester,
altpcierd_write_dma_requester and altpcierd_dma_descriptor.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
181

• altpcierd_dma_prg_reg —This module contains the chaining DMA control
registers which get programmed by the software application or BFM driver.

• altpcierd_dma_descriptor—This module retrieves the DMA read or write
descriptor from the BFM shared memory, and stores it in a descriptor FIFO. This
module issues upstream PCI Express TLPs of type MRd.

• altpcierd_read_dma_requester, altpcierd_read_dma_requester_128—For
each descriptor located in the altpcierd_descriptor FIFO, this module transfers
data from the BFM shared memory to the Endpoint memory by issuing MRd PCI
Express transaction layer packets. altpcierd_read_dma_requester is used with
the 64-bit Avalon-ST IP core. altpcierd_read_dma_requester_128 is used with
the 128-bit Avalon-ST IP core.

• altpcie rd_write_dma_requester, altpcierd_write_dma_requester_128—
For each descriptor located in the altpcierd_descriptor FIFO, this module
transfers data from the Endpoint memory to the BFM shared memory by issuing
MWr PCI Express transaction layer packets. altpcierd_write_dma_requester is
used with the 64-bit Avalon-ST IP core. altpcierd_write_dma_requester_128
is used with the 128-bit Avalon-ST IP core.ls

• altpcierd_cpld_rx_buffer—This modules monitors the available space of the RX
Buffer; It prevents RX Buffer overflow by arbitrating memory read request issued
by the application.

• altpcierd_cplerr_lmi—This module transfers the err_desc_func0 from the
application to the Hard IP block using the LMI interface. It also retimes the
cpl_err bits from the application to the Hard IP block.

• altpcierd_tl_cfg_sample—This module demultiplexes the Configuration Space
signals from the tl_cfg_ctl bus from the Hard IP block and synchronizes this
information, along with the tl_cfg_sts bus to the user clock (pld_clk)
domain.

Related Links

• Test Signals on page 105

• Chaining DMA Control and Status Registers on page 183

17.3.1 BAR/Address Map

The design example maps received memory transactions to either the target memory
block or the control register block based on which BAR the transaction matches. There
are multiple BARs that map to each of these blocks to maximize interoperability with
different variation files. The following table shows the mapping.

Table 85. BAR Map

Memory BAR Mapping

32-bit BAR0
32-bit BAR1
64-bit BAR1:0

Maps to 32 KB target memory block. Use the rc_slave module to bypass the chaining
DMA.

32-bit BAR2
32-bit BAR3
64-bit BAR3:2

Maps to DMA Read and DMA write control and status registers, a minimum of 256
bytes.

32-bit BAR4 Maps to 32 KB target memory block. Use the rc_slave module to bypass the chaining
DMA.

continued...

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
182

Memory BAR Mapping

32-bit BAR5
64-bit BAR5:4

Expansion ROM BAR Not implemented by design example; behavior is unpredictable.

I/O Space BAR (any) Not implemented by design example; behavior is unpredictable.

17.3.2 Chaining DMA Control and Status Registers

The software application programs the chaining DMA control register located in the
Endpoint application. The following table describes the control registers which consists
of four dwords for the DMA write and four dwords for the DMA read. The DMA control
registers are read/write.

In this table, Addr specifies the Endpoint byte address offset from BAR2 or BAR3.

Table 86. Chaining DMA Control Register Definitions

Addr Register Name Bits[31:]24 Bit[23:16] Bit[15:0]

0x0 DMA Wr Cntl DW0 Control Field Number of descriptors
in descriptor table

0x4 DMA Wr Cntl DW1 Base Address of the Write Descriptor Table (BDT) in the RC Memory–Upper
DWORD

0x8 DMA Wr Cntl DW2 Base Address of the Write Descriptor Table (BDT) in the RC Memory–Lower
DWORD

0xC DMA Wr Cntl DW3 Reserved Reserved RCLAST–Idx of last
descriptor to process

0x10 DMA Rd Cntl DW0 Control Field (described in the next table) Number of descriptors
in descriptor table

0x14 DMA Rd Cntl DW1 Base Address of the Read Descriptor Table (BDT) in the RC Memory–Upper
DWORD

0x18 DMA Rd Cntl DW2 Base Address of the Read Descriptor Table (BDT) in the RC Memory–Lower
DWORD

0x1C DMA Rd Cntl DW3 Reserved Reserved RCLAST–Idx of the last
descriptor to process

The following table describes the control fields of the of the DMA read and DMA write
control registers.

Table 87. Bit Definitions for the Control Field in the DMA Write Control Register and
DMA Read Control Register

Bit Field Description

16 Reserved —

17 MSI_ENA Enables interrupts of all descriptors. When 1, the Endpoint DMA module
issues an interrupt using MSI to the RC when each descriptor is
completed. Your software application or BFM driver can use this interrupt
to monitor the DMA transfer status.

18 EPLAST_ENA Enables the Endpoint DMA module to write the number of each descriptor
back to the EPLAST field in the descriptor table.

continued...

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
183

Bit Field Description

[24:20] MSI Number When your RC reads the MSI capabilities of the Endpoint, these register
bits map to the back-end MSI signals app_msi_num [4:0]. If there is
more than one MSI, the default mapping if all the MSIs are available, is:
• MSI 0 = Read
• MSI 1 = Write

[30:28] MSI Traffic Class When the RC application software reads the MSI capabilities of the
Endpoint, this value is assigned by default to MSI traffic class 0. These
register bits map to the back-end signal app_msi_tc[2:0].

31 DT RC Last Sync When 0, the DMA engine stops transfers when the last descriptor has
been executed. When 1, the DMA engine loops infinitely restarting with
the first descriptor when the last descriptor is completed. To stop the
infinite loop, set this bit to 0.

The following table defines the DMA status registers. These registers are read only. In
this table, Addr specifies the Endpoint byte address offset from BAR2 or BAR3.

Table 88. Chaining DMA Status Register Definitions

Addr Register Name Bits[31:24] Bits[23:16] Bits[15:0]

0x20 DMA Wr Status Hi For field definitions refer to Fields in the DMA Write Status High Register
below.

0x24 DMA Wr Status Lo Target Mem Address
Width

Write DMA Performance Counter. (Clock cycles
from time DMA header programmed until last
descriptor completes, including time to fetch
descriptors.)

0x28 DMA Rd Status Hi For field definitions refer to Fields in the DMA Read Status High Register
below.

0x2C DMA Rd Status Lo Max No. of Tags Read DMA Performance Counter. The number of
clocks from the time the DMA header is
programmed until the last descriptor
completes, including the time to fetch
descriptors.

0x30 Error Status Reserved Error Counter. Number
of bad ECRCs detected
by the Application
Layer. Valid only when
ECRC forwarding is
enabled.

The following table describes the fields of the DMA write status register. All of these
fields are read only.

Table 89. Fields in the DMA Write Status High Register

Bit Field Description

[31:28] CDMA version Identifies the version of the chaining DMA example design.

[27:24] Reserved —

[23:21] Max payload size The following encodings are defined:
• 001 128 bytes
• 001 256 bytes
• 010 512 bytes
• 011 1024 bytes
• 100 2048 bytes

continued...

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
184

Bit Field Description

[20:17] Reserved —

16 Write DMA descriptor
FIFO empty

Indicates that there are no more descriptors pending in the write DMA.

[15:0] Write DMA EPLAS Indicates the number of the last descriptor completed by the write DMA.
For simultaneous DMA read and write transfers, EPLAST is only supported
for the final descriptor in the descriptor table.

The following table describes the fields in the DMA read status high register. All of
these fields are read only.

Table 90. Fields in the DMA Read Status High Register

Bit Field Description

[31:24] Reserved —

[23:21] Max Read Request Size The following encodings are defined:
• 001 128 bytes
• 001 256 bytes
• 010 512 bytes
• 011 1024 bytes
• 100 2048 bytes

[20:17] Negotiated Link Width The following encodings are defined:
• 4'b0001 ×1
• 4'b0010 ×2
• 4'b0100 ×4
• 4'b1000 ×8

16 Read DMA Descriptor FIFO
Empty

Indicates that there are no more descriptors pending in the read DMA.

[15:0] Read DMA EPLAST Indicates the number of the last descriptor completed by the read DMA. For
simultaneous DMA read and write transfers, EPLAST is only supported for
the final descriptor in the descriptor table.

17.3.3 Chaining DMA Descriptor Tables

The following table describes the Chaining DMA descriptor table. This table is stored in
the BFM shared memory. It consists of a four-dword descriptor header and a
contiguous list of <n> four-dword descriptors. The Endpoint chaining DMA application
accesses the Chaining DMA descriptor table for two reasons:

• To iteratively retrieve four-dword descriptors to start a DMA

• To send update status to the RP, for example to record the number of descriptors
completed to the descriptor header

Each subsequent descriptor consists of a minimum of four dwords of data and
corresponds to one DMA transfer. (A dword equals 32 bits.)

Note: The chaining DMA descriptor table should not cross a 4 KB boundary.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
185

Table 91. Chaining DMA Descriptor Table

Byte Address
Offset to Base

Source

Descriptor Type Description

0x0 Descriptor Header Reserved

0x4 Reserved

0x8 Reserved

0xC EPLAST - when enabled by the EPLAST_ENA bit in the control
register or descriptor, this location records the number of the last
descriptor completed by the chaining DMA module.

0x10 Descriptor 0 Control fields, DMA length

0x14 Endpoint address

0x18 RC address upper dword

0x1C RC address lower dword

0x20 Descriptor 1 Control fields, DMA length

0x24 Endpoint address

0x28 RC address upper dword

0x2C RC address lower dword

. . .

0x ..0 Descriptor <n> Control fields, DMA length

0x ..4 Endpoint address

0x ..8 RC address upper dword

0x ..C RC address lower dword

The following table shows the layout of the descriptor fields following the descriptor
header.

Table 92. Chaining DMA Descriptor Format Map

Bits[31:22] Bits[21:16] Bits[15:0]

Reserved Control Fields (refer to Table 18–9) DMA Length

Endpoint Address

RC Address Upper DWORD

RC Address Lower DWORD

The following table shows the layout of the control fields of the chaining DMA
descriptor.

Table 93. Chaining DMA Descriptor Format Map (Control Fields)

Bits[21:18] Bit[17] Bit[16]

Reserved EPLAST_ENA MSI

Each descriptor provides the hardware information on one DMA transfer. The following
table describes each descriptor field.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
186

Table 94. Chaining DMA Descriptor Fields

Descriptor Field Endpoint
Access

RC Access Description

Endpoint Address R R/W A 32-bit field that specifies the base address of the memory
transfer on the Endpoint site.

RC Address
Upper DWORD

R R/W Specifies the upper base address of the memory transfer on
the RC site.

RC Address
Lower DWORD

R R/W Specifies the lower base address of the memory transfer on
the RC site.

DMA Length R R/W Specifies the number of DMA DWORDs to transfer.

EPLAST_ENA R R/W This bit is OR’d with the EPLAST_ENA bit of the control
register. When EPLAST_ENA is set, the Endpoint DMA module
updates the EPLAST field of the descriptor table with the
number of the last completed descriptor, in the form <0 – n>.
Refer to Chaining DMA Descriptor Tables on page 185 for more
information.

MSI_ENA R R/W This bit is OR’d with the MSI bit of the descriptor header.
When this bit is set the Endpoint DMA module sends an
interrupt when the descriptor is completed.

17.4 Test Driver Module

The BFM driver module, altpcietb_bfm_driver_chaining.v is configured to test the
chaining DMA example Endpoint design. The BFM driver module configures the
Endpoint Configuration Space registers and then tests the example Endpoint chaining
DMA channel. This file is stored in the <working_dir>/testbench/
<variation_name>/simulation/submodules directory.

The BFM test driver module performs the following steps in sequence:

1. Configures the Root Port and Endpoint Configuration Spaces, which the BFM test
driver module does by calling the procedure ebfm_cfg_rp_ep, which is part of
altpcietb_bfm_configure.

2. Finds a suitable BAR to access the example Endpoint design Control Register
space. Either BARs 2 or 3 must be at least a 256-byte memory BAR to perform the
DMA channel test. The find_mem_bar procedure in the
altpcietb_bfm_driver_chaining does this.

3. If a suitable BAR is found in the previous step, the driver performs the following
tasks:

a. DMA read—The driver programs the chaining DMA to read data from the BFM
shared memory into the Endpoint memory. The descriptor control fields are
specified so that the chaining DMA completes the following steps to indicate
transfer completion:

• The chaining DMA writes the EPLast bit of the Chaining DMA Descriptor
Table after finishing the data transfer for the first and last descriptors.

• The chaining DMA issues an MSI when the last descriptor has completed.

a. DMA write—The driver programs the chaining DMA to write the data from its
Endpoint memory back to the BFM shared memory. The descriptor control
fields are specified so that the chaining DMA completes the following steps to
indicate transfer completion:

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
187

• The chaining DMA writes the EPLast bit of the Chaining DMA Descriptor
Table after completing the data transfer for the first and last descriptors.

• The chaining DMA issues an MSI when the last descriptor has completed.

• The data written back to BFM is checked against the data that was read
from the BFM.

• The driver programs the chaining DMA to perform a test that
demonstrates downstream access of the chaining DMA Endpoint memory.

Note: Edit this file if you want to add your own custom PCIe transactions. Insert your own
custom function after the find_mem_bar function. You can use the functions in the
BFM Procedures and Functions section.

Related Links

• Chaining DMA Descriptor Tables on page 185

• BFM Procedures and Functions on page 202

17.5 DMA Write Cycles

The procedure dma_wr_test used for DMA writes uses the following steps:

1. Configures the BFM shared memory. Configuration is accomplished with three
descriptor tables described below.

Table 95. Write Descriptor 0

Offset in BFM
in Shared
Memory

Value Description

DW0 0x810 82 Transfer length in dwords and control bits as described in Bit
Definitions for the Control Field in the DMA Write Control Register and
DMA Read Control Register.

DW1 0x814 3 Endpoint address

DW2 0x818 0 BFM shared memory data buffer 0 upper address value

DW3 0x81c 0x1800 BFM shared memory data buffer 1 lower address value

Data Buffer
0

0x1800 Increment by 1
from
0x1515_0001

Data content in the BFM shared memory from address: 0x01800–
0x1840

Table 96. Write Descriptor 1

Offset in BFM
Shared
Memory

Value Description

DW0 0x820 1,024 Transfer length in dwords and control bits as described in Bit
Definitions for the Control Field in the DMA Write Control Register and
DMA Read Control Register .

DW1 0x824 0 Endpoint address

continued...

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
188

Offset in BFM
Shared
Memory

Value Description

DW2 0x828 0 BFM shared memory data buffer 1 upper address value

DW3 0x82c 0x2800 BFM shared memory data buffer 1 lower address value

Data Buffer
1

0x02800 Increment by 1
from
0x2525_0001

Data content in the BFM shared memory from address: 0x02800

Table 97. Write Descriptor 2

Offset in BFM
Shared
Memory

Value Description

DW0 0x830 644 Transfer length in dwords and control bits as described in Bit
Definitions for the Control Field in the DMA Write Control Register and
DMA Read Control Register.

DW1 0x834 0 Endpoint address

DW2 0x838 0 BFM shared memory data buffer 2 upper address value

DW3 0x83c 0x057A0 BFM shared memory data buffer 2 lower address value

Data Buffer
2

0x057A0 Increment by 1
from
0x3535_0001

Data content in the BFM shared memory from address: 0x057A0

2. Sets up the chaining DMA descriptor header and starts the transfer data from the
Endpoint memory to the BFM shared memory. The transfer calls the procedure
dma_set_header which writes four dwords, DW0:DW3, into the DMA write
register module.

Table 98. DMA Control Register Setup for DMA Write

Offset in DMA
Control
Register
(BAR2)

Value Description

DW0 0x0 3 Number of descriptors and control bits as described in Chaining DMA
Control Register Definitions.

DW1 0x4 0 BFM shared memory descriptor table upper address value

DW2 0x8 0x800 BFM shared memory descriptor table lower address value

DW3 0xc 2 Last valid descriptor

After writing the last dword, DW3, of the descriptor header, the DMA write starts
the three subsequent data transfers.

3. Waits for the DMA write completion by polling the BFM share memory location
0x80c, where the DMA write engine is updating the value of the number of
completed descriptor. Calls the procedures rcmem_poll and msi_poll to
determine when the DMA write transfers have completed.

Related Links

Chaining DMA Control and Status Registers on page 183

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
189

17.6 DMA Read Cycles

The procedure dma_rd_test used for DMA read uses the following three steps:

1. Configures the BFM shared memory with a call to the procedure
dma_set_rd_desc_data which sets the following three descriptor tables. .

Table 99. Read Descriptor 0

Offset in BFM
Shared
Memory

Value Description

DW0 0x910 82 Transfer length in dwords and control bits as described in on
page 18–15

DW1 0x914 3 Endpoint address value

DW2 0x918 0 BFM shared memory data buffer 0 upper address value

DW3 0x91c 0x8DF0 BFM shared memory data buffer 0 lower address value

Data Buffer
0

0x8DF0 Increment by 1
from
0xAAA0_0001

Data content in the BFM shared memory from address: 0x89F0

Table 100. Read Descriptor 1

Offset in BFM
Shared
Memory

Value Description

DW0 0x920 1,024 Transfer length in dwords and control bits as described in on
page 18–15

DW1 0x924 0 Endpoint address value

DW2 0x928 10 BFM shared memory data buffer 1 upper address value

DW3 0x92c 0x10900 BFM shared memory data buffer 1 lower address value

Data Buffer
1

0x10900 Increment by 1
from
0xBBBB_0001

Data content in the BFM shared memory from address: 0x10900

Table 101. Read Descriptor 2

Offset in BFM
Shared
Memory

Value Description

DW0 0x930 644 Transfer length in dwords and control bits as described in on
page 18–15

DW1 0x934 0 Endpoint address value

DW2 0x938 0 BFM shared memory upper address value

DW3 0x93c 0x20EF0 BFM shared memory lower address value

Data Buffer
2

0x20EF0 Increment by 1
from
0xCCCC_0001

Data content in the BFM shared memory from address: 0x20EF0

2. Sets up the chaining DMA descriptor header and starts the transfer data from the
BFM shared memory to the Endpoint memory by calling the procedure
dma_set_header which writes four dwords, DW0:DW3 into the DMA read
register module.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
190

Table 102. DMA Control Register Setup for DMA Read

Offset in DMA Control
Registers (BAR2)

Value Description

DW0 0x0 3 Number of descriptors and control bits as described in Chaining DMA
Control Register Definitions.

DW1 0x14 0 BFM shared memory upper address value

DW2 0x18 0x900 BFM shared memory lower address value

DW3 0x1c 2 Last descriptor written

After writing the last dword of the Descriptor header (DW3), the DMA read starts
the three subsequent data transfers.

3. Waits for the DMA read completion by polling the BFM shared memory location
0x90c, where the DMA read engine is updating the value of the number of
completed descriptors. Calls the procedures rcmem_poll and msi_poll to
determine when the DMA read transfers have completed.

17.7 Root Port Design Example

The design example includes the following primary components:

• Root Port variation (<qsys_systemname>.

• Avalon-ST Interfaces (altpcietb_bfm_vc_intf_ast)—handles the transfer of TLP
requests and completions to and from the Arria 10 Hard IP for PCI Express
variation using the Avalon-ST interface.

• Root Port BFM tasks—contains the high-level tasks called by the test driver,
low-level tasks that request PCI Express transfers from
altpcietb_bfm_vc_intf_ast, the Root Port memory space, and simulation
functions such as displaying messages and stopping simulation.

• Test Driver (altpcietb_bfm_driver_rp.v)—the chaining DMA Endpoint test driver
which configures the Root Port and Endpoint for DMA transfer and checks for the
successful transfer of data. Refer to the Test Driver Modulefor a detailed
description.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
191

Figure 115. Root Port Design Example

 Root Port
Variation

(variation_name.v)

Avalon-ST Interface
(altpcietb_bfm_vc_intf)

Test Driver
(altpcietb_bfm_

driver_rp.v)

BFM Shared Memory
(altpcietb_bfm_shmem

_common)

BFM Read/Write Shared Request Procedures

BFM Configuration Procedures

BFM Request Interface
(altpcietb_bfm_req_intf_common)

BFM Log Interface
(altpcietb_bfm_log

_common)

PCI Express
Link

Root Port BFM Tasks and Shared Memory

altpcietb_bfm_ep_example_chaining_pipe1b.v

Avalon-ST

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
192

You can use the example Root Port design for Verilog HDL simulation. All of the
modules necessary to implement the example design with the variation file are
contained in altpcietb_bfm_ep_example_chaining_pipen1b.v.

The top-level of the testbench instantiates the following key files:

• altlpcietb_bfm_top_ep.v— this is the Endpoint BFM. This file also instantiates
the SERDES and PIPE interface.

• altpcietb_pipe_phy.v—used to simulate the PIPE interface.

• altp cietb_bfm_ep_example_chaining_pipen1b.v—the top-level of the Root
Port design example that you use for simulation. This module instantiates the Root
Port variation, <variation_name> .v, and the Root Port application
altpcietb_bfm_vc_intf _<application_width> . This module provides both PIPE
and serial interfaces for the simulation environment. This module has two debug
ports named test_out_icm_(which is the test_out signal from the Hard IP)
and test_in which allows you to monitor and control internal states of the Hard
IP variation.

• altpcietb_bfm_vc_intf_ast.v—a wrapper module which instantiates either
altpcietb_vc_intf_64 or altpcietb_vc_intf_ <application_width> based on the
type of Avalon-ST interface that is generated.

• altpcietb_vc_intf_ _<application_width> .v—provide the interface between the
Arria 10 Hard IP for PCI Express variant and the Root Port BFM tasks. They
provide the same function as the altpcietb_bfm_vc_intf.v module, transmitting
requests and handling completions. Refer to the Root Port BFM for a full
description of this function. This version uses Avalon-ST signaling with either a 64-
or 128-bit data bus interface.

• altpcierd_tl_cfg_sample.v—accesses Configuration Space signals from the
variant. Refer to the Chaining DMA Design Examples for a description of this
module.

Files in subdirectory <qsys_systemname> /testbench/simulation/submodules:

• altpcietb_bfm_ep_example_chaining_pipen1b.v—the simulation model for
the chaining DMA Endpoint.

• altpcietb_bfm_driver_rp.v–this file contains the functions to implement the
shared memory space, PCI Express reads and writes, initialize the Configuration
Space registers, log and display simulation messages, and define global constants.

Related Links

• Test Driver Module on page 187

• Chaining DMA Design Examples on page 177

17.8 Root Port BFM

The basic Root Port BFM provides Verilog HDL task-based interface for requesting
transactions that are issued to the PCI Express link. The Root Port BFM also handles
requests received from the PCI Express link. The following figure provides an overview
of the Root Port BFM.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
193

Figure 116. Root Port BFM

BFM Shared Memory
(altpcietb_bfm_shmem

_common)

BFM Log Interface
(altpcietb_bfm_log

_common)

Root Port RTL Model (altpcietb_bfm_rp_top_x8_pipen1b)

IP Functional Simulation
Model of the Root

Port Interface
(altpcietb_bfm_driver_rp)

Avalon-ST Interface
(altpcietb_bfm_vc_intf)

Root Port BFM

BFM Read/Write Shared Request Procedures

BFM Configuration Procedures

BFM Request Interface
(altpcietb_bfm_req_intf_common)

The functionality of each of the modules included is explained below.

• BFM shared memory (altpcietb_bfm_shmem_common Verilog HDL include file)
—The Root Port BFM is based on the BFM memory that is used for the following
purposes:

• Storing data received with all completions from the PCI Express link.

• Storing data received with all write transactions received from the PCI Express
link.

• Sourcing data for all completions in response to read transactions received from
the PCI Express link.

• Sourcing data for most write transactions issued to the PCI Express link. The only
exception is certain BFM write procedures that have a four-byte field of write data
passed in the call.

• Storing a data structure that contains the sizes of and the values programmed in
the BARs of the Endpoint.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
194

A set of procedures is provided to read, write, fill, and check the shared memory from
the BFM driver. For details on these procedures, see BFM Shared Memory Access
Procedures.

• BFM Read/Write Request Functions(altpcietb_bfm_driver_rp.v)—These
functions provide the basic BFM calls for PCI Express read and write requests. For
details on these procedures, refer to BFM Read and Write Procedures.

• BFM Configuration Functions(altpcietb_bfm_driver_rp.v)—These functions
provide the BFM calls to request configuration of the PCI Express link and the
Endpoint Configuration Space registers. For details on these procedures and
functions, refer to BFM Configuration Procedures.

• BFM Log Interface(altpcietb_bfm_driver_rp.v)—The BFM log functions
provides routines for writing commonly formatted messages to the simulator
standard output and optionally to a log file. It also provides controls that stop
simulation on errors. For details on these procedures, refer to BFM Log and
Message Procedures.

• BFM Request Interface(altpcietb_bfm_driver_rp.v)—This interface provides
the low-level interface between the altpcietb_bfm_rdwr and
altpcietb_bfm_configure procedures or functions and the Root Port RTL
Model. This interface stores a write-protected data structure containing the sizes
and the values programmed in the BAR registers of the Endpoint, as well as, other
critical data used for internal BFM management. You do not need to access these
files directly to adapt the testbench to test your Endpoint application.

• Avalon-ST Interfaces (altpcietb_bfm_vc_intf.v)—These interface modules
handle the Root Port interface model. They take requests from the BFM request
interface and generate the required PCI Express transactions. They handle
completions received from the PCI Express link and notify the BFM request
interface when requests are complete. Additionally, they handle any requests
received from the PCI Express link, and store or fetch data from the shared
memory before generating the required completions.

Related Links

• Test Signals on page 105

• BFM Shared Memory Access Procedures on page 208

17.8.1 BFM Memory Map

The BFM shared memory is configured to be two MBs. The BFM shared memory is
mapped into the first two MBs of I/O space and also the first two MBs of memory
space. When the Endpoint application generates an I/O or memory transaction in this
range, the BFM reads or writes the shared memory.

17.8.2 Configuration Space Bus and Device Numbering

The Root Port interface is assigned to be device number 0 on internal bus number 0.
The Endpoint can be assigned to be any device number on any bus number (greater
than 0) through the call to procedure ebfm_cfg_rp_ep. The specified bus number is
assigned to be the secondary bus in the Root Port Configuration Space.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
195

17.8.3 Configuration of Root Port and Endpoint

Before you issue transactions to the Endpoint, you must configure the Root Port and
Endpoint Configuration Space registers. To configure these registers, call the
procedure ebfm_cfg_rp_ep, which is included in altpcietb_bfm_driver_rp.v.

The ebfm_cfg_rp_ep executes the following steps to initialize the Configuration
Space:

1. Sets the Root Port Configuration Space to enable the Root Port to send
transactions on the PCI Express link.

2. Sets the Root Port and Endpoint PCI Express Capability Device Control registers as
follows:

a. Disables Error Reporting in both the Root Port and Endpoint. BFM does not
have error handling capability.

b. Enables Relaxed Ordering in both Root Port and Endpoint.

c. Enables Extended Tags for the Endpoint, if the Endpoint has that capability.

d. Disables Phantom Functions, Aux Power PM, and No Snoop in both the
Root Port and Endpoint.

e. Sets the Max Payload Size to what the Endpoint supports because the Root
Port supports the maximum payload size.

f. Sets the Root Port Max Read Request Size to 4 KB because the example
Endpoint design supports breaking the read into as many completions as
necessary.

g. Sets the Endpoint Max Read Request Size equal to the Max Payload Size
because the Root Port does not support breaking the read request into
multiple completions.

3. Assigns values to all the Endpoint BAR registers. The BAR addresses are assigned
by the algorithm outlined below.

a. I/O BARs are assigned smallest to largest starting just above the ending
address of BFM shared memory in I/O space and continuing as needed
throughout a full 32-bit I/O space.

b. The 32-bit non-prefetchable memory BARs are assigned smallest to largest,
starting just above the ending address of BFM shared memory in memory
space and continuing as needed throughout a full 32-bit memory space.

c. Assignment of the 32-bit prefetchable and 64-bit prefetchable memory BARS
are based on the value of the addr_map_4GB_limit input to the
ebfm_cfg_rp_ep. The default value of the addr_map_4GB_limit is 0.

If the addr_map_4GB_limit input to the ebfm_cfg_rp_ep is set to 0, then
the 32-bit prefetchable memory BARs are assigned largest to smallest,
starting at the top of 32-bit memory space and continuing as needed down to
the ending address of the last 32-bit non-prefetchable BAR.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
196

However, if the addr_map_4GB_limit input is set to 1, the address map is
limited to 4 GB, the 32-bit and 64-bit prefetchable memory BARs are assigned
largest to smallest, starting at the top of the 32-bit memory space and
continuing as needed down to the ending address of the last 32-bit non-
prefetchable BAR.

d. If the addr_map_4GB_limit input to the ebfm_cfg_rp_ep is set to 0, then
the 64-bit prefetchable memory BARs are assigned smallest to largest starting
at the 4 GB address assigning memory ascending above the 4 GB limit
throughout the full 64-bit memory space.

If the addr_map_4 GB_limit input to the ebfm_cfg_rp_ep is set to 1, then
the 32-bit and the 64-bit prefetchable memory BARs are assigned largest to
smallest starting at the 4 GB address and assigning memory by descending
below the 4 GB address to addresses memory as needed down to the ending
address of the last 32-bit non-prefetchable BAR.

The above algorithm cannot always assign values to all BARs when there are a
few very large (1 GB or greater) 32-bit BARs. Although assigning addresses to
all BARs may be possible, a more complex algorithm would be required to
effectively assign these addresses. However, such a configuration is unlikely to
be useful in real systems. If the procedure is unable to assign the BARs, it
displays an error message and stops the simulation.

4. Based on the above BAR assignments, the Root Port Configuration Space address
windows are assigned to encompass the valid BAR address ranges.

5. The Endpoint PCI control register is set to enable master transactions, memory
address decoding, and I/O address decoding.

The ebfm_cfg_rp_ep procedure also sets up a bar_table data structure in BFM
shared memory that lists the sizes and assigned addresses of all Endpoint BARs. This
area of BFM shared memory is write-protected, which means any user write accesses
to this area cause a fatal simulation error. This data structure is then used by
subsequent BFM procedure calls to generate the full PCI Express addresses for read
and write requests to particular offsets from a BAR. This procedure allows the
testbench code that accesses the Endpoint Application Layer to be written to use
offsets from a BAR and not have to keep track of the specific addresses assigned to
the BAR. The following table shows how those offsets are used.

Table 103. BAR Table Structure

Offset (Bytes) Description

+0 PCI Express address in BAR0

+4 PCI Express address in BAR1

+8 PCI Express address in BAR2

+12 PCI Express address in BAR3

+16 PCI Express address in BAR4

+20 PCI Express address in BAR5

+24 PCI Express address in Expansion ROM BAR

+28 Reserved

+32 BAR0 read back value after being written with all 1’s (used to compute size)

+36 BAR1 read back value after being written with all 1’s

continued...

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
197

Offset (Bytes) Description

+40 BAR2 read back value after being written with all 1’s

+44 BAR3 read back value after being written with all 1’s

+48 BAR4 read back value after being written with all 1’s

+52 BAR5 read back value after being written with all 1’s

+56 Expansion ROM BAR read back value after being written with all 1’s

+60 Reserved

The configuration routine does not configure any advanced PCI Express capabilities
such as the AER capability.

Besides the ebfm_cfg_rp_ep procedure in altpcietb_bfm_driver_rp.v, routines to
read and write Endpoint Configuration Space registers directly are available in the
Verilog HDL include file. After the ebfm_cfg_rp_ep procedure is run the PCI Express
I/O and Memory Spaces have the layout as described in the following three figures.
The memory space layout is dependent on the value of the add r_map_4GB_limit
input parameter. If addr_map_4GB_limit is 1 the resulting memory space map is
shown in the following figure.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
198

Figure 117. Memory Space Layout—4 GB Limit

Root Complex
Shared Memory

Unused

Configuration Scratch
Space Used by

BFM Routines - Not
Writeable by User
Calls or Endpoint

BAR Table
Used by BFM

Routines - Not
Writeable by User
Calls or End Point

Endpoint Non-
Prefetchable Memory

Space BARs
Assigned Smallest

to Largest

Endpoint Memory
Space BARs

Prefetchable 32-bit
and 64-bit

Assigned Smallest
to Largest

0xFFFF FFFF

0x0020 0000

0x0000 0000
Address

0x001F FFC0

0x001F FF80

If addr_map_4GB_limit is 0, the resulting memory space map is shown in the
following figure.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
199

Figure 118. Memory Space Layout—No Limit

Root Complex
Shared Memory

Unused

Unused

Configuration Scratch
Space Used by
Routines - Not

Writeable by User
Calls or Endpoint

BAR Table
Used by BFM

Routines - Not
Writeable by User
Calls or Endpoint

Endpoint Non-
Prefetchable Memory

Space BARs
Assigned Smallest

to Largest

Endpoint Memory
Space BARs

Prefetchable 64-bit
Assigned Smallest

to Largest

Endpoint Memory
Space BARs

Prefetchable 32-bit
Assigned Smallest

to Largest

BAR-Size Dependent

BAR-Size Dependent

BAR-Size Dependent

0x0000 0001 0000 0000

0xFFFF FFFF FFFF FFFF

0x0020 0000

0x0000 0000
Address

0x001F FF00

0x001F FF80

The following figure shows the I/O address space.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
200

Figure 119. I/O Address Space

Root Complex
Shared Memory

Unused

Configuration Scratch
Space Used by BFM

Routines - Not
Writeable by User
Calls or Endpoint

BAR Table
Used by BFM

Routines - Not
Writeable by User
Calls or Endpoint

Endpoint
I/O Space BARs

Assigned Smallest
to Largest

BAR-Size Dependent

0xFFFF FFFF

0x0020 0000

0x0000 0000
Address

0x001F FFC0

0x001F FF80

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
201

17.8.4 Issuing Read and Write Transactions to the Application Layer

Read and write transactions are issued to the Endpoint Application Layer by calling one
of the ebfm_bar procedures in altpcietb_bfm_driver_rp.v. The procedures and
functions listed below are available in the Verilog HDL include file
altpcietb_bfm_driver_rp.v. The complete list of available procedures and functions
is as follows:

• ebfm_barwr—writes data from BFM shared memory to an offset from a specific
Endpoint BAR. This procedure returns as soon as the request has been passed to
the VC interface module for transmission.

• ebfm_barwr_imm—writes a maximum of four bytes of immediate data (passed in
a procedure call) to an offset from a specific Endpoint BAR. This procedure returns
as soon as the request has been passed to the VC interface module for
transmission.

• ebfm_barrd_wait—reads data from an offset of a specific Endpoint BAR and
stores it in BFM shared memory. This procedure blocks waiting for the completion
data to be returned before returning control to the caller.

• ebfm_barrd_nowt—reads data from an offset of a specific Endpoint BAR and
stores it in the BFM shared memory. This procedure returns as soon as the request
has been passed to the VC interface module for transmission, allowing subsequent
reads to be issued in the interim.

These routines take as parameters a BAR number to access the memory space and
the BFM shared memory address of the bar_table data structure that was set up by
the ebfm_cfg_rp_ep procedure. (Refer to Configuration of Root Port and Endpoint.)
Using these parameters simplifies the BFM test driver routines that access an offset
from a specific BAR and eliminates calculating the addresses assigned to the specified
BAR.

The Root Port BFM does not support accesses to Endpoint I/O space BARs.

Related Links

Configuration of Root Port and Endpoint on page 196

17.9 BFM Procedures and Functions

The BFM includes procedures, functions, and tasks to drive Endpoint application
testing. It also includes procedures to run the chaining DMA design example.

The BFM read and write procedures read and write data among BFM shared memory,
Endpoint BARs, and specified configuration registers. The procedures and functions are
available in the Verilog HDL. They are in the include file altpcietb_bfm_driver.v.
These procedures and functions support issuing memory and configuration
transactions on the PCI Express link.

17.9.1 ebfm_barwr Procedure

The ebfm_barwr procedure writes a block of data from BFM shared memory to an
offset from the specified Endpoint BAR. The length can be longer than the configured
MAXIMUM_PAYLOAD_SIZE; the procedure breaks the request up into multiple
transactions as needed. This routine returns as soon as the last transaction has been
accepted by the VC interface module.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
202

Location altpcietb_bfm_rdwr.v

Syntax ebfm_barwr(bar_table, bar_num, pcie_offset, lcladdr, byte_len, tclass)

Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.
The bar_table structure stores the address assigned to each BAR so
that the driver code does not need to be aware of the actual assigned
addresses only the application specific offsets from the BAR.

bar_num Number of the BAR used with pcie_offset to determine PCI Express
address.

pcie_offset Address offset from the BAR base.

lcladdr BFM shared memory address of the data to be written.

byte_len Length, in bytes, of the data written. Can be 1 to the minimum of the
bytes remaining in the BAR space or BFM shared memory.

tclass Traffic class used for the PCI Express transaction.

17.9.2 ebfm_barwr_imm Procedure

The ebfm_barwr_imm procedure writes up to four bytes of data to an offset from the
specified Endpoint BAR.

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_barwr_imm(bar_table, bar_num, pcie_offset, imm_data, byte_len, tclass)

Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.
The bar_table structure stores the address assigned to each BAR so
that the driver code does not need to be aware of the actual assigned
addresses only the application specific offsets from the BAR.

bar_num Number of the BAR used with pcie_offset to determine PCI Express
address.

pcie_offset Address offset from the BAR base.

imm_data Data to be written. In Verilog HDL, this argument is reg [31:0].In
both languages, the bits written depend on the length as follows:
Length Bits Written
• 4: 31 downto 0
• 3: 23 downto 0
• 2: 15 downto 0
• 1: 7 downto 0

byte_len Length of the data to be written in bytes. Maximum length is 4 bytes.

tclass Traffic class to be used for the PCI Express transaction.

17.9.3 ebfm_barrd_wait Procedure

The ebfm_barrd_wait procedure reads a block of data from the offset of the
specified Endpoint BAR and stores it in BFM shared memory. The length can be longer
than the configured maximum read request size; the procedure breaks the request up
into multiple transactions as needed. This procedure waits until all of the completion
data is returned and places it in shared memory.

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_barrd_wait(bar_table, bar_num, pcie_offset, lcladdr, byte_len, tclass)

continued...

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
203

Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.
The bar_table structure stores the address assigned to each BAR so that
the driver code does not need to be aware of the actual assigned
addresses only the application specific offsets from the BAR.

bar_num Number of the BAR used with pcie_offset to determine PCI Express
address.

pcie_offset Address offset from the BAR base.

lcladdr BFM shared memory address where the read data is stored.

byte_len Length, in bytes, of the data to be read. Can be 1 to the minimum of
the bytes remaining in the BAR space or BFM shared memory.

tclass Traffic class used for the PCI Express transaction.

17.9.4 ebfm_barrd_nowt Procedure

The ebfm_barrd_nowt procedure reads a block of data from the offset of the
specified Endpoint BAR and stores the data in BFM shared memory. The length can be
longer than the configured maximum read request size; the procedure breaks the
request up into multiple transactions as needed. This routine returns as soon as the
last read transaction has been accepted by the VC interface module, allowing
subsequent reads to be issued immediately.

Location altpcietb_b fm_driver_rp.v

Syntax ebfm_barrd_nowt(bar_table, bar_num, pcie_offset, lcladdr, byte_len, tclass)

Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.

bar_num Number of the BAR used with pcie_offset to determine PCI Express
address.

pcie_offset Address offset from the BAR base.

lcladdr BFM shared memory address where the read data is stored.

byte_len Length, in bytes, of the data to be read. Can be 1 to the minimum of
the bytes remaining in the BAR space or BFM shared memory.

tclass Traffic Class to be used for the PCI Express transaction.

17.9.5 ebfm_cfgwr_imm_wait Procedure

The ebfm_cfgwr_imm_wait procedure writes up to four bytes of data to the
specified configuration register. This procedure waits until the write completion has
been returned.

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_cfgwr_imm_wait(bus_num, dev_num, fnc_num, imm_regb_ad, regb_ln, imm_data,
compl_status

Arguments bus_num PCI Express bus number of the target device.

dev_num PCI Express device number of the target device.

fnc_num Function number in the target device to be accessed.

regb_ad Byte-specific address of the register to be written.

continued...

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
204

Location altpcietb_bfm_driver_rp.v

regb_ln Length, in bytes, of the data written. Maximum length is four bytes. The
regb_ln and the regb_ad arguments cannot cross a DWORD
boundary.

imm_data Data to be written.
This argument is reg [31:0].
The bits written depend on the length:
• 4: 31 downto 0
• 3: 23 downto 0
• 2: 15 downto 0
• 1: 7 downto 0

compl_status This argument is reg [2:0].
This argument is the completion status as specified in the PCI Express
specification. The following encodings are defined:
• 3’b000: SC— Successful completion
• 3’b001: UR— Unsupported Request
• 3’b010: CRS — Configuration Request Retry Status
• 3’b100: CA — Completer Abort

17.9.6 ebfm_cfgwr_imm_nowt Procedure

The ebfm_cfgwr_imm_nowt procedure writes up to four bytes of data to the
specified configuration register. This procedure returns as soon as the VC interface
module accepts the transaction, allowing other writes to be issued in the interim. Use
this procedure only when successful completion status is expected.

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_cfgwr_imm_nowt(bus_num, dev_num, fnc_num, imm_regb_adr, regb_len,
imm_data)

Arguments bus_num PCI Express bus number of the target device.

dev_num PCI Express device number of the target device.

fnc_num Function number in the target device to be accessed.

regb_ad Byte-specific address of the register to be written.

regb_ln Length, in bytes, of the data written. Maximum length is four bytes, The
regb_ln the regb_ad arguments cannot cross a DWORD boundary.

imm_data Data to be written
This argument is reg [31:0].
In both languages, the bits written depend on the length. The following
encodes are defined.
• 4: [31:0]
• 3: [23:0]
• 2: [15:0]
• 1: [7:0]

17.9.7 ebfm_cfgrd_wait Procedure

The ebfm_cfgrd_wait procedure reads up to four bytes of data from the specified
configuration register and stores the data in BFM shared memory. This procedure
waits until the read completion has been returned.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
205

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_cfgrd_wait(bus_num, dev_num, fnc_num, regb_ad, regb_ln, lcladdr,
compl_status)

Arguments bus_num PCI Express bus number of the target device.

dev_num PCI Express device number of the target device.

fnc_num Function number in the target device to be accessed.

regb_ad Byte-specific address of the register to be written.

regb_ln Length, in bytes, of the data read. Maximum length is four bytes. The
regb_ln and the regb_ad arguments cannot cross a DWORD
boundary.

lcladdr BFM shared memory address of where the read data should be placed.

compl_status Completion status for the configuration transaction.
This argument is reg [2:0].
In both languages, this is the completion status as specified in the PCI
Express specification. The following encodings are defined.
• 3’b000: SC— Successful completion
• 3’b001: UR— Unsupported Request
• 3’b010: CRS — Configuration Request Retry Status
• 3’b100: CA — Completer Abort

17.9.8 ebfm_cfgrd_nowt Procedure

The ebfm_cfgrd_nowt procedure reads up to four bytes of data from the specified
configuration register and stores the data in the BFM shared memory. This procedure
returns as soon as the VC interface module has accepted the transaction, allowing
other reads to be issued in the interim. Use this procedure only when successful
completion status is expected and a subsequent read or write with a wait can be used
to guarantee the completion of this operation.

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_cfgrd_nowt(bus_num, dev_num, fnc_num, regb_ad, regb_ln, lcladdr)

Arguments bus_num PCI Express bus number of the target device.

dev_num PCI Express device number of the target device.

fnc_num Function number in the target device to be accessed.

regb_ad Byte-specific address of the register to be written.

regb_ln Length, in bytes, of the data written. Maximum length is four bytes. The
regb_ln and regb_ad arguments cannot cross a DWORD boundary.

lcladdr BFM shared memory address where the read data should be placed.

17.9.9 BFM Configuration Procedures

The BFM configuration procedures are available in altpcietb_bfm_driver_rp.v.
These procedures support configuration of the Root Port and Endpoint Configuration
Space registers.

All Verilog HDL arguments are type integer and are input-only unless specified
otherwise.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
206

17.9.9.1 ebfm_cfg_rp_ep Procedure

The ebfm_cfg_rp_ep procedure configures the Root Port and Endpoint Configuration
Space registers for operation.

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_cfg_rp_ep(bar_table, ep_bus_num, ep_dev_num, rp_max_rd_req_size,
display_ep_config, addr_map_4GB_limit)

Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.
This routine populates the bar_table structure. The bar_table
structure stores the size of each BAR and the address values assigned to
each BAR. The address of the bar_table structure is passed to all
subsequent read and write procedure calls that access an offset from a
particular BAR.

ep_bus_num PCI Express bus number of the target device. This number can be any
value greater than 0. The Root Port uses this as its secondary bus
number.

ep_dev_num PCI Express device number of the target device. This number can be
any value. The Endpoint is automatically assigned this value when it
receives its first configuration transaction.

rp_max_rd_req_size Maximum read request size in bytes for reads issued by the Root Port.
This parameter must be set to the maximum value supported by the
Endpoint Application Layer. If the Application Layer only supports reads
of the MAXIMUM_PAYLOAD_SIZE, then this can be set to 0 and the read
request size will be set to the maximum payload size. Valid values for
this argument are 0, 128, 256, 512, 1,024, 2,048 and 4,096.

display_ep_config When set to 1 many of the Endpoint Configuration Space registers are
displayed after they have been initialized, causing some additional reads
of registers that are not normally accessed during the configuration
process such as the Device ID and Vendor ID.

addr_map_4GB_limit When set to 1 the address map of the simulation system will be limited
to 4 GB. Any 64-bit BARs will be assigned below the 4 GB limit.

17.9.9.2 ebfm_cfg_decode_bar Procedure

The ebfm_cfg_decode_bar procedure analyzes the information in the BAR table for
the specified BAR and returns details about the BAR attributes.

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_cfg_decode_bar(bar_table, bar_num, log2_size, is_mem, is_pref, is_64b)

Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.

bar_num BAR number to analyze.

log2_size This argument is set by the procedure to the log base 2 of the size of
the BAR. If the BAR is not enabled, this argument will be set to 0.

is_mem The procedure sets this argument to indicate if the BAR is a memory
space BAR (1) or I/O Space BAR (0).

is_pref The procedure sets this argument to indicate if the BAR is a prefetchable
BAR (1) or non-prefetchable BAR (0).

is_64b The procedure sets this argument to indicate if the BAR is a 64-bit BAR
(1) or 32-bit BAR (0). This is set to 1 only for the lower numbered BAR
of the pair.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
207

17.9.10 BFM Shared Memory Access Procedures

The BFM shared memory access procedures and functions are in the Verilog HDL
include file altpcietb_bfm_driver.v. These procedures and functions support
accessing the BFM shared memory.

17.9.10.1 Shared Memory Constants

The following constants are defined in altpcietb_bfm_driver.v. They select a data
pattern in the shmem_fill and shmem_chk_ok routines. These shared memory
constants are all Verilog HDL type integer.

Table 104. Constants: Verilog HDL Type INTEGER

Constant Description

SHMEM_FILL_ZEROS Specifies a data pattern of all zeros

SHMEM_FILL_BYTE_INC Specifies a data pattern of incrementing 8-bit bytes (0x00, 0x01, 0x02,
etc.)

SHMEM_FILL_WORD_INC Specifies a data pattern of incrementing 16-bit words (0x0000, 0x0001,
0x0002, etc.)

SHMEM_FILL_DWORD_INC Specifies a data pattern of incrementing 32-bit dwords (0x00000000,
0x00000001, 0x00000002, etc.)

SHMEM_FILL_QWORD_INC Specifies a data pattern of incrementing 64-bit qwords
(0x0000000000000000, 0x0000000000000001, 0x0000000000000002,
etc.)

SHMEM_FILL_ONE Specifies a data pattern of all ones

17.9.10.2 shmem_write

The shmem_write procedure writes data to the BFM shared memory.

Location altpcietb_bfm_driver_rp.v

Syntax shmem_write(addr, data, leng)

Arguments addr BFM shared memory starting address for writing data

data Data to write to BFM shared memory.
This parameter is implemented as a 64-bit vector. leng is 1–8 bytes.
Bits 7 downto 0 are written to the location specified by addr; bits 15
downto 8 are written to the addr+1 location, etc.

length Length, in bytes, of data written

17.9.10.3 shmem_read Function

The shmem_read function reads data to the BFM shared memory.

Location altpcietb_bfm_driver_rp.v

Syntax data:= shmem_read(addr, leng)

Arguments addr BFM shared memory starting address for reading data

leng Length, in bytes, of data read

Return data Data read from BFM shared memory.

continued...

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
208

Location altpcietb_bfm_driver_rp.v

This parameter is implemented as a 64-bit vector. leng is 1- 8 bytes. If
leng is less than 8 bytes, only the corresponding least significant bits of
the returned data are valid.
Bits 7 downto 0 are read from the location specified by addr; bits 15
downto 8 are read from the addr+1 location, etc.

17.9.10.4 shmem_display Verilog HDL Function

The shmem_display Verilog HDL function displays a block of data from the BFM
shared memory.

Location altpcietb_bfm_driver_rp.v

Syntax Verilog HDL: dummy_return:=shmem_display(addr, leng, word_size, flag_addr,
msg_type);

Arguments addr BFM shared memory starting address for displaying data.

leng Length, in bytes, of data to display.

word_size Size of the words to display. Groups individual bytes into words. Valid
values are 1, 2, 4, and 8.

flag_addr Adds a <== flag to the end of the display line containing this address.
Useful for marking specific data. Set to a value greater than 2**21 (size
of BFM shared memory) to suppress the flag.

msg_type Specifies the message type to be displayed at the beginning of each
line. See “BFM Log and Message Procedures” on page 18–37 for more
information about message types. Set to one of the constants defined in
Table 18–36 on page 18–41.

17.9.10.5 shmem_fill Procedure

The shmem_fill procedure fills a block of BFM shared memory with a specified data
pattern.

Location altpcietb_bfm_driver_rp.v

Syntax shmem_fill(addr, mode, leng, init)

Arguments addr BFM shared memory starting address for filling data.

mode Data pattern used for filling the data. Should be one of the constants
defined in section Shared Memory Constants.

leng Length, in bytes, of data to fill. If the length is not a multiple of the
incrementing data pattern width, then the last data pattern is truncated
to fit.

init Initial data value used for incrementing data pattern modes. This
argument is reg [63:0].
The necessary least significant bits are used for the data patterns that
are smaller than 64 bits.

Related Links

Shared Memory Constants on page 208

17.9.10.6 shmem_chk_ok Function

The shmem_chk_ok function checks a block of BFM shared memory against a
specified data pattern.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
209

Location altpcietb_bfm_shmem.v

Syntax result:= shmem_chk_ok(addr, mode, leng, init, display_error)

Arguments addr BFM shared memory starting address for checking data.

mode Data pattern used for checking the data. Should be one of the constants
defined in section “Shared Memory Constants” on page 18–35.

leng Length, in bytes, of data to check.

init This argument is reg [63:0].The necessary least significant bits are
used for the data patterns that are smaller than 64-bits.

display_error When set to 1, this argument displays the miscomparing data on the
simulator standard output.

Return Result Result is 1-bit.
• 1’b1 — Data patterns compared successfully
• 1’b0 — Data patterns did not compare successfully

17.9.11 BFM Log and Message Procedures

The following procedures and functions are available in the Verilog HDL include file
altpcietb_bfm_driver_rp.v.

These procedures provide support for displaying messages in a common format,
suppressing informational messages, and stopping simulation on specific message
types.

The following constants define the type of message and their values determine
whether a message is displayed or simulation is stopped after a specific message.
Each displayed message has a specific prefix, based on the message type in the
following table.

You can suppress the display of certain message types. The default values determining
whether a message type is displayed are defined in the following table. To change the
default message display, modify the display default value with a procedure call to
ebfm_log_set_suppressed_msg_mask.

Certain message types also stop simulation after the message is displayed. The
following table shows the default value determining whether a message type stops
simulation. You can specify whether simulation stops for particular messages with the
procedure ebfm_log_set_stop_on_msg_mask.

All of these log message constants type integer.

Table 105. Log Messages

Constant
(Message

Type)

Description Mask Bit
No

Display
by Default

Simulation
Stops by
Default

Message
Prefix

EBFM_MSG_D
EBUG

Specifies debug messages. 0 No No DEBUG:

EBFM_MSG_I
NFO

Specifies informational messages,
such as configuration register
values, starting and ending of tests.

1 Yes No INFO:

continued...

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
210

Constant
(Message

Type)

Description Mask Bit
No

Display
by Default

Simulation
Stops by
Default

Message
Prefix

EBFM_MSG_W
ARNING

Specifies warning messages, such
as tests being skipped due to the
specific configuration.

2 Yes No WARNING:

EBFM_MSG_E
RROR_INFO

Specifies additional information for
an error. Use this message to
display preliminary information
before an error message that stops
simulation.

3 Yes No ERROR:

EBFM_MSG_E
RROR_CONTI
NUE

Specifies a recoverable error that
allows simulation to continue. Use
this error for data miscompares.

4 Yes No ERROR:

EBFM_MSG_E
RROR_FATAL

Specifies an error that stops
simulation because the error leaves
the testbench in a state where
further simulation is not possible.

N/A Yes
Cannot
suppress

Yes
Cannot suppress

FATAL:

EBFM_MSG_E
RROR_FATAL
_TB_ERR

Used for BFM test driver or Root
Port BFM fatal errors. Specifies an
error that stops simulation because
the error leaves the testbench in a
state where further simulation is
not possible. Use this error
message for errors that occur due
to a problem in the BFM test driver
module or the Root Port BFM, that
are not caused by the Endpoint
Application Layer being tested.

N/A Y
Cannot
suppress

Y
Cannot suppress

FATAL:

17.9.11.1 ebfm_display Verilog HDL Function

The ebfm_display procedure or function displays a message of the specified type to
the simulation standard output and also the log file if ebfm_log_open is called.

A message can be suppressed, simulation can be stopped or both based on the default
settings of the message type and the value of the bit mask when each of the
procedures listed below is called. You can call one or both of these procedures based
on what messages you want displayed and whether or not you want simulation to stop
for specific messages.

• When ebfm_log_set_suppressed_msg_mask is called, the display of the
message might be suppressed based on the value of the bit mask.

• When ebfm_log_set_stop_on_msg_mask is called, the simulation can be
stopped after the message is displayed, based on the value of the bit mask.

Location altpcietb_bfm_driver_rp.v

Syntax Verilog HDL: dummy_return:=ebfm_display(msg_type, message);

Argument msg_type Message type for the message. Should be one of the constants defined
in Table 18–36 on page 18–41.

message The message string is limited to a maximum of 100 characters. Also,
because Verilog HDL does not allow variable length strings, this routine
strips off leading characters of 8’h00 before displaying the message.

Return always 0 Applies only to the Verilog HDL routine.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
211

17.9.11.2 ebfm_log_stop_sim Verilog HDL Function

The ebfm_log_stop_sim procedure stops the simulation.

Location altpcietb_bfm_driver_rp.v

Syntax Verilog HDL: return:=ebfm_log_stop_sim(success);

Argument success When set to a 1, this process stops the simulation with a message
indicating successful completion. The message is prefixed with
SUCCESS:.
Otherwise, this process stops the simulation with a message indicating
unsuccessful completion. The message is prefixed with FAILURE:.

Return Always 0 This value applies only to the Verilog HDL function.

17.9.11.3 ebfm_log_set_suppressed_msg_mask #Verilog HDL Function

The ebfm_log_set_suppressed_msg_mask procedure controls which message
types are suppressed.

Location altpcietb_bfm_driver_rp.v

Syntax bfm_log_set_suppressed_msg_mask (msg_mask)

Argument msg_mask This argument is reg [EBFM_MSG_ERROR_CONTINUE:
EBFM_MSG_DEBUG].

A 1 in a specific bit position of the msg_mask causes messages of the
type corresponding to the bit position to be suppressed.

17.9.11.4 ebfm_log_set_stop_on_msg_mask Verilog HDL Function

The ebfm_log_set_stop_on_msg_mask procedure controls which message types
stop simulation. This procedure alters the default behavior of the simulation when
errors occur as described in the BFM Log and Message Procedures.

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_log_set_stop_on_msg_mask (msg_mask)

Argument msg_mask This argument is reg
[EBFM_MSG_ERROR_CONTINUE:EBFM_MSG_DEBUG].
A 1 in a specific bit position of the msg_mask causes messages of the
type corresponding to the bit position to stop the simulation after the
message is displayed.

Related Links

BFM Log and Message Procedures on page 210

17.9.11.5 ebfm_log_open Verilog HDL Function

The ebfm_log_open procedure opens a log file of the specified name. All displayed
messages are called by ebfm_display and are written to this log file as simulator
standard output.

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_log_open (fn)

Argument fn This argument is type string and provides the file name of log file to
be opened.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
212

17.9.11.6 ebfm_log_close Verilog HDL Function

The ebfm_log_close procedure closes the log file opened by a previous call to
ebfm_log_open.

Location altpcietb_bfm_driver_rp.v

Syntax ebfm_log_close

Argument NONE

17.9.12 Verilog HDL Formatting Functions

The Verilog HDL Formatting procedures and functions are available in the
altpcietb_bfm_driver_rp.v. The formatting functions are only used by Verilog HDL.
All these functions take one argument of a specified length and return a vector of a
specified length.

17.9.12.1 himage1

This function creates a one-digit hexadecimal string representation of the input
argument that can be concatenated into a larger message string and passed to
ebfm_display.

Location altpcietb_bfm_driver_rp.v

Syntax string:= himage(vec)

Argument vec Input data type reg with a range of 3:0.

Return range string Returns a 1-digit hexadecimal representation of the input argument.
Return data is type reg with a range of 8:1

17.9.12.2 himage2

This function creates a two-digit hexadecimal string representation of the input
argument that can be concatenated into a larger message string and passed to
ebfm_display.

Location altpcietb_bfm_driver_rp.v

Syntax string:= himage(vec)

Argument range vec Input data type reg with a range of 7:0.

Return range string Returns a 2-digit hexadecimal presentation of the input argument,
padded with leading 0s, if they are needed. Return data is type reg with
a range of 16:1

17.9.12.3 himage4

This function creates a four-digit hexadecimal string representation of the input
argument can be concatenated into a larger message string and passed to
ebfm_display.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
213

Location altpcietb_bfm_driver_rp.v

Syntax string:= himage(vec)

Argument range vec Input data type reg with a range of 15:0.

Return range Returns a four-digit hexadecimal representation of the input argument, padded with leading 0s, if they
are needed. Return data is type reg with a range of 32:1.

17.9.12.4 himage8

This function creates an 8-digit hexadecimal string representation of the input
argument that can be concatenated into a larger message string and passed to
ebfm_display.

Location altpcietb_bfm_driver_rp.v

Syntax string:= himage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string Returns an 8-digit hexadecimal representation of the input argument,
padded with leading 0s, if they are needed. Return data is type reg with
a range of 64:1.

17.9.12.5 himage16

This function creates a 16-digit hexadecimal string representation of the input
argument that can be concatenated into a larger message string and passed to
ebfm_display.

Location altpcietb_bfm_driver_rp.v

Syntax string:= himage(vec)

Argument range vec Input data type reg with a range of 63:0.

Return range string Returns a 16-digit hexadecimal representation of the input argument,
padded with leading 0s, if they are needed. Return data is type reg with
a range of 128:1.

17.9.12.6 dimage1

This function creates a one-digit decimal string representation of the input argument
that can be concatenated into a larger message string and passed to ebfm_display.

Location altpcietb_bfm_driver_rp.v

Syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string Returns a 1-digit decimal representation of the input argument that is
padded with leading 0s if necessary. Return data is type reg with a
range of 8:1.
Returns the letter U if the value cannot be represented.

17.9.12.7 dimage2

This function creates a two-digit decimal string representation of the input argument
that can be concatenated into a larger message string and passed to ebfm_display.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
214

Location altpcietb_bfm_driver_rp.v

Syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string Returns a 2-digit decimal representation of the input argument that is
padded with leading 0s if necessary. Return data is type reg with a
range of 16:1.
Returns the letter U if the value cannot be represented.

17.9.12.8 dimage3

This function creates a three-digit decimal string representation of the input argument
that can be concatenated into a larger message string and passed to ebfm_display.

Location altpcietb_bfm_driver_rp.v

Syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string Returns a 3-digit decimal representation of the input argument that is
padded with leading 0s if necessary. Return data is type reg with a
range of 24:1.
Returns the letter U if the value cannot be represented.

17.9.12.9 dimage4

This function creates a four-digit decimal string representation of the input argument
that can be concatenated into a larger message string and passed to ebfm_display.

Location altpcietb_bfm_driver_rp.v

Syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string Returns a 4-digit decimal representation of the input argument that is
padded with leading 0s if necessary. Return data is type reg with a
range of 32:1.
Returns the letter U if the value cannot be represented.

17.9.12.10 dimage5

This function creates a five-digit decimal string representation of the input argument
that can be concatenated into a larger message string and passed to ebfm_display.

Location altpcietb_bfm_driver_rp.v

Syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string Returns a 5-digit decimal representation of the input argument that is
padded with leading 0s if necessary. Return data is type reg with a
range of 40:1.
Returns the letter U if the value cannot be represented.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
215

17.9.12.11 dimage6

This function creates a six-digit decimal string representation of the input argument
that can be concatenated into a larger message string and passed to ebfm_display.

Location altpcietb_bfm_log.v

Syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string Returns a 6-digit decimal representation of the input argument that is
padded with leading 0s if necessary. Return data is type reg with a
range of 48:1.
Returns the letter U if the value cannot be represented.

17.9.12.12 dimage7

This function creates a seven-digit decimal string representation of the input argument
that can be concatenated into a larger message string and passed to ebfm_display.

Location altpcietb_bfm_log.v

Syntax string:= dimage(vec)

Argument range vec Input data type reg with a range of 31:0.

Return range string Returns a 7-digit decimal representation of the input argument that is
padded with leading 0s if necessary. Return data is type reg with a
range of 56:1.
Returns the letter <U> if the value cannot be represented.

17.9.13 Procedures and Functions Specific to the Chaining DMA Design
Example

The procedures specific to the chaining DMA design example are in the Verilog HDL
module file altpcietb_bfm_driver_rp.v.

17.9.13.1 chained_dma_test Procedure

The chained_dma_test procedure is the top-level procedure that runs the chaining
DMA read and the chaining DMA write

Location altpcietb_bfm_driver_rp.v

Syntax chained_dma_test (bar_table, bar_num, direction, use_msi, use_eplast)

Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.

bar_num BAR number to analyze.

direction When 0 the direction is read.
When 1 the direction is write.

Use_msi When set, the Root Port uses native PCI Express MSI to detect the DMA
completion.

Use_eplast When set, the Root Port uses BFM shared memory polling to detect the
DMA completion.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
216

17.9.13.2 dma_rd_test Procedure

Use the dma_rd_test procedure for DMA reads from the Endpoint memory to the
BFM shared memory.

Location altpcietb_bfm_driver_rp.v

Syntax dma_rd_test (bar_table, bar_num, use_msi, use_eplast)

Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.

bar_num BAR number to analyze.

Use_msi When set, the Root Port uses native PCI express MSI to detect the DMA
completion.

Use_eplast When set, the Root Port uses BFM shared memory polling to detect the
DMA completion.

17.9.13.3 dma_wr_test Procedure

Use the dma_wr_test procedure for DMA writes from the BFM shared memory to the
Endpoint memory.

Location altpcietb_bfm_driver_rp.v

Syntax dma_wr_test (bar_table, bar_num, use_msi, use_eplast)

Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.

bar_num BAR number to analyze.

Use_msi When set, the Root Port uses native PCI Express MSI to detect the DMA
completion.

Use_eplast When set, the Root Port uses BFM shared memory polling to detect the
DMA completion.

17.9.13.4 dma_set_rd_desc_data Procedure

Use the dma_set_rd_desc_data procedure to configure the BFM shared memory for
the DMA read.

Location altpcietb_bfm_driver_rp.v

Syntax dma_set_rd_desc_data (bar_table, bar_num)

Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.

bar_num BAR number to analyze.

17.9.13.5 dma_set_wr_desc_data Procedure

Use the dma_set_wr_desc_data procedure to configure the BFM shared memory for
the DMA write.

Location altpcietb_bfm_driver_rp.v

Syntax dma_set_wr_desc_data_header (bar_table, bar_num)

Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.

bar_num BAR number to analyze.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
217

17.9.13.6 dma_set_header Procedure

Use the dma_set_header procedure to configure the DMA descriptor table for DMA
read or DMA write.

Location altpcietb_bfm_driver_rp.v

Syntax dma_set_header (bar_table, bar_num, Descriptor_size, direction, Use_msi,
Use_eplast, Bdt_msb, Bdt_lab, Msi_number, Msi_traffic_class,
Multi_message_enable)

Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.

bar_num BAR number to analyze.

Descriptor_size Number of descriptor.

direction When 0 the direction is read.
When 1 the direction is write.

Use_msi When set, the Root Port uses native PCI Express MSI to detect the DMA
completion.

Use_eplast When set, the Root Port uses BFM shared memory polling to detect the
DMA completion.

Bdt_msb BFM shared memory upper address value.

Bdt_lsb BFM shared memory lower address value.

Msi_number When use_msi is set, specifies the number of the MSI which is set by
the dma_set_msi procedure.

Msi_traffic_class When use_msi is set, specifies the MSI traffic class which is set by the
dma_set_msi procedure.

Multi_message_enable When use_msi is set, specifies the MSI traffic class which is set by the
dma_set_msi procedure.

17.9.13.7 rc_mempoll Procedure

Use the rc_mempoll procedure to poll a given dword in a given BFM shared memory
location.

Location altpcietb_bfm_driver_rp.v

Syntax rc_mempoll (rc_addr, rc_data, rc_mask)

Arguments rc_addr Address of the BFM shared memory that is being polled.

rc_data Expected data value of the that is being polled.

rc_mask Mask that is logically ANDed with the shared memory data before it is
compared with rc_data.

17.9.13.8 msi_poll Procedure

The msi_poll procedure tracks MSI completion from the Endpoint.

Location altpcietb_bfm_driver_rp.v

Syntax msi_poll(max_number_of_msi,msi_address,msi_expected_dmawr,msi_expected_dmard,d
ma_write,dma_read)

Arguments max_number_of_msi Specifies the number of MSI interrupts to wait for.

continued...

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
218

Location altpcietb_bfm_driver_rp.v

msi_address The shared memory location to which the MSI messages will be written.

msi_expected_dmawr When dma_write is set, this specifies the expected MSI data value for
the write DMA interrupts which is set by the dma_set_msi procedure.

msi_expected_dmard When the dma_read is set, this specifies the expected MSI data value
for the read DMA interrupts which is set by the dma_set_msi
procedure.

Dma_write When set, poll for MSI from the DMA write module.

Dma_read When set, poll for MSI from the DMA read module.

17.9.13.9 dma_set_msi Procedure

The dma_set_msi procedure sets PCI Express native MSI for the DMA read or the
DMA write.

Location altpcietb_bfm_driver_rp.v

Syntax dma_set_msi(bar_table, bar_num, bus_num, dev_num, fun_num, direction,
msi_address, msi_data, msi_number, msi_traffic_class, multi_message_enable,
msi_expected)

Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory.

bar_num BAR number to analyze.

Bus_num Set configuration bus number.

dev_num Set configuration device number.

Fun_num Set configuration function number.

Direction When 0 the direction is read.
When 1 the direction is write.

msi_address Specifies the location in shared memory where the MSI message data
will be stored.

msi_data The 16-bit message data that will be stored when an MSI message is
sent. The lower bits of the message data will be modified with the
message number as per the PCI specifications.

Msi_number Returns the MSI number to be used for these interrupts.

Msi_traffic_class Returns the MSI traffic class value.

Multi_message_enable Returns the MSI multi message enable status.

msi_expected Returns the expected MSI data value, which is msi_data modified by
the msi_number chosen.

17.9.13.10 find_mem_bar Procedure

The find_mem_bar procedure locates a BAR which satisfies a given memory space
requirement.

Location altpcietb_bfm_driver_rp.v

Syntax Find_mem_bar(bar_table,allowed_bars,min_log2_size, sel_bar)

Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory

continued...

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
219

Location altpcietb_bfm_driver_rp.v

allowed_bars One hot 6 bits BAR selection

min_log2_size Number of bit required for the specified address space

sel_bar BAR number to use

17.9.13.11 dma_set_rclast Procedure

The dma_set_rclast procedure starts the DMA operation by writing to the Endpoint
DMA register the value of the last descriptor to process (RCLast).

Location altpcietb_bfm_driver_rp.v

Syntax Dma_set_rclast(bar_table, setup_bar, dt_direction, dt_rclast)

Arguments bar_table Address of the Endpoint bar_table structure in BFM shared memory

setup_bar BAR number to use

dt_direction When 0 read, When 1 write

dt_rclast Last descriptor number

17.9.13.12 ebfm_display_verb Procedure

The ebfm_display_verb procedure calls the procedure ebfm_display when the
global variable DISPLAY_ALL is set to 1.

Location altpcietb_bfm_driver_chaining.v

Syntax ebfm_display_verb(msg_type, message)

Arguments msg_type Message type for the message. Should be one of the constants defined
in BFM Log and Message Procedures.

message The message string is limited to a maximum of 100 characters. Also,
because Verilog HDL does not allow variable length strings, this routine
strips off leading characters of 8'h00 before displaying the message.

Related Links

BFM Log and Message Procedures on page 210

17.10 Setting Up Simulation

Changing the simulation parameters reduces simulation time and provides greater
visibility.

17.10.1 Changing Between Serial and PIPE Simulation

By default, the Intel testbench runs a serial simulation. You can change between serial
and PIPE simulation by editing the top-level testbench file. For Endpoint designs, the
top-level testbench file is <working_dir>/<instantiation_name>_tb/
<instantiation_name>_tb/sim/<instantiation_name>_tb.v

The serial_sim_hwtcl and enable_pipe32_sim_hwtcl parameters control serial
mode or PIPE simulation mode. To change to PIPE mode, change
enable_pipe32_sim_hwtcl to 1'b1 and serial_sim_hwtcl to 1'b0.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
220

Table 106. Controlling Serial and PIPE Simulations

Data Rates Parameter Settings

serial_sim_hwtcl enable_pipe32_sim_hwtcl

Serial simulation 1 0

PIPE simulation 0 1

17.10.2 Using the PIPE Interface for Gen1 and Gen2 Variants

Running the simulation in PIPE mode reduces simulation time and provides greater
visibility.

Complete the following steps to simulate using the PIPE interface:

1. Change to your simulation directory, <work_dir>/<variant>/testbench/
<variant>_tb/simulation

2. Open <variant>_tb.v.

3. Search for the string, serial_sim_hwtcl. Set the value of this parameter to 0 if
it is 1.

4. Save <variant>_tb.v.

17.10.3 Viewing the Important PIPE Interface Signals

You can view the most important PIPE interface signals, txdata, txdatak, rxdata,
and rxdatak at the following level of the design hierarchy:
altpcie_<device>_hip_pipen1b|twentynm_hssi_<gen>_<lanes>_pcie_hip.

17.10.4 Disabling the Scrambler for Gen1 and Gen2 Simulations

The encoding scheme implemented by the scrambler applies a binary polynomial to
the data stream to ensure enough data transitions between 0 and 1 to prevent clock
drift. The data is decoded at the other end of the link by running the inverse
polynomial.

Complete the following steps to disable the scrambler:

1. Open <work_dir>/<variant>/testbench/<variant>_tb/simulation/
submodules/altpcie_tbed_<dev>_hwtcl.v.

2. Search for the string, test_in.

3. To disable the scrambler, set test_in[2] = 1.

4. Save altpcie_tbed_sv_hwtcl.v.

17.10.5 Disabling 8B/10B Encoding and Decoding for Gen1 and Gen2
Simulations

You can disable 8B/10B encoding and decoding to facilitate debugging.

For Gen1 and Gen2 variants, you can disable 8B/10B encoding and decoding by
setting test_in[2] = 1 in altpcietb_bfm_top_rp.v.

17 Testbench and Design Example

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
221

18 Debugging
As you bring up your PCI Express system, you may face a number of issues related to
FPGA configuration, link training, BIOS enumeration, data transfer, and so on. This
chapter suggests some strategies to resolve the common issues that occur during
hardware bring-up.

18.1 Simulation Fails To Progress Beyond Polling.Active State

If your PIPE simulation cycles between the Detect.Quiet, Detect.Active, and
Polling.Active LTSSM states, the PIPE interface width may be incorrect.

Make the changes shown in the following table for the 32-bit PIPE interface.

Table 107. Changes for 32-Bit PIPE Interface

8-Bit PIPE Interface 32-Bit PIPE Interface

output wire [7:0]
pcie_a10_hip_0_hip_pipe_txdata0

output wire [31:0]
pcie_a10_hip_0_hip_pipe_txdata0

input wire [7:0]
pcie_a10_hip_0_hip_pipe_rxdata0

input wire [31:0]
pcie_a10_hip_0_hip_pipe_rxdata0

output wire
pcie_a10_simulation_inst_pcie_a10_hip_0_hip_p
ipe_txdatak0

output wire [3:0]
pcie_a10_simulation_inst_pcie_a10_hip_0_hip_p
ipe_txdatak0

input wire
pcie_a10_simulation_inst_pcie_a10_hip_0_hip_p
ipe_rxdatak0

input wire [3:0]
pcie_a10_simulation_inst_pcie_a10_hip_0_hip_p
ipe_rxdatak0

18.2 Hardware Bring-Up Issues

Typically, PCI Express hardware bring-up involves the following steps:

1. System reset

2. Link training

3. BIOS enumeration

The following sections describe how to debug the hardware bring-up flow. Intel
recommends a systematic approach to diagnosing bring-up issues as illustrated in the
following figure.

18 Debugging

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Figure 120. Debugging Link Training Issues

No

System Reset Does Link
Train

 Correctly?

Check PIPE
Interface

Use PCIe Protocol
 Analyzer

Soft Reset System to
 Force Enumeration

Check Configuration
Space

Check LTSSM
Status

YesYes

No

Successful
OS/BIOS

Enumeration?

18.3 Link Training

The Physical Layer automatically performs link training and initialization without
software intervention. This is a well-defined process to configure and initialize the
device's Physical Layer and link so that PCIe packets can be transmitted. If you
encounter link training issues, viewing the actual data in hardware should help you
determine the root cause. You can use the following tools to provide hardware
visibility:

• Signal Tap Embedded Logic Analyzer

• Third-party PCIe protocol analyzer

You can use Signal Tap Embedded Logic Analyzer to diagnose the LTSSM state
transitions that are occurring on the PIPE interface. The ltssmstate bus encodes the
status of LTSSM. The LTSSM state machine reflects the Physical Layer’s progress
through the link training process. For a complete description of the states these
signals encode, refer to Reset, Status, and Link Training Signals. When link training
completes successfully and the link is up, the LTSSM should remain stable in the L0
state. When link issues occur, you can monitor ltssmstate to determine the cause.

Related Links

Reset, Status, and Link Training Signals on page 82

18.3.1 Link Hangs in L0 State

There are many reasons that link may stop transmitting data. The following table lists
some possible causes.

Table 108. Link Hangs in L0

Possible Causes Symptoms and Root Causes Workarounds and Solutions

Avalon-ST signaling
violates Avalon-ST
protocol

Avalon-ST protocol violations
include the following errors:
• More than one tx_st_sop per

tx_st_eop.
• Two or more tx_st_eop’s

without a corresponding
tx_st_sop.

• rx_st_valid is not asserted
with tx_st_sop or
tx_st_eop.

Add logic to detect situations where tx_st_ready
remains deasserted for more than 100 cycles. Set
post-triggering conditions to check for the Avalon-ST
signaling of last two TLPs to verify correct tx_st_sop
and tx_st_eop signaling.

continued...

18 Debugging

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
223

Possible Causes Symptoms and Root Causes Workarounds and Solutions

These errors are applicable to both
simulation and hardware.

Incorrect payload size Determine if the length field of the
last TLP transmitted by End Point
is greater than the InitFC credit
advertised by the link partner. For
simulation, refer to the log file and
simulation dump. For hardware,
use a third-party logic analyzer
trace to capture PCIe transactions.

If the payload is greater than the initFC credit
advertised, you must either increase the InitFC of the
posted request to be greater than the max payload
size or reduce the payload size of the requested TLP to
be less than the InitFC value.

Flow control credit
overflows

Determine if the credit field
associated with the current TLP
type in the tx_cred bus is less
than the requested credit value.
When insufficient credits are
available, the core waits for the
link partner to release the correct
credit type. Sufficient credits may
be unavailable if the link partner
increments credits more than
expected, creating a situation
where the Arria 10 Hard IP for PCI
Express IP Core credit calculation
is out-of-sync with its link partner.

Add logic to detect conditions where the tx_st_ready
signal remains deasserted for more than 100 cycles.
Set post-triggering conditions to check the value of the
tx_cred_* and tx_st_* interfaces. Add a FIFO status
signal to determine if the TXFIFO is full.

Malformed TLP is
transmitted

Refer to the error log file to find
the last good packet transmitted
on the link. Correlate this packet
with TLP sent on Avalon-ST
interface. Determine if the last TLP
sent has any of the following
errors:
• The actual payload sent does

not match the length field.
• The format and type fields are

incorrectly specified.
• TD field is asserted, indicating

the presence of a TLP digest
(ECRC), but the ECRC dword is
not present at the end of TLP.

• The payload crosses a 4KByte
boundary.

Revise the Application Layer logic to correct the error
condition.

Insufficient Posted credits
released by Root Port

If a Memory Write TLP is
transmitted with a payload greater
than the maximum payload size,
the Root Port may release an
incorrect posted data credit to the
Endpoint in simulation. As a result,
the Endpoint does not have
enough credits to send additional
Memory Write Requests.

Make sure Application Layer sends Memory Write
Requests with a payload less than or equal the value
specified by the maximum payload size.

Missing completion
packets or dropped
packets

The RX Completion TLP might
cause the RX FIFO to overflow.
Make sure that the total
outstanding read data of all
pending Memory Read Requests is
smaller than the allocated
completion credits in RX buffer.

You must ensure that the data for all outstanding read
requests does not exceed the completion credits in the
RX buffer.

Related Links

• PIPE Interface Signals on page 102

• Avalon Interface Specifications

18 Debugging

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
224

https://www.altera.com/documentation/nik1412467993397.html#nik1412467963376

For information about the Avalon-ST interface protocol.

• PCI Express Base Specification 3.0

18.4 Use Third-Party PCIe Analyzer

A third-party logic analyzer for PCI Express records the traffic on the physical link and
decodes traffic, saving you the trouble of translating the symbols yourself. A
third-party logic analyzer can show the two-way traffic at different levels for different
requirements. For high-level diagnostics, the analyzer shows the LTSSM flows for
devices on both side of the link side-by-side. This display can help you see the link
training handshake behavior and identify where the traffic gets stuck. A traffic
analyzer can display the contents of packets so that you can verify the contents. For
complete details, refer to the third-party documentation.

18.5 BIOS Enumeration Issues

Both FPGA programming (configuration) and the initialization of a PCIe link require
time. Potentially, an Intel FPGA including a Hard IP block for PCI Express may not be
ready when the OS/BIOS begins enumeration of the device tree. If the FPGA is not
fully programmed when the OS/BIOS begins its enumeration, the OS does not include
the Hard IP for PCI Express in its device map.

You can use either of the following two methods to eliminate this issue:

• You can perform a soft reset of the system to retain the FPGA programming while
forcing the OS/BIOS to repeat its enumeration.

• You can use CvP to program the device.

18 Debugging

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
225

http://www.pcisig.com/

A Transaction Layer Packet (TLP) Header Formats
The following figures show the header format for TLPs without a data payload.

For more information about the alignment of 3- and 4-dword headers refer to the
related links below for Data Alignment and Timing for the Avalon-ST TX and RX
Interfaces.

Figure 121. Memory Read Request, 32-Bit Addressing
Memory Read Request, 32-Bit Addressing

3+2+1+0+

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 0 0 0 0 TC 0 0 0 0 TD EP Attr 0 0 Length

Byte 4 EB tsriFEB tsaLgaTDI retseuqeR

Byte 8 Address[31:2] 0 0

Byte 12 Reserved

Figure 122. Memory Read Request, Locked 32-Bit Addressing
Memory Read Request, Locked 32-Bit Addressing

3+2+1+0+

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 0 0 1 0 TC 0 0 0 0 TD EP Attr 0 0 Length

Byte 4 EB tsriFEB tsaLgaTDI retseuqeR

Byte 8 Address[31:2] 0 0

Byte 12 Reserved

Figure 123. Memory Read Request, 64-Bit Addressing
Memory Read Request, 64-Bit Addressing

3+2+1+0+

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 0 0 0 0 TC 0 0 0 0 TD EP
Att
r

0 0 Length

Byte 4 EB tsriFEB tsaLgaTDI retseuqeR

Byte 8 Address[63:32]

Byte 12 Address[31:2] 0 0

A Transaction Layer Packet (TLP) Header Formats

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Figure 124. Memory Read Request, Locked 64-Bit Addressing
Memory Read Request, Locked 64-Bit Addressing

3+2+1+0+

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 1 0 0 0 0 1 0 TC 0 0 0 0 T EP
Att
r

0 0 Length

Byte 4 EB tsriFEB tsaLgaTDI retseuqeR

Byte 8 Address[63:32]

Byte 12 Address[31:2] 0 0

Figure 125. Configuration Read Request Root Port (Type 1)
Configuration Read Request Root Port (Type 1)

3+2+1+0+

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 TD EP 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Byte 4 gaTDI retseuqeR 0 0 0 0 First BE

Byte 8 Bus Number Device No Func 0 0 0 0 Ext Reg Register No 0 0

Byte 12 Reserved

Figure 126. I/O Read Request
I/O Read Request

3+2+1+0+

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 TD EP 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Byte 4 gaTDI retseuqeR 0 0 0 0 First BE

Byte 8 Address[31:2] 0 0

Byte 12 Reserved

Figure 127. Message without Data

Message without Data

3+2+1+0+

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 1 1 0
r
2

r
1

r
0

0 TC 0 0 0 0 TD EP 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Byte 4 edoC egasseMgaTDI retseuqeR

Byte 8 Vendor defined or all zeros

Byte 12 Vendor defined or all zeros

Note:

(1) Not supported in Avalon-MM.

Figure 128. Completion without Data
Completion without Data

3+2+1+0+

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 1 0 1 0 0 TC 0 0 0 0 TD EP
Att
r

0 0 Length

Byte 4 tnuoC etyBBsutatSDI retelpmoC

Byte 8 gaTDI retseuqeR 0 Lower Address

Byte 12 Reserved

A Transaction Layer Packet (TLP) Header Formats

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
227

Figure 129. Completion Locked without Data
Completion Locked without Data

3+2+1+0+

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 1 0 1 1 0 TC 0 0 0 0 TD EP
Att
r

0 0 Length

Byte 4 tnuoC etyBBsutatSDI retelpmoC

Byte 8 gaTDI retseuqeR 0 Lower Address

Byte 12 Reserved

Related Links

• Data Alignment and Timing for the 64-Bit Avalon-ST RX Interface on page 61

• Data Alignment and Timing for the 128-Bit Avalon-ST RX Interface on page 65

• Data Alignment and Timing for 256-Bit Avalon-ST RX Interface on page 68

• Data Alignment and Timing for the 64-Bit Avalon-ST TX Interface on page 73

• Data Alignment and Timing for the 128-Bit Avalon-ST TX Interface on page 76

• Data Alignment and Timing for the 256-Bit Avalon-ST TX Interface on page 79

A.1 TLP Packet Formats with Data Payload

Figure 130. Memory Write Request, 32-Bit Addressing
Memory Write Request, 32-Bit Addressing

3+2+1+0+

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 0 0 0 0 0 TC 0 0 0 0 TD EP
Att
r

0 0 Length

Byte 4 EB tsriFEB tsaLgaTDI retseuqeR

Byte 8 Address[31:2] 0 0

Byte 12 Reserved

Figure 131. Memory Write Request, 64-Bit Addressing
Memory Write Request, 64-Bit Addressing

3+2+1+0+

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 1 0 0 0 0 0 0 TC 0 0 0 0 TD EP
Att
r

0 0 Length

Byte 4 EB tsriFEB tsaLgaTDI retseuqeR

Byte 8 Address[63:32]

Byte 12 Address[31:2] 0 0

Figure 132. Configuration Write Request Root Port (Type 1)
Configuration Write Request Root Port (Type 1)

3+2+1+0+

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 TD EP 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Byte 4 gaTDI retseuqeR 0 0 0 0 First BE

Byte 8 Bus Number Device No 0 0 0 0 Ext Reg Register No 0 0

Byte 12 Reserved

A Transaction Layer Packet (TLP) Header Formats

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
228

Figure 133. I/O Write Request
I/O Write Request

3+2+1+0+

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 TD EP 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Byte 4 gaTDI retseuqeR 0 0 0 0 First BE

Byte 8 Address[31:2] 0 0

Byte 12 Reserved

Figure 134. Completion with Data
Completion with Data

3+2+1+0+

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 1 0 1 0 0 TC 0 0 0 0 TD EP
Att
r

0 0 Length

Byte 4 tnuoC etyBBsutatSDI retelpmoC

Byte 8 gaTDI retseuqeR 0 Lower Address

Byte 12 Reserved

Figure 135. Completion Locked with Data
Completion Locked with Data

3+2+1+0+

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 1 0 1 1 0 TC 0 0 0 0 TD EP
Att
r

0 0 Length

Byte 4 tnuoC etyBBsutatSDI retelpmoC

Byte 8 gaTDI retseuqeR 0 Lower Address

Byte 12 Reserved

Figure 136. Message with Data
Message with Data

3+2+1+0+

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 1 1 0
r
2

r
1

r
0

0 TC 0 0 0 0 TD EP 0 0 0 0 Length

Byte 4 edoC egasseMgaTDI retseuqeR

Byte 8 Vendor defined or all zeros for Slot Power Limit

Byte 12 Vendor defined or all zeros for Slots Power Limit

A Transaction Layer Packet (TLP) Header Formats

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
229

B Lane Initialization and Reversal
Connected components that include IP blocks for PCI Express need not support the
same number of lanes. The ×4 variations support initialization and operation with
components that have 1, 2, or 4 lanes. The ×8 variant supports initialization and
operation with components that have 1, 2, 4, or 8 lanes.

Lane reversal permits the logical reversal of lane numbers for the ×1, ×2, ×4, and ×8
configurations. Lane reversal allows more flexibility in board layout, reducing the
number of signals that must cross over each other when routing the PCB.

Table 109. Lane Assignments without Lane Reversal

Lane Number 7 6 5 4 3 2 1 0

×8 IP core 7 6 5 4 3 2 1 0

×4 IP core — — — — 3 2 1 0

— — — — — — — 1 0

×1 IP core — — — — — — — 0

Table 110. Lane Assignments with Lane Reversal

Core Config 8 4 1

Slot Size 8 4 2 1 8 4 2 1 8 4 2 1

Lane
pairings

7:0,6:1,5:
2, 4:3,
3:4,2:5,
1:6,0:7

3:4,2:
5,
1:6,0:
7

1:6,
0:7

0:7 7:0,6:
1,
5:2,4:
3

3:0,2:
1,
1:2,0:
3

3:0,
2:1

3:0 7:0 3:
0

1:
0

0:
0

B Lane Initialization and Reversal

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Figure 137. Using Lane Reversal to Solve PCB Routing Problems
The following figure illustrates a PCI Express card with ×4 IP Root Port and a ×4
Endpoint on the top side of the PCB. Connecting the lanes without lane reversal
creates routing problems. Using lane reversal solves the problem.

0
1
2
3

Root Port

3
2
1
0

Endpoint

0
1
2
3

Root Port

0
1
2
3

Endpoint

No Lane Reversal
Results in PCB Routing Challenge

With Lane Reversal
Signals Route Easily

lane
reversal

no lane
reversal

B Lane Initialization and Reversal

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
231

C Arria 10 Avalon-ST Interface for PCIe Solutions User
Guide Archive

If an IP core version is not listed, the user guide for the previous IP core version applies.

IP Core Version User Guide

16.1.1 Arria 10 Avalon-ST Interface for PCIe Solutions User Guide

16.1 Arria 10 Avalon-ST Interface for PCIe Solutions User Guide

16.0 Arria 10 Avalon-ST Interface for PCIe Solutions User Guide

15.1 Arria 10 Avalon-ST Interface for PCIe Solutions User Guide

15.0 Arria 10 Avalon-ST Interface for PCIe Solutions User Guide

14.1 Arria 10 Avalon-ST Interface for PCIe Solutions User Guide

C Arria 10 Avalon-ST Interface for PCIe Solutions User Guide Archive

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/archives/ug-a10-pcie-avst-16.1.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/archives/ug-a10-pcie-avst-16.1.1.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/archives/ug-a10-pcie-avst-16.0.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/archives/ug-a10-pcie-avst-15.1.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/archives/ug-a10-pcie-avst-15.0.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/archives/ug-a10-pcie-avst-14.1.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

D Revision History

D.1 Revision History for the Avalon-ST Interface

Date Version Changes Made

2017.05.26 Made the following changes to the user guide:
• Added note that starting with the Quartus Prime Pro Edition Software,

version 17.0, the QSF assignments in the following answer What
assignments do I need for a PCIe Gen1, Gen2 or Gen3 design that targets
an Arria 10 ES2, ES3 or production device? are already included in the
design.

2017.05.12 17.0 Made the following changes the IP core:
• Added option soft DFE Controller IP on the PHY tab of the parameter editor

to improve BER margin. The default for this option is off because it is
typically not required. Short reflective links may benefit from this soft DFE
controller IP. This parameter is available only for Gen3 configurations. It is
not supported when CvP or autonomous modes are enabled.

Made the following changes to the user guide:
• Updated PCI Express Gen3 Bank Usage Restrictions status. These

restrictions affect all Aria 10 ES and production devices.
• Added statement that Arria 10 devices do not support the Create timing

and resource estimates for third-party EDA synthesis tools option on
the Generate ➤ Generate HDL menu.

• Corrected default values for the Uncorrectable Internal Error Mask Register
and Correctable Internal Error Mask Register registers.

• Corrected Feature Comparison for all Hard IP for PCI Express IP Cores table.
Out-of-order Completions are not supported transparently for the
Avalon-MM with DMA interface.

• Revised discussion of Application Layer Interrupt Handler Module to include
legacy interrupt generation.

• Corrected minor errors and typos.

2017.03.15 16.1.1 Made the following changes:
• Restored Configuration Space Register Access topic which was inadvertently

removed form previous versions.
• Improved definitions of tx_cred_data_fc[11:0],

tx_cred_fc_sel[1:0] and tx_cred_fdr_fc[7:0].
• Added missing signal definition for tx_cred_fc_sel.
• Added statement that Arria 10 devices do not support the Create timing

and resource estimates for third-party EDA synthesis tools option on
the Generate ➤ Generate HDL menu.

• Rebranded as Intel.

2016.10.31 16.1 Made the following changes to the IP core:
• Changed timing models support to final for most Arria 10 device packages.

Exceptions include some military and automotive speed grades with
extended temperature ranges.

• Added parameter to select the requested preset for Phase2 and Phase3 far-
end TX equalization.

continued...

D Revision History

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Date Version Changes Made

Made the following changes to the user guide:
• Corrected the number of tags supported in the Feature Comparison for all

Hard IP for PCI Express IP Cores table.
• Removed recommendations about connecting pin_perst. These

recommendations do not apply to Arria 10 devices.
• Added PCIe bifurcation to the Feature Comparison for all Hard IP for PCI

Express IP Cores table. PCI bifurcation is not supported.
• Corrected description of tl_cfg* bus. Provided sample RTL code to show

how sample tl_cfg_ctl.Corrected tl_cfg_ctl Timing diagram.
• Changed the recommended value of test_in[31:0] from 0xa8 to 0x188.
• Added instructions for turning on autonomous mode in the Quartus Prime

software.
• Added -3 to recommended speed grades for the 125 MHz interface.

2016.05.02 16.0 Made the following changes:
• The PIO Design Examples included in the Quick Start Guide now support 64-

and 128-bit interfaces to the Application Layer. (The 15.1 release supported
only a 256-bit interface to the Application Layer interface.)

• The Quick Start Guide no longer supports the DMA design example.
• Added support for OpenCore Plus IP evaluation in the Quartus Prime Pro

Edition software.
• Added automatic generation of basic SignalTap Logic Analyzer files to

facilitate debugging.
• Added figure for TX 3-dword header with qword aligned data.
• Added Gen3 x2 128-bit interface with 125 MHz clock to the

coreclkout_hip Application Layer Clock Frequency for All Combinations
of Link Width, Data Rate and Application Layer Interface Widths table.

• In the Getting Started with the Hard IP for PCI Express chapter, changed
the instructions to use specify the 10AX115S2F45I1SG device which is used
on the Arria 10 GX FPGA Development Kit - Production (not ES2) Edition.

• Added statement that the testbench can only simulate a single Endpoint or
Root Port at a time.

• Enhanced statements covering the deficiencies of the Intel-provided
testbench.

• Added simulation support for Gen3 PIPE mode using the ModelSim, VCS,
and NCSim simulators.

• Added definition for rxfc_cplbuf_ovf.
• Added Vendor Specific Extended Capability (VSEC) Revision and User

Device or Board Type ID register from the Vendor Specific Extended
Capability: to the VSEC tab of the component GUI.

• Updated figures in Physical Layout of Hard IP in Arria 10 Devices to include
more detail about transceiver banks and channel restrictions.

• Added transceiver bank usage placement restrictions for Gen3 devices.
• Removed support for -3 speed grade devices.
• Added transceiver bank usage placement restrictions for Gen3 devices.
• Added -3 to recommended speed grades with qualifying statement.
• Corrected minor errors and typos.

2015.11.30 15.1 Made the following changes:
• Added definition for tx_fifo_empty signal.
• Added figure illustrating data alignment for the TX 3-dword header with

qword aligned address.
• Added TLP Support Comparison for all Hard IP for PCI Express IP Cores in

Datasheet chapter.
• Added new topic on Autonomous Mode in which the Hard IP for PCI Express

begins operation when the periphery configuration completes.

2015.11.02 15.1 Made the following changes:

continued...

D Revision History

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
234

Date Version Changes Made

• Added auto generation of example designs for Endpoints that use the
parameters you specify. Generation creates both simulation and hardware
testbenches that you can download to the Arria 10 FPGA Development Kit
ES2 Edition. This new feature is described in the Arria 10 Avalon-ST Quick
Start Guide chapter of this user guide.

• Added latency between tx_cred_fc_sel and tx_cred_data_fc and
tx_cred_hdr_fc to the signal definitions.

• Corrected instructions for changing between a serial and PIPE simulation.
• Updated definitions of rxsynchd0[1:0] and rxblkst0 to say these

signals can be grounded for Gen1 and Gen2 operation.
• Improved the definition of npor.
• Added note saying that the Hard IP for PCI Express supports autonomous

mode when CvP is enabled.
• In Transaction Layer Routing Rules, added Type 1 Message TLPs are also

passed to the Application Layer.
• Enhanced the definition of rx_st_mask.
• Added x2 to the Lane Assignments without Lane Reversal table.
• Removed signal definition for rx_st_be. This signal is not supported for

Arria 10 devices.
• Changed the app_msi_req signal to X (don't care) in cycles 4 and 5 of the

timing diagram, MSI Interrupt Signals Timing.
• Removed Legacy Endpoint option for Port type parameters. The Legacy

Endpoint is no longer supported for Arria 10 devices.
• Revised discussion on possible conflict between LMI writes and Host writes

to the Configuration Space.
• Removed Getting Started with the Configuration Space Bypass Model Qsys

Example Design chapter. This example design is no longer supported.
• Removed invalid warning about missing resets when this IP core is

instantiated as a separate component from the Quartus Prime IP Catalog.
• Corrected Avalon-ST Hard IP for PCI Express Top-Level Signals figure and

missing signal definitions.

2015.06.05 15.0 Added note in Physical Layout of Hard IP in Arria 10 Devices to explain Arria 10
design constraint that requires that if the lower HIP on one side of the device is
configured with a Gen3 x4 or Gen3 x8 IP core, and the upper HIP on the same
side of the device is also configured with a Gen3 IP core, then the upper HIP
must be configured with a x4 or x8 IP core.

2015.05.04 15.0 Made the following changes to the Arria 10 user guide:
• Added to description of Data Link Layer link active bit. It is only available for

Root Ports. It is always 0 for Endpoints.
• Corrected link to Arria 10 Avalon-MM DMA Interface for PCIe Solutions User

Guide.
• Added Enable Altera Debug Master Endpoint (ADME) parameter to

support optional Native PHY register programming with the Altera System
Console.

• Added information about the custom example designs. This feature is
available for this IP core starting in the IP core release 14.1.

•
• Enhanced descriptions of channel placement, added fPLL placement for

Gen1 and Gen2 data rates, and added master CGB location, in Physical
Layout of Hard IP In Arria 10 Devices.

• Added column for Avalon-ST Interface with SR-IOV variations in Feature
Comparison for all Hard IP for PCI Express IP Cores table in Features
section. Moved supported TLPs information to separate table. Updated
information in tables.

• Removed Migration and TLP Format appendices, and added new appendix
Frequently Asked Questions.

• Corrected LMI Write figure in LMI Signals.
• Corrected MSI-X Interrupt Components figure in Implementing MSI-X

Interrupts.

continued...

D Revision History

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
235

Date Version Changes Made

• Corrected width of rx_st_sop and rx_st_eop to 1 or two bits. If you turn
on Enable multiple packets per cycle these signals have two bits;
otherwise, they have one bit each. Refer to Avalon-ST RX Interface.

• Removed non-existent signals rx_st_bar1 and rx_st_bar2. If you turn
on Enable multiple packets per cycle, the IP core still has only a single
rx_st_bar[7:0] signal. Do not use this signal if you turn on Enable
multiple packets per cycle. Refer to iAvalon-ST RX Component Specific
Signals.

• Updated DUT module name in testbench and example design figures.
• Reorganized sections in iDebugging and nik1410565029488.
• Updated information in SDC Timing Constraints .
• Fixed minor errors and typos.

2014.12.15 14.1 Made the following changes to the user guide:
• Added simulation log file,

altpcie_monitor_<dev>_dlhip_tlp_file_log.log in your
simulation directory. Generation of the log file requires the following
simulation file, <install_dir>altera/altera_pcie/
altera_pcie_<dev>_hip/altpcie_monitor_<dev>_dlhip_sim.sv,
that was not present in earlier releases of the Quartus II software.

• Changed device part number for Getting Started chapter to
10AX115R2F40I2LG.

• Added statement that the bottom left hard IP block includes the CvP
functionality for flip chip packages. For other package types, the CvP
functionality is in the bottom right block.

• Removed 125 MHz clock as optional refclk frequency in Arria 10 devices.
Arria 10 devices support an 100 MHz reference clock as specified by the PCI
Express Base Specification, Rev 3.0.

• Corrected bit definitions for CvP Status register.
• Updated definition of CVP_NUMCLKS in the CvP Mode Control register.
• Added definitions for test_in[2], test_in[6] and test_in[7].
• Enhanced instructions Compiling the Design to include steps necessary to

download to Altera development kits.

2014.08.18 14.0a10 Made the following changes to the Arria 10 Hard IP for PCI Express:
• Changed the PIPE interface to 32 bits for all data rates. This change

requires you to recompile your 13.1 variant in 14.0.
• Made fPLL available as the TX PLL for all data rates. This change allows you

to use the ATX PLLs for higher data rate protocols if necessary.
Made the following changes to the user guide:
• Added statement that the bottom left hard IP block includes the CvP

functionality for flip chip packages. For other package types, the CvP
functionality is in the bottom right block.

2014.06.30 14.0 Added the following new features to the Arria 10 Hard IP for PCI Express:
• Added parameters to enable 256 completion tags with completion tag

checking performed in Application Layer.
• Added simulation log file,

altpcie_monitor_sv_dlhip_tlp_file_log.log, that is automatically
generated in your simulation directory. To simulation in the Quartus II 14.0
software release, you must regenerate your IP core to create the supporting
monitor file the generates
altpcie_monitor_sv_dlhip_tlp_file_log.log. Refer to
Understanding Simulation Dump File Generation for details.

• Added support for new parameter,User ID register from the Vendor
Specific Extended Capability, for Endpoints.

• Added parameter to create a reset pulse at power-up when the soft reset
controller is enabled.

• Simulation support for Phase 2 and Phase 3 equalization when requested by
third-party BFM.

continued...

D Revision History

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
236

Date Version Changes Made

• Increased size of lmi_addr to 15 bits.
• Changed the directory structure for generated files. Refer to Files Generated

for Intel FPGA IP Cores Targeting Arria 10 for more information.
• In the Getting Started with the Arria 10 Hard IP for PCI Express chapter,

changed the recommended device to 10AX115R2F40I2LG (Advanced).
Made the following changes to the user guide:
• Added Next Steps in Creating a Design for PCI Express to Datasheet

chapter.
• Corrected frequency range for hip_reconfig_clk. It should be 100-125

MHz.
• Corrected Maximum payload size values listed in Reconfigurable Read-

Only Registers table. The maximum size is 2048 bytes.
• Enhanced definition of Device ID and Sub-system Vendor ID to say that

these registers are only valid in the Type 0 (Endpoint) Configuration Space.
• Changed the default reset controller settings. By default Gen1 devices use

the Hard Reset Controller. Gen2 and Gen3 devices use the Soft Reset
Controller.

• Corrected frequencies of pclk in Reset and Clocks chapter.
• Removed txdatavalid0 signal from the PIPE interface. This signal is not

available.
• Removed references to the MegaWizard® Plug-In Manager. In 14.0 the IP

Parameter Editor Powered by Qsys has replaced the MegaWizard Plug-In
Manager.

• Made the following changes to the timing diagram, Hard IP Reconfiguration
Bus Timing of Read-Only Registers:
— Added hip_reconfig_rst_n.
— Changed timing of avmm_rdata[15:0]. Valid data returns 4 cycles

after avmm_rd.
• Added link to a Knowledge Base Solution that shows how to observe the

test_in bus for debugging.
• Removed optional 125 MHz reference clock frequency. This option has not

been tested extensively in hardware.
• Corrected channel placement diagrams for Gen3 x2 and Gen3 x4. The CMU

PLL should be shown in the Channel 4 location. For Gen3 x2, the second
data channel is Ch1. For Gen3 x4, the data channels are Ch0 - Ch3.

• Corrected figure showing physical placement of PCIe Hard IP modules for
Arria V GZ devices.

• Added definition for test_in[6] and link to Knowledge Base Solution on
observing the PIPE interface signals on the test_out bus.

• Removed references to Gen2 x1 62.5 MHz configuration. This configuration
is not supported.

• Removed statement that Gen1 and Gen2 designs do not require transceiver
reconfiguration. Gen1 and Gen2 designs may require transceiver
reconfiguration to improve signal quality.

• Removed reconfig_busy port from connect between PHY IP Core for PCI
Express and the Transceiver Reconfiguration Controller in the Altera
Transceiver Reconfiguration Controller Connectivity figure. The Transceiver
Reconfiguration Controller drives reconfig_busy port to the Altera PCIe
Reconfig Driver.

• Removed soft reset controller .sdc constraints from the
<install_dir>/ip/altera/altera_pcie/
altera_pcie_hip_ast_ed/altpcied_<dev>.sdc example. These
constraints are now in a separate file in the synthesis/submodules
directory.

• Updated Power Supply Voltage Requirements table.
• For Arria 10 devices, updated Physical Placement of the Arria 10 Hard IP for

PCIe IP and Channels to show GT devices instead of GX devices.
• For Arria 10 devices, corrected frequency of hip_reconfig_lck. I should

be 125 MHz.

continued...

D Revision History

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
237

Date Version Changes Made

2013.12.20 13.1 Made the following changes:
• Divided user guide into 3 separate documents by interface type.
• Added Design Implementation chapter.
• In the Debugging chapter, removed section explaining how to turn off the

scrambler for Gen3 because it does not work.
• In the Debugging chapter, corrected filename that you must change to

reduce counter values in simulation.
• In Getting Started with the Avalon-MM Hard IP for PCI Express chapter,

corrected connects for the Transceiver Reconfiguration Controller IP Core
reset signal, alt_xcvr_reconfig_0 mgmt_rst_reset. This reset input
connects to clk_0 clk_reset.

• In Transaction Layer Routing Rules and Programming Model for Avalon-MM
Root Port added the fact that Type 0 Configuration Requests sent to the
Root Port are not filtered by the device number. Application Layer software
must filter out requests for device number greater than 0.

• Added illustration showing the location of the Hard IP Cores in the Arria 10
devices.

• Added limitation for rxm_irq_<n>[<m>:0]when interrupts are received on
consecutive cycles.

• Corrected description of cfg_prm_cmr. It is the Base/Primary Command
register for the PCI Configuration Space.

• Revised channel placement illustrations.

2013.05.06 13.0 • Added support for Configuration Space Bypass Mode, allowing you to design
a custom Configuration Space and support multiple functions

• Added preliminary support for a Avalon-MM 256-Bit Hard IP for PCI Express
that is capable of running at the Gen3 ×8 data rate. This new IP Core. Refer
to the Avalon-MM 256-Bit Hard IP for PCI Express User Guide for more
information.

• Added Gen3 PIPE simulation support.
• Added support for 64-bit address in the Avalon-MM Hard IP for PCI Express

IP Core, making address translation unnecessary
• Added instructions for running the Single Dword variant.
• Timing models are now final.
• Updated the definition of refclk to include constraints when CvP is

enabled.
• Added section covering clock connectivity for reconfiguration when CvP is

enabled.
• Corrected access field in Root Port TLP Data registers.
• Added Getting Started chapter for Configuration Space Bypass mode.
• Added signal and register descriptions for the Gen3 PIPE simulation.
• Added 64-bit addressing for the Avalon-MM IP Cores for PCI Express.
• Changed descriptions of rx_st_err[1:0], tx_st_err[1:0],

rx_st_valid[1:0], and tx_st_valid[1:0] buses. Bit 1 is not used.
• Corrected definitions of RP_RXCPL_STATUS.SOP and

RP_RXCPL_STATUS.EOP bits. SOP is 0x2010, bit[0] and EOP is 0x2010,
bit[1].

• Improved explanation of relaxed ordering of transactions and provided
examples.

• Revised discussion of Transceiver Reconfiguration Controller IP Core. Offset
cancellation is not required for Gen1 or Gen2 operation.

2011.07.30 11.01 Corrected typographical errors.

2011.05.06 11.0 First release.

D Revision History

Intel® Arria® 10 Avalon-ST Interface for PCIe* Solutions User Guide
238

	Intel Arria 10 Avalon-ST Interface for PCIe Solutions User Guide
	Contents
	1 Datasheet
	1.1 Arria 10 Avalon-ST Interface for PCIe Datasheet
	1.1.1 Arria 10 Features

	1.2 Release Information
	1.3 Device Family Support
	1.4 Configurations
	1.5 Debug Features
	1.6 IP Core Verification
	1.6.1 Compatibility Testing Environment

	1.7 Performance and Resource Utilization
	1.8 Recommended Speed Grades
	1.9 Creating a Design for PCI Express

	2 Quick Start Guide
	2.1 Directory Structure
	2.2 Design Components
	2.3 Generating the Design
	2.4 Simulating the Design
	2.5 Compiling and Testing the Design in Hardware

	3 Getting Started with the Arria 10 Hard IP for PCI Express
	3.1 Qsys Design Flow
	3.1.1 Generating the Testbench
	3.1.2 Simulating the Example Design
	3.1.3 Generating Synthesis Files
	3.1.4 Understanding the Files Generated
	3.1.5 Understanding Simulation Log File Generation
	3.1.6 Understanding Physical Placement of the PCIe IP Core
	3.1.7 Adding Virtual Pin Assignment to the Quartus II Settings File (.qsf)
	3.1.8 Compiling the Design in the Qsys Design Flow
	3.1.9 Modifying the Example Design
	3.1.10 Using the IP Catalog To Generate Your Arria 10 Hard IP for PCI Express as a Separate Component
	3.1.11 IP Core Generation Output (Quartus Prime Pro Edition)

	4 Arria 10 Parameter Settings
	4.1 Parameters
	4.2 Arria 10 Avalon-ST Settings
	4.3 Base Address Register (BAR) and Expansion ROM Settings
	4.4 Base and Limit Registers for Root Ports
	4.5 Device Identification Registers
	4.6 PCI Express and PCI Capabilities Parameters
	4.6.1 PCI Express and PCI Capabilities
	4.6.2 Error Reporting
	4.6.3 Link Capabilities
	4.6.4 MSI and MSI-X Capabilities
	4.6.5 Slot Capabilities
	4.6.6 Power Management

	4.7 Vendor Specific Extended Capability (VSEC)
	4.8 Configuration, Debug, and Extension Options
	4.9 PHY Characteristics
	4.10 Arria 10 Example Designs

	5 Physical Layout of Hard IP In Arria 10 Devices
	5.1 Channel and Pin Placement for the Gen1, Gen2, and Gen3 Data Rates
	5.2 Channel Placement and fPLL Usage for the Gen1 and Gen2 Data Rates
	5.3 Channel Placement and fPLL and ATX PLL Usage for the Gen3 Data Rate
	5.4 PCI Express Gen3 Bank Usage Restrictions

	6 Interfaces and Signal Descriptions
	6.1 Avalon‑ST RX Interface
	6.1.1 Avalon-ST RX Component Specific Signals
	6.1.2 Data Alignment and Timing for the 64‑Bit Avalon‑ST RX Interface
	6.1.3 Data Alignment and Timing for the 128‑Bit Avalon‑ST RX Interface
	6.1.4 Data Alignment and Timing for 256‑Bit Avalon‑ST RX Interface
	6.1.5 Tradeoffs to Consider when Enabling Multiple Packets per Cycle

	6.2 Avalon-ST TX Interface
	6.2.1 Avalon-ST Packets to PCI Express TLPs
	6.2.2 Data Alignment and Timing for the 64‑Bit Avalon-ST TX Interface
	6.2.3 Data Alignment and Timing for the 128‑Bit Avalon‑ST TX Interface
	6.2.4 Data Alignment and Timing for the 256‑Bit Avalon‑ST TX Interface
	6.2.4.1 Single Packet Per Cycle
	6.2.4.2 Multiple Packets per Cycle on the Avalon-ST TX 256-Bit Interface

	6.2.5 Root Port Mode Configuration Requests

	6.3 Clock Signals
	6.4 Reset, Status, and Link Training Signals
	6.5 ECRC Forwarding
	6.6 Error Signals
	6.7 Interrupts for Endpoints
	6.8 Interrupts for Root Ports
	6.9 Completion Side Band Signals
	6.10 Parity Signals
	6.11 LMI Signals
	6.12 Transaction Layer Configuration Space Signals
	6.12.1 Configuration Space Register Access Timing
	6.12.2 Configuration Space Register Access

	6.13 Hard IP Reconfiguration Interface
	6.14 Power Management Signals
	6.15 Physical Layer Interface Signals
	6.15.1 Serial Data Signals
	6.15.2 PIPE Interface Signals
	6.15.3 Test Signals
	6.15.4 Arria 10 Development Kit Conduit Interface

	7 Registers
	7.1 Correspondence between Configuration Space Registers and the PCIe Specification
	7.2 Type 0 Configuration Space Registers
	7.3 Type 1 Configuration Space Registers
	7.4 PCI Express Capability Structures
	7.5 Intel-Defined VSEC Registers
	7.6 CvP Registers
	7.7 Uncorrectable Internal Error Mask Register
	7.8 Uncorrectable Internal Error Status Register
	7.9 Correctable Internal Error Mask Register
	7.10 Correctable Internal Error Status Register

	8 Arria 10 Reset and Clocks
	8.1 Reset Sequence for Hard IP for PCI Express IP Core and Application Layer
	8.2 Clocks
	8.2.1 Clock Domains
	8.2.1.1 coreclkout_hip
	8.2.1.2 pld_clk

	8.2.2 Clock Summary

	9 Interrupts
	9.1 Interrupts for Endpoints
	9.1.1 MSI and Legacy Interrupts
	9.1.2 MSI-X
	9.1.3 Implementing MSI-X Interrupts
	9.1.4 Legacy Interrupts

	9.2 Interrupts for Root Ports

	10 Error Handling
	10.1 Physical Layer Errors
	10.2 Data Link Layer Errors
	10.3 Transaction Layer Errors
	10.4 Error Reporting and Data Poisoning
	10.5 Uncorrectable and Correctable Error Status Bits

	11 IP Core Architecture
	11.1 Top-Level Interfaces
	11.1.1 Avalon-ST Interface
	11.1.2 Clocks and Reset
	11.1.3 Local Management Interface (LMI Interface)
	11.1.4 Hard IP Reconfiguration
	11.1.5 Interrupts
	11.1.6 PIPE

	11.2 Transaction Layer
	11.2.1 Configuration Space
	11.2.2.1 Error Checking and Handling in Configuration Space Bypass Mode
	11.2.2.2 Protocol Extensions Supported

	11.3 Data Link Layer
	11.4 Physical Layer

	12 Transaction Layer Protocol (TLP) Details
	12.1 Supported Message Types
	12.1.1 INTX Messages
	12.1.2 Power Management Messages
	12.1.3 Error Signaling Messages
	12.1.4 Locked Transaction Message
	12.1.5 Slot Power Limit Message
	12.1.6 Vendor-Defined Messages
	12.1.7 Hot Plug Messages

	12.2 Transaction Layer Routing Rules
	12.3 Receive Buffer Reordering
	12.3.1 Using Relaxed Ordering

	13 Throughput Optimization
	13.1 Throughput of Posted Writes
	13.2 Throughput of Non-Posted Reads

	14 Design Implementation
	14.1 Making Pin Assignments to Assign I/O Standard to Serial Data Pins
	14.2 Recommended Reset Sequence to Avoid Link Training Issues
	14.3 Creating a Signal Tap II Debug File to Match Your Design Hierarchy
	14.4 SDC Timing Constraints

	15 Optional Features
	15.1 Configuration over Protocol (CvP)
	15.2 Autonomous Mode
	15.2.1 Enabling Autonomous Mode
	15.2.2 Enabling CvP Initialization

	15.3 ECRC
	15.3.1 ECRC on the RX Path
	15.3.2 ECRC on the TX Path

	16 Hard IP Reconfiguration
	17 Testbench and Design Example
	17.1 Endpoint Testbench
	17.2 Root Port Testbench
	17.3 Chaining DMA Design Examples
	17.3.1 BAR/Address Map
	17.3.2 Chaining DMA Control and Status Registers
	17.3.3 Chaining DMA Descriptor Tables

	17.4 Test Driver Module
	17.5 DMA Write Cycles
	17.6 DMA Read Cycles
	17.7 Root Port Design Example
	17.8 Root Port BFM
	17.8.1 BFM Memory Map
	17.8.2 Configuration Space Bus and Device Numbering
	17.8.3 Configuration of Root Port and Endpoint
	17.8.4 Issuing Read and Write Transactions to the Application Layer

	17.9 BFM Procedures and Functions
	17.9.1 ebfm_barwr Procedure
	17.9.2 ebfm_barwr_imm Procedure
	17.9.3 ebfm_barrd_wait Procedure
	17.9.4 ebfm_barrd_nowt Procedure
	17.9.5 ebfm_cfgwr_imm_wait Procedure
	17.9.6 ebfm_cfgwr_imm_nowt Procedure
	17.9.7 ebfm_cfgrd_wait Procedure
	17.9.8 ebfm_cfgrd_nowt Procedure
	17.9.9 BFM Configuration Procedures
	17.9.9.1 ebfm_cfg_rp_ep Procedure
	17.9.9.2 ebfm_cfg_decode_bar Procedure

	17.9.10 BFM Shared Memory Access Procedures
	17.9.10.1 Shared Memory Constants
	17.9.10.2 shmem_write
	17.9.10.3 shmem_read Function
	17.9.10.4 shmem_display Verilog HDL Function
	17.9.10.5 shmem_fill Procedure
	17.9.10.6 shmem_chk_ok Function

	17.9.11 BFM Log and Message Procedures
	17.9.11.1 ebfm_display Verilog HDL Function
	17.9.11.2 ebfm_log_stop_sim Verilog HDL Function
	17.9.11.3 ebfm_log_set_suppressed_msg_mask #Verilog HDL Function
	17.9.11.4 ebfm_log_set_stop_on_msg_mask Verilog HDL Function
	17.9.11.5 ebfm_log_open Verilog HDL Function
	17.9.11.6 ebfm_log_close Verilog HDL Function

	17.9.12 Verilog HDL Formatting Functions
	17.9.12.1 himage1
	17.9.12.2 himage2
	17.9.12.3 himage4
	17.9.12.4 himage8
	17.9.12.5 himage16
	17.9.12.6 dimage1
	17.9.12.7 dimage2
	17.9.12.8 dimage3
	17.9.12.9 dimage4
	17.9.12.10 dimage5
	17.9.12.11 dimage6
	17.9.12.12 dimage7

	17.9.13 Procedures and Functions Specific to the Chaining DMA Design Example
	17.9.13.1 chained_dma_test Procedure
	17.9.13.2 dma_rd_test Procedure
	17.9.13.3 dma_wr_test Procedure
	17.9.13.4 dma_set_rd_desc_data Procedure
	17.9.13.5 dma_set_wr_desc_data Procedure
	17.9.13.6 dma_set_header Procedure
	17.9.13.7 rc_mempoll Procedure
	17.9.13.8 msi_poll Procedure
	17.9.13.9 dma_set_msi Procedure
	17.9.13.10 find_mem_bar Procedure
	17.9.13.11 dma_set_rclast Procedure
	17.9.13.12 ebfm_display_verb Procedure

	17.10 Setting Up Simulation
	17.10.1 Changing Between Serial and PIPE Simulation
	17.10.2 Using the PIPE Interface for Gen1 and Gen2 Variants
	17.10.3 Viewing the Important PIPE Interface Signals
	17.10.4 Disabling the Scrambler for Gen1 and Gen2 Simulations
	17.10.5 Disabling 8B/10B Encoding and Decoding for Gen1 and Gen2 Simulations

	18 Debugging
	18.1 Simulation Fails To Progress Beyond Polling.Active State
	18.2 Hardware Bring-Up Issues
	18.3 Link Training
	18.3.1 Link Hangs in L0 State

	18.4 Use Third-Party PCIe Analyzer
	18.5 BIOS Enumeration Issues

	A Transaction Layer Packet (TLP) Header Formats
	A.1 TLP Packet Formats with Data Payload

	B Lane Initialization and Reversal
	C Arria 10 Avalon-ST Interface for PCIe Solutions User Guide Archive
	D Revision History
	D.1 Revision History for the Avalon-ST Interface

