
Intel® High Level Synthesis Compiler
Getting Started Guide

Updated for Intel® Quartus® Prime Design Suite: 18.1

Subscribe
Send Feedback

UG-20036 | 2018.12.24
Latest document on the web: PDF | HTML

https://www.intel.com/content/www/us/en/programmable/bin/rssdoc?name=ewa1462479481465
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Getting%20Started%20Guide%20(UG-20036%202018.12.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/ug-hls-getting-started.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462479481465.html

Contents

1. Intel® High Level Synthesis (HLS) Compiler Getting Started Guide.................................3
1.1. Intel High Level Synthesis Compiler Prerequisites...3
1.2. Installing the Intel HLS Compiler on Linux Systems.. 5
1.3. Installing the Intel HLS Compiler on Microsoft* Windows* Systems............................... 6
1.4. Initializing the Intel HLS Compiler Environment... 7

2. High Level Synthesis (HLS) Design Examples and Tutorials.. 9
2.1. Running a High Level Synthesis (HLS) Design Example (Linux).................................. 12
2.2. Running a High Level Synthesis (HLS) Design Example (Windows)..............................13

3. Troubleshooting the Setup of the Intel HLS Compiler... 15
3.1. Intel HLS Compiler Licensing Issues... 15

3.1.1. ModelSim Licensing Error Messages..15
3.1.2. LM_LICENSE_FILE Environment Variable... 15

A. Document Revision History for Intel HLS Compiler Getting Started Guide.................... 17

Contents

Intel High Level Synthesis Compiler: Getting Started Guide Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Getting%20Started%20Guide%20(UG-20036%202018.12.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® High Level Synthesis (HLS) Compiler Getting
Started Guide

The Intel® High Level Synthesis (HLS) Compiler is part of Intel Quartus® Prime design
software. The Intel HLS Compiler synthesizes a C++ function into an RTL
implementation that is optimized for Intel FPGA products. The compiler is sometimes
referred to as the i++ compiler, reflecting the name of the compiler command.

The Intel High Level Synthesis Compiler Getting Started Guide describes the
procedures to set up the Intel HLS Compiler and to run an HLS design example.

The features and devices supported by the Intel HLS Compiler depend on what edition
of Intel Quartus Prime you have. The following icons indicate content in this
publication that applies only to the Intel HLS Compiler provided with a certain edition
of Intel Quartus Prime:

Indicates that a feature or content applies only to the Intel HLS Compiler
provided with Intel Quartus Prime Pro Edition.

Indicates that a feature or content applies only to the Intel HLS Compiler
provided with Intel Quartus Prime Standard Edition.

In this publication, <quartus_installdir> refers to the location where you
installed Intel Quartus Prime Design Suite. The Intel High Level Synthesis (HLS)
Compiler is installed as part of your Intel Quartus Prime Design Suite installation.

The default Intel Quartus Prime Design Suite installation location depends on your
operating system and your Intel Quartus Prime edition:

Windows C:\intelFPGA_pro\18.1

Linux /home/<username>/intelFPGA_pro/18.1

Windows C:\intelFPGA_standard\18.1

Linux /home/<username>/intelFPGA_standard/18.1

1.1. Intel High Level Synthesis Compiler Prerequisites

The Intel HLS Compiler is installed as part of the Intel Quartus Prime software
installation, but it requires additional software to use.

UG-20036 | 2018.12.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Getting%20Started%20Guide%20(UG-20036%202018.12.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

For detailed instructions about installing Intel Quartus Prime software, including
system requirements, prerequisites, and licensing requirements, see Intel FPGA
Software Installation and Licensing.

The Intel HLS Compiler requires the following additional software:

C++ Compiler

For Linux, install one of the following versions of the GCC compiler and C++ libraries,
depending on your edition of Intel Quartus Prime software:

•
 GCC compiler and C++ Libraries version 5.4.0

You must install these libraries manually. See Installing the Intel HLS Compiler on
Linux Systems for instructions.

•
 GCC compiler and C++ Libraries version 4.4.7

These libraries are included in the version of Linux supported by the Intel HLS
Compiler.

Important: The Intel HLS Compiler software does not support versions of the GCC compiler other
than those specified for the edition of the software.

For Windows, install one of the following versions of the Microsoft Visual Studio
Professional, depending on your edition of Intel Quartus Prime software:

•
 Microsoft Visual Studio 2015 Professional

•
 Microsoft Visual Studio 2015 Community

•
 Microsoft Visual Studio 2010 Professional

Important: The Intel HLS Compiler software does not support versions of Microsoft Visual Studio
other than those specified for the edition of the software.

Mentor Graphics* ModelSim* Software

You can install the ModelSim* software from the Intel Quartus Prime software installer.
The available options are:

• ModelSim - Intel FPGA Edition

• ModelSim - Intel FPGA Starter Edition

Alternatively, you can use your own licensed version of Mentor Graphics* ModelSim
software.

On Linux systems, ModelSim software requires the Red Hat development tools
packages. Additionally, any 32-bit versions of ModelSim software (including those
provided with Intel Quartus Prime) require additional 32-bit libraries. The commands
to install these requirements are provided in Installing the Intel HLS Compiler on Linux
Systems.

For information about all the ModelSim software versions that the Intel software
supports, refer to the EDA Interface Information section in the Software and Device
Support Release Notes for your edition of Intel Quartus Prime

1. Intel® High Level Synthesis (HLS) Compiler Getting Started Guide

UG-20036 | 2018.12.24

Intel High Level Synthesis Compiler: Getting Started Guide Send Feedback

4

https://www.intel.com/content/www/us/en/programmable/documentation/esc1425946071433.html#esc1425946071433
https://www.intel.com/content/www/us/en/programmable/documentation/esc1425946071433.html#esc1425946071433
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462479481465.html#ulj1521476282903#ulj1521476282903
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462479481465.html#ulj1521476282903#ulj1521476282903
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462479481465.html#ulj1521476282903
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462479481465.html#ulj1521476282903
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Getting%20Started%20Guide%20(UG-20036%202018.12.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information

• Supported Operating Systems

• Software Requirements
in Intel FPGA Software Installation and Licensing

• EDA Interface Information (Intel Quartus Prime Standard Edition)

• EDA Interface Information (Intel Quartus Prime Pro Edition)

• Mentor Graphics Website

1.2. Installing the Intel HLS Compiler on Linux Systems

You must have administration privileges to install the Intel HLS Compiler.

To install the Intel HLS Compiler on Linux Systems:

1. Confirm that your operating system version is supported by the Intel HLS
Compiler:

Option Description

• Red Hat Enterprise Linux 6.x, or a community equivalent
• Red Hat Enterprise Linux 7.x, or a community equivalent

• Red Hat Enterprise Linux 6.x, or a community equivalent

2. Install Intel Quartus Prime (including ModelSim, if needed).

For detailed instructions about installing Intel Quartus Prime software, including
system requirements, prerequisites, and licensing requirements, refer to Intel
FPGA Software Installation and Licensing.

3. Refresh your Linux repositories with the sudo yum update command.

4. Install one of the following versions depending on your edition of the Intel Quartus
Prime software:

—
 GCC compiler and C++ Libraries version 5.4.0

To download the required tools and source files, and compile GCC compiler
and C++ Libraries version 5.4.0, run the following commands:

sudo yum groupinstall "Development Tools" "Additional Development"

cd <quartus_installdir>(1)/hls/

./install_gcc

The install_gcc command runs a script that downloads and compiles GCC
compiler and C++ Libraries version 5.4.0 in the /home/<username>/
build/gcc folder. The script installs this version of the GCC compiler
alongside the Intel HLS Compiler so that the Intel HLS Compiler can access
the required libraries without any further action on your part.

(1) Where <quartus_installdir> is the directory where you installed the Intel
Quartus Prime Design Suite. For example, C:\intelFPGA_pro\18.1.

1. Intel® High Level Synthesis (HLS) Compiler Getting Started Guide

UG-20036 | 2018.12.24

Send Feedback Intel High Level Synthesis Compiler: Getting Started Guide

5

https://www.altera.com/support/support-resources/download/os-support.html
https://www.intel.com/content/www/us/en/programmable/documentation/esc1425946071433.html#mwh1410890907130
https://www.intel.com/content/www/us/en/programmable/documentation/hco1416836145555.html#hco1416836645047
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1443722509979.html#hco1416836645047
https://www.mentor.com/products/fpga/verification-simulation/modelsim/buy
https://www.intel.com/content/www/us/en/programmable/documentation/esc1425946071433.html#esc1425946071433
https://www.intel.com/content/www/us/en/programmable/documentation/esc1425946071433.html#esc1425946071433
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Getting%20Started%20Guide%20(UG-20036%202018.12.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you want to maintain your own GCC installation, run the script with the -i
flag to specify a different GCC installation directory. However, if you specify a
different GCC installation directory, you must always specify the --gcc-
toolchain option every time you run the Intel HLS Compiler i++ command.
For details about the --gcc-toolchain option, see Intel HLS Compiler
Command Options in Intel HLS Compiler Reference Manual.

For more options of the install_gcc command, use the command help
option: ./install_gcc -h.

—
 GCC compiler and C++ Libraries version 4.4.7

You can install GCC compiler and C++ Libraries version 4.4.7 with the
following command:

sudo yum groupinstall "Development Tools"

5. If you want the Intel HLS Compiler to simulate your components with the 32-bit
Mentor Graphics ModelSim software provided with Intel Quartus Prime, install the
required additional 32-bit libraries with the following command:

sudo yum install -y glibc.i686 glibc-devel.i686 libX11.i686 \
 libXext.i686 libXft.i686 libgcc.i686 libgcc.x86_64 \
 libstdc++.i686 libstdc++-devel.i686 ncurses-devel.i686 \
 qt.i686 qt-x11.i686

6. If you use the Mentor Graphics ModelSim software provided with Intel Quartus
Prime, add the path to ModelSim to your PATH environment variable

For example:

export PATH=$PATH:<quartus_installdir>/modelsim_ase/bin

7. Optional: If you plan to use Platform Designer to integrate your component with a
system, add the path to Platform Designer to your PATH environment variable.

For example:

export PATH=$PATH:<quartus_installdir>/qsys/bin

After completing these steps, the Intel HLS Compiler is installed on your system.
Before you can compile your component with the Intel HLS Compiler i++ command,
you must initialize your Intel HLS Compiler environment for the i++ command to run
successfully. For details, see Initializing the Intel HLS Compiler Environment on page
7.

1.3. Installing the Intel HLS Compiler on Microsoft* Windows*

Systems

To install the Intel HLS Compiler on Microsoft* Windows* Systems:

1. Confirm that your operating system version is supported by the Intel HLS
Compiler (Microsoft* Windows* 7 SP1, 8.1 or 10).

2. Install one of the following software products, depending on your edition of the
Intel Quartus Prime software:

—
 Microsoft Visual Studio 2015 Professional

1. Intel® High Level Synthesis (HLS) Compiler Getting Started Guide

UG-20036 | 2018.12.24

Intel High Level Synthesis Compiler: Getting Started Guide Send Feedback

6

https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html#ewa1462897780080
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html#ewa1462897780080
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Getting%20Started%20Guide%20(UG-20036%202018.12.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

—
 Microsoft Visual Studio 2015 Community

—
 Microsoft Visual Studio 2010 Professional

Important: The Intel HLS Compiler software does not support versions of Microsoft
Visual Studio other than those specified for the edition of the software.

If you have multiple versions of Visual Studio, Microsoft recommends installing
Visual Studio versions in the order in which the versions were released. For
example, install Visual Studio 2010 before installing Visual Studio 2015. For
details, see Install Visual Studio Versions Side-by-Side in the MSDN Library.

3. Install Intel Quartus Prime (including ModelSim, if needed).

For detailed instructions about installing Intel Quartus Prime software, including
system requirements, prerequisites, and licensing requirements, refer to the Intel
FPGA Software Installation and Licensing.

4. If you use the Mentor Graphics ModelSim software provided with Intel Quartus
Prime, add the path to ModelSim to your PATH environment variable.

For example:

set PATH=%PATH%:<quartus_installdir>\modelsim_ase\win32aloem

5. Optional: If you plan to use Platform Designer to integrate your component with a
system, add the path to Platform Designer to your PATH environment variable.

For example:

set PATH=%PATH%:<quartus_installdir>\qsys\bin

After completing these steps, the Intel HLS Compiler is installed on your system.
Before you can compile your component with the Intel HLS Compiler i++ command,
you must initialize your Intel HLS Compiler environment for the i++ command to run
successfully. For details, see Initializing the Intel HLS Compiler Environment on page
7.

1.4. Initializing the Intel HLS Compiler Environment

Before you can compile your component with the Intel HLS Compiler i++ command, a
number of environment variables must be set for the i++ command to run
successfully.

The Intel HLS Compiler environment initialization script applies only to the
environment variable settings in your current terminal or command prompt session.
You must initialize the Intel HLS Compiler environment each time that you start a
terminal or command prompt session to develop your design.

1. Intel® High Level Synthesis (HLS) Compiler Getting Started Guide

UG-20036 | 2018.12.24

Send Feedback Intel High Level Synthesis Compiler: Getting Started Guide

7

https://msdn.microsoft.com/en-us/library/ms246609.aspx
https://www.intel.com/content/www/us/en/programmable/documentation/esc1425946071433.html#esc1425946071433
https://www.intel.com/content/www/us/en/programmable/documentation/esc1425946071433.html#esc1425946071433
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Getting%20Started%20Guide%20(UG-20036%202018.12.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To initialize your current terminal or command prompt session so that you can run the
Intel HLS Compiler:

• On Linux systems, initialize your environment as follows:

a. In your terminal session, change directories to the hls directory in your Intel
Quartus Prime installation directory.

For example, /home/<username>/intelFPGA_pro/18.1/hls

b. Run the following command from the hls directory to set the environment
variables for the i++ command in the current terminal session:

source init_hls.sh

The command prints out the modified environment variable settings.

The environment initialization script shows the environment variables that it set,
and you can now run the i++ command from this terminal session.

• On Windows systems, initialize your environment as follows:

a. In your command prompt session, change directories to the hls directory in
your Intel Quartus Prime installation directory.

For example, C:\intelFPGA_pro\18.1\hls

b. Run the following command from the hls directory to set the environment
variables for the i++ command in the current terminal session:

init_hls.bat

The command prints out the modified environment variable settings.

The environment initialization script shows the environment variables that it set,
and you can now run the i++ command from this command prompt session.

Tip: To set the environment variables permanently, follow your operating system's
standard procedure for making persistent changes to environment variable settings.
Review the output of the environment initialization script to determine the
environment variables to set permanently.

1. Intel® High Level Synthesis (HLS) Compiler Getting Started Guide

UG-20036 | 2018.12.24

Intel High Level Synthesis Compiler: Getting Started Guide Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Getting%20Started%20Guide%20(UG-20036%202018.12.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. High Level Synthesis (HLS) Design Examples and
Tutorials

The Intel High Level Synthesis (HLS) Compiler includes design examples and tutorials
to provide you with example components and demonstrate ways to model or code
your components to get the best results from the Intel HLS Compiler for your design.

High Level Synthesis Design Examples

The high level synthesis (HLS) design examples give you a quick way to see how
various algorithms can be effectively implemented to get the best results from the
Intel HLS Compiler.

You can find the HLS design examples in the following location:

<quartus_installdir>/hls/examples/<design_example_name>

Where <quartus_installdir> is the directory where you installed the Intel Quartus
Prime Design Suite. For example, /home/<username>/intelFPGA_pro/18.1 or
C:\intelFPGA_pro\18.1.

For instructions on running the examples, see the following sections:

• Running a High Level Synthesis (HLS) Design Example (Linux) on page 12

• Running a High Level Synthesis (HLS) Design Example (Windows) on page 13

Table 1. HLS design examples

Focus area Name Description

Linear algebra QRD Uses the Modified Gram-Schmidt algorithm for QR factorization of
a matrix.

Signal processing interp_decim_filter Implements a simple and efficient interpolation/decimation filter.

Simple design counter Implements a simple and efficient 32-bit counter component.

Video processing YUV2RGB Implements a basic YUV422 to RGB888 color space conversion.

Video processing image_downsample Implements an image downsampling algorithm to scale an image
to a smaller size using bilinear interpolation.

HLS Design Tutorials

The HLS design tutorials show you important HLS-specific programming concepts as
well demonstrating good coding practices.

You can find the HLS design tutorials in the following location:

<quartus_installdir>/hls/examples/tutorials/<tutorial_name>

UG-20036 | 2018.12.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Getting%20Started%20Guide%20(UG-20036%202018.12.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Where <quartus_installdir> is the directory where you installed the Intel Quartus
Prime Design Suite. For example, /home/<username>/intelFPGA_pro/18.1 or
C:\intelFPGA_pro\18.1.

Each tutorial has a README file that gives you details about what the tutorial covers
and instructions on how to run the tutorial.

Table 2. HLS design tutorials

Focus area Name Description

Arbitrary precision
types

ac_fixed_constructor Demonstrates the use of the ac_fixed constructor where you
can get a better QoR by using minor variations in coding style.

ac_fixed_math_library Demonstrates the use of the Intel HLS Compiler
ac_fixed_math fixed point math library functions.

ac_int_basic_ops Demonstrates the operators available for the ac_int class.

ac_int_overflow Demonstrates the usage of the DEBUG_AC_INT_WARNING and
DEBUG_AC_INT_ERROR keywords to help detect overflow during
emulation runtime.

Component
memories

bank_bits Demonstrates how to control component internal memory
architecture for parallel memory access by enforcing which
address bits are used for banking.

depth_wise_merge Demonstrates how to improve resource utilization by
implementing two logical memories as a single physical memory
with a depth equal to the sum of the depths of the two original
memories.

static_var_init Demonstrates the hls_init_on_power and
hls_init_on_reset flags for static variables and their impact
on area and latency.

width_wise_merge Demonstrates how to improve resource utilization by
implementing two logical memories as a single physical memory
with a width equal to the sum of the widths of the two original
memories.

Interfaces overview Demonstrates the effects on quality-of-results (QoR) of choosing
different component interfaces even when the component
algorithm remains the same.

explicit_streams_buffer Demonstrates how to use explicit stream_in and stream_out
interfaces in the component and testbench.

explicit_streams_packet
s_empty

Demonstrates how to use the usesPackets, usesEmpty, and
firstSymbolInHighOrderBits stream template parameters.

explicit_streams_packet
s_ready_valid

Demonstrates how to use the usesPackets, usesValid, and
usesReady stream template parameters.

explicit_streams_ready_
latency

Demonstrates how to achieve a better loop initiation interval (II)
with stream write using the readyLatency stream template
parameter.

mm_master_testbench_ope
rators

Demonstrates how to invoke a component at different indicies of
an Avalon Memory Mapped (MM) Master (mm_master class)
interface.

mm_slaves Demonstrates how to create Avalon-MM Slave interfaces (slave
registers and slave memories).

continued...

2. High Level Synthesis (HLS) Design Examples and Tutorials

UG-20036 | 2018.12.24

Intel High Level Synthesis Compiler: Getting Started Guide Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Getting%20Started%20Guide%20(UG-20036%202018.12.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Focus area Name Description

multiple_stream_call_si
tes

Demonstrates the benefits of using multiple stream call sites.

pointer_mm_master Demonstrates how to create Avalon-MM Master interfaces and
control their parameters.

stable_arguments Demonstrates how to use the stable attribute for unchanging
arguments to improve resource utilization.

Best practices
 ac_datatypes

Demonstrates the effect of using ac_int datatype instead of
int datatype.

const_global Demonstrates the performance and resource utilization
improvements of using const qualified global variables.

floating_point_ops Demonstrates the impact of --fpc and --fp-relaxed flags in i
++ on floating point operations.

 integer_promotion
Demonstrates how integer promotion rules can influence the
behavior of a C or C++ program.

 loop_coalesce
Demonstrates the performance and resource utilization
improvements of using loop_coalesce pragma on nested
loops.
While the #pragma loop_coalesce is provided with both
Standard and Pro edition, the design tutorial is provided only
with Pro edition.

loop_memory_dependency Demonstrates breaking loop carried dependencies using the
ivdep pragma.

parameter_aliasing
 Demonstrates the use of the __restrict keyword on

component arguments.

 Demonstrates the use of the restrict keyword on
component arguments.

random_number_generator

Demonstrates how to use the random number generator library.

resource_sharing_filter Demonstrates the following versions of a 32-tap finite impulse
response (FIR) filter design:
• optimized-for-throughput variant
• optimized-for-area variant

shift_register Demonstrates the recommended coding style for implementing
shift registers.

single_vs_double_precis
ion_math

Demonstrates the effect of using single precision literals and
functions instead of double precision literals and functions.

struct_interface Demonstrates how to use ac_int to implement interfaces with
no padding bits.

swap_vs_copy Demonstrates the impact of using deep copying with registers on
the performance and resource utilization of a component design.

Usability compiler_interoperabili
ty

(Linux only) Demonstrates how to use testbench code compiled
with GCC along with code compiled by the i++ command.

continued...

2. High Level Synthesis (HLS) Design Examples and Tutorials

UG-20036 | 2018.12.24

Send Feedback Intel High Level Synthesis Compiler: Getting Started Guide

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Getting%20Started%20Guide%20(UG-20036%202018.12.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Focus area Name Description

enqueue_call Demonstrates how to run components asynchronously and
exercise their pipeline performance in the test bench using
enqueue functionality.

platform_designer_2xclo
ck

 qsys_2xclock

Demonstrates the recommended clock and reset generation for a
component with a clock2x input.

platform_designer_stitc
hing

 qsys_stitching

Demonstrates how to combine multiple components to function
as a single cohesive design.

2.1. Running a High Level Synthesis (HLS) Design Example (Linux)

To run an HLS design example on Linux systems:

1. Start a terminal session and initialize the Intel HLS Compiler environment.

For instructions how to initialize the environment, see Initializing the Intel HLS
Compiler Environment on page 7.

2. Navigate to the <quartus_installdir>/hls/examples/
<design_example_name> directory, where <quartus_installdir> is the directory
where you installed Intel Quartus Prime software.

For example, /home/<username>/intelFPGA_pro/18.1.

3. Run the make test-x86-64 command. This command compiles the C++ source
code to an x86-64 binary executable. Then, run the generated executable on your
CPU.
Expected outcome after you run the make test-x86-64 command:

• The console displays the command it uses to generate the binary. For
example, i++ -march=x86-64 -o test-x86-64 <source_files>.

• The HLS compiler creates an executable file (for example, test-x86-64) in
the current working directory.

• The console displays the output of the executable to signify a successful
execution.

$ make test-x86-64
i++ MGS.cpp QRD_Testbench.cpp TestbenchHelpers.cpp --fpc --fp-relaxed -
march=x86-64 -o test-x86-64
+--+
| Run ./test-x86-64 to execute the test. |
+--+

4. Run the make test-fpga command. The command compiles the C++ source
code to a hardware executable and then runs a simulation of the generated HDL.
Expected outcome after you run the make test-fpga command:

2. High Level Synthesis (HLS) Design Examples and Tutorials

UG-20036 | 2018.12.24

Intel High Level Synthesis Compiler: Getting Started Guide Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Getting%20Started%20Guide%20(UG-20036%202018.12.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The console displays the command it uses to generate the testbench binary
and the contents of the project directory. For example,
i++ -march="<FPGA_family_or_part_number>" <source_files>
-o test-fpga.

• The HLS compiler creates a .prj directory (for example, test-fpga.prj) in
the current working directory.

• The console displays the output of the executable to signify a successful
execution.

$ make test-fpga
i++ MGS.cpp QRD_Testbench.cpp TestbenchHelpers.cpp -v --fpc --fp-relaxed -
march=Arria10 -o test-fpga
Target FPGA part name: 10AX115U1F45I1SG
Target FPGA family name: Arria 10
Target FPGA speed grade: -2
Analyzing MGS.cpp for testbench generation
Creating x86-64 testbench
Analyzing MGS.cpp for hardware generation
Analyzing QRD_Testbench.cpp for testbench generation
Creating x86-64 testbench
Analyzing QRD_Testbench.cpp for hardware generation
Analyzing TestbenchHelpers.cpp for testbench generation
Creating x86-64 testbench
Analyzing TestbenchHelpers.cpp for hardware generation
Optimizing component(s) and generating Verilog files
Generating cosimulation support
Generating simulation files for components: qrd
HLS simulation directory: /data/username/HLS_Trainings/examples/QRD/test-
fpga.prj/verification.
Linking x86 objects
+--------------------------------------+
| Run ./test-fpga to execute the test. |
+--------------------------------------+

2.2. Running a High Level Synthesis (HLS) Design Example
(Windows)

To run an HLS design example on Windows systems:

1. Start a terminal session and initialize the Intel HLS Compiler environment.

For instructions how to initialize the environment, see Initializing the Intel HLS
Compiler Environment on page 7.

2. Navigate to the <quartus_installdir>\hls\examples
\<design_example_name> directory, where <quartus_installdir> is the directory
where you installed Intel Quartus Prime software.

For example, C:\intelFPGA_pro\18.1.

3. Run the build.bat test-x86-64. This command compiles the C++ source
code to an x86-64 binary executable. Then, run the generated executable on your
CPU.
Expected outcome after you run the build.bat test-x86-64 command:

2. High Level Synthesis (HLS) Design Examples and Tutorials

UG-20036 | 2018.12.24

Send Feedback Intel High Level Synthesis Compiler: Getting Started Guide

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Getting%20Started%20Guide%20(UG-20036%202018.12.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• The console displays the command it uses to generate the binary. For
example, i++ -march=x86-64 -o test-x86-64 <source_files>.

• The HLS compiler creates an executable file (for example, test-x86-64) in
the current working directory.

• The console displays the output of the executable to signify a successful
execution.

C:\intelFPGA_pro\18.1\hls\examples\QRD>build.bat test-x86-64
i++ --fpc --fp-relaxed -march=x86-64 MGS.cpp QRD_Testbench.cpp
TestbenchHelpers.cpp -o test-x86-64.exe
Run test-x86-64.exe to execute the test.

4. Run the build.bat test-fpga command. The command compiles the C++
source code to a hardware executable and then runs a simulation of the generated
HDL.
Expected outcome after you run the build.bat test-fpga command:

• The console displays the command it uses to generate the testbench binary
and the contents of the project directory. For example,
i++ -march="<FPGA_family_or_part_number>" <source_files>
-o test-fpga.

• The HLS compiler creates a .prj directory (for example, test-fpga.prj) in
the current working directory.

• The console displays the output of the executable to signify a successful
execution.

C:\intelFPGA_pro\18.1\hls\examples\QRD>build.bat test-fpga
i++ --fpc --fp-relaxed -march=Arria10 MGS.cpp QRD_Testbench.cpp
TestbenchHelpers.cpp -o test-fpga.exe
Run test-fpga.exe to execute the test.

2. High Level Synthesis (HLS) Design Examples and Tutorials

UG-20036 | 2018.12.24

Intel High Level Synthesis Compiler: Getting Started Guide Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Getting%20Started%20Guide%20(UG-20036%202018.12.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Troubleshooting the Setup of the Intel HLS Compiler
This section provides information that can help you troubleshoot problems you might
encounter when setting up the HLS compiler.

3.1. Intel HLS Compiler Licensing Issues

The Intel High Level Synthesis (HLS) Compiler is licensed as part of your Intel Quartus
Prime license. However, the Intel HLS Compiler depends on ModelSim software. If you
use a version of ModelSim software other than ModelSim - Intel FPGA Edition or
ModelSim - Intel FPGA Starter Edition, ensure that your version of ModelSim software
is licensed correctly.

In some cases, you might encounter problems with the licensing for ModelSim
software.

3.1.1. ModelSim Licensing Error Messages

The HLS compiler issues error messages if it cannot locate the license for the installed
version of ModelSim software.

If the HLS compiler fails to locate the ModelSim software license, it issues the
following error message when you compile your design to the FPGA architecture:

$ i++ -march="<FPGA_family_or_part_number>" program.cpp
HLS Elaborate cosim testbench. FAILED.
See ./a.prj/a.log for details.
Error: Missing simulator license. Either:
1) Ensure you have a valid ModelSim license
2) Use the --simulator none flag to skip the verification flow

Common causes for these errors include:

• Missing, expired, or invalid licenses

• Incorrect license server name in the license.dat file

• Unspecified or incorrectly-specified license location

Note: The running speed of the HLS compiler might decrease if the compiler has to search
the network for missing or corrupted licenses. If this problem occurs, correct the
license file or license location accordingly.

3.1.2. LM_LICENSE_FILE Environment Variable

Intel and third-party software use the LM_LICENSE_FILE environment variable to
specify the locations of license files or license servers. For example, both the Intel
Quartus Prime software and the ModelSim software use the LM_LICENSE_FILE
variable to specify the locations of their licenses.

UG-20036 | 2018.12.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Getting%20Started%20Guide%20(UG-20036%202018.12.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Note: The time it takes for your development machine to communicate with the license
server directly affects compilation time. If your LM_LICENSE_FILE environment
variable setting includes paths to many license servers, or if the license server is
hosted in a distant locale, you will notice a significant increase in compilation time.

On Linux or UNIX systems, insert a colon (:) after each license file or license server
location that you append to the LM_LICENSE_FILE environment variable.

On Windows systems, insert a semicolon (;) after each license file or license server
location that you append to the LM_LICENSE FILE environment variable.

Note: When modifying the LM_LICENSE_FILE setting to include the locations of your
software licenses, do not remove any existing license locations appended to the
variable.

3.1.2.1. ModelSim Software License-Specific Considerations

When setting up the ModelSim software license, you need to append the license
location to the LM_LICENSE_FILE environment variable. However, you can also append
the location of the ModelSim software license to the MGLS_LICENSE_FILE environment
variable.

For Mentor Graphics applications, including the ModelSim software, you can specify
the paths to license files and license servers in five different locations. If you specify
paths to license files or license servers in multiple locations, the following search order
is used to find the first valid path:

• MGLS_LICENSE_FILE environment variable you set in the user environment

• MGLS_LICENSE_FILE environment variable you set in the registry

• LM_LICENSE_FILE environment variable you set in the environment

• LM_LICENSE_FILE environment variable you set in the registry

• <path to FLEXlm>\license.dat, where <path to FLEXlm> is the default
location of the FLEXlm license file.

When you install a Mentor Graphics product license on a computer, the
MGLS_LICENSE_FILE environment variable settings take precedence over the
LM_LICENSE_FILE environment variable settings. If you set both environment
variables, set LM_LICENSE_FILE to point to the ModelSim license server and set
MGLS_LICENSE_FILE to only point to the license server for other Mentor Graphics
applications. If you only use the MGLS_LICENSE_FILE environment variable, ensure
that the ModelSim license server and the license servers for other Mentor Graphics
applications are on the same machine.

3. Troubleshooting the Setup of the Intel HLS Compiler

UG-20036 | 2018.12.24

Intel High Level Synthesis Compiler: Getting Started Guide Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Getting%20Started%20Guide%20(UG-20036%202018.12.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Document Revision History for Intel HLS Compiler
Getting Started Guide

Document Version Intel Quartus
Prime Version

Changes

2018.12.24 18.1 •
 Added Microsoft Visual Studio 2015 Community to the list of

supported C++ compilers on Microsoft Windows systems.
• Added step to add path to Mentor Graphics ModelSim software provided

with Intel Quartus Prime to operating system PATH environment
variable in Installing the Intel HLS Compiler on Linux Systems on page
5 and Installing the Intel HLS Compiler on Microsoft* Windows*
Systems on page 6.

2018.09.24 18.1 •
 The Intel HLS Compiler has a new front end. For a summary of

the changes introduced by this new front end, see Improved Intel HLS
Compiler Front End in the Intel High Level Synthesis Compiler Release
Notes.

•
 The Intel HLS Compiler provided with Intel Quartus Prime Pro

Edition has new prerequisites. Review Intel High Level Synthesis
Compiler Prerequisites on page 3 to learn more.

•
 The installation instructions for Linux systems have changed.

See Installing the Intel HLS Compiler on Linux Systems on page 5 for
details.

•
 The best_practices/parameter_aliasing tutorial

description in High Level Synthesis (HLS) Design Examples and
Tutorials on page 9 changed to cover the __restrict keyword. The
restrict keyword is no longer supported in the Intel HLS Compiler
Pro Edition.

•
 Removed the best_practices/integer_promotion

tutorial. Integer promotion is now done by default when use the Intel
HLS Compiler Pro Edition.

continued...

UG-20036 | 2018.12.24

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/lxu1505493246188.html#idi1505494780487#new_front_end
https://www.intel.com/content/www/us/en/programmable/documentation/lxu1505493246188.html#idi1505494780487#new_front_end
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Getting%20Started%20Guide%20(UG-20036%202018.12.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Document Version Intel Quartus
Prime Version

Changes

2018.05.07 18.0 • Starting with Intel Quartus Prime Version 18.0, the features and
devices supported by the Intel HLS Compiler depend on what edition of
Intel Quartus Prime you have. Intel HLS Compiler publications now use
icons to indicate content and features that apply only to a specific
edition as follows:

Indicates that a feature or content applies only to the Intel
HLS Compiler provided with Intel Quartus Prime Pro Edition.

Indicates that a feature or content applies only to the Intel
HLS Compiler provided with Intel Quartus Prime Standard
Edition.

•
 Added the following tutorials to the list of tutorials in High Level

Synthesis (HLS) Design Examples and Tutorials on page 9:
— interfaces/explicit_streams_packets_empty

— interfaces/explicit_streams_ready_latency

— best_practices/ac_datatypes

— best_practices/loop_coalesce

— best_practices/random_number_generator

•
 Renamed the following tutorials to reflect some Intel Quartus

Prime component name changes:
— usability/qsys_2xclock is now usability/

platform_designer_2xclock

— usability/qsys_stitching is now usability/
platform_designer_stitching

2017.12.22 17.1.1 • Added the interfaces/overview tutorial to the list of tutorials in
High Level Synthesis (HLS) Design Examples and Tutorials on page 9.

2017.12.08 17.0 • Updated the Mentor Graphics ModelSim software requirements to
include the required Red Hat development tools packages.

2017.11.06 17.0 • The Intel High Level Synthesis (HLS) Compiler is now part of Intel
Quartus Prime Design Suite, resulting in the following changes:
— Revised to document to reflect that you now get the Intel HLS

Compiler by installing Intel Quartus Prime software.
— Removed most licensing information. Licensing the Intel HLS

Compiler is now covered by your Intel Quartus Prime Design Suite
licensing. Some third-party software required by the HLS compiler
might continue to require additional licensing.

— Removed information about overriding compilers.
— Revised prerequisites to reflect only additional prerequisites

required by the HLS compiler.
— Revised path information to reflect the new file system locations of

the Intel HLS Compiler files.
• Renamed the following tutorials:

— The explicit_streams tutorial is now called
explicit_streams_buffer.

— The explicit_streams_2 tutorial is now called
explicit_streams_packets_ready_valid.

2017.06.23 — • Minor changes and corrections.

2017.06.09 — • Updated High Level Synthesis (HLS) Design Examples and Tutorials on
page 9 with information about new examples.

• Revised Overriding the Default GCC Compiler for Intel HLS Compiler.

2017.03.14 — • Removed bit operations (3DES) from list of supplied design examples.

continued...

A. Document Revision History for Intel HLS Compiler Getting Started Guide

UG-20036 | 2018.12.24

Intel High Level Synthesis Compiler: Getting Started Guide Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Getting%20Started%20Guide%20(UG-20036%202018.12.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Version Intel Quartus
Prime Version

Changes

2017.03.01 — • Added installation of required packages and libraries needed for Linux.

2017.02.03 — • Changed success message in Quick Start sections to PASSED.
• Added HLS Design Examples and Tutorials section.
• Moved Running an HLS Design Example on Linux and Running an HLS

Design Example on Windows to HLS Design Examples and Tutorials.

2016.11.30 — • In HLS Compiler Prerequisites, updated software requirements to note
that the HLS compiler supports all ModelSim software editions that the
Intel Quartus Prime software supports.

• In HLS Compiler Quick Start, added a note that you must run the
init_hls script each time you start a shell or terminal to develop your
design.

• In HLS Compiler Quick Start, separated the Linux and Windows
instructions.

• In Running an HLS Design Example, separated the Linux and Windows
instructions. For Linux, run the make command; for Windows, run the
build.bat command.

• Changed the test_x86-64 command option to test-x86-64.
• Changed the test_fpga command option to test-fpga.
• Removed the instruction to run the make test_qii command for

Linux and the build.bat test_qii command for Windows because
it is no longer necessary.

• In HLS Licensing Error Messages, updated the error message you will
see if the HLS compiler fails to locate the ModelSim software license.

2016.09.12 — • Initial release.

A. Document Revision History for Intel HLS Compiler Getting Started Guide

UG-20036 | 2018.12.24

Send Feedback Intel High Level Synthesis Compiler: Getting Started Guide

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Getting%20Started%20Guide%20(UG-20036%202018.12.24)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Intel High Level Synthesis Compiler: Getting Started Guide
	Contents
	1. Intel® High Level Synthesis (HLS) Compiler Getting Started Guide
	1.1. Intel High Level Synthesis Compiler Prerequisites
	1.2. Installing the Intel HLS Compiler on Linux Systems
	1.3. Installing the Intel HLS Compiler on Microsoft* Windows* Systems
	1.4. Initializing the Intel HLS Compiler Environment

	2. High Level Synthesis (HLS) Design Examples and Tutorials
	2.1. Running a High Level Synthesis (HLS) Design Example (Linux)
	2.2. Running a High Level Synthesis (HLS) Design Example (Windows)

	3. Troubleshooting the Setup of the Intel HLS Compiler
	3.1. Intel HLS Compiler Licensing Issues
	3.1.1. ModelSim Licensing Error Messages
	3.1.2. LM_LICENSE_FILE Environment Variable
	3.1.2.1. ModelSim Software License-Specific Considerations

	A. Document Revision History for Intel HLS Compiler Getting Started Guide

