
Intel® Integrated Performance
Primitives Cryptography
Developer Reference

Intel Integrated Performance Primitives 2018

Legal Information

Contents
Legal Information.. 13
Getting Help and Support... 15
Introducing Intel® Integrated Performance Primitives

Cryptography..17
What's New.. 19
Notational Conventions.. 21
Related Products.. 23

Chapter 1: Overview
Basic Features... 25
Function Context Structures.. 25
Data Security Considerations...26

Chapter 2: Symmetric Cryptography Primitive Functions
Block Cipher Modes of Operation..27
Rijndael Functions..28

AESGetSize...28
AESInit...29
AESSetKey..29
AESPack, AESUnpack... 30
AESEncryptECB... 31
AESDecryptECB...32
AESEncryptCBC... 32
AESDecryptCBC...33
AESEncryptCFB... 34
AESDecryptCFB... 35
AESEncryptOFB... 35
AESDecryptOFB...36
AESEncryptCTR... 37
AESDecryptCTR...38
AESEncryptXTS_Direct, AESDecryptXTS_Direct....................................39
Example of Using AES Functions.. 41

AES-CCM Functions..42
AES_CCMGetSize...42
AES_CCMInit...43
AES_CCMStart.. 43
AES_CCMEncrypt...44
AES_CCMDecrypt...45
AES_CCMGetTag..46
AES_CCMMessageLen...46
AES_CCMTagLen..47

AES-GCM Functions..47
AES_GCMGetSize...48
AES_GCMInit.. 49
AES_GCMStart.. 50

Contents

3

AES_GCMReset... 50
AES_GCMProcessIV..51
AES_GCMProcessAAD...51
AES_GCMEncrypt...52
AES_GCMDecrypt.. 53
AES_GCMGetTag..53

AES-SIV Functions... 54
AES_S2V_CMAC.. 54
AES_SIVEncrypt.. 55
AES_SIVDecrypt..56
Usage Example..57

TDES Functions... 58
DESGetSize ... 59
DESInit.. 60
DESPack, DESUnpack...60
TDESEncryptECB... 61
TDESDecryptECB... 62
TDESEncryptCBC... 62
TDESDecryptCBC...63
TDESEncryptCFB... 64
TDESDecryptCFB... 65
TDESEncryptOFB... 66
TDESDecryptOFB...67
TDESEncryptCTR... 68
TDESDecryptCTR... 69
Example of Using TDES Functions.. 70

SMS4 Functions... 71
SMS4GetSize.. 71
SMS4Init.. 72
SMS4SetKey... 72
SMS4EncryptECB...73
SMS4DecryptECB...74
SMS4EncryptCBC...75
SMS4DecryptCBC.. 75
SMS4EncryptCFB... 76
SMS4DecryptCFB...77
SMS4EncryptOFB...78
SMS4DecryptOFB...78
SMS4EncryptCTR...79
SMS4DecryptCTR...80

ARCFour Functions... 81
ARCFourGetSize.. 81
ARCFourCheckKey..82
ARCFourInit.. 82
ARCFourPack, ARCFourUnpack...83
ARCFourEncrypt.. 84
ARCFourDecrypt.. 84
ARCFourReset... 85

Chapter 3: One-Way Hash Primitives

Intel® Integrated Performance Primitives Cryptography Developer Reference

4

Hash Functions..88
HashGetSize... 89
HashInit... 90
HashPack, HashUnpack...91
HashDuplicate... 92
HashUpdate.. 92
HashFinal... 93
HashGetTag.. 94
HashMethod ...95
SM3GetSize.. 96
SM3Init.. 96
SM3Pack, SM3Unpack.. 97
SM3Duplicate..97
SM3Update... 98
SM3Final.. 98
SM3GetTag... 99
MD5GetSize.. 100
MD5Init.. 100
MD5Pack, MD5Unpack.. 101
MD5Duplicate..101
MD5Update... 102
MD5Final.. 102
MD5GetTag... 103
SHA1GetSize...104
SHA1Init...104
SHA1Pack, SHA1Unpack... 105
SHA1Duplicate...105
SHA1Update..106
SHA1Final...106
SHA1GetTag..107
SHA224GetSize... 108
SHA224Init... 108
SHA224Pack, SHA224Unpack.. 109
SHA224Duplicate... 109
SHA224Update.. 110
SHA224Final... 110
SHA224GetTag.. 111
SHA256GetSize... 112
SHA256Init... 112
SHA256Pack, SHA256Unpack.. 113
SHA256Duplicate... 113
SHA256Update.. 114
SHA256Final... 114
SHA256GetTag.. 115
SHA384GetSize... 116
SHA384Init... 116
SHA384Pack, SHA384Unpack.. 117
SHA384Duplicate... 117
SHA384Update.. 118
SHA384Final... 118

Contents

5

SHA384GetTag.. 119
SHA512GetSize... 120
SHA512Init... 120
SHA512Pack, SHA512Unpack.. 121
SHA512Duplicate... 121
SHA512Update.. 122
SHA512Final... 122
SHA512GetTag.. 123

Hash Functions for Non-Streaming Messages... 124
General Definition of a Hash Function... 124
HashMessage.. 124
SM3MessageDigest.. 125
MD5MessageDigest.. 126
SHA1MessageDigest...127
SHA224MessageDigest... 129
SHA256MessageDigest... 129
SHA384MessageDigest... 130
SHA512MessageDigest... 130

Mask Generation Functions..131
User's Implementation of a Mask Generation Function.........................131
MGF...132
MGF1_rmf, MGF2_rmf ..133

Chapter 4: Data Authentication Primitive Functions
Message Authentication Functions.. 135

Keyed Hash Functions...135
HMAC_GetSize.. 136
HMAC_Init.. 136
HMAC_Pack, HMAC_Unpack.. 137
HMAC_Duplicate ... 138
HMAC_Update... 139
HMAC_Final.. 140
HMAC_GetTag... 140
HMAC_Message... 141

CMAC Functions...142
AES_CMACGetSize...143
AES_CMACInit...143
AES_CMACUpdate..144
AES_CMACFinal... 145
AES_CMACGetTag..145

Chapter 5: Public Key Cryptography Functions
Big Number Arithmetic..147

BigNumGetSize..147
BigNumInit... 148
Set_BN...149
SetOctString_BN..150
GetSize_BN ..151
Get_BN.. 152
ExtGet_BN.. 152

Intel® Integrated Performance Primitives Cryptography Developer Reference

6

Ref_BN...153
GetOctString_BN... 154
Cmp_BN .. 155
CmpZero_BN...155
Add_BN ... 156
Sub_BN.. 157
Mul_BN.. 158
MAC_BN_I.. 159
Div_BN...160
Mod_BN..161
Gcd_BN.. 161
ModInv_BN... 162

Montgomery Reduction Scheme Functions... 163
MontGetSize..164
MontInit... 165
MontSet..166
MontGet... 166
MontForm... 167
MontMul... 168
Example of Using Montgomery Reduction Scheme Functions................ 169
MontExp... 170

Pseudorandom Number Generation Functions...170
User's Implementation of a Pseudorandom Number Generator............. 171
PRNGGetSize ..171
PRNGInit...172
PRNGSetSeed..173
PRNGGetSeed..173
PRNGSetAugment ... 174
PRNGSetModulus .. 174
PRNGSetH0 ..175
PRNGen..176
PRNGenRDRAND..176
TRNGenRDSEED.. 177
PRNGen_BN ... 178
PRNGenRDRAND_BN ... 179
TRNGenRDSEED_BN ..179
Example of Using Pseudorandom Number Generation Functions........... 180

Prime Number Generation Functions... 181
PrimeGetSize ..182
PrimeInit.. 183
PrimeGen_BN..183
PrimeTest_BN.. 184
PrimeGen..185
PrimeTest..186
PrimeSet...186
PrimeSet_BN ..187
PrimeGet.. 188
PrimeGet_BN ..188
Example of Using Prime Number Generation Functions........................189

RSA Algorithm Functions... 190

Contents

7

Functions for Building RSA System... 190
RSA_GetSizePublicKey, RSA_GetSizePrivateKeyType1,

RSA_GetSizePrivateKeyType2.. 191
RSA_InitPublicKey, RSA_InitPrivateKeyType1,

RSA_InitPrivateKeyType2..192
RSA_SetPublicKey, RSA_SetPrivateKeyType1,

RSA_SetPrivateKeyType2.. 193
RSA_GetPublicKey, RSA_GetPrivateKeyType1,

RSA_GetPrivateKeyType2..194
RSA_GetBufferSizePublicKey, RSA_GetBufferSizePrivateKey.........195
RSA_GenerateKeys.. 196
RSA_ValidateKeys..198

RSA Primitives...199
RSA_Encrypt...200
RSA_Decrypt...201
Example of Using RSA Primitive Functions.................................202

RSA Encryption Schemes.. 204
RSA-OAEP Scheme Functions.. 204
PKCS V1.5 Encryption Scheme Functions.................................. 207

RSA Signature Schemes..209
RSA-SSA Scheme Functions.. 209
PKCS V1.5 Signature Scheme Functions....................................212

Discrete-Logarithm-Based Cryptography Functions..................................... 215
DLPGetSize .. 215
DLPInit .. 216
DLPPack, DLPUnpack..216
DLPSet .. 217
DLPGet ..218
DLPSetDP .. 218
DLPGetDP .. 219
DLPGenKeyPair ... 220
DLPPublicKey ..221
DLPValidateKeyPair ... 222
DLPSetKeyPair ..222
DLPGenerateDSA .. 223
DLPValidateDSA ..224
DLPSignDSA ...225
DLPVerifyDSA..226
Example of Using Discrete-logarithm Based Primitive Functions............227
DLPGenerateDH ..228
DLPValidateDH ..229
DLPSharedSecretDH ..230
DLGetResultString..231

Elliptic Curve Cryptography Functions... 232
Functions Based on GF(p)... 232

ECCPGetSize... 233
ECCPGetSizeStd.. 234
ECCPInit ..235
ECCPInitStd.. 235
ECCPBindGxyTblStd... 236

Intel® Integrated Performance Primitives Cryptography Developer Reference

8

ECCPSet ..237
ECCPSetStd ... 238
ECCPGet...239
ECCPGetOrderBitSize... 240
ECCPValidate ..241
ECCPPointGetSize ... 242
ECCPPointInit ... 243
ECCPSetPoint ... 243
ECCPSetPointAtInfinity .. 244
ECCPGetPoint ...245
ECCPCheckPoint ... 245
ECCPComparePoint ... 246
ECCPNegativePoint ..247
ECCPAddPoint .. 247
ECCPMulPointScalar .. 248
ECCPGenKeyPair ...249
ECCPPublicKey ... 250
ECCPValidateKeyPair ... 250
ECCPSetKeyPair ..251
ECCPSharedSecretDH ..252
ECCPSharedSecretDHC ..253
ECCPSignDSA ...254
ECCPVerifyDSA ...256
ECCPSignNR... 257
ECCPVerifyNR ...258
ECCPSignSM2... 259
ECCPVerifySM2..260
Signing/Verification Using the Elliptic Curve Cryptography

Functions over a Prime Finite Field....................................... 261
Arithmetic of the Group of Elliptic Curve Points...................................261

GFpECGetSize... 262
GFpECInit...263
GFpECSet... 264
GFpECSetSubgroup..264
GFpECInitStd.. 265
GFpECBindGxyTblStd... 266
GFpECGet...267
GFpECGetSubgroup... 268
GFpECScratchBufferSize... 269
GFpECVerify..270
GFpECPointGetSize.. 270
GFpECPointInit.. 271
GFpECSetPointAtInfinity... 272
GFpECSetPoint.. 272
GFpECSetPointRandom...273
GFpECMakePoint..273
GFpECSetPointHash... 274
GFpECGetPoint.. 275
GFpECGetPointRegular... 276
GFpECTstPoint...277

Contents

9

GFpECTstPointInSubgroup...277
GFpECCpyPoint..278
GFpECCmpPoint...279
GFpECNegPoint... 279
GFpECAddPoint..280
GFpECMulPoint.. 281
GFpECPrivateKey... 282
GFpECPublicKey...282
GFpECTstKeyPair... 283
GFpECSharedSecretDH...284
GFpECSharedSecretDHC...285
GFpECSignDSA..286
GFpECVerifyDSA..288
GFpECSignNR..289
GFpECVerifyNR..290
GFpECSignSM2..291
GFpECVerifySM2..292

ECCGetResultString..294

Chapter 6: Finite Field Arithmetic
GFpInitFixed..298
GFpInitArbitrary...299
GFpInit... 300
GFpMethod ...301
GFpGetSize... 302
GFpxInitBinomial..303
GFpxInit... 304
GFpxMethod.. 305
GFpxGetSize..306
GFpScratchBufferSize... 306
GFpElementGetSize.. 307
GFpElementInit..308
GFpSetElement..308
GFpSetElementOctString...309
GFpSetElementRandom...310
GFpSetElementHash... 311
GFpCpyElement... 312
GFpGetElement..313
GFpGetElementOctString...313
GFpCmpElement.. 314
GFpIsZeroElement..315
GFpIsUnityElement...316
GFpConj..316
GFpNeg.. 317
GFpInv... 318
GFpSqrt..318
GFpAdd...319
GFpSub.. 320
GFpMul... 321
GFpSqr... 321

Intel® Integrated Performance Primitives Cryptography Developer Reference

10

GFpExp...322
GFpMultiExp.. 323
GFpAdd_PE... 324
GFpSub_PE... 324
GFpMul_PE..325

Appendix A: Support Functions and Classes
Version Information Function... 327

GetLibVersion.. 327
Other Functions... 328

GetCpuFeatures...328
SetCpuFeatures... 330
GetNumThreads...333
SetNumThreads ..333
GetStatusString .. 334

Classes and Functions Used in Examples... 334
BigNumber Class... 334
Functions for Creation of Cryptographic Contexts............................... 343

Appendix B: Bibliography

Contents

11

Intel® Integrated Performance Primitives Cryptography Developer Reference

12

Legal Information
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information
provided here is subject to change without notice. Contact your Intel representative to obtain the latest
forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors which may cause deviations from
published specifications. Current characterized errata are available on request.

MPEG-1, MPEG-2, MPEG-4, H.261, H.263, H.264, MP3, DV, VC-1, MJPEG, AC3, AAC, G.711, G.722, G.722.1,
G.722.2, AMRWB, Extended AMRWB (AMRWB+), G.167, G.168, G.169, G.723.1, G.726, G.728, G.729, G.
729.1, GSM AMR, GSM FR are international standards promoted by ISO, IEC, ITU, ETSI, 3GPP and other
organizations. Implementations of these standards, or the standard enabled platforms may require licenses
from various entities, including Intel Corporation.

Cilk, Intel, the Intel logo, Intel Atom, Intel Core, Intel Inside, Intel NetBurst, Intel SpeedStep, Intel vPro,
Intel Xeon Phi, Intel XScale, Itanium, MMX, Pentium, Thunderbolt, Ultrabook, VTune and Xeon are
trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation
in the United States and/or other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Third Party
Intel® Integrated Performance Primitives (Intel® IPP) includes content from several 3rd party sources that
was originally governed by the licenses referenced below:

• zlib library:

zlib.h -- interface of the 'zlib' general purpose compression library version 1.2.8, April 28th, 2013

Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied warranty. In no event will the authors be
held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial applications,
and to alter it and redistribute it freely, subject to the following restrictions:

1.The origin of this software must not be misrepresented; you must not claim that you wrote the original
software. If you use this software in a product, an acknowledgment in the product documentation
would be appreciated but is not required.

2.Altered source versions must be plainly marked as such, and must not be misrepresented as being the
original software.

3.This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler

jloup@gzip.org madler@alumni.caltech.edu
• bzip2:

Copyright © 1996 - 2015 julian@bzip.org

13

© Intel Corporation.

 Intel® Integrated Performance Primitives Cryptography Developer Reference

14

Getting Help and Support
Getting Help
You can get context-sensitive help for the Intel® Integrated Performance Primitives (Intel® IPP) Cryptography
in the Microsoft Visual Studio* development system on Windows* OS. To do this, select the function name in
the code editor, and click F1.

Getting Technical Support
If you did not register your Intel software product during installation, please do so now at the Intel® Software
Development Products Registration Center. Registration entitles you to free technical support, product
updates and upgrades for the duration of the support term.

For general information about Intel technical support, product updates, user forums, FAQs, tips and tricks
and other support questions, please visit http://www.intel.com/software/products/support/ and the Intel IPP
forum http://software.intel.com/en-us/forums/intel-integrated-performance-primitives/.

NOTE
If your distributor provides technical support for this product, please contact them rather than Intel.

15

 Intel® Integrated Performance Primitives Cryptography Developer Reference

16

Introducing Intel® Integrated
Performance Primitives Cryptography
The Intel® Integrated Performance Primitives (Intel® IPP) is a software library that provides a comprehensive
set of application domain-specific highly optimized functions for signal and image processing and
cryptography.

• The Intel IPP signal and data processing software is a collection of low-overhead, high-performance
operations performed on one-dimensional (1D) data arrays. Examples of such operations are linear
transforms, filtering, string processing, and vector math.

• The Intel IPP image processing software is a collection of low-overhead, high-performance operations
performed on two-dimensional (2D) arrays of pixels. Examples of such operations are linear transforms,
filtering, and arithmetic on image data.

The Intel IPP software enables taking advantage of the parallelism of single-instruction, multiple data (SIMD)
instructions, which make the core of the MMX technology and Streaming SIMD Extensions. These
technologies improve the performance of computation-intensive signal, image, and video processing
applications. Plenty of the Intel IPP functions are tuned and threaded for multi-core systems.

Intel IPP supports application development for various Intel® architectures. By providing a single cross-
architecture application programmer interface, Intel IPP permits software application repurposing and
enables developers to port to unique features across Intel® processor-based desktop, server, mobile, and
handheld platforms. Use of the Intel IPP primitive functions can help drastically reduce development costs
and accelerate time-to-market by eliminating the need of writing processor-specific code for computation
intensive routines.

Intel IPP Cryptography is an add-on library that offers Intel IPP users a cross-platform and cross operating
system application programming interface (API) for routines commonly used for cryptographic operations.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

17

 Intel® Integrated Performance Primitives Cryptography Developer Reference

18

What's New
This Developer Reference documents Intel® Integrated Performance Primitives (Intel® IPP) Cryptography
2018.

The document has been updated with the following changes to the product:

Intel® IPP Cryptography 2018 (Beta)

• The arithmetic of the group of elliptic curve points functionality has been extended: standard elliptic
curves, key generation functions, and functions for computing digital signatures have been added. (For
more details, see Arithmetic of the Group of Elliptic Curve Points).

• New finite field arithmetic functions have been added, and several existing Method functions have been
renamed. (For more details, see Finite Field Arithmetic).

• Support functions have been added to help make Intel IPP Cryptography usable in the absence of the
main Intel IPP package. (For more details, see Other Functions).

• Domain Dependencies blocks were removed throughout the document because Intel IPP Cryptography
functions no longer depend on other Intel IPP components.

Additionally, minor updates have been made to fix inaccuracies in the document.

19

 Intel® Integrated Performance Primitives Cryptography Developer Reference

20

Notational Conventions
The code and syntax used in this document for function and variable declarations are written in the ANSI C
style. However, versions of Intel IPP for different processors or operating systems may, of necessity, vary
slightly.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

In this document, notational conventions include:

• Fonts used for distinction between the text and the code
• Naming conventions for different items.

Font Conventions
The following font conventions are used throughout this document:

This type style Mixed with the uppercase in function names, code examples,
and call statements, for example, ippsAdd_BNU.

This type style Parameters in function prototype parameters and parameters
description, for example, pCtx, pSrcMesg.

Naming Conventions
The naming conventions for different items are the same as used by the Intel IPP software.

• All names of the functions used for cryptographic operations have the ipps prefix. In code examples, you
can distinguish the Intel IPP interface functions from the application functions by this prefix.

NOTE
In this document, each function is introduced by its short name (without the ipps prefix and
descriptors) and a brief description of its purpose.

The ipps prefix in function names is always used in code examples and function prototypes. In the
text, this prefix is omitted when referring to the function group.

• Each new part of a function name starts with an uppercase character, without underscore, for example,
ippsDESInit.

21

 Intel® Integrated Performance Primitives Cryptography Developer Reference

22

Related Products
Intel® Integrated Performance Primitives (Intel® IPP)
Cryptography for Intel IPP is an add-on library for the main Intel IPP library, which provides a
comprehensive set of application domain-specific highly optimized functions for signal processing,
image and video processing, operations on small matrices, three-dimensional (3D) data
processing and rendering. Search http://www.intel.com/software/products for more information.

Intel IPP Samples
An extensive library of code samples and codecs has been implemented using the Intel IPP
functions to demonstrate the use of Intel IPP and to help accelerate the development of your
applications, components, and codecs. The samples can be downloaded from www.intel.com/
software/products/ipp/samples.htm.

23

 Intel® Integrated Performance Primitives Cryptography Developer Reference

24

Overview 1
This document describes the structure, operation, and functions of Intel® Integrated Performance Primitives
(Intel® IPP) Cryptography. The document provides a background for cryptography concepts used in the Intel
IPP Cryptography software as well as detailed description of the respective Intel IPP Cryptography functions.
The Intel IPP Cryptography functions are combined in groups by their functionality. Each group of functions is
described in a separate chapter.

For more information about cryptographic concepts and algorithms, refer to the books and materials listed in
the Bibliography.

Basic Features
Like other members of Intel® Performance Libraries, Intel Integrated Performance Primitives is a collection of
high-performance code that performs domain-specific operations. It is distinguished by providing a low-level,
stateless interface.

Based on experience in developing and using Intel Performance Libraries, Intel IPP has the following major
distinctive features:

• Intel IPP provides basic low-level functions for creating applications in several different domains, such as
signal processing, image and video processing, operations on small matrices, and cryptography
applications.

• Intel IPP functions follow the same interface conventions, including uniform naming conventions and
similar composition of prototypes for primitives that refer to different application domains.

• Intel IPP functions use an abstraction level which is best suited to achieve superior performance figures by
the application programs.

To speed up the performance, Intel IPP functions are optimized to use all benefits of Intel® architecture
processors. Besides this, most of Intel IPP functions do not use complicated data structures, which helps
reduce overall execution overhead.

Intel IPP is well-suited for cross-platform applications. For example, functions developed for the IA-32
architecture can be readily ported to the Intel® 64 architecture-based platform. In addition, each Intel IPP
function has its reference code written in ANSI C, which clearly presents the algorithm used and provides for
compatibility with different operating systems.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Function Context Structures
Some Intel IPP Cryptography functions use special structures to store function-specific (context) information.
For example, the IppsRijndael128Spec structure stores a set of round keys, a set of round inverse keys,
and key management information for the Rijndael cipher scheme with the block size equal to 128.

Two different kinds of context structures are used:

25

• Specification structures, which are not modified during the function's operation. Their names include the
Spec suffix.

• State structures, which are modified during operation. Their names include the State suffix.

Important
It is your application that defines the life cycle of the context: initialization, updating, and destruction.

Context structures are initialized with the initialization functions. For example, the
ippsRijndael128CCMInit function initializes the user-supplied memory as the IppsRijndael128CCMState
context.

See Also
Data Security Considerations

Data Security Considerations
IPP Cryptography functions use several types of buffers during operation, and some of them may contain
sensitive information. These buffers may be reused multiple times, and there is no way for the underlying
Intel IPP implementation to know when this data is no longer needed and sensitive information should be
scrubbed from those buffers. Examples of sensitive information include but are not be limited to:

• Keys
• Initialization Vectors
• Context Structures

Important
If any such sensitive data is passed to Intel IPP, it is the responsibility of your application to scrub this
information from the memory buffers.

See Also
Function Context Structures

 1 Intel® Integrated Performance Primitives Cryptography Developer Reference

26

Symmetric Cryptography
Primitive Functions 2
In the context of secure data communication, symmetric cryptography primitive functions protect messages
transferred over open communication media by offering adequate security strength to meet application
security requirement, as well as algorithmic efficiency to enable secure communication in real time.

Intel® Integrated Performance Primitives (Intel® IPP) Cryptography offers operations using the following
symmetric cryptography algorithms:

• Block ciphers: Rijndael [AES], including AES-CCM [NIST SP 800-38C] and AES-GCM [NIST SP 800-38D],
Triple DES (TDES) [FIPS PUB 46-3], and SMS4 [SM4].

• Stream ciphers: ARCFour [AC], producing the same encryption/decryption as the RC4* proprietary cipher
of RSA Security Inc.

Block Cipher Modes of Operation
Most of Symmetric Cryptography Algorithms implemented in Intel IPP are Block Ciphers, which operate on
data blocks of the fixed size. Block Ciphers encrypt a plaintext block into a ciphertext block or decrypts a
ciphertext block into a plaintext block. The size of the data blocks depends on the specific algorithm. Table
“Block Sizes in Symmetric Algorithms” shows the correspondence between Block Ciphers applied and their
data block size.

Block Sizes in Symmetric Algorithms
Block Cipher Name Data Block Size (bits)

Rijndael128 (AES) 128
TDES 64

Block Cipher modes of executing the operation of encryption/decryption are applied in practice more
frequently than “pure” Block Ciphers. On one hand, the modes enable you to process arbitrary length data
stream. On the other hand, they provide additional security strength.

Intel IPP for cryptography supports five widely used modes, as specified in [NIST SP 800-38A]:

• Electronic Code Book (ECB) mode
• Cipher Block Chain (CBC) mode
• Cipher Feedback (CFB) mode
• Output Feedback (OFB) mode
• Counter (CTR) mode.

The cryptographic functions described in this chapter require the application to specify both the plaintext
message and the ciphertext message lengths as multiples of block size of the respective algorithm (see Table
“Block Sizes in Symmetric Algorithms”). To meet this requirement in ciphering the message, the application
may use any padding scheme, for example, the scheme defined in [PKCS7]. In case padding is used, the
application is responsible for correct interpretation and processing of the last deciphered message block. So
of the three padding schemes available for earlier releases,

typedef enum {
 NONE = 0, IppsCPPaddingNONE = 0,
 PKCS7 = 1, IppsCPPaddingPKCS7 = 1,
 ZEROS = 2, IppsCPPaddingZEROS = 2
 } IppsCPPadding;
only IppsCPPaddingNONE remains acceptable.

27

Rijndael Functions
Rijndael cipher scheme is an iterated block cipher with a variable block size and a variable key length.

Rijndael functions with the 128-bit key length are, in fact, American Encryption Standard (AES) cipher
functions implemented in the way to comply with the American Standard FIPS 197.

The AES* functions use the IppsAESSpec context. This context serves as an operational vehicle to carry not
only a set of round keys and a set of round inverse keys at the same time, but also the key management
information.

Once the respective initialization function generates the round keys, the functions for ECB, CBC, CFB, and
other modes are ready for either encrypting or decrypting the streaming data with the specified padding
scheme.

The application code for conducting a typical encryption under CBC mode using the AES scheme, that is, the
Rijndael128 with a 128-bit key, should follow the sequence of operations as outlined below:

1. Get the size required to configure the context IppsAESSpec by calling the function AESGetSize.
2. Call the operating system memory-allocation service function to allocate a buffer whose size is no less

than the one specified by the function AESGetSize.
3. Initialize the context IppsAESSpec*pCtx by calling the function AESInit with the allocated buffer and

the respective 128-bit AES key.
4. Specify the initialization vector and the padding scheme, then call the function AESEncryptCBC to

encrypt the input data stream using the AES encryption function with CBC mode.
5. Clean up secret data stored in the context.
6. Call the operating system memory free service function to release the buffer allocated for the context

IppsAESSpec, if needed.

The IppsAESSpec context is position-dependent. The AESPack/AESUnpack function transforms the
respective position-dependent context to a position-independent form and vice versa.

See Also
AES-CCM Functions
AES-GCM Functions
Data Security Considerations

AESGetSize
Gets the size of the IppsAESSpec context.

Syntax

IppStatus ippsAESGetSize(int* pSize);

Include Files

ippcp.h

Parameters

pSize Pointer to the IppsAESSpec context size value.

Description

The function gets the IppsAESSpec context size in bytes and stores it in *pSize.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

28

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

AESInit
Initializes user-supplied memory as IppsAESSpec
context for future use.

Syntax

IppStatus ippsAESInit(const Ipp8u* pKey, int keylen, IppsAESSpec* pCtx, int ctxSize);

Include Files

ippcp.h

Parameters

pKey Pointer to the AES key.

keylen Key byte stream length in bytes defined by the
IppsRijndaelKeyLength enumerator.

pCtx Pointer to the buffer being initialized as IppsAESSpec context.

ctxSize Available size of the buffer being initialized.

Description

This function initializes the memory pointed by pCtx as IppsAESSpec. The key is used to provide all
necessary key material for both encryption and decryption operations.

NOTE
If the pKey pointer is NULL, the function initializes the context with the zero key, which can help you to
clean up the actual secret before releasing the context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if the pCtx pointer is NULL.

ippStsLengthErr Returns an error condition if keyLen is not equal to 16, 24, or
32.

ippStsMemAllocErr Indicates an error condition if the allocated memory is
insufficient for the operation.

See Also
Data Security Considerations

AESSetKey
Resets the AES secret key in the initialized
IppsAESSpec context.

Syntax

IppStatus ippsAESSetKey(const Ipp8u* pKey, int keylen, IppsAESSpec* pCtx);

Symmetric Cryptography Primitive Functions 2

29

Include Files

ippcp.h

Parameters

pKey Pointer to the AES key.

keylen Length of the secret key.

pCtx Pointer to the initialized IppsAESSpec context.

Description

This function resets the AES secret key in the initialized IppsAESSpec context with the user-supplied secret
key.

NOTE
If the pKey pointer is NULL, the function resets the context with the zero key, which can help you to
clean up the actual secret before releasing the context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if the pCtx pointer is NULL.

ippStsLengthErr Returns an error condition if keyLen is not equal to 16, 24, or
32.

See Also
Data Security Considerations

AESPack, AESUnpack
Packs/unpacks the IppsAESSpec context into/from a
user-defined buffer.

Syntax

IppStatus ippsAESPack (const IppsAESSpec* pCtx, Ipp8u* pBuffer, int bufSize);
IppStatus ippsAESUnpack (const Ipp8u* pBuffer, IppsAESSpec* pCtx, int ctxSize);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsAESSpec context.

pBuffer Pointer to the user-defined buffer.

bufSize Available size of the buffer.

ctxSize Available size of the context.

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

30

Description

The AESPack function transforms the *pCtx context to a position-independent form and stores it in the
*pBuffer buffer. The AESUnpack function performs the inverse operation, that is, transforms the contents of
the *pBuffer buffer into a normal IppsAESSpec context. The AESPack and AESUnpack functions enable
replacing the position-dependent IppsAESSpec context in the memory.

Call the AESGetSize function prior to AESPack/AESUnpack to determine the size of the buffer.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if bufSize or ctxSize is less than
the real size of the IppsAESSpec context.

AESEncryptECB
Encrypts plaintext message by using ECB encryption
mode.

Syntax

IppStatus ippsAESEncryptECB(const Ipp8u *pSrc, Ipp8u *pDst, int srclen, const
IppsAESSpec* pCtx);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input plaintext data stream of variable length.

pDst Pointer to the resulting ciphertext data stream.

srclen Length of the input plaintext data in bytes.

pCtx Pointer to the IppsAESSpec context.

Description

The function encrypts the input data stream of a variable length according to the cipher scheme specified in
[NIST SP 800-38A].

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than or equal to zero.

ippStsUnderRunErr Indicates an error condition if srclen is not divisible by cipher
block size.

Symmetric Cryptography Primitive Functions 2

31

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

AESDecryptECB
Decrypts byte data stream by using the AES algorithm
in the ECB mode.

Syntax

IppStatus ippsAESDecryptECB(const Ipp8u* pSrc, Ipp8u* pDst, int srclen, const
IppsAESSpec* pCtx);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input ciphertext data stream of variable length.

pDst Pointer to the resulting plaintext data stream of variable length.

srclen Length of the ciphertext data stream in bytes.

pCtx Pointer to the IppsAESSpec context.

Description

The function decrypts the input data stream of a variable length according to the ECB mode as specified in
[NIST SP 800-38A].

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the output data stream length is
less than or equal to zero.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsUnderRunErr Indicates an error condition if srclen is not divisible by cipher
block size.

AESEncryptCBC
Encrypts byte data stream according to AES in the
CBC mode.

Syntax

IppStatus ippsAESEncryptCBC(const Ipp8u* pSrc, Ipp8u* pDst, int srclen, const
IppsAESSpec* pCtx, const Ipp8u* pIV);

Include Files

ippcp.h

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

32

Parameters

pSrc Pointer to the input plaintext data stream of variable length.

pDst Pointer to the resulting ciphertext data stream.

srclen Length of the plaintext data stream length in bytes.

pCtx Pointer to the IppsAESSpec context.

pIV Pointer to the initialization vector for the CBC mode operation.

Description

The function encrypts the input data stream of a variable length according to the CBC mode as specified in
[NIST SP 800-38A].

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than or equal to zero.

ippStsUnderRunErr Indicates an error condition if srclen is not divisible by data
block size.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

AESDecryptCBC
Decrypts byte data stream according to AES in the
CBC mode.

Syntax

IppStatus ippsAESDecryptCBC(const Ipp8u* pSrc, Ipp8u* pDst, int srclen, const
IppsAESSpec* pCtx, const Ipp8u* pIV);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input ciphertext data stream.

pDst Pointer to the resulting plaintext data stream of the variable length.

srclen Length of the ciphertext data stream length in bytes.

pCtx Pointer to the IppsAESSpec context.

pIV Pointer to the initialization vector for CBC mode operation.

Description

The function decrypts the input data stream of a variable length according to the CBC mode as specified in
[NIST SP 800-38A].

Symmetric Cryptography Primitive Functions 2

33

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the output data stream length is
less than or equal to zero.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsUnderRunErr Indicates an error condition if srclen is not divisible by cipher
block size.

AESEncryptCFB
Encrypts byte data stream according to AES in the
CFB mode.

Syntax

IppStatus ippsAESEncryptCFB(const Ipp8u* pSrc, Ipp8u* pDst, int srcLen, int cfbBlkSize,
const IppsAESSpec* pCtx, const Ipp8u *pIV);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input plaintext data stream of variable length.

pDst Pointer to the resulting ciphertext data stream.

srcLen Length of the plaintext data stream in bytes.

cfbBlkSize Size of the CFB block in bytes.

pCtx Pointer to the IppsAESSpec context.

pIV Pointer to the initialization vector for the CFB mode operation.

Description

The function encrypts the input data stream of variable length according to the CFB mode as specified in
[NIST SP 800-38A].

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than or equal to zero.

ippStsUnderRunErr Indicates an error condition if srcLenis not divisible by
cfbBlkSize parameter value.

ippStsCFBSizeErr Indicates an error condition if the value for cfbBlkSize is
illegal.

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

34

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

AESDecryptCFB
Decrypts byte data stream according to AES in CFB
mode.

Syntax

IppStatus ippsAESDecryptCFB(const Ipp8u* pSrc, Ipp8u* pDst, int srclen, int cfbBlkSize,
const IppsAESSpec* pCtx, const Ipp8u* pIV);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input ciphertext data stream.

pDst Pointer to the resulting plaintext data stream of variable length.

srclen Length of the ciphertext data stream in bytes.

cfbBlkSize Size of the CFB block in bytes.

pCtx Pointer to the IppsAESSpec context.

pIV Pointer to the initialization vector for the CFB mode operation.

Description

The function decrypts the input data stream of variable length according to the CFB mode as specified in
[NIST SP 800-38A].

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the output data stream length is
less than or equal to zero.

ippStsCFBSizeErr Indicates an error condition if the value for cfbBlkSize is
illegal.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsUnderRunErr Indicates an error condition if srcLen is not divisible by cipher
block size.

AESEncryptOFB
Encrypts a variable length data stream according to
AES in the OFB mode.

Syntax

IppStatus ippsAESEncryptOFB (const Ipp8u* pSrc, Ipp8u* pDst, int srclen, int
ofbBlkSize, const IppsAESSpec* pCtx, Ipp8u* pIV);

Symmetric Cryptography Primitive Functions 2

35

Include Files

ippcp.h

Parameters

pSrc Pointer to the input plaintext data stream of variable length.

pDst Pointer to the resulting ciphertext data stream.

srclen Length of the plaintext data stream in bytes.

ofbBlkSize Size of the OFB block in bytes.

pCtx Pointer to the IppsAESSpec context.

pIV Pointer to the initialization vector for the OFB mode operation.

Description

The function encrypts the input data stream of a variable length in the OFB mode as specified in [NIST SP
800-38A].

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than or equal to zero.

ippStsUnderRunErr Indicates an error condition if srclen is not divisible by the
ofbBlkSize parameter value.

ippStsOFBSizeErr Indicates an error condition if the value of ofbBlkSize is illegal.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

AESDecryptOFB
Decrypts a variable length data stream according to
AES in the OFB mode.

Syntax

IppStatus ippsAESDecryptOFB (const Ipp8u* pSrc, Ipp8u* pDst, int srclen, int
ofbBlkSize, const IppsAESSpec* pCtx, Ipp8u* pIV);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input ciphertext data stream of variable length.

pDst Pointer to the resulting plaintext data stream.

srclen Length of the ciphertext data stream in bytes.

ofbBlkSize Size of the OFB block in bytes.

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

36

pCtx Pointer to the IppsAESSpec context.

pIV Pointer to the initialization vector for the OFB mode operation.

Description

The function decrypts the input data stream of a variable length in the OFB mode as specified in [NIST SP
800-38A].

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than or equal to zero.

ippStsUnderRunErr Indicates an error condition if srclenis not divisible by the
ofbBlkSize parameter value.

ippStsOFBSizeErr Indicates an error condition if the value of ofbBlkSize is illegal.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

AESEncryptCTR
Encrypts a variable length data stream in the CTR
mode.

Syntax

IppStatus ippsAESEncryptCTR(const Ipp8u* pSrc, Ipp8u* pDst, int srcLen,const
IppsAESSpec* pCtx, Ipp8u* pCtrValue , int ctrNumBitSize);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input plaintext data stream of a variable length.

pDst Pointer to the resulting ciphertext data stream.

srcLen Length of the plaintext data stream in bytes.

pCtx Pointer to the IppsAESSpec context.

pCtrValue Pointer to the counter data block.

ctrNumBitSize Number of bits in the specific part of the counter to be incremented.

Description

The function encrypts the input data stream of a variable length according to the CTR mode as specified in
[NIST SP 800-38A].

Symmetric Cryptography Primitive Functions 2

37

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than or equal to zero.

ippStsCTRSizeErr Indicates an error condition if the value of the ctrNumBitSize is
illegal.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

AESDecryptCTR
Decrypts a variable length data stream in the CTR
mode.

Syntax

IppStatus ippsAESDecryptCTR(const Ipp8u* pSrc, Ipp8u* pDst, int srcLen,const
IppsAESSpec* pCtx, Ipp8u* pCtrValue, int ctrNumBitSize);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input ciphertext data stream.

pDst Pointer to the resulting plaintext data stream of a variable length.

srcLen Length of the plaintext data stream in bytes.

pCtx Pointer to the IppsAESSpec context.

pCtrValue Pointer to the counter data block.

ctrNumBitSize Number of bits in the specific part of the counter to be incremented.

Description

The function decrypts the input data stream of a variable length according to the CTR mode as specified in
the [NIST SP 800-38A].

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the output data stream length is
less than or equal to zero.

ippStsCTRSizeErr Indicates an error condition if the value of the ctrNumBitSize is
illegal.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

38

AESEncryptXTS_Direct, AESDecryptXTS_Direct
Encrypts/decrypts a data buffer in the XTS mode.

Syntax

IppStatus ippsAESEncryptXTS_Direct(const Ipp8u* pSrc, Ipp8u* pDst, int dataBitLen, int
startBlockNo, const Ipp8u* pTweak, const Ipp8u* pKey, int keyBitLen, int
dataUnitBitLen);
IppStatus ippsAESDecryptXTS_Direct(const Ipp8u* pSrc, Ipp8u* pDst, int dataBitLen, int
startBlockNo, const Ipp8u* pTweak, const Ipp8u* pKey, int keyBitLen, int
dataUnitBitLen);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input (plain- or cipher-text) data buffer.

pDst Pointer to the output (cipher- or plain-text) data buffer.

dataBitLen Length of the input data being encrypted or decrypted, in bits. The
output data length is equal to the input data length.

startBlockNo The sequential number of the first plain- or cipher-text block for
operation inside the data unit.

pTweak Pointer to the little-endian 16-byte array that contains the tweak
value assigned to the data unit being encrypted/decrypted.

pKey Pointer to the XTS-AES key.

keyBitLen Length of the XTS-AES key, in bits.

dataUnitBitLen Length of the data unit, in bits.

Description

These functions encrypt or decrypt the input data according to the XTS-AES mode [IEEE P1619] of the AES
block cipher. The XTS-AES tweakable block cipher can be used for encryption/decryption of sector-based
storage. The XTS-AES algorithm acts on a single data unit or a section within the data unit and uses AES as
the internal cipher. The length of the data unit must be 128 bits or more. The data unit is considered as
partitioned into m+1 blocks:

T = T[0] | T[1] | … |T[m-2] | T[m-1] | T[m]
where

• m = ceil(dataUnitBitLen/128)
• the first m blocks T[0], T[1], …,T[m-1] are exactly 128 bits long
• the last block T[m] is between 0 and 127 bits long (it could be empty, for example, 0 bits long)

The cipher processes the first (m-1) blocks T[0], T[1], …, T[m-2] independently of each other. If the
last block T[m]is empty, then the block T[m-1] is processed independently too. However, if the last block
T[m]is not empty, then the cipher processes the blocks T[m-1] and T[m] together using a ciphertext
stealing mechanism. See [IEEE P1619] for details.

With the Intel IPP implementation of XTS-AES, you can select a sequence of adjacent data blocks (section)
within the data unit for processing. The section you select is specified by the startBlockNo and
dataBitLen parameters.

Symmetric Cryptography Primitive Functions 2

39

The ciphertext stealing mechanism constrains possible section selections. If the last block T[m] of the data
unit is not empty, the section you select must contain either both T[m-1] and T[m] or neither of them.
Therefore, consider dataBitLen, startBlockNo, and dataUnitBitLen all together when making a function
call. The following figure shows valid selections of a section within the data unit:

The XTS-AES block cipher uses tweak values to ensure that each data unit is processed differently. A tweak
value is a 128-bit integer that represents the logical position of the data unit. The tweak values are assigned
to the data units consecutively, starting from an arbitrary non-negative integer. Before calling the function,
convert the tweak value into a 16-byte little-endian array. For example, the tweak value 0x123456789A
corresponds to the byte array

Ipp8u twkArray[16] = {0x9A, 0x78, 0x56, 0x34, 0x12, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}.

The key for XTS-AES is parsed as a concatenation of two fields of equal size, called data key and tweak
key, so that key = data key|tweak key.

where

• data key is used for data encryption/decryption
• tweak key is used for encryption of the tweak value

The standard allows only AES128 and AES256 keys.

Refer to [IEEE P1619] for more details.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error when any of the specified pointers is NULL.

ippsStsLengthErr Indicates an error condition when:

• dataBitLen < 128
• keyBitLen != 256 and keyBitLen != 512
• dataUnitBitLen < 128

ippsStsLengthErr Indicates an error when:

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

40

• startBlockNo < 0
• startBlockNo >= dataUnitBitLen/128
• There is any other inconsistency with the assumed data unit

partition

Example of Using AES Functions

AES Encryption and Decryption

 // use of the CTR mode
int AES_sample(void)
{
 // secret key
 Ipp8u key[] = "\x00\x01\x02\x03\x04\x05\x06\x07"
 "\x08\x09\x10\x11\x12\x13\x14\x15";
 // define and setup AES cipher
 int ctxSize;
 ippsAESGetSize(&ctxSize);
 IppsAESSpec* pAES = (IppsAESSpec*)(new Ipp8u [ctxSize]);
 ippsAESInit(key, sizeof(key)-1, pAES, ctxSize);

 // message to be encrypted
 Ipp8u msg[] = "the quick brown fox jumps over the lazy dog";
 // and initial counter
 Ipp8u ctr0[] = "\xff\xee\xdd\xcc\xbb\xaa\x99\x88"
 "\x77\x66\x55\x44\x33\x22\x11\x00";

 // counter
 Ipp8u ctr[16];

 // init counter before encryption
 memcpy(ctr, ctr0, sizeof(ctr));
 // encrypted message
 Ipp8u ctext[sizeof(msg)];
 // encryption
 ippsAESEncryptCTR(msg, ctext, sizeof(msg), pAES, ctr, 64);

 // init counter before decryption
 memcpy(ctr, ctr0, sizeof(ctr));
 // decrypted message
 Ipp8u rtext[sizeof(ctext)];
 // decryption
 ippsAESDecryptCTR(ctext, rtext, sizeof(ctext), pAES, ctr, 64);

 // remove secret and release resource
 ippsAESInit(0, sizeof(key)-1, pAES, ctxSize);
 delete [] (Ipp8u*)pAES;

 int error = memcmp(rtext, msg, sizeof(msg));
 return 0==error;
}

Symmetric Cryptography Primitive Functions 2

41

AES-CCM Functions
This section describes functions for authenticated encryption/decryption using the Counter with Cipher Block
Chaining-Message Authentication Code (CCM) mode [NIST SP 800-38C] of the AES (Rijndael128) block
cipher.

The AES-CCM functions enable authenticated encryption/decryption of several messages using one key that
the AES_CCMInit function sets. Processing of each new message starts with a call to the AES_CCMStart
function. The application code for conducting a typical AES-CCM authenticated encryption should follow the
sequence of operations as outlined below:

1. Get the size required to configure the context IppsAES_CCMState by calling the function
AES_CCMGetSize.

2. Call the system memory-allocation service function to allocate a buffer whose size is not less than the
function AES_CCMGetSize specifies.

3. Initialize the context IppsAES_CCMState*pCtx by calling the function AES_CCMInit with the allocated
buffer and respective AES key.

4. Optionally call AES_CCMMessageLen and/or AES_CCMTagLen to set up message and tag parameters.
5. Call AES_CCMStart to start authenticated encryption of the first/next message.
6. Keep calling AES_CCMEncrypt until the entire message is processed.
7. Request the authentication tag by calling AES_CCMGetTag.
8. Proceed to the next message, if any, that is, go to step 5.
9. Clean up secret data stored in the context.
10. Call the system memory free service function to release the buffer allocated for the context

IppsAES_CCMState, if needed.

See Also
Data Security Considerations

AES_CCMGetSize
Gets the size of the IppsAES_CCMState context.

Syntax

IppStatus ippsAES_CCMGetSize(int* pSize);

Include Files

ippcp.h

Parameters

pSize Pointer to the size of the IppsAES_CCMState context.

Description

The function gets the size of the IppsAES_CCMState context in bytes and stores it in *pSize.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if the specified pointer is NULL.

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

42

AES_CCMInit
Initializes user-supplied memory as the
IppsAES_CCMState context for future use.

Syntax

IppStatus ippsAES_CCMInit(const Ipp8u* pKey, int keyLen, IppsAES_CCMState* pState, int
ctxSize);

Include Files

ippcp.h

Parameters

pKey Pointer to the secret key.

keyLen Length of the secret key.

pState Pointer to the buffer being initialized as IppsAES_CCMState context.

ctxSize Size of the buffer being initialized.

Description

The function initializes the memory pointed by pState as the IppsAES_CCMState context. In addition, the
function uses the initialization variable and additional authenticated data to provide all necessary key
material for both encryption and decryption.

NOTE
If the pKey pointer is NULL, the function initializes the context with the zero key, which can help you to
clean up the actual secret before releasing the context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if the pState pointer is NULL.

ippStsLengthErr Indicates an error condition an error condition if keyLen is not
equal to 16, 24, or 32.

ippStsMemAllocErr Indicates an error condition if the allocated memory is
insufficient for the operation.

See Also
Data Security Considerations

AES_CCMStart
Starts the process of authenticated encryption/
decryption for a new message.

Syntax

IppStatus ippsAES_CCMStart(const Ipp8u* pIV, int ivLen, const Ipp8u* pAAD, int aadLen,
IppsAES_CCMState* pState);

Symmetric Cryptography Primitive Functions 2

43

Include Files

ippcp.h

Parameters

pIV Pointer to the initialization vector.

ivLen Length of the initialization vector *pIV (in bytes).

pAAD Pointer to the additional authenticated data.

aadLen Length of additional authenticated data *pAAD (in bytes).

pState Pointer to the IppsAES_CCMState context.

Description

The function resets internal counters and buffers of the *pState context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

pState Indicates an error condition if any of the specified pointers is
NULL.

pState Indicates an error condition if the context parameter does not
match the operation.

pState Indicates an error condition if ivLen < 7 or ivLen > 13 .

AES_CCMEncrypt
Encrypts a data buffer in the CCM mode.

Syntax

IppStatus ippsAES_CCMEncrypt(const Ipp8u* pSrc, Ipp8u* pDst, int len, IppsAES_CCMState*
pState);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input plaintext data stream of a variable length.

pDst Pointer to the resulting ciphertext data stream.

len Length of the plaintext and ciphertext data stream in bytes.

pState Pointer to the IppsAES_CCMState context.

Description

The function encrypts the input data stream of a variable length in the CCM mode as specified in [NIST SP
800-38C].

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

44

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if len is less than zero or the value
that accumulates len parameters from previous calls to
AES_CCMEncrypt with the current value of len exceeds the tag
length specified in the previous call to AES_CCMMessageLen.

AES_CCMDecrypt
Decrypts a data buffer in the CCM mode.

Syntax

IppStatus ippsAES_CCMDecrypt(const Ipp8u* pSrc, Ipp8u* pDst, int len, IppsAES_CCMState*
pState);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input ciphertext data stream of variable length.

pDst Pointer to the resulting plaintext data stream.

len Length of the plaintext and ciphertext data stream in bytes.

pState Pointer to the IppsAES_CCMState context.

Description

The function decrypts the input ciphered data stream of a variable length in the CCM mode as specified in
[NIST SP 800-38C].

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if len is less than zero or the value
that accumulates len parameters from previous calls to
AES_CCMDecrypt with the current value of len exceeds the tag
length specified in the previous call to AES_CCMMessageLen.

Symmetric Cryptography Primitive Functions 2

45

AES_CCMGetTag
Generates the message authentication tag in the CCM
mode.

Syntax

IppStatus ippsAES_CCMGetTag (Ipp8u* pTag, int tagLen, const IppsAES_CCMState* pState);

Include Files

ippcp.h

Parameters

pTag Pointer to the authentication tag.

tagLen Length of the authentication tag *pTag (in bytes).

pState Pointer to the IppsAES_CCMState context.

Description

The function generates and computes the authentication tag of length tagLen bytes in the CCM mode as
specified in [NIST SP 800-38C]. The ippsRijndael128GCMGetTag function does not stop the encryption/
decryption and authentication process.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if tagLen is less than one or tagLen
exceeds the tag length specified in the previous call to
AES_CCMTagLen.

AES_CCMMessageLen
Sets up the length of the message to be processed.

Syntax

IppStatus ippsAES_CCMMessageLen(Ipp64u msgLen, IppsAES_CCMState* pState);

Include Files

ippcp.h

Parameters

msgLen Length of the message to be processed (in bytes).

pState Pointer to the IppsAES_CCMState context.

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

46

Description

The function assigns the value of msgLen to the length of the message to be processed in the *pState
context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if msgLen=0.

AES_CCMTagLen
Sets up the length of the required authentication tag.

Syntax

IppStatus ippsAES_CCMTagLen(int tagLen, IppsAES_CCMState* pState);

Include Files

ippcp.h

Parameters

tagLen Length of the required authentication tag (in bytes).

pState Pointer to the IppsAES_CCMState context.

Description

The function assigns the value of tagLen to the length of the required authentication tag in the *pState
context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if tagLen < 4 or tagLen > 16 or
taglen is odd.

AES-GCM Functions
The Galois/Counter Mode (GCM) is a mode of operation of the AES algorithm. GCM [NIST SP 800-38D] uses
a variation of the Counter mode of operation for encryption. GCM assures authenticity of the confidential data
(of up to about 64 GB per invocation) using a universal hash function defined over a binary finite field (the
Galois field).

Symmetric Cryptography Primitive Functions 2

47

GCM can also provide authentication assurance for additional data (of practically unlimited length per
invocation) that is not encrypted. If the GCM input contains only data that is not to be encrypted, the
resulting specialization of GCM, called GMAC, is simply an authentication mode for the input data.

GCM provides stronger authentication assurance than a (non-cryptographic) checksum or error detecting
code. In particular, GCM can detect both accidental modifications of the data and intentional, unauthorized
modifications.

The AES-GCM function set includes incremental functions, which enable authenticated encryption/decryption
of several messages using one key. The application code for conducting a typical AES-GCM authenticated
encryption should follow the sequence of operations as outlined below:

1. Get the size required to configure the context IppsAES_GCMState by calling the function
AES_GCMGetSize.

2. Call the system memory-allocation service function to allocate a buffer whose size is not less than the
function AES_GCMGetSize specifies.

3. Initialize the context IppsAES_GCMState*pCtx by calling the function AES_GCMInit with the allocated
buffer and the respective AES key.

4. Call AES_GCMStart to start authenticated encryption of the first/next message.
5. Keep calling AES_GCMEncrypt until the entire message is processed.
6. Request the authentication tag by calling AES_GCMGetTag.
7. Proceed to the next message, if any, that is, go to step 4.
8. Clean up secret data stored in the context.
9. Call the system memory free service function to release the buffer allocated for the context

IppsAES_GCMState, if needed.

If the size of the initial vector and/or additional authenticated data (IV and AAD parameters of the
AES_GCMStart function, respectively) is large or any of these parameters is placed in a disconnected
memory buffer, replace step 4 above with the following sequence:

1. Call AES_GCMReset to prepare the IppsAES_GCMState context for authenticated encryption of the
first/new message.

2. Keep calling AES_GCMProcessIV for successive parts of IV until the entire IV is processed.
3. Keep calling AES_GCMProcessAAD for successive parts of AAD until the entire AAD is processed.

See Also
Data Security Considerations

AES_GCMGetSize
Gets the size of the IppsAES_GCMState context for
use of the AES-GCM implementation with the specified
characteristics.

Syntax

IppStatus ippsAES_GCMGetSize(int* pSize);

Include Files

ippcp.h

Parameters

pSize Pointer to the size of the IppsAES_GCMState context.

Description

The function gets the size of the IppsAES_GCMState context (in bytes) and stores the size in *pSize.

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

48

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if the specified pointer is NULL.

AES_GCMInit
Initializes user-supplied memory as the
IppsAES_GCMState context for future use.

Syntax

IppStatus ippsAES_GCMInit(const Ipp8u* pKey, int keyLen, IppsAES_GCMState* pState, int
ctxSize);

Include Files

ippcp.h

Parameters

pKey Pointer to the secret key.

keyLen Length of the secret key.

pState Pointer to the buffer being initialized as IppsAES_GCMState context.

ctxSize Available size of the buffer.

Description

The function initializes the memory pointed by pState as the IppsAES_GCMState context. In addition, the
function uses the initialization variable and additional authenticated data to provide all necessary key
material for both encryption and decryption.

Call the AES_GCMGetSize function prior to AES_GCMInit to determine the size of the buffer.

NOTE
If the pKey pointer is NULL, the function initializes the context with the zero key, which can help you to
clean up the actual secret before releasing the context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if the pState pointer is NULL.

ippStsLengthErr Indicates an error condition if keyLen is not equal to 16, 24, or
32.

ippStsMemAllocErr Indicates an error condition if the allocated memory is
insufficient for the operation.

See Also
Data Security Considerations

Symmetric Cryptography Primitive Functions 2

49

AES_GCMStart
Starts the process of authenticated encryption/
decryption for new message.

Syntax

IppStatus ippsAES_GCMStart(const Ipp8u* pIV, int ivLen, const Ipp8u* pAAD, int aadLen,
IppsAES_GCMState* pState);

Include Files

ippcp.h

Parameters

pIV Pointer to the initialization vector.

ivLen Length of the initialization vector *pIV (in bytes).

pAAD Pointer to the additional authenticated data.

aadLen Length of additional authenticated data *pAAD (in bytes).

pState Pointer to the IppsAES_GCMState context.

Description

The function resets internal counters and buffers of the *pState context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if the length of the initialization
vector is zero.

AES_GCMReset
Resets the IppsAES_GCMState context for
authenticated encryption/decryption of a new
message.

Syntax

IppStatus ippsAES_GCMReset(IppsAES_GCMState* pState);

Include Files

ippcp.h

Parameters

pState Pointer to the IppsAES_GCMState context.

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

50

Description

The function resets the *pState context to prepare it for either of the following operations with a new
message:

• encryption and tag generation
• decryption and tag authentication

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

AES_GCMProcessIV
Processes an initial vector of a given length according
to the GCM specification.

Syntax

IppStatus ippsAES_GCMProcessIV(const Ipp8u* pIV, int ivLen, IppsAES_GCMState* pState);

Include Files

ippcp.h

Parameters

pIV Pointer to the initialization vector.

ivLen Length of the initialization vector *pIV (in bytes).

pState Pointer to the IppsAES_GCMState context.

Description

The function processes ivLen bytes of the initial vector *pIV as specified in [NIST SP 800-38D].

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if the length of the initialization
vector is zero.

AES_GCMProcessAAD
Processes additional authenticated data of a given
length according to the GCM specification.

Symmetric Cryptography Primitive Functions 2

51

Syntax

IppStatus ippsAES_GCMProcessAAD(const Ipp8u* pAAD, int aadLen, IppsAES_GCMState*
pState);

Include Files

ippcp.h

Parameters

pAAD Pointer to the additional authenticated data.

aadLen Length of additional authenticated data *pAAD (in bytes).

pState Pointer to the IppsAES_GCMState context.

Description

The function processes aadLen bytes of additional authenticated data *pAAD as specified in [NIST SP
800-38D].

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

AES_GCMEncrypt
Encrypts a data buffer in the GCM mode.

Syntax

IppStatus ippsAES_GCMEncrypt(const Ipp8u* pSrc, Ipp8u* pDst, int len, IppsAES_GCMState*
pState);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input plaintext data stream of a variable length.

pDst Pointer to the resulting ciphertext data stream.

len Length of the plaintext and ciphertext data stream in bytes.

pState Pointer to the IppsAES_GCMState context.

Description

The function encrypts the input data stream of a variable length according to GCM as specified in [NIST SP
800-38D].

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

52

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

AES_GCMDecrypt
Decrypts a data buffer in the GCM mode.

Syntax

IppStatus ippsAES_GCMDecrypt(const Ipp8u* pSrc, Ipp8u* pDst, int len, IppsAES_GCMState*
pState);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input ciphertext data stream of a variable length.

pDst Pointer to the resulting plaintext data stream.

len Length of the plaintext and ciphertext data stream in bytes.

pState Pointer to the IppsAES_GCMState context.

Description

The function decrypts the input cipher data stream of a variable length according to GCM as specified in
[NIST SP 800-38D].

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

AES_GCMGetTag
Generates the authentication tag in the GCM mode.

Syntax

IppStatus ippsAES_GCMGetTag (Ipp8u* pTag, int tagLen, const IppsAES_GCMState* pState);

Include Files

ippcp.h

Symmetric Cryptography Primitive Functions 2

53

Parameters

pTag Pointer to the authentication tag.

tagLen Length of the authentication tag *pTag (in bytes).

pState Pointer to the IppsAES_GCMState context.

Description

The function generates and computes the authentication tag of length tagLen according to GCM as specified
in [NIST SP 800-38D]. A call to ippsAES_GCMGetTag does not stop the process of authenticated encryption/
decryption.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if tagLen <1 or taglen >16.

AES-SIV Functions
This section describes functions for the Synthetic Initialization Vector (SIV) authenticated encryption using
the AES cipher [RFC5297].

AES_S2V_CMAC
Produces the synthetic initialization vector.

Syntax

IppStatus ippsAES_S2V_CMAC(const Ipp8u* pKey, int keyLen, const Ipp8u* AD[], const int
ADlen[], int numAD, Ipp8u* pSIV);

Include Files

ippcp.h

Parameters

pKey Pointer to the key.

keyLen Length of the key in bytes.

AD Array of pointers to individual input strings.

ADlen Array of length (in bytes) of the individual input strings.

numAD The number of the strings.

pSIV Pointer to the output 16-byte vector.

Description

The AES_S2V_CMAC function takes a key and maps the vector of individual strings AD[0], AD[1], …,
AD[numAD-1] to the 16-byte output vector.

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

54

The function uses pseudorandom AES_CMAC functions to process each input string, as well as doubling and
xoring operations to map the output to a single output vector.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL or a pointer AD[i] to any individual string is NULL while the
length ADlen[i] is non-zero.

ippStsLengthErr Indicates an error condition that occurs because of one of the
following:

• The keyLen parameter is different from 16, 24, and 32
• The number of the strings numAD in the AD array is negative
• The length ADlen[i] of any individual input string is negative

AES_SIVEncrypt
Performs the SIV authenticated encryption using the
AES cipher.

Syntax

IppStatus ippsAES_SIVEncrypt(const Ipp8u* pSrc, Ipp8u* pDst, int len, Ipp8u* pSIV,
const Ipp8u* pAuthKey, const Ipp8u* pConfKey, int keyLen, const Ipp8u* AD[], const int
ADlen[], int numAD);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input data to encrypt (plaintext).

pDst Pointer to the output encrypted data (ciphertext).

len Length in bytes of the plaintext and ciphertext.

pSIV Pointer to the output synthetic initialization vector.

pAuthKey Pointer to the authentication key.

pConfKey Pointer to the confidentiality key.

keyLen Length of keys in bytes.

AD Array of pointers to the associated input strings.

ADlen Array of length (in bytes) of the associated input strings.

numAD The number of the associated strings.

Description

The AES_SIVEncrypt function accepts authentication and confidentiality keys of length keyLen each,
plaintext (*pSrc) of an arbitrary length len, and a vector AD[] of associated data (strings). The output of the
function is the 16-byte synthetic initialization vector (*pSIV) and encrypted data (*pDst) of the same length
as the plaintext.

The computation includes the following steps:

Symmetric Cryptography Primitive Functions 2

55

1. Compute a synthetic initialization vector by passing the plaintext, pAuthKey key, and AD[] to
AES_S2V_CMAC.

2. Encrypt the plaintext using the AES cipher in the CTR mode with the initial counter value (CTR0) equal
to the synthetic initialization vector xored with a fixed mask.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL or a pointer AD[i] to any individual string is NULL while the
length ADlen[i] is non-zero.

ippStsLengthErr Indicates an error condition that occurs because of one of the
following:

• The keyLen parameter is different from 16, 24, and 32
• The number of the strings numAD in the AD array is negative or

greater than 127
• The length ADlen[i] of any individual input string is negative
• The len parameter is negative

AES_SIVDecrypt
Performs the SIV authenticated decryption using the
AES cipher.

Syntax

IppStatus ippsAES_SIVDecrypt(const Ipp8u* pSrc, Ipp8u* pDst, int len, int* pAuthPassed,
const Ipp8u* pAuthKey, const Ipp8u* pConfKey, int keyLen, const Ipp8u* AD[], const int
ADlen[], int numAD, const Ipp8u* pSIV);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input data to decrypt (ciphertext).

pDst Pointer to the output decrypted data (plaintext).

len Length in bytes of the plaintext and ciphertext.

pAuthPassed Pointer to the result flag.

pAuthKey Pointer to the authentication key.

pConfKey Pointer to the confidentiality key.

keyLen Length of keys in bytes.

AD Array of pointers to the associated input strings.

ADlen Array of length (in bytes) of the associated input strings.

numAD The number of the associated strings.

pSIV Pointer to the synthetic initialization vector.

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

56

Description

The AES_SIVDecrypt function accepts authentication and confidentiality keys of length keyLen each, a
vector AD[] of associated data (strings), 16-byte synthetic initialization vector (*pSIV), and ciphertext
(*pSrc) of an arbitrary length len. The output of the function is the decrypted plaintext (*pDst) of the same
length as the ciphertext and the result of plaintext authentication (*pAuthPassed).

The computation includes the following steps:

1. Decrypt the input ciphertext using the AES cipher in the CTR mode with the initial counter value (CTR0)
equal to the synthetic initialization vector (*pSIV) xored with a fixed mask.

2. Re-compute the synthetic initialization vector using the input data AD[] and the computed plaintext.

If the input and re-computed values of SIV are the same, the plaintext authentication is considered passed
(*pAuthPassed = 1), otherwise, the plaintext authentication is considered failed (*pAuthPassed = 0).

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL or a pointer AD[i] to any individual string is NULL while the
length ADlen[i] is non-zero.

ippStsLengthErr Indicates an error condition that occurs because of one of the
following:

• The keyLen parameter is different from 16, 24, and 32
• The number of the strings numAD in the AD array is negative or

greater than 127
• The length ADlen[i] of any individual input string is negative
• The len parameter is negative

Usage Example

////////////////////////// Usage example for AES-SIV primitives //////////////////////
 // key:
 Ipp8u key[] =
 "\x7f\x7e\x7d\x7c\x7b\x7a\x79\x78\x77\x76\x75\x74\x73\x72\x71\x70"
 "\x40\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f";
 // ADs:
 Ipp8u ad1[] =
 "\x00\x11\x22\x33\x44\x55\x66\x77\x88\x99\xaa\xbb\xcc\xdd\xee\xff"
 "\xde\xad\xda\xda\xde\xad\xda\xda\xff\xee\xdd\xcc\xbb\xaa\x99\x88"
 "\x77\x66\x55\x44\x33\x22\x11\x00";
 Ipp8u ad2[] =
 "\x10\x20\x30\x40\x50\x60\x70\x80\x90\xa0";
 Ipp8u nonce[] =
 "\x09\xf9\x11\x02\x9d\x74\xe3\x5b\xd8\x41\x56\xc5\x63\x56\x88\xc0";

 // PT
 Ipp8u pt[] =
 "\x74\x68\x69\x73\x20\x69\x73\x20\x73\x6f\x6d\x65\x20\x70\x6c\x61"
 "\x69\x6e\x74\x65\x78\x74\x20\x74\x6f\x20\x65\x6e\x63\x72\x79\x70"
 "\x74\x20\x75\x73\x69\x6e\x67\x20\x53\x49\x56\x2d\x41\x45\x53";
 Ipp8u rt[sizeof(pt)];
 int authRes = 0xaa;

Symmetric Cryptography Primitive Functions 2

57

 Ipp8u auth_ct[16+sizeof(pt)-1];

 Ipp8u* adSlist[] = {ad1,
 ad2,
 nonce,
 pt};
 int adLlist[] = {(int)(sizeof(ad1)-1),
 (int)(sizeof(ad2)-1),
 (int)(sizeof(nonce)-1),
 sizeof(pt)-1};
 Ipp8u v[16];

 // compute ISV
 ippsAES_S2V_CMAC(key, 16, (const Ipp8u**)adSlist, adLlist, sizeof(adSlist)/sizeof(void*), v);

 // encode
 ippsAES_SIVEncrypt(pt, auth_ct+16, sizeof(pt)-1, auth_ct,
 key, key+16, 16,
 (const Ipp8u**)adSlist, adLlist, sizeof(adSlist)/sizeof(void*)-1);

 // decode
 ippsAES_SIVDecrypt(auth_ct+16, rt, sizeof(pt)-1, &authRes,
 key, key+16, 16,
 (const Ipp8u**)adSlist, adLlist, sizeof(adSlist)/sizeof(void*)-1,
 auth_ct);

 if((1==authRes) && (0==memcmp(pt, rt, sizeof(pt)-1)))
 printf("authenticated decryption passed\n");
 else
 printf("authenticated decryption failed\n");
//

TDES Functions
The Triple Data Encryption Algorithm (TDEA) is a revised symmetric algorithm scheme built on the Data
Encryption Standard (DES) system. The Triple DES (TDES) encryption process includes three consecutive
DES operations in the encryption, decryption, and encryption (E-D-E) sequence again in accordance with the
American standard FIPS 46-3. While AES (Rijndael) is preferred, TDEA is an approved cipher. Use
implementations of AES where possible. In cases where using AES is impossible or inconvenient, use TDES
functions.

Although the functions that support TDES operations require three sets of round keys, the functions can
operate under TDES cipher system with a two-set round keys by simply setting the third set of round keys to
be the same as the first set.

You can use the functions described in this section for performing various operational modes under the TDES
cipher systems.

NOTE
Intel IPP functions for cryptography do not allocate memory internally. The GetSize function does not
require allocated memory. You need to call the GetSize function to find out how much available
memory you need to have to work with the selected algorithm and after that you call the initialization
function to create a memory buffer and initialize it.

Intel IPP for cryptography supports ECB, CBC, CFB, and CTR modes. You can tell which algorithm a given
function supports from the function base name, for example, the TDESEncryptECB function operates under
the ECB mode.

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

58

The encryption function TDESEncryptCBC operates under the CBC mode using its cipher scheme and
requires to have an initialization vector iv. Since there are a number of ways to initialize the initialization
vector iv, you should remember which of them you used to be able to decrypt the message when needed.

The encryption function TDESEncryptCFB operates under the CFB mode using its cipher scheme and requires
having the initialization vector pIV and CFB block size cfbBlkSize.

All functions described in this section use the context IppsDESSpec to serve as an operational vehicle that
carries a set of round keys.

Application code for conducting a typical encryption under CBC mode using the TDES scheme must perform
the following sequence of operations:

1. Get the size required to configure the context IppsDESSpec by calling the function DESGetSize.
2. Call operating system memory allocation service function to allocate three buffers whose sizes are not

less than the one specified by the function DESGetSize. Initialize pointers to contexts pCtx1, pCtx2,
and pCtx3 by calling the function DESInit three times, each with the allocated buffer and the
respective DES key.

3. Specify the initialization vector and then call the function TDESEncryptCBC to encrypt the input data
stream under CBC mode using TDES scheme.

4. Clean up secret data stored in the contexts.
5. Free the memory allocated to the buffer once TDES encryption under the CBC mode has been

completed and the data structures allocated for set of round keys are no longer required.

NOTE
Similar procedure can be applied for ECB, CFB, and CTR mode operation.

The IppsDESSpec context is position-dependent. The DESPack/DESUnpack functions transform the position-
dependent context to a position-independent form and vice versa.

See Also
Data Security Considerations

DESGetSize
Gets the size of the IppsDESSpec context.

Syntax

IppStatus ippsDESGetSize(int* pSize);

Include Files

ippcp.h

Parameters

pSize Pointer to the IppsDESSpec context size value.

Description

This function gets the IppsDESSpec context size in bytes and stores it in *pSize.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

Symmetric Cryptography Primitive Functions 2

59

DESInit
Initializes user-supplied memory as the IppsDESSpec
context for future use.

Syntax

IppStatus ippsDESInit(const Ipp8u* pKey, IppsDESSpec* pCtx);

Include Files

ippcp.h

Parameters

pKey Pointer to the DES key.

pCtx Pointer to the IppsDESSpec context being initialized.

Description

This function initializes the memory pointed by pCtx as IppsDESSpec context. In addition, the function uses
the key to provide all necessary key material for both encryption and decryption operations.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

See Also
Data Security Considerations

DESPack, DESUnpack
Packs/unpacks the IppsDESSpec context into/from a
user-defined buffer.

Syntax

IppStatus ippsDESPack (const IppsDESSpec* pCtx, Ipp8u* pBuffer);
IppStatus ippsDESUnpack (const Ipp8u* pBuffer, IppsDESSpec* pCtx);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsDESSpec context.

pBuffer Pointer to the user-defined buffer.

Description

The DESPack function transforms the *pCtx context to a position-independent form and stores it in the
*pBuffer buffer. The DESUnpack function performs the inverse operation, that is, transforms the contents of
the *pBuffer buffer into a normal IppsDESSpec context. The DESPack and DESUnpack functions enable
replacing the position-dependent IppsDESSpec context in the memory.

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

60

Call the DESGetSize function prior to DESPack/DESUnpack to determine the size of the buffer.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

TDESEncryptECB
Encrypts variable length data stream in ECB mode.

Syntax

IppStatus ippsTDESEncryptECB(const Ipp8u *pSrc, Ipp8u *pDst, int srclen, const
IppsDESSpec *pCtx1, const IppsDESSpec *pCtx2, const IppsDESSpec * pCtx3, IppsCPPadding
padding);

Include Files

ippcp.h

Parameters

pSrc Input plaintext data stream of a variable length.

pDst Resulting ciphertext data stream.

srclen Input data stream length in bytes.

pCtx1 First set of round keys scheduled for TDES internal operations.

pCtx2 Second set of round keys scheduled for TDES internal operations.

pCtx3 Third set of round keys scheduled for TDES internal operations.

padding IppsPaddingNONE padding scheme.

Description

This function encrypts the input data stream of a variable length according to the cipher scheme specified in
[NIST SP 800-38A]. The function uses three sets of supplied round keys in the ECB mode. The function
returns the ciphertext result.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than or equal to zero.

ippStsUnderRunErr Indicates an error condition ifthe input data stream length is
not divisible by cipher block size .

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

Symmetric Cryptography Primitive Functions 2

61

TDESDecryptECB
Decrypts variable length data stream in the ECB
mode.

Syntax

IppStatus ippsTDESDecryptECB(const Ipp8u *pSrc, Ipp8u *pDst, int srclen, const
IppsDESSpec *pCtx1, const IppsDESSpec *pCtx2, const IppsDESSpec * pCtx3, IppsCPPadding
padding);

Include Files

ippcp.h

Parameters

pSrc Input ciphertext data stream of variable length.

pDst Resulting plaintext data stream.

srclen Input data stream length in bytes.

pCtx1 First set of round keys scheduled for TDES internal operations.

pCtx2 Second set of round keys scheduled for TDES internal operations.

pCtx3 Third set of round keys scheduled for TDES internal operations.

padding IppsPaddingNONE padding scheme.

Description

This function decrypts the input data stream of a variable length according to the cipher scheme specified in
[NIST SP 800-38A]. The function uses three sets of supplied round keys in the ECB mode. The function
returns the ciphertext result and validates the final plaintext block.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the decrypted plaintext data
stream length is less than or equal to zero.

ippStsUnderRunErr Indicates an error condition if srclen is not divisible by cipher
block size.

TDESEncryptCBC
Encrypts variable length data stream in the CBC
mode.

Syntax

IppStatus ippsTDESEncryptCBC(const Ipp8u *pSrc, Ipp8u *pDst, int srclen, const
IppsDESSpec *pCtx1, const IppsDESSpec *pCtx2, const IppsDESSpec * pCtx3, const Ipp8u
*pIV, IppsCPPadding padding);

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

62

Include Files

ippcp.h

Parameters

pSrc Input plaintext data stream of a variable length.

pDst Resulting ciphertext data stream.

pIV Initialization vector for TDES CBC mode operation.

srclen Input data stream length in bytes.

pCtx1 First set of round keys scheduled for TDES internal operations.

pCtx2 Second set of round keys scheduled for TDES internal operations.

pCtx3 Third set of round keys scheduled for TDES internal operations.

padding IppsCPPaddingNONE padding scheme.

Description

This function encrypts the input data stream of a variable length according to the cipher scheme specified in
[NIST SP 800-38A]. The function uses three sets of the supplied round keys in the Cipher Block Chaining
(CBC) mode with the initialization vector. The function returns the ciphertext result.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than or equal to zero.

ippStsUnderRunErr Indicates an error condition if the input data stream length is
not divisible by cipher block size.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

TDESDecryptCBC
Decrypts variable length data stream in the CBC
mode.

Syntax

IppStatus ippsTDESDecryptCBC(const Ipp8u *pSrc, Ipp8u *pDst, int srclen, const
IppsDESSpec *pCtx1, const IppsDESSpec *pCtx2, const IppsDESSpec * pCtx3, const Ipp8u
*pIV, IppsCPPadding padding);

Include Files

ippcp.h

Parameters

pSrc Input ciphertext data stream of a variable length.

pDst Resulting plaintext data stream.

Symmetric Cryptography Primitive Functions 2

63

pIV Initialization vector for TDES CBC mode operation.

srclen Input data stream length in bytes.

pCtx1 First set of round keys scheduled for TDES internal operations.

pCtx2 Second set of round keys scheduled for TDES internal operations.

pCtx3 Third set of round keys scheduled for TDES internal operations.

padding IppsCPPaddingNONE padding scheme.

Description

This function decrypts the input data stream of a variable length according to the cipher scheme specified in
[NIST SP 800-38A]. The function uses three sets of the supplied round keys in the Cipher Block Chaining
(CBC) mode with the initialization vector. The function returns the ciphertext result and validates the final
plaintext block.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the decrypted plaintext data
stream length is less than or equal to zero.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsUnderRunErr Indicates an error condition if srclen is not divisible by cipher
block size.

TDESEncryptCFB
Encrypts variable length data stream in the CFB mode.

Syntax

IppStatus ippsTDESEncryptCFB(const Ipp8u *pSrc, Ipp8u *pDst, int srclen, int
cfbBlkSize, const IppsDESSpec *pCtx1, const IppsDESSpec * pCtx2, const IppsDESSpec
*pCtx3, const Ipp8u *pIV, IppsCPPadding padding);

Include Files

ippcp.h

Parameters

pSrc Input plaintext data stream of variable length.

pDst Resulting ciphertext data stream.

pIV Initialization vector for TDES CFB mode operation.

srclen Input data stream length in bytes.

pCtx1 First set of round keys scheduled for TDES internal operations.

pCtx2 Second set of round keys scheduled for TDES internal operations.

pCtx3 Third set of round keys scheduled for TDES internal operations.

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

64

cfbBlkSize CFB block size in bytes.

padding IppsCPPaddingNONE padding scheme.

Description

This function encrypts the input data stream of a variable length according to the cipher scheme specified in
[NIST SP 800-38A]. The function uses three sets of the supplied round keys in the Cipher Feedback (CFB)
mode with the initialization vector. The function returns the ciphertext result.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than or equal to zero.

ippStsUnderRunErr Indicates an error condition if srcLen is not divisible by
cfbBlkSize parameter value.

ippStsCFBSizeErr Indicates an error condition if the value for cfbBlkSize is
illegal.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

TDESDecryptCFB
Decrypts variable length data stream in the CFB
mode.

Syntax

IppStatus ippsTDESDecryptCFB(const Ipp8u *pSrc, Ipp8u *pDst, int srclen, int
cfbBlkSize, const IppsDESSpec *pCtx1, const IppsDESSpec * pCtx2, const IppsDESSpec
*pCtx3, const Ipp8u *pIV, IppsCPPadding padding);

Include Files

ippcp.h

Parameters

pSrc Input ciphertext data stream of variable length.

pDst Resulting plaintext data stream.

pIV Initialization vector for TDES CFB mode operation.

srclen Ciphertext data stream length in bytes.

pCtx1 First set of round keys scheduled for TDES internal operations.

pCtx2 Second set of round keys scheduled for TDES internal operations.

pCtx3 Third set of round keys scheduled for TDES internal operations.

cfbBlkSize CFB block size in bytes.

padding IppsCPPaddingNONE padding scheme.

Symmetric Cryptography Primitive Functions 2

65

Description

This function decrypts the input data stream of a variable length according to the cipher scheme specified in
[NIST SP 800-38A]. The function uses three sets of the supplied round keys in the Cipher Feedback (CFB)
mode with the initialization vector. The function returns the ciphertext result and validates the final plaintext
block.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the decrypted plaintext data
stream length is less than or equal to zero.

ippStsCFBSizeErr Indicates an error condition if the value for cfbBlkSize is
illegal.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsUnderRunErr Indicates an error condition if srcLen is not divisible by cipher
block size.

TDESEncryptOFB
Encrypts a variable length data stream according to
the TDES algorithm in the OFB mode.

Syntax

IppStatus ippsTDESEncryptOFB (const Ipp8u* pSrc, Ipp8u* pDst, int srclen, int
ofbBlkSize, const IppsDESSpec *pCtx1, const IppsDESSpec * pCtx2, const IppsDESSpec
pCtx3, Ipp8u pIV);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input plaintext data stream of variable length.

pDst Pointer to the resulting ciphertext data stream.

srclen Length of the plaintext data stream in bytes.

ofbBlkSize Size of the OFB block in bytes.

pCtx1 First set of round keys scheduled for TDES internal operations.

pCtx2 Second set of round keys scheduled for TDES internal operations.

pCtx3 Third set of round keys scheduled for TDES internal operations.

pIV Pointer to the initialization vector for the OFB mode operation.

Description

This function encrypts the input data stream of a variable length in the OFB mode as specified in [NIST SP
800-38A].

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

66

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than or equal to zero.

ippStsUnderRunErr Indicates an error condition if srclenis not divisible by the
ofbBlkSize parameter value.

ippStsOFBSizeErr Indicates an error condition if the value of ofbBlkSize is illegal.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

TDESDecryptOFB
Decrypts a variable length data stream according to
the TDES algorithm in the OFB mode.

Syntax

IppStatus ippsTDESDecryptOFB (const Ipp8u* pSrc, Ipp8u* pDst, int srclen, int
ofbBlkSize, const IppsDESSpec *pCtx1, const IppsDESSpec * pCtx2, const IppsDESSpec
pCtx3, Ipp8u pIV);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input ciphertext data stream of variable length.

pDst Pointer to the resulting plaintext data stream.

srclen Length of the ciphertext data stream in bytes.

ofbBlkSize Size of the OFB block in bytes.

pCtx1 First set of round keys scheduled for TDES internal operations.

pCtx2 Second set of round keys scheduled for TDES internal operations.

pCtx3 Third set of round keys scheduled for TDES internal operations.

pIV Pointer to the initialization vector for the OFB mode operation.

Description

This function decrypts the input data stream of a variable length in the OFB mode as specified in [NIST SP
800-38A].

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

Symmetric Cryptography Primitive Functions 2

67

ippStsLengthErr Indicates an error condition if the input data stream length is
less than or equal to zero.

ippStsUnderRunErr Indicates an error condition if srclenis not divisible by the
ofbBlkSize parameter value.

ippStsOFBSizeErr Indicates an error condition if the value of ofbBlkSize is illegal.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

TDESEncryptCTR
Encrypts a variable length data stream in the CTR
mode.

Syntax

IppStatus ippsTDESEncryptCTR(const Ipp8u *pSrc, Ipp8u *pDst, int srclen,const
IppsDESSpec *pCtx1, const IppsDESSpec *pCtx2, const IppsDESSpec *pCtx3,Ipp8u
*pCtrValue, int ctrNumBitSize);

Include Files

ippcp.h

Parameters

pSrc Input plaintext data stream of a variable length.

pDst Resulting ciphertext data stream.

srclen Input data stream length in bytes.

pCtx1 First set of round keys scheduled for TDES internal operations.

pCtx2 Second set of round keys scheduled for TDES internal operations.

pCtx3 Third set of round keys scheduled for TDES internal operations.

pCtrValue Counter.

ctrNumBitSize Number of bits in the specific part of the counter to be incremented.

Description

This function encrypts the input data stream of a variable length according to the cipher scheme specified in
the [NIST SP 800-38A] recommendation. The function uses three sets of the supplied round keys. The
standard incrementing function is applied to increment counter value. The function returns the ciphertext
result.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less that or equal to zero.

ippStsCTRSizeErr Indicates an error condition if the value of the ctrNumBitSize is
illegal.

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

68

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

TDESDecryptCTR
Decrypts a variable length data stream in the CTR
mode.

Syntax

IppStatus ippsTDESDecryptCTR(const Ipp8u *pSrc, Ipp8u *pDst, int srcLen,const
IppsDESSpec *pCtx1, const IppsDESSpec *pCtx2, const IppsDESSpec *pCtx3, Ipp8u
*pCtrValue, int ctrNumBitSize);

Include Files

ippcp.h

Parameters

pSrc Input ciphertext data stream of a variable length.

pDst Resulting plaintext data stream.

srcLen Length of the plaintext data stream in bytes.

pCtx1 First set of round keys scheduled for TDES internal operations.

pCtx2 Second set of round keys scheduled for TDES internal operations.

pCtx3 Third set of round keys scheduled for TDES internal operations.

pCtrValue Counter.

ctrNumBitSize Number of bits in the specific part of the counter to be incremented.

Description

This function decrypts the input data stream of a variable length according to the cipher scheme specified in
the [NIST SP 800-38A] recommendation. The function uses three sets of the supplied round keys. The
standard incrementing function is applied to increment value of counter. The function returns the ciphertext
result.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the descrypted plaintext data
stream length is less that or equal to zero.

ippStsCTRSizeErr Indicates an error condition if the value of the ctrNumBitSize is
illegal.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

Symmetric Cryptography Primitive Functions 2

69

Example of Using TDES Functions

TDES Encryption and Decryption

// Use of the ECB mode
void TDES_sample(void){
 // size of the TDES algorithm block is equal to 8
 const int tdesBlkSize = 8;

 // get size of the context needed for the encryption/decryption operation
 int ctxSize;
 ippsDESGetSize(&ctxSize);
 // and allocate one
 IppsDESSpec* pCtx1 = (IppsDESSpec*)(new Ipp8u [ctxSize]);
 IppsDESSpec* pCtx2 = (IppsDESSpec*)(new Ipp8u [ctxSize]);
 IppsDESSpec* pCtx3 = (IppsDESSpec*)(new Ipp8u [ctxSize]);

 // define the key
 Ipp8u key1[] = {0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08};
 Ipp8u key2[] = {0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18};
 Ipp8u key3[] = {0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28};
 Ipp8u keyX[] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};

 // and prepare the context for the TDES usage
 ippsDESInit(key1, pCtx1);
 ippsDESInit(key2, pCtx2);
 ippsDESInit(key3, pCtx3);

 // define the message to be encrypted
 Ipp8u ptext[] = {"the quick brown fox jumps over the lazy dog"};
 // allocate enough memory for the ciphertext
 // note that
 // the size of ciphertext is always a multiple of the cipher block size
 Ipp8u ctext[(sizeof(ptext)+desBlkSize-1) &~(desBlkSize-1)];
 // encrypt (ECB mode) ptext message
 // pay attention to the 'length' parameter
 // it defines the number of bytes to be encrypted
 ippsTDESEncryptECB(ptext, ctext, sizeof(ctext), pCtx1, pCtx2, pCtx3, IppsCPPaddingNONE);

 // allocate memory for the decrypted message
 Ipp8u rtext[sizeof(ctext)];
 // decrypt (ECB mode) ctext message
 // pay attention to the 'length' parameter
 // it defines the number of bytes to be decrypted
 ippsTDESDecryptECB(ctext, rtext, sizeof(ctext), pCtx1, pCtx2, pCtx3, IppsCPPaddingNONE);

 // remove actual secret from contexts
 ippsDESInit(keyX, pCtx1);
 ippsDESInit(keyX, pCtx2);
 ippsDESInit(keyX, pCtx3);
 // release resources
 delete (Ipp8u*)pCtx1;
 delete (Ipp8u*)pCtx2;
 delete (Ipp8u*)pCtx3;
}

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

70

SMS4 Functions
You can use the functions described in this section for various operational modes of SMS4 cipher systems
[SM4].

Intel IPP for cryptography supports ECB, CBC, CFB, CTR, and OFB modes. You can tell which algorithm a
given function supports from the function base name, for example, the SMS4EncryptECB function operates
under the ECB mode.

All functions for the SMS4 block cipher use the context IppsSMS4Spec, which serves as an operational
vehicle to carry the material required for various modes of operation.

Application code for conducting a typical encryption under the CBC mode using the SMS4 scheme must
perform the following sequence of operations:

1. Get the size required to configure the context IppsSMS4Spec by calling the function SMS4GetSize.
2. Call an operating system memory allocation service function to allocate a buffer of size not less than

the one specified by the function SMS4GetSize.
3. Initialize the pointer to the context by calling the function SMS4Init.
4. Specify the initialization vector and then call the function SMS4EncryptCBC to encrypt the input data

stream under CBC mode using SMS4 scheme.
5. Clean up secret data stored in the context.
6. Free the memory allocated to the buffer once SMS4 encryption under the CBC mode has been

completed.

NOTE
You can apply a similar procedure to ECB, CFB, CTR, and OFB modes of operation.

A similar scheme also holds for decryption.

See Also
Data Security Considerations

SMS4GetSize
Gets the size of the IppsSMS4Spec context.

Syntax

IppStatus ippsSMS4GetSize(int* pSize);

Include Files

ippcp.h

Parameters

pSize Pointer to the IppsSMS4Spec context size value.

Description

The function gets the IppsSMS4Spec context size in bytes and stores it in *pSize.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

Symmetric Cryptography Primitive Functions 2

71

SMS4Init
Initializes user-supplied memory as IppsSMS4Spec
context for future use.

Syntax

IppStatus ippsSMS4Init(const Ipp8u* pKey, int keyLen, IppsSMS4Spec* pCtx, int ctxSize);

Include Files

ippcp.h

Parameters

pKey Pointer to the SMS4 key.

keyLen Key byte stream length. Must equal 16.

pCtx Pointer to the buffer being initialized as IppsSMS4Spec context.

ctxSize Available size of the buffer being initialized.

Description

This function initializes the memory pointed by pCtx as IppsSMS4Spec. The key is used to provide all
necessary key material for both encryption and decryption operations.

NOTE
If the pKey pointer is NULL, the function initializes the context with the zero key, which can help you to
clean up the actual secret before releasing the context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if the pCtx pointer is NULL.

ippStsLengthErr Returns an error condition if keyLen is not equal to 16.

ippStsMemAllocErr Indicates an error condition if the allocated memory is
insufficient for the operation.

See Also
Data Security Considerations

SMS4SetKey
Resets the SMS4 secret key in the initialized
IppsSMS4Spec context.

Syntax

IppStatus ippsSMS4SetKey(const Ipp8u* pKey, int keyLen, IppsSMS4Spec* pCtx);

Include Files

ippcp.h

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

72

Parameters

pKey Pointer to the SMS4 key.

keyLen Length of the secret key.

pCtx Pointer to the initialized IppsSMS4Spec context.

Description

This function resets the SMS4 secret key in the initialized IppsSMS4Spec context with the user-supplied
secret key.

NOTE
If the pKey pointer is NULL, the function resets the context with the zero key, which can help you to
clean up the actual secret before releasing the context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if the pCtx pointer is NULL.

ippStsLengthErr Returns an error condition if keyLen is not equal to 16.

See Also
Data Security Considerations

SMS4EncryptECB
Encrypts plaintext message by using ECB encryption
mode.

Syntax

IppStatus ippsSMS4EncryptECB(const Ipp8u *pSrc, Ipp8u *pDst, int len, const
IppsSMS4Spec* pCtx);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input plaintext data stream of variable length.

pDst Pointer to the resulting ciphertext data stream.

len Length of the input plaintext data in bytes.

pCtx Pointer to the IppsSMS4Spec context.

Description

The function encrypts the input data stream of a variable length according to the cipher scheme specified in
[NIST SP 800-38A].

Symmetric Cryptography Primitive Functions 2

73

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than or equal to zero.

ippStsUnderRunErr Indicates an error condition if len is not divisible by cipher
block size.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SMS4DecryptECB
Decrypts byte data stream by using the SMS4
algorithm in the ECB mode.

Syntax

IppStatus ippsSMS4DecryptECB(const Ipp8u* pSrc, Ipp8u* pDst, int len, const
IppsSMS4Spec* pCtx);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input ciphertext data stream of variable length.

pDst Pointer to the resulting plaintext data stream of variable length.

len Length of the ciphertext data stream in bytes.

pCtx Pointer to the IppsSMS4Spec context.

Description

The function decrypts the input data stream of a variable length according to the ECB mode as specified in
[NIST SP 800-38A].

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the output data stream length is
less than or equal to zero.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsUnderRunErr Indicates an error condition if len is not divisible by cipher
block size.

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

74

SMS4EncryptCBC
Encrypts byte data stream according to SMS4 in the
CBC mode.

Syntax

IppStatus ippsSMS4EncryptCBC(const Ipp8u* pSrc, Ipp8u* pDst, int len, const
IppsSMS4Spec* pCtx, const Ipp8u* pIV);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input plaintext data stream of variable length.

pDst Pointer to the resulting ciphertext data stream.

len Length of the plaintext data stream length in bytes.

pCtx Pointer to the IppsSMS4Spec context.

pIV Pointer to the initialization vector for the CBC mode operation.

Description

The function encrypts the input data stream of a variable length according to the CBC mode as specified in
[NIST SP 800-38A].

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than or equal to zero.

ippStsUnderRunErr Indicates an error condition if len is not divisible by data block
size.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SMS4DecryptCBC
Decrypts byte data stream according to SMS4 in the
CBC mode.

Syntax

IppStatus ippsSMS4DecryptCBC(const Ipp8u* pSrc, Ipp8u* pDst, int len, const
IppsSMS4Spec* pCtx, const Ipp8u* pIV);

Include Files

ippcp.h

Symmetric Cryptography Primitive Functions 2

75

Parameters

pSrc Pointer to the input ciphertext data stream.

pDst Pointer to the resulting plaintext data stream of the variable length.

len Length of the ciphertext data stream length in bytes.

pCtx Pointer to the IppsSMS4Spec context.

pIV Pointer to the initialization vector for CBC mode operation.

Description

The function decrypts the input data stream of a variable length according to the CBC mode as specified in
[NIST SP 800-38A].

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the output data stream length is
less than or equal to zero.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsUnderRunErr Indicates an error condition if len is not divisible by cipher
block size.

SMS4EncryptCFB
Encrypts byte data stream using SMS4 block cipher in
the CFB mode.

Syntax

IppStatus ippsSMS4EncryptCFB(const Ipp8u* pSrc, Ipp8u* pDst, int len, int cfbBlkSize,
const IppsSMS4Spec* pCtx, const Ipp8u *pIV);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input plaintext data stream of variable length.

pDst Pointer to the resulting ciphertext data stream.

len Length of the plaintext data stream in bytes.

cfbBlkSize Size of the CFB block in bytes.

pCtx Pointer to the IppsSMS4Spec context.

pIV Pointer to the initialization vector for the CFB mode operation.

Description

The function encrypts the input data stream of variable length according to the CFB mode as specified in
[NIST SP 800-38A].

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

76

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than or equal to zero.

ippStsUnderRunErr Indicates an error condition if lenis not divisible by cfbBlkSize
parameter value.

ippStsCFBSizeErr Indicates an error condition if the value for cfbBlkSize is
illegal.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SMS4DecryptCFB
Decrypts byte data stream using SMS4 block cipher in
CFB mode.

Syntax

IppStatus ippsSMS4DecryptCFB(const Ipp8u* pSrc, Ipp8u* pDst, int len, int cfbBlkSize,
const IppsSMS4Spec* pCtx, const Ipp8u* pIV);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input ciphertext data stream.

pDst Pointer to the resulting plaintext data stream of variable length.

len Length of the ciphertext data stream in bytes.

cfbBlkSize Size of the CFB block in bytes.

pCtx Pointer to the IppsSMS4Spec context.

pIV Pointer to the initialization vector for the CFB mode operation.

Description

The function decrypts the input data stream of variable length according to the CFB mode as specified in
[NIST SP 800-38A].

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the output data stream length is
less than or equal to zero.

ippStsCFBSizeErr Indicates an error condition if the value for cfbBlkSize is
illegal.

Symmetric Cryptography Primitive Functions 2

77

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsUnderRunErr Indicates an error condition if len is not divisible by cipher
block size.

SMS4EncryptOFB
Encrypts a variable length data stream using SMS4
block cipher in the OFB mode.

Syntax

IppStatus ippsSMS4EncryptOFB (const Ipp8u* pSrc, Ipp8u* pDst, int len, int ofbBlkSize,
const IppsSMS4Spec* pCtx, Ipp8u* pIV);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input plaintext data stream of variable length.

pDst Pointer to the resulting ciphertext data stream.

len Length of the plaintext data stream in bytes.

ofbBlkSize Size of the OFB block in bytes.

pCtx Pointer to the IppsSMS4Spec context.

pIV Pointer to the initialization vector for the OFB mode operation.

Description

The function encrypts the input data stream of a variable length in the OFB mode as specified in [NIST SP
800-38A].

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than or equal to zero.

ippStsUnderRunErr Indicates an error condition if len is not divisible by the
ofbBlkSize parameter value.

ippStsOFBSizeErr Indicates an error condition if the value of ofbBlkSize is illegal.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SMS4DecryptOFB
Decrypts a variable length data stream using SMS4
block cipher in the OFB mode.

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

78

Syntax

IppStatus ippsSMS4DecryptOFB (const Ipp8u* pSrc, Ipp8u* pDst, int len, int ofbBlkSize,
const IppsSMS4Spec* pCtx, Ipp8u* pIV);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input ciphertext data stream of variable length.

pDst Pointer to the resulting plaintext data stream.

len Length of the ciphertext data stream in bytes.

ofbBlkSize Size of the OFB block in bytes.

pCtx Pointer to the IppsSMS4Spec context.

pIV Pointer to the initialization vector for the OFB mode operation.

Description

The function decrypts the input data stream of a variable length in the OFB mode as specified in [NIST SP
800-38A].

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than or equal to zero.

ippStsUnderRunErr Indicates an error condition if lenis not divisible by the
ofbBlkSize parameter value.

ippStsOFBSizeErr Indicates an error condition if the value of ofbBlkSize is illegal.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SMS4EncryptCTR
Encrypts a variable length data stream using SMS4
block cipher in the CTR mode.

Syntax

IppStatus ippsSMS4EncryptCTR(const Ipp8u* pSrc, Ipp8u* pDst, int len,const
IppsSMS4Spec* pCtx, Ipp8u* pCtrValue , int ctrNumBitSize);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input plaintext data stream of a variable length.

Symmetric Cryptography Primitive Functions 2

79

pDst Pointer to the resulting ciphertext data stream.

len Length of the plaintext data stream in bytes.

pCtx Pointer to the IppsSMS4Spec context.

pCtrValue Pointer to the counter data block.

ctrNumBitSize Number of bits in the specific part of the counter to be incremented.

Description

The function encrypts the input data stream of a variable length according to the CTR mode as specified in
[NIST SP 800-38A].

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than or equal to zero.

ippStsCTRSizeErr Indicates an error condition if the value of the ctrNumBitSize is
illegal.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SMS4DecryptCTR
Decrypts a variable length data stream using SMS4
block cipher in the CTR mode.

Syntax

IppStatus ippsSMS4DecryptCTR(const Ipp8u* pSrc, Ipp8u* pDst, int len,const IppsAESSpec*
pCtx, Ipp8u* pCtrValue, int ctrNumBitSize);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input ciphertext data stream.

pDst Pointer to the resulting plaintext data stream of a variable length.

len Length of the plaintext data stream in bytes.

pCtx Pointer to the IppsAESSpec context.

pCtrValue Pointer to the counter data block.

ctrNumBitSize Number of bits in the specific part of the counter to be incremented.

Description

The function decrypts the input data stream of a variable length according to the CTR mode as specified in
the [NIST SP 800-38A].

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

80

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the output data stream length is
less than or equal to zero.

ippStsCTRSizeErr Indicates an error condition if the value of the ctrNumBitSize is
illegal.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ARCFour Functions
As the RC4* stream cipher, widely used for file encryption and secure communications, is the property of RSA
Security Inc., a cipher discussed in this section and resulting in the same encryption/decryption as RC4* is
called ARCFour.

The ARCFour stream cipher ([AC]) uses a variable length key of up to 256 octets (bytes). ARCFour operates
in the Output Feedback mode (OFB), defined in [NIST SP 800-38A], which creates the keystream
independently of both the plaintext and the ciphertext.

The ARCFour algorithm functions, described in this section, use the context IppsARCFourState as an
operational vehicle to carry variables needed to execute the algorithm: S-Boxes and a current pair of indices.

The typical application code for conducting an encryption or decryption using ARCFour should follow the
sequence of operations listed below:

1. Get the buffer size required to configure the context IppsARCFourState by calling the function
ARCFourGetSize.

2. Call the operating system memory allocation service function to allocate a buffer whose size is not less
than the one specified by the function ARCFourGetSize.

3. Initialize the pointer pCtx to the IppsARCFourState context by calling the function ARCFourInit with
the allocated buffer and the respective ARCFour cipher key of the specified size.

4. Call the ARCFourEncrypt or ARCFourDecrypt function to encrypt or decrypt the input data stream,
respectively.

5. Clean up secret data stored in the context.
6. Call the operating system memory free service function to release the buffer allocated for the

IppsARCFourState context, if needed.

The ARCFourSpec context is position-dependent. The ARCFourPack/ARCFourUnpack functions transform the
position-dependent context to a position-independent form and vice versa.

See Also
Data Security Considerations

ARCFourGetSize
Gets the size of the IppsARCFourState context.

Syntax

IppStatus ippsARCFourGetSize(int* pSize);

Include Files

ippcp.h

Symmetric Cryptography Primitive Functions 2

81

Parameters

pSize Pointer to the size value of the IppsARCFourState context.

Description

The function gets the size of the IppsARCFourState context in bytes and stores it in *pSize.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if the specified pointer is NULL.

ARCFourCheckKey
Checks weakness of a user-defined key.

Syntax

IppStatus ippsARCFourCheckKey(const Ipp8u* pKey, int keyLen, IppBool* pIsWeak);

Include Files

ippcp.h

Parameters

pKey Pointer to the user-defined key.

keyLen Length of the user-defined key in octets.

pIsWeak Pointer to the result of checking.

Description

The function checks weakness of user-defined key. The function allows to make sure that the supplied key
provides sufficient security.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if keyLen <1 or keyLen >256.

ARCFourInit
Initializes user-supplied memory as the
IppsARCFourState context for future use.

Syntax

IppStatus ippsARCFourInit(const Ipp8u* pKey, int keyLen, IppsARCFourState* pCtx);

Include Files

ippcp.h

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

82

Parameters

pKey Pointer to the user-defined key.

keyLen Length of the user-defined key in octets.

pCtx Pointer to the IppsARCFourState context being initialized.

Description

The function initializes the memory pointed by pCtx as IppsARCFourState context. In addition, the function
uses the key to provide all necessary key material for both encryption and decryption operations.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if keyLen <1 or keyLen >256.

See Also
Data Security Considerations

ARCFourPack, ARCFourUnpack
Packs/unpacks the IppsARCFourSpec context into/
from a user-defined buffer.

Syntax

IppStatus ippsARCFourPack (const IppsARCFourState* pCtx, Ipp8u* pBuffer);
IppStatus ippsARCFourUnpack (const Ipp8u* pBuffer, IppsARCFourState* pCtx);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsARCFourState context.

pBuffer Pointer to the user-defined buffer.

Description

The ARCFourPack function transforms the *pCtx context to a position-independent form and stores it in the
*pBuffer buffer. The ARCFourUnpack function performs the inverse operation, that is, transforms the
contents of the *pBuffer buffer into a normal IppsARCFourState context. The ARCFourPack and
ARCFourUnpack functions enable replacing the position-dependent IppsARCFourState context in the
memory.

Call the ARCFourGetSize function prior to ARCFourPack/ARCFourUnpack to determine the size of the buffer.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

Symmetric Cryptography Primitive Functions 2

83

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ARCFourEncrypt
Encrypts a variable length data stream according to
ARCFour.

Syntax

IppStatus ippsARCFourEncrypt(const Ipp8u* pSrc, Ipp8u* pDst, int srclen,
IppsARCFourState* pCtx);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input plaintext data stream of variable length.

pDst Pointer to the resulting ciphertext data stream.

srclen Length of the plaintext data stream in octets.

pCtx Pointer to the ARCFourState context.

Description

The function encrypts the input data stream of a variable length using the ARCFour algorithm.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if length of the input data stream
is less than one octet.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ARCFourDecrypt
Decrypts a variable length data stream according to
ARCFour.

Syntax

IppStatus ippsARCFourDecrypt(const Ipp8u* pSrc, Ipp8u* pDst, int srclen,
IppsARCFourState* pCtx);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input ciphertext data stream of variable length.

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

84

pDst Pointer to the resulting plaintext data stream.

srclen Length of the ciphertext data stream in octets.

pCtx Pointer to the ARCFourState context.

Description

The function decrypts the input data stream of a variable length according to the ARCFour algorithm.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if length of the input data stream
is less than one octet.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ARCFourReset
Resets the IppsARCFourState context to the initial
state.

Syntax

IppStatus ippsARCFourReset(IppsARCFourState* pCtx);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsARCFourState context being reset.

Description

The function resets the IppsARCFourState context to the state it had immediately after the ARCFourInit
function call. Contrary to ARCFourInit, ARCFourReset requires no secret key to initialize the S-Box.

Return Values

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

Symmetric Cryptography Primitive Functions 2

85

 2 Intel® Integrated Performance Primitives Cryptography Developer Reference

86

One-Way Hash Primitives 3
Hash functions are used in cryptography with digital signatures and for ensuring data integrity.

When used with digital signatures, a publicly available hash function hashes the message and signs the
resulting hash value. The party who receives the message can then hash the message and check if the block
size is authentic for the given hash value.

Hash functions are also referred to as “message digests” and “one-way encryption functions”. Both terms are
appropriate since hash algorithms do not have a key like symmetric and asymmetric algorithms and you can
recover neither the length nor the contents of the plaintext message from the ciphertext.

To ensure data integrity, hash functions are used to compute the hash value that corresponds to a particular
input. Then, if necessary, you can check if the input data has remained unmodified; you can re-compute the
hash value again using the available input and compare it to the original hash value.

The Hash Functions section of this chapter describes functions that implement the following hash algorithms
for streaming messages: MD5 [RFC 1321], SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 [FIPS PUB
180-2], and SM3 [SM3]. These algorithms are widely used in enterprise applications nowadays.

Subsequent sections of this chapter describe Hash Functions for Non-Streaming Messages, which apply hash
algorithms to entire (non-streaming) messages, and Mask Generation Functions, whose algorithms are often
based on hash computations.

Additionally, Intel® Integrated Performance Primitives (Intel® IPP) Cryptography supports two relatively new
variants of SHA-512, the so called SHA-512/224 and SHA-512/256 algorithms. Both employ much of the
basic SHA-512 algorithm but have some specifics. Intel IPP Cryptography does not provide a separate API
exactly targeting SHA-512/224 and SHA-512/256. To enable SHA-512/224 and SHA-512/256, Intel IPP
Cryptography declares extensions of the Hash Functions, Hash Functions for Non-Streaming Messages, Mask
Generation Functions, and Keyed Hash Functions. These extensions use the IppHashAlgId enumerator
associated with a particular hash algorithm as shown in the table below.

Supported Hash Algorithms

Value of IppHashAlgId Associated Hash Algorithm

ippHashAlg_SHA1 SHA-1

ippHashAlg_SHA224 SHA-224

ippHashAlg_SHA256 SHA-256

ippHashAlg_SHA384 SHA-384

ippHashAlg_SHA512 SHA-512

ippHashAlg_SHA512_224 SHA-512/224

ippHashAlg_SHA512_256 SHA-512/256

ippHashAlg_MD5 MD5

ippHashAlg_SM3 SM3

Reduced Memory Footprint Functions
When your application uses the IppHashAlgId enumerator, it gets linked to all available hashing algorithm
implementations. This results in unnecessary memory overhead if the application does not need all the
algorithms. Intel IPP Cryptography includes a number of reduced memory footprint functions that allow you

87

to select the exact hashing methods for your application's needs. These functions have the _rmf suffix in
their names and use pointers to IppsHashMethod structure variables instead of IppHashAlgId values. To
get a pointer to a IppsHashMethod structure variable, call an appropriate function from the table below. See
HashMethod for the syntax.

NOTE
Functions that have the _TT suffix in their names return pointers to dynamically dispatched
IppsHashMethod structures. These structures check for support of the SHA-NI instruction set at run
time and choose the implementation of an algorithm depending on the outcome of the check. Using
such IppsHashMethod structures leads to a slightly larger memory footprint compared to applications
that use non-dynamically dispatched IppsHashMethod structures.

HashMethod Functions

Function name Returns pointer to implementation of

ippsHashMethod_SHA1 SHA1 (without the SHA-NI instruction set)

ippsHashMethod_SHA1_NI SHA1 (using the SHA-NI instruction set)

ippsHashMethod_SHA1_TT SHA1 (using the SHA-NI instructions set if it is
available at run time)

ippsHashMethod_SHA256 SHA256 (without the SHA-NI instruction set)

ippsHashMethod_SHA256_NI SHA256 (using the SHA-NI instruction set)

ippsHashMethod_SHA256_TT SHA256 (using the SHA-NI instructions set if it is
available at run time)

ippsHashMethod_SHA224 SHA224 (without the SHA-NI instruction set)

ippsHashMethod_SHA224_NI SHA224 (using the SHA-NI instruction set)

ippsHashMethod_SHA224_TT SHA224 (using the SHA-NI instructions set if it is
available at run time)

ippsHashMethod_SHA384 SHA384

ippsHashMethod_SHA512 SHA512

ippsHashMethod_SHA512_256 SHA512-256

ippsHashMethod_SHA512_224 SHA512-224

ippsHashMethod_MD5 MD5

ippsHashMethod_SM3 SM3

Important
The crypto community does not consider SHA-1 or MD5 algorithms secure anymore.

Recommendation: use a more secure hash algorithm (for example, any algorithm from the SHA-2
family) instead of SHA-1 or MD5.

Hash Functions
Functions described in this section apply hash algorithms to digesting streaming messages.

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

88

Usage model of the generalized hash functions is similar to the model explained below.

A primitive implementing a hash algorithm uses the state context IppsHashState as an operational vehicle
to carry all necessary variables to manage the computation of the chaining digest value.

The following example illustrates how the application code can apply the implemented SHA-1 hash standard
to digest the input message stream.

1. Call the function HashGetSize to get the size required to configure the IppsHashState context.
2. Ensure that the required memory space is properly allocated. With the allocated memory, call the

HashInit function with the value of hashAlg equal to ippHashAlg_SHA1 to set up the initial context
state with the SHA-1 specified initialization vectors.

3. Keep calling the function HashUpdate to digest incoming message stream in the queue till its
completion. To determine the current value of the digest, call HashGetTag between the two calls to
HashUpdate.

4. Call the function HashFinal to pad the partial block into a final SHA-1 message block and transform it
into a 160-bit message digest value.

5. Clean up secret data stored in the context.
6. Call the operating system memory free service function to release the IppsSHA1StateIppsHashState

context.

The IppsHashState context is position-dependent. The HashPack, HashUnpack functions transform this
context to a position-independent form and vice versa.

NOTE
For memory-critical applications, consider using Reduced Memory Footprint Functions.

Important
The crypto community does not consider SHA-1 or MD5 algorithms secure anymore.

Recommendation: use a more secure hash algorithm (for example, any algorithm from the SHA-2
family) instead of SHA-1 or MD5.

See Also
Data Security Considerations

HashGetSize
Gets the size of the IppsHashState or
IppsHashState_rmf context in bytes.

Syntax

IppStatus ippsHashGetSize(int *pSize);
IppStatus ippsHashGetSize_rmf(int *pSize);

Include Files

ippcp.h

Parameters

pSize Pointer to the value of the IppsHashState or IppsHashState_rmf
context size.

Description

The function gets the size of the IppsHashState or IppsHashState_rmf context in bytes and stores it in
*pSize.

One-Way Hash Primitives 3

89

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

HashInit
Initializes user-supplied memory as IppsHashState
or IppsHashState_rmf context for future use.

Syntax

IppStatus ippsHashInit(IppsHashState* pCtx, IppHashAlgId hashAlg);
IppStatus ippsHashInit_rmf(IppsHashState_rmf* pCtx, IppsHashMethod* pMethod);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsHashState or IppsHashState_rmf context being
intialized.

hashAlg Identifier of the hash algorithm.

pMethod Pointer to the hash method.

Description

The function initializes the memory pointed by pCtx as IppsHashState or IppsHashState_rmf context.
The hashAlg and pMethod parameters define the hash algorithm to be used in subsequent calls to
HashUpdate , HashFinal, or HashGetTag functions. The hashAlg parameter can take one of the values
listed in table Supported Hash Algorithms. To get a value for the pMethod parameter, call one of the
HashMethod functions.

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsNotSupportedModeErr Indicates an error condition if the hashAlg parameter does not match
any value of IppHashAlg listed in table Supported Hash Algorithms.

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

90

See Also
Data Security Considerations

HashPack, HashUnpack
Packs/unpacks the IppsHashState or
IppsHashState_rmf context into/from a user-defined
buffer.

Syntax

IppStatus ippsHashPack (const IppsHashState* pCtx, Ipp8u* pBuffer, int bufSize);
IppStatus ippsHashPack_rmf(const IppsHashState_rmf* pCtx, Ipp8u* pBuffer, int
bufferSize);
IppStatus ippsHashUnpack (const Ipp8u* pBuffer, IppsHashState* pCtx);
IppStatus ippsHashUnpack_rmf(const Ipp8u* pBuffer, IppsHashState_rmf* pCtx);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsHashState or IppsHashState_rmf context.

pBuffer Pointer to the user-defined buffer.

bufSize, bufferSize The size of the user-defined buffer in bytes.

Description

The HashPack function transforms the *pCtx context to a position-independent form and stores it in the the
*pBuffer buffer. The HashUnpack function performs the inverse operation, that is, transforms the contents
of the *pBuffer buffer into a normal IppsHashState or IppsHashState_rmf context. The HashPack and
HashUnpack functions enable replacing the position-dependent IppsHashState or IppsHashState_rmf
context in the memory.

The value of the bufSize parameter must be not less than the size of IppsHashState or
IppsHashState_rmf context. Call the HashGetSize function prior to HashPack to determine the size of the
buffer.

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsMemErr Indicates an error condition if the value of bufSize is less than the
size of the IppsHashState context.

One-Way Hash Primitives 3

91

ippStsContextMatchErr Indicates an error condition in a ippsHashPack_rmf call if the context
parameter does not match the operation.

ippStsNoMem Indicates an error condition if the value of bufferSize is less than
the size of the IppsHashState_rmf context.

HashDuplicate
Copies one IppsHashState or IppsHashState_rmf
context to another.

Syntax

IppStatus ippsHashDuplicate(const IppsHashState* pSrcCtx, IppsHashState* pDstCtx);
IppStatus ippsHashDuplicate_rmf(const ippsHashState_rmf* pSrcCtx, ippsHashState_rmf*
pDstCtx);

Include Files

ippcp.h

Parameters

pSrcCtx Pointer to the input IppsHashState or IppsHashState_rmf context to
be cloned.

pDstCtx Pointer to the output IppsHashState or IppsHashState_rmf context.

Description

The function copies one IppsHashState or IppsHashState_rmf context to another.

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsContextMatchErr
Indicates an error condition if any of the context parameters does not
match the operation.

HashUpdate
Digests the current input message stream of the
specified length.

Syntax

IppStatus ippsHashUpdate(const Ipp8u *pSrc, int len, IppsHashState *pCtx);
IppStatus ippsHashUppdate_rmf(const Ipp8u *pSrc, int srcLen, ippsHashState_rmf *pCtx);

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

92

Include Files

ippcp.h

Parameters

pSrc Pointer to the buffer containing a part of or the whole message.

len, srcLen Length of the actual part of the message in bytes.

pCtx Pointer to the IppsHashState or IppsHashState_rmf context.

Description

The function digests the current input message stream of the specified length.

The function first integrates the previous partial block with the input message stream and then partitions
them into multiple message blocks (as specified by the applied hash algorithm) with a possible additional
partial block. For each message block, the function uses the selected hash algorithm to transform the block
into a new chaining digest value.

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsContextMatchErr
Indicates an error condition if the context parameter does not match
the operation.

ippStsLengthErr Indicates an error condition in any of the following cases:

• The length of the input data stream is less than zero
• The length of the totally processed stream (including the current

update request) exceeds the limit defined by the particular hash
algorithm.

HashFinal
Completes computation of the digest value.

Syntax

IppStatus ippsHashFinal(Ipp8u *pMD, IppsHashState *pCtx);
IppStatus ippsHashFinal_rmf(Ipp8u *pHash, ippsHashState_rmf *pCtx);

Include Files

ippcp.h

One-Way Hash Primitives 3

93

Parameters

pMD, pHash Pointer to the resultant digest value.

pCtx Pointer to the IppsHashState or IppsHashState_rmf context.

Description

The function completes calculation of the digest value and stores the result at the specified memory location,
then re-initializes the pCtx context.

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsContextMatchErr
Indicates an error condition if the context parameter does not match
the operation.

HashGetTag
Computes the current digest value of the processed
part of the message.

Syntax

IppStatus ippsHashGetTag(Ipp8u* pTag, int tagLen, const IppsHashState* pCtx);
IppStatus ippsHashGetTag_rmf(Ipp8u* pTag, int tagLen, ippsHashState_rmf* pCtx);

Include Files

ippcp.h

Parameters

pTag Pointer to the authentication tag.

tagLen The length of the tag (in bytes).

pCtx Pointer to the IppsHashState or IppsHashState_rmf context.

Description

The function computes the message digest based on the current context as specified in [FIPS PUB 180-2],
[FIPS PUB 180-4] and [RFC 1321]. A call to this function retains the possibility to update the digest.

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

94

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if tagLen < 1 or tagLen exceeds
the maximal length of a particular digest.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

HashMethod
Returns a pointer to a pre-defined hash algorithm.

Syntax

const IppsHashMethod* ippsHashMethod_SHA1(void);
const IppsHashMethod* ippsHashMethod_SHA1_NI(void);
const IppsHashMethod* ippsHashMethod_SHA1_TT(void);
const IppsHashMethod* ippsHashMethod_SHA256(void);
const IppsHashMethod* ippsHashMethod_SHA256_NI(void);
const IppsHashMethod* ippsHashMethod_SHA256_TT(void);
const IppsHashMethod* ippsHashMethod_SHA224(void);
const IppsHashMethod* ippsHashMethod_SHA224_NI(void);
const IppsHashMethod* ippsHashMethod_SHA224_TT(void);
const IppsHashMethod* ippsHashMethod_SHA512(void);
const IppsHashMethod* ippsHashMethod_SHA384(void);
const IppsHashMethod* ippsHashMethod_SHA512_224(void);
const IppsHashMethod* ippsHashMethod_SHA512_256(void);
const IppsHashMethod* ippsHashMethod_MD5(void);
const IppsHashMethod* ippsHashMethod_SM3(void);

Include Files

ippcp.h

Description

Each of these functions returns a pointer to a method-defined implementation of a particular hash algorithm.
Use these functions in calls to HashInit and HashMessage. See table HashMethod Functions for an
explanation of the values returned by the HashMethod functions.

Return Values

const ippsHashMethod* Pointer to the particular hash method.

One-Way Hash Primitives 3

95

SM3GetSize
Gets the size of the IppsSM3State context in bytes.

Syntax

IppStatus ippsSM3GetSize(int *pSize);

Include Files

ippcp.h

Parameters

pSize Pointer to the IppsSM3State context size value.

Description

The function gets the IppsSM3State context size in bytes and stores it in *pSize.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

SM3Init
Initializes user-supplied memory as IppsSM3State
context for future use.

Syntax

IppStatus ippsSM3Init(IppsSM3State* pCtx);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsSM3State context being intialized.

Description

The function initializes the memory pointed by pCtx as IppsSM3State context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

See Also
Data Security Considerations

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

96

SM3Pack, SM3Unpack
Packs/unpacks the IppsSM3State context into/from a
user-defined buffer.

Syntax

IppStatus ippsSM3Pack (const IppsSM3State* pCtx, Ipp8u* pBuffer);
IppStatus ippsSM3Unpack (const Ipp8u* pBuffer, IppsSM3State* pCtx);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsSM3State context.

pBuffer Pointer to the user-defined buffer.

Description

The SM3Pack function transforms the *pCtx context to a position-independent form and stores it in the
*pBuffer buffer. The SM3Unpack function performs the inverse operation, that is, transforms the contents of
the *pBuffer buffer into a normal IppsSM3State context. The SM3Pack and SM3Unpack functions enable
replacing the position-dependent IppsSM3State context in the memory.

Call the SM3GetSize function prior to SM3Pack/SM3Unpack to determine the size of the buffer.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

SM3Duplicate
Copies one IppsSM3State context to another.

Syntax

IppStatus ippsSM3Duplicate(const IppsSM3State* pSrcCtx, IppsSM3State* pDstCtx);

Include Files

ippcp.h

Parameters

pSrcCtx Pointer to the source IppsSM3State context to be cloned.

pDstCtx Pointer to the destination IppsSM3State context.

Description

The function copies one IppsSM3State context to another.

One-Way Hash Primitives 3

97

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SM3Update
Digests the current input message stream of the
specified length.

Syntax

IppStatus ippsSM3Update(const Ipp8u *pSrc, int len, IppsSM3State *pCtx);

Include Files

ippcp.h

Parameters

pSrc Pointer to the buffer containing a part of or the whole message.

len Length of the actual part of the message in bytes.

pCtx Pointer to the IppsSM3State context.

Description

The function digests the current input message stream of the specified length.

The function first integrates the previous partial block with the input message stream and then partitions
them into multiple message blocks (as specified by the applied hash algorithm) with a possible additional
partial block. For each message block, the function uses the selected hash algorithm to transform the block
into a new chaining digest value.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than zero.

SM3Final
Completes computation of the SM3 digest value.

Syntax

IppStatus ippsSM3Final(Ipp8u *pMD, IppsSM3State *pCtx);

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

98

Include Files

ippcp.h

Parameters

pMD Pointer to the resultant digest value.

pCtx Pointer to the IppsSM3State context.

Description

The function completes calculation of the digest value and stores the result into the specified memory.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SM3GetTag
Computes the current SM3 digest value of the
processed part of the message.

Syntax

IppStatus ippsSM3GetTag(Ipp8u* pTag, Ipp32u tagLen, const IppsSM3State* pCtx);

Include Files

ippcp.h

Parameters

pTag Pointer to the authentication tag.

tagLen Length of the tag (in bytes).

pCtx Pointer to the IppsSM3State context.

Description

The function computes the message digest based on the current context as specified in [SM3]. A call to this
function retains the possibility to update the digest.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if tagLen < 1 or tagLen exceeds
the maximal length of a particular digest.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

One-Way Hash Primitives 3

99

MD5GetSize
Gets the size of the IppsMD5State context in bytes.

Syntax

IppStatus ippsMD5GetSize(int *pSize);

Include Files

ippcp.h

Parameters

pSize Pointer to the IppsMD5State context size value.

Description

The function gets the IppsMD5State context size in bytes and stores it in *pSize.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

MD5Init
Initializes user-supplied memory as IppsMD5State
context for future use.

Syntax

IppStatus ippsMD5Init(IppsMD5State* pCtx);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsMD5State context being intialized.

Description

The function initializes the memory pointed by pCtx as IppsMD5State context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

See Also
Data Security Considerations

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

100

MD5Pack, MD5Unpack
Packs/unpacks the IppsMD5State context into/from a
user-defined buffer.

Syntax

IppStatus ippsMD5Pack (const IppsMD5State* pCtx, Ipp8u* pBuffer);
IppStatus ippsMD5Unpack (const Ipp8u* pBuffer, IppsMD5State* pCtx);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsMD5State context.

pBuffer Pointer to the user-defined buffer.

Description

The MD5Pack function transforms the *pCtx context to a position-independent form and stores it in the
*pBuffer buffer. The MD5Unpack function performs the inverse operation, that is, transforms the contents of
the *pBuffer buffer into a normal IppsMD5State context. The MD5Pack and MD5Unpack functions enable
replacing the position-dependent IppsMD5State context in the memory.

Call the MD5GetSize function prior to MD5Pack/MD5Unpack to determine the size of the buffer.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

MD5Duplicate
Copies one IppsMD5State context to another.

Syntax

IppStatus ippsMD5Duplicate(const IppsMD5State* pSrcCtx, IppsMD5State* pDstCtx);

Include Files

ippcp.h

Parameters

pSrcCtx Pointer to the source IppsMD5State context to be cloned.

pDstCtx Pointer to the destination IppsMD5State context.

Description

The function copies one IppsMD5State context to another.

One-Way Hash Primitives 3

101

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

MD5Update
Digests the current input message stream of the
specified length.

Syntax

IppStatus ippsMD5Update(const Ipp8u *pSrcMesg, int mesglen, IppsMD5State *pCtx);

Include Files

ippcp.h

Parameters

pSrcMesg Pointer to the buffer containing a part of or the whole message.

mesglen Length of the actual part of the message in bytes.

pCtx Pointer to the IppsMD5State context.

Description

The function digests the current input message stream of the specified length.

The function first integrates the previous partial block with the input message stream and then partitions
them into multiple message blocks (as specified by the applied hash algorithm) with a possible additional
partial block. For each message block, the function uses the selected hash algorithm to transform the block
into a new chaining digest value.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than zero.

MD5Final
Completes computation of the MD5 digest value.

Syntax

IppStatus ippsMD5Final(Ipp8u *pMD, IppsMD5State *pCtx);

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

102

Include Files

ippcp.h

Parameters

pMD Pointer to the resultant digest value.

pCtx Pointer to the IppsMD5State context.

Description

The function completes calculation of the digest value and stores the result into the specified memory.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

MD5GetTag
Computes the current MD5 digest value of the
processed part of the message.

Syntax

IppStatus ippsMD5GetTag(Ipp8u* pDstTag, Ipp32u tagLen, const IppsMD5State* pState);

Include Files

ippcp.h

Parameters

pDstTag Pointer to the authentication tag.

tagLen Length of the tag (in bytes).

pState Pointer to the IppsMD5State context.

Description

The function computes the message digest based on the current context as specified in [FIPS PUB 180-2]
and [RFC 1321]. A call to this function retains the possibility to update the digest.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if tagLen < 1 or tagLen exceeds
the maximal length of a particular digest.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

One-Way Hash Primitives 3

103

SHA1GetSize
Gets the size of the IppsSHA1State context in bytes.

Syntax

IppStatus ippsSHA1GetSize(int *pSize);

Include Files

ippcp.h

Parameters

pSize Pointer to the IppsSHA1State context size value.

Description

The function gets the IppsSHA1State context size in bytes and stores it in *pSize.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

SHA1Init
Initializes user-supplied memory as IppsSHA1State
context for future use.

Syntax

IppStatus ippsSHA1Init(IppsSHA1State* pCtx);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsSHA1State context being intialized.

Description

The function initializes the memory pointed by pCtx as IppsSHA1State context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

See Also
Data Security Considerations

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

104

SHA1Pack, SHA1Unpack
Packs/unpacks the IppsSHA1State context into/from
a user-defined buffer.

Syntax

IppStatus ippsSHA1Pack (const IppsSHA1State* pCtx, Ipp8u* pBuffer);
IppStatus ippsSHA1Unpack (const Ipp8u* pBuffer, IppsSHA1State* pCtx);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsSHA1State context.

pBuffer Pointer to the user-defined buffer.

Description

The SHA1Pack function transforms the *pCtx context to a position-independent form and stores it in the
*pBuffer buffer. The SHA1Unpack function performs the inverse operation, that is, transforms the contents
of the *pBuffer buffer into a normal IppsSHA1State context. The SHA1Pack and SHA1Unpack functions
enable replacing the position-dependent IppsSHA1State context in the memory.

Call the SHA1GetSize function prior to SHA1Pack/SHA1Unpack to determine the size of the buffer.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

SHA1Duplicate
Copies one IppsSHA1State context to another.

Syntax

IppStatus ippsSHA1Duplicate(const IppsSHA1State* pSrcCtx, IppsSHA1State* pDstCtx);

Include Files

ippcp.h

Parameters

pSrcCtx Pointer to the source IppsSHA1State context to be cloned.

pDstCtx Pointer to the destination IppsSHA1State context.

Description

The function copies one IppsSHA1State context to another.

One-Way Hash Primitives 3

105

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SHA1Update
Digests the current input message stream of the
specified length.

Syntax

IppStatus ippsSHA1Update(const Ipp8u *pSrcMesg, int mesglen, IppsSHA1State *pCtx);

Include Files

ippcp.h

Parameters

pSrcMesg Pointer to the buffer containing a part of or the whole message.

mesglen Length of the actual part of the message in bytes.

pCtx Pointer to the IppsSHA1State context.

Description

The function digests the current input message stream of the specified length.

The function first integrates the previous partial block with the input message stream and then partitions
them into multiple message blocks (as specified by the applied hash algorithm) with a possible additional
partial block. For each message block, the function uses the selected hash algorithm to transform the block
into a new chaining digest value.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than zero.

SHA1Final
Completes computation of the SHA-1 digest value.

Syntax

IppStatus ippsSHA1Final(Ipp8u *pMD, IppsSHA1State *pCtx);

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

106

Include Files

ippcp.h

Parameters

pMD Pointer to the resultant digest value.

pCtx Pointer to the IppsSHA1State context.

Description

The function completes calculation of the digest value and stores the result into the specified memory.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SHA1GetTag
Computes the current SHA-1 digest value of the
processed part of the message.

Syntax

IppStatus ippsSHA1GetTag(Ipp8u* pDstTag, Ipp32u tagLen, const IppsSHA1State* pState);

Include Files

ippcp.h

Parameters

pDstTag Pointer to the authentication tag.

tagLen Length of the tag (in bytes).

pState Pointer to the IppsSHA1State context.

Description

The function computes the message digest based on the current context as specified in [FIPS PUB 180-2]
and [RFC 1321]. A call to this function retains the possibility to update the digest.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if tagLen < 1 or tagLen exceeds
the maximal length of a particular digest.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

One-Way Hash Primitives 3

107

SHA224GetSize
Gets the size of the IppsSHA224State context in
bytes.

Syntax

IppStatus ippsSHA224GetSize(int *pSize);

Include Files

ippcp.h

Parameters

pSize Pointer to the IppsSHA224State context size value.

Description

The function gets the IppsSHA224State context size in bytes and stores it in *pSize.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

SHA224Init
Initializes user-supplied memory as
IppsSHA224State context for future use.

Syntax

IppStatus ippsSHA224Init(IppsSHA224State* pCtx);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsSHA224State context being intialized.

Description

The function initializes the memory pointed by pCtx as IppsSHA224State context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

See Also
Data Security Considerations

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

108

SHA224Pack, SHA224Unpack
Packs/unpacks the IppsSHA224State context into/
from a user-defined buffer.

Syntax

IppStatus ippsSHA224Pack (const IppsSHA224State* pCtx, Ipp8u* pBuffer);
IppStatus ippsSHA224Unpack (const Ipp8u* pBuffer, IppsSHA224State* pCtx);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsSHA224State context.

pBuffer Pointer to the user-defined buffer.

Description

The SHA224Pack function transforms the *pCtx context to a position-independent form and stores it in the
*pBuffer buffer. The SHA224Unpack function performs the inverse operation, that is, transforms the
contents of the *pBuffer buffer into a normal IppsSHA224State context. The SHA224Pack and
SHA224Unpack functions enable replacing the position-dependent IppsSHA224State context in the memory.

Call the SHA224GetSize function prior to SHA224Pack/SHA224Unpack to determine the size of the buffer.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

SHA224Duplicate
Copies one IppsSHA224State context to another.

Syntax

IppStatus ippsSHA224Duplicate(const IppsSHA224State* pSrcCtx, IppsSHA224State*
pDstCtx);

Include Files

ippcp.h

Parameters

pSrcCtx Pointer to the source SHA224State context to be cloned.

pDstCtx Pointer to the destination IppsSHA224State context.

Description

The function copies one IppsSHA224State context to another.

One-Way Hash Primitives 3

109

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SHA224Update
Digests the current input message stream of the
specified length.

Syntax

IppStatus ippsSHA224Update(const Ipp8u *pSrcMesg, int mesglen, IppsSHA224State *pCtx);

Include Files

ippcp.h

Parameters

pSrcMesg Pointer to the buffer containing a part of or the whole message.

mesglen Length of the actual part of the message in bytes.

pCtx Pointer to the IppsSHA224State context.

Description

The function digests the current input message stream of the specified length.

The function first integrates the previous partial block with the input message stream and then partitions
them into multiple message blocks (as specified by the applied hash algorithm) with a possible additional
partial block. For each message block, the function uses the selected hash algorithm to transform the block
into a new chaining digest value.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than zero.

SHA224Final
Completes computation of the SHA-224 digest value.

Syntax

IppStatus ippsSHA224Final(Ipp8u *pMD, IppsSHA224State *pCtx);

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

110

Include Files

ippcp.h

Parameters

pMD Pointer to the resultant digest value.

pCtx Pointer to the IppsSHA224State context.

Description

The function completes calculation of the digest value and stores the result into the specified memory.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SHA224GetTag
Computes the current SHA-224 digest value of the
processed part of the message.

Syntax

IppStatus ippsSHA224GetTag(Ipp8u* pDstTag, Ipp32u tagLen, const IppsSHA224State*
pState);

Include Files

ippcp.h

Parameters

pDstTag Pointer to the authentication tag.

tagLen Length of the tag (in bytes).

pState Pointer to the IppsSHA224State context.

Description

The function computes the message digest based on the current context as specified in [FIPS PUB 180-2]
and [RFC 1321]. A call to this function retains the possibility to update the digest.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if tagLen < 1 or tagLen exceeds
the maximal length of a particular digest.

One-Way Hash Primitives 3

111

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SHA256GetSize
Gets the size of the IppsSHA256State context in
bytes.

Syntax

IppStatus ippsSHA256GetSize(int *pSize);

Include Files

ippcp.h

Parameters

pSize Pointer to the IppsSHA256State context size value.

Description

The function gets the IppsSHA256State context size in bytes and stores it in *pSize.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

SHA256Init
Initializes user-supplied memory as
IppsSHA256State context for future use.

Syntax

IppStatus ippsSHA256Init(IppsSHA256State *pCtx);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsSHA256State context being intialized.

Description

The function initializes the memory pointed by pCtx as IppsSHA256State context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

112

See Also
Data Security Considerations

SHA256Pack, SHA256Unpack
Packs/unpacks the IppsSHA256State context into/
from a user-defined buffer.

Syntax

IppStatus ippsSHA256Pack (const IppsSHA256State* pCtx, Ipp8u* pBuffer);
IppStatus ippsSHA256Unpack (const Ipp8u* pBuffer, IppsSHA256State* pCtx);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsSHA256State context.

pBuffer Pointer to the user-defined buffer.

Description

The SHA256Pack function transforms the *pCtx context to a position-independent form and stores it in the
*pBuffer buffer. The SHA256Unpack function performs the inverse operation, that is, transforms the
contents of the *pBuffer buffer into a normal IppsSHA256State context. The SHA256Pack and
SHA256Unpack functions enable replacing the position-dependent IppsSHA256State context in the memory.

Call the SHA256GetSize function prior to SHA256Pack/SHA256Unpack to determine the size of the buffer.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

SHA256Duplicate
Copies one IppsSHA256State context to another.

Syntax

IppStatus ippsSHA256Duplicate(const IppsSHA256State* pSrcCtx, IppsSHA256State*
pDstCtx);

Include Files

ippcp.h

Parameters

pSrcCtx Pointer to the source IppsSHA256State context to be cloned.

pDstCtx Pointer to the destination IppsSHA256State context.

Description

The function copies one IppsSHA256State context to another.

One-Way Hash Primitives 3

113

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SHA256Update
Digests the current input message stream of the
specified length.

Syntax

IppStatus ippsSHA256Update(const Ipp8u *pSrcMesg, int mesglen, IppsSHA256State *pCtx);

Include Files

ippcp.h

Parameters

pSrcMesg Pointer to the buffer containing a part of or the whole message.

mesglen Length of the actual part of the message in bytes.

pCtx Pointer to the IppsSHA256State context.

Description

The function digests the current input message stream of the specified length.

The function first integrates the previous partial block with the input message stream and then partitions
them into multiple message blocks (as specified by the applied hash algorithm) with a possible additional
partial block. For each message block, the function uses the selected hash algorithm to transform the block
into a new chaining digest value.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than zero.

SHA256Final
Completes computation of the SHA-256 digest value.

Syntax

IppStatus ippsSHA256Final(Ipp8u *pMD, IppsSHA256State *pCtx);

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

114

Include Files

ippcp.h

Parameters

pMD Pointer to the resultant digest value.

pCtx Pointer to the IppsSHA256State context.

Description

The function completes calculation of the digest value and stores the result into the specified memory.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SHA256GetTag
Computes the current SHA-256 digest value of the
processed part of the message.

Syntax

IppStatus ippsSHA256GetTag(Ipp8u* pDstTag, Ipp32u tagLen, const IppsSHA256State*
pState);

Include Files

ippcp.h

Parameters

pDstTag Pointer to the authentication tag.

tagLen Length of the tag (in bytes).

pState Pointer to the IppsSHA265State context.

Description

The function computes the message digest based on the current context as specified in [FIPS PUB 180-2]
and [RFC 1321]. A call to this function retains the possibility to update the digest.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if tagLen < 1 or tagLen exceeds
the maximal length of a particular digest.

One-Way Hash Primitives 3

115

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SHA384GetSize
Gets the size of the IppsSHA384State context in
bytes.

Syntax

IppStatus ippsSHA384GetSize(int *pSize);

Include Files

ippcp.h

Parameters

pSize Pointer to the IppsSHA384State context size value.

Description

The function gets the IppsSHA384State context size in bytes and stores it in *pSize.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

SHA384Init
Initializes user-supplied memory as
IppsSHA384State context for future use.

Syntax

IppStatus ippsSHA384Init(IppsSHA384State* pCtx);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsSHA384State context being intialized.

Description

The function initializes the memory pointed by pCtx as IppsSHA384State context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

116

See Also
Data Security Considerations

SHA384Pack, SHA384Unpack
Packs/unpacks the IppsSHA384State context into/
from a user-defined buffer.

Syntax

IppStatus ippsSHA384Pack (const IppsSHA384State* pCtx, Ipp8u* pBuffer);
IppStatus ippsSHA384Unpack (const Ipp8u* pBuffer, IppsSHA384State* pCtx);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsSHA384State context.

pBuffer Pointer to the user-defined buffer.

Description

The SHA384Pack function transforms the *pCtx context to a position-independent form and stores it in the
*pBuffer buffer. The SHA384Unpack function performs the inverse operation, that is, transforms the
contents of the *pBuffer buffer into a normal IppsSHA384State context. The SHA384Pack and
SHA384Unpack functions enable replacing the position-dependent IppsSHA384State context in the memory.

Call the SHA384GetSize function prior to SHA384Pack/SHA384Unpack to determine the size of the buffer.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

SHA384Duplicate
Copies one IppsSHA384State context to another.

Syntax

IppStatus ippsSHA384Duplicate(const IppsSHA384State* pSrcCtx, IppsSHA384State*
pDstCtx);

Include Files

ippcp.h

Parameters

pSrcCtx Pointer to the source IppsSHA384State context to be cloned.

pDstCtx Pointer to the destination IppsSHA384State context.

Description

The function copies one IppsSHA384State context to another.

One-Way Hash Primitives 3

117

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SHA384Update
Digests the current input message stream of the
specified length.

Syntax

IppStatus ippsSHA384Update(const Ipp8u *pSrcMesg, int mesglen, IppsSHA384State *pCtx);

Include Files

ippcp.h

Parameters

pSrcMesg Pointer to the buffer containing a part of or the whole message.

mesglen Length of the actual part of the message in bytes.

pCtx Pointer to the IppsSHA384State context.

Description

The function digests the current input message stream of the specified length.

The function first integrates the previous partial block with the input message stream and then partitions
them into multiple message blocks (as specified by the applied hash algorithm) with a possible additional
partial block. For each message block, the function uses the selected hash algorithm to transform the block
into a new chaining digest value.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than zero.

SHA384Final
Completes computing of the SHA-384 digest value.

Syntax

IppStatus ippsSHA384Final(Ipp8u *pMD, IppsSHA384State *pCtx);

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

118

Include Files

ippcp.h

Parameters

pMD Pointer to the resultant digest value.

pCtx Pointer to the IppsSHA384State context.

Description

The function completes calculation of the digest value and stores the result into the specified memory.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SHA384GetTag
Computes the current SHA-384 digest value of the
processed part of the message.

Syntax

IppStatus ippsSHA384GetTag(Ipp8u* pDstTag, Ipp32u tagLen, const IppsSHA384State*
pState);

Include Files

ippcp.h

Parameters

pDstTag Pointer to the authentication tag.

tagLen Length of the tag (in bytes).

pState Pointer to the IppsSHA384State context.

Description

The function computes the message digest based on the current context as specified in [FIPS PUB 180-2]
and [RFC 1321]. A call to this function retains the possibility to update the digest.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if tagLen < 1 or tagLen exceeds
the maximal length of a particular digest.

One-Way Hash Primitives 3

119

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SHA512GetSize
Gets the size of the IppsSHA512State context in
bytes.

Syntax

IppStatus ippsSHA512GetSize(int *pSize);

Include Files

ippcp.h

Parameters

pSize Pointer to the IppsSHA512State context size value.

Description

The function gets the IppsSHA512State context size in bytes and stores it in *pSize.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

SHA512Init
Initializes user-supplied memory as
IppsSHA512State context for future use.

Syntax

IppStatus ippsSHA512Init(IppsSHA512State* pCtx);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsSHA512State context being intialized.

Description

The function initializes the memory pointed by pCtx as IppsSHA512State context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

120

See Also
Data Security Considerations

SHA512Pack, SHA512Unpack
Packs/unpacks the IppsSHA512State context into/
from a user-defined buffer.

Syntax

IppStatus ippsSHA512Pack (const IppsSHA512State* pCtx, Ipp8u* pBuffer);
IppStatus ippsSHA512Unpack (const Ipp8u* pBuffer, IppsSHA512State* pCtx);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsSHA512State context.

pBuffer Pointer to the user-defined buffer.

Description

The SHA512Pack function transforms the *pCtx context to a position-independent form and stores it in the
*pBuffer buffer. The SHA512Unpack function performs the inverse operation, that is, transforms the
contents of the *pBuffer buffer into a normal IppsSHA512State context. The SHA512Pack and
SHA512Unpack functions enable replacing the position-dependent IppsSHA512State context in the memory.

Call the SHA512GetSize function prior to SHA512Pack/SHA512Unpack to determine the size of the buffer.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

SHA512Duplicate
Copies one IppsSHA512State context to another.

Syntax

IppStatus ippsSHA512Duplicate(const IppsSHA512State* pSrcCtx, IppsSHA512State*
pDstCtx);

Include Files

ippcp.h

Parameters

pSrcCtx Pointer to the source IppsSHA512State context to be cloned.

pDstCtx Pointer to the destination IppsSHA512State context.

Description

The function copies one IppsSHA512State context to another.

One-Way Hash Primitives 3

121

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SHA512Update
Digests the current input message stream of the
specified length.

Syntax

IppStatus ippsSHA512Update(const Ipp8u *pSrcMesg, int mesglen, IppsSHA512State *pCtx);

Include Files

ippcp.h

Parameters

pSrcMesg Pointer to the buffer containing a part of or the whole message.

mesglen Length of the actual part of the message in bytes.

pCtx Pointer to the IppsSHA512State context.

Description

The function digests the current input message stream of the specified length.

The function first integrates the previous partial block with the input message stream and then partitions
them into multiple message blocks (as specified by the applied hash algorithm) with a possible additional
partial block. For each message block, the function uses the selected hash algorithm to transform the block
into a new chaining digest value.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than zero.

SHA512Final
Completes computation of the SHA-512 digest value.

Syntax

IppStatus ippsSHA512Final(Ipp8u *pMD, IppsSHA512State *pCtx);

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

122

Include Files

ippcp.h

Parameters

pMD Pointer to the resultant digest value.

pCtx Pointer to the IppsSHA512State context.

Description

The function completes calculation of the digest value and stores the result into the specified memory.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

SHA512GetTag
Computes the current SHA-512 digest value of the
processed part of the message.

Syntax

IppStatus ippsSHA512GetTag(Ipp8u* pDstTag, Ipp32u tagLen, const IppsSHA512State*
pState);

Include Files

ippcp.h

Parameters

pDstTag Pointer to the authentication tag.

tagLen Length of the tag (in bytes).

pState Pointer to the IppsSHA512State context.

Description

The function computes the message digest based on the current context as specified in [FIPS PUB 180-2]
and [RFC 1321]. A call to this function retains the possibility to update the digest.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if tagLen < 1 or tagLen exceeds
the maximal length of a particular digest.

One-Way Hash Primitives 3

123

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

Hash Functions for Non-Streaming Messages
This section describes functions that calculate a digest of an entire (non-streaming) input message by
applying a selected hash algorithm, as well as a possibility to use a different implementation of a hash
algorithm.

Important
The crypto community does not consider SHA-1 or MD5 algorithms secure anymore.

Recommendation: use a more secure hash algorithm (for example, any algorithm from the SHA-2
family) instead of SHA-1 or MD5.

General Definition of a Hash Function

Syntax
typedef IppStatus(_STDCALL *IppHASH)(const Ipp8u* pMsg, int msgLen, Ipp8u* pMD);

Parameters

pMsg Pointer to the input octet string.

msgLen Length of the input string in octers.

pMD Pointer to the output message digest.

Description
This declaration is included in the ippcp.h file. The function calculates the digest of a non-streaming
message using the implemented hash algorithm.

NOTE
Definition of a hash function used in Intel IPP limits length (in octets) of an input message for any
specific hash function by the range of the int data type, with the upper bound of 232-1.

HashMessage
Computes the digest value of an input message.

Syntax

IppStatus ippsHashMessage(const Ipp8u *pMsg, int len, Ipp8u *pMD, IppHashAlgId
hashAlg);
IppStatus ippsHashMessage_rmf(const Ipp8u *pMsg, int msgLen, Ipp8u *pHash, const
ippsHashMethod *pMethod);

Include Files

ippcp.h

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

124

Parameters

pMsg Pointer to the input message.

len, msgLen Message length in octets.

pMD, pHash Pointer to the resultant digest.

hashAlg Identifier of the hash algorithm.

pMethod Pointer to the hash method.

Description

The function uses the selected hash algorithm to compute the digest value of the entire (non-streaming)
input message. The hashAlg and pMethod parameters define the hash algorithm used. The hashAlg
parameter can take one of the values listed in table Supported Hash Algorithms. To get a value for the
pMethod parameter, call one of the HashMethod functions.

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsLengthErr Indicates an error condition if the length of the input data stream is
less than zero.

ippStsNotSupportedModeErr Indicates an error condition if the hashAlg parameter does not match
any value of IppHashAlg listed in table Supported Hash Algorithms.

Example

The code below computes MD5 digest of a message.

void MD5_sample(void)
{
 // define message
 Ipp8u msg[] = "abcdefghijklmnopqrstuvwxyz";

 // once the whole message is placed into memory,
 // you can use the integrated primitive
 Ipp8u digest[16];
 ippsHashMessage(msg, strlen((char*)msg), digest, IPP_ALG_HASH_MD5);
}

SM3MessageDigest
Computes SM3 digest value of the input message.

Syntax

IppStatus ippsSM3MessageDigest(const Ipp8u *pMsg, int len, Ipp8u *pMD);

One-Way Hash Primitives 3

125

Include Files

ippcp.h

Parameters

pMsg Pointer to the input message.

len Message length in octets.

pMD Pointer to the resultant digest.

Description

The function uses the selected hash algorithm to compute digest value of the entire (non-streaming) input
message.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than zero.

MD5MessageDigest
Computes MD5 digest value of the input message.

Syntax

IppStatus ippsMD5MessageDigest(const Ipp8u *pSrcMesg, int mesgLen, Ipp8u *pMD);

Include Files

ippcp.h

Parameters

pSrcMesg Pointer to the input message.

mesgLen Message length in octets.

pMD Pointer to the resultant digest.

Description

The function uses the selected hash algorithm to compute digest value of the entire (non-streaming) input
message.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than zero.

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

126

Example

The code example below shows MD5 digest of a message.

SHA1MessageDigest
Computes SHA-1 digest value of the input message.

Syntax

IppStatus ippsSHA1MessageDigest(const Ipp8u *pSrcMesg, int mesgLen, Ipp8u *pMD);

Include Files

ippcp.h

Parameters

pSrcMesg Pointer to the input message.

mesgLen Message length in octets.

pMD Pointer to the resultant digest.

Description

The function uses the selected hash algorithm to compute the digest value of the entire (non-streaming)
input message.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than zero.

One-Way Hash Primitives 3

127

Example

The code example below shows SHA1 digest of a message.

 // Compute two SHA1 digests of a message:
 // 1-st will correspond of 1/2 message
 // 2-nd will correspond of whole message
void SHA1_sample(void){
 // get size of the SHA1 context
 int ctxSize;
 ippsSHA1GetSize(&ctxSize);

 // allocate the SHA1 context
 IppsSHA1State* pCtx = (IppsSHA1State*)(new Ipp8u [ctxSize]);

 // and initialize the context
 ippsSHA1Init(pCtx);

 // define a message
 Ipp8u msg[] = "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq";

 int n;

 // update digest using a piece of message
 for(n=0; n<(sizeof(msg)-1)/2; n++)
 ippsSHA1Update(msg+n, 1, pCtx);
// clone the SHA1 context
 IppsSHA1State* pCtx2 = (IppsSHA1State*)(new Ipp8u [ctxSize]);
 ippsSHA1Init(pCtx2);
 ippsSHA1Duplicate(pCtx, pCtx2);
 // finalize and extract digest of a half message
 Ipp8u digest[20];
 ippsSHA1Final(digest, pCtx);

 // update digest using the SHA1 clone context
 ippsSHA1Update(msg+n, sizeof(msg)-1-n, pCtx2);

 // finalize and extract digest of a whole message
 Ipp8u digest2[20];
 ippsSHA1Final(digest2, pCtx2);

 delete [] (Ipp8u*)pCtx;
 delete [] (Ipp8u*)pCtx2;
}

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

128

SHA224MessageDigest
Computes SHA-224 digest value of the input message.

Syntax

IppStatus ippsSHA224MessageDigest(const Ipp8u *pSrcMesg, int mesgLen, Ipp8u *pMD);

Include Files

ippcp.h

Parameters

pSrcMesg Pointer to the input message.

mesgLen Message length in octets.

pMD Pointer to the resultant digest.

Description

The function uses the selected hash algorithm to compute the digest value of the entire (non-streaming)
input message.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than zero.

SHA256MessageDigest
Computes SHA-256 digest value of the input message.

Syntax

IppStatus ippsSHA256MessageDigest(const Ipp8u *pSrcMesg, int mesgLen, Ipp8u *pMD);

Include Files

ippcp.h

Parameters

pSrcMesg Pointer to the input message.

mesgLen Message length in octets.

pMD Pointer to the resultant digest.

Description

The function uses the selected hash algorithm to compute the digest value of the entire (non-streaming)
input message.

One-Way Hash Primitives 3

129

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than zero.

SHA384MessageDigest
Computes SHA-384 digest value of the input message.

Syntax

IppStatus ippsSHA384MessageDigest(const Ipp8u *pSrcMesg, int mesgLen, Ipp8u *pMD);

Include Files

ippcp.h

Parameters

pSrcMesg Pointer to the input message.

mesgLen Message length in octets.

pMD Pointer to the resultant digest.

Description

The function uses the selected hash algorithm to compute the digest value of the entire (non-streaming)
input message.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than zero.

SHA512MessageDigest
Computes SHA-512 digest value of the input message.

Syntax

IppStatus ippsSHA512MessageDigest(const Ipp8u *pSrcMesg, int mesgLen, Ipp8u *pMD);

Include Files

ippcp.h

Parameters

pSrcMesg Pointer to the input message.

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

130

mesgLen Message length in octets.

pMD Pointer to the resultant digest.

Description

The function uses the selected hash algorithm to compute the digest value of the entire (non-streaming)
input message.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than zero.

Mask Generation Functions
Public Key Cryptography frequently uses mask generation functions (MGFs) to achieve a particular security
goal. For example, MGFs are used both in RSA-OAEP encryption and RSA-SSA signature schemes.

MGF function takes an octet string of a variable length and generates an octet string of a desired length.
MGFs are deterministic, which means that the input octet string completely determines the output one. The
output of an MGF should be pseudorandom, that is, infeasible to predict. The provable security of such
cryptography schemes as RSA-OAEP or RSA-SSA relies on the random nature of the MGF output. That is why
one-way hash functions is one of the well-known ways to implement an MGF. The exact definition of an MGF
based on a one-way hash function may be found in [PKCS 1.2.1].

This section describes MGFs based on widely-used hash algorithms, as well as a possibility to use a different
implementation of MGF.

Intel IPP implementation of MGFs limits the length (in octets) of an input message for any specific MGF by
the range of the int data type, with the upper bound of 232-1.

Important
The crypto community does not consider SHA-1 or MD5 algorithms secure anymore.

Recommendation: use a more secure hash algorithm (for example, any algorithm from the SHA-2
family) instead of SHA-1 or MD5.

User's Implementation of a Mask Generation Function
In case you prefer or have to use a different implementation of an MGF you can still use IPPCP. To do this,
use the definition of MGF introduced in the IPPCP library and described in this section. The declaration
provided below also defines an MGF when it is used as a parameter in some Public Key Cryptography
operations.

Syntax
typedef IppStatus(_STDCALL *IppMGF)(const Ipp8u* pSeed, int seedLen, Ipp8u* pMask, int
maskLen);

One-Way Hash Primitives 3

131

Parameters

pSeed Pointer to the input octet string.

seedLen Length of the input string.

pMask Pointer to the output pseodorandom mask.

maskLen Desired length of the output.

Description
This declaration is included in the ippcp.h file. The function generates an octet string of length maskLen
according to the implemented algorithm, providing pseudorandom output.

MGF
Generates a pseudorandom mask of the specified
length using a selected hash algorithm.

Syntax

IppStatus ippsMGF(const Ipp8u *pSeed, int seedLen, Ipp8u* pMask, int maskLen,
IppHashAlgId hashAlg);

Include Files

ippcp.h

Parameters

pSeed Pointer to the input octet string.

seedLen Length of the input string.

pMask Pointer to the output pseodorandom mask.

maskLen Desired length of the output.

hashAlg Identifier of the hash algorithm.

Description

The function generates a pseudorandom mask of the specified length using the hash algorithm defined by
algID. The hashAlg parameter can take one of the values listed in table Supported Hash Algorithms.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if pMask pointer is NULL.

ippStsLengthErr Indicates an error condition if any of the specified lengths is negative
or zero.

ippStsNotSupportedModeErr Indicates an error condition if the hashAlg parameter does not match
any value of IppHashAlg listed in table Supported Hash Algorithms.

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

132

MGF1_rmf, MGF2_rmf
Generates a pseudorandom mask of the specified
length using a selected hash lagorithm based on MGF1
or MGF2 specifications.

Syntax

IppStatus ippsMGF1_rmf(const Ipp8u* pSeed, int seedLen, Ipp8u* pMask, int maskLen,
const IppsHashMethod* pMethod);
IppStatus ippsMGF2_rmf(const Ipp8u* pSeed, int seedLen, Ipp8u* pMask, int maskLen,
const IppsHashMethod* pMethod);

Include Files

ippcp.h

Parameters

pSeed Pointer to the input octet string.

seedLen Length of the input string in bytes.

pMask Pointer to the output pseodorandom mask.

maskLen Desired length of the output.

pMethod Pointer to the hash method.

Description

The function generates a pseudorandom mask of the specified length using the hash algorithm defined by
pMethod, as defined in the MGF1 and MGF2 specifications. To get a value for the pMethod parameter, call
one of the HashMethod functions.

NOTE
These are reduced memory footprint functions. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL

ippStsLengthErr Indicates an error condition if any of the specified lengths is
negative or zero.

One-Way Hash Primitives 3

133

 3 Intel® Integrated Performance Primitives Cryptography Developer Reference

134

Data Authentication Primitive
Functions 4
This chapter describes the Intel® IPP Cryptography functions for generating message authentication code
(MAC), that is, Message Authentication Functions.

Message Authentication Functions
Hash function-based MAC (HMAC) is widely used in the applications requiring message authentication and
data integrity check. HMAC was initially put forward in [RFC 2401] and adopted by ANSI X9.71 and [FIPS
PUB 198]. See Keyed Hash Functions for a description of the Intel® Integrated Performance Primitives (Intel®
IPP) HMAC primitives.

A MAC algorithm based on a symmetric key block cipher, in other words, a cipher-based MAC (CMAC), is
standardized in [NIST SP 800-38B]. CMAC may be appropriate for information systems where an approved
block cipher is available rather than an approved hash function. See CMAC Functions for a description of the
Intel IPP CMAC primitives.

Keyed Hash Functions
The Intel IPP HMAC primitive functions, described in this section, use various HMAC schemes based on one-
way hash functions described in theOne-Way Hash Primitives chapter.

Usage model of the generalized HMAC functions is similar to the model explained below.

Each HMAC scheme is implemented as a set of the primitive functions. Each primitive implementing HMAC
uses the HashState context as an operational vehicle to carry all necessary variables to manage
computation of the chaining digest value.

The following example illustrates how the application code can apply the implemented HMAC-SHA1 hash
standard to digest the input message stream:

1. Call the function HMAC_GetSize to get the size required to configure the HashState context.
2. Ensure that the required memory space is properly allocated. With the allocated memory, call the

function HMAC_Init with the value of hashAlg equal to ippHashAlg_SHA1 to set up key material and
the initial context state with the SHA-1 specified initialization vectors.

3. Keep calling the function HMAC_Update to digest incoming message stream in the queue till its
completion. To determine the current value of the message digest, call HMAC_GetTag between the two
calls to HMACUpdate.

4. Call the function HMAC_Final to pad the partial block into a final SHA-1 message block and transform it
into a resulting HMAC value.

5. Clean up secret data stored in the context.
6. Call the operating system memory free service function to release the HashState context.

The HashState context is position-dependent. The HMACPack, HMACUnpack functions transform it to a
position-independent form and vice versa:

Important
The crypto community does not consider HMACSHA1 or HMACMD5 secure anymore.

Recommendation: use a more secure hash algorithm (for example, any algorithm from the SHA-2
family) instead of HMACSHA1 or HMACMD5.

See Also
Data Security Considerations

135

HMAC_GetSize
Gets the size of the IppsHMACState or
IppsHMACState_rmf context.

Syntax

IppStatus ippsHMAC_GetSize(int *pSize);
IppStatus ippsHMACGetSize_rmf(int *pSize);

Include Files

ippcp.h

Parameters

pSize Pointer to the value of the IppsHMACState or IppsHMACState_rmf
context size.

Description

The function gets the size of the IppsHMACState or IppsHMACState_rmf context in bytes and stores it in
pSize.

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

HMAC_Init
Initializes user-supplied memory as IppsHMACState
or IppsHMACState_rmf context for future use.

Syntax

IppStatus ippsHMAC_Init(const Ipp8u *pKey, int keyLen, IppsHMACState *pCtx,
IppHashAlgId hashAlg);
IppStatus ippsHMACInit_rmf(const Ipp8u* pKey, int keyLen, IppsHMACState_rmf* pCtx,
const IppsHashMethod* pMethod);

Include Files

ippcp.h

Parameters

pKey Pointer to the user-supplied key.

keyLen Key length in bytes.

pCtx Pointer to the IppsHMACState or IppsHMACState_rmf context being
initialized.

 4 Intel® Integrated Performance Primitives Cryptography Developer Reference

136

hashAlg Identifier of the hash algorithm.

pMethod Pointer to the hash method.

Description

The function initializes the memory pointed to by pCtx as the IppsHMACState or IppsHMACState_rmf
context. The function also sets up the initial chaining digest value according to the hash algorithm specified
by the hashAlg or pMethodparameter and computes necessary key material from the supplied key pKey.
The hashAlg parameter can take one of the values listed in table Supported Hash Algorithms. To get a value
for the pMethod parameter, call one of the HashMethod functions.

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsLengthErr Indicates an error condition if keyLen is less than one.

ippStsNotSupportedModeErr Indicates an error condition if the hashAlg parameter does not match
any value of IppHashAlg listed in table Supported Hash Algorithms.

See Also
Data Security Considerations

HMAC_Pack, HMAC_Unpack
Packs/unpacks the IppsHMACState or
IppsHMACState_rmf context into/from a user-defined
buffer.

Syntax

IppStatus ippsHMAC_Pack (const IppsHMACState* pCtx, Ipp8u* pBuffer, int bufSize);
IppStatus ippsHMACPack_rmf (const IppsHMACState_rmf* pCtx, Ipp8u* pBuffer, int
bufSize);
IppStatus ippsHMAC_Unpack (const Ipp8u* pBuffer, IppsHMACState* pCtx);
IppStatus ippsHMACUnpack_rmf (const Ipp8u* pBuffer, IppsHMACState_rmf* pCtx);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsHMACState or IppsHMACState_rmf context.

pBuffer Pointer to the user-defined buffer.

bufSize The size of the user-defined buffer in bytes.

Data Authentication Primitive Functions 4

137

Description

The HMAC_Pack function transforms the *pCtx context to a position-independent form and stores it in the
*pBuffer buffer. The HMAC_Unpack function performs the inverse operation, that is, transforms the contents
of the *pBuffer buffer into a normal IppsHMACState or IppsHMACState_rmf context. The HMAC_Pack and
HMAC_Unpack functions enable replacing the position-dependent IppsHMACState or IppsHMACState_rmf
context in the memory. Call the HMAC_GetSize function prior to HMAC_Pack to determine the size of the
buffer.

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsMemErr Indicates an error condition if the value of bufSize is less than the
size of the IppsHMACState or IppsHMACState_rmf context.

HMAC_Duplicate
Copies one IppsHMACState or IppsHMACState_rmf
context to another.

Syntax

IppStatus ippsHMAC_Duplicate(const IppsHMACState* pSrcCtx, IppsHMACState* pDstCtx);
IppStatus ippsHMACDuplicate_rmf(const IppsHMACState_rmf* pSrcCtx, IppsHMACState_rmf*
pDstCtx);

Include Files

ippcp.h

Parameters

pSrcCtx Pointer to the input IppsHMACState or IppsHMACState_rmf context to
be cloned.

pDstCtx Pointer to the output IppsHMACState or IppsHMACState_rmf context.

Description

The function copies one IppsHMACState or IppsHMACState_rmf context to another.

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

 4 Intel® Integrated Performance Primitives Cryptography Developer Reference

138

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsContextMatchErr Indicates an error condition if any of the context parameters does not
match the operation.

HMAC_Update
Digests the current input message stream of the
specified length.

Syntax

IppStatus ippsHMAC_Update(const Ipp8u *pSrc, int len, IppsHMACState *pCtx);
IppStatus ippsHMACUpdate_rmf(const Ipp8u *pSrc, int len, IppsHMACState_rmf *pCtx);

Include Files

ippcp.h

Parameters

pSrc Pointer to the buffer containing a part of the whole message.

len The length of the actual part of the message in bytes.

pCtx Pointer to the IppsHMACState or IppsHMACState_rmf context.

Description

The function digests the current input message stream of the specified length.

The function first integrates the previous partial block with the input message stream and then partitions
them into multiple message blocks (as specified by the applied hash algorithm) with a possible additional
partial block. For each message block, the function uses the selected hash algorithm to transform the block
into a new chaining digest value.

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not match
the operation.

ippStsLengthErr Indicates an error condition if the length of the input data stream is
less than zero.

Data Authentication Primitive Functions 4

139

HMAC_Final
Completes computation of the HMAC value.

Syntax

IppStatus ippsHMAC_Final(Ipp8u *pMD, int mdLen, IppsHMACState *pCtx);
IppStatus ippsHMACFinal_rmf(Ipp8u *pMD, int mdLen, IppsHMACState_rmf *pCtx);

Include Files

ippcp.h

Parameters

pMD Pointer to the resultant HMAC value.

mdLen Specified HMAC length.

pCtx Pointer to the IppsHMACState or IppsHMACState_rmf context.

Description

The function completes calculation of the digest value and stores the result at the memory location specified
by pMD.

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not match
the operation.

ippStsLengthErr Indicates an error condition if mdLen is less than one or greater than
the length of the hash value.

HMAC_GetTag
Computes the current HMAC value of the processed
part of the message.

Syntax

IppStatus ippsHMAC_GetTag(Ipp8u* pMD, int mdLen, const IppsHMACState* pCtx);
IppStatus ippsHMACGetTag_rmf(Ipp8u* pMD, int mdLen, const IppsHMACState_rmf* pCtx);

Include Files

ippcp.h

 4 Intel® Integrated Performance Primitives Cryptography Developer Reference

140

Parameters

pMD Pointer to the authentication tag.

mdLen The length of the tag (in bytes).

pCtx Pointer to the IppsHMACState or IppsHMACState_rmf context.

Description

The function computes the message digest based on the current context as specified in [FIPS PUB 198]. A
call to this function retains the possibility to update the digest.

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsLengthErr Indicates an error condition if mdLen <1 or mdLen exceeds the
maximal length of a particular digest.

ippStsContextMatchErr Indicates an error condition if the context parameter does not match
the operation.

HMAC_Message
Computes the HMAC value of an entire message.

Syntax

IppStatus ippsHMAC_Message(const Ipp8u *pMsg, int msgLen, const Ipp8u *pKey, int
keyLen, Ipp8u *pMD, int mdLen, IppHashAlgId hashAlg);
IppStatus ippsHMACMessage_rmf(const Ipp8u *pMsg, int msgLen, const Ipp8u *pKey, int
keyLen, Ipp8u *pMAC, int macLen, const ippsHashMethod *pMethod);

Include Files

ippcp.h

Parameters

pMsg Pointer to the input message.

msgLen Message length in bytes.

pKey Pointer to the user-supplied key.

keyLen Key length in bytes.

pMD, pMAC Pointer to the resultant HMAC value.

mdLen, macLen Specified HMAC length.

hashAlg Identifier of the hash algorithm.

Data Authentication Primitive Functions 4

141

pMethod Pointer to the hash method.

Description

The function takes the input secret key pKey of the specified key length keyLen and applies the keyed hash-
based message authentication code scheme to transform the input message into the respective message
authentication code pMD or pMAC of the specified length mdLen or macLen. The hashAlg and pMethod
parameters define the hash algorithm applied. The hashAlg parameter can take one of the values listed in
table Supported Hash Algorithms. To get a value for the pMethod parameter, call one of the HashMethod
functions.

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsLengthErr Indicates an error condition if:

• msgLen is less than zero
• mdLen is less than one or greater than the length of the hash value
• macLen is less than one or greater than the length of the hash

value

ippsStsNotSupportedModeErr Indicates an error condition if the hashAlg parameter does not match
any value of IppHashAlg listed in table Supported Hash Algorithms.

CMAC Functions
The Intel IPP CMAC primitive functions use CMAC schemes based on block ciphers described in the
Symmetric Cryptography Primitive Functions chapter.

A CMAC scheme is implemented as a set of primitive functions.

Typical application code for computing CMAC of an input message stream should follow the sequence of
operations as outlined below:

1. Call the function AES_CMACGetSize to get the size required to configure the IppsAES_CMACState
context.

2. Ensure that the required memory space is properly allocated. With the allocated memory, call the
function AES_CMACInit to initialize the context.

3. Keep calling the function AES_CMACUpdate to update the MAC value of the incoming message stream in
the queue till its completion. To determine the current MAC value, call AES_CMACGetTag between each
two calls to AES_CMACUpdate.

4. Call the function AES_CMACFinal to complete computation of the MAC value of the streaming message
and prepare the context for computation of MAC of another message.

5. Clean up secret data stored in the context.
6. Call the operating system memory free service function to release the IppsAES_CMACState context.

 4 Intel® Integrated Performance Primitives Cryptography Developer Reference

142

AES_CMACGetSize
Gets the size of the IppsAES_CMACState context.

Syntax

IppStatus ippsAES_CMACGetSize(int *pSize);

Include Files

ippcp.h

Parameters

pSize Pointer to the IppsAES_CMACState context.

Description

This function gets the size of the IppsAES_CMACState context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

AES_CMACInit
Initializes user-supplied memory as
IppsAES_CMACState context for future use.

Syntax

IppStatus ippsAES_CMACInit(const Ipp8u* pKey, int keyLen, IppsAES_CMACState* pState,
int ctxSize);

Include Files

ippcp.h

Parameters

pKey Pointer to the AES key.

keyLen Key bytestream length (in bytes) defined by the IppsAESKeyLength
enumerator.

pState Pointer to the memory buffer being initialized as IppsAES_CMACState
context.

ctxSize Available size of the buffer.

Description

This function initializes the memory at the address of pState as the IppsAES_CMACState context. In
addition, the function uses the key to provide all necessary key material for both encryption and decryption
operations.

Data Authentication Primitive Functions 4

143

NOTE
If the pKey pointer is NULL, the function initializes the context with the zero key, which can help you to
clean up the actual secret before releasing the context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if the pState pointer is NULL.

ippStsLengthErr Indicates an error condition if keyLen is not equal to 16, 24, or
32.

ippStsMemAllocErr Indicates an error condition if the allocated memory is
insufficient for the operation.

See Also
Data Security Considerations

AES_CMACUpdate
Updates the MAC value depending on the current
input message stream of the specified length.

Syntax

IppStatus ippsAES_CMACUpdate(const Ipp8u *pSrc, int len, IppsAES_CMACState* pState);

Include Files

ippcp.h

Parameters

pSrc Pointer to the buffer containing a part or the entire message.

len Length of the actual part of the message in bytes.

pState Pointer to the IppsAES_CMACState context.

Description

The function updates the MAC value depending on the current input message stream of the specified length.
The function first integrates the previous partial message block with the input message stream and then
partitions the obtained message into multiple message blocks with a possible additional partial block. For
each message block, the function uses the AES cipher to transform the input block into a new chaining MAC
value.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if the input data stream length is
less than zero.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

 4 Intel® Integrated Performance Primitives Cryptography Developer Reference

144

AES_CMACFinal
Completes computation of the MAC value.

Syntax

IppStatus ippsAES_CMACFinal(Ipp8u *pMD, int mdLen, IppsAES_CMACState *pState);

Include Files

ippcp.h

Parameters

pMD Pointer to the MAC value.

mdLen Specified length of the MAC.

pState Pointer to the IppsAES_CMACState context.

Description

The function completes calculation of the MAC of a message, stores the result in the memory at the address
of pMD, and prepares the context for computation of the MAC of another message.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if mdLen is less than 1 or greater
than cipher's data block length.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

AES_CMACGetTag
Computes the MAC value of the processed part of the
message.

Syntax

IppStatus ippsAES_CMACGetTag(Ipp8u* pMD, int mdLen, const IppsAES_CMACState *pState);

Include Files

ippcp.h

Parameters

pMD Pointer to the MAC value.

mdLen Specified length of the MAC.

pState Pointer to the IppsAES_CMACState context.

Description

The function computes the MAC value based on the current context. A call to this function retains the
possibility to update the MAC value.

Data Authentication Primitive Functions 4

145

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if mdLen is less than 1 or greater
than cipher's data block length.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

 4 Intel® Integrated Performance Primitives Cryptography Developer Reference

146

Public Key Cryptography
Functions 5
Big Number Arithmetic
This section describes primitives for performing arithmetic operations with integer big numbers of variable
length.

The magnitude of an integer big number is specified by an array of unsigned integer data type Ipp32u
rp[length] and corresponds to the mathematical value

This section uses the following definition for the sign of an integer big number:

typedef enum {
IppsBigNumNEG=0,
IppsBigNumPOS=1
} IppsBigNumSGN;
The functions described in this section use the context IppsBigNumState to serve as an operational vehicle
that carries not only the sign and value of the data, but also a sufficient working buffer reserved for various
arithmetic operations. The length of the context IppsBigNumState is defined as the length of the data
carried by the structure and the size of the context IppsBigNumState is therefore defined as the maximal
length of the data that this operational vehicle can carry.

NOTE
In all unsigned big number arithmetic functions, integers pointed to by a, b, and r are all of (n*32)
bits.

BigNumGetSize
Gets the size of the IppsBigNumState context in
bytes.

Syntax

IppStatus ippsBigNumGetSize(int length, int *size);

Include Files

ippcp.h

Parameters

length The length of the integer big number in Ipp32u.

size Size of the buffer in bytes required for initialization.

147

Description

The function specifies the buffer size required to define a structured working buffer of the context
IppsBigNumState for the storage and operations on an integer big number in bytes.

NOTE
For security reasons, the length of the big number is restricted to 16 kilobits.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if length is less than or equal to 0
or greater than 512.

BigNumInit
Initializes context and partitions allocated buffer.

Syntax

IppStatus ippsBigNumInit(int length, IppsBigNumState *b);

Include Files

ippcp.h

Parameters

length Size of the big number for the context initialization.

b Pointer to the supplied buffer used to store the initialized context
IppsBigNumState.

Description

The function initializes the context IppsBigNumState using the specified buffer space and partitions the
given buffer to store and execute arithmetic operations on an integer big number of the length size.

NOTE
For security reasons, the length of the big number is restricted to 16 kilobits.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if length is less than or equal to 0
or greater than 512.

See Also
Data Security Considerations

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

148

Set_BN
Defines the sign and value of the context.

Syntax

IppStatus ippsSet_BN(IppsBigNumSGN sgn, int length, const Ipp32u *data, IppsBigNumState
*x);

Include Files

ippcp.h

Parameters

sgn Sign of IppsBigNumState *x.

length Array length of the input data.

data Data array.

x On output, the context IppsBigNumState updated with the input
data.

Description

The function defines the sign and value for IppsBigNumState *x with the specified inputs IppsBigNumSGN
sgn and const Ipp32u *data.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if length is less than or equal to 0.

ippStsOutOfRangeErr Indicates an error condition if length is more than the size of
IppsBigNumState *x.

ippStsBadArgErr Indicates an error condition if the big number is set to zero
with the negative sign.

Public Key Cryptography Functions 5

149

Example

The code example below shows how to create a big number.

IppsBigNumState* New_BN(int size, const Ipp32u* pData=0){
 // get the size of the Big Number context
 int ctxSize;
 ippsBigNumGetSize(size, &ctxSize);
 // allocate the Big Number context
 IppsBigNumState* pBN = (IppsBigNumState*) (new Ipp8u [ctxSize]);
 // and initialize one
 ippsBigNumInit(size, pBN);

 // if any data was supplied, then set up the Big Number value
 if(pData)
 ippsSet_BN(IppsBigNumPOS, size, pData, pBN);

 // return pointer to the Big Number context for future use
 return pBN;
}

SetOctString_BN
Converts octet string into a positive Big Number.

Syntax

IppStatus ippsSetOctString_BN(const Ipp8u* pOctStr, int strLen, IppsBigNumState* pBN);

Include Files

ippcp.h

Parameters

pOctStr Pointer to the input octet string.

strLen Octet string length in bytes.

pBN Pointer to the context of the output Big Number.

Description

This function converts octet string into a positive Big Number.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

150

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if specified strLen is less than 1.

ippStsSizeErr Indicates an error condition if insufficient space has been
reserved for Big Number.

Example

The code example below shows how to create a big number from a string.

void Set_BN_sample(void){
 // desired value of Big Number is 0x123456789abcdef0fedcba9876543210
 Ipp8u desiredBNvalue[] = "\x12\x34\x56\x78\x9a\xbc\xde\xf0"
 "\xfe\xdc\xba\x98\x76\x54\x32\x10";

 // estimate required size of Big Number
 //int size = (sizeof(desiredBNvalue)+3)/4;
 int size = (sizeof(desiredBNvalue)-1+3)/4;

 // and create new (and empty) one
 IppsBigNumState* pBN = New_BN(size);

 // set up the value from the srting
 ippsSetOctString_BN(desiredBNvalue, sizeof(desiredBNvalue)-1, pBN);

 Type_BN("Big Number value is:\n", pBN);
}

GetSize_BN
Returns the maximum length of the integer big
number the structure can store.

Syntax

IppStatus ippsGetSize_BN(const IppsBigNumState *b, int *size);

Include Files

ippcp.h

Parameters

b Integer big number of the data type IppsBigNumState.

size Maximum length of the integer big number.

Description

The function evaluates the working buffer assigned to the context IppsBigNumState and returns the size of
the structure to indicate the maximum length of the integer big number that the structure can store.

Public Key Cryptography Functions 5

151

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

Get_BN
Extracts the sign and value of the integer big number
from the input structure.

Syntax

IppStatus ippsGet_BN(IppsBigNumSGN *sgn, int *length, Ipp32u *data, const
IppsBigNumState *x);

Include Files

ippcp.h

Parameters

sgn Sign of IppsBigNumState *x.

length Array length of the input data.

data Data array.

x Integer big number of the context IppsBigNumState.

Description

The function extracts the sign and value of the integer big number from the input structure.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ExtGet_BN
Extracts the specified combination of the sign, data
length, and value characteristics of the integer big
number from the input structure.

Syntax

IppStatus ippsExtGet_BN(IppsBigNumSGN *pSgn, int *pLengthInBits, Ipp32u *pData, const
IppsBigNumState *pBN);

Include Files

ippcp.h

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

152

Parameters

pSgn Pointer to the sign of IppsBigNumState *pBN.

pLengthInBits Pointer to the length of *pData in bits.

pData Pointer to the data array.

pBN Pointer to the integer big number context IppsBigNumState.

Description

For the integer big number from the input structure, the function extracts the specified combination of the
following characteristics: sign, data length, and value. The function is similar to the Get_BN function but
more flexible, because any target pointer (pSgn, pLengthInBits, and/or pData) may be NULL, in which
case the appropriate big number characteristic will not be extracted. For example,

ippsExtGet_BN(&sgn, 0,0, pBN); extracts only the sign

ippsExtGet_BN(0, &dataLen, 0, pBN); extracts only the data length

ippsExtGet_BN(&sgn, &dataLen, 0, pBN); extracts the sign and data length

ippsExtGet_BN(0,0,0, pBN); does nothing

ippsExtGet_BN(&sgn, &dataLen, pData, pBN); does exactly what Get_BN does.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if the pointer to the integer big
number of the context is NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

Ref_BN
Extracts the main characteristics of the integer big
number from the input structure.

Syntax

IppStatus ippsRef_BN(IppsBigNumSGN *sgn, int *bitSize, Ipp32u** const ppData, const
IppsBigNumState *x);

Include Files

ippcp.h

Parameters

sgn Sign of IppsBigNumState *x.

bitSize Length of the integer big number in bits.

ppData Pointer to the data array.

x Integer big number of the context IppsBigNumState.

Public Key Cryptography Functions 5

153

Description

The function extracts from the input structure the main characteristics of the integer big number: sign,
length, and pointer to the data array. You can extract either the entire set or any subset of these
characteristics. To turn off extraction of a particular characteristic, set the appropriate function parameter to
NULL.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

GetOctString_BN
Converts a positive Big Number into octet String.

Syntax

IppStatus ippsGetOctString_BN(Ipp8u* pOctStr, int strLen, const IppsBigNumState* pBN);

Include Files

ippcp.h

Parameters

pOctStr Pointer to the input octet string.

strLen Octet string length in bytes.

pBN Pointer to the context of the input Big Number.

Description

This function converts a positive Big Number into the octet string.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if specified pOctStr is insufficient
in length.

ippStsRangeErr Indicates an error condition if Big Number is negative.

Example

The code example below types a big number.

void Type_BN(const char* pMsg, const IppsBigNumState* pBN){
 // size of Big Number
 int size;
 ippsGetSize_BN(pBN, &size);

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

154

 // extract Big Number value and convert it to the string presentation
 Ipp8u* bnValue = new Ipp8u [size*4];
 ippsGetOctString_BN(bnValue, size*4, pBN);

 // type header
 if(pMsg)
 cout<<pMsg;

 // type value
 for(int n=0; n<size*4; n++)
 cout<<hex<<setfill('0')<<setw(2)<<(int)bnValue[n];
 cout<<endl;

 delete [] bnValue;
}

Cmp_BN
Compares two Big Numbers.

Syntax

IppStatus ippsCmp_BN(const IppsBigNumState *pA, const IppsBigNumState *pB, Ipp32u
*pResult);

Include Files

ippcp.h

Parameters

pA Pointer to the context of the Big Number A.

pB Pointer to the context of the Big Number B.

pResult Pointer to the result of the comparison.

Description

This function compares Big Numbers A and B and sets up the result according to the following conditions:

• if A==B, then *pResult = IS_ZERO
• if A > B, then *pResult = GREATER_THAN_ZERO
• if A < B, then *pResult = LESS_THAN_ZERO

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

CmpZero_BN
Checks the value of the input data field.

Public Key Cryptography Functions 5

155

Syntax

IppStatus ippsCmpZero_BN(const IppsBigNumState *b, Ipp32u *result);

Include Files

ippcp.h

Parameters

b Integer big number of the data type IppsBigNumState.

result Indicates whether the input integer big number is positive, negative,
or zero.

Description

The function scans the data field of the input const IppsBigNumState *b and returns

• IS_ZERO if the value held by IppsBigNumState *b is zero
• GREATER_THAN_ZERO if the input is more than zero
• LESS_THAN_ZERO if the input is less than zero.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

Add_BN
Adds two integer big numbers.

Syntax

IppStatus ippsAdd_BN(IppsBigNumState *a, IppsBigNumState *b, IppsBigNumState * r);

Include Files

ippcp.h

Parameters

a First integer big number of the data type IppsBigNumState.

b Second integer big number of the data type IppsBigNumState.

r Addition result.

Description

The function adds two integer big numbers regardless of their signs and sizes and returns the result of the
operation.

The following pseudocode represents this function:

(*r) ← (*a) + (*b).

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

156

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsOutOfRangeErr Indicates an error condition if the size of r is smaller than the
resulting data length.

NOTE
The function executes only under the condition that size of IppsBigNumState *r is not less than
either the length of IppsBigNumState *a or that of IppsBigNumState *b.

Example

The code example below adds big numbers.

void Add_BN_sample(void){
 // define and set up Big Number A
 const Ipp32u bnuA[] = {0x01234567,0x9abcdeff,0x11223344};
 IppsBigNumState* bnA = New_BN(sizeof(bnuA)/sizeof(Ipp32u));

 // define and set up Big Number B
 const Ipp32u bnuB[] = {0x76543210,0xfedcabee,0x44332211};
 IppsBigNumState* bnB = New_BN(sizeof(bnuB)/sizeof(Ipp32u), bnuB);

 // define Big Number R
 int sizeR = max(sizeof(bnuA), sizeof(bnuB));
 IppsBigNumState* bnR = New_BN(1+sizeR/sizeof(Ipp32u));

 // R = A+B
 ippsAdd_BN(bnA, bnB, bnR);

 // type R
 Type_BN("R=A+B:\n", bnR);

 delete [] (Ipp8u*)bnA;
 delete [] (Ipp8u*)bnB;
 delete [] (Ipp8u*)bnR;
}

Sub_BN
Subtracts one integer big number from another.

Syntax

IppStatus ippsSub_BN(IppsBigNumState *a, IppsBigNumState *b, IppsBigNumState * r);

Public Key Cryptography Functions 5

157

Include Files

ippcp.h

Parameters

a First integer big number of the data type IppsBigNumState.

b Second integer big number of the data type IppsBigNumState.

r Subtraction result.

Description

The function subtracts one integer big number from another regardless of their signs and sizes and returns
the result of the operation.

The following pseudocode represents this function:

(*r) ← (*a) - (*b).

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsOutOfRangeErr Indicates an error condition if IppsBigNumState *r is smaller
than the result data length.

NOTE
The function executes only under the condition that size of IppsBigNumState *r is not less than
either the length of IppsBigNumState *a or that of IppsBigNumState *b.

Mul_BN
Multiplies two integer big numbers.

Syntax

IppStatus ippsMul_BN(IppsBigNumState *a, IppsBigNumState *b, IppsBigNumState * r);

Include Files

ippcp.h

Parameters

a Multiplicand of IppsBigNumState.

b Multiplier of IppsBigNumState.

r Multiplication result.

Description

The function multiplies an integer big number by another integer big number regardless of their signs and
sizes and returns the result of the operation.

The following pseudocode represents this function:

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

158

r←a *b.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsOutOfRangeErr Indicates an error condition if IppsBigNumState *r is smaller
than the result data length.

NOTE
The function executes only under the condition that the size IppsBigNumState *r is not less than the
sum of the lengths of IppsBigNumState *a or that of IppsBigNumState *b minus one.

MAC_BN_I
Multiplies two integer big numbers and accumulates
the result with the third integer big number.

Syntax

IppStatus ippsMAC_BN_I(IppsBigNumState *a, IppsBigNumState *b, IppsBigNumState * r);

Include Files

ippcp.h

Parameters

a Multiplicand of IppsBigNumState.

b Multiplier of IppsBigNumState.

r Multiplication result.

Description

The function multiplies one integer big number by another and accumulates the result with the third input
integer big number regardless of their signs and sizes. The function subsequently returns the result of the
operation.

The following pseudocode represents this function:

r←r + a * b.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsOutOfRangeErr Indicates an error condition if IppsBigNumState *r is smaller
than the result data length.

Public Key Cryptography Functions 5

159

NOTE
The function executes only under the condition that the size IppsBigNumState *r is not less than the
sum of the lengths of IppsBigNumState *a or that of IppsBigNumState *b minus one.

Div_BN
Divides one integer big number by another.

Syntax

IppStatus ippsDiv_BN(IppsBigNumState *a, IppsBigNumState *b, IppsBigNumState * q,
IppsBigNumState *r);

Include Files

ippcp.h

Parameters

a Dividend of IppsBigNumState.

b Divisor of IppsBigNumState.

q Quotient of IppsBigNumState.

r Remainder of IppsBigNumState.

Description

The function divides an integer big number dividend by another integer big number regardless of their signs
and sizes and returns the quotient of the division and the respective remainder.

The following pseudocode represents this function:

q←a/b

r←a - b*q .

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsOutOfRangeErr Indicates an error condition if IppsBigNumState*r is smaller
than the length of IppsBigNumState*b or when the size of
IppsBigNumState *q is smaller than the quotient result data
length.

ippStsDivByZeroErr Indicates an error condition if the zero divisor is attempted.

NOTE
The size of IppsBigNumState *q should not be less than (lengthof *a) - (length of *b) + 1,
and the size of IppsBigNumState *rshould be no less than the length of IppsBigNumState *b.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

160

Mod_BN
Computes modular reduction for input integer big
number with respect to specified modulus.

Syntax

IppStatus ippsMod_BN(IppsBigNumState *a, IppsBigNumState *m, IppsBigNumState * r);

Include Files

ippcp.h

Parameters

a Integer big number of IppsBigNumState.

m Modulus integer of IppsBigNumState.

r Modular reduction result.

Description

The function computes the modular reduction for an input integer big number with respect to the modulus
specified by a positive integer big number and returns the modular reduction result in the range of [0,
(m-1)].

The following pseudocode represents this function:

r←amod m.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsOutOfRangeErr Indicates an error condition if IppsBigNumState *r is smaller
than the length of IppsBigNumState *m.

ippStsBadModulusErr Indicates an error condition if the modulus IppsBigNumState*m
is not a positive integer.

NOTE
The size of IppsBigNumState *r should not be less than the length of IppsBigNumState *m.

Gcd_BN
Computes greatest common divisor.

Syntax

IppStatus ippsGcd_BN(IppsBigNumState *a, IppsBigNumState *b, IppsBigNumState * g);

Include Files

ippcp.h

Public Key Cryptography Functions 5

161

Parameters

a First integer big number of IppsBigNumState.

b Second integer big number of IppsBigNumState.

g Greatest common divisor to a and b.

Description

The function computes the greatest common divisor (GCD) for two positive integer big numbers.

The following pseudocode represents this function:

g ←gcd (a , b).

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsOutOfRangeErr Indicates an error condition if IppsBigNumState*g is smaller
than the length of IppsBigNumState*a or IppsBigNumState*b.

NOTE
The size of IppsBigNumState *g should not be less than either the length of IppsBigNumState *a
and IppsBigNumState *b.

ModInv_BN
Computes multiplicative inverse of a positive integer
big number with respect to specified modulus.

Syntax

IppStatus ippsModInv_BN(IppsBigNumState *e, IppsBigNumState *m, IppsBigNumState * d);

Include Files

ippcp.h

Parameters

e Integer big number of IppsBigNumState.

m Modulus integer of IppsBigNumState.

d Multiplicative inverse.

Description

The function uses the extended Euclidean algorithm to compute the multiplicative inverse of a given positive
integer big number e with respect to the modulus specified by another positive integer big number m, where
gcd (e, m) = 1.

The following pseudocode represents this function:

compute d such that d *e = 1 mod m.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

162

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsBadArgErr Indicates an error condition if e is less than or equal to 0.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsBadModulusErr Indicates an error condition if the modulus e is more than m,
or gcd (e,m) is more than 1, or m is less than or equal to 0.

ippStsOutOfRangeErr Indicates an error condition if IppsBigNumState *d is smaller
than the length of IppsBigNumState*m.

NOTE
The size of IppsBigNumState *d should not be less than the length of IppsBigNumState *m.

Montgomery Reduction Scheme Functions
This section describes Montgomery reduction scheme functions.

Montgomery reduction is a technique for efficient implementation of modular multiplication without explicitly
carrying out the classical modular reduction step.

This section describes functions for Montgomery modular reduction, Montgomery modular multiplication, and
Montgomery modular exponentiation.

Let n be a positive integer, and let R and T be integers such that R > n, gcd (n, R)= 1, and 0 < T < nR.
The Montgomery reduction of T modulo n with respect to R is defined as TR - 1 mod n.

For better results, functions included in the cryptography package use R = bk where b = 232 and k is the
Montgomery index integer computed by the ceiling function of the bit length of the integer n over 32.

All functions use employ the context IppsMontState to serve as an operational vehicle to carry the
Montgomery reduction index k, the integer big number modulus n, the least significant word n0 of the
multiplicative inverse of the modulus n with respect to the Montgomery reduction factor R, and a sufficient
working buffer reserved for various Montgomery modular operations.

Furthermore, two new terms are introduced in this section:

• length of the context IppsMontState is defined as the data length of the modulus n carried by the
structure

• size of the context IppsMontState is therefore defined as the maximum data length of such an integer
modulus n that could be carried by this operational vehicle.

The following example can briefly illustrate the procedure of using the primitives described in this section to
compute a classical modular exponentiation T = xe mod n. Consider computing T = x4 mod n, for some
integer x with 0 < x < n.

First get the buffer size required to configure the context IppsMontState by calling MontGetSize and then
allocate the working buffer using OS service function, with allocated buffer to call MontInit to initialize the
context IppsMontState.

Set the modulus n by callingMontSet and then convert x into its respective Montgomery form by calling
MontForm, that is, computing

Then compute the Montgomery reduction of

Public Key Cryptography Functions 5

163

using the function MontMul to generate

The Montgomery reduction of T*Tmod n with respect to R is

Further applying MontMul with this value and the value of 1 yields the desired result T = x4mod n.

The classical modular exponentiation should be computed by performing the following sequence of
operations:

1. Get the buffer size required to configure the context IppsMontState by calling the function
MontGetSize. For limited memory system, choose binary method, and otherwise, choose sliding
window method. Using the binary method reduces the buffer size significantly while using sliding
window method enhances the performance.

2. Allocate working buffer through an operating system memory allocation function and configure the
structure IppsMontState by calling the function MontInit with the allocated buffer and the choice
made on the modular exponential method at time invoking MontGetSize.

3. Call the function MontSet to set the integer big number module for IppsMontState.
4. Call the function MontForm to convert the integer x to be its Montgomery form.
5. Call the functionMontExp to compute the Montgomery modular exponentiation.
6. Call the function MontMul to compute the Montgomery modular multiplication of the above result with

the integer 1 as to convert the above result back to the desired classical modular exponential result.
7. Clean up secret data stored in the context.
8. Free the memory using an operating system memory free function, if needed.

See Also
Data Security Considerations

MontGetSize
Gets the size of the IppsMontState context.

Syntax

IppStatus ippsMontGetSize(IppsExpMethod method, int length, int * size);

Include Files

ippcp.h

Parameters

method Selected exponential method.

length Data field length for the modulus in Ipp32u chunks.

size Size of the buffer required for initialization.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

164

Description

The function specifies the buffer size required to define the structured working buffer of the context
IppsMontState to store the modulus and perform operations using various Montgomery modulus schemes.

NOTE
For security reasons, the length of the modulus is restricted to 16 kilobits.

The function returns the required buffer size based on the selected exponential method. The binary method
helps to significantly reduce the buffer size, while the sliding windows method results in enhanced
performance.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if length is less than or equal to 0
or greater than 512.

MontInit
Initializes the context and partitions the specified
buffer space.

Syntax

IppStatus ippsMontInit(IppsExpMethod method, int length, IppsMontState *m);

Include Files

ippcp.h

Parameters

method Selected exponential method.

length Data field length for the modulus in Ipp32u chunks.

m Pointer to the context IppsMontState.

Description

The function initializes the *m buffer as the IppsMontState context. The function then partitions the buffer
using the selected modular exponential method in such a way as to carry up to length*sizeof(Ipp32u)-bit
big number modulus and execute various Montgomery modulus operations.

NOTE
For security reasons, the length of the modulus is restricted to 16 kilobits.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

Public Key Cryptography Functions 5

165

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if length is less than or equal to 0
or greater than 512.

See Also
Data Security Considerations

MontSet
Sets the input integer big number to a value and
computes the Montgomery reduction index.

Syntax

IppStatus ippsMontSet(const Ipp32u *n, int length, IppsMontState *m);

Include Files

ippcp.h

Parameters

n Input big number modulus.

length The length of the modulus in Ipp32u chunks.

m Pointer to the context IppsMontState capturing the modulus and the
least significant word of the multiplicative inverse Ni.

Description

The function sets the input positive integer big number n to be the modulus for the context IppsMontState
*m, computes the Montgomery reduction index k with respect to the input big number modulus n and the
least significant 32-bit word of the multiplicative inverse Ni with respect to the modulus R, that satisfies
R*R-1- n *Ni = 1.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsBadModulusErr Indicates an error condition if the modulus is not a positive odd
integer.

ippStsLengthErr Indicates an error condition if length is less than or equal to 0.

ippStsOutOfRangeErr Indicates an error condition if length is larger than
IppsMontState*m.

MontGet
Extracts the big number modulus.

Syntax

IppStatus ippsMontGet(Ipp32u *n, int *length, const IppsMontState *m);

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

166

Include Files

ippcp.h

Parameters

m context IppsMontState.

n Modulus data field.

length Modulus data length in Ipp32u chunks.

Description

The function extracts the big number modulus from the input IppsMontState *m.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

MontForm
Converts input positive integer big number into
Montgomery form.

Syntax

IppStatus ippsMontForm(const IppsBigNumState* a, IppsMontState* m, IppsBigNumState* r);

Include Files

ippcp.h

Parameters

a Input integer big number within the range [0, m - 1].

m Input big number modulus of IppsBigNumState.

r Resulting Montgomery form r = a*Rmodm.

Description

The function converts an input positive integer big number into the Montgomery form with respect to the big
number modulus and stores the conversion result.

The following pseudocode represents this function:

r←a*Rmodm.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsBadArgErr Indicates an error condition if a is a negative integer.

Public Key Cryptography Functions 5

167

ippStsScaleRangeErr Indicates an error condition if a is more than m.

ippStsOutOfRangeErr Indicates an error condition if IppsBigNumState *r is larger
than IppsMontState *m.

NOTE
The size of IppsBigNumState *r should not be less than the data length of the modulus m.

MontMul
Computes Montgomery modular multiplication for
positive integer big numbers of Montgomery form.

Syntax

IppStatus ippsMontMul(const IppsBigNumState *a, const IppsBigNumState *b, IppsMontState
*m, IppsBigNumState *r);

Include Files

ippcp.h

Parameters

a Multiplicand within the range [0, m - 1].

b Multiplier within the range [0, m - 1].

m Modulus.

r Montgomery multiplication result.

Description

The function computes the Montgomery modular multiplication for positive integer big numbers of
Montgomery form with respect to the modulus IppsMontState *m. As a result, IppsBigNumState *r holds
the product.

The following pseudocode represents this function:

r←a*b*R-1mod m.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsBadArgErr Indicates an error condition if a or b is a negative integer.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsScaleRangeErr Indicates an error condition if a or b is more than m.

ippStsOutOfRangeErr Indicates an error condition if IppsBigNumState *ris larger than
IppsMontState *m.

NOTE
The size of IppsBigNumState *r should not be less than the data length of the modulus m.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

168

Example of Using Montgomery Reduction Scheme Functions

Montgomery Multiplication

void MontMul_sample(void){
 int size;

 // define and initialize Montgomery Engine over Modulus N
 Ipp32u bnuN = 19;
 ippsMontGetSize(IppsBinaryMethod, 1, &size);
 IppsMontState* pMont = (IppsMontState*)(new Ipp8u [size]);
 ippsMontInit(IppsBinaryMethod, 1, pMont);
 ippsMontSet(&bnuN, 1, pMont);

 // define and init Big Number multiplicant A
 Ipp32u bnuA = 12;
 IppsBigNumState* bnA = New_BN(1, &bnuA);
 // encode A into Montfomery form
 ippsMontForm(bnA, pMont, bnA);

 // define and init Big Number multiplicant A
 Ipp32u bnuB = 15;
 IppsBigNumState* bnB = New_BN(1, &bnuB);

 // compute R = A*B mod N
 IppsBigNumState* bnR = New_BN(1);
 ippsMontMul(bnA, bnB, pMont, bnR);

 Type_BN("R = A*B mod N:\n", bnR);

 delete [] (Ipp8u*)pMont;
 delete [] (Ipp8u*)bnA;
 delete [] (Ipp8u*)bnB;
 delete [] (Ipp8u*)bnR;
}

Public Key Cryptography Functions 5

169

MontExp
Computes Montgomery exponentiation.

Syntax

IppStatus ippsMontExp(const IppsBigNumState *a, const IppsBigNumState *e, IppsMontState
*m, IppsBigNumState *r);

Include Files

ippcp.h

Parameters

a Big number Montgomery integer within the range of [0, m - 1].

e Big number exponent.

m Modulus.

r Montgomery exponentiation result.

Description

The function computes Montgomery exponentiation with the exponent specified by the input positive integer
big number to the given positive integer big number of the Montgomery form with respect to the modulus m.

The following pseudocode represents this function:

r←aeR-(e-1)mod m.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsBadArgErr Indicates an error condition if a or e is a negative integer.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsScaleRangeErr Indicates an error condition if a or e is more than m.

ippStsOutOfRangeErr Indicates an error condition if IppsBigNumState*ris larger than
IppsMontState*m.

NOTE
The size of IppsBigNumState *r should not be less than the data length of the modulus m.

Pseudorandom Number Generation Functions
Many cryptographic systems rely on pseudorandom number generation functions in their design that make
the unpredictable nature inherited from a pseudorandom number generator the security foundation to ensure
safe communication over open channels and protection against potential adversaries.

This section describes functions that make the pseudorandom bit sequence generator implemented by a US
FIPS-approved method and based on a SHA-1 one-way hash function specified by [FIPS PUB 186-2],
appendix 3.

The application code for generating a sequence of pseudorandom bits should perform the following sequence
of operations:

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

170

1. Call the function PRNGGetSize to get the size required to configure the IppsPRNGState context.
2. Ensure that the required memory space is properly allocated. With the allocated memory, call the

PRNGInit function to set up the default value of the parameters for pseudorandom generation process.
3. If the default values of the parameters are not satisfied, call the function PRNGSetSeed and/or

PRNGSetAugment and/or PRNGSetModulus and/or PRNGSetH0 to reset any of the control
pseudorandom generator parameters.

4. Keep calling the function PRNGen or PRNGen_BN to generate pseudo random value of the desired
format.

5. Clean up secret data stored in the context.
6. Free the memory allocated for the IppsPRNGState context by calling the operating system memory

free service function.

See Also
Data Security Considerations

User's Implementation of a Pseudorandom Number Generator
Both functions ippsPRNGGen and ippsPRNGGen_BN, as well as their supplementary functions represent the
implementation of the pseudorandom number generator in the IPPCP library. This given implementation is
based on recommendations made in [FIPS PUB 186-2]. If you prefer to use the implementation of the
pseudorandom number generator which is different from the given, you can still use IPPCP library. To do this,
use the following definition of the generator introduced by the IPPCP library:

Syntax
typedef IppStatus(_STDCALL *IppBitSupplier)(Ipp32u* pData, int nBits, void*
pEbsParams);

Parameters

pData Pointer to the output data.

nBits Number of generated data bits.

pEbsParams Pointer to the user defined context.

Description
This declaration is included in the ippcp.h file. The function generates any data (probably pseudorandom
numbers) of the specified nBits length.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsErr Indicates an error condition.

PRNGGetSize
Gets the size of the IppsPRNGState context in bytes.

Syntax

IppStatus ippsPRNGGetSize(int *pSize);

Include Files

ippcp.h

Public Key Cryptography Functions 5

171

Parameters

pSize Pointer to the IppsPRNGState context size in bytes.

Description

The function gets the IppsPRNGState context size in bytes and stores it in *pSize.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

PRNGInit
Initializes user-supplied memory as IppsPRNGState
context for future use.

Syntax

IppStatus ippsPRNGInit(int seedBits, IppsPRNGState* pCtx);

Include Files

ippcp.h

Parameters

seedBits Size in bits for the seed value.

pCtx Pointer to the IppsPRNGState context being intialized.

Description

The function initializes the memory pointed by pCtx as the IppsPRNGState context. In addition, the function
sets up the default internal random generator parameters (seed, entropy augment, modulus, and initial hash
value H0 of the SHA-1 algorithm). PRNG default parameters are as follows:

• seed =0x0
• entropy augment =0x0
• modulus =0xFF
• H0 =0xC3D2E1F01032547698BADCFEEFCDAB8967452301

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if seedBits is less than 1 or
greater than 512.

See Also
Data Security Considerations

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

172

PRNGSetSeed
Sets up the seed value for the pseudorandom number
generator.

Syntax

IppStatus ippsPRNGSetSeed(const IppsBigNumState* pSeed, IppsPRNGState* pCtx);

Include Files

ippcp.h

Parameters

pSeed Pointer to the seed value being set up.

pCtx Pointer to the IppsPRNGState context.

Description

The function resets the seed value with the supplied value of seedBits bit length. The supplied big number
should be created prior to the function call using the appropriate Big Number Arithmetic functions (see
Example 5-1).

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

NOTE
This function restarts the pseudorandom number generation process, which results in losing already
generated pseudorandom numbers.

PRNGGetSeed
Extracts the seed value of the pseudorandom number
generator from the context structure.

Syntax

IppStatus ippsPRNGGetSeed(const IppsPRNGState* pCtx, IppsBigNumState* pSeed);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsPRNGState context.

pSeed Pointer to the seed value.

Public Key Cryptography Functions 5

173

Description

The function extracts the seed value of the pseudorandom number generator from the IppsPRNGState
context structure into a big number.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if *pSeed is not a IppsBigNumState
structure or *pCtx is not a IppsPRNGState structure.

ippOutOfRangeErr Indicates an error condition if the length of the actual seed
exceeds *pSeed.

PRNGSetAugment
Sets the initial state with the given input entropy for
the pseudorandom number generation.

Syntax

IppStatus ippsPRNGSetAugment(const IppsBigNumState* pAugment, IppsPRNGState* pCtx);

Include Files

ippcp.h

Parameters

pAugment Pointer to the entropy augment value being set up.

pCtx Pointer to the IppsPRNGState context.

Description

The function resets entropy augment value with the supplied value of the seedBits bit length. The supplied
big number should be created prior to the function call using the appropriate Big Number Arithmetic
functions (see Example 5-1).

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

PRNGSetModulus
Sets the initial state with the given input modulus for
the pseudorandom number generation.

Syntax

IppStatus ippsPRNGSetModulus(const IppsBigNumState* pModulus, IppsPRNGState* pCtx);

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

174

Include Files

ippcp.h

Parameters

pModulus Pointer to the modulus value being set up.

pCtx Pointer to the IppsPRNGState context.

Description

The function resets the modulus value with the supplied value up to 160 bit length. The supplied big number
should be created prior to the function call using the appropriate Big Number Arithmetic functions (see
Example 5-1).

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

PRNGSetH0
Sets the initial state with the given input IV for the
SHA-1 algorithm.

Syntax

IppStatus ippsPRNGSetH0(const IppsBigNumState* pH0, IppsPRNGState* pCtx);

Include Files

ippcp.h

Parameters

pH0 Pointer to the initial hash value being set up.

pCtx Pointer to the IppsPRNGState context.

Description

The function resets the initial hash value with the supplied value up to 160 bit length. The supplied big
number should be created prior to the function call using the appropriate Big Number Arithmetic functions
(see Example 5-1).

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

Public Key Cryptography Functions 5

175

PRNGen
Generates a pseudorandom unsigned Big Number of
the specified bit length.

Syntax

IppStatus ippsPRNGen(Ipp32u* pRand, int nBits, void* pCtx);

Include Files

ippcp.h

Parameters

pRand Pointer to the output pseudorandom unsigned integer big number.

nBits The number of the generated pseudorandom bits.

pCtx Pointer to the IppsPRNGState context.

Description

The function generates a pseudorandom unsigned integer big number of the specified nBits length.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if nBits is less than 1.

PRNGenRDRAND
Generates a pseudorandom unsigned Big Number of
the specified bit length using the RDRAND instruction.

Syntax

IppStatus ippsPRNGenRDRAND(Ipp32u* pRand, int nBits, void* pCtx);

Include Files

ippcp.h

Parameters

pRand Pointer to the output pseudorandom unsigned integer big number.

nBits The number of generated pseudorandom bits.

pCtx Pointer to the IppsPRNGState context. This pointer is unused and
can be NULL.

Description

The function generates a pseudorandom unsigned integer big number of the specified nBits length. The
generation is based on the RDRAND instruction available on latest Intel® processors [INTEL_ARCH].

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

176

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if nBits is less than 1.

ippStsNotSupportedModeErr Indicates an error condition if the RDRAND instruction is not
available on the target processor.

TRNGenRDSEED
Generates a pseudorandom unsigned Big Number of
the specified bit length using the RDSEED instruction.

Syntax

IppStatus ippsTRNGenRDSEED(Ipp32u* pRand, int nBits, void* pCtx);

Include Files

ippcp.h

Parameters

pRand Pointer to the output pseudorandom unsigned integer big number.

nBits The number of generated pseudorandom bits.

pCtx Pointer to the IppsPRNGState context. This pointer is unused and
can be NULL.

Description

The function generates a pseudorandom unsigned integer big number of the specified nBits length. The
generation is based on the RDSEED instruction available on latest Intel® processors [INTEL_ARCH].

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-

Public Key Cryptography Functions 5

177

Optimization Notice

dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if nBits is less than 1.

ippStsNotSupportedModeErr Indicates an error condition if the RDSEED instruction is not
available on the target processor.

PRNGen_BN
Generates a pseudorandom positive Big Number of
the specified bitlength.

Syntax

IppStatus ippsPRNGen_BN(IppsBigNumState* pRandBN, int nBits, void* pCtx);

Include Files

ippcp.h

Parameters

pRandBN Pointer to the output pseudorandom Big Number.

nBits Number of the generated pseudorandom bit.

pCtx Pointer to the IppsPRNGState context.

Description

The function generates pseudorandom positive Big Number of the specified nBits length.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if nBits is less than 1.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

178

PRNGenRDRAND_BN
Generates a pseudorandom positive Big Number of
the specified bit length using the RDRAND instruction.

Syntax

IppStatus ippsPRNGenRDRAND_BN(IppsBigNumState* pRand, int nBits, void* pCtx);

Include Files

ippcp.h

Parameters

pRand Pointer to the output pseudorandom Big Number.

nBits The number of generated pseudorandom bits.

pCtx Pointer to the IppsPRNGState context. This pointer is unused and
can be NULL.

Description

The function generates a pseudorandom positive Big Number of the specified nBits length. The generation is
based on the RDRAND instruction available on latest Intel® processors [INTEL_ARCH].

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if nBits is less than 1.

ippStsNotSupportedModeErr Indicates an error condition if the RDRAND instruction is not
available on the target processor.

TRNGenRDSEED_BN
Generates a pseudorandom positive Big Number of
the specified bit length using the RDSEED instruction.

Public Key Cryptography Functions 5

179

Syntax

IppStatus ippsTRNGenRDSEED_BN(IppsBigNumState* pRand, int nBits, void* pCtx);

Include Files

ippcp.h

Parameters

pRand Pointer to the output pseudorandom Big Number.

nBits The number of generated pseudorandom bits.

pCtx Pointer to the IppsPRNGState context. This pointer is unused and
can be NULL.

Description

The function generates a pseudorandom positive Big Number of the specified nBits length. The generation is
based on the RDSEED instruction available on latest Intel® processors [INTEL_ARCH].

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsLengthErr Indicates an error condition if nBits is less than 1.

ippStsNotSupportedModeErr Indicates an error condition if the RDSEED instruction is not
available on the target processor.

Example of Using Pseudorandom Number Generation Functions

Find Pseudorandom Co-primes

void FindCoPrimes(void){
 int size;

 // define Pseudo Random Generator (default settings)
 ippsPRNGGetSize(&size);
 IppsPRNGState* pPrng = (IppsPRNGState*)(new Ipp8u [size]);
 ippsPRNGInit(160, pPrng);

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

180

 // define 256-bits Big Numbers X and Y
 const int bnBitSize = 256;
 IppsBigNumState* bnX = New_BN(bnBitSize/32);
 IppsBigNumState* bnY = New_BN(bnBitSize/32);

 // define temporary Big Numbers GCD and 1
 IppsBigNumState* bnGCD = New_BN(bnBitSize/32);
 Ipp32u one = 1;
 IppsBigNumState* bnOne = New_BN(1, &one);

 // generate pseudo random X and Y
 // while GCD(X,Y) != 1
 Ipp32u result;
 int counter;
 for(counter=0,result=1; result; counter++) {
 ippsPRNGen_BN(bnX, bnBitSize, pPrng);
 ippsPRNGen_BN(bnY, bnBitSize, pPrng);
 ippsGcd_BN(bnX, bnY, bnGCD);
 ippsCmp_BN(bnGCD, bnOne, &result);
 }

 cout <<"Coprimes:" <<endl;
 Type_BN("X: ", bnX); cout <<endl;
 Type_BN("Y: ", bnY); cout <<endl;
 cout <<"were fond on " <<counter <<" attempt" <<endl;

 delete [] (Ipp8u*)pPrng;
 delete [] (Ipp8u*)bnX;
 delete [] (Ipp8u*)bnY;
 delete [] (Ipp8u*)bnGCD;
 delete [] (Ipp8u*)bnOne;
}

Prime Number Generation Functions
This section introduces Intel® Integrated Performance Primitives (Intel® IPP) Cryptography functions for prime
number generation.

This section describes Intel IPP Cryptography functions for generating probable prime numbers of variable
lengths and validating probable prime numbers through a probabilistic primality test scheme for
cryptographic use. A probable prime number is thus defined as an integer that passes the Miller-Rabin
probabilistic primality-based test.

The scheme adopted for the probable prime number generation is based on a well-known prime number
theorem. Study shows that the number of primitives that are no greater than the given large integer x is
closely approximated by the expression. Let π(x) denote the number of primes that are not greater than x. In
this case the statement is true

Further study indicates that if X represents the event where the tested k-bit integer n is composite and if Yt
denotes the event where the Miller-Rabin test with the security parameter t declares n to be a prime, the
test error probability is upper bounded by

Public Key Cryptography Functions 5

181

Subsequently, a practical strategy for generating a random k-bit probable prime is to repeatedly pick k-bit
random odd integers until finding one integer that can pass a recognized probabilistic primality test scheme
as a probable prime. The available set of probable prime number generation functions enables you to specify
an appropriate value of the security parameter t used in the Miller-Rabin primality test to meet the
cryptographic requirements for your application.

All Intel IPP for prime number generation use the context IppsPrimeState as an operational vehicle that
carries the bitlength of the target probable prime number, the structure capturing the state of the
pseudorandom number generation, the structured working buffer used for Montgomery modular computation
in the Miller-Rabin primality test, and the buffer to store the generated probable prime number.

The following sequence of operations is required to generate a probable prime number of the specified
bitlength:

1. Call the function PrimeGetSize to get the size required to configure the IppsPrimeState context.
2. Allocate memory through the operating system memory allocation function and configure the

IppsPrimeState context by calling the functionPrimeInit.
3. Generate a probable prime number of the specified bitlength by calling the function PrimeGen_BN. If

the returned IppStatus is ippStsInsufficientEntropy, then change the parameters of the
pseudorandom generator and call the function PrimeGen_BN again.

4. Clean up secret data stored in the context.
5. Free the memory allocated to the IppsPrimeState context by calling the operating system memory-

free service function.

See Also
Data Security Considerations

PrimeGetSize
Gets the size of the IppsPrimeState context in
bytes.

Syntax

IppStatus ippsPrimeGetSize(int nMaxBits, int* pSize);

Include Files

ippcp.h

Parameters

nMaxBits Maximum length of the probable prime number in bits.

pSize Pointer to the IppsPrimeState context size in bytes.

Description

The function gets the IppsPrimeState context size in bytes and stores it in pSize.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

182

ippStsLengthErr Indicates an error condition if nMaxBits is less than 1.

PrimeInit
Initializes user-supplied memory as IppsPrimeState
context for future use.

Syntax

IppStatus ippsPrimeInit(int nMaxBits, IppsPrimeState* pCtx);

Include Files

ippcp.h

Parameters

nMaxBits Maximum length of the probable prime number in bits.

pCtx Pointer to the IppsPrimeState context being initialized.

Description

The function initializes the memory pointed by pCtx as the IppsPrimeState context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if nMaxBits is less than 1.

See Also
Data Security Considerations

PrimeGen_BN
Generates a random probable prime number of the
specified bitlength.

Syntax

IppStatus ippsPrimeGen_BN(IppsBigNumState* pPrime, int nBits, int nTrials,
IppsPrimeState* pCtx, IppBitSupplier rndFunc, void* pRndParam);

Include Files

ippcp.h

Parameters

pPrime Big number to store the generated number in.

nBits Target bitlength for the desired probable prime number.

nTrials Security parameter specified for the Miller-Rabin probable primality.

pCtx Pointer to the IppsPrimeState context.

Public Key Cryptography Functions 5

183

rndFunc Specified Random Generator.

pRndParam Pointer to the Random Generator context.

Description

The function employs the rndFuncRandom Generator specified by the user to generate a random probable
prime number of the nBits length and stores the generated probable prime number in the pPrime big
number. The generated probable prime number is further validated by the Miller-Rabin primality test scheme
with the specified security parameter nTrials.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if nBits is less than 1.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsBadArgErr Indicates an error condition if nTrials is less than 1.

ippStsOutOfRangeErr Indicates an error condition if nBits > nMaxBits (see
PrimeGetSize and PrimeInit)

ippStsInsufficientEntropy Indicates a warning condition if prime generation fails due to
poor choice of entropy.

PrimeTest_BN
Tests the given big number for being a probable
prime.

Syntax

IppStatus ippsPrimeTest_BN(const IppsBigNumState* pPrime, int nTrials, Ipp32u* pResult,
IppsPrimeState* pCtx, IppBitSupplier rndFunc, void* pRndParam);

Include Files

ippcp.h

Parameters

pPrime The big number to test.

nTrials Security parameter specified for the Miller-Rabin probable primality.

pResult Pointer to the result of the primality test.

pCtx Pointer to the IppsPrimeState context.

rndFunc Specified Random Generator.

pRndParam Pointer to the Random Generator context.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

184

Description

The function uses the Miller-Rabin probabilistic primality test scheme with the given security parameter to
test whether the given big number is a probable prime. The pseudorandom number used in the Miller-Rabin
test is generated by the specified rndFunc Random Generator. The function sets up the *pResult as
IS_PRIME or IS_COMPOSITE to show whether the input probable prime passes the Miller-Rabin test.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsBadArgErr Indicates an error condition if nTrials is less than 1.

PrimeGen
Generates a random probable prime number of the
specified bitlength.

Syntax

IppStatus ippsPrimeGen(int nBits, int nTrials, IppsPrimeState* pCtx, IppBitSupplier
rndFunc, void* pRndParam);

Include Files

ippcp.h

Parameters

nBits Target bitlength for the desired probable prime number.

nTrials Security parameter specified for the Miller-Rabin probable primality.

pCtx Pointer to the IppsPrimeState context.

rndFunc Specified Random Generator.

pRndParam Pointer to the Random Generator context.

Description

The function employs the rndFuncRandom Generator specified by the user to generate a random probable
prime number of the specified nBits length. The generated probable prime number is further validated by
the Miller-Rabin primality test scheme with the specified security parameter nTrials.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if nBits is less than 1.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

Public Key Cryptography Functions 5

185

ippStsBadArgErr Indicates an error condition if nTrials is less than 1.

ippStsOutOfRangeErr Indicates an error condition if nBits > nMaxBits (see
PrimeGetSize and PrimeInit)

ippStsInsufficientEntropy Indicates a warning condition if prime generation fails due to
poor choice of entropy.

PrimeTest
Tests the given integer for being a probable prime.

Syntax

IppStatus ippsPrimeTest(int nTrials, Ipp32u *pResult, IppsPrimeState* pCtx,
IppBitSupplier rndFunc, void* pRndParam);

Include Files

ippcp.h

Parameters

nTrials Security parameter specified for the Miller-Rabin probable primality.

pResult Pointer to the result of the primality test.

pCtx Pointer to the IppsPrimeState context.

rndFunc Specified Random Generator.

pRndParam Pointer to the Random Generator context.

Description

The function uses the Miller-Rabin probabilistic primality test scheme with the given security parameter to
test if the given integer is a probable prime. The pseudorandom number used in the Miller-Rabin test is
generated by the specified rndFunc Random Generator. The function sets up the *pResult as IS_PRIME or
IS_COMPOSITE to show if the input probable prime passes the Miller-Rabin test.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsBadArgErr Indicates an error condition if nTrials is less than 1.

PrimeSet
Sets the Big Number for primality testing.

Syntax

IppStatus ippsPrimeSet(const Ipp32u* pBNU, int nBits, IppsPrimeState* pCtx);

Include Files

ippcp.h

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

186

Parameters

pBNU Pointer to the unsigned integer big number.

nBits Unsigned integer big number length in bits.

pCtx Pointer to the IppsPrimeState context.

Description

The function sets a probable prime number and its length for the probabilistic primality test.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsLengthErr Indicates an error condition if nBits is less than 1.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsOutOfRangeErr Indicates an error condition if nBits is too large to fit pCtx.

PrimeSet_BN
Sets the Big Number for primality testing.

Syntax

IppStatus ippsPrimeSet_BN(const IppsBigNumState* pBN, IppsPrimeState* pCtx);

Include Files

ippcp.h

Parameters

pBN Pointer to the Big Number context.

pCtx Pointer to the IppsPrimeState context.

Description

The function sets the Big Number for probabilistic primality test.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsOutOfRangeErr Indicates an error condition if the Big Number is too large to fit
pCtx.

Public Key Cryptography Functions 5

187

PrimeGet
Extracts the probable prime unsigned integer big
number.

Syntax

IppStatus ippsPrimeGet(Ipp32u* pBNU, int *pSize, const IppsPrimeState *pCtx);

Include Files

ippcp.h

Parameters

pBNU Pointer to the unsigned integer big number.

pSize Pointer to the length of the unsinged integer big number.

pCtx Pointer to the IppsPrimeState context.

Description

The function extracts the probable prime number from *pCtx context and stores it into the specified
unsigned integer big number.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

PrimeGet_BN
Extracts the probable prime positive Big Number.

Syntax

IppStatus ippsPrimeGet_BN(IppsBigNumState* pBN, const IppsPrimeState *pCtx);

Include Files

ippcp.h

Parameters

pBN Pointer to the Big NUmber context.

pCtx Pointer to the IppsPrimeState context.

Description

The function extracts the probable prime positive big number from the *pCtx context and stores it into the
specified Big Number context.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

188

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsOutOfRangeErr Indicates an error condition if the Big Number is too small to
store probable prime number.

Example of Using Prime Number Generation Functions

Check Primality

int PrimeGen_sample(void){PrimeGen int error = 0;

 int ctxSize;
 // define 256-bit Prime Generator
 int maxBitSize = 256;
 ippsPrimeGetSize(256, &ctxSize);
 IppsPrimeState* pPrimeG = (IppsPrimeState*)(new Ipp8u [ctxSize]);
 ippsPrimeInit(256, pPrimeG);

 // define Pseudo Random Generator (default settings)
 ippsPRNGGetSize(&ctxSize);
 IppsPRNGState* pRand = (IppsPRNGState*)(new Ipp8u [ctxSize]);
 ippsPRNGInit(160, pRand);

 do {
 Ipp32u result;

 // test primality of the value (known in advance)
 BigNumber P1("0xDB7C2ABF62E35E668076BEAD208B");
 ippsPrimeTest_BN(P1, 50, &result, pPrimeG, ippsPRNGen, pRand);
 error = IPP_IS_PRIME!=result;
 if(error) {
 cout <<"Primality of the known prime isn't confirmed\n";
 break;
 }
 else cout <<"Primality of the known prime is confirmed\n";

 // generate 256-bit prime
 BigNumber P(0, 256/8);
 while(ippStsNoErr != ippsPrimeGen_BN(P, 256, 50, pPrimeG, ippsPRNGen, pRand)) ;
 // and test it
 ippsPrimeTest_BN(P, 50, &result, pPrimeG, ippsPRNGen, pRand);
 error = IPP_IS_PRIME!=result;
 if(error) {
 cout <<"Primality of the generated number isn't confirmed\n";
 break;
 }
 else cout <<"Primality of the generated number is confirmed\n";
 } while(0);

 delete [] (Ipp8u*)pRand;
 delete [] (Ipp8u*)pPrimeG;

Public Key Cryptography Functions 5

189

 return 0==error;
}

RSA Algorithm Functions
This section introduces Intel® Integrated Performance Primitives (Intel® IPP) Cryptography functions for RSA
algorithm. The section describes a set of primitives to perform operations required for RSA cryptographic
systems. This set of primitives offers a flexible user interface that enables scalability of the RSA crypto key
size with the limit of up to 4096 bits.

According to [PKCS 1.2.1], a de facto standard for RSA implementations, a pair of keys (public and private)
defines forward and inverse transforms of text (or operations on a public and secret key). Mathematical
expressions for the forward and inverse transforms are similar. If x is plain text and y is the corresponding
ciphertext, the mathematical expressions are as follows:

• y = x^e mod n for the forward transform, or encryption
• x = y^d mod n for the inverse transform, or decryption

In these expressions, e is the public exponent, d is the private exponent, and n is the RSA modulus. To
enable direct and inverse transforms, a mathematical relationship exists between these values.

The (n,e) pair is called the public key. With the known modulus n, the public or private exponent determines
whether the RSA cryptosystem is public or private. Intel IPP supports these, interrelated, representations of
the private key:

• Private key type 1 is the (n,d) pair.
• Private key type 2 is the (p,q,dP,dQ,qInv) quintuple (for details, see [PKCS 1.2.1]).

This representation speeds computations by using the Chinese Remainder Theorem (CRT).

RSA algorithm functions include:

• Functions for Building RSA System, the system being then used by functions listed below.
• RSA Primitives, which perform RSA encryption and decryption.
• RSA Encryption Schemes and RSA Signature Schemes, which combine RSA cryptographic primitives with

other techniques, such as computing hash message digests or applying mask generation functions
(MGFs), to achieve a particular security goal.

Important
To provide minimum security, the length of the RSA modulus must be equal to or greater than 1024
bits.

Functions for Building RSA System
You can use the primitives to build an RSA cryptographic system with the supplied randomized seed and
stimulus. The function RSA_GenerateKeys generates key components for the desired RSA cryptographic
system.

RSA Primitives and RSA-based schemes (RSA-OAEP Scheme Functions and RSA-SSA Scheme Functions) use
IppsRSAPublicKeyState or IppsRSAPrivateKeyState context, which is initialized in a call to the
RSA_InitPublicKey, RSA_InitPrivateKeyType1, or RSA_InitPrivateKeyType2 function, as an
operational vehicle carrying the RSA public or private keys.

Important
To provide minimum security, the length of the RSA modulus must be equal to or greater than 1024
bits.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

190

RSA_GetSizePublicKey, RSA_GetSizePrivateKeyType1, RSA_GetSizePrivateKeyType2
Get the size of the IppsRSAPublicKeyState or
IppsRSAPrivateKeyState context.

Syntax

IppStatus ippsRSA_GetSizePublicKey(int rsaModulusBitSize, int publicExpBitSize, int*
pKeySize);
IppStatus ippsRSA_GetSizePrivateKeyType1(int rsaModulusBitSize, int privateExpBitSize,
int* pKeySize);
IppStatus ippsRSA_GetSizePrivateKeyType2(int factorPBitSize, int factorQBitSize, int*
pKeySize);

Include Files

ippcp.h

Parameters

rsaModulusBitSize Length of the RSA system in bits (that is, the length of the
composite RSA modulus n in bits).

publicExpBitSize Length of the RSA public exponent in bits (that is, the length of the
e component of the RSA public key).

privateExpBitSize Length of the RSA private exponent in bits (that is, the length of the
d component of the RSA private key type 1).

factorPBitSize,
factorQBitSize

Length in bits of the p and q factors of the RSA modulus n = p*q.

pKeySize Pointer to the IppsRSAPublicKeyState context size in bytes.

Description

These functions get the size of the IppsRSAPublicKeyState or IppsRSAPrivateKeyState context in bytes
and stores it in *pKeySize. Call RSA_GetSizePublicKey to establish an RSA cryptosystem for encryption
(or signature verification) operations. Call RSA_GetSizePrivateKeyType1 or
RSA_GetSizePrivateKeyType2 to establish an RSA cryptosystem for decryption (or signature generation)
operations. The choice between these two functions depends on the representation of the private key to be
used.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsNotSupportedModeErr Indicates an error condition if rsaModulusBitSize < 32,
rsaModulusBitSize > 4096, factorPBitSize +
factorQBitSize < 32, factorPBitSize + factorQBitSize >
4096, factorPBitSize < 0, or factorQBitSize < 0.

ippStsBadArgErr For RSA_GetSizePublicKey, indicates an error condition if
publicExpBitSize < 0 or publicExpBitSize >
rsaModulusBitSize.

Public Key Cryptography Functions 5

191

For RSA_GetSizePrivateKeyType1, indicates and error condition if
privateExpBitSize <0 or privateExpBitSize >
rsaModulusBitSize.

For RSA_GetSizePrivateKeyType2, indicates and error condition if
factorPBitSize <0, factorPBitSize < 0, or factorPBitSize <
factorQBitSize.

RSA_InitPublicKey, RSA_InitPrivateKeyType1, RSA_InitPrivateKeyType2
Initialize user-supplied memory as the
IppsRSAPublicKeyState or
IppsRSAPrivateKeyState context for future use.

Syntax

IppStatus ippsRSA_InitPublicKey(int rsaModulusBitSize, int publicExpBitSize,
IppsRSAPublicKeyState* pKey, int keyCtxSize);
IppStatus ippsRSA_InitPrivateKeyType1(int rsaModulusBitSize, int privateExpBitSize,
IppsRSAPrivateKeyState* pKey, int keyCtxSize);
IppStatus ippsRSA_InitPrivateKeyType2(int factorPBitSize, int FactorQBitSize,
IppsRSAPrivateKeyState* pKey, int keyCtxSize);

Include Files

ippcp.h

Parameters

rsaModulusBitSize Length of the RSA system in bits (that is, the length of the
composite RSA modulus n in bits).

publicExpBitSize Length of the RSA public exponent in bits (that is, the length of the
e component of the RSA public key).

privateExpBitSize Length of the RSA private exponent in bits (that is, the length of the
d component of the type 1 RSA private key).

factorPBitSize,
FactorQBitSize

Length in bits of the p and q factors of the RSA modulus n = p*q.

pKey Pointer to the IppsRSAPublicKeyState or IppsRSAPrivateKeyState
context being initialized. The context depends on the function.

keyCtxSize Available size in bytes of the memory buffer being initialized.

Description

These functions initialize the memory pointed by pKey as the IppsRSAPublicKeyState or
IppsRSAPrivateKeyState context, depending on the function. To determine the size of the memory buffer,
call the appropriate RSA_GetSizePublicKey, RSA_GetSizePrivateKeyType1,
RSA_GetSizePrivateKeyType2 function prior to calling any of these functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

192

ippStsNotSupportedModeErr Indicates an error condition if rsaModulusBitSize < 32 or
rsaModulusBitSize > 4096, factorPBitSize < 16 or
factorPBitSize > 4096, or factorQBitSize < 16 or
factorQBitSize > 4096.

ippStsBadArgErr Indicates an error condition if publicExpBitSize >
rsaModulusBitSize or privateExpBitSize >
rsaModulusBitSize.

ippStsMemAllocErr Indicates an error condition if the allocated memory is
insufficient for the operation.

See Also
RSA_GetSizePublicKey, RSA_GetSizePrivateKeyType1, RSA_GetSizePrivateKeyType2
Data Security Considerations

RSA_SetPublicKey, RSA_SetPrivateKeyType1, RSA_SetPrivateKeyType2
Set up an RSA key in the existing RSA key context.

Syntax

IppStatus ippsRSA_SetPublicKey(const IppsBigNumState* pModulus, const IppsBigNumState*
pPublicExp, IppsRSAPublicKeyState* pKey);
IppStatus ippsRSA_SetPrivateKeyType1(const IppsBigNumState* pModulus, const
IppsBigNumState* pPrivateExp, IppsRSAPrivateKeyState* pKey);
IppStatus ippsRSA_SetPrivateKeyType2(const IppsBigNumState* pFactorP, const
IppsBigNumState* pFactorQ, const IppsBigNumState* pCrtExpP, const IppsBigNumState*
pCrtExpQ, const IppsBigNumState* pInverseQ, IppsRSAPrivateKeyState* pKey);

Include Files

ippcp.h

Parameters

pModulus The composite RSA modulus n.

pPublicExp The e component of the RSA public key.

pPrivateExp The d component of the type 1 RSA private key.

pFactorP, pFactorQ The p and q factors of the RSA modulus n = p*q.

pCrtExpP, pCrtExpQ The dP and dQ components of the quintuple (p,q,dP,dQ,qInv), which
defines a type 2 private key.

pInverseQ The qInv component of the quintuple (p,q,dP,dQ,qInv).

pKey Pointer to the IppsRSAPublicKeyState or IppsRSAPrivateKeyState
context.

Description

The RSA_SetPublicKey function sets up the RSA public key (n, e) in the IppsRSAPublicKeyState context,
that is, copies the n and e components supplied by the user into the context.

The RSA_SetPrivateKeyType1 function sets up the RSA type 1 private key (n, d) in the
IppsRSAPrivateKeyState context, that is, copies the n and d components supplied by the user into the
context.

Public Key Cryptography Functions 5

193

The RSA_SetPrivateKeyType2 function sets up the RSA type 2 private key (p,q,dP,dQ,qInv) in the
IppsRSAPrivateKeyState context, that is, copies user-supplied p and q factors of the RSA composite
modulus into the context, computes the rest of the key components, and copies them into the context:

• dP = q mod (p-1)
• dQ = p mod (q-1)
• qInv = 1/q mod p

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the context parameters
does not match the operation.

ippStsSizeErr Indicates an error condition if the bit length of a key component
specified by the pModulus, pPublicExp, pPrivateExp, pFactorP, or
pFactorQ pointer exceeds the bit length specified at the initialization.

ippStsOutOfRangeErr Indicates an error condition if any key component is not
positive.

RSA_GetPublicKey, RSA_GetPrivateKeyType1, RSA_GetPrivateKeyType2
Extracts key components from an RSA key context.

Syntax

IppStatus ippsRSA_GetPublicKey(IppsBigNumState* pModulus, IppsBigNumState* pPublicExp,
const IppsRSAPublicKeyState* pKey);
IppStatus ippsRSA_GetPrivateKeyType1(IppsBigNumState* pModulus, IppsBigNumState*
pPrivateExp, const IppsRSAPrivateKeyState* pKey);
IppStatus ippsRSA_GetPrivateKeyType2(IppsBigNumState* pFactorP, IppsBigNumState*
pFactorQ, IppsBigNumState* pCrtExpP, IppsBigNumState* pCrtExpQ, IppsBigNumState*
pInverseQ, const IppsRSAPrivateKeyState* pKey);

Include Files

ippcp.h

Parameters

pModulus The composite RSA modulus n.

pPublicExp The e component of the RSA public key.

pPrivateExp The d component of the type 1 RSA private key.

pFactorP, pFactorQ The p and q factors of the RSA modulus n = p*q.

pCrtExpP, pCrtExpQ The dP and dQ components of the quintuple (p,q,dP,dQ,qInv).

pInverseQ The qInv component of the quintuple (p,q,dP,dQ,qInv).

pKey Pointer to the IppsRSAPublicKeyState or IppsRSAPrivateKeyState
context.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

194

Description

The RSA_GetPublicKey function extracts components of the RSA public key (n, e) from the
IppsRSAPublicKeyState context. The RSA_GetPrivateKeyType1 and RSA_GetPrivateKeyType2
functions extract components of the RSA private key of the respective type from the
IppsRSAPrivateKeyState context.

To extract key components selectively, set pointers to the key components that do not need to be extracted
to NULL.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsContextMatchErr Indicates an error condition if any of the context parameters does not
match the operation.

ippStsSizeErr Indicates an error condition if the bit length of any specified key
component is not sufficient to hold the value.

ippStsIncompleteContextErr Indicates an error condition if the public or private key is not set up.

NOTE
While you can set up the public key or type 1 private key in a call
to RSA_SetPublicKey or RSA_SetPrivateKeyType1,
respectively, you can set up the type 2 private key in a call to
either RSA_SetPrivateKeyType2 or RSA_GenerateKeys.

See Also
RSA_SetPublicKey, RSA_SetPrivateKeyType1, RSA_SetPrivateKeyType2
RSA_GenerateKeys

RSA_GetBufferSizePublicKey, RSA_GetBufferSizePrivateKey
Get the size of a temporary scratch buffer for future
use in RSA operations.

Syntax

IppStatus ippsRSA_GetBufferSizePublicKey(int* pBufferSize, const IppsRSAPublicKeyState*
pKey);
IppStatus ippsRSA_GetBufferSizePrivateKey(int* pBufferSize, const
IppsRSAPrivateKeyState* pKey);

Include Files

ippcp.h

Parameters

pBufferSize Pointer to the size of a temporary buffer.

pKey Pointer to the RSA key context.

Public Key Cryptography Functions 5

195

Description

These functions get the size of a temporary buffer for future use in public- or private-key RSA operations,
respectively.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the context parameters
does not match the operation.

ippStsIncompleteContextErr For RSA_GetBufferSizePublicKey, indicates an error condition if
the public key is not set up.

For RSA_GetBufferSizePrivateKeyType1, indicates an error
condition if the type 1 private key is not set up.

NOTE
You can set up the public key or type 1 private key in a call to
RSA_SetPublicKey or RSA_SetPrivateKeyType1, respectively.
For the RSA_GetBufferSizePrivateKeyType2 function, it
suffices to initialize the context for the key in a call to
RSA_InitPrivateKeyType2.

See Also
RSA_SetPublicKey, RSA_SetPrivateKeyType1, RSA_SetPrivateKeyType2
RSA_InitPublicKey, RSA_InitPrivateKeyType1, RSA_InitPrivateKeyType2

RSA_GenerateKeys
Generates key components for the desired RSA
cryptographic system.

Syntax

IppStatus ippsRSA_GenerateKeys(const IppsBigNumState* pSrcPublicExp, IppsBigNumState*
pModulus, IppsBigNumState* pPublicExp, IppsBigNumState* pPrivateExp,
IppsRSAPrivateKeyState* pPrivateKeyType2, Ipp8u* pScratchBuffer, int nTrials,
IppsPrimeState* pPrimeGen, IppBitSupplier rndFunc, void* pRndParam);

Include Files

ippcp.h

Parameters

pSrcPublicExp Pointer to the IppsBigNumState context of the initial value for
searching an RSA public exponent.

pModulus Pointer to the generated RSA modulus.

pPublicExp Pointer to the generated RSA public exponent.

pPrivateExp Pointer to the generated RSA private exponent.

pPrivateKeyType2 Pointer to the generated RSA private key type 2.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

196

pScratchBuffer Pointer to the temporary buffer of size not less than returned by the
RSA_GetBufferSizePrivateKey function.

nTrials Security parameter specified for the Miller-Rabin test for probable
primality.

pPrimeGen Pointer to the prime number generator.

rndFunc Pseudorandom number generator.

pRndParam Pointer to the context of the pseudorandom number generator.

Description

This function generates public and private keys of the desired RSA cryptographic system.

This function sequentially performs the following computations:

1. Generates random probable prime numbers p and q using the specified pseudorandom number
generator rndFunc.

2. Computes the RSA composite modulus n = (p*q).
3. Based on the generated p and q factors, computes all the other CRT-related RSA components: dP = d

mod (p-1), dQ = p mod (q-1) and qInv = 1/q mod p.

To generate RSA keys using the RSA_GenerateKeys function, call it in the following sequence of steps:

1. Establish the pseudorandom number generator and prime number generator.
2. Define the RSA private key type 2 in successive calls to the RSA_GetSizePrivateKeyType2 and

RSA_InitPrivateKeyType2 functions with desired values of factorPBitSize and factorQBitSize
parameters.

3. Allocate a temporary buffer of a suitable size.
4. Set up the initial value of the public exponent pSrcPublicExp.
5. Call RSA_GenerateKeys.

If RSA_GenerateKeys returns IppNoErr, the key pair is generated.

If RSA_GenerateKeys returns ippStsInsufficientEntropy, repeat step 5.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not match
the operation.

ippStsSizeErr Indicates an error condition if the bit length of any key component
specified by pModulus, pPublicExp or pPrivateExp is not sufficient
to hold the value or the prime number generator, specified by
pPrimeGen, is not sufficient to generate suitable values.

ippStsOutOfRangeErr Indicates an error condition if the initial value for searching the public
exponent, specified by pSrcPublicExp, is not positive.

ippStsBadArgErr Indicates an error condition in cases not explicitly mentioned above.

ippStsInsufficientEntropy Indicates a warning condition if the prime number generation fails due
to a poor choice of entropy.

Public Key Cryptography Functions 5

197

See Also
RSA_InitPublicKey, RSA_InitPrivateKeyType1, RSA_InitPrivateKeyType2
RSA_ValidateKeys
Pseudorandom Number Generation Functions

RSA_ValidateKeys
Validates key components of the RSA cryptographic
system.

Syntax

IppStatus ippsRSA_ValidateKeys(int* pResult, const IppsRSAPublicKeyState* pPublicKey,
const IppsRSAPrivateKeyState* pPrivateKeyType2, const IppsRSAPrivateKeyState*
pPrivateKeyType1, Ipp8u* pScratchBuffer, int nTrials, IppsPrimeState* pPrimeGen,
IppBitSupplier rndFunc, void* pRndParam);

Include Files

ippcp.h

Parameters

pResult Pointer to the result of validation.

pPublicKey Pointer to the RSA public key.

pPrivateKeyType2 Pointer to the RSA private key type 2.

pPrivateKeyType1 Pointer to the RSA private key type 1. This parameter is optional
and can have the value of NULL.

pScratchBuffer Pointer to the temporary buffer of size not less than returned by the
RSA_GetBufferSizePrivateKey function.

nTrials Security parameter specified for the Miller-Rabin test for probable
primality.

pPrimeGen Pointer to the prime number generator.

rndFunc Pseudorandom number generator.

pRndParam Pointer to the context of the pseudorandom number generator.

Description

The function validates key components of the RSA cryptographic system and stores the result of the
validation procedure in *pResult.

The meanings of values of *pResult are as follows:

IS_VALID_KEY The RSA key pair is valid.

IS_INVALID_KEY The RSA key is not valid.

The key pair is valid under the following conditions:

• The p and q factors are prime.
• The type 2 private key meets these conditions:

• e*dP = 1 (mod p -1) and e*dQ = 1 (mod q -1)
• q*qInv = 1 (mod p)

• If the pPrivateKeyType1 parameter is not NULL, the type 1 private key meets the condition e*d = 1
mod ((p-1)*(q-1)).

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

198

Validation of the public and type 1 private key pair requires type 2 private key.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not match
the operation.

ippStsSizeErr Indicates an error condition if the prime number generator, specified
by pPrimeGen, is not sufficient to generate suitable values.

ippStsIncompleteContextErr Indicates an error condition if the public or private key is not set up.

ippStsBadArgErr Indicates an error condition if any of the RSA keys *pPublicKey,
*pPrivateKeyType2, or, optional, *pPrivateKeyType1 is not
properly set up or generated.

See Also
RSA_GenerateKeys

RSA Primitives
The functions described in this section refer to RSA primitives.

The application code for conducting a typical RSA encryption must perform the following sequence of
operations, starting with building of a crypto system:

1. Call the function RSA_GetSizePublicKey to get the size required to configure
IppsRSAPublicKeyState context.

2. Ensure that the required memory space is properly allocated. With the allocated memory, call the
RSA_InitPublicKey function to initialize the context.

3. Call RSA_SetPublicKey to set up RSA public key (n, e).
4. Call the RSA_GetBufferSizePublicKey function to get the size of a temporary buffer.
5. Invoke the RSA_Encrypt function with the established RSA public key to encode the plaintext into the

respective ciphertext.
6. Clean up secret data stored in the context.
7. Free the memory allocated for the IppsRSAPublicKeyState context by calling the operating system

memory free service function.

The typical application code for the RSA decryption must perform the following sequence of operations:

1. Call the function GetSizePrivateKeyType1 or RSA_GetSizePrivateKeyType2 to get the size
required to configure IppsRSAPrivateKeyState context.

2. Ensure that the required memory space is properly allocated. With the allocated memory, call the
InitPrivateKeyType1 or RSA_InitPrivateKeyType2 function to initialize the context.

3. Call the RSA_GetBufferSizePrivateKey function to get the size of a temporary buffer.
4. Establish the RSA private key by means of either the RSA_GenerateKeys function or by the key setup

function RSA_SetPrivateKeyType1 or RSA_SetPrivateKeyType2. The RSA_GenerateKeys function
can generate both type 1 and type 2 private keys, while the choice of the key setup function depends
on the representation of the private key you are using.

5. Invoke the RSA_Decrypt function with the established RSA public key to decode the ciphertext into the
respective plaintext.

6. Clean up secret data stored in the context.
7. Free the memory allocated for the IppsRSAPrivateKeyState context by calling the operating system

memory free service function.

Public Key Cryptography Functions 5

199

See Also
Data Security Considerations

RSA_Encrypt
Performs the RSA encryption operation.

Syntax

IppStatus ippsRSA_Encrypt(const IppsBigNumState* pPtxt, IppsBigNumState* pCtxt, const
IppsRSAPublicKeyState* pKey, Ipp8u* pScratchBuffer);

Include Files

ippcp.h

Parameters

pPtxt Pointer to the IppsBigNumState context of the plaintext.

pCtxt Pointer to the IppsBigNumState context of the ciphertext.

pKey Pointer to the IppsRSAPublicKeyState context.

pScratchBuffer Pointer to the temporary buffer of size not less than returned by the
RSA_GetBufferSizePublicKey function.

Description

The function performs the RSA encryption operation, that is, the RSA operation on a public key.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not match
the operation.

ippStsIncompleteContextErr Indicates an error condition if the public key is not set up.

NOTE
You can set up the public key in a call to RSA_SetPublicKey.

ippStsInvalidCryptoKeyErr Indicates an error condition if the RSA context has not been properly
set up for the operation.

ippStsOutOfRangeErr Indicates an error condition if the big number specified by pPtxt is
not positive or greater than the RSA modulus.

ippStsSizeErr Indicates an error condition if the big number specified by pCtxt is
not sufficient to hold the result.

See Also
RSA_SetPublicKey, RSA_SetPrivateKeyType1, RSA_SetPrivateKeyType2
RSA_Decrypt
Functions for Building RSA System

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

200

RSA_Decrypt
Performs the RSA decryption operation.

Syntax

IppStatus ippsRSA_Decrypt(const IppsBigNumState* pCtxt, IppsBigNumState* pPtxt, const
IppsRSAPrivateKeyState* pKey, Ipp8u* pScratchBuffer);

Include Files

ippcp.h

Parameters

pCtxt Pointer to the IppsBigNumState context of the ciphertext.

pPtxt Pointer to the IppsBigNumState context of the plaintext.

pKey Pointer to the IppsRSAPrivateKeyState context.

pScratchBuffer Pointer to the scratch buffer of size not less than returned by the
RSA_GetBufferSizePrivateKey function.

Description

The function performs the RSA encryption operation, that is, the RSA operation on a private key.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsIncompleteContextErr Indicates an error condition if the private key is not set up.

NOTE
While you can set up the type 1 private key in a call to
RSA_SetPrivateKeyType1, you can set up the type 2 private key
in a call to either RSA_SetPrivateKeyType2 or
RSA_GenerateKeys.

ippStsOutOfRangeErr Indicates an error condition if the big number specified by
pCtxt is not positive or greater than the RSA modulus.

ippStsSizeErr Indicates an error condition if the big number specified by
pPtxt is not sufficient to hold the result.

See Also
RSA_SetPublicKey, RSA_SetPrivateKeyType1, RSA_SetPrivateKeyType2
RSA_GenerateKeys
RSA_Encrypt
Functions for Building RSA System

Public Key Cryptography Functions 5

201

Example of Using RSA Primitive Functions
The following example illustrates the use of RSA primitives. The example uses the BigNumber class and
functions creating some cryptographic contexts, whose source code can be found in Appendix Support
Functions and Classes.

Use of RSA Primitives

// P prime factor
BigNumber P("0xEECFAE81B1B9B3C908810B10A1B5600199EB9F44AEF4FDA493B81A9E3D84F632"
 "124EF0236E5D1E3B7E28FAE7AA040A2D5B252176459D1F397541BA2A58FB6599");
// Q prime factor
BigNumber Q("0xC97FB1F027F453F6341233EAAAD1D9353F6C42D08866B1D05A0F2035028B9D86"
 "9840B41666B42E92EA0DA3B43204B5CFCE3352524D0416A5A441E700AF461503");
// P's CRT exponent
BigNumber dP("0x54494CA63EBA0337E4E24023FCD69A5AEB07DDDC0183A4D0AC9B54B051F2B13E"
 "D9490975EAB77414FF59C1F7692E9A2E202B38FC910A474174ADC93C1F67C981");
// Q's CRT exponent
BigNumber dQ("0x471E0290FF0AF0750351B7F878864CA961ADBD3A8A7E991C5C0556A94C3146A7"
 "F9803F8F6F8AE342E931FD8AE47A220D1B99A495849807FE39F9245A9836DA3D");
// CRT coefficient
BigNumber invQ("0xB06C4FDABB6301198D265BDBAE9423B380F271F73453885093077FCD39E2119F"
 "C98632154F5883B167A967BF402B4E9E2E0F9656E698EA3666EDFB25798039F7");
// rsa modulus N = P*Q
BigNumber N("0xBBF82F090682CE9C2338AC2B9DA871F7368D07EED41043A440D6B6F07454F51F"
 "B8DFBAAF035C02AB61EA48CEEB6FCD4876ED520D60E1EC4619719D8A5B8B807F"
 "AFB8E0A3DFC737723EE6B4B7D93A2584EE6A649D060953748834B2454598394E"
 "E0AAB12D7B61A51F527A9A41F6C1687FE2537298CA2A8F5946F8E5FD091DBDCB");
// private exponent
BigNumber D("0xA5DAFC5341FAF289C4B988DB30C1CDF83F31251E0668B42784813801579641B2"
 "9410B3C7998D6BC465745E5C392669D6870DA2C082A939E37FDCB82EC93EDAC9"
 "7FF3AD5950ACCFBC111C76F1A9529444E56AAF68C56C092CD38DC3BEF5D20A93"
 "9926ED4F74A13EDDFBE1A1CECC4894AF9428C2B7B8883FE4463A4BC85B1CB3C1");
// public exponent
BigNumber E("0x11");

int RSA_sample(void)
{
 int keyCtxSize;

 // (bit) size of key components
 int bitsN = N.BitSize();
 int bitsE = E.BitSize();
 int bitsP = P.BitSize();
 int bitsQ = Q.BitSize();

 // define and setup public key
 ippsRSA_GetSizePublicKey(bitsN, bitsE, &keyCtxSize);
 IppsRSAPublicKeyState* pPub = (IppsRSAPublicKeyState*)(new Ipp8u [keyCtxSize]);
 ippsRSA_InitPublicKey(bitsN, bitsE, pPub, keyCtxSize);
 ippsRSA_SetPublicKey(N, E, pPub);

 // define and setup (type2) private key
 ippsRSA_GetSizePrivateKeyType2(bitsP, bitsQ, &keyCtxSize);
 IppsRSAPrivateKeyState* pPrv = (IppsRSAPrivateKeyState*)(new Ipp8u [keyCtxSize]);
 ippsRSA_InitPrivateKeyType2(bitsP, bitsQ, pPrv, keyCtxSize);
 ippsRSA_SetPrivateKeyType2(P, Q, dP, dQ, invQ, pPrv);

 // allocate scratch buffer
 int buffSizePublic;
 ippsRSA_GetBufferSizePublicKey(&buffSizePublic, pPub);

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

202

 int buffSizePrivate;
 ippsRSA_GetBufferSizePrivateKey(&buffSizePrivate, pPrv);
 int buffSize = max(buffSizePublic, buffSizePrivate);
 Ipp8u* scratchBuffer = NULL;
 scratchBuffer = new Ipp8u [buffSize];

 // error flag
 int error = 0;

 do {
 //
 // validate keys
 //

 // random generator
 IppsPRNGState* pRand = newPRNG();
 // prime generator
 IppsPrimeState* pPrimeG = newPrimeGen(P.BitSize());

 int validateRes = IPP_IS_INVALID;
 ippsRSA_ValidateKeys(&validateRes,
 pPub, pPrv, NULL, scratchBuffer,
 10, pPrimeG, ippsPRNGen, pRand);

 // delete geterators
 deletePrimeGen(pPrimeG);
 deletePRNG(pRand);

 if(IPP_IS_VALID!=validateRes) {
 cout <<"validation fail" << endl;
 error = 1;
 break;
 }

 // known plain- and ciper-texts
 BigNumber kat_PT("0x00EB7A19ACE9E3006350E329504B45E2CA82310B26DCD87D5C68F1EEA8F55267"
 "C31B2E8BB4251F84D7E0B2C04626F5AFF93EDCFB25C9C2B3FF8AE10E839A2DDB"
 "4CDCFE4FF47728B4A1B7C1362BAAD29AB48D2869D5024121435811591BE392F9"
 "82FB3E87D095AEB40448DB972F3AC14F7BC275195281CE32D2F1B76D4D353E2D");
 BigNumber kat_CT("0x1253E04DC0A5397BB44A7AB87E9BF2A039A33D1E996FC82A94CCD30074C95DF7"
 "63722017069E5268DA5D1C0B4F872CF653C11DF82314A67968DFEAE28DEF04BB"
 "6D84B1C31D654A1970E5783BD6EB96A024C2CA2F4A90FE9F2EF5C9C140E5BB48"
 "DA9536AD8700C84FC9130ADEA74E558D51A74DDF85D8B50DE96838D6063E0955");

 //
 // encrypt message
 //
 BigNumber ct(0, N.DwordSize());
 ippsRSA_Encrypt(kat_PT, ct, pPub, scratchBuffer);
 if(ct!=kat_CT) {
 cout <<"encryption fail" << endl;
 error = 1;
 break;
 }

 //
 // decrypt message
 //
 BigNumber rt(0, N.DwordSize());

Public Key Cryptography Functions 5

203

 ippsRSA_Decrypt(kat_CT, rt, pPrv, scratchBuffer);
 if(rt!=kat_PT) {
 cout <<"decryption fail" << endl;
 error = 1;
 break;
 }
 } while(0);

 delete [] scratchBuffer;

 delete [] (Ipp8u*) pPub;

 // remove sensitive data before release
 ippsRSA_InitPrivateKeyType2(bitsP, bitsQ, pPrv, keyCtxSize);
 delete [] (Ipp8u*) pPrv;

 return error==0;
}

RSA Encryption Schemes

RSA-OAEP Scheme Functions
This subsection describes functions implementing RSA-OAEP encryption scheme, specified in [PKCS 1.2.1].

RSAEncrypt_OAEP
Carries out the RSA-OAEP encryption scheme.

Syntax

IppStatus ippsRSAEncrypt_OAEP(const Ipp8u* pSrc, int srcLen, const Ipp8u* pLabel, int
labLen, const Ipp8u* pSeed, Ipp8u* pDst, const IppsRSAPublicKeyState* pKey,
IppHashAlgId hashAlg, Ipp8u* pBuffer);
IppStatus ippsRSAEncrypt_OAEP_rmf(const Ipp8u* pSrc, int srcLen, const Ipp8u* pLabel,
int labLen, const Ipp8u* pSeed, Ipp8u* pDst, const IppsRSAPublicKeyState* pKey, const
IppsHashMethod* pMethod, Ipp8u* pBuffer);

Include Files

ippcp.h

Parameters

pSrc Pointer to the octet message to be encrypted.

srcLen Length of the message to be encrypted.

pLabel Pointer to the optional label to be associated with the message.

labLen Length of the optional label.

pSeed Pointer to the random octet string of length hashLen, where
hashLen is the length (in octets) of the hash function output.

pDst Pointer to the output octet ciphertext string.

pKey Pointer to the properly initialized IppsRSAPublicKeyState context.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

204

hashAlg ID of the hash algorithm used. For details, see table Supported
Hash Algorithms.

pMethod Pointer to the hash method. For details, see HashMethod functions.

pBuffer Pointer to a temporary buffer of size not less than returned by the
RSA_GetBufferSizePublicKey function.

Description

The function carries out the RSA-OAEP encryption scheme, defined in [PKCS 1.2.1]. The length of the
encrypted message is equal to the size of the RSA modulus n.

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsIncompleteContextErr Indicates an error condition if the public key is not set up.

NOTE
You can set up the public key in a call to RSA_SetPublicKey.

ippStsLengthErr Indicates an error condition if the any input/output length
parameters are inconsistent with one another.

ippStsNotSupportedModeErr if the hashAlg parameter does not match any value of
IppHashAlgId listed in table Supported Hash Algorithms.

See Also
RSA_SetPublicKey, RSA_SetPrivateKeyType1, RSA_SetPrivateKeyType2
RSADecrypt_OAEP

RSADecrypt_OAEP
Carries out the RSA-OAEP decryption scheme.

Syntax

IppStatus ippsRSADecrypt_OAEP(const Ipp8u* pSrc, const Ipp8u* pLabel, int labLen,
Ipp8u* pDst, int* pDstLen, const IppsRSAPrivateKeyState* pKey, IppHashAlgId hashAlg,
Ipp8u* pBuffer);
IppStatus ippsRSADecrypt_OAEP_rmf(const Ipp8u* pSrc, const Ipp8u* pLabel, int labLen,
Ipp8u* pDst, int* pDstLen, const IppsRSAPrivateKeyState* pKey, const IppsHashMethod*
pMethod, Ipp8u* pBuffer);

Include Files

ippcp.h

Public Key Cryptography Functions 5

205

Parameters

pSrc Pointer to the octet ciphertext to be decrypted.

pLabel Pointer to the optional label to be associated with the message.

labLen Length of the optional label.

pDst Pointer to the output octet plaintext message.

pDstLen Pointer to the length of the decrypted message.

pKey Pointer to the properly initialized IppsRSAPrivateKeyState context.

hashAlg ID of the hash algorithm used. For details, see table Supported
Hash Algorithms.

pMethod Pointer to the hash method. For details, see HashMethod functions.

pBuffer Pointer to a temporary buffer of size not less than returned by the
RSA_GetBufferSizePrivateKey function.

Description

The function carries out the RSA-OAEP decryption scheme defined in [PKCS 1.2.1]. The *pDstLen parameter
returns the length of the decrypted message.

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsIncompleteContextErr Indicates an error condition if the private key is not set up.

NOTE
While you can set up the type 1 private key in a call to
RSA_SetPrivateKeyType1, you can set up the type 2 private key
in a call to either RSA_SetPrivateKeyType2 or
RSA_GenerateKeys.

ippStsLengthErr Indicates an error condition if the any input/output length
parameters are inconsistent with one another.

ippStsNotSupportedModeErr Indicates an error condition if the hashAlg parameter does not
match any value of IppHashAlgId listed in table Supported
Hash Algorithms.

See Also
RSA_SetPublicKey, RSA_SetPrivateKeyType1, RSA_SetPrivateKeyType2
RSAEncrypt_OAEP
RSA_GenerateKeys

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

206

PKCS V1.5 Encryption Scheme Functions
This subsection describes functions implementing encryption schemes defined in version 1.5 of the PKCS#1
standard ([PKCS 1.2.1]).

RSAEncrypt_PKCSv15
Performs RSA-OAEP encryption using the RSA-OAEP
scheme as defined in the v1.5 version of the PKCS#1
standard.

Syntax

IppStatus ippsRSAEncrypt_PKCSv15 (const Ipp8u* pSrc, int srcLen, const Ipp8u* pRandPS,
Ipp8u* pDst, const IppsRSAPublicKeyState* pKey, Ipp8u* pBuffer);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input octet message to be encrypted.

srcLen Length (in bytes) of the message. The message can be empty, that
is, srcLen==0.

pRandPS Pointer to the non-zero octet padding string. pRandPS can be NULL.
In this case, the function applies the padding string of 0xFF bytes.

pDst Pointer to the output message.

pKey Pointer to the properly initialized IppsRSAPublicKeyState context.

pBuffer Pointer to a buffer of size not less than returned by the
RSA_GetBufferSizePublicKey function.

Description

The function performs encryption using the RSA-OAEP scheme according to the v1.5 version of the PKCS#1
standard, defined in [PKCS 1.2.1]. The length of the encrypted message is equal to size of the RSA modulus
n.

If RSAEncrypt_PKCSv15 receives a non-zero pRandPS pointer, the function assumes that the length of the
padding string is at least k-srcLen-3 bytes, where k is the length of the RSA modulus in bytes.

Important
The v1.5 version of the PKCS#1 standard requires that you provide a padding string that does not
contain zero bytes. If the padding string contains a zero byte, the encryption operation completes
successfully, but the inverse decryption fails.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers
other than pRandPS is NULL.

ippStsContextMatchErr Indicates an error condition if the RSA context parameter does
not match the operation.

Public Key Cryptography Functions 5

207

ippStsIncompleteContextErr Indicates an error condition if the public key is not set up.

NOTE
You can set up the public key in a call to RSA_SetPublicKey.

ippStsSizeErr Indicates an error condition if any input/output length
parameters are inconsistent with one another.

See Also
RSA_SetPublicKey, RSA_SetPrivateKeyType1, RSA_SetPrivateKeyType2
RSADecrypt_PKCSv15

RSADecrypt_PKCSv15
Performs RSA-OAEP decryption using the RSA-OAEP
scheme as defined in the v1.5 version of the PKCS#1
standard.

Syntax

IppStatus ippsRSADecrypt_PKCSv15 (const Ipp8u* pSrc, Ipp8u* pDst, int* pDstLen, const
IppsRSAPrivateKeyState* pKey, Ipp8u* pBuffer);

Include Files

ippcp.h

Parameters

pSrc Pointer to the input octet message to be decrypted.

pDst Pointer to the output message.

pDstLen Pointer to the length (in bytes) of the decrypted message.

pKey Pointer to the properly initialized IppsRSAPrivateKeyState context.

pBuffer Pointer to a temporary buffer of size not less than returned by the
RSA_GetBufferSizePrivateKey function.

Description

The function performs decryption using the RSA-OAEP scheme according to the v1.5 version of the PKCS#1
standard, defined in [PKCS 1.2.1]. The *pDstLen parameter returns the length of the decrypted message.

NOTE
If an empty message is encrypted by the RSAEncrypt_PKCSv15 function, RSADecrypt_PKCSv15
returns and empty string, that is, *pDstLen==0.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the RSA context parameter does
not match the operation.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

208

ippStsIncompleteContextErr Indicates an error condition if the private key is not set up.

NOTE
While you can set up the type 1 private key in a call to
RSA_SetPrivateKeyType1, you can set up the type 2 private key
in a call to either RSA_SetPrivateKeyType2 or
RSA_GenerateKeys.

ippStsSizeErr Indicates an error condition if any input/output length
parameters are inconsistent with one another.

See Also
RSA_SetPublicKey, RSA_SetPrivateKeyType1, RSA_SetPrivateKeyType2
RSA_GenerateKeys
RSAEncrypt_PKCSv15

RSA Signature Schemes

RSA-SSA Scheme Functions

This subsection describes functions implementing RSASSA-PSS_5 signature scheme with appendix [PKCS
1.2.1].

To invoke RSASign_PSS or RSAVerify_PSS primitive, supply the IppsRSAPrivateKeyState and/or
IppsRSAPublicKeyState context initialized by a suitable function (see RSA_InitPublicKey,
RSA_InitPrivateKeyType1, or RSA_InitPrivateKeyType2 for details).

RSASign_PSS
Carries out the RSASSA-PSS signature generation
scheme.

Syntax

IppStatus ippsRSASign_PSS(const Ipp8u* pMsg, int msgLen, const Ipp8u* pSalt, int
saltLen, Ipp8u* pSign, const IppsRSAPrivateKeyState* pPrivateKey, const
IppsRSAPublicKeyState* pPublicKeyOpt, IppHashAlgId hashAlg, Ipp8u* pBuffer);
IppStatus ippsRSASign_PSS_rmf(const Ipp8u* pMsg, int msgLen, const Ipp8u* pSalt, int
saltLen, Ipp8u* pSign, const IppsRSAPrivateKeyState* pPrivateKey, const
IppsRSAPublicKeyState* pPublicKeyOpt, const IppsHashMethod* pMethod, Ipp8u* pBuffer);

Include Files

ippcp.h

Parameters

pMsg Pointer to the octet message to be signed.

msgLen Length of the input *pMsg message in octets.

pSalt Pointer to the random octet salt string.

saltLen Length of the salt string in octets.

pSign Pointer to the output octet signature.

Public Key Cryptography Functions 5

209

pPrivateKey Pointer to the properly initialized IppsRSAPrivateKeyState context.

pPublicKeyOpt Pointer to the properly initialized optional IppsRSAPublicKeyState
context.

hashAlg Identifier of the hash algorithm. For details, see table Supported
Hash Algorithms.

pMethod Pointer to the hash method. For details, see HashMethod functions.

pBuffer Pointer to a temporary buffer of size not less than returned by each
of the functions RSA_GetBufferSizePrivateKey and
RSA_GetBufferSizePublicKeyKey.

Description

The function generates the message signature according to the RSASSA-PSS scheme defined in [PKCS 1.2.1]
using the hash algorithm defined by the hashAlg or pMethod parameter.

If you are using an RSA private key type 2 to generate the signature, you can use the optional
*pPublicKeyOpt parameter to mitigate Fault Attack. If you are using an RSA private key type 1 or sure that
Fault Attack is not applicable, pPublicKeyOpt can be NULL. Passing the NULL value to the pPublicKeyOpt
parameter saves computation time.

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsContextMatchErr Indicates an error condition if any of the context parameters does not
match the operation.

ippStsIncompleteContextErr Indicates an error condition if the public or private key is not set up.

ippStsLengthErr Indicates an error condition if the value of saltLen is negative or any
input/output length parameters are inconsistent with one another
together (see [PKCS 1.2.1] for details).

ippsStsNotSupportedModeErr Indicates an error condition if the hashAlg parameter does not match
any value of IppHashAlgId listed in table Supported Hash
Algorithms.

See Also
RSA_SetPublicKey, RSA_SetPrivateKeyType1, RSA_SetPrivateKeyType2
RSA_GenerateKeys
RSAVerify_PSS

RSAVerify_PSS
Carries out the RSA-SSA signature verification
scheme.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

210

Syntax

IppStatus ippsRSAVerify_PSS(const Ipp8u* pMsg, int msgLen, const Ipp8u* pSign, int*
pIsSignValid, const IppsRSAPublicKeyState* pKey, IppHashAlgId hashAlg, Ipp8u* pBuffer);
IppStatus ippsRSAVerify_PSS_rmf(const Ipp8u* pMsg, int msgLen, const Ipp8u* pSign, int*
pIsSignValid, const IppsRSAPublicKeyState* pKey, const IppsHashMethod* pMethod, Ipp8u*
pBuffer);

Include Files

ippcp.h

Parameters

pMsg Pointer to the octet message that has been signed.

msgLen Length in octets of the *pMsg message.

pSign Pointer to the octet signature string to be verified.

pIsSignValid Pointer to the verification result.

pKey Pointer to the properly initialized IppsRSAPublicKeyState context.

hashAlg Identifier of the hash algorithm. For details, see table Supported
Hash Algorithms.

pMethod Pointer to the hash method. For details, see HashMethod functions.

pBuffer Pointer to the scratch buffer of size not less than returned by the
RSA_GetBufferSizePublicKey function.

Description

The function carries out the RSASSA-PSS signature verification scheme defined in [PKCS 1.2.1].
RSAVerify_PSS verifies the signature generated by the RSASign_PSS function called with the same hashAlg
or pMethod parameter.

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not match
the operation.

ippStsIncompleteContextErr Indicates an error condition if the public key is not set up.

ippsStsNotSupportedModeErr Indicates an error condition if the hashAlg parameter does not match
any value of IppHashAlgId listed in table Supported Hash
Algorithms.

See Also
RSA_SetPublicKey, RSA_SetPrivateKeyType1, RSA_SetPrivateKeyType2

Public Key Cryptography Functions 5

211

PKCS V1.5 Signature Scheme Functions

This subsection describes functions implementing the RSASSA-PKCS1-v1_5 signature scheme with appendix
[PKCS 1.2.1].

RSASign_PKCS1v15
Carries out the RSA-SSA signature generation scheme
of PKCS#1 v1.5 .

Syntax

IppStatus ippsRSASign_PKCS1v15(const Ipp8u* pMsg, int msgLen, Ipp8u* pSign, const
IppsRSAPrivateKeyState* pPrivateKey, const IppsRSAPublicKeyState* pPublicKeyOpt,
IppHashAlgId hashAlg, Ipp8u* pBuffer);
IppStatus ippsRSASign_PKCS1v15_rmf(const Ipp8u* pMsg, int msgLen, Ipp8u* pSign, const
IppsRSAPrivateKeyState* pPrivateKey, const IppsRSAPublicKeyState* pPublicKeyOpt, const
IppsHashMethod* pMethod, Ipp8u* pBuffer);

Include Files

ippcp.h

Parameters

pMsg Pointer to the message to be signed.

msgLen Length of the message *pMsg in octets.

pSign Pointer to the output octet signature.

pPrivateKey Pointer to the properly initialized IppsRSAPrivateKeyState context.

pPublicKeyOpt Pointer to the properly initialized optional IppsRSAPublicKeyState
context.

hashAlg Identifier of the hash algorithm used. For details, see table
Supported Hash Algorithms.

pMethod Pointer to the hash method. For details, see HashMethod functions.

pBuffer Pointer to a temporary buffer of size not less than returned by each
of the functions RSA_GetBufferSizePrivateKey and
RSA_GetBufferSizePublicKeyKey.

Description

The function computes the message digest specified by the hashAlg or pMethod parameter and generates
the signature according to the RSASSA-PKCS1-v1_5 scheme defined in [PKCS 1.2.1].

If you are using an RSA private key type 2 to generate the signature, you can use the optional
*pPublicKeyOpt parameter to mitigate Fault Attack. If you are using an RSA private key type 1 or sure that
Fault Attack is not applicable, pPublicKeyOpt can be NULL. Passing the NULL value to the pPublicKeyOpt
parameter saves computation time.

Important
The length of the signature being generated equals the length of the RSA modulus, supplied with the
IppsRSAPrivateKeyState context. Make sure that pSign points to a buffer of a sufficient length.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

212

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsContextMatchErr Indicates an error condition if any of the context parameters does not
match the operation.

ippStsIncompleteContextErr Indicates an error condition if the public or private key is not set up.

NOTE
While you can set up the public key or type 1 private key in a call
to RSA_SetPublicKey or RSA_SetPrivateKeyType1,
respectively, you can set up the type 2 private key in a call to
either RSA_SetPrivateKeyType2 or RSA_GenerateKeys.

ippStsLengthErr Indicates an error condition if any input/output length parameters are
inconsistent with one another.

ippStsSizeErr Indicates an error condition if the length of the RSA modulus is too
small (see details in [PKCS 1.2.1].

ippStsNotSupportedModeErr Indicates an error condition if the hashAlg parameter does not match
any value of IppHashAlgId listed in table Supported Hash
Algorithms.

See Also
RSA_SetPublicKey, RSA_SetPrivateKeyType1, RSA_SetPrivateKeyType2
RSA_GenerateKeys
RSAVerify_PKCS1v15

RSAVerify_PKCS1v15
Carries out the RSA-SSA signature verification scheme
of PKCS#1 v1.5.

Syntax

IppStatus ippsRSAVerify_PKCS1v15(const Ipp8u* pMsg, int msgLen, const Ipp8u* pSign,
int* pIsSignValid, const IppsRSAPublicKeyState* pKey, IppHashAlgId hashAlg, Ipp8u*
pBuffer);
IppStatus ippsRSAVerify_PKCS1v15_rmf(const Ipp8u* pMsg, int msgLen, const Ipp8u* pSign,
int* pIsSignValid, const IppsRSAPublicKeyState* pKey, const IppsHashMethod* pMethod,
Ipp8u* pBuffer);

Include Files

ippcp.h

Public Key Cryptography Functions 5

213

Parameters

pMsg Pointer to the message that has been signed.

msgLen Length of the message *pMsg in octets.

pSign Pointer to the signature string to be verified.

pIsSignValid Pointer to the verification result.

pKey Pointer to the properly initialized IppsRSAPublicKeyState context.

hashAlg Identifier of the hash algorithm. For details, see table Supported
Hash Algorithms.

pMethod Pointer to the hash method. For details, see HashMethod functions.

pBuffer Pointer to a temporary buffer of size not less than returned by the
RSA_GetBufferSizePublicKey function.

Description

The function verifies the signature generated by the RSASign_PKCS1v15 function that uses the same
hashAlg or pMethod parameter against the input message, as defined [PKCS 1.2.1].

NOTE
This function has a reduced memory footprint version. To learn more, see Reduced Memory Footprint
Functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not match
the operation.

ippStsIncompleteContextErr Indicates an error condition if the public key is not set up.

NOTE
You can set up the public key in a call to RSA_SetPublicKey.

ippStsLengthErr Indicates an error condition if any input/output length
parameters are inconsistent with one another.

ippsStsNotSupportedModeErr Indicates an error condition if the hashAlg parameter does not match
any value of IppHashAlgId listed in table Supported Hash
Algorithms.

See Also
RSA_SetPublicKey, RSA_SetPrivateKeyType1, RSA_SetPrivateKeyType2

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

214

Discrete-Logarithm-Based Cryptography Functions
This section introduces Intel® Integrated Performance Primitives (Intel® IPP) Cryptography functions allowing
for different operations with Discrete Logarithm (DL) based cryptosystem over a prime finite field GF(p). The
functions are mainly based on the [IEEE P1363A] standard. Implementation of the Digital Signature
operations is based on [FIPS PUB 186-2]. The Diffie-Hellman (DH) Agreement scheme is based on [X9.42].

All functions described in this section employ the IppsDLPState context as operational vehicle that carries
domain parameters of the DL cryptosystem, a pair of keys, and working buffers.

The application code intended for executing typical operations should perform the following sequence of
operations:

1. Call the function DLPGetSize to get the size required to configure the IppsDLPState context.
2. Ensure that the required memory space is properly allocated. With the allocated memory, call the

DLPInit function to initialize the context of the DL-based cryptosystem.
3. Set domain parameters of the DL-based cryptosystem by calling the DLPSet function, or generate

domain parameters by calling the DLPGenerateDSA or DLPGenerateDH.
4. Call one of the functions DLPSignDSA, DLPVerifyDSA, and DLPSharedSecretDH to compute digital

signature, to verify authenticity of the digital signature, and to compute the shared element
accordingly.

5. Clean up secret data stored in the context.
6. Free the memory allocated for the IppsDLPState context by calling the operating system memory free

service function unless the context is no longer needed.

The IppsDLPState context is position-dependent. The DLPPack/DLPUnpack functions transform the
position-dependent context to a position-independent form and vice versa.

See Also
Data Security Considerations

DLPGetSize
Gets the size of the IppsDLPState context.

Syntax

IppStatus ippsDLPGetSize(int peBits, int reBits, int *pSize);

Include Files

ippcp.h

Parameters

peBits Bitsize of the GF(p) element (that is, the length of the DL-based
cryptosystem in bits)

reBits Bitsize of the multiplicative subgroup GF(r).

pSize Pointer to the IppsDLPState context size in bytes.

Description

The function gets the IppsDLPState context size in bytes and stores in *pSize. DL-based cryptosystem
over GF(p) assumes that r/p -1 where both p and r are primes.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

Public Key Cryptography Functions 5

215

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsSizeErr Indicates an error condition if peBits≤reBits.

DLPInit
Initializes user-supplied memory as the
IppsDLPState context for future use.

Syntax

IppStatus ippsDLPInit(int peBits, int reBits, IppsDLPState* pCtx);

Include Files

ippcp.h

Parameters

peBits Bitsize of the GF(p) element (that is, the length of the DL-based
cryptosystem in bits)

reBits Bitsize of the multiplicative subgroup GF(r).

pCtx Pointer to the IppsDLPState context being initialized.

Description

The function initializes the memory pointed by pCtx as the IppsDLPState context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsSizeErr Indicates an error condition if peBits≤reBits.

See Also
Data Security Considerations

DLPPack, DLPUnpack
Packs/unpacks the IppsDLPState context into/from a
user-defined buffer.

Syntax

IppStatus ippsDLPPack (const IppsDLPState* pCtx, Ipp8u* pBuffer);
IppStatus ippsDLPUnpack (const Ipp8u* pBuffer, IppsDLPState* pCtx);

Include Files

ippcp.h

Parameters

pCtx Pointer to the IppsDLPState context.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

216

pBuffer Pointer to the user-defined buffer.

Description

The DLPPack function transforms the *pCtx context to a position-independent form and stores it in the the
*pBuffer buffer. The DLPUnpack function performs the inverse operation, that is, transforms the contents of
the *pBuffer buffer into a normal IppsDLPState context. The DLPPack and DLPUnpack functions enable
replacing the position-dependent IppsDLPState context in the memory.

Call the DLPGetSize function prior to DLPPack/DLPUnpack to determine the size of the buffer.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

DLPSet
Sets up domain parameters of the DL-based
cryptosystem over GF(p).

Syntax

IppStatus ippsDLPSet(const IppsBigNumState* pP, const IppsBigNumState* pQ, const
IppsBigNumState* pG, IppsDLPState* pCtx);

Include Files

ippcp.h

Parameters

pP Pointer to the characteristic p of the prime finite field GF(p).

pQ Pointer to the characteristic q of the multiplicative subgroup GF(q).

pG Pointer to the generator G of the multiplicative subgroup GF(r).

pCtx Pointer to the cryptosystem context.

Description

The function sets up DL-based cryptosystem domain parameters into the cryptosystem context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsRangeErr Indicates an error condition if any of the Big Numbers specified
by pP, pR, and pG is too big to be stored in the IppsDLPState
context.

Public Key Cryptography Functions 5

217

DLPGet
Retrieves domain parameters of the DL-based
cryptosystem over GF(p).

Syntax

IppStatus ippsDLPGet(IppsBigNumState* pP, IppsBigNumState* pQ, IppsBigNumState* pG,
IppsDLPState* pCtx);

Include Files

ippcp.h

Parameters

pP Pointer to the characteristic p of the prime finite field GF(p).

pQ Pointer to the characteristic q of the multiplicative subgroup GF(q).

pG Pointer to the generator G of the multiplicative subgroup GF(r).

pCtx Pointer to the cryptosystem context.

Description

The function retrieves DL-based cryptosystem domain parameters into the cryptosystem context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsIncompleteContextErr Indicates an error condition if the cryptosystem context has
not been properly set up.

ippStsRangeErr Indicates an error condition if any of the Big Numbers specified
by pP, pR, and pG is too small for the DL parameter.

DLPSetDP
Sets up a particular domain parameter of the DL-
based cryptosystem over GF(p).

Syntax

IppStatus ippsDLPSetDP(const IppsBigNumState* pDP, IppDLPKeyTag tag, IppsDLPState*
pCtx);

Include Files

ippcp.h

Parameters

pDP Pointer to the domain parameter value to be set.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

218

tag Tag specifying the desired domain parameter.

pCtx Pointer to the cryptosystem context.

Description

The function assigns the value specified by pDP to a particular domain parameter of the DL-based
cryptosystem. The domain parameter to be set up is determined by tag as follows:

• If tag == IppDLPkeyP, the function assigns value to the characteristic p, the size of the prime finite field
GF(p).

• If tag == IppDLPkeyR, the function assigns value to the characteristic r, the prime divisor of (p-1) and
the order of g.

• If tag == IppDLPkeyG, the function assigns value to the characteristic g, the element of GF(p)
generating a multiplicative subgroup of order r.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsRangeErr Indicates an error condition if the Big Number specified by pDP
is too big to be stored in the IppsDLPState context.

ippStsBadArgErr Indicates an error condition if some of the function parameters
are invalid:

 Big Number specified by pDP is negative
 Domain parameter specified by tag does not match the

IppsDLPState context.

DLPGetDP
Retrieves a particular domain parameter of the DL-
based cryptosystem over GF(p).

Syntax

IppStatus ippsDLPGetDP(IppsBigNumState* pDP, IppDLPKeyTag tag, const IppsDLPState*
pCtx);

Include Files

ippcp.h

Parameters

pDP Pointer to the output Big Number context.

tag Tag specifying the domain parameter to be retrieved.

pCtx Pointer to the cryptosystem context.

Public Key Cryptography Functions 5

219

Description

The function retrieves value of a particular domain parameter of the DL-based cryptosystem from the
IppsDLPState context and stores the value in the Big Number context *pDP. The domain parameter to be
retrieved is determined by tag as follows:

• If tag == IppDLPkeyP, the function retrieves value of the characteristic p, the size of the prime finite
field GF(p).

• If tag == IppDLPkeyR, the function retrieves value of the characteristic r, the prime divisor of (p-1) and
the order of g.

• If tag == IppDLPkeyG, the function retrieves value of the characteristic g, the element of GF(p)
generating a multiplicative subgroup of order r.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsIncompleteContextErr Indicates an error condition if the cryptosystem context has
not been properly set up.

ippStsOutOfRangeErr Indicates an error condition if the Big Number specified by pDP
is too small for the DL parameter.

ippStsBadArgErr Indicates an error condition if the domain parameter specified
by the tag does not match the IppsDLPState context.

DLPGenKeyPair
Generates a private key and computes public keys of
the DL-based cryptosystem over GF(p).

Syntax

IppStatus ippsDLPGenKeyPair(IppsBigNumState* pPrivate, IppsBigNumState* pPublic,
IppsDLPState* pCtx, IppBitSupplier rndFunc, void* pRndParam);

Include Files

ippcp.h

Parameters

pPrivate Pointer to the private key privKey.

pPublic Pointer to the public key pubKey.

pCtx Pointer to the cryptosystem context.

rndFunc Specifed Random Generator.

pRndParam Pointer to the Random Generator context.

Description

The function generates a private key privKey and computes a public key pubKey of the DL-based
cryptosystem. The function employs specified rndFunc Random Generator to generate a pseudorandom
private key. The value of the private key privKey is a random number that lies in the range of [2,R-2].

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

220

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsIncompleteContextErr Indicates an error condition if the cryptosystem context has
not been properly set up.

ippStsRangeErr Indicates an error condition if any of the Big Numbers specified
by pPrivate and pPublic is too small for the DL key.

DLPPublicKey
Computes a public key from the given private key of
the DL-based cryptosystem over GF(p).

Syntax

IppStatus ippsDLPPublicKey(const IppsBigNumState* pPrivate, IppsBigNumState* pPublic,
IppsDLPState* pCtx);

Include Files

ippcp.h

Parameters

pPrivate Pointer to the input private key privKey.

pPublic Pointer to the output public key pubKey.

pCtx Pointer to the cryptosystem context.

Description

The function computes a public key pubKey of the DL-based cryptosystem.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsIncompleteContextErr Indicates an error condition if the cryptosystem context has
not been properly set up.

ippStsInvalidPrivateKey Indicates an error condition if the privKey has an illegal value.

ippStsRangeErr Indicates an error condition if Big Number specified by pPublic
is too small for the DL public key.

Public Key Cryptography Functions 5

221

DLPValidateKeyPair
Validates private and public keys of the DL-based
cryptosystem over GF(p).

Syntax

IppStatus ippsDLPValidateKeyPair(const IppsBigNumState* pPrivate, const
IppsBigNumState* pPublic, IppDLResult* pResult, IppsDLPState* pCtx);

Include Files

ippcp.h

Parameters

pPrivate Pointer to the input private key privKey.

pPublic Pointer to the output public key pubKey.

pResult Pointer to the validation result.

pCtx Pointer to the cryptosystem context.

Description

The function validates the private key privKey and the public key pubKey of the DL-based cryptosystem. The
result of the validation is stored in the *pResult and may be assigned to one of the enumerators listed
below:

ippDLValid Validation has passed successfully.

ippDLInvalidPrivateKey (1 < private < (R - 1)) is false.

ippDLInvalidPublicKey (1 < public≤ (P - 1)) is false.

ippDLInvalidKeyPair public != G^private (mod P).

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsIncompleteContextErr Indicates an error condition if the cryptosystem context has
not been properly set up.

DLPSetKeyPair
Sets private and/or public keys of the DL-based
cryptosystem over GF(p).

Syntax

IppStatus ippsDLPSetKeyPair(const IppsBigNumState* pPrivate, const IppsBigNumState*
pPublic, IppsDLPState* pCtx);

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

222

Include Files

ippcp.h

Parameters

pPrivate Pointer to the input private key privKey.

pPublic Pointer to the output public key pubKey.

pCtx Pointer to the cryptosystem context.

Description

The function stores the private key priveKey and public key pubKey in the cryptosystem context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsIncompleteContextErr Indicates an error condition if the cryptosystem context has
not been properly set up.

DLPGenerateDSA
Generates domain parameters of the DL-based
cryptosystem over GF(p) to use DSA.

Syntax

IppStatus ippsDLPGenerateDSA(const IppsBigNumState* pSeedIn, int nTrials, IppsDLPState*
pCtx, IppsBigNumState* pSeedOut, int* pCounter, IppBitSupplier rndFunc, void*
pRndParam);

Include Files

ippcp.h

Parameters

pSeedIn Pointer to the input Seed.

nTrials Security parameter specified for the Miller-Rabin probable primality.

pCtx Pointer to the cryptosystem context.

pSeedOut Pointer to the output Seed value (if requested).

pCounter Pointer to the counter value (if requested).

rndFunc Specified Random Generator.

pRndParam Pointer to the Random Generator context.

Public Key Cryptography Functions 5

223

Description

The function generates domain parameters of the DL-based cryptosystem over GF(p) to use DSA. The
function uses a procedure specified in [FIPS PUB 186-2] for generating both a 160-bit randomized prime r
and a LpeBits prime p based on the input *pSeedIn.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsSizeErr Indicates an error condition if: peBits < 512, peBits is not
divided by 64, reBits != 160.

ippStsRangeErr Indicates an error condition if: bitsize of the input Seed value is
less than 160, bitsize of the input Seed value is greater than
peBits, not enough space to store the output Seed value (if
requested).

ippStsBadArgErr Indicates an error condition if nTrials < 1.

ippStsInsuffucientEntropy Indicates a warning condition if prime generation fails due to a
poor choice of the entropy.

DLPValidateDSA
Validates domain parameters of the DL-based
cryptosystem over GF(p) to use DSA.

Syntax

IppStatus ippsDLPValidateDSA(int nTrials, IppDLResult* pResult, IppsDLPState* pCtx,
IppBitSupplier rndFunc, void* pRndParam);

Include Files

ippcp.h

Parameters

nTrials Security parameter specified for the Miller-Rabin probable primality.

pResult Pointer to the validation result.

pCtx Pointer to the cryptosystem context.

rndFunc Specified Random Generator.

pRndParam Pointer to the Random Generator context.

Description

The function validates domain parameters of the DL-based cryptosystem over GF(p) to use DSA. The result
of validation is stored in the *pResult and may be assigned to one of the enumerators listed below:

ippDLValid Validation has passed successfully.

ippDLBaseIsEven P is even.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

224

ippDLOrderIsEven R is even.

ippDLInvalidBaseRange P≤ 2peBits-1or P≥ 2peBits.

ippDLInvalidOrderRange R≤ 2reBits-1or R≥ 2reBits.

ippDLCompositeBase P is not a prime.

ippDLCompositeOrder R is not a prime.

ippDLInvalidCofactor R is not divisible by (P -1).

ippDLInvalidGenerator (1 < G < (P -1)) is false or G^R != 1 (mod P).

To ensure that both p and r are primes, the function applies nTrial-round Miller-Rabin primality test. Test
data for primality test is provided by the specified rndFunc Random Generator.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsIncompleteContextErr Indicates an error condition if the cryptosystem context has
not been properly set up.

ippStsBadArgErr Indicates an error condition if nTrials < 1.

DLPSignDSA
Performs the DSA digital signature signing operation.

Syntax

IppStatus ippsDLPSignDSA(const IppsBigNumState* pMsg, const IppsBigNumState* pPrivate,
IppsBigNumState* pSignR, IppsBigNumState* pSignS, IppsDLPState* pCtx);

Include Files

ippcp.h

Parameters

pMsg Pointer to the message representation msgRep to be signed.

pPrivate Pointer to the signer's private key privKey.

pSignR Pointer to the r-component of the signature.

pSignS Pointer to the s-component of the signature.

pCtx Pointer to the cryptosystem context.

Description

The function performs the DSA digital signature signing operation provided that the ephemeral signer's key
pair (both private and public) was previously computed (generated by DLPGenKeyPair or computed by
DLPPublicKey) and then set up into the DLP context by the DLPSetKeyPair function.

Public Key Cryptography Functions 5

225

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsIncompleteContextErr Indicates an error condition if the cryptosystem context has
not been properly set up.

ippStsMessageErr Indicates an error condition if the value of msgRep is greater
than the multiplicative subgroup characteristic (q).

ippStsInvalidPrivateKey Indicates an error condition if an illegal value has been
assigned to privKey.

ippStsRangeErr Indicates an error condition if any of the signature components
has not enough space.

DLPVerifyDSA
Verifies the input DSA digital signature.

Syntax

IppStatus ippsDLPVerifyDSA(const IppsBigNumState* pMsg, const IppsBigNumState* pSignR,
const IppsBigNumState* pSignS, IppDLResult* pResult, IppsDLPState* pCtx);

Include Files

ippcp.h

Parameters

pMsg Pointer to the message representation msgRep.

pSignR Pointer to the signature r-component to be verified.

pSignS Pointer to the signature s-component to be verified.

pResult Pointer to the result of the verification.

pCtx Pointer to the cryptosystem context.

Description

The function verifies the input DSA digital signature's components *pSignR and *pSignS with the supplied
message representation msgRep. Signer's public key must be stored by the DLPSetKeyPair function before
the DLPVerifyDSA operation.

The function sets the *pResult to ippDLValid if it validates the input DSA digital signature, or to
ippDLInvalidSignature if the DSA digital signature verification fails.

Example 5-9 illustrates the use of functions DLPSignDSA and DLPVerifyDSA. The example uses the
BigNumber class and functions creating some cryptographic contexts, whose source code can be found in
Appendix B.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

226

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsIncompleteContextErr Indicates an error condition if the cryptosystem context has
not been properly set up.

ippStsMessageErr Indicates an error condition if the value of msgRep is greater
than the multiplicative subgroup characteristic (q).

Example of Using Discrete-logarithm Based Primitive Functions

Use of DLPSignDSA and DLPVerifyDSA

//
 // known domain parameters
 //
 static const int M = 512; // DSA system bitsize
 static const int L = 160; // DSA order bitsize

 static
 BigNumber P("0x8DF2A494492276AA3D25759BB06869CBEAC0D83AFB8D0CF7" \
 "CBB8324F0D7882E5D0762FC5B7210EAFC2E9ADAC32AB7AAC" \
 "49693DFBF83724C2EC0736EE31C80291");

 static
 BigNumber Q("0xC773218C737EC8EE993B4F2DED30F48EDACE915F");

 static
 BigNumber G("0x626D027839EA0A13413163A55B4CB500299D5522956CEFCB" \
 "3BFF10F399CE2C2E71CB9DE5FA24BABF58E5B79521925C9C" \
 "C42E9F6F464B088CC572AF53E6D78802");

 //
 // known DSA regular key pair
 //
 static
 BigNumber X("0x2070B3223DBA372FDE1C0FFC7B2E3B498B260614");

 static
 BigNumber Y("0x19131871D75B1612A819F29D78D1B0D7346F7AA77BB62A85" \
 "9BFD6C5675DA9D212D3A36EF1672EF660B8C7C255CC0EC74" \
 "858FBA33F44C06699630A76B030EE333");

 int DSAsign_verify_sample(void)
 {
 // DLP context
 IppsDLPState *DLPState = newDLP(M, L);

 // set up DLP crypto system
 ippsDLPSet(P, Q, G, DLPState);

 // message
 Ipp8u message[] = "abc";

 // compute message digest to be signed
 Ipp8u md[SHA1_DIGEST_LENGTH/8];

Public Key Cryptography Functions 5

227

 ippsSHA1MessageDigest(message, sizeof(message)-1, md);
 BigNumber digest(0, BITS_2_WORDS(SHA1_DIGEST_LENGTH));
 ippsSetOctString_BN(md, SHA1_DIGEST_LENGTH/8, digest);

 // generate ephemeral key pair (ephX,ephY)
 BigNumber ephX(0, BITS_2_WORDS(L));
 BigNumber ephY(0, BITS_2_WORDS(M));

 IppsPRNGState* pRand = newPRNG();
 ippsDLPGenKeyPair(ephX, ephY, DLPState, ippsPRNGen, pRand);
 deletePRNG(pRand);
 //
 // generate signature
 //
 BigNumber signR(0, BITS_2_WORDS(L)); // R and S signature's component
 BigNumber signS(0, BITS_2_WORDS(L));
 ippsDLPSetKeyPair(ephX, ephY, DLPState); // set up ephemeral keys
 ippsDLPSignDSA(digest, X, // sign digest
 signR, signS,
 DLPState);

 //
 // verify signature
 //
 ippsDLPSetKeyPair(0, Y, DLPState); // set up regular public key
 IppDLResult result;
 ippsDLPVerifyDSA(digest, signR,signS, // verify
 &result, DLPState);

 // remove actual keys from context and release resource
 ippsDLPInit(M, L, DLPState);
 deleteDLP(DLPState);
 return result==ippDLValid;
 }

DLPGenerateDH
Generates domain parameters of the DL-based
cryptosystem over GF(p) to use the DH Agreement
scheme.

Syntax

IppStatus ippsDLPGenerateDH(const IppsBigNumState* pSeedIn, int nTrials, IppsDLPState*
pCtx, IppsBigNumState* pSeedOut, int* pCounter, IppBitSupplier rndFunc, void*
pRndParam);

Include Files

ippcp.h

Parameters

pSeedIn Pointer to the input Seed.

nTrials Security parameter specified for the Miller-Rabin probable primality.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

228

pCtx Pointer to the cryptosystem context.

pSeedOut Pointer to the output Seed value (if requested).

pCounter Pointer to the counter value (if requested).

rndFunc Specified Random Generator.

pRndParam Pointer to the Random Generator context.

Description

The function generates domain parameters of the DL-based cryptosystem over GF(p) to use Diffie-Hellman
Agreement scheme. The function uses a procedure specified in [X9.42] for generating both randomized prime
p and r based on the input *pSeedIn.

Generated primes r and p are further validated through a nTrial-round Miller-Rabin primality test. Both
generation and primality test procedures employ specified rndFunc Random Generator.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsSizeErr Indicates an error condition if: peBits < 512 or reBits < 160,
peBits is not divided by 256.

ippStsRangeErr Indicates an error condition if: bitsize of the input Seed value is
less than reBits, not enough space to store the output Seed
value (if requested).

ippStsBadArgErr Indicates an error condition if nTrials < 1.

ippStsInsuffucientEntropy Indicates a warning condition if prime generation fails due to a
poor choice of the entropy.

DLPValidateDH
Validates domain parameters of the DL-based
cryptosystem over GF(p) to use the DH Agreement
scheme.

Syntax

IppStatus ippsDLPValidateDH(int nTrials, IppDLResult* pResult, IppsDLPState* pCtx,
IppBitSupplier rndFunc, void* pRndParam);

Include Files

ippcp.h

Parameters

nTrials Security parameter specified for the Miller-Rabin probable primality.

pResult Pointer to the validation result.

pCtx Pointer to the cryptosystem context.

Public Key Cryptography Functions 5

229

rndFunc Specified Random Generator.

pRndParam Pointer to the Random Generator context.

Description

The function validates domain parameters of the DL-based cryptosystem over GF(p) to use Diffie-Hellman
Agreement scheme. The result of validation is stored in the *pResult and may be assigned to one of the
enumerators listed below:

ippDLValid Validation has passed successfully.

ippDLBaseIsEven P is even.

ippDLOrderIsEven R is even.

ippDLInvalidBaseRange P≤ 2peBits-1or P≥ 2peBits.

ippDLInvalidOrderRange R≤ 2reBits-1or R≥ 2reBits.

ippDLCompositeBase P is not a prime.

ippDLCompositeOrder R is not a prime.

ippDLInvalidCofactor R is not divisible by (P -1).

ippDLInvalidGenerator (1 < G < (P -1)) is false or G^R != 1 (mod P).

To ensure that both p and r are primes, the function applies nTrial-round Miller-Rabin primality test. Test
data for primality test is provided by the specified rndFunc Random Generator.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsIncompleteContextErr Indicates an error condition if the cryptosystem context has
not been properly set up.

ippStsBadArgErr Indicates an error condition if nTrials < 1.

DLPSharedSecretDH
Computes a shared field element by using the Diffie-
Hellman scheme.

Syntax

IppStatus ippsDLPSharedSecretDH(const IppsBigNumState* pPrivateA, const
IppsBigNumState* pPublicB, IppsBigNumState* pShare, IppsDLPState* pCtx);

Include Files

ippcp.h

Parameters

pPrivateA Pointer to your own private key privateKeyA.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

230

pPublicB Pointer to the public key pubKeyB belonging to the other party.

pShare Pointer to the shared secret element Share.

pCtx Pointer to the cryptosystem context.

Description

The function computes a shared secret element FG(p) pubKeyBprivateKeyA(modp).

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the context parameter does not
match the operation.

ippStsIncompleteContextErr Indicates an error condition if the cryptosystem context has
not been properly set up.

ippStsRangeErr Indicates an error condition if Share does not have enough
space.

DLGetResultString
For DL-based cryptosystems, returns the character
string corresponding to code that represents the result
of validation.

Syntax

const char* ippsDLGetResultString(IppDLResult code);

Include Files

ippcp.h

Parameters

code The code of the validation result.

Description

For DL-based cryptosystems, the function returns the character string corresponding to code that represents
the result of validation.

Return Values

Possible values of code and the corresponding character strings are as follows:

default "Unknown DL result"

ippDLValid "Validation passed successfully"

ippDLBaseIsEven "Base is even"

ippDLOrderIsEven "Order is even"

ippDLInvalidBaseRange "Invalid Base (P) range"

ippDLInvalidOrderRange "Invalid Order (R) range"

Public Key Cryptography Functions 5

231

ippDLCompositeBase "Composite Base (P)"

ippDLCompositeOrder "Composite Order (R)"

ippDLInvalidCofactor "R does not divide (P -1)"

ippDLInvalidGenerator "1 != G^R (mod P)"

ippDLInvalidPrivateKey "Invalid Private Key"

ippDLInvalidPublicKey "Invalid Public Key"

ippDLInvalidKeyPair "Invalid Key Pair"

ippDLInvalidSignature "Invalid Signature"

See Also
DLPValidateDH
DLPValidateDSA
DLPValidateKeyPair

Elliptic Curve Cryptography Functions
Cryptography Intel® Integrated Performance Primitives (Intel® IPP) Cryptography offers functions allowing for
different operations with an elliptic curve defined over a prime finite field GF(p).

The functions are based on standards [IEEE P1363A], [SEC1], [ANSI], and [SM2].

Intel IPP Cryptography supports some elliptic curves with fixed parameters, the so-called standard or
recommended curves. These parameters are chosen so that they provide a sufficient level of security and
enable efficient implementation.

Functions Based on GF(p)
This section describes functions designed to specify the elliptic curve cryptosystem and perform various
operations on the elliptic curve defined over a prime finite field. The examples of the operations are shown
below:

• Setting up operations: ECCPSet sets up elliptic curve domain parameters. ECCPSetKeyPair sets a pair of
public and private keys for the given cryptosystem.

• Computation operations: ECCPAddPoint adds two points on the elliptic curve. ECCPMulPointScalar
performs the scalar multiplication of a point on the elliptic curve. ECCPSignDSA computes the digital
signature of a message.

• Validation operations: ECCPValidate checks validity of the elliptic curve domain parameters.
ECCPValidateKeyPair validates correctness of the public and private keys.

• Generation operations: ECCPGenKeyPair generates a private key and computes a public key for the given
elliptic cryptosystem.

• Retrieval operations: ECCPGet retrieves elliptic curve domain parameters. ECCPGetOrderBitSize
retrieves the size of a base point in bytes.

All functions described in this section employ a context IppsECCPState that catches several auxiliary
components specifying operations performed on the elliptic curve or entire elliptic cryptosystem. ECCP stands
for Elliptic Curve Cryptography Prime and means that all functions whose name include this abbreviation
perform operations over a prime finite field GF(p).

The IppECCType enumerator lists standard elliptic curves supported. You can select a particular type in a call
to ECCPSetStd.

The table below associates each value of IppECCType with parameters of the elliptic curve and provides a
reference to the appropriate specification.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

232

Standard Elliptic Curves

Value of IppECCType Name of the Curve Reference

ippECarbitrary Not applicable No reference because of arbitrary
parameters.

ippECstd112r1 secp112r1 [SEC2]

ippECstd112r2 secp112r2 [SEC2]

ippECstd128r1 secp128r1 [SEC2]

ippECstd128r2 secp128r2 [SEC2]

ippECstd160r1 secp160r1 [SEC2]

ippECstd160r2 secp160r2 [SEC2]

ippECstd192r1 secp192r1 [SEC2]

ippECstd224r1 secp224r1 [SEC2]

ippECstd256r1 secp256r1 [SEC2]

ippECstd384r1 secp384r1 [SEC2]

ippECstd521r1 secp521r1 [SEC2]

ippECstdSM2 SM2 [SM2]

For more information on parameters recommended for the functions, see [SEC2] and [SM2].

Important
To provide minimum security of the elliptic curve cryptosystem over a prime finite field, the length of
the underlying prime must be equal to or greater than 160 bits.

ECCPGetSize
Gets the size of the IppsECCPState context.

Syntax

IppStatus ippsECCPGetSize(int feBitSize, int *pSize);

Include Files

ippcp.h

Parameters

feBitSize Size (in bits) of the underlying prime number.

pSize Pointer to the size (in bytes) of the context.

Description

The function computes the size of the context in bytes for the elliptic cryptosystem over a prime finite field
GF (p).

Context is a structure IppsECCPState designed to store information about the cryptosystem status.

Public Key Cryptography Functions 5

233

NOTE
For security reasons, the length of the underlying prime number is restricted to 1 kilobit.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsSizeErr Indicates an error condition if the value of the parameter
feBitSize is less than 2.

ippStsLengthErr Indicates an error condition if the value of the feBitsize
parameter is less than 2 or greater than 1024.

ECCPGetSizeStd
Gets the size of the IppsECCPState context for a
standard elliptic curve.

Syntax

IppStatus ippsECCPGetSizeStd128r1(int* pSize);
IppStatus ippsECCPGetSizeStd128r2(int* pSize);
IppStatus ippsECCPGetSizeStd192r1(int* pSize);
IppStatus ippsECCPGetSizeStd224r1(int* pSize);
IppStatus ippsECCPGetSizeStd256r1(int* pSize);
IppStatus ippsECCPGetSizeStd384r1(int* pSize);
IppStatus ippsECCPGetSizeStd521r1(int* pSize);
IppStatus ippsECCPGetSizeStdSM2(int* pSize);

Include Files

ippcp.h

Parameters

pSize Pointer to the size (in bytes) of the IppsECCPState context for a
standard elliptic curve.

Description

Each of these functions computes the size of the context in bytes for the elliptic curve cryptosystem based on
a specific standard elliptic curve. For a list of these curves, see table Standard Elliptic Curves.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

234

ECCPInit
Initializes the context for the elliptic curve
cryptosystem over GF(p).

Syntax

IppStatus ippsECCPInit(int feBitSize, IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

feBitSize Size (in bits) of the underlying prime number.

pECC Pointer to the cryptosystem context.

Description

The function initializes the context of the elliptic curve cryptosystem over the prime finite field GF(p).

Context is a structure IppsECCPState designed to store information about the cryptosystem status.

NOTE
For security reasons, the length of the underlying prime number is restricted to 1 kilobit.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsSizeErr Indicates an error condition if the value of the parameter
feBitSize is less than 2.

ippStsLengthErr Indicates an error condition if the value of the feBitsize
parameter is less than 2 or greater than 1024.

See Also
Data Security Considerations

ECCPInitStd
Initializes the context for the cryptosystem based on a
standard elliptic curve.

Syntax

IppStatus ippsECCPInitStd128r1(IppsECCPState* pECC);
IppStatus ippsECCPInitStd128r2(IppsECCPState* pECC);
IppStatus ippsECCPInitStd192r1(IppsECCPState* pECC);
IppStatus ippsECCPInitStd224r1(IppsECCPState* pECC);
IppStatus ippsECCPInitStd256r1(IppsECCPState* pECC);
IppStatus ippsECCPInitStd384r1(IppsECCPState* pECC);
IppStatus ippsECCPInitStd521r1(IppsECCPState* pECC);

Public Key Cryptography Functions 5

235

IppStatus ippsECCPInitStdSM2(IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

pECC Pointer to the cryptosystem context based on a standard elliptic
curve.

Description

Each of these functions initializes the context of the elliptic curve cryptosystem based on a specific standard
elliptic curve. For a list of these curves, see table Standard Elliptic Curves.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

See Also
Data Security Considerations

ECCPBindGxyTblStd
Enable the use of base point-based pre-computed
tables of standard elliptic curves.

Syntax

IppStatus ippsECCPBinfGxyTblStd192r1(IppsECCPState* pEC);
IppStatus ippsECCPBinfGxyTblStd224r1(IppsECCPState* pEC);
IppStatus ippsECCPBinfGxyTblStd256r1(IppsECCPState* pEC);
IppStatus ippsECCPBinfGxyTblStd384r1(IppsECCPState* pEC);
IppStatus ippsECCPBinfGxyTblStd521r1(IppsECCPState* pEC);
IppStatus ippsECCPBinfGxyTblStdSM2(IppsECCPState* pEC);

Include Files

ippcp.h

Parameters

pEC Pointer to the context of the elliptic curve

Description

The functions ECCPValidate, ECCPGenKeyPair and ECCPVerify perform time-consuming math operations
on the elliptic curve base point. In Intel IPP Cryptography-supported standards, the base point is fixed, and
you may use pre-computed values.

The function ECCPBindGxyTbl stores a pointer the to the pre-computed base point data in the elliptic curve
context. For performance-critical applications, consider calling ECCPBindGxyTbl at the completion of elliptic
curve initialization. The use of ECCPBindGxyTbl improves the performance of ECCPValidate,
ECCPGenKeyPair and ECCPVerify up to 2 times.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

236

NOTE
The size of the pre-computed table is quite large (~100-150KB), so using ECCPBindGxyTbl increases
the size of your application.

Important
The set of ECCPBindGxyTbl functions covers only curves defined by the following standards: NIST
P-192r1, NIST P-224r1, NIST P-256r1, NIST P-384r1, NIST P521r1, and SM2. Other standard elliptic
curves supported in Intel IPP Cryptography do not have a similar mechanism because they do not
match modern security strength requirements.

Return Values

ippsStsNoErr Indicates no error. Any other message indicates an error or
warning.

ippsStsNullPtrErr Indicates an error condition if pEC is NULL.

ippsStsContextMatchErr Indicates an error condition if the elliptic curve context is not
valid.

ECCPSet
Sets up elliptic curve domain parameters over GF(p).

Syntax

IppStatus ippsECCPSet(const IppsBigNumState* pPrime, const IppsBigNumState* pA, const
IppsBigNumState* pB, const IppsBigNumState* pGX, const IppsBigNumState* pGY, const
IppsBigNumState* pOrder, int cofactor, IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

pPrime Pointer to the characteristic p of the prime finite field GF(p).

pA Pointer to the coefficient A of the equation defining the elliptic
curve.

pB Pointer to the coefficient B of the equation defining the elliptic
curve.

pGX Pointer to the x-coordinate of the elliptic curve base point.

pGY Pointer to the y-coordinate of the elliptic curve base point.

pOrder Pointer to the order of the elliptic curve base point.

cofactor Cofactor.

pECC Pointer to the context of the cryptosystem.

Description

The function sets up the elliptic curve domain parameters over a prime finite field GF(p). These are as
follows:

• pPrime sets up the characteristic p of a finite field GF(p) where p is a prime number.

Public Key Cryptography Functions 5

237

• pA, pB set up the coefficients A and B of the equation defining the elliptic curve:

y2 = x3 + A· x + B (mod p).
• pGX, pGY are pointers to the affine coordinates of the elliptic curve base point G.
• pOrder is a pointer to the order n of the elliptic curve base point G such that n · G = O, where O is the

point at infinity and n is a prime number.
• cofactor sets up the ratio h of a general number of points #E on the elliptic curve (including the point at

infinity) to the order n of the base point:

h = #E/n.

The domain parameters are set in the cryptosystem context which must be already created by the
ECCPGetSize and ECCPInit functions.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by
pPrime, pA, pB, pGX, pGY, pOrder, and pECC is not valid.

ippStsRangeErr Indicates an error condition if of one of the parameters pointed
by pPrime, pA, pB, pGX, pGY, and pOrder cannot embed the
feBitSize bits length or the value of cofactor is less than 1.

ECCPSetStd
Sets up a recommended set of domain parameters for
an elliptic curve over GF(p).

Syntax

IppStatus ippsECCPSetStd128r1(IppsECCPState* pECC);
IppStatus ippsECCPSetStd128r2(IppsECCPState* pECC);
IppStatus ippsECCPSetStd192r1(IppsECCPState* pECC);
IppStatus ippsECCPSetStd224r1(IppsECCPState* pECC);
IppStatus ippsECCPSetStd256r1(IppsECCPState* pECC);
IppStatus ippsECCPSetStd384r1(IppsECCPState* pECC);
IppStatus ippsECCPSetStd521r1(IppsECCPState* pECC);
IppStatus ippsECCPSetStdSM2(IppsECCPState* pECC);
IppStatus ippsECCPSetStd(IppECCType flag, IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

flag Set specifier.

pECC Pointer to the cryptosystem context.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

238

Description

Each of the ECCPSetStd functions sets a recommended set of domain parameters for an elliptic curve over a
prime finite field GF(p).

Functions with One Parameter

All the functions but the last one set domain parameters for standard elliptic curves, listed in table Standard
Elliptic Curves. Before a call to each of these functions, create the cryptosystem context by calling the
appropriate ECCPGetSizeStd and ECCPInitStd functions.

Function with Two Parameters

For the last function, the value of the parameter flag defines the set of domain parameters. Possible values
of flag are as follows:

IppECCPStd112r1 For the cryptosystem context where feBitSize==112

IppECCPStd112r2 For the cryptosystem context where feBitSize==112

IppECCPStd128r1 For the cryptosystem context where feBitSize==128

IppECCPStd128r2 For the cryptosystem context where feBitSize==128

IppECCPStd160r1 For the cryptosystem context where feBitSize==160

IppECCPStd160r2 For the cryptosystem context where feBitSize==160

IppECCPStd192r1 For the cryptosystem context where feBitSize==192

IppECCPStd224r1 For the cryptosystem context where feBitSize==224

IppECCPStd256r1 For the cryptosystem context where feBitSize==256

IppECCPStd384r1 For the cryptosystem context where feBitSize==384

IppECCPStd521r1 For the cryptosystem context where feBitSize==521.

For more information on parameter values for the recommended elliptic curves, see [SEC2].

Before a call to this function, create the cryptosystem context by calling the ECCPGetSize and ECCPInit
functions. The value of feBitSize is applied when these functions are called and predetermines the choice
of the flag value.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the cryptosystem context is not
valid.

ippStsECCInvalidFlagErr Indicates an error condition if the value of the parameter flag
is not valid.

ECCPGet
Retrieves elliptic curve domain parameters over
GF(p).

Syntax

IppStatus ippsECCPGet(IppsBigNumState* pPrime, IppsBigNumState* pA, IppsBigNumState*
pB, IppsBigNumState* pGX,IppsBigNumState* pGY, IppsBigNumState* pOrder, int* cofactor,
IppsECCPState* pECC);

Public Key Cryptography Functions 5

239

Include Files

ippcp.h

Parameters

pPrime Pointer to the characteristic p of the prime finite field GF(p).

pA Pointer to the coefficient A of the equation defining the elliptic
curve.

pB Pointer to the coefficient B of the equation defining the elliptic
curve.

pGX Pointer to the x-coordinate of the elliptic curve base point.

pGY Pointer to the y-coordinate of the elliptic curve base point.

pOrder Pointer to the order n of the elliptic curve base point.

cofactor Pointer to the cofactor h.

pECC Pointer to the context of the cryptosystem.

Description

The function retrieves elliptic curve domain parameters from the context of the elliptic cryptosystem over a
finite field GF(p) and allocates them in accordance with the pointers pPrime, pA, pB, pGX, pGY, pOrder, and
cofactor. The elliptic curve domain parameters must be hitherto defined by one of the functions: ECCPSet
or ECCPSetStd.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by
pPrime, pA, pB, pGX, pGY, pOrder, or pECC is not valid.

ippStsRangeErr Indicates an error condition if the memory size of one of the
parameters pointed by pPrime, pA, pB, pGX, pGY, pOrder, and
pECC is less than the value of feBitSize in the ECCPInit
function.

ECCPGetOrderBitSize
Retrieves order size of the elliptic curve base point
over GF(p) in bits.

Syntax

IppStatus ippsECCPGetOrderBitSize(int* pBitSize, IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

pBitSize Pointer to the size of the base point (in bits).

pECC Pointer to the cryptosystem context.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

240

Description

The function retrieves the order size (in bits) of the elliptic curve base point G from the context of elliptic
cryptosystem over a prime finite field GF(p) and allocates it in accordance with the pointer pBitsSize. The
elliptic curve domain parameters must be hitherto defined by one of the functions: ECCPSet or ECCPSetStd.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the cryptosystem contextis not
valid.

ECCPValidate
Checks validity of the elliptic curve domain parameters
over GF(p).

Syntax

IppStatus ippsECCPValidate(int nTrials, IppECResult* pResult, IppsECCPState* pECC,
IppBitSupplier rndFunc, void* pRndParam);

Include Files

ippcp.h

Parameters

nTrials A number of attempts made to check the number for primality.

pResult Pointer to the result received upon the check of the elliptic curve
domain parameters.

pECC Pointer to the cryptosystem context.

rndFunc Specified Random Generator.

pRndParam Pointer to Random Generator context.

Description

The function checks validity of the elliptic curve domain parameters over a prime finite field GF(p) and stores
the result of the check in accordance with the pointer pResult.

Elliptic curve domain parameters must be hitherto defined by one of the functions: ECCPSet or ECCPSetStd.
The purpose of the parameters rndFunc, pRndParam, and nTrials is analogous to that of the parameters
rndFunc, pRndParam, and nTrials in the PrimeTest function.

The result of the elliptic curve domain parameters check can take one of the following values:

ippECValid The parameters are valid.

ippECCompositeBase The prime finite field characterisitc p is a composite
number.

ippECIsNotAG The solutions of the elliptic curve equation do not form the
abelian group because the only requirement that 4 ·a3

+ 27 ·b3≠0 is not met.

Public Key Cryptography Functions 5

241

ippECPointIsNotValid The base point G is not on the elliptic curve.

ippECCompositeOrder The order n of the base point G is a composite number.

ippECInvalidOrder The order n of the base point G is not valid because the
requirement that n ·G = O where O is the point at infinity is not
met.

ippECIsWeakSSSA The order n of the base point G is equal to the finite field
characteristic p.

ippECIsWeakMOV The curve is excluded because it is subject to the MOV
reduction attack.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by c
or pECC is not valid.

ippStsBadArgErr Indicates an error condition if the memory size of the
parameter seed is less than five words (32 bytes in each) or
the value of the parameter nTrails is less than 1.

ECCPPointGetSize
Gets the size of the IppsECCPPoint context in bytes
for a point on the elliptic curve point defined over
GF(p).

Syntax

IppStatus ippsECCPPointGetSize(int feBitSize, int* pSize);

Include Files

ippcp.h

Parameters

feBitSize Size (in bits) of the field element.

pSize Pointer to the context size.

Description

The function computes the context size in bytes for a point on the elliptic curve defined over a prime finite
field GF(p).

Context is a structure IppsECCPPoint intended for storing the information about a point on the elliptic curve
defined over GF(p).

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

242

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsSizeErr Indicates an error condition if the value of the parameter
feBitSize is less than 2.

ECCPPointInit
Initializes the context for a point on the elliptic curve
defined over GF(p).

Syntax

IppStatus ippsECCPPointInit(int feBitSize, IppsECCPPointState* pPoint);

Include Files

ippcp.h

Parameters

feBitSize Size (in bits) of the field element.

pPoint Pointer to the context of the elliptic curve point.

Description

The function initializes the context for a point on the elliptic curve defined over a finite field GF(p).

Context is a structure IppsECCPPointState intended for storing the information about a point on the elliptic
curve defined over GF(p).

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsSizeErr Indicates an error condition if the value of the parameter
feBitSize is less than 2.

See Also
Data Security Considerations

ECCPSetPoint
Sets coordinates of a point on the elliptic curve
defined over GF(p).

Syntax

IppStatus ippsECCPSetPoint(const IppsBigNumState* pX, const IppsBigNumState* pY,
IppsECCPPointState* pPoint, IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

pX Pointer to the x-coordinate of the point on the elliptic curve.

Public Key Cryptography Functions 5

243

pY Pointer to the y-coordinate of the point on the elliptic curve.

pPoint Pointer to the context of the elliptic curve point.

pECC Pointer to the context of the elliptic cryptosystem.

Description

The function sets the coordinates of a point on the elliptic curve defined over a prime finite field GF(p).

The context of the point on the elliptic curve must be already created by functions: ECCPPointGetSize and
ECCPPointInit. The elliptic curve domain parameters must be hitherto defined by one of the functions:
ECCPSet or ECCPSetStd.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by
pX, pY, pPoint, or pECC is not valid.

ECCPSetPointAtInfinity
Sets the point at infinity.

Syntax

IppStatus ippsECCPSetPointAtInfinity(IppsECCPPointState* pPoint, IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

pPoint Pointer to the context of the elliptic curve point.

pECC Pointer to the context of the elliptic cryptosystem.

Description

The function sets the point at infinity. The context of the elliptic curve point must be already created by
functions: ECCPPointGetSize and ECCPPointInit. The elliptic curve domain parameters must be hitherto
defined by one of the functions: ECCPSet or ECCPSetStd.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by
pPoint or pECC is not valid.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

244

ECCPGetPoint
Retrieves coordinates of the point on the elliptic curve
defined over GF(p).

Syntax

IppStatus ippsECCPGetPoint(IppsBigNumState* pX, IppsBigNumState* pY, const
IppsECCPPointState* pPoint, IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

pX Pointer to the x-coordinate of the point on the elliptic curve.

pY Pointer to the y-coordinate of the point on the elliptic curve.

pPoint Pointer to the context of the elliptic curve point.

pECC Pointer to the context of the elliptic cryptosystem.

Description

The function retrieves the coordinates of the point on the elliptic curve defined over a prime finite field GF(p)
from the point context and allocates them in accordance with the set pointers pX and pY.

The elliptic curve domain parameters must be hitherto defined by one of the functions: ECCPSet or
ECCPSetStd.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by
pX, pY, pPoint, or pECC is not valid.

ECCPCheckPoint
Checks correctness of the point on the elliptic curve
defined over GF(p).

Syntax

IppStatus ippsECCPCheckPoint(const IppsECCPPointState* pP, IppECResult* pResult,
IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

pP Pointer to the elliptic curve point.

pResult Pointer to the result of the check.

pECC Pointer to the context of the elliptic cryptosystem.

Public Key Cryptography Functions 5

245

Description

The function checks the correctness of the point on the elliptic curve defined over a prime finite field GF(p)
and allocates the result of the check in accordance with the pointer pResult.

The elliptic curve domain parameters must be hitherto defined by one of the functions: ECCPSet or
ECCPSetStd.

The result of the check for the correctness of the point can take one of the following values:

ippECValid Point is on the elliptic curve.

ippECPointIsNotValid Point is not on the elliptic curve and is not the point at infinity.

ippECPointIsAtInfinite Point is the point at infinity.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by
pP or pECC is not valid.

ECCPComparePoint
Compares two points on the elliptic curve defined over
GF(p).

Syntax

IppStatus ippsECCPComparePoint(const IppsECCPPointState* pP, const IppsECCPPointState*
pQ, IppECResult* pResult, IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

pP Pointer to the elliptic curve point P.

pQ Pointer to the elliptic curve point Q.

pResult Pointer to the comparison result of two points: P and Q.

pECC Pointer to the context of the elliptic cryptosystem.

Description

The function compares two points P and Q on the elliptic curve defined over a prime finite field GF(p) and
allocates the comparison result in accordance with the pointer pResult.

The elliptic curve domain parameters must be hitherto defined by one of the functions: ECCPSet or
ECCPSetStd.

The comparison result of two points P and Q can take one of the following values:

ippECPointIsEqual Points P and Q are equal.

ippECPointIsNotEqual Points P and Q are different.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

246

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by
pP or pECC is not valid.

ECCPNegativePoint
Finds an elliptic curve point which is an additive
inverse for the given point over GF(p).

Syntax

IppStatus ippsECCPNegativePoint(const IppsECCPPointState* pP, IppsECCPPointState* pR,
IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

pP Pointer to the elliptic curve point P.

pR Pointer to the elliptic curve point R.

pECC Pointer to the context of the elliptic cryptosystem.

Description

The function finds an elliptic curve point R over a prime finite field GF(p), which is an additive inverse of the
given point P, that is, R = - P .

The elliptic curve domain parameters must be hitherto defined by one of the functions: ECCPSet or
ECCPSetStd.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by
pP, pR, or pECC is not valid.

ECCPAddPoint
Computes the addition of two elliptic curve points over
GF(p).

Syntax

IppStatus ippsECCPAddPoint(const IppsECCPPointState* pP, const IppsECCPPointState* pQ,
IppsECCPPointState* pR, IppsECCPState* pECC);

Include Files

ippcp.h

Public Key Cryptography Functions 5

247

Parameters

pP Pointer to the elliptic curve point P.

pQ Pointer to the elliptic curve point Q.

pR Pointer to the elliptic curve point R.

pECC Pointer to the context of the elliptic cryptosystem.

Description

The function calculates the addition of two elliptic curve points P and Q over a finite field GF(p) with the
result in a point R such that R = P + Q.

The elliptic curve domain parameters must be hitherto defined by one of the functions: ECCPSet or
ECCPSetStd.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by
pP, pQ, pR, or pECC is not valid.

ECCPMulPointScalar
Performs scalar multiplication of a point on the elliptic
curve defined over GF(p).

Syntax

IppStatus ippsECCPMulPointScalar(const IppsECCPPointState* pP, const IppsBigNumState*
pK, IppsECCPPointState* pR, IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

pP Pointer to the elliptic curve point P.

pK Pointer to the scalar K.

pR Pointer to the elliptic curve point R.

pECC Pointer to the context of the elliptic cryptosystem.

Description

The function performs the K scalar multiplication of an elliptic curve point P over GF(p) with the result in a
point R such that R = K · P.

The elliptic curve domain parameters must be hitherto defined by one of the functions: ECCPSet or
ECCPSetStd.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

248

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by
pP, pK, pR, or pECC is not valid.

ECCPGenKeyPair
Generates a private key and computes public keys of
the elliptic cryptosystem over GF(p).

Syntax

IppStatus ippsECCPGenKeyPair(IppsBigNumState* pPrivate, IppsECCPPointState* pPublic,
IppsECCPState* pECC, IppBitSupplier rndFunc, void* pRndParam);

Include Files

ippcp.h

Parameters

pPrivate Pointer to the private key privKey.

pPublic Pointer to the public key pubKey.

pECC Pointer to the context of the elliptic cryptosystem.

rndFunc Specified Random Generator.

pRndParam Pointer to the Random Generator context.

Description

The function generates a private key privKey and computes a public key pubKey of the elliptic cryptosystem
over a finite field GF(p). The generation process employs the user specified rndFunc Random Generator.

The private key privKey is a number that lies in the range of [1, n-1] where n is the order of the elliptic curve
base point.

The public key pubKey is an elliptic curve point such that pubKey = privKey· G, where G is the base point of
the elliptic curve.

The memory size of the parameter privKey pointed by pPrivate must be less than that of the base point
which can also be defined by the function ECCPGetOrderBitSize.

The context of the point pubKey as an elliptic curve point must be created by using the functions
ECCPPointGetSize and ECCPPointInit.

The elliptic curve domain parameters must be hitherto defined by one of the functions: ECCPSet or
ECCPSetStd.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

Public Key Cryptography Functions 5

249

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by
pPrivate, pPublic, or pECC is not valid.

ippStsSizeErr Indicates an error condition if the memory size of the
parameter privKey pointed by pPrivate is less than that of the
order of the elliptic curve base point.

ECCPPublicKey
Computes a public key from the given private key of
the elliptic cryptosystem over GF(p).

Syntax

IppStatus ippsECCPPublicKey(const IppsBigNumState* pPrivate, IppsECCPPointState*
pPublic, IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

pPrivate Pointer to the private key privKey.

pPublic Pointer to the public key pubKey.

pECC Pointer to the context of the elliptic cryptosystem.

Description

The function computes the public key pubKey from the given private key privKey of the elliptic cryptosystem
over a finite field GF(p).

The private key privKey is a number that lies in the range of [1, n-1] where n is the order of the elliptic curve
base point. The public key pubKey is an elliptic curve point such that pubKey = privKey· G, where G is the
base point of the elliptic curve.

The context of the point pubKey as an elliptic curve point must be created by using the functions
ECCPPointGetSize and ECCPPointInit.

The elliptic curve domain parameters must be defined by one of the functions: ECCPSet or ECCPSetStd.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by
pPrivate, pPublic, or pECC is not valid.

ippStsIvalidPrivateKey Indicates an error condition if the value of the private key falls
outside the range of [1, n-1].

ECCPValidateKeyPair
Validates private and public keys of the elliptic
cryptosystem over GF(p).

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

250

Syntax

IppStatus ippsECCPValidateKeyPair(const IppsBigNumState* pPrivate, const
IppsECCPPointState* pPublic, IppECResult* pResult, IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

pPrivate Pointer to the private key privKey.

pPublic Pointer to the public key pubKey.

pResult Pointer to the validation result.

pECC Pointer to the context of the elliptic cryptosystem.

Description

The function validates the private key privKey and public key pubKey of the elliptic cryptosystem over a finite
field GF(p) and allocates the result of the validation in accordance with the pointer pResult.

The private key privKey is a number that lies in the range of [1, n-1] where n is the order of the elliptic curve
base point. The public key pubKey is an elliptic curve point such that pubKey = privKey· G, where G is the
base point of the elliptic curve.

The elliptic curve domain parameters must be hitherto defined by one of the functions: ECCPSet or
ECCPSetStd.

The result of the cryptosystem keys validation for correctness can take one of the following values:

ippECValid Keys are valid.

ippECInvalidKeyPair Keys are not valid because privKey· G≠pubKey

ippECInvalidPrivateKey Key privKey falls outside the range of [1, n-1].

ippECPointIsAtInfinite Key pubKey is the point at infinity.

ippECInvalidPublicKey Key pubKey is not valid because n · pubKey≠O , where O is
the point at infinity.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by
pPrivate, pPublic, or pECC is not valid.

ECCPSetKeyPair
Sets private and/or public keys of the elliptic
cryptosystem over GF(p).

Syntax

IppStatus ippsECCPSetKeyPair(const IppsBigNumState* pPrivate, const IppsECCPPointState*
pPublic, IppBool regular, IppsECCPState* pECC);

Public Key Cryptography Functions 5

251

Include Files

ippcp.h

Parameters

pPrivate Pointer to the private key privKey.

pPublic Pointer to the public key pubKey.

regular Key status flag.

pECC Pointer to the context of the elliptic cryptosystem.

Description

The function sets a private key privKey and/or public key pubKey in the elliptic cryptosystem defined over a
prime finite field GF(p).

The private key privKey is a number that lies in the range of [1, n-1] where n is the order of the elliptic curve
base point. The public key pubKey is an elliptic curve point such that pubKey = privKey· G, where G is the
base point of the elliptic curve.

The two possible values of the parameter regular define the key timeliness status:

ippTrue Keys are regular.

ippFalse Keys are ephemeral.

The elliptic curve domain parameters must be hitherto defined by one of the functions: ECCPSet or
ECCPSetStd.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by
pPrivate, pPublic, or pECC is not valid.

ECCPSharedSecretDH
Computes a shared secret field element by using the
Diffie-Hellman scheme.

Syntax

IppStatus ippsECCPSharedSecretDH(const IppsBigNumState* pPrivate, const
IppsECCPPointState* pPublic, IppsBigNumState* pShare, IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

pPrivate Pointer to your own private key privKey.

pPublic Pointer to the public key pubKey.

pShare Pointer to the secret numberbnShare.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

252

pECC Pointer to the context of the elliptic cryptosystem.

Description

The function computes a secret number bnShare, which is a secret key shared between two participants of
the cryptosystem.

In cryptography, metasyntactic names such as Alice as Bob are normally used as examples and in
discussions and stand for participant A and participant B.

Both participants (Alice and Bob) use the cryptosystem for receiving a common secret point on the elliptic
curve called a secret key. To receive a secret key, participants apply the Diffie-Hellman key-agreement
scheme involving public key exchange. The value of the secret key entirely depends on participants.

According to the scheme, Alice and Bob perform the following operations:

1. Alice calculates her own public key pubKeyA by using her private key privKeyA: pubKeyA = privKeyA·
G, where G is the base point of the elliptic curve. Alice passes the public key to Bob.

2. Bob calculates his own public key pubKeyB by using his private key privKeyB: pubKeyB = privKeyB· G,
where G is a base point of the elliptic curve. Bob passes the public key to Alice.

3. Alice gets Bob's public key and calculates the secret point shareA. When calculating, she uses her own
private key and Bob's public key and applies the following formula: shareA = privKeyA · pubKeyB =
privKeyA · privKeyB · G.

4. Bob gets Alice's public key and calculates the secret point shareB. When calculating, he uses his own
private key and Alice's public key and applies the following formula: shareB = privKeyB · pubKeyA =
privKeyB · privKeyA · G.

Because the following equation is true privKeyA · privKeyB · G =privKeyB · privKeyA · G, the result of both
calculations is the same, that is, the equation shareA = shareB is true. The secret point serves as a secret
key.

Shared secret bnShare is an x-coordinate of the secret point on the elliptic curve.

The elliptic curve domain parameters must be hitherto defined by one of the functions: ECCPSet or
ECCPSetStd.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by
pPublic, pPShare, or pECC is not valid.

ippStsRangeErr Indicates an error condition if the memory size of bnShare
pointed by pShare is less than the value of feBitSize in the
function ECCPInit.

ippStsShareKeyErr Indicates an error condition if the shared secret key is not
valid. (For example, the shared secret key is invalid if the
result of the secret point calculation is the point at infinity.)

ECCPSharedSecretDHC
Computes a shared secret field element by using the
Diffie-Hellman scheme and the elliptic curve cofactor.

Syntax

IppStatus ippsECCPSharedSecretDHC(const IppsBigNumState* pPrivate, const
IppsECCPPointState* pPublic, IppsBigNumState* pShare, IppsECCPState* pECC);

Public Key Cryptography Functions 5

253

Include Files

ippcp.h

Parameters

pPrivate Pointer to your own private key privKey.

pPublic Pointer to the public key pubKey.

pShare Pointer to the secret number bnShare.

pECC Pointer to the context of the elliptic cryptosystem.

Description

The function computes a secret number bnShare which is a secret key shared between two participants of
the cryptosystem. Both participants (Alice and Bob) use the cryptosystem for getting a common secret point
on the elliptic curve by using the Diffie-Hellman scheme and elliptic curve cofactor h.

Alice and Bob perform the following operations:

1. Alice calculates her own public key pubKeyA by using her private key privKeyA: pubKeyA = privKeyA·
G, where G is the base point of the elliptic curve. Alice passes the public key to Bob.

2. Bob calculates his own public key pubKeyB by using his private key privKeyB: pubKeyB = privKeyB· G,
where G is a base point of the elliptic curve. Bob passes the public key to Alice.

3. Alice gets Bob's public key and calculates the secret point shareA. When calculating, she uses her own
private key and Bob's public key and applies the following formula: shareA = h · privKeyA · pubKeyB =
h · privKeyA · privKeyB · G, where h is the elliptic curve cofactor.

4. Bob gets Alice's public key and calculates the secret point shareB. When calculating, he uses his own
private key and Alice's public key and applies the following formula: shareB = h · privKeyB · pubKeyA =
h · privKeyB · privKeyA · G, where h is the elliptic curve cofactor.

Shared secret bnShare is an x-coordinate of the secret point on the elliptic curve.

The elliptic curve domain parameters must be hitherto defined by one of the functions: ECCPSet or
ECCPSetStd.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by
pPublic, pPShare, or pECC is not valid.

ippStsRangeErr Indicates an error condition if the memory size of bnShare
pointed by pShare is less than the value of feBitSize in the
function ECCPInit.

ippStsShareKeyErr Indicates an error condition if the shared secret key is not
valid. (For example, the shared secret key is invalid if the
result of the secret point calculation is the point at infinity.)

ECCPSignDSA
Computes a digital signature over a message digest.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

254

Syntax

IppStatus ippsECCPSignDSA(const IppsBigNumState* pMsgDigest, const IppsBigNumState*
pPrivate, IppsBigNumState* pSignX, IppsBigNumState* pSignY, IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

pMsgDigest Pointer to the message digest msg to be digitally signed, that is, to
be ecrypted with a private key.

pPrivate Pointer to the signer's regular private key.

pSignX Pointer to the integer r of the digital signature.

pSignY Pointer to the integer s of the digital signature.

pECC Pointer to the context of the elliptic cryptosystem.

Description

A message digest is a fixed size number derived from the original message with an applied hash function
over the binary code of the message. The signer's private key and the message digest are used to create a
signature.

A digital signature over a message consists of a pair of large numbers r and s which the given function
computes.

The scheme used for computing a digital signature is the ECDSA scheme, an elliptic curve analogue of the
DSA scheme. ECDSA assumes that the following keys are hitherto set by a message signer:

regPrivKey Regular private key.

ephPrivKey Ephemeral private key.

ephPubKey Ephemeral public key.

The keys can be generated and set up by the functions ECCPGenKeyPair and ECCPSetKeyPair with only
requirement that the key regPrivKey be different from the key ephPrivKey.

The elliptic curve domain parameters must be hitherto defined by one of the functions: ECCPSet or
ECCPSetStd.

For more information on digital signatures, please refer to the [ANSI] standard.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by
pMsgDigest, pSignX, pSignY, or ECC is not valid.

ippStsMessageErr Indicates an error condition if the value of msg pointed by
pMsgDigest falls outside the range of [1, n-1] where n is the
order of the elliptic curve base point G.

ippStsRangeErr Indicates an error condition if one of the parameters pointed by
pSignX or pSignY has a less memory size than the order n of
the elliptic curve base point G.

Public Key Cryptography Functions 5

255

ippStsEphemeralKeyErr Indicates an error condition if the values of the ephemeral keys
ephPrivKey and ephPubKey are not valid. (Either r = 0 or s = 0
is received as a result of the digital signature calculation).

See Also
Signing/Verification Using the Elliptic Curve Cryptography Functions over a Prime Finite Field

ECCPVerifyDSA
Verifies authenticity of the digital signature over a
message digest (ECDSA).

Syntax

IppStatus ippsECCPVerifyDSA(const IppsBigNumState* pMsgDigest, const IppsBigNumState*
pSignX, const IppsBigNumState* pSignY, IppECResult* pResult, IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

pMsgDigest Pointer to the message digest msg.

pSignX Pointer to the integer r of the digital signature.

pSignY Pointer to the integer s of the digital signature.

pResult Pointer to the digital signature verification result.

pECC Pointer to the context of the elliptic cryptosystem.

Description

The function verifies authenticity of the digital signature over a message digest msg. The signature consists
of two large integers: r and s.

The scheme used to verify the signature is an elliptic curve analogue of the DSA scheme and assumes that
the following cryptosystem key be hitherto set:

regPubKey Message sender's regular public key.

The regPubKey is set by the function ECCPSetKeyPair.

The result of the digital signature verification can take one of two possible values:

ippECValid Digital signature is valid.

ippECInvalidSignature Digital signature is not valid.

The call to the ECCPVerifyDSA function must be preceded by the call to the ECCPSignDSA function which
computes the digital signature over the message digest msg and represents the signature with two numbers:
r and s.

The elliptic curve domain parameters must be hitherto defined by one of the functions: ECCPSet or
ECCPSetStd.

For more information on digital signatures, please refer to the [ANSI] standard.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

256

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by
pMsgDigest, pSignX, pSignY, or ECC is not valid.

ippStsMessageErr Indicates an error condition if the value of msg pointed by
pMsgDigest falls outside the range of [1, n-1] where n is the
order of the elliptic curve base base point G.

See Also
Signing/Verification Using the Elliptic Curve Cryptography Functions over a Prime Finite Field

ECCPSignNR
Computes the digital signature over a message digest
(the Nyberg-Rueppel scheme).

Syntax

IppStatus ippsECCPSignNR(const IppsBigNumState* pMsgDigest, const IppsBigNumState*
pPrivate, IppsBigNumState* pSignX, IppsBigNumState* pSignY, IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

pMsgDigest Pointer to the message digest msg.

pPrivate Pointer to the private key privKey.

pSignX Pointer to the integer r of the digital signature.

pSignY Pointer to the integer s of the digital signature.

pECC Pointer to the context of the elliptic cryptosystem.

Description

The function computes two large numbers r and s which form the digital signature over a message digest
msg.

The scheme used to compute the digital signature is an elliptic curve analogue of the El-Gamal Digital
Signature scheme with the message recovery (the Nyberg-Rueppel signature scheme). The scheme that the
given function uses assumes that the following cryptosystem keys are hitherto set up by the message
sender:

regPrivKey Regular private key.

ephPrivKey Ephemeral private key.

ephPubKey Ephemeral public key.

The keys can be generated and set up by the functions ECCPGenKeyPair and ECCPSetKeyPair with only
requirement that the key regPrivKey be different from the key ephPrivKey.

The elliptic curve domain parameters must be hitherto defined by one of the functions: ECCPSet or
ECCPSetStd.

For more information on digital signatures, please refer to the [ANSI] standard.

Public Key Cryptography Functions 5

257

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by
pMsgDigest, pSignX, pSignY, or ECC is not valid.

ippStsMessageErr Indicates an error condition if the value of msg pointed by
pMsgDigest falls outside the range of [1, n-1] where n is the
order of the elliptic curve base point G.

ippStsRangeErr Indicates an error condition if one of the parameters pointed by
pSignX or pSignY has a less memory size than the order n of
the elliptic curve base point G.

ippStsEphemeralKeyErr Indicates an error condition if the values of the ephemeral keys
ephPrivKey and ephPubKey are not valid. (Either r = 0 or s = 0
is received as a result of the digital signature calculation).

ECCPVerifyNR
Verifies authenticity of the digital signature over a
message digest (the Nyberg-Rueppel scheme).

Syntax

IppStatus ippsECCPVerifyNR(const IppsBigNumState* pMsgDigest, const IppsBigNumState*
pSignX, const IppsBigNumState* pSignY, IppECResult* pResult, IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

pMsgDigest Pointer to the message digest msg.

pSignX Pointer to the integer r of the digital signature.

pSignY Pointer to the integer s of the digital signature.

pResult Pointer to the digital signature verification result.

pECC Pointer to the context of the elliptic cryptosystem.

Description

The function verifies authenticity of the digital signature over a message digest msg. The signature is
presented with two large integers r and s.

The scheme used to compute the digital signature is an elliptic curve analogue of the El-Gamal Digital
Signature scheme with the message recovery (the Nyberg-Rueppel signature scheme). The scheme that the
given function uses assumes that the following cryptosystem keys be hitherto set up by the message sender:

regPubKey Message sender's regular private key.

The key can be generated and set up by the function ECCPGenKeyPair.

The result of the digital signature verification can take one of two possible values:

ippECValid The digital signature is valid.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

258

ippECInvalidSignature The digital signature is not valid.

The call to the ECCPVerifyNR function must be preceded by the call to the ECCPSignNR function which
computes the digital signature over the message digest msg and represents the signature with two numbers:
r and s.

The elliptic curve domain parameters must be hitherto defined by one of the functions: ECCPSet or
ECCPSetStd.

For more information on digital signatures, please refer to the [ANSI] standard.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed by
pMsgDigest, pSignX, pSignY, or ECC is not valid.

ippStsMessageErr Indicates an error condition if the value of msg pointed by
pMsgDigest falls outside the range of [1, n-1] where n is the
order of the elliptic curve base point G.

ECCPSignSM2
Computes a digital signature over a message digest
using the SM2 scheme.

Syntax

IppStatus ippsECCPSignSM2(const IppsBigNumState* pMsgDigest, const IppsBigNumState*
pRegPrivate, const IppsBigNumState* pEphPrivate, IppsBigNumState* pSignR,
IppsBigNumState* pSignS, IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

pMsgDigest Pointer to the message digest msg.

pRegPrivate Pointer to the regular private key regPrivKey.

pEphPrivate Pointer to the ephmeral private key ephPrivKey.

pSignR Pointer to the integer r of the digital signature.

pSignS Pointer to the integer s of the digital signature.

pECC Pointer to the context of the elliptic cryptosystem.

Description

The function computes two big numbers r and s that form the digital signature over a message digest msg.

The digital signature is computed using the SM2 scheme [SM2]. The scheme requires that the following
cryptosystem keys are set up by the message sender:

regPrivKey Regular private key.

ephPrivKey Ephemeral private key.

Public Key Cryptography Functions 5

259

ephPubKey Ephemeral public key.

You can generate and set up the keys by calling the ECCPGenKeyPair and ECCPSetKeyPair functions with
the only requirement that the key regPrivKey is different from the key ephPrivKey.

Before calling ECCPSignSM2, set up the domain parameters of the elliptic curve in the *pECC context by
calling one of the functions: ECCPSet or ECCPSetStdSM2.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the specified contexts is
not valid.

ippStsMessageErr Indicates an error condition if the value of msg pointed by
pMsgDigest falls outside the range of [1, n-1] where n is the
order of the elliptic curve base point G.

ippStsRangeErr Indicates an error condition if one of the parameters pointed by
pSignR or pSignS has a smaller memory size than the order n
of the elliptic curve base point G.

ippStsEphemeralKeyErr Indicates an error condition if the values of the ephemeral keys
ephPrivKey and ephPubKey are not valid. (Either r = 0 or s = 0
is received as a result of the digital signature calculation).

ECCPVerifySM2
Verifies authenticity of a digital signature over a
message digest using the SM2 scheme.

Syntax

IppStatus ippsECCPVerifySM2(const IppsBigNumState* pMsgDigest, const
IppsECCPPointState* pRegPublic, const IppsBigNumState* pSignR, const IppsBigNumState*
pSignS, IppECResult* pResult, IppsECCPState* pECC);

Include Files

ippcp.h

Parameters

pMsgDigest Pointer to the message digest msg.

pRegPublic Pointer to the message sender's regular private key regPubKey.

pSignR Pointer to the integer r of the digital signature.

pSignS Pointer to the integer s of the digital signature.

pResult Pointer to the digital signature verification result.

pECC Pointer to the context of the elliptic cryptosystem.

Description

The function verifies authenticity of the digital signature, represented as integer big numbers r and s, over a
message digest msg. The digital signature over the message digest msg must be computed using the SM2
scheme [SM2] by to the ECCPSignSM2 function.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

260

The scheme requires the following cryptosystem key set up by the message sender:

regPubKey Message sender's regular private key.

You can generate and set up the key in a call to the ECCPGenKeyPair function.

The result of the digital signature verification can take one of these values:

ippECValid The digital signature is valid.

ippECInvalidSignature The digital signature is not valid.

Before calling ECCPVerifySM2, set up the domain parameters of the elliptic curve in the *pECC context by
calling one of the functions: ECCPSet or ECCPSetStdSM2.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the specified contexts is
not valid.

ippStsMessageErr Indicates an error condition if the value of msg pointed by
pMsgDigest falls outside the range of [1, n-1] where n is the
order of the elliptic curve base point G.

Signing/Verification Using the Elliptic Curve Cryptography Functions over a Prime Finite Field

Use of ECCPSignDSA, ECCPVerifyDSA

Arithmetic of the Group of Elliptic Curve Points
This section describes the Intel IPP functions that implement arithmetic operations with points of elliptic
curves [EC]. The elliptic curve is defined by the following equation:

y2 = x3 + A ⋅ x + B

where

• A and B are the parameters of the curve
• x and y are the coordinates of a point on the curve

This document considers elliptic curves constructed over the finite field GF(p) (prime or its extension),
therefore the arithmetic of elliptic curves is based on the arithmetic of the underlying finite field. In the
equation above, A, B, x, and y belong to the underlying field GF(p).

You can use standard elliptic curves by calling GFpECInitStd or GFpECBindGxyTblStd. The following table
contains the supported standard elliptic curves:

Standard Elliptic Curves

Name of the Curve Reference

secp128r1 [SEC2]

secp128r2 [SEC2]

secp160r1 [SEC2]

Public Key Cryptography Functions 5

261

Name of the Curve Reference

secp160r2 [SEC2]

secp192r1 [SEC2]

secp224r1 [SEC2]

secp256r1 [SEC2]

secp384r1 [SEC2]

secp521r1 [SEC2]

SM2 [SM2]

BN256 [ISO/IEC 11889-4]

For more information on parameters of the standard elliptic curves, see [SEC2], [SM2], and [ISO/IEC
11889-4].

NOTE
In this table, the name BN256 corresponds to the Barreto-Naehrig Prime 256-bit elliptic curve.

Important
To provide minimum security of the elliptic curve cryptosystem over a prime finite field, the length of
the underlying prime must be equal to or greater than 160 bits.

GFpECGetSize
Gets the size of an elliptic curve over the finite field.

Syntax

IppStatus ippsGFpECGetSize(const IppsGFpState* pGF, int* pCtxSizeInBytes);

Include Files

ippcp.h

Parameters

pGF Pointer to the IppsGFpState context of the underlying finite field.

pCtxSizeInBytes Buffer size in bytes needed for the IppsGFpECState context.

Description

This function returns the size of the buffer associated with the IppsGFpECState context, suitable for storing
data for the elliptic curve over the finite field specified by the context pGF.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

262

ippStsContextMatchErr Indicates an error condition if the IppsGFpState context
parameter does not match the operation.

GFpECInit
Initializes the context of an elliptic curve over a finite
field.

Syntax

IppStatus ippsGFpECInit(const IppsGFpState* pGF, const IppsGFpElement* pA, const
IppsGFpElement* pB, IppsGFpECState* pEC);

Include Files

ippcp.h

Parameters

pGF Pointer to the IppsGFpState context of the underlying finite field.

pA Pointer to the coefficient A of the equation defining the elliptic
curve.

pB Pointer to the coefficient B of the equation defining the elliptic
curve.

pEC Pointer to the context of the elliptic curve being initialized.

Description

This function initializes the memory buffer pEC associated with the IppsGFpECState context and sets up the
parameters of the elliptic curve if they are supplied. The initialized context is used in functions that create
contexts of points on the curve (elements of the group of points) and perform operations with the points.

NOTE
Only the pEC and pGF parameters are required. You can omit the other parameters by setting their
values to NULL or zero and set them up later on by calling GFpECSet or GFpECSetSubGroup.

NOTE
When calling arithmetic functions for the elliptic curve defined by pEC, a properly
initialized pGF context of the underlying field is required.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if either pEC or pGF is NULL.

ippStsContextMatchErr Indicates an error condition in the following cases:

• IppsGFpState context parameter does not match the operation.
• pA or pB is not zero and the corresponding context parameter does

not match the operation.

Public Key Cryptography Functions 5

263

GFpECSet
Sets up the parameters of an elliptic curve over a
finite field.

Syntax

IppStatus ippsGFpECSet(const IppsGFpElement* pA, const IppsGFpElement* pB,
IppsGFpECState* pEC);

Include Files

ippcp.h

Parameters

pA Pointer to the coefficient A of the equation defining the elliptic
curve.

pB Pointer to the coefficient B of the equation defining the elliptic
curve.

pEC Pointer to the context of the elliptic curve.

Description

This function assigns input values to the parameters of the elliptic curve in the IppsGFpECState context, if
they are supplied.

NOTE
Only the pEC parameter is required. You can omit the other parameters by setting their values
to NULL or zero.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if pEC is NULL.

ippStsContextMatchErr Indicates an error condition in the following cases:

• IppsGFpECState context parameter does not match the operation.
• pA or pB is not zero, and the corresponding context parameter

does not match the operation.

GFpECSetSubgroup
Sets up the parameters defining an elliptic curve
points subgroup.

Syntax

IppStatus ippsGFpECSetSubGroup(const IppsGFpElement* pX, const IppsGFpElement* pY,
const IppsBigNumState* pOrder, const IppsBigNumState* pCofactor, IppsGFpECState* pEC);

Include Files

ippcp.h

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

264

Parameters

pX, pY Pointers to the X and Y coordinates of the base point of the elliptic
curve.

pOrder Pointer to the big number context storing the order of the base
point.

pCofactor Pointer to the big number context storing the cofactor.

pEC Pointer to the context of the elliptic curve.

Description

This function sets up an elliptic curve as the subgroup generated by the base point over the finite field.

NOTE
Only the pEC parameter is required. You can omit the other parameters by setting their values
to NULL or zero.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if pEC is NULL.

ippStsContextMatchErr Indicates an error condition in the following cases:

• IppsGFpECState context parameter does not match the operation.
• Any of the pointers to elliptic curve parameters is not zero and the

context parameter does not match the operation.

ippStsBadArgErr Indicates an error condition if any of the specified
IppsBigNumState contexts defines zero or a negative number.

ippStsOutOfRangeErr Indicates an error if the base point coordinates (pX, pY) do not
belong to the finite field over which the elliptic curve is
initialized.

ippStsRangeErr Indicates an error condition in the following cases:

• The size of the base point order exceeds the maximal size of the
order for the given curve.

• The bit size of the cofactor exceeds the bit size of the element of
the finite field over which the elliptic curve is initialized.

GFpECInitStd
Initializes the context of a standard elliptic curve over
a finite field

Syntax

IppStatus ippsGFpECInitStd128r1(const IppsGFpState* pGF, IppsGFpECState* pEC);
IppStatus ippsGFpECInitStd128r2(const IppsGFpState* pGF, IppsGFpECState* pEC);
IppStatus ippsGFpECInitStd192r1(const IppsGFpState* pGF, IppsGFpECState* pEC);
IppStatus ippsGFpECInitStd224r1(const IppsGFpState* pGF, IppsGFpECState* pEC);
IppStatus ippsGFpECInitStd256r1(const IppsGFpState* pGF, IppsGFpECState* pEC);

Public Key Cryptography Functions 5

265

IppStatus ippsGFpECInitStd384r1(const IppsGFpState* pGF, IppsGFpECState* pEC);
IppStatus ippsGFpECInitStd521r1(const IppsGFpState* pGF, IppsGFpECState* pEC);
IppStatus ippsGFpECInitStdSM2(const IppsGFpState* pGF, IppsGFpECState* pEC);
IppStatus ippsGFpECInitStdBN256(const IppsGFpState* pGF, IppsGFpECState* pEC);

Include Files

ippcp.h

Parameters

pGF Pointer to the IppsGFpState context of the underlying finite field.

pEC Pointer to the context of the elliptic curve being initialized.

Description

This function initializes the memory buffer pEC associated with the IppsGFpECState context and sets up the
parameters of a specific standard elliptic curve. For a list of these curves, see table Standard Elliptic Curves.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if pEC is NULL.

ippStsContextMatchErr Indicates an error condition if the IppsGFpState context
parameter does not match the operation.

ippStsBadArgErr Indicates an error condition if the IppsGFpState context
parameter does not specify the finite field over which the given
standard elliptic curve is defined.

GFpECBindGxyTblStd
Enables the use of base point-based pre-computed
tables of standard elliptic curves.

Syntax

IppStatus ippsGFpECBindGxyTblStd192r1(IppsGFpECState* pEC);
IppStatus ippsGFpECBindGxyTblStd224r1(IppsGFpECState* pEC);
IppStatus ippsGFpECBindGxyTblStd256r1(IppsGFpECState* pEC);
IppStatus ippsGFpECBindGxyTblStd384r1(IppsGFpECState* pEC);
IppStatus ippsGFpECBindGxyTblStd521r1(IppsGFpECState* pEC);
IppStatus ippsGFpECBindGxyTblStdSM2(IppsGFpECState* pEC);
IppStatus ippsGFpECBindGxyTblStdBN256(IppsGFpECState* pEC);

Include Files

ippcp.h

Parameters

pEC Pointer to the context of the elliptic curve.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

266

Description

The functions GFpECVerify*, GFpECPublicKey and GFpECSign* perform time-consuming math operations
on the elliptic curve base point. In Intel IPP Cryptography-supported standards, the base point is fixed, and
you may use pre-computed values.

The function GFpECBindGxyTblStd stores a pointer the to the pre-computed base point data in the elliptic
curve context. For performance-critical applications, consider calling GFpECBindGxyTblStd at the completion
of elliptic curve initialization. The use of GFpECBindGxyTblStd improves the performance of GFpECVerify*,
GFpECPublicKey and GFpECSign*.

NOTE
The size of the pre-computed table is quite large (~100-150KB), so using GFpECBindGxyTblStd
increases the size of your application.

Important
The set of GFpECBindGxyTblStd functions covers only curves defined by the following standards:
NIST P-192r1, NIST P-224r1, NIST P-256r1, NIST P-384r1, NIST P521r1, SM2 and BN256. Other
standard elliptic curves supported in Intel IPP Cryptography do not have a similar mechanism because
they do not match modern security strength requirements.

Return Values

ippsStsNoErr Indicates no error. Any other message indicates an error or
warning.

ippsStsNullPtrErr Indicates an error condition if pEC is NULL.

ippsStsContextMatchErr Indicates an error condition if the IppsGFpECState context
parameter does not match the operation.

ippStsBadArgErr Indicates an error condition if the elliptic curve specified by the
IppsGFpECState context is not the target standard elliptic
curve.

GFpECGet
Extracts the parameters of an elliptic curve over a
finite field from the context.

Syntax

IppStatus ippsGFpECGet(IppsGFpState** const ppGF, IppsGFpElement* pA, IppsGFpElement*
pB, const IppsGFpECState* pEC);

Include Files

ippcp.h

Parameters

ppGF Pointer to the context of the elliptic curve underlying finite field.

pA Pointer to a copy of the coefficient A of the equation defining the
elliptic curve.

pB Pointer to a copy of the coefficient B of the equation defining the
elliptic curve.

Public Key Cryptography Functions 5

267

pEC Pointer to the context of the elliptic curve.

Description

This function extracts parameters of the elliptic curve from the input IppsGFpECState context. You can get
any combination of the following parameters: a reference to the underlying field and copies of the A and B
coefficients. To turn off extraction of a particular parameter of the elliptic curve, set the appropriate function
parameter to NULL.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if pEC is NULL.

ippStsContextMatchErr Indicates an error condition in the following cases:

• IppsGFpECState context parameter does not match the operation.
• Either pA or pB is not zero and the corresponding context

parameter does not match the operation.

ippStsOutOfRangeErr Indicates an error if either pA or pB does not belong to the
finite field over which the elliptic curve is initialized.

GFpECGetSubgroup
Extracts the parameters (base point and its order)
that define an elliptic curve point subgroup.

Syntax

IppStatus ippsGFpECGetSubGroup(IppsGFpState** const ppGF, IppsGFpElement* pX,
IppsGFpElement* pY, IppsBigNumState* pOrder,IppsBigNumState* pCofactor, const
IppsGFpECState* pEC);

Include Files

ippcp.h

Parameters

ppGF Pointer to the context of the underlying finite field.

pX, pY Pointers to the X and Y coordinates of the base point of the elliptic
curve.

pOrder Pointer to the big number context storing the order of the base
point.

pCofactor Pointer to the big number context storing the cofactor.

pEC Pointer to the context of the elliptic curve.

Description

This function extracts parameters of an elliptic curve subgroup. You can get any combination of the following
parameters: the X and Y coordinates, the order of the base point, and the value of the cofactor. To turn off
extraction of a particular parameter of the elliptic curve, set the appropriate function parameter to NULL.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

268

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if the specified pointer pEC is NULL.

ippStsContextMatchErr Indicates an error condition in the following cases:

• IppsGFpECState context parameter does not match the operation.
• Any of the pointers to elliptic curve parameters is not zero and the

corresponding context parameter does not match the operation.

ippStsOutOfRangeErr Indicates an error if the base point coordinates (pX, pY) do not
belong to the finite field over which the elliptic curve is
initialized.

ippStsLengthErr Indicates an error condition in the following cases:

• The size of the base point order exceeds the maximal size of the
order for the given curve.

• The bit size of the cofactor exceeds the bit size of the element of
the finite field over which the elliptic curve is initialized.

GFpECScratchBufferSize
Gets the size of the scratch buffer.

Syntax

IppStatus ippsGFpECScratchBufferSize(int nScalars, const IppsGFpECState* pEC, int*
pBufferSize);

Include Files

ippcp.h

Parameters

nScalars Number of scalar values. This may take the following values:

• Number of scalar values used in the multiplication operation.
• 1 if it is not applicable.

pEC Pointer to the context of the elliptic curve.

pBufferSize Pointer to the calculated buffer size in bytes.

Description

This function computes the size of the scratch buffer for functions that require an external scratch buffer.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the IppsGFpECState context
parameter does not match the operation.

Public Key Cryptography Functions 5

269

GFpECVerify
Verifies the parameters of an elliptic curve.

Syntax

IppStatus ippsGFpECVerify(IppECResult* pResult, IppsGFpECState* pEC, Ipp8u*
pScratchBuffer);

Include Files

ippcp.h

Parameters

pResult Pointer to the verification result.

pEC Pointer to the context of the elliptic curve.

pScratchBuffer Pointer to the scratch buffer.

Description

This function verifies the parameters of the elliptic curve from the input IppsGFpECState context and
returns the result in pResult. The result of the verification may have the following values:

ippECValid Parameters are valid.

ippECIsZeroDiscriminant 4 ⋅ A3 + 3 ⋅ B2 = 0.

ippECPointIsAtInfinity Base point G = (x, y) is a point at infinity.

ippECPointIsNotValid Base point G = (x, y) does not belong to the curve.

ippECInvalidOrder Order of the base point G = (x, y) is invalid.

If the pointer to the scratch buffer is NULL, the function uses a short internal buffer for computations.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the IppsGFpECState context
parameter does not match the operation.

GFpECPointGetSize
Gets the size of the IppsGFpECPoint context of a
point on an elliptic curve.

Syntax

IppStatus ippsGFpECPointGetSize(const IppsGFpECState* pEC, int* pSizeInBytes);

Include Files

ippcp.h

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

270

Parameters

pEC Pointer to the context of the elliptic curve.

pSizeInBytes Buffer size, in bytes, needed for the IppsGFpECPoint context.

Description

This function returns the size of the buffer associated with the IppsGFpECPoint context, which you may use
to store data for a point on the elliptic curve over the finite field.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the IppsGFpECState context
parameter does not match the operation.

GFpECPointInit
Initializes the context of a point on an elliptic curve.

Syntax

IppStatus ippsGFpECPointInit(const IppsGFpElement* pX, const IppsGFpElement* pY,
IppsGFpECPoint* pPoint, IppsGFpECState* pEC);

Include Files

ippcp.h

Parameters

pX, pY Pointers to the X and Y coordinates of a point on the elliptic curve.

pPoint Pointer to the IppsGFpECPoint context being initialized.

pEC Pointer to the context of the elliptic curve.

Description

This function initializes the IppsGFpECPoint context and sets the coordinates of an elliptic curve point to the
values stored in pX and pY. If any of the pointers to the X and Y coordinates is zero, the function sets the
coordinates of the elliptic curve point in the IppsGFpECPoint context to the coordinates of a point at infinity.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if either pPoint or pEC is NULL.

ippStsContextMatchErr Indicates an error condition in the following cases:

• IppsGFpECState context parameter does not match the operation.
• Neither of the pointers to the X and Y coordinates is zero, and any

of the corresponding context parameters does not match the
operation.

Public Key Cryptography Functions 5

271

ippStsOutOfRangeErr Indicates an error if the point coordinates (pX, pY) do not
belong to the finite field over which the elliptic curve is
initialized.

GFpECSetPointAtInfinity
Sets a point on an elliptic curve as a point at infinity.

Syntax

IppStatus ippsGFpECSetPointAtInfinity(IppsGFpECPoint* pPoint, IppsGFpECState* pEC);

Include Files

ippcp.h

Parameters

pPoint Pointer to the IppsGFpECPoint context.

pEC Pointer to the context of the elliptic curve.

Description

This function sets the coordinates of an elliptic curve point in the IppsGFpECPoint context to the
coordinates of a point at infinity.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if pPoint or pEC is NULL.

GFpECSetPoint
Sets up the coordinates of a point on an elliptic curve.

Syntax

IppStatus ippsGFpECSetPoint(const IppsGFpElement* pX, const IppsGFpElement* pY,
IppsGFpECPoint* pPoint, IppsGFpECState* pEC);

Include Files

ippcp.h

Parameters

pX, pY Pointers to the X and Y coordinates of the point on the elliptic curve.

pPoint Pointer to the IppsGFpECPoint context.

pEC Pointer to the context of the elliptic curve.

Description

This function sets up the coordinates of a point on the elliptic curve over the finite field.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

272

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the specified contexts
does not match the operation.

ippStsOutOfRangeErr Indicates an error if the point coordinates (pX, pY) do not
belong to the finite field over which the elliptic curve is
initialized.

GFpECSetPointRandom
Sets the coordinates of a point on an elliptic curve to
random values.

Syntax

IppStatus ippsGFpECSetPointRandom(IppsGFpECPoint* pPoint, IppsGFpECState* pEC,
IppBitSupplier rndFunc, void* pRndParam, Ipp8u* pScratchBuffer);

Include Files

ippcp.h

Parameters

pPoint Pointer to the IppsGFpECPoint context.

pEC Pointer to the context of the elliptic curve.

rndFunc Pesudorandom number generator.

pRndParam Pointer to the pseudorandom number generator context.

pScratchBuffer Pointer to the scratch buffer.

Description

This function assigns random values to the coordinates of an elliptic curve point in the IppsGFpECPoint
context.

If the pointer to the scratch buffer is NULL, the function uses a short internal buffer for computations.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the context parameters
does not match the operation.

ippStsOutOfRangeErr Indicates an error if the specified point does not belong to the
finite field over which the elliptic curve is initialized.

GFpECMakePoint
Constructs the coordinates of a point on an elliptic
curve based on the X-coordinate.

Syntax

IppStatus ippsGFpECMakePoint(const IppsGFpElement* pX, IppsGFpECPoint* pPoint,
IppsGFpECState* pEC);

Public Key Cryptography Functions 5

273

Include Files

ippcp.h

Parameters

pX Pointer to the X-coordinate of the point on the elliptic curve.

pPoint Pointer to the IppsGFpECPoint context.

pEC Pointer to the context of the elliptic curve.

Description

This function computes the coordinates of a point on an elliptic curve based on the X-coordinate.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the specified contexts
does not match the operation.

ippStsOutOfRangeErr Indicates an error condition in the following cases:

• The coordinates of the point pPoint do not belong to the finite
field over which the elliptic curve is initialized.

• The point coordinate pX does not belong to the finite field over
which the elliptic curve is initialized.

ippStsBadArgErr Indicates an error condition if the finite field over which the
elliptic curve is initialized is not prime.

ippStsQuadraticNonResidueErr Indicates an error condition if the square of the Y-coordinate of
the point is a quadratic non-residue modulo p.

GFpECSetPointHash
Constructs a point on an elliptic curve based on the
hash of the input message.

Syntax

IppStatus ippsGFpECSetPointHash(Ipp32u hdr, const Ipp8u* pMsg, int msgLen,
IppsGFpECPoint* pPoint, IppsGFpECState* pEC, IppHashAlgId hashID, Ipp8u*
pScratchBuffer);

Include Files

ippcp.h

Parameters

hdr Header of the input message.

pMsg Pointer to the input message.

msgLen Length of the input message.

pPoint Pointer to the IppsGFpECPoint context.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

274

pEC Pointer to the context of the elliptic curve.

hashID ID of the hash algorithm used. For details, see Supported Hash
Algorithms.

pScratchBuffer Pointer to the scratch buffer. Can be NULL.

Description

This function makes the coordinates of a point on the elliptic curve over the finite field from a hash of the X-
coordinate. If the pointer to the scratch buffer is NULL, the function uses a short internal buffer for
computations.

The X-coordinate is computed by the following pseudocode formula: X = hash(hdr || message).

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition in the following cases:

• pPoint or pEC is NULL.
• Length of the message is more than zero, and the pointer pMsg is

NULL.

ippStsContextMatchErr Indicates an error condition if either pPoint or pEC context
parameter does not match the operation.

ippStsBadArgErr Indicates an error condition if the finite field over which the
elliptic curve is initialized is not prime.

ippStsOutOfRangeErr Indicates an error condition if the coordinates of the point
pPoint do not belong to the finite field over which the elliptic
curve is initialized.

ippStsLengthErr Indicates an error condition if msgLen is negative.

ippStsQuadraticNonResidueErr Indicates an error condition if the square of the Y-coordinate of
the point is a quadratic non-residue modulo p.

GFpECGetPoint
Retrieves coordinates of a point on an elliptic curve.

Syntax

IppStatus ippsGFpECGetPoint(const IppsGFpECPoint* pPoint, IppsGFpElement* pX,
IppsGFpElement* pY, IppsGFpECState* pEC);

Include Files

ippcp.h

Parameters

pPoint Pointer to the IppsGFpECPoint context.

pX, pY Pointers to the X and Y coordinates of a point on the elliptic curve.

pEC Pointer to the context of the elliptic curve.

Public Key Cryptography Functions 5

275

Description

This function exports the coordinates of an elliptic curve point from the IppsGFPECPoint context to the
user-defined elements of the underlying field. To turn off the extraction of a particular coordinate, set the
appropriate function parameter to NULL.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if pPoint or pEC is NULL.

ippStsContextMatchErr Indicates an error condition if any of the specified contexts
does not match the operation.

ippStsOutOfRangeErr Indicates an error condition in the following cases:

• The coordinates of the point pPoint do not belong to the
underlying finite field of the elliptic curve.

• pX or pY does not belong to the underlying finite field of the elliptic
curve.

ippStsPointAtInfinity Indicates an error condition if the specified point is a point at
infinity.

GFpECGetPointRegular
Retrieves coordinates of a point on an elliptic curve in
the regular domain.

Syntax

IppStatus ippsGFpECGetPointRegular(const IppsGFpECPoint* pPoint, IppsBigNumState* pX,
IppsBigNumState* pY, IppsGFpECState* pEC);

Include Files

ippcp.h

Parameters

pPoint Pointer to the IppsGFpECPoint context.

pX, pY Pointers to the X and Y coordinates of a point on the elliptic curve.

pEC Pointer to the context of the elliptic curve.

Description

This function exports the coordinates of an elliptic curve point from the IppsGFpECPoint context to the big
number values pX and pY. To turn off the extraction of a particular coordinate, set the appropriate function
parameter to NULL.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if pPoint or pEC is NULL.

ippStsContextMatchErr Indicates an error condition if any of the specified contexts
does not match the operation.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

276

ippStsOutOfRangeErr Indicates an error condition if the coordinates of the point
pPoint do not belong to the underlying finite field of the elliptic
curve.

ippStsPointAtInfinity Indicates an error condition if the specified point is the point at
infinity.

GFpECTstPoint
Checks if a point belongs to an elliptic curve.

Syntax

IppStatus ippsGFpECTstPoint(const IppsGFpECPoint* pP, IppECResult* pResult,
IppsGFpECState* pEC);

Include Files

ippcp.h

Parameters

pP Pointer to the IppsGFpECPoint context.

pResult Pointer to the result of the check.

pEC Pointer to the context of the elliptic curve.

Description

This function checks whether the given point belongs to the elliptic curve over the finite field. The result of
the testing is returned in pResult and may have the following values:

ippECValid The point belongs to the curve.

ippECPointIsAtInfinite The point is a point at infinity.

ippECPointIsNotValid The point does not belong to the curve.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the specified contexts
does not match the operation.

ippStsOutOfRangeErr Indicates an error condition if the coordinates of the point pP
do not belong to the finite field over which the elliptic curve is
initialized.

GFpECTstPointInSubgroup
Checks if a point belongs to a specified subgroup.

Syntax

IppStatus ippsGFpECTstPointInGroup(const IppsGFpECPoint* pP, IppECResult* pResult,
IppsGFpECState* pEC, Ipp8u* pScratchBuffer);

Public Key Cryptography Functions 5

277

Include Files

ippcp.h

Parameters

pP Pointer to the IppsGFpECPoint context.

pResult Pointer to the result received upon the check that the point belongs
to the elliptic curve over the finite field.

pEC Pointer to the context of the elliptic curve.

pScratchBuffer Pointer to the scratch buffer; can be NULL.

Description

This function checks whether a point belongs to the pre-defined subgroup of the elliptic curve defined over
the finite field. The result of the testing is returned in pResult and may have the following values:

ippECValid The point is in the subgroup of the curve.

ippECPointOutOfGroup The point is out of the subgroup.

If the pointer to the scratch buffer is NULL, the function uses a short internal buffer for computations.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the pointers pP, pResult,
and pEC is NULL.

ippStsContextMatchErr Indicates an error condition if any of the specified contexts
does not match the operation.

ippStsOutOfRangeErr Indicates an error condition if the point does not belong to the
finite field over which the elliptic curve is initialized.

GFpECCpyPoint
Copies one point to another.

Syntax

IppStatus ippsGFpECCpyPoint(const IppsGFpECPoint* pA, IppsGFpECPoint* pR,
IppsGFpECState* pEC);

Include Files

ippcp.h

Parameters

pA Pointer to the context of the elliptic curve point being copied.

pR Pointer to the context of the elliptic curve point being changed.

pEC Pointer to the context of the elliptic curve.

Description

This function copies one point of the elliptic curve over the finite field to another.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

278

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified is NULL.

ippStsContextMatchErr Indicates an error condition if any of the specified contexts
does not match the operation.

ippStsOutOfRangeErr Indicates an error condition if any of the specified points does
not belong to the finite field over which the elliptic curve is
initialized.

GFpECCmpPoint
Compares two points.

Syntax

IppStatus ippsGFpECCmpPoint(const IppsGFpECPoint* pP, const IppsGFpECPoint* pQ,
IppECResult* pResult, IppsGFpECState* pEC);

Include Files

ippcp.h

Parameters

pA Pointer to the context of the first elliptic curve point.

pQ Pointer to the context of the second elliptic curve point.

pResult Pointer to the result of the comparison.

pEC Pointer to the context of the elliptic curve.

Description

This function compares the coordinates of two points on the elliptic curve over the finite field and returns the
result in pResult. The result of the comparison may have the following values:

ippECPointIsEqual The points are equal.

ippECPointIsNotEqual The points are not equal.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the specified contexts
does not match the operation.

ippStsOutOfRangeErr Indicates an error condition if any of the points does not belong
to the finite field over which the elliptic curve is initialized.

GFpECNegPoint
Computes the inverse of a point.

Public Key Cryptography Functions 5

279

Syntax

IppStatus ippsGFpECNegPoint(const IppsGFpECPoint* pP, IppsGFpECPoint* pR,
IppsGFpECState* pEC);

Include Files

ippcp.h

Parameters

pP Pointer to the context of the given point on the elliptic curve.

pR Pointer to the context of the resulting point on the elliptic curve.

pEC Pointer to the context of the elliptic curve.

Description

For a given point of the elliptic curve over the finite field, this function computes the coordinates of the
inverse point. The following pseudocode represents this operation: R = 0 - P.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified is NULL.

ippStsContextMatchErr Indicates an error condition if any of the specified contexts
does not match the operation.

ippStsOutOfRangeErr Indicates an error condition if any of the specified points does
not belong to the finite field over which the elliptic curve is
initialized.

GFpECAddPoint
Computes the sum of two points on an elliptic curve.

Syntax

IppStatus ippsGFpECAddPoint(const IppsGFpECPoint* pP, const IppsGFpECPoint* pQ,
IppsGFpECPoint* pR, IppsGFpECState* pEC);

Include Files

ippcp.h

Parameters

pA Pointer to the context of the first point on the elliptic curve to be
added.

pQ Pointer to the context of the second point on the elliptic curve to be
added.

pR Pointer to the context of the resulting point on the elliptic curve.

pEC Pointer to the context of the elliptic curve.

Description

This function computes the coordinates of the elliptic curve point that is equal to the sum of two given points.
The following pseudocode represents this operation: R = P + Q.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

280

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified is NULL.

ippStsContextMatchErr Indicates an error condition if any of the specified contexts
does not match the operation.

ippStsOutOfRangeErr Indicates an error condition if any of the specified points does
not belong to the finite field over which the elliptic curve is
initialized.

GFpECMulPoint
Multiplies a point on an elliptic curve by a scalar.

Syntax

IppStatus ippsGFpECMulPoint(const IppsGFpECPoint* pP, const IppsBigNumState* pN,
IppsGFpECPoint* pR, IppsGFpECState* pEC, Ipp8u* pScratchBuffer);

Include Files

ippcp.h

Parameters

pP Pointer to the context of the given point on the elliptic curve.

pN Pointer to the Big Number context storing the scalar value.

pR Pointer to the context of the resulting point on the elliptic curve.

pEC Pointer to the context of the elliptic curve.

pScratchBuffer Pointer to the scratch buffer. Can be NULL.

Description

This function computes the coordinates of the elliptic curve point that equals the product of the given point
and a scalar. The following pseudocode represents this operation: R = scalar ⋅ P.

If the pointer to the scratch buffer is NULL, the function uses a short internal buffer for computations.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the specified contexts
does not match the operation.

ippStsOutOfRangeErr Indicates an error condition in the following cases:

• Any of the points does not belong to the finite field over which the
elliptic curve is initialized.

• The scalar value does not belong to the finite field over which the
elliptic curve is initialized.

Public Key Cryptography Functions 5

281

GFpECPrivateKey
Generates a private key of the elliptic curve
cryptosystem over GF(p).

Syntax

IppStatus ippsGFpECPrivateKey(IppsBigNumState* pPrivate, IppsGFpECState* pEC,
IppBitSupplier rndFunc, void* pRndParam);

Include Files

ippcp.h

Parameters

pPrivate Pointer to the private key privKey.

pEC Pointer to the context of the elliptic curve.

rndFunc Specified Random Generator.

pRndParam Pointer to the Random Generator context.

Description

The function generates a private key privKey of the elliptic cryptosystem over a finite field GF(p). The
generation process employs the user-specified rndFunc Random Generator.

The private key privKey is a number that lies in the range of [1, n-1] where n is the order of the elliptic curve
base point.

The memory size of the parameter privKey pointed to by pPrivate must be not less than order of the base
point, which can also be defined by the function GFpECGetSubgroup.

The elliptic curve domain parameters must be hitherto defined by the functions: GFpECInitStd, GFpECInit,
GFpECSet, or GFpECSetSubgroup.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the specified contexts
does not match the operation.

ippStsSizeErr Indicates an error condition if the parameter pointed to by
pPrivate has a memory size that is less than the order n of the
elliptic curve base point G.

GFpECPublicKey
Computes a public key from the given private key of
the elliptic curve cryptosystem over GF(p).

Syntax

IppStatus ippsGFpECPublicKey(const IppsBigNumState* pPrivate, IppsGFpECPoint* pPublic,
IppsGFpECState* pEC, Ipp8u* pScratchBuffer);

Include Files

ippcp.h

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

282

Parameters

pPrivate Pointer to the private key privKey.

pPublic Pointer to the public key pubKey.

pEC Pointer to the context of the elliptic curve.

pScratchBuffer Pointer to the scratch buffer.

Description

The function computes the public key pubKey from the given private key privKey of the elliptic cryptosystem
over a finite field GF(p).

The private key privKey is a number that lies in the range of [1, n-1] where n is the order of the elliptic curve
base point. The public key pubKey is an elliptic curve point such that pubKey = privKey · G, where G is the
base point of the elliptic curve.

The private key privKey can be generated by the function GFpECPrivateKey.

The context of the point pubKey as an elliptic curve point must be created by using the functions
GFpECPointGetSize and GFpECPointInit.

The elliptic curve domain parameters must be defined by the functions: GFpECInitStd, GFpECInit, GFpECSet,
or GFpECSetSubgroup.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the contexts pointed to by
pPrivate, pPublic, or pEC does not match the operation.

ippStsIvalidPrivateKey Indicates an error condition if the value of the private key falls
outside the range of [1, n-1].

GFpECTstKeyPair
Tests private and public keys of the elliptic curve
cryptosystem over GF(p).

Syntax

IppStatus ippsGFpECTstKeyPair(const IppsBigNumState* pPrivate, const IppsGFpECPoint*
pPublic, IppECResult* pResult, IppsGFpECState* pEC, Ipp8u* pScratchBuffer);

Include Files

ippcp.h

Parameters

pPrivate Pointer to the private key privKey.

pPublic Pointer to the public key pubKey.

pResult Pointer to the validation result.

pEC Pointer to the context of the elliptic curve.

pScratchBuffer Pointer to the scratch buffer.

Public Key Cryptography Functions 5

283

Description

The function tests the private key privKey and public key pubKey of the elliptic curve cryptosystem over a
finite field GF(p) and allocates the result of the validation in accordance with the pointer pResult.

The private key privKey is a number that lies in the range of [1, n-1] where n is the order of the elliptic curve
base point. The public key pubKey is an elliptic curve point such that pubKey = privKey· G, where G is the
base point of the elliptic curve.

The elliptic curve domain parameters must be hitherto defined by the functions: GFpECInitStd, GFpECInit,
GFpECSet, or GFpECSetSubgroup.

The result of the cryptosystem keys validation for correctness can take one of the following values:

ippECValid Keys are valid.

ippECInvalidKeyPair Keys are not valid because privKey· G≠pubKey

ippECInvalidPrivateKey Key privKey falls outside the range of [1, n-1].

ippECPointIsAtInfinite Key pubKey is the point at infinity.

ippECInvalidPublicKey Key pubKey is not valid because n · pubKey≠O , where O is
the point at infinity.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the contexts pointed by
pPrivate, pPublic, or pEC does not match the operation.

ippStsRangeErr Indicates an error condition if the public key point does not
belong to the finite field over which the elliptic curve is
initialized.

GFpECSharedSecretDH
Computes a shared secret field element by using the
Diffie-Hellman scheme.

Syntax

IppStatus ippsGFpECSharedSecretDH(const IppsBigNumState* pPrivateA, const
IppsGFpECPoint* pPublicB, IppsBigNumState* pShare, IppsGFpECState* pEC, Ipp8u*
pScratchBuffer);

Include Files

ippcp.h

Parameters

pPrivateA Pointer to your own private key privKey.

pPublicB Pointer to the public key pubKey.

pShare Pointer to the secret number bnShare.

pEC Pointer to the context of the elliptic curve.

pScratchBuffer Pointer to the scratch buffer.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

284

Description

The function computes a secret number bnShare, which is a secret key shared between two participants of
the cryptosystem.

In cryptography, metasyntactic names such as Alice as Bob are normally used as examples and in
discussions and stand for participant A and participant B.

Both participants (Alice and Bob) use the cryptosystem for receiving a common secret point on the elliptic
curve called a secret key. To receive a secret key, participants apply the Diffie-Hellman key-agreement
scheme involving public key exchange. The value of the secret key entirely depends on participants.

According to the scheme, Alice and Bob perform the following operations:

1. Alice calculates her own public key pubKeyA by using her private key privKeyA: pubKeyA = privKeyA ·
G, where G is the base point of the elliptic curve. Alice passes the public key to Bob.

2. Bob calculates his own public key pubKeyB by using his private key privKeyB: pubKeyB = privKeyB · G,
where G is a base point of the elliptic curve. Bob passes the public key to Alice.

3. Alice gets Bob's public key and calculates the secret point shareA. When calculating, she uses her own
private key and Bob's public key and applies the following formula: shareA = privKeyA · pubKeyB =
privKeyA · privKeyB · G.

4. Bob gets Alice's public key and calculates the secret point shareB. When calculating, he uses his own
private key and Alice's public key and applies the following formula: shareB = privKeyB · pubKeyA =
privKeyB · privKeyA · G.

Because the following equation is true privKeyA · privKeyB · G =privKeyB · privKeyA · G, the result of both
calculations is the same, that is, the equation shareA = shareB is true. The secret point serves as a secret
key.

Shared secret bnShare is the x-coordinate of the secret point on the elliptic curve.

The elliptic curve domain parameters must be hitherto defined by the functions: GFpECInitStd, GFpECInit,
GFpECSet, or GFpECSetSubgroup.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if one of the contexts pointed to by
pPublicB, pPrivateA, pShare, or pEC does not match the
operation.

ippStsRangeErr Indicates an error condition if the memory size of bnShare
pointed to by pShare is less than the size of the GFp modulus
that is base for the specified elliptic curve.

ippStsShareKeyErr Indicates an error condition if the shared secret key is not
valid. (For example, the shared secret key is invalid if the
result of the secret point calculation is the point at infinity.)

GFpECSharedSecretDHC
Computes a shared secret field element by using the
Diffie-Hellman scheme and the elliptic curve cofactor.

Syntax

IppStatus ippsGFpECSharedSecretDHC(const IppsBigNumState* pPrivateA, const
IppsGFpECPoint* pPublicB, IppsBigNumState* pShare, IppsGFpECState* pEC, Ipp8u*
pScratchBuffer);

Public Key Cryptography Functions 5

285

Include Files

ippcp.h

Parameters

pPrivate Pointer to your own private key privKey.

pPublic Pointer to the public key pubKey.

pShare Pointer to the secret number bnShare.

pEC Pointer to the context of the elliptic curve.

pScratchBuffer Pointer to the scratch buffer.

Description

The function computes a secret number bnShare which is a secret key shared between two participants of
the cryptosystem. Both participants (Alice and Bob) use the cryptosystem for getting a common secret point
on the elliptic curve by using the Diffie-Hellman scheme and elliptic curve cofactor h.

Alice and Bob perform the following operations:

1. Alice calculates her own public key pubKeyA by using her private key privKeyA: pubKeyA = privKeyA·
G, where G is the base point of the elliptic curve. Alice passes the public key to Bob.

2. Bob calculates his own public key pubKeyB by using his private key privKeyB: pubKeyB = privKeyB· G,
where G is a base point of the elliptic curve. Bob passes the public key to Alice.

3. Alice gets Bob's public key and calculates the secret point shareA. When calculating, she uses her own
private key and Bob's public key and applies the following formula: shareA = h · privKeyA · pubKeyB =
h · privKeyA · privKeyB · G, where h is the elliptic curve cofactor.

4. Bob gets Alice's public key and calculates the secret point shareB. When calculating, he uses his own
private key and Alice's public key and applies the following formula: shareB = h · privKeyB · pubKeyA =
h · privKeyB · privKeyA · G, where h is the elliptic curve cofactor.

Shared secret bnShare is the x-coordinate of the secret point on the elliptic curve.

The elliptic curve domain parameters must be hitherto defined by the functions: GFpECInitStd, GFpECInit,
GFpECSet, or GFpECSetSubgroup.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the contexts pointed to by
pPrivate, pPublic, pShare, or pEC does not match the
operation.

ippStsRangeErr Indicates an error condition if the memory size of bnShare
pointed to by pShare is less than the size of the GFp modulus
that is the base for the specified elliptic curve.

ippStsShareKeyErr Indicates an error condition if the shared secret key is not
valid. (For example, the shared secret key is invalid if the
result of the secret point calculation is the point at infinity.)

GFpECSignDSA
Computes a digital signature over a message digest.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

286

Syntax

IppStatus ippsGFpECSignDSA(const IppsBigNumState* pMsgDigest, const IppsBigNumState*
pRegPrivate, const IppsBigNumState* pEphPrivate, IppsBigNumState* pSignR,
IppsBigNumState* pSignS, IppsGFpECState* pEC, Ipp8u* pScratchBuffer);

Include Files

ippcp.h

Parameters

pMsgDigest Pointer to the message digest msg to be digitally signed, that is, to
be ecrypted with a private key.

pRegPrivate Pointer to the signer's regular private key.

pEphPrivate Pointer to the signer's ephemeral private key.

pSignR Pointer to the integer r of the digital signature.

pSignS Pointer to the integer s of the digital signature.

pEC Pointer to the context of the elliptic curve.

pScratchBuffer Pointer to the scratch buffer.

Description

A message digest is a fixed size number derived from the original message with an applied hash function
over the binary code of the message. The signer's private key and the message digest are used to create a
signature.

A digital signature over a message consists of a pair of large numbers r and s which the given function
computes.

The scheme used for computing a digital signature is the ECDSA scheme, an elliptic curve analogue of the
DSA scheme.

The regular private key regPrivKey and the ephemeral private key ephPrivKey can be generated by the
functions GFpECPrivateKey and GFpECPublicKey with only the requirement that the key regPrivKey be
different from the key ephPrivKey.

The elliptic curve domain parameters must be hitherto defined by the functions: GFpECInitStd, GFpECInit,
GFpECSet, or GFpECSetSubgroup.

For more information on digital signatures, please refer to the [ANSI] standard.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the contexts pointed to by
pMsgDigest, pRegPrivate, pEphPrivate, pSignR, pSignS, or pEC
does not match the operation.

ippStsMessageErr Indicates an error condition if the value of msg pointed to by
pMsgDigest falls outside the range of [1, n-1] where n is the
order of the elliptic curve base point G.

Public Key Cryptography Functions 5

287

ippStsRangeErr Indicates an error condition if any of the parameters pointed to
by pSignR or pSignS has a memory size that is less than the
order n of the elliptic curve base point G.

ippStsIvalidPrivateKey Indicates an error condition if any of the parameters pointed to
by pRegPrivate or pEphPrivate has a memory size that is less
than the order n of the elliptic curve base point G.

ippStsNotSupportedModeErr Indicates an error condition if the finite field GFp under the
elliptic curve is not prime.

GFpECVerifyDSA
Verifies authenticity of the digital signature over a
message digest (ECDSA).

Syntax

IppStatus ippsGFpECVerifyDSA(const IppsBigNumState* pMsgDigest, const IppsGFpECPoint*
pRegPublic, const IppsBigNumState* pSignR, const IppsBigNumState* pSignS, IppECResult*
pResult, IppsGFpECState* pEC, Ipp8u* pScratchBuffer);

Include Files

ippcp.h

Parameters

pMsgDigest Pointer to the message digest msg.

pRegPublic Pointer to the signer's regular public key.

pSignR Pointer to the integer r of the digital signature.

pSignS Pointer to the integer s of the digital signature.

pResult Pointer to the digital signature verification result.

pEC Pointer to the context of the elliptic curve.

pScratchBuffer Pointer to the scratch buffer.

Description

The function verifies authenticity of the digital signature over a message digest msg. The signature consists
of two large integers: r and s.

The scheme used to verify the signature is an elliptic curve analogue of the DSA scheme. You can get the
message sender's regular public key regPubKey by calling the function GFpECPublicKey.

The result of the digital signature verification can take one of two possible values:

ippECValid Digital signature is valid.

ippECInvalidSignature Digital signature is not valid.

The call to the GFpECVerifyDSA function must be preceded by a call to the GFpECSignDSA function which
computes the digital signature over the message digest msg and represents the signature with two numbers:
r and s.

The elliptic curve domain parameters must be hitherto defined by the functions: GFpECInitStd, GFpECInit,
GFpECSet, or GFpECSetSubgroup.

For more information on digital signatures, please refer to the [ANSI] standard.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

288

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the contexts pointed to by
pMsgDigest, pRegPublic, pSignR, pSignS, or pEC does not
match the operation.

ippStsMessageErr Indicates an error condition if the value of msg pointed to by
pMsgDigest is negative.

ippStsRangeErr Indicates an error condition if any of the parameters pointed to
by pSignR or pSignS is negative.

ippStsNotSupportedModeErr Indicates an error condition if the finite field GFp under the
elliptic curve is not prime.

ippStsOutOfRangeErr Indicates an error condition if the public key point does not
belong to the finite field over which the elliptic curve is
initialized.

GFpECSignNR
Computes the digital signature over a message digest
(the Nyberg-Rueppel scheme).

Syntax

IppStatus ippsGFpECSignNR(const IppsBigNumState* pMsgDigest, const IppsBigNumState*
pRegPrivate, const IppsBigNumState* pEphPrivate, IppsBigNumState* pSignR,
IppsBigNumState* pSignS, IppsGFpECState* pEC, Ipp8u* pScratchBuffer);

Include Files

ippcp.h

Parameters

pMsgDigest Pointer to the message digest msg to be digitally signed, that is, to
be ecrypted with a private key.

pRegPrivate Pointer to the signer's regular private key.

pEphPrivate Pointer to the signer's ephemeral private key.

pSignR Pointer to the integer r of the digital signature.

pSignS Pointer to the integer s of the digital signature.

pEC Pointer to the context of the elliptic curve.

pScratchBuffer Pointer to the scratch buffer.

Description

The function computes two large numbers r and s which form the digital signature over a message digest
msg.

The scheme used to compute the digital signature is an elliptic curve analogue of the El-Gamal Digital
Signature scheme with the message recovery (the Nyberg-Rueppel signature scheme).

Public Key Cryptography Functions 5

289

The regular private key regPrivKey and the ephemeral private key ephPrivKey can be generated by the
functions GFpECPrivateKey and GFpECPublicKey with only the requirement that the key regPrivKey be
different from the key ephPrivKey.

The elliptic curve domain parameters must be hitherto defined by the functions: GFpECInitStd, GFpECInit,
GFpECSet, or GFpECSetSubgroup.

For more information on digital signatures, please refer to the [ANSI] standard.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the contexts pointed by
pMsgDigest, pRegPrivate, pEphPrivate, pSignR, pSignS, or pEC
does not match the operation.

ippStsMessageErr Indicates an error condition if the value of msg pointed to by
pMsgDigest falls outside the range of [1, n-1] where n is the
order of the elliptic curve base point G.

ippStsRangeErr Indicates an error condition if any of the parameters pointed to
by pSignR or pSignS has a memory size that is less than the
order n of the elliptic curve base point G.

ippStsIvalidPrivateKey Indicates an error condition if any of the parameters pointed to
by pRegPrivate or pEphPrivate has a memory size that is less
than the order n of the elliptic curve base point G.

ippStsNotSupportedModeErr Indicates an error condition if the finite field GFp under the
elliptic curve is not prime.

GFpECVerifyNR
Verifies authenticity of the digital signature over a
message digest (the Nyberg-Rueppel scheme).

Syntax

IppStatus ippsGFpECVerifyNR(onst IppsBigNumState* pMsgDigest, const IppsGFpECPoint*
pRegPublic, const IppsBigNumState* pSignR, const IppsBigNumState* pSignS, IppECResult*
pResult, IppsGFpECState* pEC, Ipp8u* pScratchBuffer);

Include Files

ippcp.h

Parameters

pMsgDigest Pointer to the message digest msg.

pRegPublic Pointer to the signer's regular public key.

pSignR Pointer to the integer r of the digital signature.

pSignS Pointer to the integer s of the digital signature.

pResult Pointer to the digital signature verification result.

pEC Pointer to the context of the elliptic curve.

pScratchBuffer Pointer to the scratch buffer.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

290

Description

The function verifies authenticity of the digital signature over a message digest msg. The signature consists
of two large integers: r and s.

The scheme used to compute the digital signature is an elliptic curve analogue of the El-Gamal Digital
Signature scheme with the message recovery (the Nyberg-Rueppel signature scheme).

You can get the message sender's regular public key regPubKey by calling the function GFpECPublicKey.

The result of the digital signature verification can take one of two possible values:

ippECValid Digital signature is valid.

ippECInvalidSignature Digital signature is not valid.

The call to the GFpECVerifyNR function must be preceded by a call to the GFpECSignNR function which
computes the digital signature over the message digest msg and represents the signature with two numbers:
r and s.

The elliptic curve domain parameters must be hitherto defined by the functions: GFpECInitStd, GFpECInit,
GFpECSet, or GFpECSetSubgroup.

For more information on digital signatures, please refer to the [ANSI] standard.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the contexts pointed to by
pMsgDigest, pRegPublic, pSignR, pSignS, or pEC does not
match the operation.

ippStsMessageErr Indicates an error condition if the value of msg pointed to by
pMsgDigest falls outside the range of [1, n-1] where n is the
order of the elliptic curve base point G.

ippStsRangeErr Indicates an error condition if any of the parameters pointed to
by pSignR or pSignS is negative.

ippStsOutOfRangeErr Indicates an error condition if the public key point does not
belong to the finite field over which the elliptic curve is
initialized.

ippStsNotSupportedModeErr Indicates an error condition if the finite field GFp under the
elliptic curve is not prime.

GFpECSignSM2
Computes a digital signature over a message digest
using the SM2 scheme.

Syntax

IppStatus ippsGFpECSignSM2(const IppsBigNumState* pMsgDigest, const IppsBigNumState*
pRegPrivate, const IppsBigNumState* pEphPrivate, IppsBigNumState* pSignR,
IppsBigNumState* pSignS, IppsGFpECState* pEC, Ipp8u* pScratchBuffer);

Include Files

ippcp.h

Public Key Cryptography Functions 5

291

Parameters

pMsgDigest Pointer to the message digest msg to be digitally signed, that is, to
be ecrypted with a private key.

pRegPrivate Pointer to the signer's regular private key.

pEphPrivate Pointer to the signer's ephemeral private key.

pSignR Pointer to the integer r of the digital signature.

pSignS Pointer to the integer s of the digital signature.

pEC Pointer to the context of the elliptic curve.

pScratchBuffer Pointer to the scratch buffer.

Description

The function computes two big numbers r and s that form the digital signature over a message digest msg.

The digital signature is computed using the SM2 scheme [SM2].

The regular private key regPrivKey and the ephemeral private key ephPrivKey can be generated by the
functions GFpECPrivateKey and GFpECPublicKey with only the requirement that the key regPrivKey be
different from the key ephPrivKey.

The elliptic curve domain parameters must be hitherto defined by the functions: GFpECInitStd, GFpECInit,
GFpECSet, or GFpECSetSubgroup.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the contexts pointed to by
pMsgDigest, pRegPrivate, pEphPrivate, pSignR, pSignS, or pEC
does not match the operation.

ippStsMessageErr Indicates an error condition if the value of msg pointed to by
pMsgDigest is negative.

ippStsRangeErr Indicates an error condition if any of the parameters pointed to
by pSignR or pSignS has a memory size that is less than the
order n of the elliptic curve base point G.

ippStsIvalidPrivateKey Indicates an error condition in the following cases:

• Any of the parameters pointed to by pRegPrivate or
pEphPrivate has a memory size that is less than the order n of
the elliptic curve base point G.

• The value of any of the private keys is greater than or equal to the
order n of the elliptic curve base point G.

ippStsNotSupportedModeErr Indicates an error condition if the finite field GFp under the
elliptic curve is not prime.

GFpECVerifySM2
Verifies authenticity of a digital signature over a
message digest using the SM2 scheme.

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

292

Syntax

IppStatus ippsGFpECVerifySM2(const IppsBigNumState* pMsgDigest, const IppsGFpECPoint*
pRegPublic, const IppsBigNumState* pSignR, const IppsBigNumState* pSignS, IppECResult*
pResult, IppsGFpECState* pEC, Ipp8u* pScratchBuffer);

Include Files

ippcp.h

Parameters

pMsgDigest Pointer to the message digest msg.

pRegPublic Pointer to the signer's regular public key.

pSignR Pointer to the integer r of the digital signature.

pSignS Pointer to the integer s of the digital signature.

pResult Pointer to the digital signature verification result.

pEC Pointer to the context of the elliptic curve.

pScratchBuffer Pointer to the scratch buffer.

Description

The function verifies authenticity of the digital signature, represented as integer big numbers r and s, over a
message digest msg. The digital signature over the message digest msg must be computed using the SM2
scheme [SM2] by to the GFpECSignSM2 function.

You can get the message sender's regular public key regPubKey by calling the function GFpECPublicKey.

The result of the digital signature verification can take one of these values:

ippECValid Digital signature is valid.

ippECInvalidSignature Digital signature is not valid.

The elliptic curve domain parameters must be hitherto defined by the functions: GFpECInitStd, GFpECInit,
GFpECSet, or GFpECSetSubgroup.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the contexts pointed to by
pMsgDigest, pRegPublic, pSignR, pSignS, or pEC does not
match the operation.

ippStsMessageErr Indicates an error condition if the value of msg pointed to by
pMsgDigest is negative.

ippStsRangeErr Indicates an error condition if any of the parameters pointed to
by pSignR or pSignS is negative.

ippStsOutOfRangeErr Indicates an error condition if the public key point does not
belong to the finite field over which the elliptic curve is
initialized.

ippStsNotSupportedModeErr Indicates an error condition if the finite field GFp under the
elliptic curve is not prime.

Public Key Cryptography Functions 5

293

ECCGetResultString
For elliptic curve cryptosystems, returns the character
string corresponding to code that represents the result
of validation.

Syntax

const char* ippsECCGetResultString(IppECResult code);

Include Files

ippcp.h

Parameters

code The code of the validation result.

Description

For elliptic curve cryptosystems, returns the character string corresponding to code that represents the result
of validation.

Return Values

Possible values of code and the corresponding character strings are as follows:

default "Unknown ECC result"

ippECValid "Validation passed successfully"

ippECCompositeBase "Finite Field produced by Composite"

ippECComplicatedBase "Too many non-zero terms in the polynomial"

ippECIsZeroDiscriminant "Zero discriminant"

ippECCompositeOrder "Composite Base Point order"

ippECInvalidOrder "Composite Base Point order"

ippECIsWeakMOV "EC cover by MOV Reduction Test"

ippECIsWeakSSSA "EC cover by SS-SA Reduction Test"

ippECIsSupersingular "EC is supersingular curve"

ippECInvalidPrivateKey "Invalid Private Key"

ippECInvalidPublicKey "Invalid Public Key"

ippECInvalidKeyPair "Invalid Key Pair"

ippECPointOutOfGroup "Point is out of group"

ippECPointAtInfinite "Point at infinity"

ippECPointIsNotValid "Invalid EC Point"

ippECPointIsEqual "Points are equal"

ippECPointIsNotEqual "Points are different"

ippECInvalidSignature "Invalid Signature"

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

294

See Also
ECCPValidate
ECCPValidateKeyPair

Public Key Cryptography Functions 5

295

 5 Intel® Integrated Performance Primitives Cryptography Developer Reference

296

Finite Field Arithmetic 6
This section describes the Intel® Integrated Performance Primitives Cryptography (Intel® IPP Cryptography)
functions that implement arithmetic operations with elements of the following finite fields [ANT]:

GF(p) A finite field of p elements.
GF(q) If q is an odd prime number, then the finite field is

represented by integers modulo q. This field is also known
as the prime finite field.

GF(pd) If p = q, q is an odd prime number and d > 1, the finite
field is represented by polynomials modulo g(x), GF(p)
[x]/g(x), where g(x) is an irreducible polynomial over
GF(p). This field is also known as a degree d extension of
the GF(p) field.

GF(((qn1)n2)n3) A very complex extension of the prime finite field GF(q).
The initial prime field GF(q) used at the lowest level of the
construct is frequently called the basic finite field with
respect to the extension.

The finite field arithmetic functions use context structures of the IppsGFpState and IppsGFpElement types
to store data of the finite field and the field elements, respectively.

The IppsGFpElement type structure is used for internal representation of field elements. In application (or
external) representation of field element is straightforward. Each element E of the prime field GF(q) is an
unsigned number in the range [0, q - 1], which is represented by a data array Ipp32u qe[len32] , so that

E = ∑
i = 0

len32− 1
qe i 232i

where is the length of the prime q, expressed in dwords (32-bit chunks).

Each element E of GF(pd) is represented by a polynomial of degree less than d. This polynomial is
represented by an array of coefficients pe[d] that belong to GF(p).

E = ∑
j = 0

d − 1
x j ∑

i = 0

len32− 1
qe i 232i

Thus,

Ipp32u a[4] = {0xBFF9AEE1,0xBF59CC9B,0xD1B3BBFE,0xD6031998};
is an external (application-side) representation of an element that belongs to some prime field GF(q),
bitsize(q)=128.

Similarly,

Ipp32u b[2][4] = { {0xBFF9AEE1,0xBF59CC9B,0xD1B3BBFE,0xD6031998},
 {0xBB6D8A5D,0xDC2C6558,0x80D02919,0x5EEEFCA3} };
is an external (application-side) representation of an element that belongs to GF(q2) - a degree 2 extension
of some prime field GF(q), bitsize(q)=128.

You can use Intel IPP Cryptography finite field functions to convert between the internal and the external
representations of a finite field element.

297

Prime finite fields are the basic mathematical objects of Elliptic Curve (EC) cryptography. Intel IPP
Cryptography supports different kinds of EC over finite fields and, in particular, the standard elliptic curves -
elliptic curves with pre-defined parameters, including the underlying finite field. The performance of EC
functionality directly depends on the efficiently of the implementation of operations with finite field elements
such as addition, multiplication, and squaring.

Intel IPP Cryptography contains several different optimized implementations of finite field arithmetic
functions. These implementations, referred to in this document as "methods", are grouped together in
structures. Intel IPP Cryptography does not reveal the content of these structures. The implementations,
including those optimized for a particular prime q, are accessed by special Intel IPP Cryptography functions.
For example, ippsGFpMethod_p192r1() returns a pointer to the structure containing optimized arithmetic
over prime p192r1 (see GFpMethod for details).

Similarly, for GF(pd), additional knowledge concerning the predefined field polynomial g(x) allows Intel IPP
Cryptography to provide a more efficient implementation of finite field arithmetic than in the case of an
arbitrary field polynomial g(x). Intel IPP Cryptography contains methods dedicated to certain predefined g(x).
For example, the functions ippsGFpxMethod_binom2() returns a pointer to the structure containing
optimized arithmetic over GF(p2).

The comparison function GFpCmpElement returns the result of comparison:

#define IPP_IS_EQ (0) // elements are equal
#define IPP_IS_GT (1) // the first element is greater than the second one
#define IPP_IS_LT (2) // the first element is less than the second one
#define IPP_IS_NE (3) // elements are not equal
#define IPP_IS_NA (4) // elements are not comparable

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

GFpInitFixed
Initializes the context of a prime finite field GF(q) with
a predefined modulus q.

Syntax

IppStatus ippsGFpInitFixed(int primeBitSize, const IppsGFpMethod* method, IppsGFpState*
pGF);

Include Files

ippcp.h

Parameters

primeBitSize Size, in bytes, of the odd prime number q (modulus of GF(q)).

method Pointer to the implementation of a basic arithmetic (methods) over
the prime finite field GF(q) with a predefined q.

pGF Pointer to the context of the GF(q) field being initialized.

 6 Intel® Integrated Performance Primitives Cryptography Developer Reference

298

Description

The function initializes the memory buffer pGF associated with the IppsGFPState context and sets up the
specific value of the GF(q) modulus corresponding to the chosen method. The initialized context is used in
the functions that create contexts of elements of the GF(p) field, which, in turn, are used to perform
operations with the field elements.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsBadArgErr Indicates an error condition in the following cases:

• method is not a pointer to an implementation of a prime finite field
arithmetic with a predefined modulus

• method does not correspond to the size of modulus q defined in a
ippsGFpGetSize() call.

GFpInitArbitrary
Initializes the context of an arbitrary prime finite field
GF(q).

Syntax

IppStatus ippsGFpInitArbitrary(const IppsBigNumState* pPrime, int primeBitSize,
IppsGFpState* pGF);

Include Files

ippcp.h

Parameters

pPrime Pointer to the Big Number context storing the GF(q) modulus.

primeBitSize Size, in bytes, of the odd prime number q (modulus of GF(q)).

pGF Pointer to the context of the GF(q) field being initialized.

Description

The function initializes the memory buffer pGF associated with the IppsGFPState context and sets the GF(q)
modulus to the value specified by pPrime. This function uses ippsGFpMethod_pArb() to get an
implementation of the finite field arithmetic. The initialized context is used in the functions that create
contexts of elements of the GF(p) field, which, in turn, are used to perform operations with the field
elements.

NOTE
This function does not check if pPrime actually refers to a prime value.

Finite Field Arithmetic 6

299

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsSizeErr Indicates an error condition if primeBitSize is less than 2 or
greater than 1024.

ippStsContextMatchErr Indicates an error condition if the pPrime context does not
match the operation.

ippStsBadArgErr Indicates an error condition in the following cases:

• The GF(q) modulus q is less than 3.
• bitsize(q) != primeBitSize.
• q is even.

GFpInit
Initializes the context of a prime finite field GF(q).

Syntax

IppStatus ippsGFpInit(const IppsBigNumState* pPrime, int primeBitSize, const
IppsGFpMethod* method, IppsGFpState* pGF);

Include Files

ippcp.h

Parameters

pPrime Pointer to the Big Number context storing the GF(q) modulus.

primeBitSize Size, in bytes, of the odd prime number p (modulus of GF(q)).

method Pointer to the implementation of a basic arithmetic (methods) over
the prime finite field GF(q).

NOTE
If your application uses one of predefined values of the modulus q, the
use of the GFpMethod function corresponding to that value is
preferable. In other cases, use ippsGfpMethod_pArb().

pGF Pointer to the context of the GF(q) field being initialized.

Description

NOTE
This function combines the roles of ippsGFpInitFixed() and ippsGFpInitArbitrary() and is kept
for backward compatibility. Using ippsGFpInitFixed() and ippsGFpInitArbitrary() explicitly is
considered preferable.

The function initializes the pGF context parameter with the values of the input parameterspPrime,
primeBitSize, and method. The three parameters have to be compatible with each other.

 6 Intel® Integrated Performance Primitives Cryptography Developer Reference

300

If pPrime == NULL, then the behavior of ippsGFpInit() is similar to that of ippsGFpInitFixed().
method must be an output from one of the GFpMethod functions with predefined modulus q, and the
parameters primeBitSize and method must be compatible with each other.

If pPrime is not NULL, and method is an output from one of the GFpMethod functions with predefined
modulus q, then the pair pPrime and primeBitSize should define the same prime q as defined in method.

If method == NULL, then the behavior of ippsGFpInit() is similar to that of ippsGFpInitArbitrary().

If both pPrime and method are not NULL, then ippsGFpInit() provides the required initialization if the
parameters are compatible with each other.

The initialized context is used in the functions that create contexts of elements of the GF(p) field, which, in
turn, are used to perform operations with the field elements.

NOTE
This function does not check if pPrime actually refers to a prime value.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition in the following cases:

• pGF is NULL.
• Both pPrime and method are NULL.

ippStsSizeErr Indicates an error condition if primeBitSize is less than 2 or
greater than 1024.

ippStsContextMatchErr Indicates an error condition if the pPrime context parameter is
not NULL and does not match the operation.

ippStsBadArgErr Indicates an error condition in the following cases:

• The modulus q defined in pPrime is less than 3.
• bitsize(q) != primeBitSize.
• q is even.
• method is not NULL and not an output of GFpMethod.
• method is an output from one of the GFpMethod functions with

predefined modulus q, but:

• The bit size of q of method is different from the bit size of the
value stored in the context pointed to by pPrime.

• q of method is different from the value stored in the context
pointed to by pPrime.

GFpMethod
Returns a reference to an implementation of
arithmetic operations over GF(q).

Syntax

const IppsGFpMethod* ippsGFpMethod_p192r1(void);
const IppsGFpMethod* ippsGFpMethod_p224r1(void);

Finite Field Arithmetic 6

301

const IppsGFpMethod* ippsGFpMethod_p256r1(void);
const IppsGFpMethod* ippsGFpMethod_p384r1(void);
const IppsGFpMethod* ippsGFpMethod_p521r1(void);
const IppsGFpMethod* ippsGFpMethod_p256sm2(void);
const IppsGFpMethod* ippsGFpMethod_p256bn(void);
const IppsGFpMethod* ippsGFpMethod_pArb(void);

Include Files

ippcp.h

Description

Each of these functions returns a pointer to a structure containing an implementation of arithmetic
operations over GF(q).

ippsGFpMethod_pArb() assumes an arbitrary modulus q; each of the rest of the functions returns a pointer
to the implementation of arithmetic operations over GF(q) tailored for a particular q. See the table below for
the correspondence between method functions and values of the modulus q.

Function Value of modulus q
ippsGFpMethod_p192r1() q = 2192 - 264 - 1
ippsGFpMethod_p224r1() q = 2224 - 296 - 1
ippsGFpMethod_p256r1() q = 2256 - 2224 + 2192 + 296 - 1
ippsGFpMethod_p384r1() q = 2384 - 2128 - 296 + 232 - 1
ippsGFpMethod_p521r1() q = 2521 - 1
ippsGFpMethod_p256sm2() q = 2256 - 2224 - 296 + 264 - 1
ippsGFpMethod_p256bn() q =

0xFFFFFFFFFFFCF0CD46E5F25EEE71A49F0CDC65FB12980A82D3292DDBAED33013
ippsGFpMethod_pArb() Arbitrary modulus q

GFpGetSize
Gets the size of the context of a GF(q) field.

Syntax

IppStatus ippsGFpGetSize(int bitSize, int* pStateSizeInBytes);

Include Files

ippcp.h

Parameters

bitSize Size, in bytes, of the odd prime number q (modulus of GF(q)).

pStateSizeInBytes Pointer to the buffer size, in bytes, needed for the IppsGFpState
context.

Description

This function returns the size of the buffer associated with the IppsGFpState context, which you can use to
store data of the finite field GF(q) determined by the odd prime number q of size not greater than bitSize
bit.

 6 Intel® Integrated Performance Primitives Cryptography Developer Reference

302

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsSizeErr Indicates an error condition if bitSize is less than 2 or greater
than 1024.

GFpxInitBinomial
Initializes the context of a GF(pd) field.

Syntax

IppStatus ippsGFpxInitBinomial(const IppsGFpState* pParentGF, int extDeg, const
IppsGFpElement* const pParentElm, const IppsGFpMethod* method, IppsGFpState* pGFpx);

Include Files

ippcp.h

Parameters

pParentGF Pointer to the context of the finite field GF(p) being extended.

extDeg Degree of the extension.

pParentElm Pointer to the IppsGFpElement context containing the trailing
coefficient of the field binomial.

method Pointer to the implementation of a basic arithmetic (methods) over
GF(pd).

pGFpx Pointer to the context of the GF(pd) field being initialized.

Description

This function initializes the memory buffer pGFpx associated with the IppsGFpState context and sets up the
specific irreducible binomial. The initialized context is used in the functions that create contexts of elements
of the GF(pd) field and perform operations with field elements.

NOTE
The function does not check the binomial's irreducibility.

Important
When calling the functions over the GF(pd) field, a properly initialized pParentGF context of the finite
field GF(p) is required.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

Finite Field Arithmetic 6

303

ippStsContextMatchErr Indicates an error condition if any of the context parameters
pParentGF and pParentElm does not match the operation.

ippStsBadArgErr Indicates an error condition in the following cases:

• extDeg > 8 or extDeg < 2.
• method is not in agreement with other parameters.

ippStsOutOfRangeErr Indicates an error condition if the length of the value defined in
pParentElm is not equal to that of an element of pParentGF.

GFpxInit
Initializes the context of a GF(pd) field.

Syntax

IppStatus ippsGFpxInit(const IppsGFpState* pParentGF, int extDeg, const IppsGfpElement*
const ppParentElm[], int polyTerms, const IppsGFpMethod* method, IppsGFpState* pGFpx);

Include Files

ippcp.h

Parameters

pParentGF Pointer to the context of the finite field GF(p) being extended.

extDeg Degree of the extension.

ppParentElm[] Pointer to the array of IppsGFpElement contexts representing
coefficients of the field polynomial.

polyTerms Number of the field polynomial coefficients.

method Pointer to the implementation of a basic arithmetic (methods) over
the extended GF(p) finite field.

pGFpx Pointer to the context of the GF(pd) field being initialized.

Description

The function initializes the memory buffer pGFpx associated with the IppsGFpState context and sets up the
specific irreducible polynomial. The initialized context is used in the functions that create contexts of
elements of the GF(pd) field and perform operations with the field elements. The function assumes the use of
a general field polynomial g(x) = xd + xd - 1ad - 1 + xd - 2ad - 2 + ⋯ + x1a1 + a0 over GF(p).

• The function does not check the polynomial's irreducibility.
• In general, the GF(pd) extension requires a field polynomial g(x) of degree d. However, because

g(x) is considered a monic polynomial (the coefficient of xd is always assumed equal to 1), the
leading coefficient is not required: polyTerms <= (extDeg - 1).

• When calling the functions over the GF(pd) field, a properly initialized pParentGF context of the
finite field GF(p) is required.

• Do not release the pParentGF context of the parent field as long as application deals with either
the parent or the extended finite field pointed to by pGFpx.

 6 Intel® Integrated Performance Primitives Cryptography Developer Reference

304

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the context parameters
referenced by elements of ppParentElm[] or pParentGF does
not match the operation.

ippStsBadArgErr Indicates an error condition in the following cases:

• extDeg > 8 or extDeg < 2.
• polyTerms > (extDeg - 1) or polyTerms < 1.
• method is not an output of a GFpxMethod function.
• method is not compatible with the value of extDeg.

ippStsOutOfRangeErr Indicates an error condition if the length of any of the values
defined by ppPrentElm[] is not equal to the length of an
element of the parent finite field pParentGF.

GFpxMethod
Returns a reference to the implementation of
arithmetic operations over GF(pd).

Syntax

const IppsGFpMethod* ippsGFpxMethod_com(void);
const IppsGFpMethod* ippsGFpxMethod_binom2(void);
const IppsGFpMethod* ippsGFpxMethod_binom3(void);
const IppsGFpMethod* ippsGFpxMethod_binom(void);
const IppsGFpMethod* ippsGFpxMethod_binom2_epid2(void);
const IppsGFpMethod* ippsGFpxMethod_binom3_epid2(void);

Include Files

ippcp.h

Description

Each of these functions returns a pointer to a structure containing an implementation of arithmetic
operations over GF(pd).

ippsGFpxMethod_com assumes an arbitrary value of the field polynomial g(x); each of the rest of the
functions returns a pointer to the implementation of arithmetic operations over GF(pd) tailored for a
particular value of g(x). See the table below for the correspondence between method functions and values of
the field polynomial g(x).

Function Value of the field polynomial g(x)
ippsGFpxMethod_com g(x) = xd + xd - 1ad - 1 + xd - 2ad - 2 + ⋯ + x1a1 + a0, ai∈ GF(p)
ippsGFpxMethod_binom2 g(x) = x2 - a0, a0∈ GF(p)
ippsGFpxMethod_binom3 g(x) = x3 - a0, a0∈ GF(p)
ippsGFpxMethod_binom g(x) = xd - a0, a0∈ GF(p)

Finite Field Arithmetic 6

305

Function Value of the field polynomial g(x)
ippsGFpxMethod_binom2_epid2 g(x) = x2 - a0, a0∈ GF(q), a0 = 1

g(w) = w2 - V0, v0∈ GF((q2)3), V0 = 0 · v2 + v + 0

ippsGFpxMethod_binom3_epid2 g(v) = v3 - U0, U0∈ GF(q2), U0 = u + 2

NOTE
ippsGFpxMethod_binom2_epid2() and ippsGFpxMethod_binom3_epid2() are designed especially
for the construction of finite field extensions for applications that use the Intel® Enhanced Privacy ID
2.0 scheme.

GFpxGetSize
Gets the size of the context of a GF(pd) field.

Syntax

IppStatus ippsGFpxGetSize(const IppsGFpState* pParentGF, int degree, int*
pStateSizeInBytes);

Include Files

ippcp.h

Parameters

pParentGF Pointer to the context of the finite field GF(p) being extended.

degree Degree of the extension.

pStateSizeInBytes Pointer to the buffer size, in bytes, needed for the IppsGFpState
context.

Description

The function returns the size of the buffer associated with the IppsGFpState context, suitable for storing
data for the finite field GF(pd) determined by the extension degree d supplied in the degree parameter.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the IppsGFpState context
parameter does not match the operation.

ippStsBadArgErr Indicates an error condition if the degree of the extension is
greater than or equal to 9 or is less than 2.

GFpScratchBufferSize
Gets the size of the scratch buffer.

 6 Intel® Integrated Performance Primitives Cryptography Developer Reference

306

Syntax

IppStatus ippsGFpScratchBufferSize(int nExponents, int ExpBitSize, const IppsGFpState*
pGF, int* pBufferSize);

Include Files

ippcp.h

Parameters

nExponents Number of exponents.

ExpBitSize Maximum bit size of the exponents.

pGFp Pointer to the context of the finite field.

pBufferSize Pointer to the calculated buffer size in bytes.

Description

This function computes the size of the scratch buffer for the ippsGFpExp and ippsGFpMultiExp functions.
The pGFp parameter specifies the context of the finite field.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the pGFp context parameter does
not match the operation.

ippStsBadArgErr Indicates an error condition in the following cases:

• The number of exponents is zero or negative.
• The number of exponents is greater than 6.

GFpElementGetSize
Gets the size of the context for an element of the
finite field.

Syntax

IppStatus ippsGFpElementGetSize(const IppsGFpState* pGFp, int* pElementSize);

Include Files

ippcp.h

Parameters

pGFp Pointer to the context of the finite field.

pElementSize Pointer to the buffer size, in bytes, needed for the IppsGFpElement
context.

Description

This function returns the size of the buffer associated with the IppsGFpElement context, suitable for storing
an element of the finite field specified by the context pGFp.

Finite Field Arithmetic 6

307

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the pGFp context parameter does
not match the operation.

GFpElementInit
Initializes the context of an element of the finite field.

Syntax

IppStatus ippsGFpElementInit(const Ipp32u* pA, int nsA, IppsGFpElement* pR,
IppsGFpState* pGF);

Include Files

ippcp.h

Parameters

pA Pointer to the data array storing the finite field element.

lenA Length of the element.

pR Pointer to the context of the finite field element being initialized.

pGFp Pointer to the context of the finite field.

Description

This function initializes the memory buffer pR associated with the IppsGFpElement context and sets up the
specific element of the finite field specified by the pGFp context. The initialized IppsGFpElement context is
used in all the operations with this element of the finite field.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if the pGFp context parameter does
not match the operation.

ippStsSizeErr Indicates an error condition if lenA≤ 0.

GFpSetElement
Assigns a value to an element of the finite field.

Syntax

IppStatus ippsGFpSetElement(const Ipp32u* pA, int nsA, IppsGFpElement* pR,
IppsGFpState* pGFp);

 6 Intel® Integrated Performance Primitives Cryptography Developer Reference

308

Include Files

ippcp.h

Parameters

pA Pointer to the data array storing the finite field element.

nsA Length of the element.

pR Pointer to the context of the finite field element being assigned.

pGFp Pointer to the context of the finite field.

Description

This function copies (and converts if needed) the value from the user-defined pA buffer to the
IppsGFpElement context of the finite field element. If pR is NULL, GFpSetElement assigns zero to the
element.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition in the following cases:

• Either pR or pGFp is NULL.
• The length of the element nsA is greater than zero and the pointer

pA is NULL.

ippStsContextMatchErr Indicates an error condition if any of the pGFp andpR context
parameters does not match the operation.

ippStsSizeErr Indicates an error condition in the following cases:

• nsA is not equal to the length of an element of the finite field.
• The maximum length of the element stored in the context pR

exceeds the maximum length of an element of the finite field
specified by the context pGFp.

ippStsOutOfRangeErr Indicates an error condition if the value contained in pA
exceeds the modulus q of the basic prime finite field.

GFpSetElementOctString
Assigns a value from the input octet string to an
element of the finite field.

Syntax

IppStatus ippsGFpSetElementOctString(const Ipp8u* pStr, int strSize, IppsGFpElement*
pR, IppsGFpState* pGFp);

Include Files

ippcp.h

Parameters

pStr Pointer to the octet string.

Finite Field Arithmetic 6

309

strSize Size of the octet string buffer in bytes.

pR Pointer to the context of the finite field element.

pGFp Pointer to the context of the finite field.

Description

This function assigns a value from the input octet string to an element of the finite field.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition in any of the following cases:

• Either pR or pGFp is NULL.
• The length of the string is greater than zero and the pointer pStr

is NULL.

ippStsContextMatchErr Indicates an error condition if any of the pGFp and pR context
parameters does not match the operation.

ippStsSizeErr Indicates an error condition in any of the following cases:

• strSize exceeds the length of an element of the finite field.
• strSize≤ 0.
• The maximum length of the element stored in the context pR

exceeds the maximum length of an element of the finite field
specified by the context pGFp.

ippStsOutOfRangeErr Indicates an error condition in any of the following cases:

• The length of the element stored in the context pR is not equal to
the length of an element of the finite field specified by the context
pGFp.

• The value defined by pStr exceeds the modulus q of the basic
prime finite field.

GFpSetElementRandom
Assigns a random value to an element of the finite
field.

Syntax

IppStatus1 ippsGFpSetElementRandom(IppsGFpElement* pR, IppsGFpState* pGFp,
IppBitSupplier rndFunc, void* pRndParam);

Include Files

ippcp.h

Parameters

pR Pointer to the context of the finite field element.

pGFp Pointer to the context of the finite field.

 6 Intel® Integrated Performance Primitives Cryptography Developer Reference

310

rndFunc Pseudorandom number generator.

pRndParam Pointer to the context of the pseudorandom number generator.

Description

This function assigns a random value to an element of the finite field.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the pointers pR, pGFp and
rndFunc is NULL.

ippStsContextMatchErr Indicates an error condition if any of pGFp or pR context
parameters does not match the operation.

ippStsErr Indicates an error condition in the following cases:

• A call to the rndFunc() function returns a status value other than
ippStsNoErr.

• The maximum length of the element stored in the context pR
exceeds the maximum length of an element of the finite field
specified by the context pGFp.

ippStsOutOfRangeErr Indicates an error condition if the length of the element stored
in the context pR is not equal to the length of an element of the
finite field specified by the context pGFp.

GFpSetElementHash
Assigns a value from the input hash to an element of
the finite field.

Syntax

IppStatus ippsGFpSetElementHash(const Ipp8u* pMsg, int msgLen, IppsGFpElement* pElm,
IppsGFpState* pGF, IppHashAlgId hashID);

Include Files

ippcp.h

Parameters

pMsg Pointer to the input message.

msgLen Length of the input message.

pElm Pointer to the context of the finite field element.

pGF Pointer to the context of the finite field.

hashID ID of the hash algorithm used. For details, see table Supported
Hash Algorithms.

Description

This function computes an element of the finite field from the hash of the input message.

Finite Field Arithmetic 6

311

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNotSupportedModeErr Indicates an error condition if hashID does not correspond to
any supported hash ID.

ippStsNullPtrErr Indicates an error condition in one of the following cases:

• Any of the pointers pElm and pGF is NULL.
• The msgLen is greater than zero and the pointer pMsg is NULL.

ippStsLengthErr Indicates an error condition if msgLen is negative.

ippStsContextMatchErr Indicates an error condition if any of thepGF and pElm context
parameters does not match the operation.

ippStsBadArgErr Indicates an error condition if the finite field specified by the
context pGF is not a prime finite field.

ippStsOutOfRangeErr Indicates an error condition if the length of the element stored
in the context pElm is not equal to the length of an element of
the finite field specified by the context pGF.

GFpCpyElement
Copies one element of the finite field to another
element.

Syntax

IppStatus ippsGFpCpyElement(const IppsGFpElement* pA, IppsGFpElement* pR, IppsGFpState*
pGFp);

Include Files

ippcp.h

Parameters

pA Pointer to the context of the finite field element being copied.

pR Pointer to the context of the finite field element being changed.

pGFp Pointer to the context of the finite field.

Description

This function copies one element of the finite field to another. The finite field is specified by the context pGFp.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the IppsGFpState and
IppsGFpElement context parameters does not match the
operation.

 6 Intel® Integrated Performance Primitives Cryptography Developer Reference

312

ippStsOutOfRangeErr Indicates an error condition if the input elements do not belong
to the finite field specified by the context pGFp.

GFpGetElement
Extracts an element of the finite field from the
context.

Syntax

IppStatus ippsGFpGetElement(const IppsGFpElement* pA, Ipp32u* pDataA, int nsA,
IppsGFpState* pGFp);

Include Files

ippcp.h

Parameters

pA Pointer to the context of the finite field element.

pDataA Pointer to the data array to copy the finite field element from.

nsA Length of the data array.

pGFp Pointer to the context of the finite field.

Description

This function copies the element of the finite field from the IppsGFpElement context to the user-defined
pDataA buffer. The finite field is specified by the context pGFp.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of IppsGFpState and
IppsGFpElement context parameters does not match the
operation.

ippStsOutOfRangeErr The input elements do not belong to the finite field specified by
the context pGFp

ippStsSizeErr The length of the data array is negative or less than the finite
field element length.

GFpGetElementOctString
Extracts an element of the finite field from the context
to the output octet string.

Syntax

IppStatus ippsGFpGetElementOctString(const IppsGFpElement* pA, Ipp8u* pStr, int
strSize, IppsGFpState* pGFp);

Finite Field Arithmetic 6

313

Include Files

ippcp.h

Parameters

pA Pointer to the context of the finite field element.

pStr Pointer to the octet string.

strSize Size of the octet string buffer in bytes.

pGFp Pointer to the context of the finite field.

Description

This function extracts the element of the finite field from the context to the octet string. If the string length is
not enough to hold the whole finite field element, the function writes only a part of the element.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the pGFp and pA context
parameters does not match the operation.

ippStsSizeErr Indicates an error if the length of the string is zero or negative.

ippStsOutOfRangeErr Indicates an error condition if the element pA does not belong
to the finite field specified by the context pGFp.

GFpCmpElement
Compares two elements of the finite field.

Syntax

IppStatus ippsGFpCmpElement(const IppsGFpElement* pA, const IppsGFpElement* pB, int*
pResult, const IppsGFpState* pGFp);

Include Files

ippcp.h

Parameters

pA Pointer to the context of the first finite field element.

pB Pointer to the context of the second finite field element.

pResult Pointer to the result of the comparison. For details, see comparison
results.

pGFp Pointer to the context of the finite field.

Description

This function compares two elements of the finite field and returns the result in pResult. The finite field is
specified by the context pGFp.

 6 Intel® Integrated Performance Primitives Cryptography Developer Reference

314

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of IppsGFpState and
IppsGFpElement context parameters does not match the
operation.

ippStsOutOfRangeErr Indicates an error condition if either pA or pB does not belong
to the finite field specified by the context pGFp.

GFpIsZeroElement
Compares an element of the finite field with the zero
element.

Syntax

IppStatus ippsGFpIsZeroElement(const IppsGFpElement* pA, int* pResult, const
IppsGFpState* pGFp);

Include Files

ippcp.h

Parameters

pA Pointer to the context of the first finite field element.

pResult Pointer to the result of the comparison. For details, see comparison
results.

pGFp Pointer to the context of the finite field.

Description

This function compares an element of the finite field with the zero element. The finite field is specified by the
context pGFp.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the IppsGFpState and
IppsGFpElement context parameters does not match the
operation.

ippStsOutOfRangeErr Indicates an error condition if pA does not belong to the finite
field specified by the context pGFp.

Finite Field Arithmetic 6

315

GFpIsUnityElement
Compares an element of the finite field with the unity
element.

Syntax

IppStatus ippsGFpIsUnityElement(const IppsGFpElement* pA, int* pResult, const
IppsGFpState* pGFp);

Include Files

ippcp.h

Parameters

pA Pointer to the context of the first finite field element.

pResult Pointer to the result of the comparison.For details, see comparison
results.

pGFp Pointer to the context of the finite field.

Description

This function compares an element of the finite field with the unity element. The finite field is specified by the
context pGFp.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of IppsGFpState and
IppsGFpElement context parameters does not match the
operation.

ippStsOutOfRangeErr Indicates an error condition ifpA does not belong to the finite
field specified by the context pGFp.

GFpConj
Computes the conjugate of the element of the finite
field GF(p2).

Syntax

IppStatus ippsGFpConj(const IppsGFpElement* pA, IppsGFpElement* pR, IppsGFpState*
pGFp);

Include Files

ippcp.h

Parameters

pA Pointer to the context of the finite field element.

 6 Intel® Integrated Performance Primitives Cryptography Developer Reference

316

pR Pointer to the context of the resulting element of the finite field.

pGFp Pointer to the context of the finite field.

Description

This function computes the conjugate of an element of the finite field GF(p2). If the element of the GF(p2)
field is the polynomial x + a, the conjugate element is equal to x – a, where a is an element of the ground
field GF(p).

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of IppsGFpState and
IppsGFpElement context parameters does not match the
operation.

ippStsOutOfRangeErr Indicates an error condition if the element pA does not belong
to the finite field specified by the context pGFp.

ippStsBadArgErr Indicates an error condition if the element pA does not belong
to the GF(p2) field.

GFpNeg
Computes the additive inverse of an element of the
finite field.

Syntax

IppStatus ippsGFpNeg(const IppsGFpElement* pA, IppsGFpElement* pR, IppsGFpState* pGF);

Include Files

ippcp.h

Parameters

pA Pointer to the context of the finite field element.

pR Pointer to the context of the resulting element of the finite field.

pGFp Pointer to the context of the finite field.

Description

This function computes the additive inverse of an element of the finite field. The following pseudocode
represents this operation: R + A = 0. The finite field is specified by the context pGFp.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

Finite Field Arithmetic 6

317

ippStsContextMatchErr Indicates an error condition if any of the IppsGFpState and
IppsGFpElement context parameters does not match the
operation.

ippStsOutOfRangeErr Indicates an error condition if pA does not belong to the finite
field specified by the context pGFp.

GFpInv
Computes the multiplicative inverse of an element of
the finite field.

Syntax

IppStatus ippsGFpInv(const IppsGFpElement* pA, IppsGFpElement* pR, IppsGFpState* pGFp);

Include Files

ippcp.h

Parameters

pA Pointer to the context of the finite field element.

pR Pointer to the context of the resulting element of the finite field.

pGFp Pointer to the context of the finite field.

Description

This function computes the multiplicative inverse of an element of the finite field. The following pseudocode
represents this operation: R ⋅ A = 1. The finite field is specified by the context pGFp.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the IppsGFpState and
IppsGFpElement context parameters does not match the
operation.

ippStsOutOfRangeErr Indicates an error condition if the element pA does not belong
to the finite field specified by the context pGFp.

ippStsDivByZeroErr Indicates an error condition if pA is the zero element.

ippStsBadArgErr Indicates an error condition if a computational error occurs.

GFpSqrt
Computes the square root of an element of the finite
field.

Syntax

IppStatus ippsGFpSqrt(const IppsGFpElement* pA, IppsGFpElement* pR, IppsGFpState*
pGFp);

 6 Intel® Integrated Performance Primitives Cryptography Developer Reference

318

Include Files

ippcp.h

Parameters

pA Pointer to the context of the finite field element.

pR Pointer to the context of the resulting element of the finite field.

pGFp Pointer to the context of the finite field.

Description

This function computes the square root of a given element of the GF(p) field. The following pseudocode
represents this operation: R ⋅ R = A. The finite field is specified by the pGFp context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the IppsGFpState and
IppsGFpElement context parameters does not match the
operation.

ippStsOutOfRangeErr Indicates an error condition if pA does not belong to the finite
field specified by the context pGFp.

ippStsBadArgErr Indicates an error condition the finite field specified by the
context pGFp is not prime.

ippStsQuadraticNonResidueErr Indicates an error condition if pA is a square non-residue
element.

GFpAdd
Computes the sum of two elements of the finite field.

Syntax

IppStatus ippsGFpAdd(const IppsGFpElement* pA, const IppsGFpElement* pB,
IppsGFpElement* pR, IppsGFpState* pGFp);

Include Files

ippcp.h

Parameters

pA Pointer to the context of the first element of the finite field to be
added.

pB Pointer to the context of the second element of the finite field to be
added.

pR Pointer to the context of the resulting element of the finite field.

pGFp Pointer to the context of the finite field.

Finite Field Arithmetic 6

319

Description

This function computes the sum of the elements of the finite field. The following pseudocode represents this
operation: R = A + B. The finite field is specified by the pGFp context.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of IppsGFpState and
IppsGFpElement context parameters does not match the
operation.

ippStsOutOfRangeErr Indicates an error condition if either the pA or pB element does
not belong to the finite field specified by the context pGFp.

GFpSub
Subtracts two elements of the finite field.

Syntax

IppStatus ippsGFpSub(const IppsGFpElement* pA, const IppsGFpElement* pB,
IppsGFpElement* pR, IppsGFpState* pGFp);

Include Files

ippcp.h

Parameters

pA Pointer to the context of the minuend element of the finite field.

pB Pointer to the context of the subtrahend element of the finite field.

pR Pointer to the context of the resulting element of the finite field.

pGFp Pointer to the context of the finite field.

Description

This function computes the difference of the elements of the finite field. The following pseudocode represents
this operation: R = A - B. The finite field is specified by the context pGFp.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the IppsGFpState and
IppsGFpElement context parameters does not match the
operation.

ippStsOutOfRangeErr Indicates an error condition if pA or pB does not belong to the
finite field specified by the context pGFp.

 6 Intel® Integrated Performance Primitives Cryptography Developer Reference

320

GFpMul
Multiplies two elements of the finite field.

Syntax

IppStatus ippsGFpMul(const IppsGFpElement* pA, const IppsGFpElement* pB,
IppsGFpElement* pR, IppsGFpState* pGFp);

Include Files

ippcp.h

Parameters

pA Pointer to the context of the first multiplicand element of the finite
field.

pB Pointer to the context of the second multiplicand element of the
finite field.

pR Pointer to the context of the resulting element of the finite field.

pGFp Pointer to the context of the finite field.

Description

This function computes the product of two elements of the finite field. The following pseudocode represents
this operation: R = A ⋅ B. The finite field is specified by the context pGFp.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if either IppsGFpState or
IppsGFpElement context parameters do not match the
operation.

ippStsOutOfRangeErr Indicates an error condition if pA or pB does not belong to the
finite field specified by the context pGFp.

GFpSqr
Computes the square of an element of the finite field.

Syntax

IppStatus ippsGFpSqr(const IppsGFpElement* pA, IppsGFpElement* pR, IppsGFpState* pGFp);

Include Files

ippcp.h

Parameters

pA Pointer to the context of the finite field element.

pR Pointer to the context of the resulting element of the finite field.

Finite Field Arithmetic 6

321

pGFp Pointer to the context of the finite field.

Description

This function computes the square of a given element of the finite field. The following pseudocode represents
this operation: R = A2. The finite field is specified by the context pGFp.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the IppsGFpState and
IppsGFpElement context parameters does not match the
operation.

ippStsOutOfRangeErr Indicates an error condition if pA does not belong to the finite
field specified by the context pGFp.

GFpExp
Raises an element of the finite field to the specified
power.

Syntax

IppStatus ippsGFpExp(const IppsGFpElement* pA, const IppsBigNumState* pE,
IppsGFpElement* pR, IppsGFpState* pGFp, Ipp8u* pScratchBuffer);

Include Files

ippcp.h

Parameters

pA Pointer to the context of the element of the finite field representing
the base of the exponentiation.

pE Pointer to the Big Number context storing the exponent.

pR Pointer to the context of the resulting element of the finite field.

pGFp Pointer to the context of the finite field.

pScratchBuffer Pointer to the scratch buffer.

Description

This function raises the element of the finite field to the given non-negative power. The following pseudocode
represents this operation: R = AE. The finite field is specified by the context pGFp. You can get the size of the
scratch buffer by calling the function GFpScratchBufferSize.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

 6 Intel® Integrated Performance Primitives Cryptography Developer Reference

322

ippStsContextMatchErr Indicates an error condition if any of the IppsGFpState,
IppsBigNumState, and IppsGFpElement context parameters
does not match the operation.

ippStsOutOfRangeErr Indicates an error condition if pA or pR does not belong to the
finite field specified by the context pGFp.

GFpMultiExp
Multiplies exponents of two elements of the finite field.

Syntax

IppStatus ippsGFpMultiExp(const IppsGFpElement* const ppElmA[], const IppsBigNumState*
const ppE[], int nItems, IppsGFpElement* pElmR, IppsGFpState* pGF, Ipp8u*
pScratchBuffer);

Include Files

ippcp.h

Parameters

ppElmA Pointer to the array of contexts of the finite field elements
representing the base of the exponentiation.

ppE Pointer to the array of the Big Number contexts storing the
exponents.

nItems Number of exponents.

pElmR Pointer to the context of the resulting element of the finite field.

pGFp Pointer to the context of the finite field.

pScratchBuffer Pointer to the scratch buffer.

Description

This function multiplies exponents of elements of the finite field. The finite field is specified by the context
pGFp. You can get the size of the scratch buffer by calling the ippsGFpScratchBufferSize function.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the context parameters
IppsGFpState, IppsBigNumState, and IppsGFpElement does not
match the operation.

ippStsOutOfRangeErr Indicates an error condition if any of the elements of ppElmA do
not belong to the finite field specified by the context pGFp.

ippStsBadArgErr Indicates an error condition if nItems is less than 1 or greater
than 6.

Finite Field Arithmetic 6

323

GFpAdd_PE
Computes the sum of an element of the finite field and
an element of its parent field.

Syntax

IppStatus ippsGFpAdd_PE(const IppsGFpElement* pA, const IppsGFpElement* pParentB,
IppsGFpElement* pR, IppsGFpState* pGFp);

Include Files

ippcp.h

Parameters

pA Pointer to the context of the first element of the finite field to be
added.

pB Pointer to the context of the second element to be added, which is
an element of the parent finite field.

pR Pointer to the context of the resulting element of the finite field.

pGFp Pointer to the context of the finite field.

Description

The function computes the sum of the elements of the finite field specified by the context pGFp and its
ground finite field. The following pseudocode represents this operation: R = A + B.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of IppsGFpState or
IppsGFpElement context parameter does not match the
operation.

ippStsOutOfRangeErr Indicates an error condition in the following cases:

• the element pA does not belong to the finite field specified by the
context pGFp.

• the element pB does not belong to the ground field of the finite
field specified by the context pGFp.

ippStsBadArgErr Indicates an error condition if the context pGFp does not specify
a prime field.

GFpSub_PE
Subtracts an element of the finite field from an
element of its parent field.

Syntax

IppStatus ippsGFpSub_PE(const IppsGFpElement* pA, const IppsGFpElement* pParentB,
IppsGFpElement* pR, IppsGFpState* pGFp);

 6 Intel® Integrated Performance Primitives Cryptography Developer Reference

324

Include Files

ippcp.h

Parameters

pA Pointer to the context of the minuend, an element of the finite field.

pB Pointer to the context of the subtrahend, an element of the parent
finite field.

pR Pointer to the context of the resulting element of the finite field.

pGFp Pointer to the context of the finite field.

Description

This function computes the difference of the elements of the finite field specified by the context pGFp and its
ground finite field. The following pseudocode represents this operation: R = A - B.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of IppsGFpState and
IppsGFpElement context parameters does not match the
operation.

ippStsOutOfRangeErr Indicates an error condition in the following cases:

• The element pA does not belong to the finite field specified by the
context pGFp.

• The element pB does not belong to the ground field of the finite
field specified by the context pGFp.

ippStsBadArgErr Indicates an error condition if the context pGFp does not specify
a prime field.

GFpMul_PE
Multiplies an element of the finite field and an element
of its parent field.

Syntax

IppStatus ippsGFpMul_PE(const IppsGFpElement* pA, const IppsGFpElement* pParentB,
IppsGFpElement* pR, IppsGFpState* pGFp);

Include Files

ippcp.h

Parameters

pA Pointer to the context of the first multiplicand, an element of the
finite field.

Finite Field Arithmetic 6

325

pB Pointer to the context of the second multiplicand, an element of the
parent finite field.

pR Pointer to the context of the resulting element of the finite field.

pGFp Pointer to the context of the finite field.

Description

This function computes the product of the element pA of the finite field specified by the context pGFp and the
element pB of its ground finite field. The following pseudocode represents this operation: R = A ⋅ B.

Return Values

ippStsNoErr Indicates no error. Any other value indicates an error or
warning.

ippStsNullPtrErr Indicates an error condition if any of the specified pointers is
NULL.

ippStsContextMatchErr Indicates an error condition if any of the IppsGFpState and
IppsGFpElement context parameters does not match the
operation.

ippStsOutOfRangeErr Indicates an error condition in the following cases:

• The element pA does not belong to the finite field specified by the
context pGFp.

• The element pB does not belong to the ground field of the finite
field specified by the context pGFp.

ippStsBadArgErr Indicates an error condition if the context pGFp does not specify
a prime field.

 6 Intel® Integrated Performance Primitives Cryptography Developer Reference

326

Support Functions and Classes A
This appendix contains miscellaneous information on support functions and classes that may be helpful to
users of the Intel® Integrated Performance Primitives (Intel® IPP) Cryptography.

The Version Information Function section describes an Intel IPP Cryptography function that provides version
information for cryptography software.

The Classes and Functions Used in Examples section presents source code of classes and functions needed
for examples given in the document chapters.

Version Information Function

GetLibVersion
Returns information about the active version of the
Intel IPP software for cryptography.

Syntax

const IppLibraryVersion* ippcpGetLibVersion(void);

Include Files

ippcp.h

Description

This function returns a pointer to a static data structure IppLibraryVersion that contains information
about the current version of the Intel IPP software for cryptography. There is no need for you to release
memory referenced by the returned pointer because it points to a static variable. The following fields of the
IppLibraryVersion structure are available:

major is the major number of the current library version.

minor is the minor number of the current library version.

majorBuild is the number of builds for the (major.miror) version.

build is the total number of Intel IPP builds.

Name is the name of the current library version.

Version is the version string.

BuildDate is the actual build date

For example, if the library version is "7.0", library name is "ippcp.lib", and build date is "Jul 20 2011",
then the fields in this structure are set as follows:

major = 7, minor = 0, Name = "ippcp_l.lib", Version = "7.0 build 205.68", BuildDate = "Jul 20
2011".

327

Example
The code example below shows how to use the function ippcpGetLibVersion.

void libinfo(void) { const IppLibraryVersion* lib = ippcpGetLibVersion();
printf("%s %s %d.%d.%d.%d\n", lib->Name, lib->Version, lib->major, lib->minor, lib->majorBuild,
lib->build);
}

Output:

ippcp_l.lib 7.0 build 205.68

Other Functions

GetCpuFeatures
Retrieves the processor features.

Syntax

IppStatus ippсpGetCpuFeatures(Ipp64u* pFeaturesMask);

Include Files

ippcp.h

Parameters

pFeaturesMask Pointer to the features mask. Possible value is ippCPUID_GETINFO_A.

Description

This function retrieves some of the CPU features returned by the function CPUID.1 and stores them
consecutively in the mask pFeaturesMask. The following table lists the features stored in the mask.

Mask Value Bit Name Feature Mask Bit Number

0x00000001 ippCPUID_MMX MMX™ technology 0

0x00000002 ippCPUID_SSE Intel® Streaming
SIMD Extensions

1

0x00000004 ippCPUID_SSE2 Intel® Streaming
SIMD Extensions 2

2

0x00000008 ippCPUID_SSE3 Intel® Streaming
SIMD Extensions 3

3

0x00000010 ippCPUID_SSSE3 Supplemental
Streaming SIMD
Extensions

4

0x00000020 ippCPUID_MOVBE MOVBE instruction is
supported

5

0x00000040 ippCPUID_SSE41 Intel® Streaming
SIMD Extensions 4.1

6

 A Intel® Integrated Performance Primitives Cryptography Developer Reference

328

Mask Value Bit Name Feature Mask Bit Number

0x00000080 ippCPUID_SSE42 Intel® Streaming
SIMD Extensions 4.2

7

0x00000100 ippCPUID_AVX The processor supports
Intel® Advanced Vector
Extensions (Intel® AVX)
instruction set

8

0x00000200 ippAVX_ENABLEDBYOS The operating system
supports Intel® AVX

9

0x00000400 ippCPUID_AES Advanced Encryption
Standard (AES)
instructions are
supported

10

0x00000800 ippCPUID_CLMUL PCLMULQDQ
instruction is
supported

11

0x00002000 ippCPUID_RDRAND Read Random
Number instructions
are supported

13

0x00004000 ippCPUID_F16C 16-bit floating point
conversion
instructions are
supported

14

0x00008000 ippCPUID_AVX2 Intel® Advanced
Vector Extensions 2
(Intel® AVX2)
instruction set is
supported

15

0x00010000 ippCPUID_ADCOX ADCX and ADOX
instructions are
supported

16

0x00020000 ippCPUID_RDSEED Read Random SEED
instruction is
supported.

17

0x00040000 ippCPUID_PREFETCHW PREFETCHW
instruction is
supported

18

0x00080000 ippCPUID_SHA Intel® Secure Hash
Algorithm Extensions
(Intel® SHA
Extensions) are
supported

19

0x00100000 ippCPUID_AVX512F Intel® Advanced
Vector Extensions
512 (Intel® AVX-512)

20

Support Functions and Classes A

329

Mask Value Bit Name Feature Mask Bit Number

foundation
instructions are
supported

0x00200000 ippCPUID_AVX512CD Intel® AVX-512
conflict detection
instructions are
supported

21

0x00400000 ippCPUID_AVX512ER Intel® AVX-512
exponential and
reciprocal
instructions are
supported

22

0x80000000 ippCPUID_KNC Intel® Xeon Phi™ is
supported

23

NOTE
Intel® Itanium® processors are not supported.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Return Values

ippStsNoErr Indicates no error.

ippStsNullPtrErr Indicates an error condition when the pFeaturesMask pointer is
NULL.

ippStsNotSupportedCpu Indicates that the processor is not supported.

SetCpuFeatures
Sets the processor-specific library code for the
specified processor features.

Syntax

IppStatus ippcpSetCpuFeatures(Ipp64u cpuFeatures);

Include Files

ippcp.h

 A Intel® Integrated Performance Primitives Cryptography Developer Reference

330

Parameters

cpuFeatures Features to be supported by the library. Refer to ippcpdefs.h for
ippCPUID_xx definition.

Description

This function sets the processor-specific code of the Intel IPP Cryptography library according to the processor
features specified in cpuFeatures. You can use the following predefined sets of features (the FM suffix below
means feature mask):

32-bit code:

#define PX_FM (ippCPUID_MMX | ippCPUID_SSE)
#define W7_FM (PX_FM | ippCPUID_SSE2)
#define V8_FM (W7_FM | ippCPUID_SSE3 | ippCPUID_SSSE3)
#define S8_FM (V8_FM | ippCPUID_MOVBE)
#define P8_FM (V8_FM | ippCPUID_SSE41 | ippCPUID_SSE42 | ippCPUID_AES | ippCPUID_CLMUL |
ippCPUID_SHA)
#define G9_FM (P8_FM | ippCPUID_AVX | ippAVX_ENABLEDBYOS | ippCPUID_RDRAND | ippCPUID_F16C)
#define H9_FM (G9_FM | ippCPUID_MOVBE | ippCPUID_AVX2 | ippCPUID_ADCOX | ippCPUID_RDSEED |
ippCPUID_PREFETCHW)

64-bit code:

#define PX_FM (ippCPUID_MMX | ippCPUID_SSE | ippCPUID_SSE2)
#define M7_FM (PX_FM | ippCPUID_SSE3)
#define U8_FM (M7_FM | ippCPUID_SSSE3)
#define N8_FM (U8_FM | ippCPUID_MOVBE)
#define Y8_FM (U8_FM | ippCPUID_SSE41 | ippCPUID_SSE42 | ippCPUID_AES | ippCPUID_CLMUL |
ippCPUID_SHA)
#define E9_FM (Y8_FM | ippCPUID_AVX | ippAVX_ENABLEDBYOS | ippCPUID_RDRAND | ippCPUID_F16C)
#define L9_FM (E9_FM | ippCPUID_MOVBE | ippCPUID_AVX2 | ippCPUID_ADCOX | ippCPUID_RDSEED |
ippCPUID_PREFETCHW)
#define K0_FM (L9_FM | ippCPUID_AVX512F)

NOTE
Do not use any other Intel IPP Cryptography function while ippcpSetCpuFeatures is executing.
Otherwise, your application behavior is undefined.

NOTE
To avoid initialization of internal structures for one Intel® architecture and then call of the processing
function that is optimized for another architecture, do not use the ippcpSetCpuFeatures function in
chains of Intel IPP Cryptography connected calls like <processing functionGetSize + <processing
functionInit + <processing function>. Otherwise, Intel IPP Cryptography functionality behavior is
undefined.

Intel IPP Cryptography library supports two internal sets of CPU features:

• Real CPU features: the features that are supported by the CPU at which the library is executed. These
features are read-only and can be obtained with the ippcpGetCpuFeatures function.

• Enabled features: the features that are enabled externally to Intel IPP Cryptography by the application.
These features can be set with ippcpSetCpuFeatures.

The ippcpSetCpuFeatures function provides additional flexibility in measuring performance improvements
reached by using specific CPU features. For example, the first call of any Intel IPP Cryptography function in
an application running on the 4th Generation Intel® Core™ i7 processor with 64-bit OS installed dispatches

Support Functions and Classes A

331

the L9 code version optimized for Intel® Advanced Vector Extensions 2 (Intel® AVX2) with several other
features like fast 16-bit floating point support, Intel® AES New Instructions (Intel® AES-NI), PCLMULQDQ new
instructions support.

To check performance improvement for all Intel IPP Cryptography functionality reached by using Intel® AVX2,
you can run a benchmark for the currently dispatched version of code and then compare performance with
the Intel® Advanced Vector Extensions (Intel® AVX) version of code with Intel® AVX2 disabled. To disable Intel
AVX2, call ippcpSetCpuFeatures(E9_FM). To enable Intel AVX2 back, call
ippcpSetCpuFeatures(L9_FM). Thus, you can use the ippcpSetCpuFeatures function to dispatch any
version of Intel IPP Cryptography code and enable/disable specific CPU features. If you are not well familiar
with the features of your CPU, use the auto-initialization mechanism for the default library behavior.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Return Values

ippStsNoErr Indicates that the required processor-specific code is successfully set.

ippStsCpuMismatch Indicates that the specified processor features are not valid.
Previously set code is used. If the requested feature is below the
minimal supported by the px library - that is Intel® Streaming SIMD
Extensions (Intel® SSE) for IA-32 and Intel® SSE2 for Intel® 64
architecture, px code is dispatched.

ippStsFeatureNotSupported Indicates that the current CPU does not support at least one of the
requested features. If the ippCPUID_NOCHECK bit of the cpuFeatures
parameter is set to 1, these not supported features are enabled,
otherwise - disabled.

ippStsUnknownFeature Indicates that at least one of the requested features is unknown. It
means that the feature is not defined in the ippdefs.h file. Further
behavior of the library depends on known features passed to
cpuFeatures. Unknown features are ignored.

ippStsFeaturesCombination Indicates that the combination of features is not correct. For example,
ippCPUID_AVX2 bit is set to 1 in cpuFeatures, but at least one of the
ippCPUID_MMX, ippCPUID_SSE, …, ippCPUID_AVX bits is not set. All
these missing bits, if supported by CPU, are set to 1. This means that
if the library supports the Intel® AVX2 code, it also internally uses all
known MMX™, Intel® SSE, and Intel® AVX extensions, which are below
Intel® AVX2.

 A Intel® Integrated Performance Primitives Cryptography Developer Reference

332

GetNumThreads
Returns the number of existing threads in the
multithreading environment.

Syntax

IppStatus ippcpGetNumThreads(int* pNumThr);

Include Files

ippcp.h

Parameters

pNumThr Pointer to the number of threads.

Description

This function returns the number of OpenMP* threads specified by the user previously. If it is not specified,
the function returns the initial number of threads that depends on the number of logical processors.

Return Values

ippStsNoErr Indicates no error.

ippStsNullPtrErr Indicates an error condition when the pNumThr pointer is NULL.

ippStsNoOperation Indicates that there is no such operation in the static version of
the library.

SetNumThreads
Sets the number of threads in the multithreading
environment.

Syntax

IppStatus ippcpSetNumThreads(int numThr);

Include Files

ippcp.h

Parameters

numThr Number of threads, should be more than zero.

Description

This function sets the number of OpenMP* threads. A number of established threads may be less than
specified numThr.

Return Values

ippStsNoErr Indicates no error.

ippStsSizeErr Indicates an error when numThr is less than, or equal to zero.

Support Functions and Classes A

333

ippStsNoOperation Indicates that the function is called from the application linked
to the single-threaded version of the library. No operation is
performed.

GetStatusString
Translates a status code into a message.

Syntax

const char* ippcpGetStatusString(IppStatus stsCode);

Include Files

ippcp.h

Parameters

stsCode Code that indicates the status type.

Description

This function returns a pointer to the text string associated with a status code of IppStatus type. Use this
function to produce error and warning messages for users. The returned pointer is a pointer to an internal
static buffer and does not need to be released.

Classes and Functions Used in Examples
This section presents source code of functions and classes used in Example "Use of RSA Primitives" and
Example "Use of DLPSignDSA and DLPVerifyDSA", provided in the "Public Key Cryptography Functions"
chapter.

BigNumber Class
The section presents source code of the BigNumber class.

Declarations
Contents of the header file (xsample_bignum.h) declaring the BigNumber class are presented below:

#if !defined _BIGNUMBER_H_
#define _BIGNUMBER_H_

#include "ippcp.h"

#include <iostream>
#include <vector>
#include <iterator>
using namespace std;

class BigNumber
{
public:
 BigNumber(Ipp32u value=0);
 BigNumber(Ipp32s value);
 BigNumber(const IppsBigNumState* pBN);
 BigNumber(const Ipp32u* pData, int length=1, IppsBigNumSGN sgn=IppsBigNumPOS);
 BigNumber(const BigNumber& bn);

 A Intel® Integrated Performance Primitives Cryptography Developer Reference

334

 BigNumber(const char *s);
 virtual ~BigNumber();

 // set value
 void Set(const Ipp32u* pData, int length=1, IppsBigNumSGN sgn=IppsBigNumPOS);
 // conversion to IppsBigNumState
 friend IppsBigNumState* BN(const BigNumber& bn) {return bn.m_pBN;}
 operator IppsBigNumState* () const { return m_pBN; }

 // some useful constatns
 static const BigNumber& Zero();
 static const BigNumber& One();
 static const BigNumber& Two();

 // arithmetic operators probably need
 BigNumber& operator = (const BigNumber& bn);
 BigNumber& operator += (const BigNumber& bn);
 BigNumber& operator -= (const BigNumber& bn);
 BigNumber& operator *= (Ipp32u n);
 BigNumber& operator *= (const BigNumber& bn);
 BigNumber& operator /= (const BigNumber& bn);
 BigNumber& operator %= (const BigNumber& bn);
 friend BigNumber operator + (const BigNumber& a, const BigNumber& b);
 friend BigNumber operator - (const BigNumber& a, const BigNumber& b);
 friend BigNumber operator * (const BigNumber& a, const BigNumber& b);
 friend BigNumber operator * (const BigNumber& a, Ipp32u);
 friend BigNumber operator % (const BigNumber& a, const BigNumber& b);
 friend BigNumber operator / (const BigNumber& a, const BigNumber& b);

 // modulo arithmetic
 BigNumber Modulo(const BigNumber& a) const;
 BigNumber ModAdd(const BigNumber& a, const BigNumber& b) const;
 BigNumber ModSub(const BigNumber& a, const BigNumber& b) const;
 BigNumber ModMul(const BigNumber& a, const BigNumber& b) const;
 BigNumber InverseAdd(const BigNumber& a) const;
 BigNumber InverseMul(const BigNumber& a) const;

 // comparisons
 friend bool operator < (const BigNumber& a, const BigNumber& b);
 friend bool operator > (const BigNumber& a, const BigNumber& b);
 friend bool operator == (const BigNumber& a, const BigNumber& b);
 friend bool operator != (const BigNumber& a, const BigNumber& b);
 friend bool operator <= (const BigNumber& a, const BigNumber& b) {return !(a>b);}
 friend bool operator >= (const BigNumber& a, const BigNumber& b) {return !(a<b);}

 // easy tests
 bool IsOdd() const;
 bool IsEven() const { return !IsOdd(); }

 // size of BigNumber
 int MSB() const;
 int LSB() const;
 int BitSize() const { return MSB()+1; }
 int DwordSize() const { return (BitSize()+31)>>5;}
 friend int Bit(const vector<Ipp32u>& v, int n);

 // conversion and output
 void num2hex(string& s) const; // convert to hex string
 void num2vec(vector<Ipp32u>& v) const; // convert to 32-bit word vector

Support Functions and Classes A

335

 friend ostream& operator << (ostream& os, const BigNumber& a);

protected:
 bool create(const Ipp32u* pData, int length, IppsBigNumSGN sgn=IppsBigNumPOS);
 int compare(const BigNumber&) const;
 IppsBigNumState* m_pBN;
};

// convert bit size into 32-bit words
#define BITSIZE_WORD(n) ((((n)+31)>>5))

#endif // _BIGNUMBER_H_
Definitions
C++ definitions for the BigNumber class methods are given below. For the declarations to be included, see
the preceding Declarations section.

#include "xsample_bignum.h"
//
//
// BigNumber
//
//
BigNumber::~BigNumber()
{
 delete [] (Ipp8u*)m_pBN;
}

bool BigNumber::create(const Ipp32u* pData, int length, IppsBigNumSGN sgn)
{
 int size;
 ippsBigNumGetSize(length, &size);
 m_pBN = (IppsBigNumState*)(new Ipp8u[size]);
 if(!m_pBN)
 return false;
 ippsBigNumInit(length, m_pBN);
 if(pData)
 ippsSet_BN(sgn, length, pData, m_pBN);
 return true;
}

// constructors
//
BigNumber::BigNumber(Ipp32u value)
{
 create(&value, 1, IppsBigNumPOS);
}

BigNumber::BigNumber(Ipp32s value)
{
 Ipp32s avalue = abs(value);
 create((Ipp32u*)&avalue, 1, (value<0)? IppsBigNumNEG : IppsBigNumPOS);
}

BigNumber::BigNumber(const IppsBigNumState* pBN)
{
 IppsBigNumSGN bnSgn;
 int bnBitLen;
 Ipp32u* bnData;
 ippsRef_BN(&bnSgn, &bnBitLen, &bnData, pBN);

 A Intel® Integrated Performance Primitives Cryptography Developer Reference

336

 create(bnData, BITSIZE_WORD(bnBitLen), bnSgn);
}

BigNumber::BigNumber(const Ipp32u* pData, int length, IppsBigNumSGN sgn)
{
 create(pData, length, sgn);
}

static char HexDigitList[] = "0123456789ABCDEF";

BigNumber::BigNumber(const char* s)
{
 bool neg = '-' == s[0];
 if(neg) s++;
 bool hex = ('0'==s[0]) && (('x'==s[1]) || ('X'==s[1]));

 int dataLen;
 Ipp32u base;
 if(hex) {
 s += 2;
 base = 0x10;
 dataLen = (int)(strlen(s) + 7)/8;
 }
 else {
 base = 10;
 dataLen = (int)(strlen(s) + 9)/10;
 }

 create(0, dataLen);
 *(this) = Zero();
 while(*s) {
 char tmp[2] = {s[0],0};
 Ipp32u digit = (Ipp32u)strcspn(HexDigitList, tmp);
 *this = (*this) * base + BigNumber(digit);
 s++;
 }

 if(neg)
 (*this) = Zero()- (*this);
}

BigNumber::BigNumber(const BigNumber& bn)
{
 IppsBigNumSGN bnSgn;
 int bnBitLen;
 Ipp32u* bnData;
 ippsRef_BN(&bnSgn, &bnBitLen, &bnData, bn);

 create(bnData, BITSIZE_WORD(bnBitLen), bnSgn);
}

// set value
//
void BigNumber::Set(const Ipp32u* pData, int length, IppsBigNumSGN sgn)
{
 ippsSet_BN(sgn, length, pData, BN(*this));
}

Support Functions and Classes A

337

// constants
//
const BigNumber& BigNumber::Zero()
{
 static const BigNumber zero(0);
 return zero;
}

const BigNumber& BigNumber::One()
{
 static const BigNumber one(1);
 return one;
}

const BigNumber& BigNumber::Two()
{
 static const BigNumber two(2);
 return two;
}

// arithmetic operators
//
BigNumber& BigNumber::operator =(const BigNumber& bn)
{
 if(this != &bn) { // prevent self copy
 IppsBigNumSGN bnSgn;
 int bnBitLen;
 Ipp32u* bnData;
 ippsRef_BN(&bnSgn, &bnBitLen, &bnData, bn);

 delete (Ipp8u*)m_pBN;
 create(bnData, BITSIZE_WORD(bnBitLen), bnSgn);
 }
 return *this;
}

BigNumber& BigNumber::operator += (const BigNumber& bn)
{
 int aBitLen;
 ippsRef_BN(NULL, &aBitLen, NULL, *this);
 int bBitLen;
 ippsRef_BN(NULL, &bBitLen, NULL, bn);
 int rBitLen = IPP_MAX(aBitLen, bBitLen) + 1;

 BigNumber result(0, BITSIZE_WORD(rBitLen));
 ippsAdd_BN(*this, bn, result);
 *this = result;
 return *this;
}

BigNumber& BigNumber::operator -= (const BigNumber& bn)
{
 int aBitLen;
 ippsRef_BN(NULL, &aBitLen, NULL, *this);
 int bBitLen;
 ippsRef_BN(NULL, &bBitLen, NULL, bn);
 int rBitLen = IPP_MAX(aBitLen, bBitLen);

 BigNumber result(0, BITSIZE_WORD(rBitLen));

 A Intel® Integrated Performance Primitives Cryptography Developer Reference

338

 ippsSub_BN(*this, bn, result);
 *this = result;
 return *this;
}

BigNumber& BigNumber::operator *= (const BigNumber& bn)
{
 int aBitLen;
 ippsRef_BN(NULL, &aBitLen, NULL, *this);
 int bBitLen;
 ippsRef_BN(NULL, &bBitLen, NULL, bn);
 int rBitLen = aBitLen + bBitLen;

 BigNumber result(0, BITSIZE_WORD(rBitLen));
 ippsMul_BN(*this, bn, result);
 *this = result;
 return *this;
}

BigNumber& BigNumber::operator *= (Ipp32u n)
{
 int aBitLen;
 ippsRef_BN(NULL, &aBitLen, NULL, *this);

 BigNumber result(0, BITSIZE_WORD(aBitLen+32));
 BigNumber bn(n);
 ippsMul_BN(*this, bn, result);
 *this = result;
 return *this;
}

BigNumber& BigNumber::operator %= (const BigNumber& bn)
{
 BigNumber remainder(bn);
 ippsMod_BN(BN(*this), BN(bn), BN(remainder));
 *this = remainder;
 return *this;
}

BigNumber& BigNumber::operator /= (const BigNumber& bn)
{
 BigNumber quotient(*this);
 BigNumber remainder(bn);
 ippsDiv_BN(BN(*this), BN(bn), BN(quotient), BN(remainder));
 *this = quotient;
 return *this;
}

BigNumber operator + (const BigNumber& a, const BigNumber& b)
{
 BigNumber r(a);
 return r += b;
}

BigNumber operator - (const BigNumber& a, const BigNumber& b)
{
 BigNumber r(a);
 return r -= b;
}

Support Functions and Classes A

339

BigNumber operator * (const BigNumber& a, const BigNumber& b)
{
 BigNumber r(a);
 return r *= b;
}

BigNumber operator * (const BigNumber& a, Ipp32u n)
{
 BigNumber r(a);
 return r *= n;
}

BigNumber operator / (const BigNumber& a, const BigNumber& b)
{
 BigNumber q(a);
 return q /= b;
}

BigNumber operator % (const BigNumber& a, const BigNumber& b)
{
 BigNumber r(b);
 ippsMod_BN(BN(a), BN(b), BN(r));
 return r;
}

// modulo arithmetic
//
BigNumber BigNumber::Modulo(const BigNumber& a) const
{
 return a % *this;
}

BigNumber BigNumber::InverseAdd(const BigNumber& a) const
{
 BigNumber t = Modulo(a);
 if(t==BigNumber::Zero())
 return t;
 else
 return *this - t;
}

BigNumber BigNumber::InverseMul(const BigNumber& a) const
{
 BigNumber r(*this);
 ippsModInv_BN(BN(a), BN(*this), BN(r));
 return r;
}

BigNumber BigNumber::ModAdd(const BigNumber& a, const BigNumber& b) const
{
 BigNumber r = this->Modulo(a+b);
 return r;
}

BigNumber BigNumber::ModSub(const BigNumber& a, const BigNumber& b) const
{
 BigNumber r = this->Modulo(a + this->InverseAdd(b));
 return r;

 A Intel® Integrated Performance Primitives Cryptography Developer Reference

340

}

BigNumber BigNumber::ModMul(const BigNumber& a, const BigNumber& b) const
{
 BigNumber r = this->Modulo(a*b);
 return r;
}

// comparison
//
int BigNumber::compare(const BigNumber &bn) const
{
 Ipp32u result;
 BigNumber tmp = *this - bn;
 ippsCmpZero_BN(BN(tmp), &result);
 return (result==IS_ZERO)? 0 : (result==GREATER_THAN_ZERO)? 1 : -1;
}

bool operator < (const BigNumber &a, const BigNumber &b) { return a.compare(b) < 0; }
bool operator > (const BigNumber &a, const BigNumber &b) { return a.compare(b) > 0; }
bool operator == (const BigNumber &a, const BigNumber &b) { return 0 == a.compare(b);}
bool operator != (const BigNumber &a, const BigNumber &b) { return 0 != a.compare(b);}

// easy tests
//
bool BigNumber::IsOdd() const
{
 Ipp32u* bnData;
 ippsRef_BN(NULL, NULL, &bnData, *this);
 return bnData[0]&1;
}

// size of BigNumber
//
int BigNumber::LSB() const
{
 if(*this == BigNumber::Zero())
 return 0;

 vector<Ipp32u> v;
 num2vec(v);

 int lsb = 0;
 vector<Ipp32u>::iterator i;
 for(i=v.begin(); i!=v.end(); i++) {
 Ipp32u x = *i;
 if(0==x)
 lsb += 32;
 else {
 while(0==(x&1)) {
 lsb++;
 x >>= 1;
 }
 break;
 }
 }
 return lsb;
}

Support Functions and Classes A

341

int BigNumber::MSB() const
{
 if(*this == BigNumber::Zero())
 return 0;

 vector<Ipp32u> v;
 num2vec(v);

 int msb = (int)v.size()*32 -1;
 vector<Ipp32u>::reverse_iterator i;
 for(i=v.rbegin(); i!=v.rend(); i++) {
 Ipp32u x = *i;
 if(0==x)
 msb -=32;
 else {
 while(!(x&0x80000000)) {
 msb--;
 x <<= 1;
 }
 break;
 }
 }
 return msb;
}

int Bit(const vector<Ipp32u>& v, int n)
{
 return 0 != (v[n>>5] & (1<<(n&0x1F)));
}

// conversions and output
//
void BigNumber::num2vec(vector<Ipp32u>& v) const
{
 int bnBitLen;
 Ipp32u* bnData;
 ippsRef_BN(NULL, &bnBitLen, &bnData, *this);

 int len = BITSIZE_WORD(bnBitLen);;
 for(int n=0; n<len; n++)
 v.push_back(bnData[n]);
}

void BigNumber::num2hex(string& s) const
{
 IppsBigNumSGN bnSgn;
 int bnBitLen;
 Ipp32u* bnData;
 ippsRef_BN(&bnSgn, &bnBitLen, &bnData, *this);

 int len = BITSIZE_WORD(bnBitLen);

 s.append(1, (bnSgn==ippBigNumNEG)? '-' : ' ');
 s.append(1, '0');
 s.append(1, 'x');
 for(int n=len; n>0; n--) {
 Ipp32u x = bnData[n-1];
 for(int nd=8; nd>0; nd--) {
 char c = HexDigitList[(x>>(nd-1)*4)&0xF];

 A Intel® Integrated Performance Primitives Cryptography Developer Reference

342

 s.append(1, c);
 }
 }
}

ostream& operator << (ostream &os, const BigNumber& a)
{
 string s;
 a.num2hex(s);
 os << s.c_str();
 return os;
}

Functions for Creation of Cryptographic Contexts
The section presents source code for creation of some cryptographic contexts.

Declarations
Contents of the header file (xsample_cpobjs.h) declaring functions for creation of some cryptographic
contexts are presented below:

#if !defined _CPOBJS_H_
#define _CPOBJS_H_

//
// create new of some ippCP 'objects'
//
#include "ippcp.h"
#include <stdlib.h>

#define BITS_2_WORDS(n) (((n)+31)>>5)
int Bitsize2Wordsize(int nBits);

Ipp32u* rand32(Ipp32u* pX, int size);

IppsBigNumState* newBN(int len, const Ipp32u* pData=0);
IppsBigNumState* newRandBN(int len);
void deleteBN(IppsBigNumState* pBN);

IppsPRNGState* newPRNG(int seedBitsize=160);
void deletePRNG(IppsPRNGState* pPRNG);

IppsPrimeState* newPrimeGen(int seedBitsize=160);
void deletePrimeGen(IppsPrimeState* pPrime);

IppsRSAState* newRSA(int lenN, int lenP, IppRSAKeyType type);
void deleteRSA(IppsRSAState* pRSA);

IppsDLPState* newDLP(int lenM, int lenL);
void deleteDLP(IppsDLPState* pDLP);

#endif // _CPOBJS_H_

Support Functions and Classes A

343

Definitions
C++ definitions of functions creating cryptographic contexts are given below. For the declarations to be
included, see the preceding Declarations section.

#include "xsample_cpobjs.h"

// convert bitsize into 32-bit wordsize
int Bitsize2Wordsize(int nBits)
{ return (nBits+31)>>5; }

// new BN number
IppsBigNumState* newBN(int len, const Ipp32u* pData)
{
 int size;
 ippsBigNumGetSize(len, &size);
 IppsBigNumState* pBN = (IppsBigNumState*)(new Ipp8u [size]);
 ippsBigNumInit(len, pBN);
 if(pData)
 ippsSet_BN(IppsBigNumPOS, len, pData, pBN);
 return pBN;
}
void deleteBN(IppsBigNumState* pBN)
{ delete [] (Ipp8u*)pBN; }

// set up array of 32-bit items random
Ipp32u* rand32(Ipp32u* pX, int size)
{
 for(int n=0; n<size; n++)
 pX[n] = (rand()<<16) + rand();
 return pX;
}

IppsBigNumState* newRandBN(int len)
{
 Ipp32u* pBuffer = new Ipp32u [len];
 IppsBigNumState* pBN = newBN(len, rand32(pBuffer,len));
 delete [] pBuffer;
 return pBN;
}

//
// 'external' PRNG
//
IppsPRNGState* newPRNG(int seedBitsize)
{
 int seedSize = Bitsize2Wordsize(seedBitsize);
 Ipp32u* seed = new Ipp32u [seedSize];
 Ipp32u* augm = new Ipp32u [seedSize];

 int size;
 IppsBigNumState* pTmp;
 ippsPRNGGetSize(&size);
 IppsPRNGState* pCtx = (IppsPRNGState*)(new Ipp8u [size]);
 ippsPRNGInit(seedBitsize, pCtx);

 ippsPRNGSetSeed(pTmp=newBN(seedSize,rand32(seed,seedSize)), pCtx);
 delete [] (Ipp8u*)pTmp;
 ippsPRNGSetAugment(pTmp=newBN(seedSize,rand32(augm,seedSize)),pCtx);
 delete [] (Ipp8u*)pTmp;

 A Intel® Integrated Performance Primitives Cryptography Developer Reference

344

 delete [] seed;
 delete [] augm;
 return pCtx;
}
void deletePRNG(IppsPRNGState* pPRNG)
{ delete [] (Ipp8u*)pPRNG; }

//
// Prime Generator context
//
IppsPrimeState* newPrimeGen(int maxBits)
{
 int size;
 ippsPrimeGetSize(maxBits, &size);
 IppsPrimeState* pCtx = (IppsPrimeState*)(new Ipp8u [size]);
 ippsPrimeInit(maxBits, pCtx);
 return pCtx;
}
void deletePrimeGen(IppsPrimeState* pPrimeG)
{ delete [] (Ipp8u*)pPrimeG; }

//
// RSA context
//
IppsRSAState* newRSA(int lenN, int lenP, IppRSAKeyType type)
{
 int size;
 ippsRSAGetSize(lenN,lenP, type, &size);
 IppsRSAState* pCtx = (IppsRSAState*)(new Ipp8u [size]);
 ippsRSAInit(lenN,lenP, type, pCtx);
 return pCtx;
}
void deleteRSA(IppsRSAState* pRSA)
{ delete [] (Ipp8u*)pRSA; }

//
// DLP context
//
IppsDLPState* newDLP(int lenM, int lenL)
{
 int size;
 ippsDLPGetSize(lenM, lenL, &size);
 IppsDLPState *pCtx= (IppsDLPState *)new Ipp8u[size];
 ippsDLPInit(lenM, lenL, pCtx);
 return pCtx;
}
void deleteDLP(IppsDLPState* pDLP)
{ delete [] (Ipp8u*)pDLP; }

Support Functions and Classes A

345

 A Intel® Integrated Performance Primitives Cryptography Developer Reference

346

Bibliography
This bibliography provides a list of publications that might be helpful to you in using cryptography functions
of Intel IPP.

[3GPP 35.202] 3GPP TS 35.202 V3.1.1 (2001-07). 3rd Generation Partnership Project; Technical
Specification Group Services and System Aspects; Specification of the 3GPP
Confidentiality and Integrity Algorithms; 3G Security; Document 2: KASUMI
Specification (Release 1999). Available from http://isearch.etsi.org/3GPPSearch/
isysquery/
403fe057-469e-46a4-b298-f80b78bf4343/3/doc/35202-311.pdf.

[3GPP 2006] Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2.
Document 2: SNOW 3G Specification. September 2006. Available from http://
www.gsmworld.com/using/algorithms/docs/snow_3g_spec.pdf.

[AC] Schneier, Bruce. Applied Cryptography. Protocols, Algorithms, and Source Code
in C. Second Edition. John Wiley & Sons, Inc., 1996.

[AES] Daemen, Joan, and Vincent Rijmen. The Rijndael Block Cipher. AES Proposal.
Available from http://www.nist.gov/aes.

[ANSI] ANSI X9.62-1998 Public Key Cryptography for the Financial Services Industry:
the Elliptic Curve Digital Signature Algorithm (ECDSA). American Bankers
Association, 1999.

[ANT] Cohen, Henri. A Course in Computational Algebraic Number Theory. Springer,
1998.

[EC] Koblitz, Neal. Introduction to Elliptic Curves and Modular Forms. Springer, 1993.

[EHCC] Cohen, Henri, and Gerald Frey. Handbook of Elliptic and Hyperelliptic Curve
Cryprography. Chapman & Hall/CRC, 2006.

[FIPS PUB 46-3] Federal Information Processing Standards Publications, FIPS PUB 46-3. Data
Encryption Standard (DES), October 1999. Available from http://csrc.nist.gov/
publications/fips.

[FIPS PUB 113] Federal Information Processing Standards Publications, FIPS PUB 113. Computer
Data Authentication, May 1985. Available from http://csrc.nist.gov/publications/
fips.

[FIPS PUB 180-2] Federal Information Processing Standards Publications, FIPS PUB 180-2. Secure
Hash Standard, August 2002. Available from http://csrc.nist.gov/publications/
fips.

[FIPS PUB 180-4] Federal Information Processing Standards Publications, FIPS PUB 186-2. Secure
Hash Standard (SHS), March 2012. Available from http://csrc.nist.gov/
publications/fips.

[FIPS PUB 186-2] Federal Information Processing Standards Publications, FIPS PUB 186-2. Digital
Signature Standard (DSS), January 2000. Available from http://csrc.nist.gov/
publications/fips.

[FIPS PUB 198-1] Federal Information Processing Standards Publications, FIPS PUB 198. The Key-
Hash Message Authentication Code (HMAC), July 2008. Available from http://
csrc.nist.gov/publications/fips.

347

[IEEE P1363A] Standard Specifications for Public-Key Cryptography: Additional Techniques. May,
2000. Working Draft.

[IEEE P1619] IEEE Standard for Cryptographic Protection of Data on Block-Oriented Storage
Devices. April 2008.

[INTEL ARCH] Intel® 64 and IA-32 Architectures Software Developer's Manual . Volume 1: Basic
Architecture. Available from http://www.intel.com/content/dam/www/
public/us/en/documents/manuals/64-ia-32-architectures-software-developer-
vol-1-manual.pdf.

[ISO/IEC 11889-4] ISO/IEC 11889-4:2015 Information technology - TPM Library - Part 4:
Supporting Routines.

[NIST SP 800-38A] Recommendation for Block Cipher Modes of Operation - Methods and Techniques.
NIST Special Publication 800-38A, December 2001. Available from http://
csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf.

[NIST SP 800-38B] Recommendation for Block Cipher Modes of Operation: The CMAC Mode for
Authentication. NIST Special Publication 800-38B, May 2005. Available from
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pd

[NIST SP 800-38C] Draft Recommendation for Block Cipher Modes of Operation: The CCM Mode for
Authentication and Confidentiality. NIST Special Publication 800-38C, September
2003. Available from http://csrc.nist.gov/publications/nistpubs/800-38C/
SP800-38C.pdf.

[NIST SP 800-38D] Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC. NIST Special Publication 800-38D, November 2007. Available
from http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf.

[PKCS 1.2.1] RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard. June 2002.
Available from http://www.rsasecurity.com/rsalabs/pkcs.

[PKCS 7] RSA Laboratories. PKCS #7: Cryptographic Message Syntax Standard. An RSA
Laboratories Technical Note Version 1.5 Revised, November 1, 1993.

[RC5] Rivest, Ronald L. The RC5 Encryption Algorithm. Proceedings of the 1994 Leuven
Workshop on Algorithms (Springer), 1994. Revised version, dated March 1997, is
available from http://theory.lcs.mit.edu/~cis/pubs/rivest/rc5rev.ps.

[RFC 1321] Rivest, Ronald L. The MD5 Message-Digest Algorithm. RFC 1321, MIT and RSA
Data Security, Inc, April 1992. Available from http://www.faqs.org/rfc1321.html.

[RFC 2401] Krawczyk, Hugo, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing for
Message Authentication. RFC 2401, February 1997. Available from http://
www.faqs.org/rfcs/rfc2401.html.

[RFC 3566] Frankel, Sheila, and Howard C. Herbert. The AES-XCBC-MAC-96 Algorithm and
Its Use With IPsec. RFC 3566, September 1996. Available from http://www.rfc-
archive.org/getrfc.php?rfc=3566.

[RFC 5297] D. Harkins. Synthetic Initialization Vector (SIV) Authenticated Encryption Using
the Advanced Encryption Standard (AES). RFC 5297, October 2008. Available
from https://tools.ietf.org/pdf/rfc5297.pdf.

[SEC1] SEC1: Elliptic Curve Cryptography. Standards for Efficient Cryptography Group,
September 2000. Available from http://www.secg.org/secg_docs.htm.

 B Intel® Integrated Performance Primitives Cryptography Developer Reference

348

[SEC2] SEC2: Recommended Elliptic Curve Domain Parameters. Standards for Efficient
Cryptography Group, September 2000. Available from http://www.secg.org/
secg_docs.htm/.

[SM2] SM2 Digital Signature Algorithm. Available from http://tools.ietf.org/html/draft-
shen-sm2-ecdsa-01.

[SM3] SM3 Hash Function. Available from https://tools.ietf.org/html/draft-shen-sm3-
hash-00.

[SMS4] SMS4 Encryption Algorithm for Wireless Networks. Available from http://
www.oscca.gov.cn/UpFile/200621016423197990.pdf (Chinese) and http://
eprint.iacr.org/2008/329.pdf (English).

[X9.42] X9.42-2003: Public Key Cryptography for the Financial Services Industry:
Agreement of Symmetric Keys Using Discrete Logarithm Cryptography. American
National Standards Institute, 2003.

Bibliography B

349

 B Intel® Integrated Performance Primitives Cryptography Developer Reference

350

Index
A
AES-CCM Functions

AES_CCMDecrypt45
AES_CCMEncrypt44
AES_CCMGetSize42
AES_CCMGetTag46
AES_CCMInit43
AES_CCMMessageLen46
AES_CCMStart43
AES_CCMTagLen47

AES-GCM Functions
AES_GCMDecrypt53
AES_GCMEncrypt52
AES_GCMGetSize48
AES_GCMGetTag53
AES_GCMInit49
AES_GCMProcessAAD51
AES_GCMProcessIV51
AES_GCMReset50
AES_GCMStart50

AES-SIV functions
usage example57

AES-SIV Functions
AES_S2V_CMAC54
AES_SIVDecrypt56
AES_SIVEncrypt55

AESEncryptXTS_Direct, AESDecryptXTS_Direct39
ARCFour Functions

ARCFourCheckKey82
ARCFourDecrypt84
ARCFourEncrypt84
ARCFourGetSize81
ARCFourInit82
ARCFourPack83
ARCFourReset85
ARCFourUnpack83

ARCFour stream cipher81
Arithmetic of the Group of Elliptic Curve Points

GFpECAddPoint280
GFpECBindGxyTblStd266
GFpECCmpPoint279
GFpECCpyPoint278
GFpECGet267
GFpECGetPoint275
GFpECGetPointRegular276
GFpECGetSize262
GFpECGetSubgroup268
GFpECInit263
GFpECInitStd265
GFpECMakePoint273
GFpECMulPoint281
GFpECNegPoint279
GFpECPointGetSize270
GFpECPointInit271
GFpECPrivateKey282
GFpECPublicKey282
GFpECScratchBufferSize269
GFpECSet264
GFpECSetPoint272
GFpECSetPointAtInfinity272
GFpECSetPointHash274
GFpECSetPointRandom273
GFpECSetSubgroup264
GFpECSharedSecretDH284

GFpECSharedSecretDHC285
GFpECSignDSA286
GFpECSignNR289
GFpECSignSM2291
GFpECTstKeyPair283
GFpECTstPoint277
GFpECTstPointInSubgroup277
GFpECVerify270
GFpECVerifyDSA288
GFpECVerifyNR290
GFpECVerifySM2292

B
Big Number Arithmetic147
Big Number Arithmetic Functions

Add_BN156
BigNumGetSize147
BigNumInit148
Cmp_BN155
CmpZero_BN155
Div_BN160
ExtGet_BN152
Gcd_BN161
Get_BN152
GetOctString_BN154
GetSize_BN151
MAC_BN_I159
Mod_BN161
ModInv_BN162
Mul_BN158
Ref_BN153
Set_BN149
SetOctString_BN150
Sub_BN157

C
CMAC135
CMAC Functions

AES_CMACFinal145
AES_CMACGetSize143
AES_CMACInit143
AES_CMACUpdate144

concepts of IPP25
context structure25, 26
cross-platform applications25

D
Discrete Logarithm Based Functions

DLGetResultString231
DLPGenerateDH228
DLPGenerateDSA223
DLPGenKeyPair220
DLPGet218
DLPGetDP219
DLPGetSize215
DLPInit216
DLPPack216
DLPPublicKey221
DLPSet217
DLPSetDP218

Index

351

DLPSetKeyPair222
DLPSharedSecretDH230
DLPSignDSA225
DLPUnpack216
DLPValidateDH229
DLPValidateDSA224
DLPValidateKeyPair222
DLPVerifyDSA226
ECCGetResultString294

E
ECCPBindGxyTblStd236
Elliptic Curve Cryptographic Functions

ECCPAddPoint247
ECCPCheckPoint245
ECCPComparePoint246
ECCPGenKeyPair249
ECCPGet239
ECCPGetOrderBitSize240
ECCPGetPoint245
ECCPGetSize233
ECCPGetSizeStd234
ECCPInit235
ECCPInitStd235
ECCPMulPointScalar248
ECCPNegativePoint247
ECCPPointGetSize242
ECCPPointInit243
ECCPPublicKey250
ECCPSet237
ECCPSetKeyPair251
ECCPSetPoint243
ECCPSetPointAtInfinity244
ECCPSetStd238
ECCPSharedSecretDH252
ECCPSharedSecretDHC253
ECCPSignDSA254
ECCPSignNR257
ECCPSignSM2259
ECCPValidate241
ECCPValidateKeyPair250
ECCPVerifyDSA256
ECCPVerifyNR258
ECCPVerifySM2260

encryption, decryption, and encryption (E-D-E)
sequence58

Enter index keyword297

F
Finite Field Arithmetic

GFpAdd319
GFpAdd_PE324
GFpCmpElement314
GFpConj316
GFpCpyElement312
GFpElementGetSize307
GFpElementInit308
GFpExp322
GFpGetElement313
GFpGetElementOctString313
GFpGetSize302
GFpInit300
GFpInitArbitrary299
GFpInitFixed298
GFpInv318
GFpIsUnityElement316
GFpIsZeroElement315

GFpMethod301
GFpMul321
GFpMul_PE325
GFpMultiExp323
GFpNeg317
GFpScratchBufferSize306
GFpSetElement308
GFpSetElementHash311
GFpSetElementOctString309
GFpSetElementRandom310
GFpSqr321
GFpSqrt318
GFpSub320
GFpSub_PE324
GFpxGetSize306
GFpxInit304
GFpxInitBinomial303
GFpxMethod305

font conventions21
Functions Based on GF(p)

ECCPBindGxyTblStd236

G
GetCpuFeatures328
GetLibVersion327
GetNumThreads333
GetStatusString334
GFpAdd319
GFpAdd_PE324
GFpCmpElement314
GFpConj316
GFpCpyElement312
GFpECAddPoint280
GFpECBindGxyTblStd266
GFpECCmpPoint279
GFpECCpyPoint278
GFpECGet267
GFpECGetPoint275
GFpECGetPointRegular276
GFpECGetSize262
GFpECGetSubgroup268
GFpECInit263
GFpECInitStd265
GFpECMakePoint273
GFpECMulPoint281
GFpECNegPoint279
GFpECPointGetSize270
GFpECPointInit271
GFpECPrivateKey282
GFpECPublicKey282
GFpECScratchBufferSize269
GFpECSet264
GFpECSetPoint272
GFpECSetPointAtInfinity272
GFpECSetPointHash274
GFpECSetPointRandom273
GFpECSetSubgroup264
GFpECSharedSecretDH284
GFpECSharedSecretDHC285
GFpECSignDSA286
GFpECSignNR289
GFpECSignSM2291
GFpECTstKeyPair283
GFpECTstPoint277
GFpECTstPointInSubgroup277
GFpECVerify270
GFpECVerifyDSA288
GFpECVerifyNR290
GFpECVerifySM2292

Intel® Integrated Performance Primitives Cryptography Developer Reference

352

GFpElementGetSize307
GFpElementInit308
GFpExp322
GFpGetElement313
GFpGetElementOctString313
GFpGetSize302
GFpInit300
GFpInitArbitrary299
GFpInitFixed298
GFpInv318
GFpIsUnityElement316
GFpIsZeroElement315
GFpMethod301
GFpMul321
GFpMul_PE325
GFpMultiExp323
GFpNeg317
GFpScratchBufferSize306
GFpSetElement308
GFpSetElementHash311
GFpSetElementOctString309
GFpSetElementRandom310
GFpSqr321
GFpSqrt318
GFpSub320
GFpSub_PE324
GFpxGetSize306
GFpxInit304
GFpxInitBinomial303
GFpxMethod305

H
Hash and SHA Algorithms

HashDuplicate92
HashDuplicate_rmf92
HashFinal93
HashFinal_rmf93
HashGetSize89
HashGetTag94
HashGetTag_rmf94
HashInit90
HashMethod95
HashPack91
HashPack_rmf91
HashUnpack91
HashUnpack_rmf91
HashUpdate92
HashUpdate_rmf92

hash function87
Hash Functions for Non-Streaming Messages

general definition124
HashMessage124
HashMessage_rmf124
MD5MessageDigest126
SHA1MessageDigest127
SHA224MessageDigest129
SHA256MessageDigest129
SHA384MessageDigest130
SHA512MessageDigest130
SM3MessageDigest125
user-implemented124

HashMethod95
HMAC135
HMAC Functions135

I
initialization vector iv58
Intel Performance Library Suite25

ippcpGetLibVersion327
ippsAdd_BN156
ippsAES_CCMDecrypt45
ippsAES_CCMEncrypt44
ippsAES_CCMGetSize42
ippsAES_CCMGetTag46
ippsAES_CCMInit43
ippsAES_CCMMessageLen46
ippsAES_CCMStart43
ippsAES_CCMTagLen47
ippsAES_CMACFinal145
ippsAES_CMACGetSize143
ippsAES_CMACGetTag145
ippsAES_CMACInit143
ippsAES_CMACUpdate144
ippsAES_GCMDecrypt53
ippsAES_GCMEncrypt52
ippsAES_GCMGetSize48
ippsAES_GCMGetTag53
ippsAES_GCMInit49
ippsAES_GCMProcessAAD51
ippsAES_GCMProcessIV51
ippsAES_GCMReset50
ippsAES_GCMStart50
ippsAES_S2V_CMAC54
ippsAES_SIVDecrypt56
ippsAES_SIVEncrypt55
ippsAESDecryptCBC33
ippsAESDecryptCFB35
ippsAESDecryptCTR38
ippsAESDecryptECB32
ippsAESDecryptOFB36
ippsAESEncryptCBC32
ippsAESEncryptCFB34
ippsAESEncryptCTR37
ippsAESEncryptECB31
ippsAESEncryptOFB35
ippsAESGetSize28
ippsAESInit29
ippsAESPack30
ippsAESSetKey29
ippsAESUnpack30
ippsARCFourCheckKey82
ippsARCFourDecrypt84
ippsARCFourEncrypt84
ippsARCFourGetSize81
ippsARCFourInit82
ippsARCFourPack83
ippsARCFourReset85
ippsARCFourUnpack83
ippsBigNumGetSize147
ippsBigNumInit148
ippsCmp_BN155
ippsCmpZero_BN155
ippsDESGetSize59
ippsDESInit60
ippsDESPack60
ippsDESUnpack60
ippsDiv_BN160
ippsDLGetResultString231
IppsDLPGenerateDH228
ippsDLPGenerateDSA223
ippsDLPGenKeyPair220
ippsDLPGet218
ippsDLPGetDP219
ippsDLPGetSize215
IppsDLPInit216
ippsDLPPack216
ippsDLPPublicKey221
ippsDLPSet217

Index

353

ippsDLPSetDP218
ippsDLPSetKeyPair222
ippsDLPSharedSecretDH230
ippsDLPSignDSA225
ippsDLPUnpack216
ippsDLPValidateDH229
ippsDLPValidateDSA224
ippsDLPValidateKeyPair222
ippsDLPVerifyDSA226
ippsECCGetResultString294
ippsECCPAddPoint247
ippsECCPCheckPoint245
ippsECCPComparePoint246
ippsECCPGenKeyPair249
ippsECCPGet239
ippsECCPGetOrderBitSize240
ippsECCPGetPoint245
ippsECCPGetSize233
ippsECCPGetSizeStd234
ippsECCPInit235
ippsECCPInitStd235
ippsECCPMulPointScalar248
ippsECCPNegativePoint247
ippsECCPPointGetSize242
ippsECCPPointInit243
ippsECCPPublicKey250
ippsECCPSet237
ippsECCPSetKeyPair251
ippsECCPSetPoint243
ippsECCPSetPointAtInfinity244
ippsECCPSetStd238
ippsECCPSharedSecretDH252
ippsECCPSharedSecretDHC253
ippsECCPSignDSA254
ippsECCPSignNR257
ippsECCPSignSM2259
ippsECCPValidate241
ippsECCPValidateKeyPair250
ippsECCPVerifyDSA256
ippsECCPVerifyNR258
ippsECCPVerifySM2260
ippsExtGet_BN152
ippsGcd_BN161
ippsGet_BN152
ippsGetOctString_BN154
ippsGetSize_BN151
ippsHashDuplicate92
ippsHashDuplicate_rmf92
ippsHashFinal93
ippsHashFinal_rmf93
ippsHashGetSize89
ippsHashGetSize_rmf89
ippsHashGetTag94
ippsHashGetTag_rmf94
ippsHashInit90
ippsHashInit_rmf90
ippsHashMessage124
ippsHashMessage_rmf124
ippsHashPack91
ippsHashPack_rmf91
ippsHashUnpack91
ippsHashUnpack_rmf91
ippsHashUpdate92
ippsHashUpdate_rmf92
ippsHMAC_Duplicate138
ippsHMAC_Final140
ippsHMAC_GetSize136
ippsHMAC_GetTag140
ippsHMAC_Init136
ippsHMAC_Message141

ippsHMAC_Pack137
ippsHMAC_Unpack137
ippsHMAC_Update139
ippsHMACDuplicate_rmf138
ippsHMACFinal_rmf140
ippsHMACGetSize_rmf136
ippsHMACGetTag_rmf140
ippsHMACInit_rmf136
ippsHMACMessage_rmf141
ippsHMACPack_rmf137
ippsHMACUnpack_rmf137
ippsHMACUpdate_rmf139
ippsMAC_BN_I159
ippsMD5Duplicate101
ippsMD5Final102
ippsMD5GetSize100
ippsMD5GetTag103
ippsMD5Init100
ippsMD5MessageDigest126
ippsMD5Pack101
ippsMD5Unpack101
ippsMD5Update102
ippsMGF132
ippsMGF1_rmf133
ippsMGF2_rmf133
ippsMod_BN161
ippsModInv_BN162
ippsMontExp170
ippsMontForm167
ippsMontGet166
ippsMontGetSize164
ippsMontInit165
ippsMontMul168
ippsMontSet166
ippsMul_BN158
ippsPrimeGen185
ippsPrimeGen_BN183
ippsPrimeGet188
IppsPrimeGet_BN188
ippsPrimeGetSize182
ippsPrimeInit183
ippsPrimeSet186
ippsPrimeSet_BN187
ippsPrimeTest186
ippsPrimeTest_BN184
ippsPRNGen176
ippsPRNGen_BN178
ippsPRNGenRDRAND176
ippsPRNGenRDRAND_BN179
ippsPRNGGetSeed173
ippsPRNGGetSize171
ippsPRNGInit172
ippsPRNGSetAugment174
ippsPRNGSetH0175
ippsPRNGSetModulus174
ippsPRNGSetSeed173
ippsRef_BN153
ippsRSA_Decrypt201
ippsRSA_Encrypt200
ippsRSA_GenerateKeys196
ippsRSA_GetPrivateKeyType1194
ippsRSA_GetPrivateKeyType2194
ippsRSA_GetPublicKey194
ippsRSA_GetScratchBufferSize195
ippsRSA_GetSizePrivateKeyType1191
ippsRSA_GetSizePrivateKeyType2191
ippsRSA_GetSizePublicKey191
ippsRSA_InitPrivateKeyType1192
ippsRSA_InitPrivateKeyType2192
ippsRSA_InitPublicKey192

Intel® Integrated Performance Primitives Cryptography Developer Reference

354

ippsRSA_SetPrivateKeyType1193
ippsRSA_SetPrivateKeyType2193
ippsRSA_SetPublicKey193
ippsRSA_ValidateKeys198
ippsRSADecrypt_OAEP205
ippsRSADecrypt_OAEP_rmf205
ippsRSADecrypt_PKCSv15208
ippsRSAEncrypt_OAEP204
ippsRSAEncrypt_OAEP_rmf204
ippsRSAEncrypt_PKCSv15207
ippsRSASign_PKCS1v15212
ippsRSASign_PKCS1v15_rmf212
ippsRSASign_PSS209
ippsRSASign_PSS_rmf209
ippsRSAVerify_PKCS1v15213
ippsRSAVerify_PKCS1v15_rmf213
ippsRSAVerify_PSS210
ippsRSAVerify_PSS_rmf210
ippsSet_BN149
ippsSetOctString_BN150
ippsSHA1Duplicate105
ippsSHA1Final106
ippsSHA1GetSize104
ippsSHA1GetTag107
ippsSHA1Init104
ippsSHA1MessageDigest127
ippsSHA1Pack105
ippsSHA1Unpack105
ippsSHA1Update106
ippsSHA224Duplicate109
ippsSHA224Final110
ippsSHA224GetSize108
ippsSHA224GetTag111
ippsSHA224Init108
ippsSHA224MessageDigest129
ippsSHA224Pack109
ippsSHA224Unpack109
ippsSHA224Update110
ippsSHA256Duplicate113
ippsSHA256Final114
ippsSHA256GetSize112
ippsSHA256GetTag115
ippsSHA256Init112
ippsSHA256MessageDigest129
ippsSHA256Pack113
ippsSHA256Unpack113
ippsSHA256Update114
ippsSHA384Duplicate117
ippsSHA384Final118
ippsSHA384GetSize116
ippsSHA384GetTag119
ippsSHA384Init116
ippsSHA384MessageDigest130
ippsSHA384Pack117
ippsSHA384Unpack117
ippsSHA384Update118
ippsSHA512Duplicate121
ippsSHA512Final122
ippsSHA512GetSize120
ippsSHA512GetTag123
ippsSHA512Init120
ippsSHA512MessageDigest130
ippsSHA512Pack121
ippsSHA512Unpack121
ippsSHA512Updat122
ippsSM3Duplicate97
ippsSM3Final98
ippsSM3GetSize96
ippsSM3GetTag99
ippsSM3Init96

ippsSM3MessageDigest125
ippsSM3Pack97
ippsSM3Unpack97
ippsSM3Update98
ippsSMS4DecryptCBC75
ippsSMS4DecryptCFB77
ippsSMS4DecryptCTR80
ippsSMS4DecryptECB74
ippsSMS4DecryptOFB78
ippsSMS4EncryptCBC75
ippsSMS4EncryptCFB76
ippsSMS4EncryptCTR79
ippsSMS4EncryptECB73
ippsSMS4EncryptOFB78
ippsSMS4GetSize71
ippsSMS4Init72
ippsSMS4SetKey72
ippsSub_BN157
ippsTDESDecryptCBC63
ippsTDESDecryptCFB65
ippsTDESDecryptCTR69
ippsTDESDecryptECB62
ippsTDESDecryptOFB67
ippsTDESEncryptCBC62
ippsTDESEncryptCFB64
ippsTDESEncryptCTR68
ippsTDESEncryptECB61
ippsTDESEncryptOFB66
ippsTRNGenRDSEED177
ippsTRNGenRDSEED_BN179

K
Keyed Hash Functions

HMAC_Duplicate138
HMAC_Final140
HMAC_GetSize136
HMAC_GetTag140
HMAC_Init136
HMAC_Message141
HMAC_Pack137
HMAC_Unpack137
HMAC_Update139
HMACDuplicate_rmf138
HMACFinal_rmf140
HMACGetSize_rmf136
HMACGetTag_rmf140
HMACInit_rmf136
HMACMessage_rmf141
HMACPack_rmf137
HMACUnpack_rmf137
HMACUpdate_rmf139

M
mask generation function131
Mask Generation Functions

MGF132
MGF1_rmf133
MGF2_rmf133
user-implemented131

MD5 and SHA Algorithms
AES_CMACGetTag145
MD5Duplicate101
MD5Final102
MD5GetSize100
MD5GetTag103
MD5Init100
MD5MessageDigest104

Index

355

MD5Pack101
MD5Unpack101
MD5Update102
SHA1Duplicate105
SHA1Final106
SHA1GetSize104
SHA1GetTag107
SHA1Init104
SHA1Pack105
SHA1Unpack105
SHA1Update106
SHA224Duplicate109
SHA224Final110
SHA224GetSize108
SHA224GetTag111
SHA224Init108
SHA224Pack109
SHA224Unpack109
SHA224Update110
SHA256Duplicate113
SHA256Final114
SHA256GetSize112
SHA256GetTag115
SHA256Init112
SHA256MessageDigest116
SHA256Pack113
SHA256Unpack113
SHA256Update114
SHA384Duplicate117
SHA384Final118
SHA384GetSize116
SHA384GetTag119
SHA384Init116
SHA384MessageDigest120
SHA384Pack117
SHA384Unpack117
SHA384Update118
SHA512Duplicate121
SHA512Final122
SHA512GetSize120
SHA512GetTag123
SHA512Init120
SHA512Pack121
SHA512Unpack121
SHA512Update122

Message Authentication Functions
CMAC Functions142
Keyed Hash Functions135

MGF131
modes of operation for block ciphers

CBC27
CCM42
CFB27
CTR27
ECB27
OFB27

Montgomery Reduction Scheme Functions
MontInit165
MontSet166
MontExp170
MontForm167
MontGet166
MontGetSize164
MontMul168

N
naming conventions21
notational conventions21

O
Other Functions

GetCpuFeatures328
GetNumThreads333
GetStatusString334
SetCpuFeatures330
SetNumThreads333

P
PKCS V1.5 Encryption Scheme Functions207
PKCS V1.5 Signature Scheme Functions212
Prime Number Generation Functions

PrimeGen185
PrimeGen_BN183
PrimeGetSize182
PrimeInit183
PrimeGet188
PrimeGet_BN188
PrimeSet186
PrimeSet_BN187
PrimeTest186
PrimeTest_BN184

Pseudorandom Number Generation Functions
PRNGen176
PRNGen_BN178
PRNGenRDRAND176
PRNGenRDRAND_BN179
PRNGGetSeed173
PRNGGetSize171
PRNGInit172
PRNGSetAugment174
PRNGSetH0175
PRNGSetModulus174
PRNGSetSeed173
TRNGenRDSEED177
TRNGenRDSEED_BN179
user-implemented171

R
RC4 stream cipher81
reference code25
Rijndael Functions

AES-CCM Functions42
AES-GCM Functions47
AESDecryptCBC33
AESDecryptCFB35
AESDecryptCTR38
AESDecryptECB32
AESDecryptOFB36
AESEncryptCBC32
AESEncryptCFB34
AESEncryptCTR37
AESEncryptECB31
AESEncryptOFB35
AESEncryptXTS_Direct, AESDecryptXTS_Direct39
AESGetSize28
AESInit29
AESPack30
AESSetKey29
AESUnpack30
SMS4DecryptCBC75
SMS4DecryptCFB77
SMS4DecryptCTR80
SMS4DecryptECB74
SMS4DecryptOFB78

Intel® Integrated Performance Primitives Cryptography Developer Reference

356

SMS4EncryptCBC75
SMS4EncryptCFB76
SMS4EncryptCTR79
SMS4EncryptECB73
SMS4EncryptOFB78
SMS4GetSize71
SMS4Init72
SMS4SetKey72

RSA Algorithm Functions190
RSA Primitives

RSA_Decrypt201
RSA_Encrypt200

RSA System Building Functions
RSA_GenerateKeys196
RSA_GetBufferSizePrivateKey195
RSA_GetBufferSizePublicKey195
RSA_GetPrivateKeyType1194
RSA_GetPrivateKeyType2194
RSA_GetPublicKey194
RSA_GetSizePrivateKeyType1191
RSA_GetSizePrivateKeyType2191
RSA_GetSizePublicKey191
RSA_InitPrivateKeyType1192
RSA_InitPrivateKeyType2192
RSA_InitPublicKey192
RSA_SetPrivateKeyType1193
RSA_SetPrivateKeyType2193
RSA_SetPublicKey193
RSA_ValidateKeys198

RSA-based Encryption Scheme Functions
RSADecrypt_OAEP205
RSADecrypt_OAEP_rmf205
RSADecrypt_PKCSv15208
RSAEncrypt_OAEP204
RSAEncrypt_OAEP_rmf204
RSAEncrypt_PKCSv15207

RSA-based scheme190
RSA-based Signature Scheme Functions

RSASign_PKCS1v15212
RSASign_PKCS1v15_rmf212
RSASign_PSS209
RSASign_PSS_rmf209
RSAVerify_PKCS1v15213
RSAVerify_PKCS1v15_rmf213
RSAVerify_PSS210
RSAVerify_PSS_rmf210

RSA-OAEP Scheme Functions204
RSASSA-PSS Scheme Functions209

S
secret data25, 26
SetCpuFeatures330
SetNumThreads333
SM3 and SHA Algorithms

SM3Duplicate97
SM3Final98
SM3GetSize96
SM3GetTag99
SM3Init96
SM3Pack97
SM3Unpack97
SM3Update98

SMS4 Functions71
support functions and classes
symmetric algorithm modes

Cipher Block Chain (CBC)27
Cipher Feedback (CFB)27
Counter (CTR)27
Counter with Cipher Block Chaining-Message

Authentication Code (CCM)42
Electronic Code Book (ECB)27
Output Feedback (OFB)27

T
TDES Functions

DESGetSize59
DESInit60
DESPack60
DESUnpack60
TDESDecryptCBC63
TDESDecryptCFB65
TDESDecryptCTR69
TDESDecryptECB62
TDESDecryptOFB67
TDESEncryptCBC62
TDESEncryptCFB64
TDESEncryptCTR68
TDESEncryptECB61
TDESEncryptOFB66

Triple Data Encryption Standard (TDES)58

V
version information function327

Index

357

Intel® Integrated Performance Primitives Cryptography Developer Reference

358

	Intel® Integrated Performance Primitives Cryptography Developer Reference
	Contents
	Legal Information
	Getting Help and Support
	Introducing Intel® Integrated Performance Primitives Cryptography
	What's New
	Notational Conventions
	Related Products
	Overview
	Basic Features
	Function Context Structures
	Data Security Considerations

	Symmetric Cryptography Primitive Functions
	Block Cipher Modes of Operation
	Rijndael Functions
	AESGetSize
	AESInit
	AESSetKey
	AESPack, AESUnpack
	AESEncryptECB
	AESDecryptECB
	AESEncryptCBC
	AESDecryptCBC
	AESEncryptCFB
	 AESDecryptCFB
	AESEncryptOFB
	AESDecryptOFB
	AESEncryptCTR
	AESDecryptCTR
	 AESEncryptXTS_Direct, AESDecryptXTS_Direct
	Example of Using AES Functions

	AES-CCM Functions
	AES_CCMGetSize
	AES_CCMInit
	AES_CCMStart
	AES_CCMEncrypt
	AES_CCMDecrypt
	AES_CCMGetTag
	AES_CCMMessageLen
	AES_CCMTagLen

	AES-GCM Functions
	AES_GCMGetSize
	AES_GCMInit
	AES_GCMStart
	AES_GCMReset
	AES_GCMProcessIV
	AES_GCMProcessAAD
	AES_GCMEncrypt
	AES_GCMDecrypt
	AES_GCMGetTag

	AES-SIV Functions
	AES_S2V_CMAC
	AES_SIVEncrypt
	AES_SIVDecrypt
	Usage Example

	TDES Functions
	DESGetSize
	DESInit
	DESPack, DESUnpack
	TDESEncryptECB
	TDESDecryptECB
	TDESEncryptCBC
	TDESDecryptCBC
	TDESEncryptCFB
	TDESDecryptCFB
	TDESEncryptOFB
	TDESDecryptOFB
	TDESEncryptCTR
	TDESDecryptCTR
	Example of Using TDES Functions

	SMS4 Functions
	SMS4GetSize
	SMS4Init
	SMS4SetKey
	SMS4EncryptECB
	SMS4DecryptECB
	SMS4EncryptCBC
	SMS4DecryptCBC
	SMS4EncryptCFB
	SMS4DecryptCFB
	SMS4EncryptOFB
	SMS4DecryptOFB
	SMS4EncryptCTR
	SMS4DecryptCTR

	ARCFour Functions
	ARCFourGetSize
	ARCFourCheckKey
	ARCFourInit
	ARCFourPack, ARCFourUnpack
	ARCFourEncrypt
	ARCFourDecrypt
	ARCFourReset

	One-Way Hash Primitives
	Hash Functions
	HashGetSize
	HashInit
	HashPack, HashUnpack
	HashDuplicate
	HashUpdate
	HashFinal
	HashGetTag
	 HashMethod
	SM3GetSize
	SM3Init
	SM3Pack, SM3Unpack
	SM3Duplicate
	SM3Update
	SM3Final
	SM3GetTag
	MD5GetSize
	MD5Init
	MD5Pack, MD5Unpack
	MD5Duplicate
	MD5Update
	MD5Final
	MD5GetTag
	SHA1GetSize
	SHA1Init
	SHA1Pack, SHA1Unpack
	SHA1Duplicate
	SHA1Update
	SHA1Final
	SHA1GetTag
	SHA224GetSize
	SHA224Init
	SHA224Pack, SHA224Unpack
	SHA224Duplicate
	SHA224Update
	SHA224Final
	SHA224GetTag
	SHA256GetSize
	SHA256Init
	SHA256Pack, SHA256Unpack
	SHA256Duplicate
	SHA256Update
	SHA256Final
	SHA256GetTag
	SHA384GetSize
	SHA384Init
	SHA384Pack, SHA384Unpack
	SHA384Duplicate
	SHA384Update
	SHA384Final
	SHA384GetTag
	SHA512GetSize
	SHA512Init
	SHA512Pack, SHA512Unpack
	SHA512Duplicate
	SHA512Update
	SHA512Final
	SHA512GetTag

	Hash Functions for Non-Streaming Messages
	General Definition of a Hash Function
	HashMessage
	SM3MessageDigest
	MD5MessageDigest
	SHA1MessageDigest
	SHA224MessageDigest
	SHA256MessageDigest
	SHA384MessageDigest
	SHA512MessageDigest

	Mask Generation Functions
	User's Implementation of a Mask Generation Function
	MGF
	 MGF1_rmf, MGF2_rmf

	Data Authentication Primitive Functions
	Message Authentication Functions
	Keyed Hash Functions
	HMAC_GetSize
	HMAC_Init
	HMAC_Pack, HMAC_Unpack
	HMAC_Duplicate
	HMAC_Update
	HMAC_Final
	HMAC_GetTag
	HMAC_Message

	CMAC Functions
	AES_CMACGetSize
	AES_CMACInit
	AES_CMACUpdate
	AES_CMACFinal
	AES_CMACGetTag

	 Public Key Cryptography Functions
	Big Number Arithmetic
	 BigNumGetSize
	 BigNumInit
	Set_BN
	SetOctString_BN
	 GetSize_BN
	 Get_BN
	ExtGet_BN
	 Ref_BN
	GetOctString_BN
	 Cmp_BN
	 CmpZero_BN
	 Add_BN
	Sub_BN
	Mul_BN
	MAC_BN_I
	Div_BN
	Mod_BN
	Gcd_BN
	ModInv_BN

	Montgomery Reduction Scheme Functions
	 MontGetSize
	MontInit
	MontSet
	MontGet
	MontForm
	MontMul
	Example of Using Montgomery Reduction Scheme Functions
	MontExp

	Pseudorandom Number Generation Functions
	User's Implementation of a Pseudorandom Number Generator
	 PRNGGetSize
	 PRNGInit
	PRNGSetSeed
	PRNGGetSeed
	 PRNGSetAugment
	 PRNGSetModulus
	 PRNGSetH0
	PRNGen
	PRNGenRDRAND
	TRNGenRDSEED
	 PRNGen_BN
	PRNGenRDRAND_BN
	TRNGenRDSEED_BN
	Example of Using Pseudorandom Number Generation Functions

	 Prime Number Generation Functions
	 PrimeGetSize
	 PrimeInit
	PrimeGen_BN
	PrimeTest_BN
	PrimeGen
	PrimeTest
	PrimeSet
	PrimeSet_BN
	PrimeGet
	PrimeGet_BN
	Example of Using Prime Number Generation Functions

	RSA Algorithm Functions
	Functions for Building RSA System
	RSA_GetSizePublicKey, RSA_GetSizePrivateKeyType1, RSA_GetSizePrivateKeyType2
	RSA_InitPublicKey, RSA_InitPrivateKeyType1, RSA_InitPrivateKeyType2
	RSA_SetPublicKey, RSA_SetPrivateKeyType1, RSA_SetPrivateKeyType2
	RSA_GetPublicKey, RSA_GetPrivateKeyType1, RSA_GetPrivateKeyType2
	RSA_GetBufferSizePublicKey, RSA_GetBufferSizePrivateKey
	RSA_GenerateKeys
	RSA_ValidateKeys

	RSA Primitives
	RSA_Encrypt
	RSA_Decrypt
	Example of Using RSA Primitive Functions

	 RSA Encryption Schemes
	RSA-OAEP Scheme Functions
	RSAEncrypt_OAEP
	RSADecrypt_OAEP

	PKCS V1.5 Encryption Scheme Functions
	RSAEncrypt_PKCSv15
	RSADecrypt_PKCSv15

	 RSA Signature Schemes
	 RSA-SSA Scheme Functions
	RSASign_PSS
	RSAVerify_PSS

	 PKCS V1.5 Signature Scheme Functions
	RSASign_PKCS1v15
	RSAVerify_PKCS1v15

	 Discrete-Logarithm-Based Cryptography Functions
	 DLPGetSize
	 DLPInit
	DLPPack, DLPUnpack
	 DLPSet
	 DLPGet
	 DLPSetDP
	 DLPGetDP
	 DLPGenKeyPair
	 DLPPublicKey
	 DLPValidateKeyPair
	 DLPSetKeyPair
	 DLPGenerateDSA
	 DLPValidateDSA
	 DLPSignDSA
	DLPVerifyDSA
	Example of Using Discrete-logarithm Based Primitive Functions
	 DLPGenerateDH
	 DLPValidateDH
	 DLPSharedSecretDH
	DLGetResultString

	Elliptic Curve Cryptography Functions
	Functions Based on GF(p)
	ECCPGetSize
	ECCPGetSizeStd
	 ECCPInit
	ECCPInitStd
	 ECCPBindGxyTblStd
	 ECCPSet
	ECCPSetStd
	ECCPGet
	ECCPGetOrderBitSize
	 ECCPValidate
	 ECCPPointGetSize
	 ECCPPointInit
	 ECCPSetPoint
	 ECCPSetPointAtInfinity
	 ECCPGetPoint
	 ECCPCheckPoint
	 ECCPComparePoint
	 ECCPNegativePoint
	 ECCPAddPoint
	 ECCPMulPointScalar
	 ECCPGenKeyPair
	 ECCPPublicKey
	 ECCPValidateKeyPair
	 ECCPSetKeyPair
	 ECCPSharedSecretDH
	 ECCPSharedSecretDHC
	ECCPSignDSA
	ECCPVerifyDSA
	ECCPSignNR
	ECCPVerifyNR
	ECCPSignSM2
	ECCPVerifySM2
	Signing/Verification Using the Elliptic Curve Cryptography Functions over a Prime Finite Field

	Arithmetic of the Group of Elliptic Curve Points
	 GFpECGetSize
	 GFpECInit
	 GFpECSet
	 GFpECSetSubgroup
	 GFpECInitStd
	 GFpECBindGxyTblStd
	 GFpECGet
	 GFpECGetSubgroup
	 GFpECScratchBufferSize
	 GFpECVerify
	 GFpECPointGetSize
	 GFpECPointInit
	 GFpECSetPointAtInfinity
	 GFpECSetPoint
	 GFpECSetPointRandom
	 GFpECMakePoint
	 GFpECSetPointHash
	 GFpECGetPoint
	 GFpECGetPointRegular
	 GFpECTstPoint
	 GFpECTstPointInSubgroup
	 GFpECCpyPoint
	 GFpECCmpPoint
	 GFpECNegPoint
	 GFpECAddPoint
	 GFpECMulPoint
	 GFpECPrivateKey
	 GFpECPublicKey
	 GFpECTstKeyPair
	 GFpECSharedSecretDH
	 GFpECSharedSecretDHC
	 GFpECSignDSA
	 GFpECVerifyDSA
	 GFpECSignNR
	 GFpECVerifyNR
	 GFpECSignSM2
	 GFpECVerifySM2

	ECCGetResultString

	Finite Field Arithmetic
	 GFpInitFixed
	 GFpInitArbitrary
	 GFpInit
	 GFpMethod
	 GFpGetSize
	 GFpxInitBinomial
	 GFpxInit
	 GFpxMethod
	 GFpxGetSize
	 GFpScratchBufferSize
	 GFpElementGetSize
	 GFpElementInit
	 GFpSetElement
	 GFpSetElementOctString
	 GFpSetElementRandom
	 GFpSetElementHash
	 GFpCpyElement
	 GFpGetElement
	 GFpGetElementOctString
	 GFpCmpElement
	 GFpIsZeroElement
	 GFpIsUnityElement
	 GFpConj
	 GFpNeg
	 GFpInv
	 GFpSqrt
	 GFpAdd
	 GFpSub
	 GFpMul
	 GFpSqr
	 GFpExp
	 GFpMultiExp
	 GFpAdd_PE
	 GFpSub_PE
	 GFpMul_PE

	Support Functions and Classes
	Version Information Function
	GetLibVersion

	Other Functions
	 GetCpuFeatures
	 SetCpuFeatures
	 GetNumThreads
	 SetNumThreads
	GetStatusString

	Classes and Functions Used in Examples
	BigNumber Class
	Functions for Creation of Cryptographic Contexts

	Bibliography

