Tutorial: Finding Hotspots

Intel® VTune™ Amplifier for Linux* OS

Fortran Sample Application Code

Legal Information

Tutorial: Finding Hotspots

Contents

Legal INformationccviciieinmmnsmsnssansssnssssssanssanssasssanssnsssnnssnnssnnsnnnsnnnns 3
OVEIVICW 1iueiiuemrsesnsnsnsssnsssnssnnssnnsnnnnnnns 4

Chapter 1: Navigation Quick Start
Chapter 2: Finding Hotspots

Build Application and Create New Project......ccoiiiiiiiiiiiiiiii e 8
RuUN BasiCc HOLSPOtS ANalYSiS. . ittt i e e e e ees 10
Interpret RESUILS .uii i e 11
RESOIVE ISSUE .ttt ettt e s s e s e s e s n s ne s ar e e e e anernes 15
RUN CONCUITENCY ANAlY SIS ittt i e e e et e a e aas 16
Interpret ConcurrenCy ReSUILS ..ot i i e es 17
Run Locks and Waits ANalysSis....ccoviiiiiiiii i e 20
Interpret Locks and Waits ReSUIEScoiiiiii i e 21
[T 101V o o <= PP 24
Compare with Previous ResUlt ... i e 25

Chapter 3: Summary

Chapter 4: Key Terms

Legal Information

Legal Information

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information
provided here is subject to change without notice. Contact your Intel representative to obtain the latest
forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors which may cause deviations from
published specifications. Current characterized errata are available on request.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within
each processor family, not across different processor families. Go to: Learn About Intel® Processor Numbers

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may
cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with
other products.

Cilk, Intel, the Intel logo, Intel Atom, Intel Core, Intel Inside, Intel NetBurst, Intel SpeedStep, Intel vPro,
Intel Xeon Phi, Intel XScale, Itanium, MMX, Pentium, Thunderbolt, Ultrabook, VTune and Xeon are
trademarks of Intel Corporation in the U.S. and/or other countries.

*QOther names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation
in the United States and/or other countries.

© 2016, Intel Corporation.

http://www.intel.com/products/processor_number

Tutorial: Finding Hotspots

Overview

Discover how to use the Basic Hotspots, Concurrency, and Locks and Waits analysis types of the Intel®
VTune™ Amplifier to identify hotspots - the most time-consuming program units, understand how effectively
your code is using available cores, and discover causes of ineffective utilization.

About This
Tutorial

Estimated
Duration

Learning
Objectives

More Resources

This tutorial uses the sample nqueens parallel application and guides you through
basic workflow steps required to analyze the code for hotspots, parallelism, and locks.

10-15 minutes.

After you complete this tutorial, you should be able to:

Choose an analysis target.

Choose an analysis type.

Run the Basic Hotspots analysis to locate most time-consuming functions in an
application.

Analyze the function call flow and threads.

Analyze the source code to locate the most time-critical code lines.

Run the Concurrency analysis to identify function candidates for parallelization.
Run the Locks and Waits analysis to identify where synchronization objects spent
too much CPU time waiting.

Compare results before and after optimization.

Intel VTune Amplifier tutorials (HTML, PDF): https://software.intel.com/en-us/
articles/intel-vtune-amplifier-tutorials/

Intel VTune Amplifier support page: https://software.intel.com/en-us/intel-vtune-
amplifier-xe-support/

Intel Parallel Studio XE support page: https://software.intel.com/en-us/intel-
parallel-studio-xe/

HTTPS://SOFTWARE.INTEL.COM/EN-US/ARTICLES/INTEL-VTUNE-AMPLIFIER-TUTORIALS/
HTTPS://SOFTWARE.INTEL.COM/EN-US/ARTICLES/INTEL-VTUNE-AMPLIFIER-TUTORIALS/
HTTPS://SOFTWARE.INTEL.COM/EN-US/INTEL-VTUNE-AMPLIFIER-XE-SUPPORT/
HTTPS://SOFTWARE.INTEL.COM/EN-US/INTEL-VTUNE-AMPLIFIER-XE-SUPPORT/
HTTPS://SOFTWARE.INTEL.COM/EN-US/ARTICLES/INTEL-PARALLEL-STUDIO-XE/
HTTPS://SOFTWARE.INTEL.COM/EN-US/ARTICLES/INTEL-PARALLEL-STUDIO-XE/

Navigation Quick Start 1

Navigation Quick Start

Intel® VTune™ Amplifier provides information on code performance for users developing serial and
multithreaded applications on Windows*, Linux*, and OS X* operating systems. VTune Amplifier helps you
analyze algorithm choices and identify where and how your application can benefit from available hardware
resources.

VTune Amplifier XE Access

VTune Amplifier installation includes shell scripts that you can run in your terminal window to set up
environment variables:

1. From the installation directory, type source amplxe-vars.sh.

This script sets the PATH environment variable that specifies locations of the product graphical user
interface utility and command line utility.

NOTE
The default installation directory is:

e Forroot users: /opt/intel/vtune amplifier xe version
e For non-root users: SHOME/intel/vtune amplifier xe version

2. Type amplxe-gui to launch the product graphical interface.

1 Tutorial: Finding Hotspots

VTune Amplifier GUI
Project Navigato =
N T Y R . » 8 =
4 /root/intel/amplxe... g Lock A d Walts ILock ot D. T _
OCKS ahn alls OCKS an alts viewpointjchange) @
Wl locks_and_waits
T r00olw B Collectd @ A et & A i &
A MO0 LIw Grouping: Sync Object/ Function / Call Stack F % Q ‘.ll'lfaif Time f J - |
. . Wait Time by Thread Concurrency ¥ - Viewing 4 1ofl [selected stack(s
Sync Object / Function [Call Stack gidle §Poor DOk @ deal § Cver Wait Count | Spin Time : T
LR R ol 2 libtbb.so.2itbb:internal::rml:private wor...
i rmilzpri .] ; B
LAl |ntern:l rT“I prlvate_wtlnrk: ESLT06ms |- ' L e libtbb.so.2![TBE worker]+0x5 - private_s...
b Stream jsysidevices/cystemyclad g.566ms ! pms libpthread.so.0lstart_thread+0xcl - pthre...
Stream Oxada792bb 0.093ms 2 oms ;|
: libe.so.6! clone+0x6e - clone S: 111
¥ Stream frootiDocumentsflocks_and 0.034ms 1 oms -
b Stream 0x26a8bf08 0.026ms 1 oms
b Stream /proc/selfimaps 0x35b95fH 0.016ms 1 oms
» [Unknown] Oms 4] 37.997ms
4 (3 |IE *
P —— ;A ——— T - -
e, L e . tes & Thread -
tachyon_analyze (T1... | [| /o Running
5 TEB Viorker Thiead .. | | | i is
£ rosvoker Thread . I | 4. ¢ Tine
BB Worker Thread ...| [, | [] s Spin and Overhead Time
8B Vorker Tread .. N | -|: (- . Somie
i * [0 Transtiens
CPU Usage
[“1CPU Usage
duk CPU Time
meatnse . oo
| [+] Thread Concurrency =
T c bl = Ak Conclmency =
. S Any Procest ~ [Any Thiead = [Any Modul » [Any Thread Ci » JRUser functic =] show infi = JJ_Function: ~ |
A Configure and manage projects and results, and launch new analyses from the primary toolbar. Click

the Configure Project button on this toolbar and use the Analysis Target tab to manage result file
locations. Newly completed and opened analysis results along with result comparisons appear in the
results tab for easy navigation.

g Use the VTune Amplifier menu to control result collection, define and view project properties, and set
various options.

c The Project Navigator provides an iconic representation of your projects and analysis results. Click
the Project Navigator button on the toolbar to enable/disable the Project Navigator.

D Click the (change) link to select a viewpoint, a preset configuration of windows/panes for an
analysis result. For each analysis type, you can switch among several viewpoints to focus on
particular performance metrics. Click the yellow question mark icon to read the viewpoint
description.

B Switch between window tabs to explore the analysis type configuration options and collected data
provided by the selected viewpoint.

F Use the Grouping drop-down menu to choose a granularity level for grouping data in the grid.

‘g Usethe filter toolbar to filter out the result data according to the selected categories.
See Also

Click here for more Getting Started Tutorials

https://software.intel.com/en-us/articles/intel-vtune-amplifier-tutorials/

Finding Hotspots 2

Finding Hotspots

m You can use the Intel® VTune™ Amplifier to identify and analyze hotspot functions in your serial or
parallel application by performing a series of steps in a workflow. This tutorial guides you through these
workflow steps while using a sample multithreaded application named nqueens parallel.

Prepare for analysis

Choose/Create Build
project application

Y Y ¥

Find hotspots Analyze parallelism Identify locks

Run Basic) Run Concurrency Run Locks and
Hotspots analysis analysis Waits analysis

Interpret data Interpret data Interpret data

Resolve issue Remove lock

Compare with
previous result

Step 1: Prepare Build an application to analyze for hotspots and create a new VTune Amplifier
for analysis project

Step 2: Find * Choose and run the Basic Hotspots analysis.

hotspots e Interpret the result data.

e Resolve issue.

Step 3: Analyze * Choose and run the Concurrency analysis.
parallelism e Interpret the result data.

Step 4: Identify * Choose and run the Locks and Waits analysis.
locks e Interpret the result data.
* Remove lock.

Step 5: Check Re-build the target, re-run the Locks and Waits analysis, and compare the result
your work data before and after optimization.

2 Tutorial: Finding Hotspots

Build Application and Create New Project

m Before you start analyzing your application target for hotspots, do the following:

1. Get software tools.

2. Build application in the release mode.
3. Create a performance baseline.

4. Create a VTune Amplifier project.

Get Software Tools

You need the following tools to try tutorial steps yourself using the nqueens fortran sample application:

e Intel® VTune™ Amplifier, including sample applications
e .tgz file extraction utility
e Supported Fortran compiler (see Release Notes for more information)

Acquire Intel VTune Amplifier

If you do not already have access to the VTune Amplifier, you can download an evaluation copy from http://
software.intel.com/en-us/articles/intel-software-evaluation-center/.

Install and Set Up VTune Amplifier Sample Applications

1. Copy the nqueens fortran.tgz file from the <install-dir>/samples/<locale>/Fortran
directory to a writable directory or share on your system.

NOTE
The default installation path for the VTune Amplifier XE is /opt/intel/
vtune amplifier xe version. For the VTune Amplifier for Systems, the default <install dir> is:

e For super-users: /opt/intel/system studio version/vtune amplifier for systems
e For ordinary users: SHOME/intel/system studio version/vtune amplifier for systems

2. Extract the sample from the tgz file.

NOTE

e Samples are non-deterministic. Your screens may vary from the screen captures shown throughout
this tutorial.

e Samples are designed only to illustrate the VTune Amplifier features; they do not represent best
practices for creating code.

Build the Target in the Release Mode

Build the target in the Release mode with full optimizations, which is recommended for performance analysis.
For this tutorial, Intel® Fortran Compiler is used to build the application.

1. Browse to the directory where you extracted the sample code (for example, /home/fortran/linux).
Make sure this directory contains Makefile.
2. Clean up all the previous builds as follows:

$ make clean
3. Build your target in the release mode as follows:

S make

HTTP://SOFTWARE.INTEL.COM/EN-US/ARTICLES/INTEL-SOFTWARE-EVALUATION-CENTER/
HTTP://SOFTWARE.INTEL.COM/EN-US/ARTICLES/INTEL-SOFTWARE-EVALUATION-CENTER/

Finding Hotspots 2

The nqueens _parallel application is built.

Create a Performance Baseline

Run the application to create a performance baseline that will be used to identify optimization you achieve
during performance tuning with the VTune Amplifier.

NOTE
Before you start the application, minimize the amount of other software running on your computer to
get more accurate results.

Run nqueens parallel with the task size of 15. For example:

$./nqueens parallel 15

Starting ngueens soluver for size 15 with 1 thread(s)
Number of solutions: 2279184

Correct Result?
Calculations took 256710ms.

Note the execution time displayed in the shell window caption. In the example above, the execution
time is 256710 milliseconds.

NOTE

e Run the application several times, note the execution time for each run, and use the average
number. This helps to minimize skewed results due to transient system activity.

e The screenshots and execution time data provided in this tutorial are created on a system with 4
CPU cores. Your data may vary depending on the number and type of CPU cores on your system.

Create a VTune Amplifier Project

1.

N

Set the EDITOR or VISUAL environment variable to associate your source files with the code editor (like
emacs, vi, vim, gedit, and so on). For example:

$ export EDITOR=gedit

Run the amplxe-gui script launching the VTune Amplifier GUI.

Create a new project via New > Project....

Specify the project name nqueens that will be used as the project directory name and click Create
Project.

VTune Amplifier creates the tachyon project directory under the SHOME/intel/amplxe/projects (for
VTune Amplifier XE) or $HOME/intel/amplsys/projects (for VTune Amplifier for Systems) directory
and opens the Choose Target and Analysis Type window with the Analysis Target tab active.

From the left pane, select the local target system from the Accessible Targets group. From the right
pane select the Launch Application target type.

Specify and configure your target as follows:

e For the Application field, browse to: <sample code dir>, for example: /home/vtune/
nqueens_fortran/linux/nqueens parallel.

e In the Application parameters field, specify the task size for this target: 15.

Click Choose Analysis to select an analysis type.

2 Tutorial: Finding Hotspots

Recap

You built the target in the Release mode, created the performance baseline, and created the VTune Amplifier
project for your analysis target. Your application is ready for analysis.

Key Terms

e Baseline
e Target

Next Step

Run Basic Hotspots Analysis

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

Run Basic Hotspots Analysis

Before running an analysis, choose a configuration level to influence Intel® VTune™ Amplifier analysis
scope and running time. In this tutorial, you run the Basic Hotspots analysis to identify the hotspots that
took much time to execute.

To run an analysis:
1. From the VTune Amplifier toolbar, click the New Analysis button.

The New Amplifier Result tab opens with the Analysis Type window active.
2. On the left pane of the Analysis Type window, locate the analysis tree and select Algorithm Analysis
> Basic Hotspots.

The right pane is updated with the predefined settings for the Basic Hotspots analysis.
3. From the right pane, select the Analyze OpenMP regions checkbox.
4. Click the Start button on the right command bar.

10

Finding Hotspots 2

@ Choose Target and Analysis Type INTEL VTUNE AMPLIFIER

BEICEMl A Analysis Type

¥ | Algorithm Analysis
A
A Advanced Hotspots
A Concurrency
A Locks and Waits
A HPC Performance Ch
< | Microarchitecture Analy

Basic Hotspots Copy |

Identify your most
time-consuming source code.
This analysis type cannot be used
to profile the system but must
either launch an
application/process or attach to
one. This analysis type uses
user-mode sampling and tracing
collection. Learn more (F1)

[

@ Start Paused

[

€ Choose Target

VTune Amplifier launches the nqueens parallel application that makes calculations, displays the execution
time, and exits. VTune Amplifier finalizes the collected results and opens the analysis results in the Hotspots

by CPU Usage viewpoint.

To make sure the performance of the application is repeatable, go through the entire tuning process on the
same system with a minimal amount of other software executing.

NOTE

This tutorial explains how to run an analysis from the VTune Amplifier graphical user interface (GUI).
You can also use the VTune Amplifier command-line interface (amplxe-cl command) to run an
analysis. If you run the example program from the VTune Amplifier command-line interface, specify 15
as a command argument. For more details, check the Command-line Interface Support section of the

VTune Amplifier Help.

Key Terms

e Elapsed time
e Finalization
e Hotspot

e Viewpoint

Next Step

Interpret Results

Interpret Results

m When the sample application exits, the Intel® VTune™ Amplifier finalizes the results and opens the
Hotspots by CPU Usage viewpoint where each window or pane is configured to display code regions that
consumed a lot of CPU time. To interpret the data on the sample code performance, do the following:

1. Explore application-level performance.
2. Analyze the most time-consuming functions.
3. Identify the hotspot code region.

11

2 Tutorial: Finding Hotspots

NOTE
The screenshots and execution time data provided in this tutorial are created on a system with 4 CPU
cores. Your data may vary depending on the number and type of CPU cores on your system.

Explore Application-level Performance
Start analysis with the Summary window that opens by default when data collection completes. To interpret

the data, hover over the question mark icons ' to read the pop-up help and better understand what each
performance metric means.

Elapsed Time : 80.402s
CPU Time : 614.510s
Effective Time “: 159.316s
Spin Time 'z 455.100s ™
Overhead Time “: 0.094s
Total Thread Count: 16
Paused Time : Os

The Elapsed Time metric shows the duration of the collection including Paused Time. You may use this
metric as one of the basic performance indicators.

Note that CPU Time for the sample application is equal to 614.510 seconds. It is the sum of CPU time for all
application threads. Total Thread Count is 16, so the sample application is multi-threaded.

The nqueens parallel application uses the OpenMP* threading model. VTune Amplifier analyzes
performance in OpenMP parallel regions as well as serial code performance. The OpenMP Analysis section
provides metrics based on the Collection Time, which is the wall time from the beginning to the end of
collection, excluding Paused Time. The nqueens_parallel application ran serially only 0.464 seconds, which
is 0.6% of Collection Time. According to the provided estimates, you can improve the efficiency of your code
in parallel regions and get 40.422 seconds of performance gain (maximum estimate), which is 50.3% of
Collection Time.

OpenMP Analysis. Collection Time : 80.402

Serial Time (outside any parallel region) —: 0.464s (0.6%)

Parallel Region Time : 79.938s (99.4%)
Estimated Ideal Time : 39.516s (49.1%)
OpenMP Potential Gain 40.422s (50.3%) ®

The Top OpenMP Regions by Potential Gain section displays the parallel region in the
nqueens_parallel application that should be optimized.

12

Finding Hotspots 2

Top OpenMP Regions by Potential Gain

This section lists OpenMP regions with the highest potential for performance
improvement. The Potential Gain metric shows the elapsed time that could be saved
if the region was optimized to have no load imbalance assuming no runtime
overhead.

OpenMP Region OpenMP Potential Gain™ (%) OpenMP Region Time

ngueens IP solve Somps
parallel:16@/root/Docume

50.3%

nts/nqueens fortran/linux/ 40.421s ® n 79.938s
LJsre/ngueens parallel.f90
159:163

Clicking this region opens the Bottom-up window with the data grouped by OpenMP Region and detailed
statistics for the hot regions.

Analyze the Most Time-consuming Functions

Click the Bottom-up tab to explore the Bottom-up pane. By default, the data in the grid is sorted by
Function. You may change the grouping level using the Grouping drop-down menu at the top of the grid.

Click the Effective Time bu Utilization to sort the hotspots functions by effective time.

The nqueens IP setqueen function took 159.288 seconds to execute, ineffectively using CPU resources
during all this time.

M Basic Hotspots Hotspots by CPU Usage viewpoint (change) @

ion Log| | @ An Target| | © An: . i Summary | BSEsleateltolsl % Caller »
Grouping: Function / Call Stack ~|[x][a]lx

CPU Time]

Function / Call Stack Effective Time by Utilizationwy /| Spin | Overhead” Module
ldle @Poor © Ok @ ideal @ Over Time Time

» nqueens IP setqueen_] 159.288s @ | 0s| ____ 0s|nqueens parallel
p [Import thunk sched yield] 0.018s | Os Os libiomp5.so
p [Import thunk _tls_get_addr] 0.010s Os Os libiomp5.s0
b kmpc critical Os 454.... 0.020s | libiomp5.s0
p __kmp release gueuing_lock Os 0.388s Os | libiomp5.s0
b kmpc_end critical Os 0.042s 0.032s | libiomp5.s0
p [Import thunk __kmp_wait_yie Os 0.032s5 Os | libiomp5.s0
b kmp get global thread id r Os Os 0.022s | libiomp5.s0

Double-click the hotspot function to open the source and identify the most time-critical code lines.

13

2

Tutorial: Finding Hotspots

Identify the Hotspot Code Region

Source Assembly || @

™ wn

118
115
120
121
122
123
124
125
126

128
129
130
131
132
133

134
Sel .,

P| @ »| »] ¢ a

Assembly grouping: Addres

CPU Time: Total

Source Effective Time by Utilization
0Idle [l Poor [JOk [Jldeal
implicit none
integer, intent(inout) :: queens(:)
integer, intent(in) :: row, col

integer :: 1
! In order to avoid a data race on the "queens"
integer :: lcl_queens(ubound{queens,dim=1)}

1
! Make copy of queens array

i 1cl_queens = queens

Y
-

4]

do i=1,row-1 5.7% [l

! vertical attacks _J

if (lcl_queens(i) == col) return 1.5% |

! diagonal attacks

if (abs(lcl_gueens(i)-col) == (row-i)) return 3.6% [
end do 2.5% |

4

| I3 || [0

The table below explains some of the features available in the Source window when viewing the Basic
Hotspots analysis data.

1

14

Source pane displaying the source code of the application if the function symbol information is
available. The hottest code line is highlighted. The source code in the Source pane is not editable.

If the function symbol information is not available, the Assembly pane opens displaying
assembler instructions for the selected hotspot function. To enable the Source pane, make sure to
build the target properly.

Processor time attributed to a particular code line. If the hotspot is a system function, its time, by
default, is attributed to the user function that called this system function.

Source window toolbar. Use the hotspot navigation buttons to switch between most performance-
critical code lines. Hotspot navigation is based on the metric column selected as a Data of Interest.
For the Basic Hotspots analysis, this is CPU Time. Use the Source/Assembly buttons to toggle
the Source/Assembly panes (if both of them are available) on/off.

Heat map markers to quickly identify performance-critical code lines (hotspots). The bright blue
markers indicate hot lines for the function you selected for analysis. Light blue markers indicate
hot lines for other functions. Scroll to a marker to locate the hot code line it identifies.

Finding Hotspots 2

By default, when you double-click the hotspot in the Bottom-up pane, the VTune Amplifier opens the source
file related to this function with the hottest code line highlighted. For the nqueens IP setqueen function,

this is the code line that is used to create a local copy of the queens array to avoid a data race. Click the EI

Source Editor button on the Source window toolbar to open the default code editor and work on optimizing
the code.

NOTE
Depending on the sample code version, your source line humbers may slightly differ from the numbers
provided in this tutorial.

Key Terms

e CPU time
e Viewpoint

Next Step

Resolve Issue

Resolve Issue

m You identified that the most time-consuming function is nqueens IP setqueen. If you click the EI
Source Editor button from the Source pane, the VTune Amplifier opens the source

nqueens parallel.f90 file at the hotspot line in the default code editor. You see that the OpenMP* cycle is
calling the recursive setQueen function that initializes the queens array. To avoid a data race, this array is
copied in each thread (see line 127):

NOTE
Depending on the sample code version, your source line humbers may slightly differ from the numbers
provided in this tutorial.

123 ! In order to avold a data race on the "gueens" array,
124 integer :: lcl queens{ubound{queens,dim=1)})

125

126 ! Make copy of queens array

127

128

129 do 1=1,row-1

130 I vertical attacks

131 if (lcl _queens(i) == col) return

132 | diagonal attacks

133 if (abs(lcl queens{i)-col) == (row-1)) return
134 end do

This means that the number of local copies is equal to the number of threads. Since the function is recursive,
the array is also copied in every function call, which is unnecessary and creates a big overhead.

To resolve this issue, you may enable OpenMP to make a copy of the array per thread. To do this:
1. Comment out lines 124 and 127.

15

2 Tutorial: Finding Hotspots

123 ! In order to avoid a data race on the "gueens" array,
124 I integer :: lcl_gueens(ubound(gueens,dim=1))

125

126 ! Make copy of gueens array

127 ! 1cl gueens = gueens

2. Search and replace all 1c1_queens entries with queens.
3. Editline 159 to add the PRIVATE (queens) directive.

This enables the OpenMP run-rime to create a private copy of the array for each thread.
158 ! Enable dynamic load scheduling

159 ! $0MP PARALLEL DO PRIVATE(gqueens)
160 do 1=1,size

161 I try all positions in Tirst row
162 call SetQueen (queens, 1, 1)
163 end do

4. Save the changes made in the source file.

5. Browse to the directory where you extracted the sample code (for example, /home/vtune/
nqueens_fortran/linux).

6. Rebuild your target in the release mode using the make command as follows:

$ make clean
S make

The nqueens parallel application is rebuilt.
7. Run nqueens parallel as follows:

./nqueens_parallel 15

Starting ngueens soluer for size 15 with 16 thread(s)
Number of solutions: 2279184

Correct Result?
Calculations took 56566ms.

System runs nqueens_parallel. Note that the execution time has reduced from 256710 ms to 56566
ms. This means that the proposed solution gives 200144 ms of CPU time reduction.

To identify other possible performance issues, you may run the Concurrency analysis and see how effectively
your application is parallelized.

Next Step

Run Concurrency Analysis

Run Concurrency Analysis

Run the Concurrency analysis to understand how effectively your application is parallelized.
To run an analysis:
1. From the VTune Amplifier toolbar, click the New Analysis button.

New Amplifier Result tab opens with the Analysis Type window active.
2. On the left pane of the Analysis Type window, locate the analysis tree and select Algorithm Analysis
> Concurrency.

The right pane is updated with the predefined settings for the Concurrency analysis.
3. Select the Analyze Intel runtimes and user synchronization checkbox.
4. Click the Start button on the right command bar.

16

Finding Hotspots 2

@ Choose Target and Analysis Type INTEL VTUNE AMPLIFIER

RIS TG A Analysis Type

N Concurrency Copy

= 7 Algorithm Analysis Analyze how your application
is using available logical
CPUs, discover where
A Advanced Hotspots | parallelism is incurring
A synchronization overhead,

. and identify potential
A Locks and Waits candidates for parallelization,
& HPC Performance Ch | This analysis type uses

[Microarchitecture Analy | USer-mode sampling and
tracing collection. Learn more

@ Start Paused

€ Choose Target

A Basic Hotspots

VTune Amplifier launches the nqueens parallel application that makes calculations, displays the execution
time, and exits. VTune Amplifier finalizes the collected results and opens the analysis results in the Hotspots
by CPU Usage viewpoint.

To make sure the performance of the application is repeatable, go through the entire tuning process on the
same system with a minimal amount of other software executing.

NOTE
This tutorial explains how to run an analysis from the VTune Amplifier graphical user interface (GUI).
You can also use the VTune Amplifier command-line interface (amplxe-cl command) to run an

analysis. For more details, check the Command-line Interface Support section of the VTune Amplifier
Help.

Key Terms

¢ Finalization
e Viewpoint

Next Step

Interpret Concurrency Results

Interpret Concurrency Results

m When the sample application exits, the Intel® VTune™ Amplifier finalizes the results and opens the
Hotspots by CPU Usage viewpoint where each window or pane is configured to display data on application
parallelism and usage of processor cores. To interpret the data on the sample code performance, do the
following:

1. Explore application-level concurrency
2. Identify the most time-consuming function.

NOTE
The screenshots and execution time data provided in this tutorial are created on a system with 4 CPU
cores. Your data may vary depending on the number and type of CPU cores on your system.

17

2 Tutorial: Finding Hotspots

Explore Application-level Concurrency
Start analysis with the Summary window that opens by default when data collection completes. To interpret

the data, hover over the question mark icons "2 to read the pop-up help and better understand what each
performance metric means.

You see that after optimization, the Elapsed time has increased from 80.402 seconds to 75.093 seconds.

Elapsed Time : 75.093s

CPU Time : 563.720s
Effective Time “: 116.158s
Spin Time “: 438.206s *

Imbalance or Serial Spinning (OpenMP) 7.931s

Lock Contention (OpenMP) 58.204s

Other 372.071s
Overhead Time “: 9.356s5

Wait Time : 333.877s

Total Thread Count: 16

Paused Time —: Os

NOTE

The Concurrency analysis adds an overhead to the application execution. The overhead often depends
on the number of threads and synchronization objects used in the application. This is the reason why
Elapsed time data provided in the Summary window may differ from the data reported after the
application launch outside of the VTune Amplifier.

The CPU Usage Histogram shows that the average concurrency level of the sample application is about 2
while the target concurrency level for this application on the 4-core system is 8. If you hover over the
highest bar, you see that this application has run 1 threads for almost 24 seconds, which is categorized by
the VTune Amplifier as Poor processor utilization on this system.

205+

Elapsed Time

155

Target Utilization

e Y g e

105

|
|
|
|
|
|
|
|
|
|
55 I
|
|

Os-

Simultaneously Utilized Logical CPUs: 1 4 6
Elapsed Time: 23.923s

Simultaneously Utilized Logical CPUs

|

Identify the Most Time-consuming Function

Click the Bottom-up tab to switch to the Bottom-up window and analyze application performance by
function. By default, the grid is sorted by the CPU Time metric in the descending order. Select the Process/
Function/Thread/Call Stack grouping level from the Grouping menu. This granularity enables you to
visualize threads where the hotspots functions were executed.

18

Finding Hotspots 2

After initial optimization, the nqueens IP setqueen function is still a bottleneck. Click the arrow sign P at
the nqueens IP setqueen function. You see that this function's execution was parallelized among fifteen
threads.

™ Concurrency Hotspots by CPU Usage viewpoint (change) @

& Anal Target Ana pe | |B Collection Log | B Summary | BRs{ejurelyEuls (
Grouping: Process / Function [Thread / Call Stack [v ng
CPU Time ¥ L

Process / Function / Thread / Call Stack Effective Time by Utilization Il spin /| overhead”

Pidle @Poor [Ok @ ideal @ Over Time Time

v ngueens_parallel 116.158s | | 438.206s 0,3565
B kmpc_critical 0.000s 432.917s 2.971s

p OMP Worker Thread #5 (TID: 9077 g.830s | Os Os

p OMP Worker Thread #7 (TID: 9079 8.676s || Os Os

p OMP Worker Thread #10 (TID: 908 g.406s B Os Os

p OMP Worker Thread #6 (TID: 9078 8.262s B Os Os

p OMP Worker Thread #8 (TID: 9081 B.254s B Os Os

p OMP Worker Thread #9 (TID: 9082 8.239s @ Os Os

p OMP Worker Thread #4 (TID: 9076 8.230s | Os Os

B OMP Worker Thread #2 (TID: 9074 8.011s |@ Os Os

p OMP Worker Thread #3 (TID: 9075 7.966s5 B Os Os

B OMP Worker Thread #11 (TID: 908 7.680s | Os Os

Select these threads in the grid, right-click and choose the Filter In by Selection context menu option. The
Timeline pane below is updated to display data for the selected threads only.

QIQFQ-CHg5s 25 255 35 3.55 4s 455 55 558 m

OMP Worker Thread #8... FWWWmWﬂ] &3 Running
E OMP Worker Thread #5...| [© = ' 7 = ' o [] Waits
£ |OMP Worker Thread #9.. |] duk CPU Time
OMP Worker Thread #7... | ! [- [k Spin and ...
. . . 5 5 []= CPU Sample
e | bbb il sl b Tanstions
3 [+l CPU Usage

1 Timeline area. When you hover over the graph element, the timeline tooltip displays the time
passed since the application has been launched.

2 Threads area that shows the distribution of CPU time utilization per thread. Hover over a bar to
see the CPU time utilization in percent for this thread at each moment of time. Dark green zones
show the time threads are active. Light-green zones show the time threads were waiting.

3 Performance metric area that shows application performance over time by a performance

metric. In the Hotspots by CPU Usage viewpoint, CPU Usage and Thread Concurrency
metrics are used.

19

2 Tutorial: Finding Hotspots

The CPU Usage chart shows the distribution of CPU time utilization for the whole application. Hover
over a bar to see the application-level CPU time utilization in percent at the particular moment.
VTune Amplifier calculates the overall CPU Usage metric as the sum of CPU time per each thread
of the Threads area. Maximum CPU Usage value is equal to [number of processor cores] x 100%.

The Thread Concurrency chart shows the application-level thread concurrency at each moment
of time. Hover over a bar to see an exact concurrency level at the particular moment.

Transitions. The execution flow between threads where one thread signals to another thread
waiting to receive that signal. You may zoom in to a time region to get more detailed view of the
transitions. To do this, drag and drop to select the region and right-click to select the Zoom In on
Selection option from the context menu.

The Timeline pane for the sample application shows a large humber of transitions between threads, which
means that the threads spent noticeable time transferring execution to each other. If you uncheck the
Transitions display option on the right, you see that workload balance is also poor since many of the
threads were waiting for OMP Worker Thread #7 to complete execution.

Run the Locks and Waits analysis to understand what prevents the sample code from effective thread
concurrency and processor utilization.

Key Terms

e Thread concurrency
e Viewpoint

Next Step

Run Locks and Waits Analysis

Run Locks and Waits Analysis

Run the Locks and Waits analysis to identify synchronization objects that caused contention and fix the
problem in the source.

To run an analysis:
1. From the VTune Amplifier toolbar, click the New Analysis button.

VTune Amplifier result tab opens with the Choose Analysis Type window active.
2. From the analysis tree on the left, select Algorithm Analysis > Locks and Waits.

The right pane is updated with the default options for the Locks and Waits analysis.
3. Select the Analyze Intel runtimes and user synchronization checkbox.
4. Click the Start button on the right command bar.

20

Finding Hotspots 2

[

1 Choose Target and Analysis Type

BEGEM A Analysis Type

N N P Locks and Waits Copy

"= Algorithm Analysis ldentify where your application is waiting on synchronization
objects or /O operations and discover how these waits

affect your application performance. This analysis type uses
A Advanced Hotspots | yser-mode sampling and tracing collection. Learn more (F1)

A Concurrency
F¥ ocks and Waits CPU sampling interval, ms: |10 |?|

& HPC Performance C | [J Analyze user tasks, events, and counters

A Basic Hotspots

VTune Amplifier launches the nqueens parallel executable that makes calculations, displays the execution
time, and exits. VTune Amplifier finalizes the collected data and opens the results in the Locks and Waits
viewpoint.

NOTE

e To make sure the performance of the application is repeatable, go through the entire tuning
process on the same system with a minimal amount of other software executing.

e This tutorial explains how to run an analysis from the VTune Amplifier graphical user interface
(GUI). You can also use the VTune Amplifier command-line interface (amplxe-cl command) to run
an analysis. For more details, check the Command-line Interface Support section of the VTune
Amplifier Help.

Key Terms

¢ Finalization
e Viewpoint

Next Step

Interpret Locks and Waits Results

Interpret Locks and Waits Results

m When the sample application exits, the Intel® VTune™ Amplifier finalizes the results and opens the Locks
and Waits viewpoint that is configured to display synchronization objects sorted by Wait time. To interpret the
data on the sample code performance, do the following:

1. Identify locks.
2. Analyze source code.

Identify Locks
Click the Bottom-up tab to open the Bottom-up pane.

21

2 Tutorial: Finding Hotspots

™ Locks and Waits Locks and Waits viewpoint (change) @

€ Analysis Target Ana e B Collection Log| K Summary [E-Rsisjixe]aaBule (
Grouping: Sync Object/ Function / Call Stack [‘|Ir || 4 E
: : Wait Time by Thread Concurrency v * ; S

sync Object / Function / Call Stack oide ®Poor 8Ok 8ideal § Over Wait Count | Spin Time

OMP Join Barrier nqueens_IP solve ;| 197.313s O D S 18 Os
w OMP Critical nqueens_IP_setqueen_:|| 143.302s (T R /e 40,095 439.760s
* kmpc_critical 143.302s D R D 40,095 439.760s
T Rongueens_IP_setqueen_+ ngue| 143.302s] 40,095 | 439.760s

b ngueens_IP_setqueen_ 140.687s T E D 39,988 437.758s
B = ngueens_IP_setqueen_ 2.615s || 107 2.002s
k Condition Variable 0x75ec6444 0.070s | 12 Os

The table below explains the type of data provided in the Bottom-up pane:

1 Synchronization objects that control threads in the application. The hash (unique number) appended
to some names of the objects identify the stack creating this synchronization object.

2 The utilization of the processor time when a given thread waited for some event to occur. By default,
the synchronization objects are sorted by Poor processor utilization type. Bars showing OK or Ideal
utilization (orange and green) are utilizing the processors well. You should focus your optimization

efforts on functions with the longest poor CPU utilization (red - bars if the bar format is selected).
Next, search for the longest over-utilized time (blue . bars).

This is the Data of Interest column for the Locks and Waits analysis results that is used for different
types of calculations, for example: call stack contribution, percentage value on the filter toolbar.

5 Number of times the corresponding system wait API was called. For a lock, it is the number of times
the lock was contended and caused a wait. Usually you are recommended to focus your tuning efforts
on the waits with both high Wait Time and Wait Count values, especially if they have poor utilization.

4 Wait time, during which the CPU is busy. This often occurs when a synchronization API causes the
CPU to poll while the software thread is waiting. Some Spin time may be preferable to the alternative
of the increased thread context switches. However, too much Spin time can reflect lost opportunity
for productive work.

In the nqueens _parallel sample code, there are two critical wait objects, OMP Critical
nqueens IP setqueen and OMP Join Barrier, that caused redundant synchronization and took the
longest Wait time and highest Wait count. The bar indicators in the Wait Time column indicate that most of
the time for these objects processor cores were underutilized.

Analyze Source Code

Explore the source of the critical synchronization objects that caused significant Wait time and poor processor
utilization. Double-click the nqueens IP setqueen object to analyze the source of the setqueen wait

function. Click the % button on the Source pane toolbar to go to the biggest hotspot code line in the
function. VTune Amplifier highlights line 142 protected by the OpenMP* critical section.

22

Finding Hotspots 2

I Source Assembly ”

| | & [w | [Assemblygrnuping: Address

s | cource wait Time: ... 2 Bl wait count: | wait Spin
L. @idle @Poor |@id Total Count: Self | Time ...
139 if (row == size) then
140 ! Change the Critical session for
141 '$0MP ATOMIC
i nrOfSolutions = nrOfSolutions + 1} 140.687s
143 I '$0MP END CRITICAL
144 else
145 P try to Fill next row

The setqueen function was waiting for 140.687 seconds while this code line was executing. During this time,
this operation was contended 39,988 times.

Hover over any transition line in the Timeline pane below to explore the infotip and make sure that all the
transitions are caused by the OMP Critical nqueens IP setqueen critical section.

P . : 2,5 S 255. S 3,5 S 355. S [

OMP Worker ... | [¢ [7] MIH"II'IIHII‘IH'I' 't m nrmmmrumur.n HHMIII‘H f -
g |OMP Worker ... | omp worker Thread #4 (TID: 5472)
£ [OMP Worker ...
F loMP Worker ... Transitinns |
- OMP Worker Thread #3 (TID: 9471) to OMP Master Thread #0 (TID: 9450) (1.68:
OMP Worker ... |1 Sync Object: OMP Critical nqueens_IP_setqueen_:141 0x90bfb745
“#Signal Source File: kmp_lock.cpp
Signal Source Line: 1523
CPU Usage

Transitions

OMP Worker Thread #11 (TID: 9479) to OMP Worker Thread #3 (TID; 9471) (1.6¢
ISync Object: OMP Critical nqueens_IP_setqueen_:141 0x30bfb745

Slgnal Source Fle: kmp_lock.cpp
Y BBy Signal Source Line: 1523
The OMP Critical nqueens IP setqueen section is the place where the application is serializing. Each

thread has to wait for the critical section to be available before it can proceed. Only one thread can be in the
critical section at a time.

Thread Conc...

You need to optimize the code to make it more concurrent. Click the "DSource Editor button on the Source
window toolbar to open the code editor and optimize the code.

Key Terms

e Elapsed time
e Wait time

Next Step

Remove Lock

23

2 Tutorial: Finding Hotspots

Remove Locks

m In the Source window, you located the synchronization objects that caused significant waits while the
processor cores were underutilized . To resolve the issue, do the following:

1. Open the code editor.
2. Modify the code to remove locks.
3. Recompile the project and check the result.

Open the Code Editor

NOTE
Depending on the sample code version, your source line humbers may slightly differ from the numbers
provided in this tutorial.

Click the EI Source Editor button to open the nqueens parallel.f90 file in your default editor:

139 if (row == size) then

140 I Change the Critical session for the Atomic directive OMP ATOMLC
141 I $0MP CRITICAL

142 nrofsolutions = nrOofSolutions + 1

143 I$0MP END CRITLCAL

144 else

145 I try to fill next row

146 do 1=1,size

147 call setQueen (queens, row+l, 1)

148 end do

149 end if

150 end subroutine SetQueen

Remove Locks

The critical section introduced in line 141 protects the global variable from a race condition in a
multithreaded application but it spawns a redundant synchronization. To resolve this issue, you may replace
the critical section with an atomic operation as follows:

1. Edit like 141 to replace the OMP CRITICAL with the oMP ATOMIC directive.
2. Comment out or remove line 143.

141 | SOMP ATOMIC
142 nrofsolutions = nrofSolutions + 1
143 | 1$0MP END CRITICAL

3. Save your changes.

Recompile the Project and Check the Result

1. Browse to the directory where you extracted the sample code (for example, /home/vtune/
nqueens fortran/linux).
2. Rebuild your target in the release mode using the make command as follows:

24

Finding Hotspots 2

$ make clean
S make

The nqueens parallel application is rebuilt.
3. Run nqueens parallel as follows:

./nqueens_parallel 15

Starting nqueens solver for size 15 with 16 thread(s)
Number of solutions: ZZ79184

Correct Result?
Calculations took 14585ns.

System runs the nqueens parallel. Note that execution time reduced from 56566 ms to 14585 ms.

Key Terms

e Wait time

Next Step

Compare with Previous Result

Compare with Previous Result

You made sure that removing the critical section gave you 41981 ms of optimization in the application
execution time. To understand the impact of your changes and how the CPU utilization has changed, re-run
the Locks and Waits analysis on the optimized code and compare results:

1. Compare results before and after optimization.
2. Identify the performance gain by metrics.
3. Compare timeline data.

Compare Results Before and After Optimization

1. Run the Locks and Waits analysis on the modified code.
2. "
Click the Compare Results button on the VTune Amplifier toolbar.
The Compare Results window opens.

3. Specify the Locks and Waits analysis results you want to compare:

™ Choose Results to Compare

INTEL VTUNE AMPLIFIER

@ cormoee |

o Al
® Cancel)

Result 1: [ro04lw.amplxe ¥ | Browse..

Result 2: |ro0SIw.amplxe Browse...

These results can be compared. Click the Compare button to
continue,

Swap Results

The Summary window opens providing the statistics for the difference between collected results.

25

2 Tutorial: Finding Hotspots

Identify the Performance Gain by Metrics

The Result Summary section of the Summary window shows that after optimization all critical metric
values has reduced significantly. The Elapsed Time data shows the optimization of 60.208 seconds for the
whole application. Wait Time decreased by 308.891 seconds, Wait Count - by 40,094.

Elapsed Time : 74.866s - 14.658s = 60.208s

Wait Time : 340.686s5 - 31.7955 = 308.891s

Wait Count “: 40,132 - 28 = 40,094

Spin Time ~: 445.437s - 0s = 445.437s

CPU Time ~: 571.290s5 - 111.150s5 = 460.1405

Total Thread Count: Mot changed, 16

Paused Time Mot changed, Os
NOTE

The Locks and Waits analysis adds an overhead to the application execution. The overhead often
depends on the number of threads and synchronization objects used in the application. This is the
reason why Elapsed time data provided in the Summary window may differ from the data reported
after the application launch outside of the VTune Amplifier.

In the Bottom-up pane, locate the OpenMP* critical section you identified as a bottleneck in your code.
Since you removed it during optimization, the optimized result does not show any performance data for this
synchronization object. If you collapse the Wait Time: Difference column by clicking the %l button, you see
that with the optimized result you got 143.302 seconds of optimization in Wait time.

B Summary | ESAsieuieln®llel % Caller/Callee | |«% Top-down Tree
Grouping: Sync Object/ Function [Call Stack v ||
Sync Object / Function / Call Stack Wait Time: Difference w 1| Wait Time: r004iw by Thre...=
i Idl #Poi 1O Bl.. NOv
. ! @R
k OMP Critical nqueens_IP_setqueen_:14| 143.302s [] 143.302s e
B Stream 0x7d21979%e 0.000s 0.000s
B Stream 0x4856546fF 0.000s 0.000s

Compare Timeline Data

Open the optimized result of the Locks and Waits analysis, open the Bottom-up tab, and analyze the
Timeline pane.

26

Finding Hotspots 2

OS] I8TIeL : ls 3s

I 1 1
s 35 5.5 . ?.S . Edls I1}5 . 135 . [¥ Thread w
omMp worker... | [Nl -] @@Running
omMp worker... | | T T | [Waits
o [OMP Worker... | | [7] ik CPU Time
2 JomP worker... | | [7] duk Spin and .
S ™ ——— T (% CPU Sample
OMP Wﬂrier--- R PR ———— T e
OMP Worker... | | bl | .|
o T ~| [] CPU Usage
[v] duk CPU Time

The optimized result does not have multiple transitions anymore.

Compare analysis results regularly to look for regressions and to track how incremental changes to the code
affect its performance. You may also want to use the VTune Amplifier command-line interface and run the
amplxe-cl command to test your code for regressions. For more details, see the Command-line Interface
Support section in the VTune Amplifier online help.

Key Terms

e Elapsed time
e Thread concurrency
e Wait time

27

3 Tutorial: Finding Hotspots

Summary

@ You have completed the Finding Hotspots tutorial. Here are some important things to remember when
using the Intel® VTune™ Amplifier to analyze your code for hotspots:

Step

Tutorial Recap

Key Tutorial Take-Aways

1. Prepare for
analysis

2. Find hotspots

3. Eliminate
hotspots

4. Analyze
concurrency

28

You set up your environment
to enable generating symbol
information for your binary
files, built the target, created
the performance baseline, and
created the VTune Amplifier
project for your analysis
target.

You launched the Basic
Hotspots data collection that
analyzed function calls and
CPU time spent in each
program unit of your
application and identified the
following hotspots:

e A function that took the
most CPU time and could
be a good candidate for
algorithm tuning.

e The code section that took
the most CPU time to
execute.

You optimized the algorithm
by enabling the OpenMP*
library create a private copy of
the array. You rebuilt the
application and got
performance gain of 200144
ms.

You launched the Concurrency
analysis and identified poor
thread concurrency for the
whole application execution.
You analyzed the timeline and
identified poor thread balance:
all OpenMP threads were
constantly transferring

Configure your project properties to get the
most accurate results for user binaries and to
analyze the performance of your application at
the code line level.

Create a performance baseline to compare the
application versions before and after
optimization. Make sure to use the same
workload for each application run.

Use the New Amplifier Result tab to choose
and configure your analysis target.

Use the Analysis Type configuration window
to choose, configure, and run the analysis. You
can also run the analysis from command line
using the amplxe-cl command.

Start analyzing the performance of your
application from the Summary window to
explore the performance metrics for the whole
application. Then, move to the Bottom-up
window to analyze the performance per
function. Focus on the hotspots - functions
that took the most CPU time. By default, they
are located at the top of the table.
Double-click the hotspot function in the
Bottom-up pane or Call Stack pane to open
its source code and navigate between hotspots
using the Source window navigation buttons.

ol

Click the *—' Source Editor button to open your
default source editor directly from the VTune
Amplifier Source window.

Start your analysis with the Summary
window. Consider the Target concurrency
metric specified in the CPU Usage Histogram
as your optimization goal. The Average metric
is calculated as CPU time / Elapsed time. Use
this number as another baseline for your
performance measurements. The closer this
number to the number of cores, the better.

Summary 3

Step

Tutorial Recap

Key Tutorial Take-Aways

5. Find lock

6. Remove lock

7. Check your
work

execution to each other and
were waiting for all threads to
complete execution.

You ran the Locks and Waits
analysis and identified two
synchronization objects with
the high Wait Time and Wait
Count values and poor CPU
utilization that could be locks
affecting application
parallelism. Your next step is
to analyze the code of their
wait functions.

You optimized the application
execution time by removing
the unnecessary critical
section that caused redundant
synchronization .

You ran the Locks and Waits
analysis on the optimized code
and compared the results
before and after optimization
using the Compare mode of
VTune Amplifier.

¢ In the Bottom-up window, use the Filter In
by Selection context menu option to focus on
the performance-critical functions in the grid
and analyze their performance over time in the
Timeline pane.

e Use the Analysis Type configuration window
to choose, configure, and run the analysis. For
recently used analysis types, you may use the
shortcuts to run a recent analysis:

e From the File menu, select New >
[recent_analysis_type].

e In the Bottom-up window, focus on the
synchronization objects that under- or over-
utilized the available logical CPUs and have the
highest Wait time and Wait Count values. By
default, the objects with the highest Wait time
values show up at the top of the window.

Double-click the most time-critical
synchronization object in the Bottom-up pane.
This opens the source code for the wait function it
belongs to. Use the hotspot navigation buttons to
identify the most time-critical code lines.

Perform regular regression testing by comparing
analysis results before and after optimization.

Click the Compare Results button on the
VTune Amplifier toolbar. From command line, use
the amplxe-cl command.

Next step: Prepare your own application(s) for analysis. Then use the VTune Amplifier to find and eliminate
hotspots.

29

4 Tutorial: Finding Hotspots

Key Terms

bl

baseline: A performance metric used as a basis for comparison of the application versions before and after
optimization. Baseline should be measurable and reproducible.

CPU time: The amount of time a thread spends executing on a logical processor. For multiple threads, the
CPU time of the threads is summed. The application CPU time is the sum of the CPU time of all the threads
that run the application.

Elapsed time: The total time your target ran, calculated as follows: Wall clock time at end of application
- Wall clock time at start of application.

finalization: A process during which the VTune Amplifier converts the collected data to a database, resolves
symbol information, and pre-computes data to make further analysis more efficient and responsive.

hotspot: A section of code that took a long time to execute. Some hotspots may indicate bottlenecks and
can be removed, while other hotspots inevitably take a long time to execute due to their nature.

target: A target is an executable file you analyze using the VTune Amplifier.

thread concurrency: A performance metric that helps identify how an application utilizes the processors in
the system by comparing the application concurrency level (the number of active threads) and target
concurrency level (by default, equal to the number of physical cores). Thread concurrency may be higher
than CPU usage if threads are in the runnable state and not consuming CPU time.

Utilizatio Default Description

n Type color

Idle All threads in the program are waiting - no threads are running. There can be
only one node in the Summary chart indicating idle utilization.

Poor [] Poor utilization. By default, poor utilization is when the number of threads is up
to 50% of the target concurrency.

OK] Acceptable (OK) utilization. By default, OK utilization is when the number of
threads is between 51-85% of the target concurrency.

Ideal [Ideal utilization. By default, ideal utilization is when the number of threads is
between 86-115% of the target concurrency.

Over] Over-utilization. By default, over-utilization is when the number of threads is
more than 115% of the target concurrency.

viewpoint: A preset result tab configuration that filters out the data collected during a performance analysis
and enables you to focus on specific performance problems. When you select a viewpoint, you select a set of
performance metrics the VTune Amplifier shows in the windows/panes of the result tab. To select the
required viewpoint, click the (change) link and use the drop-down menu at the top of the result tab.

Wait time: The amount of time that a given thread waited for some event to occur, such as: synchronization
waits and I/0 waits.

30

	Contents
	Legal Information
	Overview
	Navigation Quick Start
	Finding Hotspots
	Build Application and Create New Project
	Run Basic Hotspots Analysis
	Interpret Results
	Resolve Issue
	Run Concurrency Analysis
	Interpret Concurrency Results
	Run Locks and Waits Analysis
	Interpret Locks and Waits Results
	Remove Locks
	Compare with Previous Result

	Summary
	Key Terms

