} MathWorks

Parallel Computing with MATLAB and Simulink

Jos Martin

jos.martin@mathworks.com

Senior Engineering Manager — Parallel Computing

© 2016 The MathWorks, Inc.

&\ MathWorks

Introduction

> Why Parallel Computing

* Need faster insight to bring competitive products to market quickly

« Computing infrastructure is broadly available (Multicore Desktops, GPUs, Clusters)

» With MathWorks Parallel Computing Tools

Leverage computational power of available hardware

Accelerate workflows with minimal to no code changes to your original code

Seamlessly scale from your desktop to clusters or on the cloud

Save engineering and research time and focus on insight

&\ MathWorks

Agenda

» Parallel Computing Paradigm
> Task Parallelism
> Data Parallelism

> Summary

&\ MathWorks

Agenda

» Parallel Computing Paradigm

4\ MathWorks'

Parallel Computing Paradigm
Multicore Desktops

Multicore Desktop

Manage Cluster Profiles

e ()
4 . 4
Worker Worker
MATLAB Desktop l hﬁ ‘
(client) k Worker |

Parallel Computing Paradigm

Cluster Hardware

E @ Preferences & @ 8 P
[Set Path

Layout Add-Ons Help = Request Support

2 (e
Default Cluster >| & Cluster Profile r
Discover Clusters... local
- Parallel Preferences _

Manage Cluster Profiles Worker
Monitor Jobs
Test Cloud Connection

4 4

Worker Worker

—

MATLAB Desktop A
(Client) Worker

_ Worker

4\

Worker

Worker

Worker

¢

Worker

X

Worker

4\ MathWorks'

Worker

2

-

-

Worker

-

Wo

ol
rker

4\ MathWorks

Parallel Computing Paradigm
NVIDIA GPUs

4\

MATLAB Desktop
(client)

Using NVIDIA GPUs

IIIIIIIIIIIIII\

(II
HE
HE

Device Memory

_ _/

Cluster Computing Paradigm

= Prototype on the desktop

= Integrate with existing
infrastructure

= Access directly through
MATLAB

&\ MathWorks

User Desktop

MATLAB

Parallel Computing Toolbox

Compute
Nodes

MATLAB Distributed Computing Server

Parallel-enabled Toolboxes (MATLAB® Product Family)

Enable parallel computing support by setting a flag or preference

Image Processing

Batch Image Processor, Block
Processing, GPU-enabled functions

Original Image of Peppers Recolored Image of Peppers

Signal Processing and
Communications

GPU-enabled FFT filtering,
cross correlation, BER

Statistics and Machine Learning

Resampling Methods, k-Means
clustering, GPU-enabled functions

Computer Vision

Parallel-enabled functions
in bag-of-words workflow

extract keypoints feature descriptors clustering vocabulary visual words

feature detection
feature vector -

2 it 8 T ohe
M *ﬁ'ﬂi wY: “}.-‘io

grid “"‘

° 11

Neural Networks

Deep Learning, Neural Network
training and simulation

4\ Function Fitting Neura! Network (view)

Output

D’TEDW

Optimization
Parallel estimation of
gradients

Other Parallel-enabled Toolboxes

4\ MathWorks'

Parallel-enabled Toolboxes (Simulink® Product Family)

Enable parallel computing support by setting a flag or preference

Simulink Design Optimization Simulink Control Design

Response optimization, sensitivity Frequency response estimation
analysis, parameter estimation

& Z M*****]
e W*M*M*****
Frequen 1': Dy (rad/s)
Communication Systems Toolbox Simulink/Embedded Coder
GPU-based System objects for Generating and building code
Simulation Acceleration
L ups:;ﬂeermo_mdlref_ccaumer L upit:ermo_mdlref_counler L ups'l:ie’mo_mdlrei_counter
i input output mr input oumu«\m@ iRl input outpul
“;:s:' OutA “P‘:s: ouB “p‘:‘“ outc
it lower lower Generator wer

with Ts=0.1 with Ts=0.5 with Ts=1.0
m CounterA CounterB CounterC

Other Parallel-enabled Toolboxes

4\ MathWorks'

10

4\ MathWorks

Agenda

> Jask Parallelism

11

parfor

Definition
Code in a parfor loop is guaranteed by the programmer to be execution order
independent

Why is that important?

We can execute the iterates of the loop in any order, potentially at the same time on
many different workers.

&\ MathWorks

12

&\ MathWorks

parfor — how it works

Static analysis to deduce variable classification
— Works out what data will need to be passed to which iterates

A loop from 1:N has N jterates which we partition into a number of intervals
— Each interval will likely have a different number of iterates

Start allocating the intervals to execute on the workers

Stitch the results back together

— Using functions from the static analysis

13

&\ MathWorks

Variable Classification

reduce = 0; bcast = ..; 1n = ..;

parfor 1 = 1:N

temp = fool (bcast, 1);
out (1) = foo2(in(1), temp);
reduce = reduce + foo3(temp);

end

14

&\ MathWorks

Loop variable

reduce = 0; bcast = ..; 1n = ..;

parfor 1 = 1:N

temp = fool (bcast, 1);
out (1) = foo2(1in(i), temp);
reduce = reduce + foo3(temp);

end

15

Making extra parallelism

= No one loop appears to have enough iterations to go parallel effectively
— Imagine if Na, Nb, and Nc are all reasonably small

for 11 = 1:Na
for 37 = 1:Nb
for kk = Nc
end
end

end

Na * Nb * Nc == quiteBigNumber

mergelLoopsDemo

&\ MathWorks:

16

Making extra parallelism

[N, fun] = mergelLoopRanges ([Na Nb Nc]);
parfor xx = 1:N
(11,77, kk] = fun(xx);
doOriginalLoopCode

end

&\ MathWorks

17

Sliced Variable

reduce = 0;

parfor 1 =

end

temp =
out (1)

reduce

bcast = ...; 1in = ..;
1:N
fool (bcast, 1i);

foo2(in(1), temp);

reduce + foo3 (temp);

&\ MathWorks

18

&\ MathWorks:

Broadcast variable

reduce = 0; becast = ..; 1n = ..;

parfor 1 = 1:N

temp = fool (bcast, 1);
out (1) = foo2(in(1), temp);
reduce = reduce + foo3(temp);

end

19

Reusing data

D = makeSomeBigData;
for 11 = 1:N
parfor J3 = 1:M
a(jj) = func(D,
end

end

J3) 7

&\ MathWorks:

20

Reusing data

D = parallel .pool.Constant(@makeSomeBigData);
for 11 = 1:N

1:M

a(jj) = func(D.value, 7J73);

parfor jj

end

end

% Alternatively you can send data once and re-use 1t

oD = parallel.pool.Constant (someLargeData)

4\ MathWorks'

21

Common parallel program

set stuff going
while not all finished {

for next available result do something;

&\ MathWorks

22

&\ MathWorks

parfeval

= Allows asynchronous programming
f = parfeval (@func, numOut, inl, inZ2, ..)

= The return £ is a future which allows you to

— Wait for the completion of calling func (inl, in2, ..)
— Get the result of that call

— ... do other useful parallel programming tasks ...

23

Fetch Next

= Fetch next available unread result from an array of futures.

[1dx, outl, ...] = fetchNext (arrayOfFutures)

= idx is the index of the future from which the result is fetched

= Once a particular future has returned a result via fetchNext it will never do so again
— That particular result is considered read, and will not be re-read

&\ MathWorks

24

Common parallel program (MATLAB)

% Set stuff going
for 11 = N:-1:1
fs(ii) = parfeval (@stuff, 1);
end
% While not all finished
for 11 = 1:N

O

$ For next available result

[whichOne, result] = fetchNext (fs);

doSomething (whichOne, result);

end

parfevalWaitbarDemo

&\ MathWorks:

25

&\ MathWorks

parfevalOnAll

= Frequently you want setup and teardown operations
— which execute once on each worker in the pool, before and after the actual work

= Execution order guarantee:

It is guaranteed that relative order of parfeval and parfevalOnAll as executed on the
client will be preserved on all the workers.

26

4\ MathWorks'

Agenda

>
gaEaL

> -~
LA

> Data Parallelism

27

Remote arrays in MATLAB

MATLAB provides array types for data that is not in “normal” memory

distributed array
(since R2006b)

Data lives in the combined memory of a cluster of
computers

gpuArray
(since R2010b)

Data lives in the memory of the GPU card

tall array

(since R2016b)

Data lives on disk, maybe spread across many disks
(distributed file-system)

4\ MathWorks

28

Remote arrays in MATLAB

‘ Rule: take the calculation to where the data is

Normal array — calculation happens in main memory:

//;/ X = rand(...)
N

X norm = (x — mean(x)) ./ std(x)

4\ MathWorks:

29

&\ MathWorks

Remote arrays in MATLAB

Rule: take the calculation to where the data is

gpuArray — all calculation happens on the GPU:

S = gpuArray(...)
%XCQ/
* X norm = (x — mean(x)) ./ std(x)

distributed — calculation is spread across the cluster:

=== m > 7 7 X = distributed(o« o o)

tall — calculation is performed by stepping through files:
; x = tall(...)

X norm = (x — mean(x)) ./ std(x)

X norm = (x — mean(x)) ./ std(x)

30

How big is big?

What does “Big Data” even mean?

“Any collection of data sets so large and complex that it becomes difficult to

process using ... traditional data processing applications.”
(Wikipedia)

“Any collection of data sets so large that it becomes difficult to process using

traditional MATLAB functions, which assume all of the data is in memory.”
(MATLAB)

&\ MathWorks

31

How big is big?

In 1085 William 15t commissioned a survey
of England

= ~2 million words and figures collected over two
years

= too big to handle in one piece
= collected and summarized in regional pieces

= used to generate revenue (tax), but most of the
data then sat unused

The Large Hadron Collider reached peak
performance on 29 June 2016

= 2076 bunches of 120 billion protons currently
circulating in each direction

- ~1.6x10" collisions per week, >30 petabytes of
data per year

= too big to even store in one place

= used to explore interesting science, but taking
researchers a long time to get through

Image courtesy of CERN.
Copyright 2011 CERN.

&\ MathWorks

32

4\ MathWorks:

Tall arrays (new R2016b)

- MATLAB data-type for data that doesn't fit into memory

- Ideal for lots of observations, few variables (hence “tall”)

= Looks like a normal MATLAB array
— Supports numeric types, tables, datetimes, categoricals, strings, etc...
— Basic maths, stats, indexing, etc.
— Statistics and Machine Learning Toolbox support (clustering, classification, etc.)

[EHE] JEEEEE ST SEOEHE SRR TOOE R IO MM AR

33

Tall arrays (new R2016b)

Data is in one or more files

Typically tabular data

Files stacked vertically

Data doesn't fit into memory
(even cluster memory)

Machine i1
Memory !|
11

1 1
1 1
1 1
1
i B Cluster of i
1
1

Machines i

&\ MathWorks

34

&\ MathWorks:

Tall arrays (new R2016b) =N ool
ii I\|<I/Iachine ¥ A
i emory ||
¥ 1 ESE
- Use datastore to define files
ds = datastore('*.csv') [;
- Allows access to small pieces of
data that fit in memory. i |
i I\ Cluster of i
while hasdata (ds) | Meomons
piece = read(ds) ; O [EE= | S
% Process piece
end
D

35

&\ MathWorks:

Tall arrays (new R2016b) =y ot tall array ¢ -
¥ Machine | N ' Machine 1
Memory 1} Memory !
¥ =2 |
= Create tall table from datastore i
ds = datastore('*.csv') I\
tt = tall(ds)
- Operate on whole tall table just like =N cmsterofi
ordinary table ; Mchines
summary (tt) TEECTTTTTT
max (tt.EndTime - tt.StartTime) N

36

4\ MathWorks'

Tall arrays (new R2016b) X e 1 tall array S
' Machine i1 N\ ‘ Machine 1
ii Memory “ @ ; Memory i
- With Parallel Computing Toolbox,
process several pieces at once SN ;
i i T Single |
i _B Cluster of | Machine i
: Machines | Memory |
| |EEg | Memory. i
D

37

Tall arrays (new R2016b)

Example

New York taxi fares (150,000,000 rows (~25GB) per year)

&\ MathWorks

tt

Mx19 tall table

>> datalocation = 'hdfs://hadoop@lglnxa64:54310/datasets/nyctax
>> ds = datastore(fullfile(datalLocation,
>> tt = tall(ds)

'yellow_tripdata_201

J Input data is tabular —

| result is a tall table

VendorID tpep_pickup_datetime tpep_dropoff_datetime
2 '2015-01-15 19:05:39"' '2015-01-15 19:23:42°
1 '2015-01-10 20:33:38' '2015-01-10 20:53:28"'
1 '2015-01-10 20:33:38"' '2015-01-10 20:43:41°'
1 '2015-01-10 20:33:39"' '2015-01-10 20:35:31"
1 '2015-01-10 20:33:39' '2015-01-10 20:52:58"'
1 '2015-01-10 20:33:39"' '2015-01-10 20:53:52°'
1 '2015-01-10 20:33:39' '2015-01-10 20:58:31"
1 20:33:39" 20:42:20'"

'2015-01-10

'2015-01-10

i

passenger_count

trip_distance

CWR R PR RRER

w e

N
CON WO WU 00W WO

pickup longitude p3

-73.
-74.
-73.
.009
-73.
-73.
-73.
-74.

-74

994
002
963

971
874
983
003

4e
a¢
40
40
40
4r

40.

38

Tall arrays (new R2016b)

Example

New York taxi fares (150,000,000 rows (~25GB) per year)

&\ MathWorks

>> datalg Number of rows is

unknown until all the
data has been read

VendorID tpep_pickup_datetime tpep_dropoff_datetime

'2015-01-15 19:05:39"' '2015-01-15 19:23:42"'
'2015-01-10 20:33:38" '2015-01-10 20:53:28"
'2015-01-10 20:33:38" '2015-01-10 20:43:41"
:31°
:58"'
:52'
.31
120"

PR R R RRRREN

popOlglnxab4:54310/datasets/nyctaxi/"';
ptalocation, 'yellow_tripdata_2015-*.csv'));

passenger_count

trip_distance

CWR R PR RRER

W o

N
CON WO WU 00W WO

pickup longitude p3

-73.
.002
-73.

-74

-74

994

963

.009
-73.
-73.
-73.
-74.

971
874
983
003

4e
a¢
40
40
40
4r

40.

39

Tall arrays (new R2016b)

Example

Once created, can process much like an ordinary table

% Remove some bad data

tt.trip_minutes = minutes(tt.tpep_dropoff datetime - tt.tpep_pickup datetime);

tt.speed_mph = tt.trip distance ./ (tt.trip_minutes ./ 60);

ignore = tt.trip_minutes <=1 | ... % really short
tt.trip_minutes >= 60 * 12 | ... % unfeasibly long
tt.trip _distance <=1 | ... really short
tt.trip_distance >= 12 * 55 | ... unfeasibly far
tt.speed mph > 55 | ... unfeasibly fast
tt.total amount < @ | ... % negative fares?!
tt.total_amount > 10000; % unfeasibly large fares

tt(ignore, :) = [1];

3R 3R X

% Credit card payments have the most accurate tip data
keep = tt.payment_type == {'Credit card'};
tt = tt(keep,:);

ribd Data only read once,

% Show tip di
.tip_g despite 21 operations

histogram(

8al1l expression using the Parallel Pool 'local':
Completed in 4.9667 min

Number of trips

2.5

%107

10 15
Tip amount ($)

20

25

4\ MathWorks'

40

Scaling up

If you just have MATLAB:
= Run through each ‘chunk’ of data one by one

If you also have Parallel Computing Toolbox:
= Use all local cores to process several ‘chunks’ at once

If you also have a cluster with MATLAB Distributed
Computing Server (MDCS):.

= Use the whole cluster to process many ‘chunks’ at once

&\ MathWorks:

41

Scaling up

Working with clusters from MATLAB desktop:

= General purpose MATLAB cluster

— Can co-exist with other MATLAB workloads (parfor, parfeval,
spmd, jobs and tasks, distributed arrays, ...)

— Uses local memory and file caches on workers for efficiency

= Spark-enabled Hadoop clusters
— Data in HDFS
— Calculation is scheduled to be near data
— Uses Spark’s built-in memory and disk caching

&\ MathWorks

42

&\ MathWorks

Distributed Arrays

Unlike tall these need to fit in cluster memory

Full range of numerical algorithms
— Linear Algebra, eigenvalues, etc

Sparse support

Want to write your own function?
— Full access to local part of the data
— Ability to rebuild distributed array from local parts

43

&\ MathWorks

Standard Benchmarks
Create 2D Block Cyclic

Ad / distribution appropriate for
matrix solve
spmd

A = rand (10000, codistributorZ2dbc):;

b = rand (10000, 1, codistributorZdbc);

x A\b;

end

FFT

D = rand(le8, 1, 'distributed');
F = f£f£ft (D) ;

STREAM Triad

B = rand(le8, 1, 'distributed');
= rand(le8, 1, 'distributed');
rand;

B + g*C;

C
d
A

44

Single Program, Multiple Data (spmd)

- Everyone executes the same program
— Just with different data
— Inter-lab communication library enabled (MPI)
— Call labindex and numlabs to distinguish labs

- Example

x =1
spmd
y = X + labindex;

end

4\ MathWorks

45

4\ MathWorks:

Variable types can change across spmd

x = 1;
assert (isa(x, 'double'))
spmd

assert(1sa(x, 'double'))

— labindesx: Returned ordinary type is referenced
4 Y ’ _~ by a Composite
en

assert(1sa(y 'Composite'))

v{l} == 1; % TRUE \Composite can be dereferenced

on the client

Ordinary types are broadcast to all labs

spmd

assert(1sa(y, 'double')) <« Composite becomes the contained
end ordinary type on a lab

46

&\ MathWorks

Want to write an MPI Program?

Send / receive data between labs Global Operations across labs
labSend gplus
labReceive gcat
labSendReceive gop
labProbe
labBarrier
Who am |? Where am |? labBroadcast
labindex

numlabs

47

spmd

end

RandomAccess — an interesting MPI program

% Initialize random number stream on each worker
randRA((labindex-1) * m * 4 / numlabs, 'StreamOffset');
tl = tic;
for k = 1l:nloops
% Make the local chunk of random data
list = randRA(b);
% Loop over the hyper-cube dimensions
for d = 0:logNumlabs-1
% Choose my partner for this dimension of the hypercube

partner = 1 + bitxor((labindex-1), 2.7d);
% Choose my mask for this dimension of the hypercube
dim mask = uint64(2.7 (d + logLocalSize));
% Choose which data to send and receive for this dimension
dataToSend = logical (bitand(list, dim mask));
if partner <= labindex
dataToSend = ~dataToSend;
end

% Setup a list of data that will be sent, and list I will keep
send list = list(dataToSend);
keep list = list(~dataToSend);
% Use send/receive to get some data that we should use next round
recv_list = labSendReceive(partner, partner, send list);
% Our new list is the old list and what we've received
list = [keep list, recv list];
end

% Finally, after all rounds of communication, perform the table updates.

idx = 1 + double(bitand(localMask, list));
T(idx) = bitxor(T(idx), list);

end

% Calculate max time

t = gop(@max, toc(tl));

4\ MathWorks'

48

RandomAccess — an interesting MPI program

spmd
tl = tic;
for k = 1l:nloops
% Make the local chunk of random data
list = randRA(b);
% Loop over the hyper-cube dimensions
for d = myDims (0:1logNumlabs-1, labindex)
[send list, keep list] = partitionData(list, d);
% Use send/receive to transfer data
recv_list = labSendReceive (to(d), from(d), send list);
% Our new list 1s the old list and what we'wve received
list = [keep list, recv list];
end
% Finally, perform the table updates.

T = updateTable(list) ;

end
% Calculate max time
t = gop(@max, toc(tl));

end

&\ MathWorks

49

Summary

= Simple array types for data analytics and PGAS programming
Extensive parallel language suited to all types of problem

= All runs in both interactive and batch (off-line) mode

&\ MathWorks

50

