fAhl |:| =/ 10. Using Flash Memory to Configure

® FPGAs

Introduction

As Altera introduces higher-density FPGAs, the configuration bit stream size also
increases. As a result, designs require more configuration devices to store the data and
configure these devices. As an alternative, flash memory can be used to store
configuration data. A flash memory controller is required to read and write to the
flash memory and perform configuration. You can use a MAX® 3000A or MAX 7000
device to implement the flash memory controller.

Device Configuration Using Flash Memory & MAX 3000A Devices

The flash memory controller can interface with a PC or microprocessor to receive
configuration data via a parallel port (Figure 10-1). The controller generates a
programming command sequence to program the flash memory and extract
configuration data to configure FPGAs.

The flash memory controller supports various commands such as:
m Programming the flash memory
m Configuring FPGAs

A reference design that uses the MAX 3000 device is available on the Altera web site.
The reference design can be used with an AMD or Fujitsu flash.

© October 2008 Altera Corporation Configuration Handbook (Complete Two-Volume Set)

http://www.altera.com/literature/hb/cfg/config_handbook.pdf

10-2

Chapter 10: Using Flash Memory to Configure FPGAs
Device Configuration Using Flash Memory & MAX 3000A Devices

Figure 10-1. Configuring an FPGA through Flash Memory & MAX 3000A Controller

MAX 3000A
Device

10 kQ
Vee Voo Voo Voo
GND 1kQ APEX 20KE 10 kQ 10 kQ 10 kQ
Vee Device
Vee
1kQ DCLK |<&
nCONFIG |
P | TCK
[_ﬂ =i g DATAO | <&
P TMS P _
HO | [OH— nSTATUS |« |
[o % | TDI CONF_DONE |« >
o [CH-e TDO INIT_DONE |<&
MSEL([1..0]
\Y%
ND
G nCEO nCE GND
Download Cable
10-Pin Male Header N.C. GND
nCEO nCE
DCLK |«
nCONFIG |«
P | TCK
id DATAO | <€
» | TMS P
nSTATUS | <&
—» | TDI
CONF_DONE |«
—|™° INIT_DONE |<¢—
MSEL([1..0] 17
GND
APEX 20KE
Device Input clk —p»
Rst#f ——pp»
»
Ll
.
Ll
.
Ll

DCLK
nCONFIG
DATAO
nSTATUS
CONF_DONE

STS
DA[7..0]
ADD[21..0]
WEN

CEN

OEN
RY_DY

DATA_MOD
ACK

DATA_PC
CONF_STATUS
STB

CLOCK
RSTB

TCK
T™S
TDI

TDO

Vce

AMD Flash

WP#ACC
STS
DA[7..0]

ADD[21..0]
WEN
CEN
OEN

RY_DY

Dooon

GND

Download Cable
10-Pin Male Header

Vce

Flash Memory Controller Design Specification

The controller will check to see if the flash memory is programmed successfully after
the board powers up. If the flash memory is programmed successfully, then the

controller configures the FPGAs. If flash memory is not programmed successfully,
then the controller waits for commands from the PC or microprocessor. The receiver
decodes the commands it receives from the PC or microprocessor as one of the

following:

m Program flash memory

m Configure FPGA

After a command is executed, the controller returns to idle mode and waits for the
next command. Figure 10-2 shows the controller state machine.

Configuration Handbook (Complete Two-Volume Set)

© October 2008 Altera Corporation

http://www.altera.com/literature/hb/cfg/config_handbook.pdf

Chapter 10: Using Flash Memory to Configure FPGAs 10-3
Device Configuration Using Flash Memory & MAX 3000A Devices

Figure 10-2. Flash Memory Controller State Machine

POR

\ 4

Check if Flash .
Conf
Programmed

Yes

No

\ 4

No CMD I IDLE |

Wait for Commands
from PC

\A 4

CMD from PC
\ 4

Done Decode Command
Programming

\ 4

Program Flash Configure
Memory APEX Devices

Flash Memory Controller Functionality

The controller writes a byte to a special location in the flash memory when it
programs the memory. After POR, the controller checks this special location in the
flash memory to see if the byte is written there or not.

If the byte is written, then the flash memory has been programmed and the controller
can proceed to configuring the FPGAs by reading data from the flash memory. If this
byte is not there or the value is not as expected, the controller will go idle and wait to
be programmed by the PC or microprocessor.

Getting Data from the PC or Microprocessor

The PC or microprocessor uses the parallel port to interface with the controller. There
are two types of signals involved in this connection (see Figure 10-3), a 3-bit input
signal from the PC or microprocessor to the controller, and a 2-bit output signal from
the controller to the PC or microprocessor. The input signal includes the following
three signals:

B STB: Strobe signal from the PC or microprocessor to indicate that the PC or
microprocessor's data is valid.

B data_mode: Indicates whether the controller is in command mode or data mode.
When data_mode is high, the controller is in command mode; when data_mode
is low, the controller is in data mode.

m data: Content of this signal depends on data_mode. It can be data for command
mode or data mode.

© October 2008 Altera Corporation Configuration Handbook (Complete Two-Volume Set)

http://www.altera.com/literature/hb/cfg/config_handbook.pdf

10-4 Chapter 10: Using Flash Memory to Configure FPGAs

Device Configuration Using Flash Memory & MAX 3000A Devices

The output signal contains the following two signals:

m ACK: Acknowledge signal is a handshaking signal from the controller to the PC or
microprocessor.

m conf_status: Indicates configuration status.

Figure 10-3. Getting Data from PG or Microprocessor

(1) (1)
STB
Data_mode MD Mode Data Mode
Data

Note to Figure 10-3:
(1) Data is sent on both positive and negative edges of the STB signal.

The controller receives a bit of data or a command from the PC or microprocessor on
the rising and falling edges of the STB signal. After receiving this data, the controller
will send an acknowledgement signal to the PC or microprocessor to initiate sending
of the next bit of data. The acknowledge signal (ACK) should be the same logic level as
the last received STB signal. By de-asserting ACK, the controller can stop the PC or
microprocessor from sending data. Figure 10-4 shows the STB and ACK relationship.

Figure 10-4. Sending Acknowledge Signal (ACK) to PC or Microprocessor

STB

Data_mode CMD Mode Data Mode

Data (1)

ACK

Note to Figure 10-4:
(1) One bit of data is received at each sTB signal edge (both positive and negative).

Configuration Handbook (Complete Two-Volume Set) © October 2008 Altera Corporation

http://www.altera.com/literature/hb/cfg/config_handbook.pdf

Chapter 10: Using Flash Memory to Configure FPGAs 10-5
Device Configuration Using Flash Memory & MAX 7000 Devices

Programming Flash Memory

After receiving a command from the PC or microprocessor, the controller first erases
and then starts programming the flash memory. A separate state machine is required
to generate a programming command sequence and programming pulse width.

While programming the flash memory, the controller must check if a command
(data_mode=1) has been received or not. A command indicates the end of data from
the PC or microprocessor, and the controller will exit the Program_Flash_memory
state and go into idle mode.

Another state machine is required to read and serialize byte data from the flash
memory and generate DCLK and DATAOQ. The controller needs to monitor CONF_DONE
signals from the FPGAs to determine if configuration is complete. When
configuration is done, the controller exits the configure state and goes back to idle
mode.

Device Configuration Using Flash Memory & MAX 7000 Devices

Figure 10-5 shows the schematic for this configuration scheme with a MAX 7000
device. Two sample design files for the MAX 7000 device (Design File for Configuring
APEX™ 20K Devices and Design File for Configuring FLEX® 10K and FLEX 6000
Devices) are available on the Altera web site.

Figure 10-5. Device Configuration Using External Memory & a MAX 7000 Device

) vce
Oscillator ®) gvcc APEX I, APEX 20K, ACEX 1K,
VCC Mercury, FLEX 10I_(, or
MAX 7000 Device FLEX 6000 Device
STATUS |« © g(Z) STATUS 2B
n | P n
MSEL1 (1
Memory INIT_DONE |« INIT_DONE e %
DATA] »| Df CONF_DONE |<¢ P> CONF_DONE GND
P DCLK »| DCLK nCE
CFnADDR“ - ADDRI] DATAO P DATAO (1) EN7D
A RESTART—P>| RESTART nconFiG P nCONFIG nCEO
CEn

APEX Il, APEX 20K, ACEX 1K,
Mercury, FLEX 10K, or
FLEX 6000 Device

MSELO (1)
L9 nSTATUS MSEL1 (1) %
INIT_DONE
P CONF_DONE GND
P DCLK nCE |«¢
P DATAO (1)
P> nCONFIG nCEO —N.C.

Notes to Figure 10-5:
(1) FLEX 6000 devices have a single MSEL pin, which is tied to ground, and its DATA0 pin is renamed DATA.

(2) All pull-up resistors are 1 kQ. On APEX 20KE and APEX 20KC devices, pull-up resistors for nSTATUS, CONF_DONE, and INIT_ DONE pins
should be 10 kQ..

© October 2008 Altera Corporation Configuration Handbook (Complete Two-Volume Set)

http://www.altera.com/literature/hb/cfg/config_handbook.pdf

10-6 Chapter 10: Using Flash Memory to Configure FPGAs
Design Example Using MAX 3000 Devices

Figure 10-6 shows the timing waveform for configuring an APEX™ II, APEX 20K,
Mercury™, ACEX® 1K, FLEX 10K, or FLEX 6000 device using external memory and a
MAX 7000 device.

Figure 10-6. Timing Waveform for Configuration Using External Memory & a MAX 7000 Device

nSTATUS L
oLk [AU U AU AL s AU
nCONFIG
boLk AU AR —
DATAO] L] L] LT[o —
D[7..0] DO X_ D1 X D2 X D3 X - X _ bn_ X z
ADDR[15..0] X A0 X a1t X A X e An X z
CONF_DONE
RESTART [
INIT_DONE i

Design Example Using MAX 3000 Devices

A MAX® 3000 device can be used to stream the data from the flash memory into a
large FPGA. This configuration technique allows faster configuration times. Since a
fixed-frequency oscillator (or any available clock on the system) is used to generate
the clock for the configuration, the clock frequency can be as high as 57 MHz (the
maximum for an APEX 20KE device).

Flash memory is a type of nonvolatile memory that can be used as a data storage
device. Flash memory can be erased and reprogrammed in units of memory called
blocks.

This section describes how to configure an FPGA with flash memory. By using a
MAX 3000 device to configure higher density FPGAs, the flash memory can store
configuration data and the MAX 3000 device can serialize and transmit the data to the
FPGA. This configuration technique can be used with APEX, ACEX, or FLEX devices.

Configuration Handbook (Complete Two-Volume Set) © October 2008 Altera Corporation

http://www.altera.com/literature/hb/cfg/config_handbook.pdf

Chapter 10: Using Flash Memory to Configure FPGAs 10-7
Configuring FPGAs

Configuring FPGAs

Figure 10-7 shows a device that uses an EPM3128A device and flash memory to
configure the FPGAs.

Figure 10-7. Device Configuration Using Flash Memory & EPM3128A Device

Oscillat &5
Scillator (2) VCC
EPM3128A Device Y8 APEX, ACEX, or FLEX
e
s | P @ (f) STATUS MSELO (1)
n < P> n
MSEL1 (7
Flash Memory CLK INIT_DONE (3) & INIT_DONE () 3:7
DATA(] »| Dy CONF_DONE (3) [»>| CONF_DONE GND
DCLK P DCLK nCE
< ADDR
cen ! DATAO P{ DATAO(1) ?ﬁD
A-k RESTART—P»>| RESTART NCONFIG | nNCONFIG nCEO
CEn
APEX, ACEX, or FLEX
N MSELO (7)
nSTATUS MSEL1 (1)
INIT_DONE
P> CONF_DONE GND
P DCLK nCE |«¢
P> DATAO (1)
P> nCONFIG nCEO — N.C.

Notes to Figure 10-7
(1) FLEX 6000 devices have a single MSEL pin, which is tied to ground. Additionally, its DATAO pin is renamed DATA.
(2) Pull-up resistors are 1 k) except for APEX 20KE devices. For APEX 20KE devices, pull up resistors are 10 kQ.

(3) The nSTATUS, CONF_DONE, and INIT_DONE pins are open-drain on the APEX, ACEX, and FLEX devices. The corresponding pins on the
EPM3128A should also be open_drain.

A VHDL design file called MAXconfig, shown in the “Configuration Design File”
section, allows an EPM3128A device to control the configuration process. The
MAXconfig design configures the FPGA using the configuration data stored in the
attached flash memory. The MAXconfig design contains a sequencer and an address
generator, which drives the correct data to the FPGA’s programming pins. The
MAXconfig design file is available on the Altera web site at
http:/fwww.altera.com/literature/wp/maxconfig.txt.

© October 2008 Altera Corporation Configuration Handbook (Complete Two-Volume Set)

http://www.altera.com/literature/wp/maxconfig.txt
http://www.altera.com/literature/wp/maxconfig.txt
http://www.altera.com/literature/hb/cfg/config_handbook.pdf

10-8

Chapter 10: Using Flash Memory to Configure FPGAs
Configuring FPGAs

When the MAXconfig design is reset, the MAXconfig design reads the data from the
flash memory, one byte at a time. The MAXconfig design then serializes and sends
the data to the APEX, ACEX, or FLEX device. The serialized data is sent to the FPGA
using the passive serial interface pins such as DCLK, DATA, nSTATUS, INIT DONE,
and nCONFIG. Since the passive serial mode is used, the flash pins are not directly
connected to the APEX, ACEX, or FLEX device.

Flash memory can be programmed prior to being put onto a board with standard
programming equipment or it can be programmed in-system by a processor or test
equipment. Since different flash memories have different algorithms, consult the flash
memory data sheet for programming information.

Figure 10-8 shows a configuration timing waveform of an EPM3128A device
downloading data to an APEX, ACEX, or FLEX device.

Figure 10-8. Configuration Timing Waveform

nSTATUS

oo

CLK ooe

nCONFIG
DCLK

DATAO

D[7..0]
ADDR[15..0]
CONF_DONE
RESTART

INIT_DONE

DATA
Do X bt X b2 X b3 X e X bn_ X z
A X a1 X A2 X a3 X s An X z

Configuration Design File

This section shows the MAXconfig design file that controls the configuration process
on APEX, ACEX, or FLEX devices:

Configuration Handbook (Complete Two-Volume Set) © October 2008 Altera Corporation

http://www.altera.com/literature/hb/cfg/config_handbook.pdf

Chapter 10: Using Flash Memory to Configure FPGAs 10-9
Configuring FPGAs

Example 10-1. MAXconfig design file (Part 1 of 4)

library ieee;
use leee.std logic 1164.all;
use leee.std logic_unsigned.all;

entity MAXconfig is
port
(
clock : in std logic;
init_done: instd_logic;
nStatus: in std_logic;
D : in std logic_ vector (7 downto 0);
restart: in std logic;
Conf Done: instd logic;

Data0 : out std logic;
Dclk : out std logic;
nConfig: bufferstd logic;

--To increase the size of the memory, change the size of std logic vector for ADDR output
and --std logic vector signal inc:

ADDR : out std logic vector (15 downto 0);

CEn : out std logic);
-- The polarity of the CEn signal is determined by the type of Flash device
end;

architecture rtl of MAXconfig is

--The following encoding is done in such way that the LSB represents the nConfig signal:

constant start :std logic vector (2 downto 0) := "000";

constant wait nCfg 8us:std logic vector (2 downto 0) := "100";

constant status :std_logic_vector (2 downto 0) := "001";

constant wait_40us :std _logic_ vector (2 downto 0) := "101";

constant config :std logic vector (2 downto 0) := "011";

constant init :std _logic_vector (2 downto 0) := "111";

signal pp :std_logic_vector (2 downto 0);

signal count :std logic_vector (2 downto 0) ;

signal data0O_int, dclk int:std logic;

signal inc :std_logic_vector (15 downto 0) ;

signal div :std logic_vector (2 downto 0);

signal waitd :std logic vector (11l downto 0) ;

--The width of signal ‘waitd’ is determined by the frequency. For 57 MHz (APEX 20KE
devices), --‘waitd’ is 12 bits. For 33 MHz (FLEX 10KE and ACEX devices) ‘waitd’ is 11

bits. To calculate --the width of the ‘waitd’ signal fordifferent frequencies, calculate
the following:

--(multiply tcf2ck * clock frequency)+ 40

--Then convert this value to binary to obtain the width.

--For example, for 33 MHz (FLEX 10KE & ACEX devices), converting 1360 ((40us *

33MHz) +40=1360)

--to binary code, the ‘waitd’ is an 11l-bit signal. So signal ‘waitd’ will be:

--signal waitd :std _logic_vector (10 downto 0);

begin

--The following process is used to divide the CLOCK:
PROCESS (clock,restart)
begin

© October 2008 Altera Corporation Configuration Handbook (Complete Two-Volume Set)

http://www.altera.com/literature/hb/cfg/config_handbook.pdf

10-10 Chapter 10: Using Flash Memory to Configure FPGAs

Configuring FPGAs

Example 10-1. MAXconfig design file (Part 2 of 4)

if restart = '0' then
div <= (others => '0');
else
IF (clock'EVENT AND clock = '1l') THEN
div <= div + 1;
end if;
end if;

END PROCESS;

PROCESS (clock,restart)

begin
if restart = '0' then
pp<=start;
count <= (others => '0');
inc <= (others => '0');
waitd <= (others => '0');
else

if clock'event and clock='1l' then

--The following test is used to divide the CLOCK. The value compared to must be such that
the

--condition is true at a maximum rate of 57 MHz (tclk = 17.5 ns min) for APEX 20KE devices
--and at a maximum rate of 33 MHz (tclk=30ns min) for FLEX 10KE or ACEX devices.

if (div = 7) then
case pp is
when start =>
count <= (others => '0');
inc <= (others => '0');
waitd <= (others => '0');
pp <= wait nCfg 8us;
--This state is used in order to verify the tcfg timing (nCONFIG low pulse width) .
--Tcfg = 8us => min= 456 clock cycle of a 57 MHz clock (APEX 20KE devices). For different
--clocks, multiply 8us to clock frequency. For example, for 33MHz (FLEX 10KE or ACEX
devices) this --value is 8*%*33=264. This clock is CLOCK divided by the divider -div-.
when wait_nCfg 8us =>
count <= (others => '0');
inc <= (others => '0'");
waitd <= waitd + 1;
if waitd = 456 then
--For 33 MHz FLEX 10KE or ACEX devices this line is: if waitd = 264 then

pPp <= status;
end if;

--This state is used to have nCONFIG high.
when status =>
count <= (others => '0');
inc <= (others => '0');
waitd <= (others => '0');
pp <= wait_ 40us;

Configuration Handbook (Complete Two-Volume Set) © October 2008 Altera Corporation

http://www.altera.com/literature/hb/cfg/config_handbook.pdf

Chapter 10: Using Flash Memory to Configure FPGAs 10-11
Configuring FPGAs

Example 10-1. MAXconfig design file (Part 3 of 4)

--This state is used to generate the tcf2ck timing (nCONFIG high to first rising edge on

DCLK) .

--Tcf2ck = 40ps min => 2280 clock cycles of a 57MHz (APEX 20KE) clock. This clock is CLOCK
--divide by the divider -div-

--Tcf2ck = 40pus min => 1320 clock cycles of a 33MHz (FLEX 10KE/ACEX) clock. This clock

is CLOCK --divided by the divider -div-)

--For any other clock frequency, multiply tcf2ck * clock frequency.

when wait_40us =>
count <= (others => '0');
inc <= (others => '0"');
waitd <= waitd + 1;
if waitd = 2280 then
--For 33 MHz (FLEX 10KE or ACEX devices), this line is: if waitd = 1320 then

pp <= config;
end if;

--This state is used to increment the memory address. In the same state when
--the Conf Done is high clock cycles are added in order to have the initialization
completed.

when config =>

count <= count + 1;

if Conf Done='1l' then
waitd <= waitd + 1;

end if;

if count=7 then
inc <= inc + 1;

end if;

if waitd = 2320 then

--Modification: Add 40 clock cycles. For APEX 20KE devices, it is 2280+40=2320

--For FLEX 10KE and ACEX devices, it is 1320+40=1360. This line becomes: if waitd=
1360 then

pp<= init;

end if;

when init =>

count <= (others => '0');
inc <= (others => '0');
waitd <= (others => '0');
if nStatus = '0' then

pp <= start;
else

pp <= init;
end if;

when others =>
pp <= start;

end case;
else
Pp <= pPp;

inc <= inc;
count <= count;
end if;
end if;
end if;
end PROCESS;

declk int <= div(2) when pp=config else '0';

© October 2008 Altera Corporation Configuration Handbook (Complete Two-Volume Set)

http://www.altera.com/literature/hb/cfg/config_handbook.pdf

10-12

Chapter 10: Using Flash Memory to Configure FPGAs

Conclusion

Example 10-1. MAXconfig design file (Part 4 of 4)

--The following process is used to serialize the data byte
PROCESS (count, D, pp)

begin

if pp=config then
case count is

else

end if;
end PROCES

when "000" => dataO_int <=
when "001" => dataO_int <=
when "010" => dataO_int <=
when "011" => dataO_int <=
when "100" => data0O_int <=
when "101" => dataO_int <=
when "110" => dataO_int <=
when "111" => dataO_int <=

DUUUuUUUoU
JaorunorEo

when others => null;
end case;

data0_int <= '0';

S;

nConfig <= pp(0);

CEn <= not nconfig;

Dclk <= '0' when pp(1l)='0' else dclk int;
Data0 <= '0' when pp(1)='0' else datal_int;

ADDR <= inc;
end;
Conclusion

Altera provides high-density FPGAs that require larger configuration files. By using a
flash memory device and an EPM3128A device in a design, a FPGA can be quickly

configured.

Document Revision History

Table 10-1 shows the revision history for this document.

Table 10-1. Document Revision History

Date and
Revision Changes Made Summary of Changes
October 2008, m Updated “Configuring FPGAS” section. —
version 2.3 m Updated new document format.
April 2007, m Added document revision history. —
version 2.2
August 2005, m Removed active cross references referring to document outside —
version 2.1 Chapter 10.
July 2004, m Removed Intel flash reference design. —
version 2.0 = Updated Figure 10-1.

m Removed Flash Memory Content Verification section.
September 2003, | m Initial Release. —
version 1.0

Configuration Handbook (Complete Two-Volume Set)

© October 2008 Altera Corporation

http://www.altera.com/literature/hb/cfg/config_handbook.pdf

	10. Using Flash Memory to Configure FPGAs
	Introduction
	Device Configuration Using Flash Memory & MAX 3000A Devices
	Flash Memory Controller Design Specification
	Flash Memory Controller Functionality
	Getting Data from the PC or Microprocessor
	Programming Flash Memory

	Device Configuration Using Flash Memory & MAX 7000 Devices
	Design Example Using MAX 3000 Devices
	Configuring FPGAs
	Configuration Design File

	Conclusion
	Document Revision History

