fAhl |:| =/ 10. Using Flash Memory to Configure

® FPGAs

Introduction

As Altera introduces higher-density FPGAs, the configuration bit stream size also
increases. As a result, designs require more configuration devices to store the data and
configure these devices. As an alternative, flash memory can be used to store
configuration data. A flash memory controller is required to read and write to the
flash memory and perform configuration. You can use a MAX® 3000A or MAX 7000
device to implement the flash memory controller.

Device Configuration Using Flash Memory & MAX 3000A Devices

The flash memory controller can interface with a PC or microprocessor to receive
configuration data via a parallel port (Figure 10-1). The controller generates a
programming command sequence to program the flash memory and extract
configuration data to configure FPGAs.

The flash memory controller supports various commands such as:
m Programming the flash memory
m Configuring FPGAs

A reference design that uses the MAX 3000 device is available on the Altera web site.
The reference design can be used with an AMD or Fujitsu flash.
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Figure 10-1. Configuring an FPGA through Flash Memory & MAX 3000A Controller
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Flash Memory Controller Design Specification

The controller will check to see if the flash memory is programmed successfully after
the board powers up. If the flash memory is programmed successfully, then the

controller configures the FPGAs. If flash memory is not programmed successfully,
then the controller waits for commands from the PC or microprocessor. The receiver
decodes the commands it receives from the PC or microprocessor as one of the

following:

m Program flash memory

m Configure FPGA

After a command is executed, the controller returns to idle mode and waits for the
next command. Figure 10-2 shows the controller state machine.
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Figure 10-2. Flash Memory Controller State Machine
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Flash Memory Controller Functionality

The controller writes a byte to a special location in the flash memory when it
programs the memory. After POR, the controller checks this special location in the
flash memory to see if the byte is written there or not.

If the byte is written, then the flash memory has been programmed and the controller
can proceed to configuring the FPGAs by reading data from the flash memory. If this
byte is not there or the value is not as expected, the controller will go idle and wait to
be programmed by the PC or microprocessor.

Getting Data from the PC or Microprocessor

The PC or microprocessor uses the parallel port to interface with the controller. There
are two types of signals involved in this connection (see Figure 10-3), a 3-bit input
signal from the PC or microprocessor to the controller, and a 2-bit output signal from
the controller to the PC or microprocessor. The input signal includes the following
three signals:

B STB: Strobe signal from the PC or microprocessor to indicate that the PC or
microprocessor's data is valid.

B data_mode: Indicates whether the controller is in command mode or data mode.
When data_mode is high, the controller is in command mode; when data_mode
is low, the controller is in data mode.

m data: Content of this signal depends on data_mode. It can be data for command
mode or data mode.
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The output signal contains the following two signals:

m ACK: Acknowledge signal is a handshaking signal from the controller to the PC or
microprocessor.

m conf_status: Indicates configuration status.

Figure 10-3. Getting Data from PG or Microprocessor
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Note to Figure 10-3:
(1) Data is sent on both positive and negative edges of the STB signal.

The controller receives a bit of data or a command from the PC or microprocessor on
the rising and falling edges of the STB signal. After receiving this data, the controller
will send an acknowledgement signal to the PC or microprocessor to initiate sending
of the next bit of data. The acknowledge signal (ACK) should be the same logic level as
the last received STB signal. By de-asserting ACK, the controller can stop the PC or
microprocessor from sending data. Figure 10-4 shows the STB and ACK relationship.

Figure 10-4. Sending Acknowledge Signal (ACK) to PC or Microprocessor
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Note to Figure 10-4:
(1) One bit of data is received at each sTB signal edge (both positive and negative).
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Programming Flash Memory

After receiving a command from the PC or microprocessor, the controller first erases
and then starts programming the flash memory. A separate state machine is required
to generate a programming command sequence and programming pulse width.

While programming the flash memory, the controller must check if a command
(data_mode=1) has been received or not. A command indicates the end of data from
the PC or microprocessor, and the controller will exit the Program_Flash_memory
state and go into idle mode.

Another state machine is required to read and serialize byte data from the flash
memory and generate DCLK and DATAOQ. The controller needs to monitor CONF_DONE
signals from the FPGAs to determine if configuration is complete. When
configuration is done, the controller exits the configure state and goes back to idle
mode.

Device Configuration Using Flash Memory & MAX 7000 Devices

Figure 10-5 shows the schematic for this configuration scheme with a MAX 7000
device. Two sample design files for the MAX 7000 device (Design File for Configuring
APEX™ 20K Devices and Design File for Configuring FLEX® 10K and FLEX 6000
Devices) are available on the Altera web site.

Figure 10-5. Device Configuration Using External Memory & a MAX 7000 Device
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Notes to Figure 10-5:
(1) FLEX 6000 devices have a single MSEL pin, which is tied to ground, and its DATA0 pin is renamed DATA.

(2) All pull-up resistors are 1 kQ. On APEX 20KE and APEX 20KC devices, pull-up resistors for nSTATUS, CONF_DONE, and INIT_ DONE pins
should be 10 kQ..
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Figure 10-6 shows the timing waveform for configuring an APEX™ II, APEX 20K,
Mercury™, ACEX® 1K, FLEX 10K, or FLEX 6000 device using external memory and a
MAX 7000 device.

Figure 10-6. Timing Waveform for Configuration Using External Memory & a MAX 7000 Device
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Design Example Using MAX 3000 Devices

A MAX® 3000 device can be used to stream the data from the flash memory into a
large FPGA. This configuration technique allows faster configuration times. Since a
fixed-frequency oscillator (or any available clock on the system) is used to generate
the clock for the configuration, the clock frequency can be as high as 57 MHz (the
maximum for an APEX 20KE device).

Flash memory is a type of nonvolatile memory that can be used as a data storage
device. Flash memory can be erased and reprogrammed in units of memory called
blocks.

This section describes how to configure an FPGA with flash memory. By using a
MAX 3000 device to configure higher density FPGAs, the flash memory can store
configuration data and the MAX 3000 device can serialize and transmit the data to the
FPGA. This configuration technique can be used with APEX, ACEX, or FLEX devices.
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Configuring FPGAs

Figure 10-7 shows a device that uses an EPM3128A device and flash memory to
configure the FPGAs.

Figure 10-7. Device Configuration Using Flash Memory & EPM3128A Device
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Notes to Figure 10-7
(1) FLEX 6000 devices have a single MSEL pin, which is tied to ground. Additionally, its DATAO pin is renamed DATA.
(2) Pull-up resistors are 1 k) except for APEX 20KE devices. For APEX 20KE devices, pull up resistors are 10 kQ.

(3) The nSTATUS, CONF_DONE, and INIT_DONE pins are open-drain on the APEX, ACEX, and FLEX devices. The corresponding pins on the
EPM3128A should also be open_drain.

A VHDL design file called MAXconfig, shown in the “Configuration Design File”
section, allows an EPM3128A device to control the configuration process. The
MAXconfig design configures the FPGA using the configuration data stored in the
attached flash memory. The MAXconfig design contains a sequencer and an address
generator, which drives the correct data to the FPGA’s programming pins. The
MAXconfig design file is available on the Altera web site at
http:/fwww.altera.com/literature/wp/maxconfig.txt.
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When the MAXconfig design is reset, the MAXconfig design reads the data from the
flash memory, one byte at a time. The MAXconfig design then serializes and sends
the data to the APEX, ACEX, or FLEX device. The serialized data is sent to the FPGA
using the passive serial interface pins such as DCLK, DATA, nSTATUS, INIT DONE,
and nCONFIG. Since the passive serial mode is used, the flash pins are not directly
connected to the APEX, ACEX, or FLEX device.

Flash memory can be programmed prior to being put onto a board with standard
programming equipment or it can be programmed in-system by a processor or test
equipment. Since different flash memories have different algorithms, consult the flash
memory data sheet for programming information.

Figure 10-8 shows a configuration timing waveform of an EPM3128A device
downloading data to an APEX, ACEX, or FLEX device.

Figure 10-8. Configuration Timing Waveform
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Configuration Design File

This section shows the MAXconfig design file that controls the configuration process
on APEX, ACEX, or FLEX devices:
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Example 10-1. MAXconfig design file (Part 1 of 4)

library ieee;
use leee.std logic 1164.all;
use leee.std logic_unsigned.all;

entity MAXconfig is
port
(
clock : in std logic;
init_done: instd_logic;
nStatus: in std_logic;
D : in  std logic_ vector (7 downto 0);
restart: in std logic;
Conf Done: instd logic;

Data0 : out std logic;
Dclk : out std logic;
nConfig: bufferstd logic;

--To increase the size of the memory, change the size of std logic vector for ADDR output
and --std logic vector signal inc:

ADDR : out std logic vector (15 downto 0);

CEn : out std logic);
-- The polarity of the CEn signal is determined by the type of Flash device
end;

architecture rtl of MAXconfig is

--The following encoding is done in such way that the LSB represents the nConfig signal:

constant start :std logic vector (2 downto 0) := "000";

constant wait nCfg 8us:std logic vector (2 downto 0) := "100";

constant status :std_logic_vector (2 downto 0) := "001";

constant wait_40us :std _logic_ vector (2 downto 0) := "101";

constant config :std logic vector (2 downto 0) := "011";

constant init :std _logic_vector (2 downto 0) := "111";

signal pp :std_logic_vector (2 downto 0);

signal count :std logic_vector (2 downto 0) ;

signal data0O_int, dclk int:std logic;

signal inc :std_logic_vector (15 downto 0) ;

signal div :std logic_vector (2 downto 0);

signal waitd :std logic vector (11l downto 0) ;

--The width of signal ‘waitd’ is determined by the frequency. For 57 MHz (APEX 20KE
devices), --‘waitd’ is 12 bits. For 33 MHz (FLEX 10KE and ACEX devices) ‘waitd’ is 11

bits. To calculate --the width of the ‘waitd’ signal fordifferent frequencies, calculate
the following:

--(multiply tcf2ck * clock frequency)+ 40

--Then convert this value to binary to obtain the width.

--For example, for 33 MHz (FLEX 10KE & ACEX devices), converting 1360 ((40us *

33MHz) +40=1360)

--to binary code, the ‘waitd’ is an 11l-bit signal. So signal ‘waitd’ will be:

--signal waitd :std _logic_vector (10 downto 0);

begin

--The following process is used to divide the CLOCK:
PROCESS (clock,restart)
begin
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Example 10-1. MAXconfig design file (Part 2 of 4)

if restart = '0' then
div <= (others => '0');
else
IF (clock'EVENT AND clock = '1l') THEN
div <= div + 1;
end if;
end if;

END PROCESS;

PROCESS (clock,restart)

begin
if restart = '0' then
pp<=start;
count <= (others => '0');
inc <= (others => '0');
waitd <= (others => '0');
else

if clock'event and clock='1l' then

--The following test is used to divide the CLOCK. The value compared to must be such that
the

--condition is true at a maximum rate of 57 MHz (tclk = 17.5 ns min) for APEX 20KE devices
--and at a maximum rate of 33 MHz (tclk=30ns min) for FLEX 10KE or ACEX devices.

if (div = 7) then
case pp is
when start =>
count <= (others => '0');
inc <= (others => '0');
waitd <= (others => '0');
pp <= wait nCfg 8us;
--This state is used in order to verify the tcfg timing (nCONFIG low pulse width) .
--Tcfg = 8us => min= 456 clock cycle of a 57 MHz clock (APEX 20KE devices). For different
--clocks, multiply 8us to clock frequency. For example, for 33MHz (FLEX 10KE or ACEX
devices) this --value is 8*%*33=264. This clock is CLOCK divided by the divider -div-.
when wait_nCfg 8us =>
count <= (others => '0');
inc <= (others => '0'");
waitd <= waitd + 1;
if waitd = 456 then
--For 33 MHz FLEX 10KE or ACEX devices this line is: if waitd = 264 then

pPp <= status;
end if;

--This state is used to have nCONFIG high.
when status =>
count <= (others => '0');
inc <= (others => '0');
waitd <= (others => '0');
pp <= wait_ 40us;
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Example 10-1. MAXconfig design file (Part 3 of 4)

--This state is used to generate the tcf2ck timing (nCONFIG high to first rising edge on

DCLK) .

--Tcf2ck = 40ps min => 2280 clock cycles of a 57MHz (APEX 20KE) clock. This clock is CLOCK
--divide by the divider -div-

--Tcf2ck = 40pus min => 1320 clock cycles of a 33MHz (FLEX 10KE/ACEX) clock. This clock

is CLOCK --divided by the divider -div-)

--For any other clock frequency, multiply tcf2ck * clock frequency.

when wait_40us =>
count <= (others => '0');
inc <= (others => '0"');
waitd <= waitd + 1;
if waitd = 2280 then
--For 33 MHz (FLEX 10KE or ACEX devices), this line is: if waitd = 1320 then

pp <= config;
end if;

--This state is used to increment the memory address. In the same state when
--the Conf Done is high clock cycles are added in order to have the initialization
completed.

when config =>

count <= count + 1;

if Conf Done='1l' then
waitd <= waitd + 1;

end if;

if count=7 then
inc <= inc + 1;

end if;

if waitd = 2320 then

--Modification: Add 40 clock cycles. For APEX 20KE devices, it is 2280+40=2320

--For FLEX 10KE and ACEX devices, it is 1320+40=1360. This line becomes: if waitd=
1360 then

pp<= init;

end if;

when init =>

count <= (others => '0');
inc <= (others => '0');
waitd <= (others => '0');
if nStatus = '0' then

pp <= start;
else

pp <= init;
end if;

when others =>
pp <= start;

end case;
else
Pp <= pPp;

inc <= inc;
count <= count;
end if;
end if;
end if;
end PROCESS;

declk int <= div(2) when pp=config else '0';
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Example 10-1. MAXconfig design file (Part 4 of 4)

--The following process is used to serialize the data byte
PROCESS (count, D, pp)

begin

if pp=config then
case count is

else

end if;
end PROCES

when "000" => dataO_int <=
when "001" => dataO_int <=
when "010" => dataO_int <=
when "011" => dataO_int <=
when "100" => data0O_int <=
when "101" => dataO_int <=
when "110" => dataO_int <=
when "111" => dataO_int <=

DUUUuUUUoU
JaorunorEo

when others => null;
end case;

data0_int <= '0';

S;

nConfig <= pp(0);

CEn <= not nconfig;

Dclk <= '0' when pp(1l)='0' else dclk int;
Data0 <= '0' when pp(1)='0' else datal_int;

ADDR <= inc;
end;
Conclusion

Altera provides high-density FPGAs that require larger configuration files. By using a
flash memory device and an EPM3128A device in a design, a FPGA can be quickly

configured.

Document Revision History

Table 10-1 shows the revision history for this document.

Table 10-1. Document Revision History

Date and
Revision Changes Made Summary of Changes
October 2008, m Updated “Configuring FPGAS” section. —
version 2.3 m Updated new document format.
April 2007, m Added document revision history. —
version 2.2
August 2005, m Removed active cross references referring to document outside —
version 2.1 Chapter 10.
July 2004, m Removed Intel flash reference design. —
version 2.0 = Updated Figure 10-1.

m Removed Flash Memory Content Verification section.
September 2003, | m Initial Release. —
version 1.0
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