
101 Innovation Drive
San Jose, CA 95134
www.altera.com

Reed-Solomon Compiler
User Guide

MegaCore Version: 10.1
Document Date: December 2010

http://www.altera.com

Copyright © 2010 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

UG-RSCOMPILER-10.1

 © December 2010 Altera Corporation
Contents
Chapter 1. About This Compiler
Release Information . 1–1
Device Family Support . 1–1
Features . 1–2
General Description . 1–3
Performance and Resource Utilization . 1–3
Installation and Licensing . 1–5

OpenCore Plus Evaluation . 1–6
OpenCore Plus Time-Out Behavior . 1–6

Chapter 2. Getting Started
Design Flows . 2–1
DSP Builder Flow . 2–1
MegaWizard Plug-In Manager Flow . 2–2

Parameterize the MegaCore Function . 2–3
Set Up Simulation . 2–6
Generate the MegaCore Function . 2–7

Simulate the Design . 2–9
Compile the Design . 2–10
Program a Device . 2–10

Chapter 3. Functional Description
Background . 3–1

Erasures . 3–2
Shortened Codewords . 3–2
Variable Encoding and Decoding . 3–3

RS Encoder . 3–3
RS Decoder . 3–4

Error Symbol Output . 3–5
Bit Error Count . 3–6

Interfaces . 3–6
Parameters . 3–7
Signals . 3–8
Throughput Calculator . 3–10

Appendix A. Using the RS Encoder or Decoder in a CCSDS System
Introduction . A–1
Test Patterns . A–1

Additional Information
Revision History . Info–1
How to Contact Altera . Info–1
Typographic Conventions . Info–2
Reed-Solomon Compiler User Guide

iv
Reed-Solomon Compiler User Guide © December 2010 Altera Corporation

© December 2010 Altera Corporation
1. About This Compiler
Release Information
Table 1–1 provides information about this release of the Reed-Solomon (RS) Compiler.

f For more information about this release, refer to the MegaCore IP Library Release Notes
and Errata.

Altera verifies that the current version of the Quartus® II software compiles the
previous version of each MegaCore® function. The MegaCore IP Library Release Notes
and Errata report any exceptions to this verification. Altera does not verify
compilation with MegaCore function versions older than one release.

Device Family Support
Table 1–2 defines the device support levels for Altera IP cores.

Table 1–1. RS Compiler Release Information

Item Description

Version 10.1

Release Date December 2010

Ordering Codes IP-RSENC (Encoder)

IP-RSDEC (Decoder)

Product IDs 0039 0041 (Encoder)

0080 0041 (Decoder)

Vendor ID 6AF7

Table 1–2. Altera IP Core Device Support Levels

FPGA Device Families HardCopy Device Families

Preliminary support—The IP core is verified with
preliminary timing models for this device family. The IPcore
meets all functional requirements, but might still be
undergoing timing analysis for the device family. It can be
used in production designs with caution.

HardCopy Companion—The IP core is verified with
preliminary timing models for the HardCopy companion
device. The IP core meets all functional requirements, but
might still be undergoing timing analysis for the HardCopy
device family. It can be used in production designs with
caution.

Final support—The IP core is verified with final timing
models for this device family. The IP core meets all
functional and timing requirements for the device family and
can be used in production designs.

HardCopy Compilation—The IP core is verified with final
timing models for the HardCopy device family. The IP core
meets all functional and timing requirements for the device
family and can be used in production designs.
Reed-Solomon Compiler User Guide

www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf

1–2 Chapter 1: About This Compiler
Features
Table 1–3 shows the level of support offered by the RS Compiler to each of the Altera
device families.

Features
The RS Compiler supports the following features:

■ High-performance encoder/decoder for error detection and correction

■ Fully parameterized RS function, including:

■ Number of bits per symbol

■ Number of symbols per codeword

■ Number of check symbols per codeword

■ Field polynomial

■ First root of generator polynomial

■ Space between roots in generator polynomial

Table 1–3. Device Family Support

Device Family Support

Arria™ GX Final

Arria II GX Preliminary

Arria II GZ Preliminary

Cyclone® Final

Cyclone II Final

Cyclone III Final

Cyclone III LS Preliminary

Cyclone IV Preliminary

HardCopy® II HardCopy Compilation

HardCopy III HardCopy Companion

HardCopy IV E HardCopy Companion

HardCopy IV GX HardCopy Companion

Stratix® Final

Stratix GX Final

Stratix II Final

Stratix II GX Final

Stratix III Final

Stratix IV GT Final

Stratix IV GX/E Final

Stratix V Preliminary

Other device families No support
Reed-Solomon Compiler User Guide © December 2010 Altera Corporation

Chapter 1: About This Compiler 1–3
General Description
■ Decoder features:

■ Variable option

■ Erasures-supporting option

■ Encoder features variable architectures

■ Support for shortened codewords

■ Conforms to Consultative Committee for Space Data Systems (CCSDS)
Recommendations for Telemetry Channel Coding, May 1999

■ Easy-to-use IP Toolbench interface:

■ Generates parameterized encoder or decoder

■ Generates customized testbench and customized Tcl script

■ DSP Builder ready

■ IP functional simulation models for use in Altera-supported VHDL and Verilog
HDL simulators

■ Support for OpenCore Plus evaluation

General Description
The Altera RS Compiler comprises a fully parameterizable encoder and decoder for
forward error correction applications. RS codes are widely used for error detection
and correction in a wide range of DSP applications for storage, retrieval, and
transmission of data. The RS Compiler has the following options:

■ Erasures-supporting option—the RS decoder can correct symbol errors up to the
number of check symbols, if you give the location of the errors to the decoder.
Refer to “Erasures” on page 3–2.

■ Variable encoding or decoding—you can vary the total number of symbols per
codeword and the number of check symbols, in real time, from their minimum
allowable values up to their selected values, when you are encoding or decoding.

■ Error symbol output—the RS decoder finds the error values and location and adds
these values in the Galois field to the input value.

■ Bit error output—either split count or full count

Performance and Resource Utilization
Table 1–4 shows the typical performance using the Quartus II software for Cyclone III
(EP3C10F256C6) devices.

1 Cyclone III devices use combinational look-up tables (LUTs) and logic registers;
Stratix III and Stratix IV devices use combinational adaptive look-up tables (ALUTs)
and logic registers.
© December 2010 Altera Corporation Reed-Solomon Compiler User Guide

1–4 Chapter 1: About This Compiler
Performance and Resource Utilization
Table 1–5 shows the typical performance using the Quartus II software for Stratix III
(EP3SE50F780C2) devices.

Table 1–4. Performance—Cyclone III Devices

Parameters

 LUTs
Logic

Registers
Memory
(M9K)

fMAX

(MHz)
Throughput

(Mbps)Options Keysize
Bits
(1)

 Symbols
(2)

Check
(3)

Standard decoder Half 4 15 6 541 365 5 230 216

Standard decoder Half 8 204 16 1,720 995 5 202 1,613

Split bit error decoder Half 8 204 16 1,765 1,057 5 194 1,552

Full bit error decoder Half 8 204 16 1,778 1,058 5 190 1,519

Standard decoder Half 8 255 32 2,972 1,676 5 193 1,213

Variable decoder Half 8 204 16 1,886 1,074 5 202 1,620

Erasures decoder Half 8 204 16 3,151 1,561 5 188 1,500

Erasures and variable decoder Half 8 204 16 3,465 1,704 6 191 1,527

Standard encoder — 8 204 16 256 210 — 324 2,593

Variable encoder — 8 204 16 1,048 313 — 237 1,897

Variable encoder — 8 204 32 2,341 580 — 227 1,813

Notes to Table 1–4:

(1) The number of bits per symbol (m).
(2) The number of symbols per codeword (N).
(3) The number of check symbols per codeword (R).

Table 1–5. Performance—Stratix III Devices

Parameters

ALUTs
Logic

Registers
Memory
(M9K)

fMAX
(MHz)

Throughput
(Mbps)Options Keysize

Bits
(1)

 Symbols
(2)

Check
(3)

Standard decoder Half 4 15 6 417 366 5 403 378

Standard decoder Half 8 204 16 1,139 998 5 358 2,865

Split bit error decoder Half 8 204 16 1,196 1,060 5 336 2,686

Full bit error decoder Half 8 204 16 1,181 1,065 5 328 2,624

Standard decoder Half 8 255 32 2,027 1,685 5 319 2,011

Variable decoder Half 8 204 16 1,273 1,082 5 359 2,871

Erasures decoder Half 8 204 16 2,092 1,564 5 309 2,469

Erasures and variable decoder Half 8 204 16 2,200 1,708 6 311 2,490

Standard encoder — 8 204 16 204 210 — 621 4,969

Variable encoder — 8 204 16 779 313 — 397 3,179

Variable encoder — 8 204 32 1,650 581 — 365 2,923

Notes to Table 1–4:

(1) The number of bits per symbol (m).
(2) The number of symbols per codeword (N).
(3) The number of check symbols per codeword (R).
Reed-Solomon Compiler User Guide © December 2010 Altera Corporation

Chapter 1: About This Compiler 1–5
Installation and Licensing
Table 1–6 shows the typical performance using the Quartus II software for Stratix IV
(EP4SGX70DF29C2X) devices.

The throughput in megabits per second (Mbps) is derived from the formulas in
Table 3–9 on page 3–10 and maximum frequency at which the design can operate.

Overall resource requirements vary widely depending on the parameter values used.
The number of logic elements (LEs) or combinational ALUTs required to implement
the function is linearly dependent on both the field size and the number of check
symbols. More memory is required for 9, 10, 11, or 12 bits per symbol. Specifying the
erasures-supporting and the variable option also increases the memory required.

Installation and Licensing
The RS Compiler is part of the MegaCore® IP Library, which is distributed with the
Quartus® II software and can be downloaded from the Altera® website,
www.altera.com.

f For system requirements and installation instructions, refer to the Altera Software
Installation and Licensing manual.

Table 1–6. Performance—Stratix IV Devices

Parameters

ALUTs
Logic

Registers

Memory

fMAX
(MHz)

Throughput
(Mbps)Options Keysize

Bits
(1)

 Symbols
(2)

Check
(3) ALUTs M9K

Standard decoder Half 4 15 6 426 382 8 3 413 387

Standard decoder Half 8 204 16 1,220 1,034 64 3 368 2,945

Split bit error decoder Half 8 204 16 1,273 1,092 64 3 340 2,719

Full bit error decoder Half 8 204 16 1,255 1,092 64 3 325 2,603

Standard decoder Half 8 255 32 2,100 1,713 64 3 324 2,038

Variable decoder Half 8 204 16 1,362 1,119 64 3 356 2,850

Erasures decoder Half 8 204 16 2,170 1,596 64 3 314 2,510

Erasures and variable
decoder

Half 8 204 16 2,322 1,746 96 3 310 2,480

Standard encoder — 8 204 16 204 210 — — 620 4,960

Variable encoder — 8 204 16 777 313 — — 387 3,099

Variable encoder — 8 204 32 1,651 582 — — 347 2,775

Notes to Table 1–4:

(1) The number of bits per symbol (m).
(2) The number of symbols per codeword (N).
(3) The number of check symbols per codeword (R).
© December 2010 Altera Corporation Reed-Solomon Compiler User Guide

www.altera.com
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

1–6 Chapter 1: About This Compiler
Installation and Licensing
Figure 1–1 shows the directory structure after you install the RS Compiler, where
<path> is the installation directory for the Quartus II software. The default installation
directory on Windows is c:\altera\<version> and on Linux is /opt/altera<version>.

OpenCore Plus Evaluation
With Altera’s free OpenCore Plus evaluation feature, you can perform the following
actions:

■ Simulate the behavior of a megafunction (Altera MegaCore function or AMPPSM
megafunction) within your system.

■ Verify the functionality of your design, as well as evaluate its size and speed
quickly and easily.

■ Generate time-limited device programming files for designs that include
megafunctions.

■ Program a device and verify your design in hardware.

You only need to purchase a license for the RS Compiler when you are completely
satisfied with its functionality and performance, and want to take your design to
production. After you purchase a license, you can request a license file from the Altera
website at www.altera.com/licensing and install it on your computer. When you
request a license file, Altera emails you a license.dat file. If you do not have Internet
access, contact your local Altera representative.

f For more information about OpenCore Plus hardware evaluation, refer to
AN320: OpenCore Plus Evaluation of Megafunctions.

OpenCore Plus Time-Out Behavior
OpenCore Plus hardware evaluation supports the following operation modes:

■ Untethered—the design runs for a limited time.

■ Tethered—requires a connection between your board and the host computer. If
tethered mode is supported by all megafunctions in a design, the device can
operate for a longer time or indefinitely.

Figure 1–1. Directory Structure

lib
Contains encrypted lower-level design files.

ip
Contains the Altera MegaCore IP Library and third-party IP cores.

<path>
Installation directory.

altera
Contains the Altera MegaCore IP Library.

common
Contains shared components.
reed_solomon
Contains the Reed-Solomon Compiler files.
Reed-Solomon Compiler User Guide © December 2010 Altera Corporation

http://www.altera.com/literature/an/an320.pdf

Chapter 1: About This Compiler 1–7
Installation and Licensing
All megafunctions in a device time-out simultaneously when the most restrictive
evaluation time is reached. If there is more than one megafunction in a design, a
specific megafunction’s time-out behavior might be masked by the time-out behavior
of the other megafunctions.

The untethered time-out for a RS Compiler MegaCore function is one hour; the
tethered time-out value is indefinite.

Your design stops working after the hardware evaluation time expires and the data
output rsout remains low.
© December 2010 Altera Corporation Reed-Solomon Compiler User Guide

1–8 Chapter 1: About This Compiler
Installation and Licensing
Reed-Solomon Compiler User Guide © December 2010 Altera Corporation

© December 2010 Altera Corporation
2. Getting Started
Design Flows
The RS Compiler supports the following design flows:

■ DSP Builder: Use this flow if you want to create a DSP Builder model that
includes a RS Compiler MegaCore function variation.

■ MegaWizard™ Plug-In Manager: Use this flow if you would like to create a RS
Compiler MegaCore function variation that you can instantiate manually in your
design.

This chapter describes how you can use a RS Compiler MegaCore function in either of
these flows. The parameterization provides the same options in each flow and is
described in “Parameterize the MegaCore Function” on page 2–3.

After parameterizing and simulating a design in either of these flows, you can
compile the completed design in the Quartus II software.

DSP Builder Flow
Altera’s DSP Builder product shortens digital signal processing (DSP) design cycles
by helping you create the hardware representation of a DSP design in an
algorithm-friendly development environment.

DSP Builder integrates the algorithm development, simulation, and verification
capabilities of The MathWorks MATLAB® and Simulink® system-level design tools
with Altera Quartus II software and third-party synthesis and simulation tools. You
can combine existing Simulink blocks with Altera DSP Builder blocks and MegaCore
function variation blocks to verify system-level specifications and perform
simulation.

In DSP Builder, a Simulink symbol for the MegaCore function appears in the
MegaCore Functions library of the Altera DSP Builder Blockset in the Simulink library
browser.

You can use the RS Compiler in the MATLAB/Simulink environment by performing
the following steps:

1. Create a new Simulink model.

2. Select the reed_solomon_<version> block from the MegaCore Functions library
in the Simulink Library Browser, add it to your model, and give the block a unique
name.

3. Double-click on the reed_solomon_<version> block in your model to display the
MegaWizard interface and parameterize the MegaCore function variation. For an
example of setting parameters for the RS Compiler, refer to “Parameterize the
MegaCore Function” on page 2–3.

4. Click Finish in the MegaWizard interface to complete the parameterization and
generate your RS Compiler MegaCore function variation. For information about
the generated files, refer to Table 2–1 on page 2–8.
Reed-Solomon Compiler User Guide

2–2 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
5. Connect your RS Compiler MegaCore function variation to the other blocks in
your model.

6. Simulate the MegaCore function variation in your DSP Builder model.

f For more information about the DSP Builder flow, refer to the Using MegaCore
Functions chapter in the DSP Builder User Guide.

1 When you are using the DSP Builder flow, device selection, simulation, Quartus II
compilation and device programming are all controlled in the DSP Builder
environment.

DSP Builder supports integration with SOPC Builder using Avalon® Memory-Mapped
(Avalon-MM) master/slave and Avalon Streaming (Avalon-ST) source/sink
interfaces.

f For more information about the Avalon-MM and Avalon-ST interfaces, refer to the
Avalon Interface Specifications.

MegaWizard Plug-In Manager Flow
The MegaWizard Plug-in Manager flow allows you to customize a RS Compiler
MegaCore function, and manually integrate the MegaCore function variation in a
Quartus II design.

Follow the steps below to use the MegaWizard Plug-in Manager flow.

1. Create a new project using the New Project Wizard available from the File menu
in the Quartus II software.

2. Launch MegaWizard Plug-in Manager from the Tools menu, and select the option
to create a new custom megafunction variation (Figure 2–1).

Figure 2–1. MegaWizard Plug-In Manager
Reed-Solomon Compiler User Guide © December 2010 Altera Corporation

http://www.altera.com/literature/ug/ug_dsp_builder.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 2: Getting Started 2–3
MegaWizard Plug-In Manager Flow
3. Click Next and select Reed Solomon <version> from the DSP>Error
Detection/Correction section in the Installed Plug-Ins tab.

4. Verify that the device family is the same as you specified in the New Project
Wizard.

5. Select the top-level output file type for your design; the wizard supports VHDL
and Verilog HDL.

6. The MegaWizard Plug-In Manager shows the project path that you specified in the
New Project Wizard. Append a variation name for the MegaCore function output
files <project path>\<variation name>. Figure 2–2 shows the MegaWizard interface
after you have made these settings.

7. Click Next to launch IP Toolbench.

Parameterize the MegaCore Function
To parameterize your MegaCore function, follow these steps:

1. Click Step 1: Parameterize in IP Toolbench (Figure 2–3 on page 2–4).

Figure 2–2. Select the Megafunction
© December 2010 Altera Corporation Reed-Solomon Compiler User Guide

2–4 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
2. Select Encoder or Decoder (Figure 2–4).

3. If you select Encoder, you can also turn on the Variable option.

For more information about the variable option, refer to “Variable Encoding and
Decoding” on page 3–3.

Figure 2–3. IP Toolbench—Parameterize

Figure 2–4. Select the Encoder or Decoder
Reed-Solomon Compiler User Guide © December 2010 Altera Corporation

Chapter 2: Getting Started 2–5
MegaWizard Plug-In Manager Flow
4. If Decoder is selected, the following controls are available:

a. You can turn on the Erasures-supporting decoder or Variable options.

b. You can select Full or Half keysize.

c. You can turn on the Error Symbol or Bit Error outputs. For the bit error output,
you can select Split Count or Full Count.

For more information about these parameters, refer to Table 3–2 on page 3–7.

5. Click Next.

6. Select the parameters that define the specific RS codeword that you wish to
implement (Figure 2–5).

You can enter the parameters individually, or click DVB Standard to use digital
video broadcast (DVB) standard values, or CCSDS Standard to use the CCSDS
standard values.

For more information about these parameters, refer to Table 3–3 on page 3–8.

7. Click Next.

8. For a decoder throughput calculation, enter the frequency in MHz, select the
desired units, and click Calculate. Figure 2–6 shows the decoder throughput
calculation page.

Figure 2–5. Choose the Parameters
© December 2010 Altera Corporation Reed-Solomon Compiler User Guide

2–6 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
For more information about the throughput calculator, refer to “Throughput
Calculator” on page 3–10.

9. Click Finish.

For more information about the RS Compiler parameters, refer to “Parameters” on
page 3–7.

Set Up Simulation
An IP functional simulation model is a cycle-accurate VHDL or Verilog HDL model
produced by the Quartus II software. The model allows for fast functional simulation
of IP using industry-standard VHDL and Verilog HDL simulators.

c You may only use these simulation model output files for simulation purposes and
expressly not for synthesis or any other purposes. Using these models for synthesis
creates a nonfunctional design.

To generate an IP functional simulation model for your MegaCore function, follow
these steps:

1. Click Step 2: Set Up Simulation in IP Toolbench. Figure 2–3 on page 2–4 shows
the IP Toolbench.

2. Turn on Generate Simulation Model, as shown in Figure 2–7.

3. Choose the required language in the Language list.

4. Some third-party synthesis tools can use a netlist that contains only the structure
of the MegaCore function, but not detailed logic, to optimize performance of the
design that contains the MegaCore function. If your synthesis tool supports this
feature, turn on Generate netlist.

5. Click OK.

Figure 2–6. Throughput Calculator
Reed-Solomon Compiler User Guide © December 2010 Altera Corporation

Chapter 2: Getting Started 2–7
MegaWizard Plug-In Manager Flow
Generate the MegaCore Function
To generate your MegaCore function, follow these steps:

1. Click Step 3: Generate in IP Toolbench (Figure 2–3 on page 2–4).

The generation phase may take several minutes to complete. The generation
progress and status is displayed in a report window.

Figure 2–8 shows the generation report.

Figure 2–7. Generate Simulation Model
© December 2010 Altera Corporation Reed-Solomon Compiler User Guide

2–8 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
Table 2–1 describes the generated files and other files that may be in your project
directory. The names and types of files specified in the IP Toolbench report vary
based on whether you created your design with VHDL or Verilog HDL

Figure 2–8. Generation Report

Table 2–1. Generated Files (Part 1 of 2) (Note 1)

Filename Description

<variation name>.bsf Quartus II symbol file for the MegaCore function variation. You can use
this file in the Quartus II block diagram editor.

<variation name>.vo or .vho VHDL or Verilog HDL IP functional simulation model.

<variation name>.vhd, or .v A MegaCore function variation file, which defines a VHDL or Verilog HDL
top-level description of the custom MegaCore function. Instantiate the
entity defined by this file inside of your design. Include this file when
compiling your design in the Quartus II software.

<variation name>.cmp A VHDL component declaration for the custom MegaCore function. Add
the contents of this file to any VHDL architecture that instantiates the
MegaCore function.

<variation name>_nativelink.tcl Tcl Script that sets up NativeLink in the Quartus II software to natively
simulate the design using selected EDA tools.

<variation name>_syn.v or .vhd A timing and resource netlist for use in some third-party synthesis tools.

<variation name>_testbench.vhd The testbench variation file, which defines the top-level testbench that
runs the simulation. This file instantiates the function variation file and the
testbench from the reed_solomon\lib directory.

<variation name>_vsim_script.tcl Starts the MegaCore function simulation in the ModelSim simulator.

<variation name>_block_period_stim.txt The testbench stimuli includes information such as number of
codewords, number of symbols, and check symbols for each codeword
Reed-Solomon Compiler User Guide © December 2010 Altera Corporation

Chapter 2: Getting Started 2–9
Simulate the Design
2. After you review the generation report, click Exit to close IP Toolbench. Then click
Yes on the Quartus II IP Files prompt to add the .qip file describing your custom
MegaCore function to the current Quartus II project.

f Refer to the Quartus II Help for more information about the MegaWizard Plug-In
Manager.

You can now integrate your custom variation into your design and simulate and
compile.

Simulate the Design
IP Toolbench-generated Tcl scripts drive the simulation. For the decoder, the testbench
includes a channel and the instantiated decoder. Data is read from an
IP Toolbench-generated file. For the encoder, the testbench reads the same data file
and just compares the encoder output with a data file. In the channel, some errors are
introduced at various locations of the RS codeword. The testbench then receives the
data decoded by the RS decoder and compares it with the originally transmitted data.

You can perform a simulation in a third-party simulation tool from within the
Quartus II software, using NativeLink.

f For more information about NativeLink, refer to the Simulating Altera Designs chapter
in volume 3 of the Quartus II Handbook.

You can use the Tcl script file <variation name>_nativelink.tcl to assign default
NativeLink testbench settings to the Quartus II project.

To set up simulation in the Quartus II software using NativeLink, follow these steps:

1. Create a custom variation but ensure you specify your variation name to match the
Quartus II project name.

2. Check that the absolute path to your third-party simulator executable is set. On the
Tools menu click Options and select EDA Tools Options.

3. On the Processing menu, point to Start and click Start Analysis & Elaboration.

4. On the Tools menu click Tcl scripts. Select the the <variation name>_nativelink.tcl
Tcl script and click Run. Check for a message confirming that the Tcl script was
successfully loaded.

<variation name>_encoded_data.txt Contains the encoded test data.

<variation name>.html A MegaCore function report file in hypertext markup language format.

<variation name>.qip A single Quartus II IP file is generated that contains all of the assignments
and other information required to process your MegaCore function
variation in the Quartus II compiler. You are prompted to add this file to
the current Quartus II project when you exit the MegaWizard interface.

Notes to Table 2–1:

(1) <variation name> is the variation name.

Table 2–1. Generated Files (Part 2 of 2) (Note 1)

Filename Description
© December 2010 Altera Corporation Reed-Solomon Compiler User Guide

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

2–10 Chapter 2: Getting Started
Compile the Design
5. On the Assignments menu click Settings, expand EDA Tool Settings and select
Simulation. Select a simulator under Tool Name.

6. On the Tools menu point to EDA Simulation Tool and click EDA RTL
Simulation.

Compile the Design
You can use the Quartus II software to compile your design. Refer to Quartus II Help
for instructions on performing compilation.

Program a Device
After you have compiled your design, program your targeted Altera device and
verify your design in hardware.

With Altera's free OpenCore Plus evaluation feature, you can evaluate an RS
MegaCore function before you purchase a license. OpenCore Plus evaluation allows
you to generate an IP functional simulation model and produce a time-limited
programming file.

f For more information about IP functional simulation models, refer to the Simulating
Altera Designs chapter in volume 3 of the Quartus II Handbook.

You can simulate an RS MegaCore function in your design and perform a time-limited
evaluation of your design in hardware.

Fore more information about OpenCore Plus hardware evaluation using the RS
Compiler, refer to “OpenCore Plus Evaluation” on page 1–6.
Reed-Solomon Compiler User Guide © December 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

© December 2010 Altera Corporation
3. Functional Description
Background
To use Reed-Solomon (RS) codes, a data stream is first broken into a series of
codewords. Each codeword consists of several information symbols followed by
several check symbols (also known as parity symbols or redundant symbols).
Symbols can contain an arbitrary number of bits. In an error correction system, the
encoder adds check symbols to the data stream prior to its transmission over a
communications channel. When the data is received, the decoder checks for and
corrects any errors (Figure 3–1).

RS codes are described as (N,K), where N is the total number of symbols per
codeword and K is the number of information symbols. R is the number of check
symbols (N – K). Errors are defined on a symbol basis. Any number of bit errors
within a symbol is considered as only one error.

RS codes are based on finite-field (i.e., Galois field) arithmetic. Any arithmetic
operation (addition, subtraction, multiplication, and division) on a field element gives
a result that is an element of the field. The size of the Galois field is determined by the
number of bits per symbol—specifically, the field has 2m elements, where m is the
number of bits per symbol. A specific Galois field is defined by a polynomial, which is
user-defined for the RS Compiler. IP Toolbench lets you select only valid field
polynomials.

The maximum number of symbols in a codeword is limited by the size of the finite
field to 2m – 1. For example, a code based on 10-bit symbols can have up to 1,023
symbols per codeword. The RS Compiler supports shortened codewords.

The following equation represents the generator polynomial of the code:

where:

i0 is the first root of the generator polynomial
a is the rootspace
R is the number of check symbols
α is a root of the polynomial.

Figure 3–1. RS Codeword Example

0010 0110 1010 0011 0111 1011

Information symbols, which
contain the original data.

Check symbols, added by
the RS encoder before
transmission over a
communications channel.

Symbol Codeword

4 to 10 bits
per symbol.

 R – 1

g(x) = ∏ (x – αa.i + i
0)

 i = 0
Reed-Solomon Compiler User Guide

3–2 Chapter 3: Functional Description
Background
For example, for the following information:

a is a root of the binary primitive polynomial x8 + x7 + x2 + x + 1
i0 = 120

You can calculate the following parameters:

■ R – 1 = 3

■ a = 1 (α is to the power 1 times i)

The field polynomial can be obtained by replacing x with 2, thus:
28 + 27 + 22 +2 + 1 = 391

Erasures
In normal operation, the RS decoder detects and corrects symbol errors.

The number of symbol errors that can be corrected, C, depends on the number of
check symbols, R and is given by C ≤ R/2.

If the location of the symbol errors is marked as an erasure, the RS decoder can correct
twice as many errors, so C ≤ R.

1 Erasures are symbol errors with a known location.

External circuitry identifies which symbols have errors and passes this information to
the decoder using the eras_sym signal. The eras_sym input indicates an erasure
(when the erasures-supporting decoder option is selected).

The RS decoder can work with a mixture of erasures and errors.

A codeword is correctly decoded if (2e + E) ≤ R

where:

e = errors with unknown locations
E = erasures
R = number of check symbols.

For example, with ten check symbols the decoder can correct ten erasures, or five
symbol errors, or four erasures and three symbol errors.

1 If the number of erasures marked approaches the number of check symbols, the
ability to detect errors without correction (decfail asserted) diminishes. Refer to
Table 3–1 on page 3–4.

Shortened Codewords
A shortened codeword contains fewer symbols than the maximum value of N, which
is 2m –1. A shortened codeword is mathematically equivalent to a maximum-length
code with the extra data symbols at the start of the codeword set to 0.

For example, (204,188) is a shortened codeword of (255,239). Both of these codewords
use the same number of check symbols, 16.

 3

g(x) = ∏ (x – αi + i
0)

 i = 0
Reed-Solomon Compiler User Guide © December 2010 Altera Corporation

Chapter 3: Functional Description 3–3
RS Encoder
To use shortened codewords with the Altera RS encoder and decoder, you use IP
Toolbench to set the codeword length to the correct value, in the example, 204.

Variable Encoding and Decoding
Under normal circumstances, the encoder and decoder allow variable encoding and
decoding—you can change the number of symbols per codeword (N) using
sink_eop, but not the number of check symbols while decoding.

1 However, you cannot change the length of the codeword, if you turn on the erasure-
supporting option.

If you turn on the variable option, you can vary the number of symbols per codeword
(using the numn signal) and the number of check symbols (using the numcheck
signal), in real time, from their minimum allowable values up to their selected values,
even with the erasures-supporting option turned on. Table 3–7 on page 3–10 shows
the variable option signals.

RS Encoder
The sink_sop signal starts a codeword; sink_eop signals its termination. An
asserted sink_val indicates valid data. The sink_sop is only valid when
sink_val is asserted.

1 Only assert sink_val one clock cycle after the encoder asserts sink_ena.

By de-asserting sink_ena, the encoder signals that it cannot sink more incoming
symbols after sink_eop is signalled at the input. During this time it is generating the
check symbols for the current codeword. Figure 3–2 shows the operation of the RS
encoder. The example shows a codeword with eight information symbols and five
check symbols.

The numcheck input is latched inside the encoder when sink_sop is asserted.

Figure 3–2. Encoder Timing

 clk

sink_ena

sink_val

sink_sop

sink_eop

rsin[8:1]

source_ena

source_val

source_sop

source_eop

rsout[8:1]

01 02 03 04 05 06 07 08 09 09 10 11 12 13 14 15 16

01 02 03 04 05 06 07 08 P1 P2 P3 P4 P5 09 10 12 11 12 13 14 15 16 P6 P7 P8 P9
© December 2010 Altera Corporation Reed-Solomon Compiler User Guide

3–4 Chapter 3: Functional Description
RS Decoder
You can change the number of symbols in a codeword at run-time without resetting
the encoder. You must make the changes between complete codewords; you cannot
change numcheck during encoding. Figure 3–3 shows variable encoding.

RS Decoder
The decoder implements an Avalon-ST-based pipelined three-codeword-depth
architecture. However, if the parameters are in the continuous range (refer to
Table 3–3 on page 3–8), the decoder shows continuous behavior and can accept a new
symbol every clock cycle.

The decoder is self-flushing—it processes and delivers a codeword without needing a
new codeword to be fed in. Therefore, latency between the input and output does not
depend on the availability of input data. The throughput latency is approximately
three codewords

The reset is active high and can be asserted asynchronously. However, it has to be de-
asserted synchronously with clk.

The RS decoder always tries to detect and correct errors in the codeword. However, as
the number of errors increases, the decoder gets to a stage where it can no longer
correct but only detect errors, at which point the decoder asserts the decfail signal.
As the number of errors increases still further, the results become unpredictable.
Table 3–1 shows how the decoder corrects and detects errors depending on R.

Figure 3–3. Variable Encoding

clk

sink_ena

sink_val

sink_sop

sink_eop

rsin[8:1]

source_ena

source_val

source_sop

source_eop

rsout[8:1]

numcheck[4:1]

01 02 03 04 05 06 07 08 09 10 11 12

01 02 03 04 05 06 07 08 P1 P2 P3 P4 P5 09 10 11 12

05 05

Table 3–1. Decoder Detection and Correction

Number of Errors Decoder Behavior

Errors ≤ R/2 Decoder detects and corrects errors.

R/2 ≤ errors ≤ R Decoder asserts decfail and can only detect errors. (1)

Errors > R Unpredictable results.

Note to Table 3–1:

(1) The decoder may fail to assert decfail, for low values of R (4,5, or 6), or when using erasures and the
differences between the number of erasures and R is small (4, 5 or 6).
Reed-Solomon Compiler User Guide © December 2010 Altera Corporation

Chapter 3: Functional Description 3–5
RS Decoder
The RS decoder observes Avalon-ST interface standard for input and output data. One
clock cycle after the decoder asserts sink_ena, you can assert sink_val. The
decoder accepts the data at rsin as valid data. The codeword is started with
sink_sop. The numcheck and numn signals are latched to sink_sop.

The codeword is finished when sink_eop is asserted. If sink_ena is de-asserted,
from one clock cycle onwards the decoder cannot process any more data until
sink_ena is asserted again.

At the output the operation is identical. If you assert source_ena, the decoder
asserts source_val and provides valid data on rsout if available. Also, it indicates
the start and end of the codeword with source_sop and source_eop respectively.

Figure 3–4 shows the operation of the RS decoder.

The decoder has the following optional outputs, which you turn on in IP Toolbench:

■ Error symbol

■ Bit error count

Error Symbol Output
The error symbol output, rserr is the Galois field error correction value. The RS
decoder finds the error values and location and adds these values in the Galois field to
the input value. Galois field addition and subtraction is the same operation. An XOR
operation performs this operation between bits of the two values.

Figure 3–5 on page 3–6 shows the error symbol output.

Figure 3–4. Decoder Timing

clk

sink_ena

sink_val

sink_sop

sink_eop

rsin[8:1]

source_ena

source_val

source_sop

source_eop

rsout[8:1]

numcheck[4:1]

numn[4:1]

01 02 03 04 05 06 07 08 P1 P2 P3 P4 P5 09 10 11 12 13

01 02 03 04 05 06 07 08 P1 P2 P3 P4 P5 12

05 05

13 13
© December 2010 Altera Corporation Reed-Solomon Compiler User Guide

3–6 Chapter 3: Functional Description
Interfaces
Whenever rserr is not 0 (while decfail is 0), an error correction successfully takes
place. The rsout is the rserr XORed with the corresponding rsin, where XOR is
done for each bit, so you know that the respective symbol has been corrected. The
value of rserr shows which bits of the symbol have been corrected. For each bit of
rserr that is 1, the corresponding bit of rsout is corrected.

The rsout and the corresponding rserr value appear at the output at the same
clock cycle.

Bit Error Count
The decoder can provide the bit error count found in the correction process. The bit
error count has the following options:

■ Full count. The output num_err_bit is connected, which shows the valid value.

■ Split count. The outputs num_err_bit0 and num_err_bit1 are connected,
which show the valid values

For information about these outputs, refer to Table 3–8 on page 3–10.

Interfaces
The RS encoder and decoder use the Avalon® Streaming (Avalon-ST) interface for data
input and output. The input is an Avalon-ST sink and the output is an Avalon-ST
source. The Avalon-ST interface READY_LATENCY parameter is set to 1. The Avalon-
ST interfaces allow for flow control.

The Avalon-ST interface is an evolution of the Atlantic™ interface. The Avalon-ST
interface defines a standard, flexible, and modular protocol for data transfers from a
source interface to a sink interface and simplifies the process of controlling the flow of
data in a datapath. The Avalon-ST interface signals can describe traditional streaming
interfaces supporting a single stream of data without knowledge of channels or
packet boundaries. Such interfaces typically contain data, ready, and valid signals.

The Avalon-ST interface can also support more complex protocols for burst and
packet transfers with packets interleaved across multiple channels. The Avalon-ST
interface inherently synchronizes multi-channel designs, which allows you to achieve
efficient, time-multiplexed implementations without having to implement complex
control logic.

Figure 3–5. Error Symbol Output

Memory
& Control

Syndrome
Calculationrsin rserr

rsout

Solve Key
Equation

Chien Search
& Forney's
Algorithm
Reed-Solomon Compiler User Guide © December 2010 Altera Corporation

Chapter 3: Functional Description 3–7
Parameters
The Avalon-ST interface supports backpressure, which is a flow control mechanism,
where a sink can signal to a source to stop sending data. The sink typically uses
backpressure to stop the flow of data when its FIFO buffers are full or when there is
congestion on its output. When designing a datapath, which includes the RS
MegaCore function, you may not need backpressure if you know the downstream
components can always receive data. You may achieve a higher clock rate by driving
the source ready signal source_ena of the RS high, and not connecting the sink
ready signal sink_ena.

f For more information about the Avalon-ST interface, refer to the Avalon Interface
Specifications.

Figure 3–6 shows the RS encoder and decoder Avalon-ST interfaces.

Parameters
Table 3–2 shows the implementation parameters.

Figure 3–6. Avalon ST Interface

Avalon ST Interface

Source

source_val

source_ena

source_eop
decbit

source_sop
User Module

Sink

ena

val

sop

eop

dat

Avalon ST Interface

User Module
Source

ena

val

sop

eop

dat

Sink
RS Encoder or Decoder

sink_val

sink_ena

sink_eop
rr/eras_sym

sink_sop

Table 3–2. Implementation Parameters

Parameter Value Description

Function Encoder or
Decoder

Specifies an encoder or a decoder. Refer to “Functional Description” on
page 3–1.

Variable On or Off Specifies the variable option. Refer to “Variable Encoding and Decoding” on
page 3–3.

Erasures-supporting decoder
(1)

On or Off Specifies the erasures-supporting decoder option. This option substantially
increases the logic resources used. Refer to “Erasures” on page 3–2.

Error symbol(1) On or Off Specifies the error symbol output. Refer to “RS Decoder” on page 3–4 and
Table 3–8 on page 3–10.

Bit error (1) On or Off You can set the bit error output to be either Split count or Full count. Refer to
“RS Decoder” on page 3–4 and Table 3–8 on page 3–10.

Keysize (1) Half or
Full.

The keysize parameter allows you to trade off the amount of logic resources
against the supported throughput. Full has twice as many Galois field
multipliers as half. A full decoder uses more logic and is probably slightly
slower in frequency, but supports a higher throughput. If both full and half give
you the required throughput for your parameters, always select half.

Note to Table 3–2:

(1) This parameter applies to the decoder only.
© December 2010 Altera Corporation Reed-Solomon Compiler User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

3–8 Chapter 3: Functional Description
Signals
Table 3–3 shows the RS codeword parameters.

Signals
Table 3–4 shows the global signals.

Table 3–5 shows the Avalon-ST sink (data input) interface.

Table 3–3. RS Codeword Parameters

Parameter Range
Range

(Continuous) Description

Number of bits per
symbol

3 to 12 6 to 12 Specifies the number of bits per symbol (m).

Number of symbols per
codeword

5 to (2m – 1) 7(R + 1) to 2m – 1 Specifies the total number of symbols per
codeword (N).

Number of check symbols
per codeword

2 to min(128, N – 1) 4 to N/7 – 1 Specifies the number of check symbols per
codeword (R)

Field polynomial Any valid polynomial (1) Specifies the primitive polynomial defining the
Galois field.

First root of generator
polynomial

0 to (2m – 2) Specifies the first root of the generator polynomial
(i0).

Root spacing in generator
polynomial

Any valid root space (1) Specifies the minimum distance between roots in
the generator polynomial (a).

Notes to Table 3–3:

(1) IP Toolbench allows you to select only legal values. For m > 8, not all legal values of the field polynomials and rootspace are present in IP
Toolbench. If you cannot find your intended field polynomial or rootspace in the IP Toolbench list, contact Altera MySupport.

Table 3–4. Global Signals

Name Description

clk clk is the main system clock. The whole MegaCore function operates on the rising edge of clk.

reset Reset. The entire decoder is asynchronously reset when reset is asserted high. The reset signal resets the
entire system. The reset signal must be de-asserted synchronously with respect to the rising edge of clk.

Table 3–5. Avalon-ST Sink Interface (Part 1 of 2)

Name
Avalon-ST

Type Direction Description

sink_ena ena Output Data transfer enable signal. sink_ena is driven by the sink interface and controls
the flow of data across the interface. sink_ena behaves as a read enable from
sink to source. When the source observes sink_ena asserted on the clk rising
edge it drives, on the following clk rising edge, the Avalon-ST data interface
signals and asserts val, if data is available. The sink interface captures the data
interface signals on the following clk rising edge. If the source is unable to
provide new data, it de-asserts val for one or more clock cycles until it is prepared
to drive valid data interface signals.
Reed-Solomon Compiler User Guide © December 2010 Altera Corporation

Chapter 3: Functional Description 3–9
Signals
Table 3–6 shows the Avalon-ST source (data output) interface.

sink_val val Input Data valid signal. sink_val indicates the validity of the data signals. sink_val
is updated on every clock edge where sink_ena is asserted. sink_val and the
dat bus hold their current value if sink_ena is de-asserted. When sink_val
is asserted, the Avalon-ST data interface signals are valid. When sink_val is de-
asserted, the Avalon-ST data interface signals are invalid and must be disregarded.
To determine whether new data has been received, the sink interface qualifies the
sink_val signal with the previous state of the sink_ena signal.

sink_sop sop Input Start of packet (codeword) signal. sop delineates the codeword boundaries on the
rsin bus. When sink_sop is high, the start of the packet is present on the rsin
bus. sink_sop is asserted on the first transfer of every codeword.

sink_eop eop Input End of packet (codeword) signal. sink_eop delineates the packet boundaries on
the rsin bus. When sink_eop is high, the end of the packet is present on the dat
bus. sink_eop is asserted on the last transfer of every packet.

rsin[m:1] data Input Data input for each codeword, symbol by symbol. Valid only when sink_val is
asserted.

eras_sym data Input When asserted, the symbol in rsin[] is marked as an erasure. Valid only for the
decoder with Erasures-supporting decoder option.

Table 3–5. Avalon-ST Sink Interface (Part 2 of 2)

Name
Avalon-ST

Type Direction Description

Table 3–6. Avalon-ST Source Interface

Name
Avalon-ST

Type Direction Description

source_ena ena Input Data transfer enable signal. source_ena is driven by the sink interface and
controls the flow of data across the interface. ena behaves as a read enable from
sink to source. When the source interface observes source_ena asserted on
the clk rising edge it drives, on the following clk rising edge, the Avalon-ST
data interface signals and asserts source_val when data from sink interface is
available. The sink interface captures the data interface signals on the following
clk rising edge. If this source is unable to provide new data, it de-asserts
source_val for one or more clock cycles until it is prepared to drive valid data
interface signals.

source_val val Output Data valid signal. source_val is asserted high, whenever there is a valid output on
rsout; it is de-asserted when there is no valid output on rsout.

source_sop sop Output Start of packet (codeword) signal.

source_eop eop Output End of packet (codeword) signal.

rsout data Output The rsout signal contains decoded output when source_val is asserted. The
corrected symbols are in the same order that they were entered.

rserr data Output Error correction value (decoder only, optional). Refer to “Error Symbol Output” on
page 3–5.
© December 2010 Altera Corporation Reed-Solomon Compiler User Guide

3–10 Chapter 3: Functional Description
Throughput Calculator
Table 3–7 shows the configuration signals.

Table 3–8 shows the status signals (decoder only).

Throughput Calculator
The IP Toolbench throughput calculator (decoder only) uses the following equation:

Throughput in megasymbols per second = N × frequency (MHz)/NC

For Mbps, multiply by m, the number of bits per symbol.

Table 3–9 shows the value of NC.

Table 3–7. Configuration Signals

Name Description

bypass A one-bit signal that sets if the codewords are bypassed or not (decoder only). The decoder continuously
samples bypass.

numcheck Sets the variable number of check symbols up to a maximum value set by the parameter R (variable option
only). The decoder samples numcheck only when sink_sop is asserted.

numn Variable value of N. Can be any value from the minimum allowable value of N up to the selected value of N
(variable and erasures-supporting option only). The decoder samples numn only when sink_sop is
asserted.

Table 3–8. Status Signals

Name Description

decfail Indicates non-correctable codeword. Valid when source_sop is asserted. Avalon-ST type err.

num_err_sym Number of symbols errors. Valid when source_sop is asserted; invalid when decfail is
asserted.

num_err_bit Number of bits errors corrected in the codeword. Valid when source_sop is asserted; invalid when
decfail is asserted. Connected only when the Bit error (Full count) option is turned on. Refer to
“RS Decoder” on page 3–4.

num_err_bit0 Number of bit errors for the corrections from bit 1 to bit 0. The latest is the correct bit. Valid when
sop_source is asserted; invalid when decfail is asserted. The decoder presents these values at
the next source_sop assertion (at the next codeword). Connected only when the Bit error (Split
count) option is turned on.

num_err_bit1 Number of bit errors for the corrections from bit 0 to bit 1. The latest is the correct bit. Valid when
sop_source is asserted; invalid when decfail is asserted. The decoder presents these values at
the next source_sop assertion (at the next codeword). Connected only when the Bit error (Split
count) option is turned on.

Table 3–9. Calculate NC

Erasures Keysize NC

No Half Max (N, 10 × R + 4)

No Full Max (N, 7 × R + 5)

Yes Half Max (N, 10 × R + 6)

Yes Full Max (N, 8 × R + 4)
Reed-Solomon Compiler User Guide © December 2010 Altera Corporation

© December 2010 Altera Corporation
A. Using the RS Encoder or Decoder in a
CCSDS System
Introduction
The Reed-Solomon (RS) encoder or decoder MegaCore functions work in canonical
base (otherwise known as conventional base). This base can cause confusion when
trying to implement the RS encoder or decoder directly into a dual-base system, for
example, when working with the Consultative Committee for Space Data Systems
(CCSDS) standard.

To transfer from a canonical-base to a dual-base system, a Berlekamp transform is
used, which you need to implement in logic. Figure A–1 shows an example use of the
Berlekamp transform.

Test Patterns
If you are working with a dual-base system, for example, CCSDS, and wish to supply
the RS encoder or decoder with some test patterns from the dual-base system, follow
these steps:

1. Apply the Berlekamp transform (dual to canonical) to the test pattern.

2. Apply the test pattern to RS encoder or decoder.

3. Apply the Berlekamp transform (canonical to dual) to the encoder output.

4. Check the test pattern.

f For more information about implementing the transformation function, refer to
Annex B of the standard specification document CCSDS-101.0-B-5 at www.ccsds.org.

Figure A–1. Using the Berlekamp Transform

RS Encoder
Berlekamp
Transform

(Canonical to Dual)

Pre-transform
(Dual to Canonical)

Post-transform
(Canonical to Dual)

Berlekamp
Transform

(Dual to Canonical)

Channel

RS Decoder
Reed-Solomon Compiler User Guide

http://www.ccsds.org

A–2 Appendix A: Using the RS Encoder or Decoder in a CCSDS System
Test Patterns
Reed-Solomon Compiler User Guide © December 2010 Altera Corporation

© December 2010 Altera Corporation
Additional Information
Revision History
The following table shows the revision history for this user guide.

How to Contact Altera
For the most up-to-date information about Altera® products, refer to the following
table.

Date Version Changes Made

December 2010 10.1 ■ Added preliminary support for Arria II GZ devices.

■ Updated support level to final support for Stratix IV GT devices.

July 2010 10.0 ■ Added prelminary support for Stratix V devices

November 2009 9.1 ■ Maintenance update

■ Reorganized to clarify two design flows.

■ Added preliminary support for Cyclone III LS, Cyclone IV, and HardCopy IV GX devices

March 2009 9.0 Added Arria® II GX device support

November 2008 8.1 No changes

May 2008 8.0 Added device support for Stratix® IV devices

October 2007 7.2 No changes

May 2007 7.1 Updated rserr signal

December 2006 7.0 Added support for Cyclone® III devices

December 2006 6.1 Updated format

Contact (Note 1)
Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Technical documentation Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative.
Reed-Solomon Compiler User Guide

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
Typographic Conventions
The following table shows the typographic conventions that this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicates command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box.

bold type Indicates directory names, project names, disk drive names, file names, file name
extensions, and software utility names. For example, \qdesigns directory, d: drive,
and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicates document titles. For example: AN 519: Stratix IV Design Guidelines.

Italic type Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicates keyboard keys and menu names. For example, Delete key and the Options
menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. Active-low signals are denoted by suffix n. Example: resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

1., 2., 3., and
a., b., c., and so on.

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

r The angled arrow instructs you to press the enter key.

f The feet direct you to more information about a particular topic.
Reed-Solomon Compiler User Guide © December 2010 Altera Corporation

	Reed-Solomon Compiler User Guide
	Contents
	1. About This Compiler
	Release Information
	Device Family Support
	Features
	General Description
	Performance and Resource Utilization
	Installation and Licensing
	OpenCore Plus Evaluation
	OpenCore Plus Time-Out Behavior

	2. Getting Started
	Design Flows
	DSP Builder Flow
	MegaWizard Plug-In Manager Flow
	Parameterize the MegaCore Function
	Set Up Simulation
	Generate the MegaCore Function

	Simulate the Design
	Compile the Design
	Program a Device

	3. Functional Description
	Background
	Erasures
	Shortened Codewords
	Variable Encoding and Decoding

	RS Encoder
	RS Decoder
	Error Symbol Output
	Bit Error Count

	Interfaces
	Parameters
	Signals
	Throughput Calculator
	Introduction
	Test Patterns

	Additional Information
	Revision History
	How to Contact Altera
	Typographic Conventions

