
AN-505-2.1 Application Note

3GPP LTE Turbo Reference Design

3GPP LTE Turbo Reference Design
The Altera® 3GPP LTE Turbo Reference Design demonstrates using Turbo codes for
encoding with trellis termination support, and forward error correction (FEC)
decoding with early termination support. The reference design is suitable for 3GPP
long term evolution (LTE or LTE-A) channel card or baseband modem applications
compatible with the 3GPP Technical Specification.

f For more information about the 3GPP Technical Specification, refer to 3GPP Technical
Specification: Group Radio Access Network, Evolved Universal Terrestrial Radio Access,
Multiplexing and Channel Coding (Release 8), TS 36.212 v8.3.0, May 2007.

The reference turbo decoder supports the Successive Interference Cancellation (SIC)
technique, which may be employed by the basestation eNB receiver as the channel
coding equalisation technique to improve the throughput performance in the LTE-A
standard.

f For more information about enhancements for the LTE-A standard, refer to
LTE-Advanced Physical Layer available on the 3GPP website (www.3gpp.org).

Turbo codes were first proposed by Berrou (and others) in 1993. Since its introduction,
turbo code has become the coding technique of choice in many communication and
storage systems due to its near Shannon limit error correction capability. These
applications include 3GPP, consultative committee for space application (CCSDS)
telemetry channel coding, worldwide interoperability for microwave access
(WiMAX), and 3GPP LTE, which require throughputs in the range from two to several
hundred Mbps. Under typical configuration settings, the Altera 3GPP LTE Turbo
Decoder meets the high data uplink rates targeted by 3GPP LTE, offering throughput
rates of 235Mbps.

f For more information about turbo codes, refer to C. Berrou, A. Glavieux, and P.
Thitimajshima, Near Shannon Limit Error-Correcting, Coding, and Decoding: Turbo Codes,
in Proceedings of the IEEE International Conference on Communications, 1993, pp.
1064-1070.

Turbo Encoder
The 3GPP LTE Turbo encoding specified in the 3GPP LTE specification uses parallel
concatenated convolutional code. An information sequence is encoded by a
convolutional encoder, and an interleaved version of the information sequence is
encoded by another convolutional encoder.
January 2011 Altera Corporation

Subscribe

Copyright © 2011 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera
logo, and specific device designations are trademarks and/or service marks of Altera Corporation in the U.S. and other
countries. All other words and logos identified as trademarks and/or service marks are the property of Altera Corporation or
their respective owners. Altera products are protected under numerous U.S. and foreign patents and pending applications,
maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in
accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time
without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or
service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest
version of device specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive
San Jose, CA 95134
www.altera.com

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=AN-505
http://www.3gpp.org/

Page 2 Turbo Encoder
Turbo Encoder Architecture
The Turbo encoder is implemented with two 8-state constituent encoders and one
Turbo code internal interleaver (Figure 1).

The Turbo encoder supports the following features:

■ 3GPP LTE and LTE-A compliant.

■ All 3GPP LTE interleaver block sizes are selectable at run time.

■ Code rate 1/3 only. Other code rates can be achieved by external rate matching.

■ Double-buffering allows the encoder to receive data while processing the previous
data block.

■ C/MATLAB bit-accurate models for RTL test vector generation.

■ Automatic generation of VHDL or Verilog HDL testbenches using the
MegaWizard® Plug-In Manager.

■ Avalon® Streaming (Avalon-ST) interface.

■ OpenCore Plus evaluation license.

Transfer Function
The transfer function of the 8-state constituent code for parallel concatenated
convolutional code is:

where go(D) = 1 + D2 + D3 and g1(D) = 1 + D + D3.

The initial values of the shift registers of the 8-state constituent encoders are all zeros
when starting to encode the input bits.

The output from the turbo coder is:

X0, Z0, Z’0, X1, Z1, Z’1, ..., XK–1, ZK–1, Z’K–1

Where:

■ Bits X0, X1, ..., XK–1 are input to both the first 8-state constituent encoder and the
internal interleaver (K is the number of bits).

Figure 1. Turbo Encoder Architecture

Upper
Encoder

Lower
Encoder

Interleaver

Output

Input
Xk XkXk

Zk

Z’kX’k

Systematic
Output

G D  1
g1 D 
g0 D 
---------------=
3GPP LTE Turbo Reference Design January 2011 Altera Corporation

Turbo Encoder Page 3
■ Bits Z0, Z1, ..., ZK–1 and Z’0, Z’1, ..., Z’K–1 are output from the first and second 8-state
constituent encoders.

■ The bits output from the internal interleaver (and input to the second 8-state
constituent encoder) are X’0, X’1, ..., X’K–1.

Trellis Termination
Figure 2 shows the structure of a rate 1/3 Turbo encoder with trellis termination
(shown by the dotted lines).

Trellis termination is performed by taking the tail bits from the shift register feedback
after all information bits are encoded. The tail bits are padded after the encoding of
information bits.

The first three tail bits terminate the first constituent encoder (upper switch of
Figure 2 in lower position) while the second constituent encoder is disabled. The last
three tail bits terminate the second constituent encoder (lower switch of Figure 2 in
lower position) while the first constituent encoder is disabled.

The transmitted bits for trellis termination are then:

XK, ZK, XK+1, ZK+1, XK+2, ZK+2, X’K, Z’K, X’K+1, Z’K+1, X’K+2, Z’K+2

Internal Interleaver
The bits input to the Turbo code internal interleaver are denoted by X0, X1, ..., XK–1
where K is the number of input bits. The bits output from the Turbo code internal
interleaver are denoted by X’0, X’1, ..., X’K–1.

The relationship between the input and output bits is:

X’i = X, i = 0, 1, ..., K–1

Where the relationship between the output index i and the input (i) index satisfies
the following quadratic form:

(i) = (f1 i + f2 i2)modK

The parameters f1 and f2 depend on the block size K. Table 1 lists the interleaver
parameters specified in the 3GPP Technical Specification.

Figure 2. Structure of a Rate 1/3 Turbo Encoder

Interleaver

Output

DDD

DDD

Z’k

Zk

Xk

X’k

X’k

Xk
Input

2nd Constituent Encoder

1st Constituent Encoder
January 2011 Altera Corporation 3GPP LTE Turbo Reference Design

Page 4 Turbo Encoder
f For more information about the 3GPP Technical Specification, refer to 3GPP Technical
Specification: Group Radio Access Network, Evolved Universal Terrestrial Radio Access,
Multiplexing and Channel Coding (Release 8), TS 36.212 v8.3.0, May 2007.

Table 1. Turbo Code Internal Interleaver Parameters (Part 1 of 2)

i Ki f1 f2 i Ki f1 f2 i Ki f1 f2 i Ki f1 f2

1 40 3 10 48 416 25 52 95 1120 67 140 142 3200 111 240

2 48 7 12 49 424 51 106 96 1152 35 72 143 3264 443 204

3 56 19 42 50 432 47 72 97 1184 19 74 144 3328 51 104

4 64 7 16 51 440 91 110 98 1216 39 76 145 3392 51 212

5 72 7 18 52 448 29 168 99 1248 19 78 146 3456 451 192

6 80 11 20 53 456 29 114 100 1280 199 240 147 3520 257 220

7 88 5 22 54 464 247 58 101 1312 21 82 148 3584 57 336

8 96 11 24 55 472 29 118 102 1344 211 252 149 3648 313 228

9 104 7 26 56 480 89 180 103 1376 21 86 150 3712 271 232

10 112 41 84 57 488 91 122 104 1408 43 88 151 3776 179 236

11 120 103 90 58 496 157 62 105 1440 149 60 152 3840 331 120

12 128 15 32 59 504 55 84 106 1472 45 92 153 3904 363 244

13 136 9 34 60 512 31 64 107 1504 49 846 154 3968 375 248

14 144 17 108 61 528 17 66 108 1536 71 48 155 4032 127 168

15 152 9 38 62 544 35 68 109 1568 13 28 156 4096 31 64

16 160 21 120 63 560 227 420 110 1600 17 80 157 4160 33 130

17 168 101 84 64 576 65 96 111 1632 25 102 158 4224 43 264

18 176 21 44 65 592 19 74 112 1664 183 104 159 4288 33 134

19 184 57 46 66 608 37 76 113 1696 55 954 160 4352 477 408

20 192 23 48 67 624 41 234 114 1728 127 96 161 4416 35 138

21 200 13 50 68 640 39 80 115 1760 27 110 162 4480 233 280

22 208 27 52 69 656 185 82 116 1792 29 112 163 4544 357 142

23 216 11 36 70 672 43 252 117 1824 29 114 164 4608 337 480

24 224 27 56 71 688 21 86 118 1856 57 116 165 4672 37 146

25 232 85 58 72 704 155 44 119 1888 45 354 166 4736 71 444

26 240 29 60 73 720 79 120 120 1920 31 120 167 4800 71 120

27 248 33 62 74 736 139 92 121 1952 59 610 168 4864 37 152

28 256 15 32 75 752 23 94 122 1984 185 124 169 4928 39 462

29 264 17 198 76 768 217 48 123 2016 113 420 170 4992 127 234

30 272 33 68 77 784 25 98 124 2048 31 64 171 5056 39 158

31 280 103 210 78 800 17 80 125 2112 17 66 172 5120 39 80

32 288 19 36 79 816 127 102 126 2176 171 136 173 5184 31 96

33 296 19 74 80 832 25 52 127 2240 209 420 174 5248 113 902

34 304 37 76 81 848 239 106 128 2304 253 216 175 5312 41 166

35 312 19 78 82 864 17 48 129 2368 367 444 176 5376 251 336

36 320 21 120 83 880 137 110 130 2432 265 456 177 5440 43 170
3GPP LTE Turbo Reference Design January 2011 Altera Corporation

Turbo Encoder Page 5
Double-Buffering
The data path is double-buffered to allow a new data block to be shifted in while
encoding the previous block. This technique reduces the delay in I/O operation,
makes use of the hardware as much as possible and improves the overall throughput.

Input Data Format
The required input data ordering for a block of size K is:

X0, X1, X2, XK - 1

Output Data Format
The output data is three bits wide. Table 2 lists the ordering for a block of size K.

37 328 21 82 84 896 215 112 131 2496 181 468 178 5504 21 86

38 336 115 84 85 912 29 114 132 2560 39 80 179 5568 43 174

39 344 193 86 86 928 15 58 133 2624 27 164 180 5632 45 176

40 352 21 44 87 944 147 118 134 2688 127 504 181 5696 45 178

41 360 133 90 88 960 29 60 135 2752 143 172 182 5760 161 120

42 368 81 46 89 976 59 122 136 2816 43 88 183 5824 89 182

43 376 45 94 90 992 65 124 137 2880 29 300 184 5888 323 184

44 384 23 48 91 1008 55 84 138 2944 45 92 185 5952 47 186

45 392 243 98 92 1024 31 64 139 3008 157 188 186 6016 23 94

46 400 151 40 93 1056 17 66 140 3072 47 96 187 6080 47 190

47 408 155 102 94 1088 171 204 141 3136 13 28 188 6144 263 480

Table 1. Turbo Code Internal Interleaver Parameters (Part 2 of 2)

i Ki f1 f2 i Ki f1 f2 i Ki f1 f2 i Ki f1 f2

Table 2. Turbo Encoder Output Data Ordering

Output Data
source_data

2 1 0

0 Z ’0 Z0 X0

1 Z ’1 Z1 X1

   
K - 1 Z ’K - 1 ZK - 1 XK - 1

K XK + 1 ZK XK

K + 1 ZK + 2 XK + 2 ZK + 1

K + 2 X ’K + 1 Z ’K X ’K
K + 3 Z ’K + 2 X ’K + 2 Z ’K + 1
January 2011 Altera Corporation 3GPP LTE Turbo Reference Design

Page 6 Turbo Encoder
Latency Calculation
The encoding delay D is the number of clock cycles consumed to encode an entire
block of data. If K is the block size, D = K + 14.

The encoding delay does not include the loading delay, which requires the same
number of clock cycles as the block size K to load the input data to the input buffer.

For example:

■ When K = 6144, D = 6144 +14 = 6158

■ When K = 40, D = 40 + 14 = 54

Then the encoding latency (the time taken by the encoder to encode an entire block)
can be calculated using the following formula:

s

Where fMAX is the system clock speed.

For the above examples, L = 0.22 s and 25.13 s respectively for fMAX = 245 MHz.

Throughput Calculation
The throughput can be calculated using the following formula:

 bps

For the examples in the previous section, T = 181.48 Mbps and 244.44 Mbps
respectively.

Test Vector Generation
The following files are needed to perform RTL simulation:

■ ctc_encoder_input.txt

■ ctc_encoder_input_info.txt

One test case is provided in <Turbo Install path>/turbo/lib/test_files.

You can use the following procedures to generate your own test vectors using the
provided system:

1. Start MATLAB (version 2007b or later).

2. Change the working directory to <Turbo Install path>/turbo/cml.

3. Type the following command:

Cml_Startup 

4. Make a test subdirectory by typing the following command:

mkdir ../test 

5. Type the following command:

[sim_param, sim_state] = CmlSimulate('Scenarios_LTE_ENCODER_RTL',
[832 832 832 40 48 56 6144]); 

L D
fMAX
-------------=

T
K fMAX

D
------------------------=
3GPP LTE Turbo Reference Design January 2011 Altera Corporation

Turbo Decoder Page 7
This command generates test vectors for feeding the encoder with inputs of block size
832 three times and then 40, 48, 56 and 6144 as the last block. You can modify this
matrix to fit your test needs.

When the command runs successfully, files appear in your test vector directory
<Turbo install path>/turbo/test. You can modify the parameter dump_dir in the
Scenarios_LTE_ENCODER_RTL.m file to change this location. Copy these files to
your Quartus II project directory.

The software simulation model generates the following three files:

■ ctc_encoder_input.txt

■ ctc_encoder_input_info.txt

■ ctc_encoder_output_gold.txt

After RTL simulation, another file ctc_encoder_output.txt is created which should
match the contents of ctc_encoder_output_gold.txt.

For information on how to start RTL simulation, refer to “Simulate the Design” on
page 24.

Turbo Decoder
Figure 3 shows the structure of the Turbo decoder.

A Turbo decoder consists of two single soft-in soft-out (SISO) decoders, which work
iteratively. The output of the first (upper decoder) feeds into the second to form a
Turbo decoding iteration. Interleaver and deinterleaver blocks re-order data in this
process.

The Turbo decoder supports the following features:

■ 3GPP LTE compliant.

Figure 3. Turbo Decoder Architecture

Notes to Figure 3:

(1) Present only when Turbo SIC and Extrinsic Input Information is enabled.
(2) LLR output is present only when Turbo SIC configuration is enabled, else hard bits are output.
(3) Present only when Turbo SIC and Extrinsic Output Information is enabled.

Upper
Decoder

Lower
Decoder

r(Xk)

r(Zk)

r(Z’k) Deinterleaver

Interleaver

Interleaver

Ex_out (3)

Ex_in (1)

Xk / LLR (Xk) (2)
Zk / LLR (Zk) (2)
Z’k / LLR (Z’k) (2)
January 2011 Altera Corporation 3GPP LTE Turbo Reference Design

Page 8 Turbo Decoder
■ Successive Interface Cancellation (SIC) for the LTE-A channel coding enhancement
over LTE.

■ Run time parameters for interleaver size and number of iterations.

■ Early termination support with cyclical redundancy check (CRC).

■ Compile time parameters for the number of parallel engines, choice of decoding
algorithm, input precision, and output size.

■ Double-buffering supports reduced latency real-time applications by allowing the
decoder to receive data while processing the previous data block.

■ Requires no external memory.

■ C/MATLAB bit-accurate models for performance simulation or RTL test vector
generation.

■ VHDL or Verilog HDL testbench generation using the MegaWizard Plug-In
Manager.

■ Avalon Streaming (Avalon-ST) interface.

■ OpenCore Plus evaluation license.

Decoding Algorithms
The following two variants of the Maximum A Posteriori (MAP) decoding algorithm
are supported:

■ LogMAP—Works on the logarithm domain of MAP and gives good bit error rate
(BER) but consumes more logic resources. This option is currently not fully
supported. Contact Altera for more information.

■ MaxLogMAP—A simplified version of LogMAP that uses less logic resource at a
cost of slightly reduced BER performance relative to the LogMAP variant. The
MaxLogMAP algorithm implemented in this reference design is a version of
MaxLogMAP corrected with a scaling factor.

f For more information about the MaxLogMAP Turbo Decoder, refer to J.
Vogt, A. Finger, Improving the Max-Log-MAP Turbo Decoder, Electronics
Letters, 36(23), 1937-1939, 2000.

Input Data Format
Table 3 lists the input data ordering required for the Turbo decoder.

Table 3. Turbo Decoder Input Data Ordering (Part 1 of 2)

Input Data
sink_data

3N-1 downto 2N 2N-1 downto N N-1 downto 0

0 Z ’0 Z0 X0

1 Z ’1 Z1 X1

   
K - 1 Z ’K - 1 ZK - 1 XK - 1

K XK + 1 ZK XK
3GPP LTE Turbo Reference Design January 2011 Altera Corporation

Turbo Decoder Page 9
The Turbo decoder requires all data to be in the log-likelihood format. The connected
system must provide soft information, including parity 1 and parity 2 bit sequences
according to the following equation:

The log-likelihood value is the logarithm of the probability that the received bit is a 1,
divided by the probability of this bit being a 0, and is represented as a two’s
complement number. A value of zero indicates equal probability of a 1 and a 0, which
should be used for de-puncturing. The most negative two’s complement number is
unused so that the representation is balanced.

Table 4 lists the 4-bit mapping values.

Output Data Format
The number of output bits (OUT_WIDTH_g) can be specified to be 1 or 8 bits wide.
For 1 bit, the ordering is:

X0, X1, X2, XK-1

K + 1 ZK + 2 XK + 2 ZK + 1

K + 2 X ’K + 1 Z ’K X ’K
K + 3 Z ’K + 2 X ’K + 2 Z ’K + 1

Note to Table 3:

(1) N represents the number of input bits (IN_WIDTH_g).

Table 4. Input Values

Input (3 downto 0) Value

0111 Most likelihood of a 1

 
0001 Lowest likelihood of a 1

0000 Equal probability of a 0 or 1

1111 Lowest likelihood of a 0

 
1001 Most likelihood of a 0

1000 Not used

Table 3. Turbo Decoder Input Data Ordering (Part 2 of 2)

Input Data
sink_data

3N-1 downto 2N 2N-1 downto N N-1 downto 0

L x  P x 1= 
P x 0= 
----------------------log=
January 2011 Altera Corporation 3GPP LTE Turbo Reference Design

Page
10

Turbo Decoder

3GPP LTE Turbo Reference Design
January 2011

Altera Corporation

tput is also enabled. The extrinsic
tematic and the parity bits 1 and 2,
_WIDTH_g+5.

f data. This is dependant on the block
oder.

case latency.

ngines specified in the decoder. Then

1 0

1Z1Z’1 E0X0Z0Z’0

9Z9Z’9 E8X8Z8Z’8
... ...

-7ZK-7Z’K-7 EK-8XK-8ZK-8Z’K-8
Table 5 lists the output data ordering for 8 bits.

Table 6 lists the output data ordering for the Turbo SIC configuration, when extrinsic ou
output Ex_out is here denoted by Ei, while Xi, Zi, and Z’i are the LLR outputs for the sys
respectively. The data width of these outputs is specified by the configuration variable IN

Latency Calculation
The decoding delay D is the number of clock cycles consumed to decode an entire block o
size, the number of iterations to perform, and the number of engines available in the dec

The following calculations assume no early termination is taking place, so are the worst

Let K be the block size, I be the number of decoding iterations and N be the number of e
the decoding delay D can be calculated using one of the following formula:

■ If K < 264, D = 26 + (2 × f(K,N) + 14) × 2 × I

■ If K  264, D = 26 + (f(K,N) + 46) × 2 × I

Table 5. 8-bit Output Data Ordering

Output
Order

source_data

7 6 5 4 3 2 1 0

1 X7 X6 X5 X4 X3 X2 X1 X0

2 X15 X14 X13 X12 X11 X10 X9 X8

...

K/8 XK - 1 XK – 2 XK – 3 XK – 4 XK – 5 XK – 6 XK – 7 XK – 8

Table 6. Turbo SIC Configuration Output Data Ordering

Output
Order

source_data

7 6 5 4 3 2

1 E7X7Z7Z’7 E6X6Z6Z’6 E5X5Z5Z’5 E4X4Z4Z’4 E3X3Z3Z’3 E2X2Z2Z’2 E1X

2 E15X15Z15Z’15 E14X14Z14Z’14 E13X13Z13Z’13 E12X12Z12Z’12 E11X11Z11Z’11 E10X10Z10Z’10 E9X

...

K/8 EK-1XK-1ZK-1Z’K-1 EK-2XK-2ZK-2Z’K-2 EK-3XK-3ZK-3Z’K-3 EK-4XK-4ZK-4Z’K-4 EK-5XK-5ZK-5Z’K-5 EK-6XK-6ZK-6Z’K-6 EK-7XK

Turbo Decoder Page 11
Where:

For example:

■ If K = 6144, N = 8, I = 8, D = 26 + (6144/8 + 46) × 2 × 8 = 13,050

■ If K = 40, N = 8, I = 8, D = 26 + (2 × 40/8 + 14) × 2 × 8 = 410

The decoding latency (the time the decoder takes to decode an entire block to the
decoded data is ready for output) can be calculated using the following formula:

s

Where fMAX is the system clock speed.

For the above examples, L = 52.2 s and 1.64s respectively for fMAX = 250 MHz.

1 These calculations are for running the Turbo decoder for 8 iterations (I = 8) and
assuming no early termination has occurred.

Throughput Calculation
The throughput can be calculated using the following formula:

 bps

For the examples in the previous section, T = 117.7 Mbps and 24.38 Mbps respectively.

1 These calculations are for running the Turbo decoder for 8 iterations (I = 8) and
assuming no early termination has occurred.

Early Termination Support
This version of the LTE Turbo reference design supports early termination using
CRC24A or CRC24B (refer to the 3GPP Technical Specification for more information).

The CRC checksum generated by the SISO decoder outputs (both lower and the upper
decoders in Figure 3 on page 7) are checked after every iteration. Rather than
continuing until the maximum number of iterations specified at the input ports, the
Turbo decoding is terminated as soon as the CRC results with success.

The early termination reduces power consumption, the overall latency and increases
the throughput predicted above significantly. Literatures also shows it increases BER
performance of the decoder. The gains in any of the above metrics are dependent on
the signal-to-noise ration (SNR) of the received data block, block size, and the
maximum number of iterations you have specified.

f K N 
K N if K is divisible by N
K 8 if K is not divisible by N




=

L D
fMAX
-------------=

T
K fMAX

D
------------------------=
January 2011 Altera Corporation 3GPP LTE Turbo Reference Design

Page 12 Turbo Decoder
Test Vector Generation
The following files are needed to perform RTL simulation:

■ ctc_input_info.txt

■ ctc_input_data.txt

One test case is provided in <Turbo Install path>/turbo/lib/test_files.

You can use the following procedure to generate your own test vectors using the
provided system:

1. Start MATLAB (version 2007b or later).

2. Change the working directory to <Turbo Install path>/turbo/cml.

3. Type the following command:

Cml_Startup 

4. Make a test subdirectory by typing the following command:

mkdir ../test 

5. Check the file Scenarios_LTE_CRC_ET_RTL.m for parameters such as SNR, CRC
type, and max_iterations that you would like to change. Make any required
changes and save the file.

1 For details of these parameters, refer to the readme.pdf file in <Turbo Install
path>/turbo/cml/documentation.

6. Type the following command:

[sim_param, sim_state] = CmlSimulate('Scenarios_LTE_CRC_ET_RTL',
[832 832 832 40 48 56 6144]); 

This command generates test vectors for feeding the decoder with inputs of block size
832 three times and then 40, 48, 56 and 6144 as the last block. This matrix can be
modified to fit your test needs.

If this command is run successfully, some files are created in your test vector directory
<Turbo install path>/turbo/test. You can modify the parameter dump_dir in the
Scenarios_LTE_CRC_ET_RTL.m file to change this location. Copy these files to your
Turbo decoder Quartus II project directory (created through the MegaWizard Plug-In
Manager).

The following four files are generated from the software simulation model:

■ ctc_input_info.txt

■ ctc_input_data.txt

■ ctc_decoded_output_gold.txt

■ ctc_output_et_info_gold.txt

After RTL simulation, another two files ctc_decoded_output.txt and
ctc_output_et_info.txt are created, which should match the contents of
ctc_decoded_output_gold.txt and ctc_output_et_info_gold.txt.

For information on how to start RTL simulation, refer to “Simulate the Design” on
page 24.
3GPP LTE Turbo Reference Design January 2011 Altera Corporation

Avalon Streaming Interface Page 13
Avalon Streaming Interface
The Avalon Streaming (Avalon-ST) interface is an evolution of the Atlantic™
interface. The Avalon-ST interface defines a standard, flexible, and modular protocol
for data transfers from a source interface to a sink interface and simplifies the process
of controlling the flow of data in a datapath.

Avalon-ST interface signals can describe traditional streaming interfaces supporting a
single stream of data without knowledge of channels or packet boundaries. Such
interfaces typically contain data, ready, and valid signals. The Avalon-ST interface can
also support more complex protocols for burst and packet transfers with packets
interleaved across multiple channels.

The Avalon-ST interface inherently synchronizes multi-channel designs, which allows
you to achieve efficient, time-multiplexed implementations without having to
implement complex control logic.

The Avalon-ST interface supports backpressure, which is a flow control mechanism,
where a sink can signal to a source to stop sending data. The sink typically uses
backpressure to stop the flow of data when its FIFO buffers are full or when there is
congestion on its output.

When designing a datapath, which includes a 3GPP LTE Turbo reference design, you
may not need backpressure if you know the downstream components can always
receive data. You may achieve a higher clock rate by driving the source_ready
signal high, and not connecting the sink_ready signal.

The Avalon-ST interface used in this 3GPP LTE Turbo reference design has a
READY_LATENCY value of zero.

1 For more information on the Avalon-ST interface, refer to the Avalon Interface
Specifications.

Handling Packet Format Errors
The Turbo megafunction has two error ports to communicate data errors in the
system:

■ Sink_error is a 2-bit input port to receive the up front error signal.

■ Source_error is a 2-bit output port to indicate that there is an error condition
(either caught by the Turbo megafunction or elsewhere in the previous blocks).

The megafunction can handle and recover from the following packet format related
errors:

■ If an error code is received from the sink_error port during the input of a data
block, the Turbo megafunction assumes the current data block contains some sort
of error and discards the data. Once the error signal is asserted low, the Turbo
megafunction expects a fresh start-of-packet (sink_sop = 1, sink_valid = 1)
and ignores the data input until a fresh packet is received.
January 2011 Altera Corporation 3GPP LTE Turbo Reference Design

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Page 14 System Requirements
■ If there is a misplaced start-of-packet (sink_sop) or end-of-packet (sink_eop), an
error code is issued depending on the type of error:

■ 01 -> missing start-of-packet

■ 10 -> missing end-of-packet

■ 11 -> unexpected start-of-packet and unexpected end-of-packet

■ If the data block size is not supported by the LTE standard, the Turbo
megafunction issues an error signal with the value 11 and ignores the rest of the
data block until a fresh start of a packet.

Because of the long processing time of a data block and double-buffering at the input
and output ports, the errors at the input data are reported as soon as they occur.
Therefore, the source_error signal might get asserted high at any time during the
output of a previous block.

When an error is detected, the error code appears for one clock cycle only.

If there is more than one error related to a particular data block, the Turbo
megafunction only displays the error code for the first detected error.

It takes a few clock cycles to report the detected error at the source_error port.

Exceptions to the Error Recovery
When the detected error is very close to the boundary of the end-of-packet (that is
when there is a missing end-of-packet, or unexpected start-of-packet or end-of-
packet) and there is a block following straight after the erroneous block with a
different CRC type to the previous block, the Turbo megafunction may not recover
from the error immediately. However, the error is reported from the source_error
port in all circumstances.

System Requirements
The 3GPP LTE Turbo reference design is supported on Windows XP and Linux
workstations, and requires the Quartus II software versions 9.0 and later.

Installing the Reference Design
The 3GPP LTE Turbo reference design is available as an InstallShield file from the
Altera Wireless business unit.
3GPP LTE Turbo Reference Design January 2011 Altera Corporation

Installing the Reference Design Page 15
Figure 4 shows the directory structure for the design files.

OpenCore Plus Evaluation
With Altera’s free OpenCore Plus evaluation feature, you can perform the following
actions:

■ Simulate the behavior of the 3GPP LTE Turbo reference design within your
system.

■ Verify the functionality of your design, as well as evaluate its size and speed
quickly and easily.

■ Generate time-limited device programming files for designs that include
megafunctions.

■ Program a device and verify your design in hardware.

You only need to purchase a license when you are completely satisfied with its
functionality and performance, and want to take your design to production.

After you purchase a license, you can request a license file from the Altera website at
www.altera.com/licensing and install it on your computer. When you request a
license file, Altera emails you a license.dat file. If you do not have Internet access,
contact your local Altera representative.

f For more information on OpenCore Plus hardware evaluation, refer to AN 320:
OpenCore Plus Evaluation of Megafunctions.

OpenCore Plus Time-Out Behavior
OpenCore Plus hardware evaluation supports the following two operation modes:

■ Untethered—the design runs for a limited time.

■ Tethered—requires a connection between your board and the host computer. If
tethered mode is supported by all megafunctions in a design, the device can
operate for a longer time or indefinitely.

Figure 4. Reference Design Directory Structure

 cml
 Contains coded modulation library (CML) simulation models.

 doc
 Contains an application note which describes the reference design.

 lib
 Contains encrypted lower-level design files and other support files.

<path>
Installation directory

 turbo
 Contains the reference design files and documentation.

cmodel
Contains example code for the Turbo decoder C model.
January 2011 Altera Corporation 3GPP LTE Turbo Reference Design

http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/an/an320.pdf

Page 16 Getting Started
All functions in a design time out simultaneously when the most restrictive
evaluation time is reached. If there is more than one function in a design, a specific
function’s time-out behavior may be masked by the time-out behavior of the other
functions. The untethered timeout for the 3GPP LTE Turbo decoder reference design is
1 hour; the tethered timeout value is indefinite.

The reset_n signal is forced low when the hardware evaluation time expires, keeping
the 3GPP LTE Turbo decoder reference design permanently in its reset state.

Getting Started
After you have installed the 3GPP LTE Turbo decoder reference design, a Turbo
megafunction is available in the Error Detection/Correction section of the
MegaWizard Plug-in Manager in the Quartus II software.

The MegaWizard Plug-in Manager flow allows you to parameterize your Turbo
decoder, and manually integrate the megafunction variation into a Quartus II design.
Perform the following steps to use the MegaWizard Plug-in Manager.

1. Create a new project using the New Project Wizard available from the File menu
in the Quartus II software.

2. Click MegaWizard Plug-in Manager on the Tools menu, and select Create a new
custom megafunction variation (Figure 5).

3. Click Next, expand the DSP section and choose Turbo v2.0 from the Error
Detection/Correction megafunctions in the Installed Plug-Ins list (Figure 6).

Figure 5. MegaWizard Plug-In Manager
3GPP LTE Turbo Reference Design January 2011 Altera Corporation

Getting Started Page 17
1 If Turbo v2.0 does not appear in the MegaWizard Plug-In Manager, you
may need to add <Turbo Install Path>/turbo/lib to the Quartus II global user
libraries (on the Tools menu, click Options).

4. Verify that the device family is the same as you specified in the New Project
Wizard.

Figure 6. Selecting the Turbo Megafunction
January 2011 Altera Corporation 3GPP LTE Turbo Reference Design

Page 18 Getting Started
5. Specify the top-level output file name for your megafunction variation and click
Next to display the parameter editor Parameter Settings tab (Figure 7).

6. Use the parameter editor to specify the required parameters. Table 7 lists a
description of the parameters.

Figure 7. Parameter Settings Tab

Table 7. 3GPP LTE Turbo Parameter (Part 1 of 2)

Parameter Value Description

Target

Stratix IV, Stratix III,
Stratix II GX, Stratix II,
Cyclone III, Arria II GX,
Arria GX

Displays the target device family that was specified when you
created the Quartus II project.

Codec type Encoder, Decoder Select whether to generate an encoder or decoder.

Number of engines 2, 4, 8, 16 (1) Select the number of engines used by the decoder.

MAP decoding MaxLogMAP, LogMAP (2) Select from a list of available decoding algorithms.

Number of input bits 4, 5, 6, 7, 8 (1) Select the number of input bits to the decoder.
3GPP LTE Turbo Reference Design January 2011 Altera Corporation

Getting Started Page 19
7. Click Next to complete the parameterization and display the EDA tab (Figure 8).

Number of output bits 8 (3) The number of output bits from the decoder.

Notes to Table 7:

(1) The reference design has been tested for 2 or 8 engines with 6 or 8 input bits. Contact Altera if you require any other configuration.
(2) The LogMAP option is not currently supported.
(3) Only 8-bit output mode is currently supported.

Table 7. 3GPP LTE Turbo Parameter (Part 2 of 2)

Parameter Value Description

Figure 8. EDA Tab
January 2011 Altera Corporation 3GPP LTE Turbo Reference Design

Page 20 Getting Started
8. On the EDA tab, turn on Generate Simulation Model.

1 An IP functional simulation model is a cycle-accurate VHDL or Verilog
HDL model produced by the Quartus II software.

c Use the simulation models only for simulation and not for synthesis or any
other purposes. Using these models for synthesis creates a nonfunctional
design.

9. Some third-party synthesis tools can use a netlist that contains only the structure
of the megafunction, but not detailed logic, to optimize performance of the design
that contains the megafunction. If your synthesis tool supports this feature, turn
on Generate netlist.

10. Click Next to display the Summary tab (Figure 9).

11. On the Summary tab, select the files you want to generate. A gray checkmark
indicates a file that is automatically generated. All other files are optional.

Figure 9. Summary Tab
3GPP LTE Turbo Reference Design January 2011 Altera Corporation

Getting Started Page 21
12. Click Finish to generate the megafunction and supporting files. The generation
phase may take several minutes to complete. The generation progress and status is
displayed in a report window.

h For more information about the MegaWizard Plug-In Manager, refer to the Quartus II
Help.

Generated Files
Table 8 lists the generated files and other files that may be in your project directory.
The names and types of files vary depending on the variation name and HDL type
you specify during parameterization. For example, a different set of files are created
based on whether you create your design in Verilog HDL or VHDL.

1 A generation report file containing a list of the design files and ports defined for your
function variation is saved as a HTML file if you turned on the MegaCore function
report file check box in the parameter editor Summary tab.

Table 8. Generated Files (Note 1)

Filename Description

<variation name>.bsf Quartus II symbol file for the megafunction variation. You can use this file in the
Quartus II block diagram editor.

<variation name>.cmp A VHDL component declaration file for the megafunction variation. Add the contents of
this file to any VHDL architecture that instantiates the megafunction.

<variation name>.html Generation report file which contains lists of the generated files and ports for the
megafunction variation.

<variation name>.qip Contains Quartus II project information for your megafunction variation.

<variation name>.log Log file.

<variation name>.vhd, or .v

A megafunction variation file, which defines a VHDL or Verilog HDL top-level
description of the custom megafunction. Instantiate the entity defined by this file
inside of your design. Include this file when compiling your design in the Quartus II
software.

<variation name>.vho or .vo VHDL or Verilog HDL IP functional simulation model.

<variation name>_bb.v Verilog HDL black-box file for the megafunction variation. Use this file when using a
third-party EDA tool to synthesize your design.

<variation name>_gb.v A timing and resource estimation netlist for use in some third-party synthesis tools.

<variation name>_nativelink.tcl A Tcl script that can assign NativeLink simulation testbench settings to the Quartus II
project.

<variation name>_quartus.tcl A Tcl script that can run compilation in the Quartus II software.

<variation name>_tb.vhd, or .v
A VHDL or Verilog HDL testbench file for the megafunction variation. The VHDL file is
generated when a VHDL top level has been chosen or the Verilog HDL file when a
Verilog HDL top level has been chosen.

<variation name>_hw.tcl
A hardware Tcl file to easily integrate your Turbo IP core variation into the SOPC
Builder. To view your Turbo IP core variation in the SOPC Builder library, add your
project source directory to the SOPC Builder IP search path in the Options tab.

Note to Table 8:

(1) The <variation name> prefix is added automatically using the base output file name you specified in the MegaWizard Plug-In Manager.
January 2011 Altera Corporation 3GPP LTE Turbo Reference Design

Page 22 Getting Started
Signals
The generation function report also lists the megafunction variation ports.

Table 9 lists the Turbo encoder signals.

Table 10 lists the Turbo decoder signals.

Table 9. 3GPP LTE Turbo Encoder Signals

Signal Direction Description

clk Input Clock signal that clocks all internal registers.

reset_n Input
Active low reset signal. The megafunction must always be reset before receiving data.
If the megafunction is not reset, the Turbo encoder may produce unexpected results
due to feedback signals.

sink_blk_size Input Specifies the incoming block size. See parameter Ki in Table 1 on page 4.

sink_sop Input Marks the start of an incoming packet.

sink_eop Input Marks the end of an incoming packet.

sink_valid Input Asserted when data at sink_data is valid. When sink_valid is not asserted,
processing is stopped until sink_valid is re-asserted.

source_ready Input Asserted by the downstream module if it is able to accept data.

sink_data Input Input data. See “Input Data Format” on page 5 for the required data ordering.

sink_error Input

Error signal indicating Avalon Streaming protocol violations on input side. Any non-
zero value on the sink_error port causes the Turbo encoder to ignore the current
data block. The value received from this port is written to the source_error
output port a few cycles later.

source_sop Output Marks the start of an outgoing packet.

source_eop Output Marks the end of an outgoing packet.

source_valid Output Asserted by the megafunction when there is valid data to output.

sink_ready Output Indicates when the megafunction is able to accept data.

source_error Output

Error signal indicating Avalon-ST protocol violations on source side:

00: No error

01: Missing start of packet

10: Missing end of packet

11: Unexpected end of packet

Other types of errors may also be marked as 11.

source_data Output Output data. See Table 2 on page 5 for the data ordering.

source_blk_size Output Specifies the outgoing block size. This port is a debug port in the testbench and can
be left unconnected.

Table 10. 3GPP LTE Turbo Decoder Signals (Part 1 of 2)

Signal Direction Description

clk Input Clock signal that clocks all internal registers.

reset_n Input
Active low reset signal. The megafunction must always be reset before receiving data.
If the megafunction is not reset, the Turbo decoder may produce unexpected results
due to feedback signals.

sink_blk_size Input Specifies the incoming block size (See parameter Ki in Table 1 on page 4).
3GPP LTE Turbo Reference Design January 2011 Altera Corporation

Getting Started Page 23
sink_sop Input Marks the start of an incoming packet.

sink_eop Input Marks the end of an incoming packet.

sink_valid Input Asserted when data at sink_data is valid. When sink_valid is not asserted,
processing is stopped until sink_valid is re-asserted.

source_ready Input Asserted by the downstream module if it is able to accept data.

sink_data Input Input data. (See Table 4 on page 9 for the required data ordering.)

sink_error Input

Error signal indicating Avalon-ST protocol violations on input side. Any non-zero value
on the sink_error port causes the Turbo decoder to ignore the current data block.
The value received from this port is written to the source_error output port a few
cycles later.

sink_max_iter Input Specifies the maximum number of half-iterations.

sel_CRC24A Input

Specifies the type of CRC that you need for the current data block:

0: CRC24A

1: CRC24B

source_blk_id Output Specifies the outgoing block ID. This port is a debug port in the testbench and can be
left unconnected.

source_sop Output Marks the start of an outgoing packet.

source_eop Output Marks the end of an outgoing packet.

source_valid Output Asserted by the megafunction when there is valid data to output.

sink_ready Output Indicates when the megafunction is able to accept data.

source_error Output

Error signal indicating Avalon-ST protocol violations on source side:

00: No error

01: Missing start of packet

10: Missing end of packet

11: Unexpected end of packet

Other types of errors may also be marked as 11.

source_data Output Output data. (See Table 7 on page 18 for the data ordering.)

source_blk_size Output Specifies the outgoing block size. This port is a debug port in the testbench and can be
left unconnected.

CRC_pass Output

Indicates whether CRC was successful:

0: Fail

1: Pass

CRC_type Output

Indicates the type of CRC that was used for the current data block:

0: CRC24A

1: CRC24B

source_iter Output Shows the number of half iterations after which the Turbo decoder stopped processing
the current data block.

Table 10. 3GPP LTE Turbo Decoder Signals (Part 2 of 2)

Signal Direction Description
January 2011 Altera Corporation 3GPP LTE Turbo Reference Design

Page 24 Getting Started
Simulate the Design
You can simulate your design using the VHDL or Verilog HDL IP functional
simulation models and testbench.

The IP functional simulation model is either a .vo or .vho file, depending on the
output language you specified. Compile the .vo or .vho file in your simulation
environment to perform functional simulation of your custom variation of the
megafunction.

f For more information on IP functional simulation models, refer to the Simulating
Altera Designs chapter in volume 3 of the Quartus II Handbook.

Simulating in Third-Party Simulation Tools Using NativeLink
You can perform a simulation in a third-party simulation tool from within the
Quartus II software, using NativeLink.

Use the Tcl script file <variation name>_nativelink.tcl to assign default NativeLink
testbench settings to the Quartus II project.

To perform a simulation in the Quartus II software using NativeLink, perform the
following steps:

1. Create a custom megafunction variation, but ensure you specify your variation
name to match the Quartus II project name.

2. Verify that the absolute path to your third-party EDA tool is set in the Options tab
under the Tools menu in the Quartus II software.

3. On the Processing menu, point to Start and click Start Analysis & Elaboration.

4. On the Tools menu, click Tcl scripts. Select the <variation name>_nativelink.tcl Tcl
script and click Run. Check for a message confirming that the Tcl script was
successfully loaded.

5. On the Assignments menu, click Settings, expand EDA Tool Settings, and select
Simulation. Select a simulator under Tool name then in NativeLink Settings,
select Compile test bench and click Test Benches. Confirm that appropriate
testbench settings have been applied to the Quartus II project.

6. On the Tools menu, point to EDA Simulation Tool and click Run EDA RTL
Simulation.

f For more information, refer to the Simulating Altera Designs chapter in volume 3 of the
Quartus II Handbook.

Compile the Design and Program a Device
You can use the Quartus II software to compile your design. For more information
about compiling your design, refer to Setting up and Running a Compilation in
Quartus II Help.

After a successful compilation, you can program the targeted Altera device and verify
the design in hardware. Refer to the Quartus II Help for instructions on programming
your design.
3GPP LTE Turbo Reference Design January 2011 Altera Corporation

http://quartushelp.altera.com/10.1/master.htm#mergedProjects/comp/comp/comp_pro_compile.htm
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

Verification Methodology Page 25
Verification Methodology
The following steps describe the verification process that the development of the
3GPP LTE Turbo reference design uses:

1. The floating-point simulation model is plugged into a test vector generator using
the simulation flow (Figure 10).

2. The BER performance of the floating-point model is compared against a reference
BER performance.

3. A fixed-point model is developed and parameters such as the number of bits are
adjusted to check that similar BER performance to the reference is achieved.

4. An RTL model is generated in VHDL. The RTL is tested using ModelSim using the
same test vector generation suite for the floating-point and fixed-point models.

5. During the development of RTL, the results are always validated with the
fixed-point model results. All RTL building blocks have separate testbenches to
verify that RTL models match the software models.

6. The design uses the Quartus II software as the synthesis and place and route tool
during the development of the RTL implementation. The RTL is optimized for
resource usage and performance.

References
For more information about Turbo codes and the 3GPP specification, refer to the
following references:

1. Avalon Interface Specifications.

2. AN 320: OpenCore Plus Evaluation of Megafunctions.

3. 3GPP Technical Specification: Group Radio Access Network, Evolved Universal
Terrestrial Radio Access, Multiplexing and Channel Coding (Release 8), TS 36.212 v8.3.0,
May 2007.

4. C. Berrou, A. Glavieux, and P. Thitimajshima, Near Shannon Limit Error-Correcting,
Coding, and Decoding: Turbo Codes, in Proceedings of the IEEE International
Conference on Communications, 1993, pp. 1064-1070.

5. J. Vogt, A. Finger, Improving the Max-Log-MAP Turbo Decoder, Electronics Letters,
36(23), 1937-1939, 2000.

Figure 10. Turbo Decoder Verification Methodology

Turbo
Decoder

BER
Demodulation

Input of
Modulation

Turbo
EncoderK bits

3K+12 bits Additive White
Gaussian Noise
January 2011 Altera Corporation 3GPP LTE Turbo Reference Design

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/an/an320.pdf

Page 26 Turbo Code Licensing Program
Turbo Code Licensing Program

Disclaimer
France Telecom, for itself and certain other parties, claims certain intellectual property
rights covering Turbo Codes technology, and has decided to license these rights under
a licensing program called the Turbo Codes Licensing Program. Supply of this IP core
does not convey a license nor imply any right to use any Turbo Codes patents owned
by France Telecom, TDF or GET.

For information about the Turbo Codes Licensing Program, contact France Telecom at
the following address:

France Telecom R&D
VAT/TURBOCODES
38, rue du Général Leclerc
92794 Issy Moulineaux
Cedex 9
France

Document Revision History
Table 11 shows the revision history for this document.

Table 11. Document Revision History

Date Version Changes

January 2011 2.1
■ Updated to new template.

■ Added support for SIC.

January 2010 2.0 Updated fMAX for turbo decoding.

June 2009 1.2 Added support for Turbo encoding.

February 2009 1.1.1 Added packet format error handling section.

September 2008 1.1 Added support for early termination with CRC.

February 2008 1.0 First release of this application note.
3GPP LTE Turbo Reference Design January 2011 Altera Corporation

	Turbo Encoder
	Turbo Encoder Architecture
	Transfer Function
	Trellis Termination

	Internal Interleaver
	Double-Buffering
	Input Data Format
	Output Data Format
	Latency Calculation
	Throughput Calculation
	Test Vector Generation

	Turbo Decoder
	Decoding Algorithms
	Input Data Format
	Output Data Format
	Latency Calculation
	Throughput Calculation
	Early Termination Support
	Test Vector Generation

	Avalon Streaming Interface
	Handling Packet Format Errors
	Exceptions to the Error Recovery

	System Requirements
	Installing the Reference Design
	OpenCore Plus Evaluation
	OpenCore Plus Time-Out Behavior

	Getting Started
	Generated Files
	Signals
	Simulate the Design
	Simulating in Third-Party Simulation Tools Using NativeLink

	Compile the Design and Program a Device

	Verification Methodology
	References
	Turbo Code Licensing Program
	Disclaimer

	Document Revision History

