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Abstract

This paper presents a method to implement FPGA inline acceleration for streaming
analytics. The accelerator that is implemented on the FPGA fabric using the
OpenCL™ approach with streaming pipes, processes data packets directly from the
network via a 10 Gbps Ethernet (10GbE) interface and applies inline processing

on the streaming data to monitor the signature waveforms in real time. The FPGA
inline accelerator that acts as a co-processor to the CPU in streaming analytics
platforms provides a scalable solution that can handle data as it grows in volume,
velocity, and complexity.

The FPGA inline accelerator enables a hardware parallel platform that can handle
analytics workloads of real-time data very efficiently. The capability to ingest data
while performing inline processing for data conditioning can provide

real-time insights from the streaming data. This approach offers a solution to
extract information that resides in the data stream to generate rapid real-time
decisions before the data becomes stale. In addition, the FPGA inline accelerator
has multiple key advantages including low-latency interface, data locality, and
modularity in input and deterministic response regardless of data rate or data
format.

This paper provides the benchmark results for comparing the performance of
inline acceleration that is implemented in an FPGA versus a system without a
hardware accelerator in terms of latency and sustainable data rate. Results from
the benchmark show that the FPGA inline accelerator has 22X lower end-to-end
latency while maintaining data rate of 9 Gbps without dropped packets.t

Introduction

Streaming analytics is the ability to continuously analyze image processing and
real-time data to extract meaningful information from it on the fly. The analysis
can be in the form of mathematical calculations, statistical packet inspection [1].
Streaming analytics connects to various external data sources and sends certain
data to downstream applications. This enables applications to integrate certain
data into the application flow, or to update an external database with processed
information [2]. The data can originate from the Internet of Things (IoT), mobile
phones, and mobile devices, such as iPads, market data, social media, sensors,
Web clickstream, and financial transactions [3]. Streaming analytics enables
analysis of data as soon as it becomes available allowing the ability to analyze risks
before they occur.
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The data in streaming analytics environment is processed
before being stored in a storage database as opposed

to traditional data analytics technologies that use batch
processing techniques by storing data for a certain period
before doing the analysis. This technology supports

much faster decision making than possible. Furthermore,
conventional approaches to streaming analytics involve
downstream software tools running on CPU, that inspect
and analyze data before forwarding it further downstream
to systems and applications for consumption by end users.
However, the ability for these tools to perform real-time
analysis and generate alerts is limited by the performance of
today'’s solutions used to Extract, Transform, and Load (ETL)
data into downstream systems due to the latency they add
between data collection and data analysis [4].

Mitigating these issues requires placing the beginning of the
analytic pipeline as close to the point of ingress as possible
and leveraging hardware acceleration for initial data analysis
[4]. In this paper, we focus on our efforts to design and
implement an FPGA-based hardware accelerator at the point
of ingress such that it can process data at inline rate. The
FPGA-based accelerator uses an Intel Arria® 10 FPGA and
the Intel FPGA SDK for OpenCL with a Host Pipes application
programming interface (API) to stream data into a kernel
directly from a streaming 1/O interface such as 1T0GbE. Our
application applies transformation to the streaming data to
monitor the signature waveforms in real time.

The paper first discusses the advantages of using FPGAs as

a hardware accelerator for streaming analytics applications.
Intel FPGAs support the OpenCL framework, which is an
effective tool flow for heterogeneous computing. This
framework supports OpenCL pipe semantics and 'Host

Pipes' which is an efficient streaming interface integrated

in the Intel FPGA OpenCL flow for low-latency streaming
applications. Section Il presents the related work. Section IV
discusses the key advantages and data flow for using FPGA
forinline acceleration. We discuss our design implementation
and methodology in Section V. Section VI provides results
for improvements in latency and sustainable data rates with
FPGA as compared to a setup without a hardware accelerator.
Section VIl summarizes the paper.

Streaming Analytics Using FPGAs

FPGAs have high throughput and higher performance per
watt efficiency as compared to general-purpose processors.
Due to this, FPGAs have become an attractive and effective
means of accelerating high-performance computing and
data-centric applications as well as handling streaming
analytics applications [5-8]. Some of these applications
include information filtering [5] and social media, packet
processing in network routers and firewalls [6], network
intrusion prevention [9] and threat detection systems, video
compression [10], low-latency market data feed arbitration
for financial trading [11], photonic device simulation for
scientific computation [12], and database analytics [13].

Streaming analytics require high-performance and low-
latency processing of data streams. General purpose CPU
may not be sufficient for real-time analytics. Intel FPGAs
accelerate and aid in compute and connectivity required to
collect and process the massive quantities of information by
controlling the datapath. In addition to FPGAs being used as
an accelerator, they can also directly receive data and process
itinline before going through the CPU host system. This frees
the processor to manage other system events and provide
higher real-time system performance [14]. FPGAs' flexibility
enables them to deliver deterministic low latency and high
bandwidth. Some of the other factors for suitability of FPGAs
for streaming analytics are:

o Lower latency: FPGAs can be connected closer to the
streaming media, which means complete data processed
with no extra transfer and load, eliminating the need for
flow control

o Data locality: The processing element is close to the
abundant internal memory bandwidth of an FPGA

« Energy efficiency

« Flexibility in handling various data rates and granularities
due to built-in 1/O interface and protocols

Intel FPGAs provide state-of-the-art solutions to enable
designers to use FPGAs for hardware acceleration of
streaming applications. The core components to enable this
are a streaming interface and an OpenCL tool flow for FPGA.

High-Level Design Using OpenCL

FPGAs were traditionally programmed using hardware
description languages (HDL) that are synthesizable, such

as Verilog and VHDL. These languages include complex
constructs for describing parallel simulations and timing
delays that requires specialized skills. Recent improvements
in tool flows have enabled development of OpenCL
heterogeneous parallel programing framework for Intel
FPGAs. The OpenCL standard naturally matches the highly
parallel nature of FPGAs [15]. OpenCL allows the programmer
to explicitly specify and control the thread-level parallelism,
while developing in C-like programming language. This
enables good match for FPGA development as it offers very
high level of parallelism.

Unlike CPUs and graphics processing units (GPUs), where
parallel threads can be executed on different cores,

FPGAs offer a different approach. Kernel functions can be
transformed into dedicated and deeply pipelined hardware
circuits that are inherently multithreaded using the concept
of pipeline parallelism. Each of these pipelines can be
replicated many times to provide even more parallelism than
is possible with a single pipeline. The Intel FPGA SDK for
OpenCL compiler translates an OpenCL kernel to hardware
by creating a circuit that implements each operation. These
circuits are wired together to mimic the flow of data in the
kernel. A CPU host program has access to standard OpenCL
APIs that allow data to be transferred to the FPGA, invoking
the kernel on the FPGA and returning the resulting data. This
function to be accelerated is referred to as an OpenCL kernel.
The FPGA's reconfigurability allows loading and unloading of
different dedicated acceleration kernels that were designed
for a particular type of workload [15].
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Host Pipes

The OpenCL programming model allows software developers
to easily tap into the computational power of hardware
accelerator devices. To maximize throughput, in OpenCL,

all data must be completely written to either the host or

the device before it can be accessed. This sacrifices the
latency [15] [16]. In OpenCL, the primary way to transfer data
between host and accelerator has been via global memory.
This results in an inherent trade-off between throughput

and latency. One of the solutions is ‘Streaming Pipes’,

which enable software developers to make use of OpenCL
accelerators for low-latency streaming applications. To
mitigate this issue, Intel has developed a streaming interface,
called ‘Host Pipes’, for Intel FPGA SDK for OpenCL supporting
Intel FPGAs. This interface is a vendor extension to the
existing Intel FPGA OpenCL flow.

Host Pipe is a direct streaming interface from host CPU to
OpenCL kernels that eliminates the latency overhead of
waiting for data transfer through external global memory to
complete before execution can start on the head of that data
[16]. There are three components in this system—
FPGA-side FIFO buffer created using on-chip memory,
software-side FIFO buffer pinned in host memory, and direct
memory access (DMA). Figure 1 shows the FIFOs in the host
memory and the FPGA that continuously stream data from
the CPU and OpenCL kernel respectively. The DMA transfers
data between the two FIFOs in blocks to utilize full PCI
Express* (PCle*) bandwidth.

Host Memory

Host Pipe Host Pipe
Push FIFO Buffer Pull FIFO Buffer

PCle* Gen 3x8 Interface

Accelerator
PCle IP

Host Pipe
Pull FIFO Buffer

Host Pipe
Push FIFO Buffer

OpenCL™ Kernel

Figure 1. Host Pipe Prototype Architecture

Related Work

One of the main issues with FPGAs is the complexity of
programmability and design flow in low-level HDL. Intel has
developed the Intel FPGA SDK for OpenCL for much better
programmability and to bring the benefits of FPGA hardware
platforms to software programmers. Intel FPGA SDK for
OpenCL targets OpenCL at Intel FPGAs to make application
development easier. The advantage of working with OpenCL
is that the same code can be easily targeted to different
platforms, such as FPGA, GPU, and CPU for performance
comparisons. Although the implementation still needs to

be optimized and adapted to each platform to gain optimal
performance, the evaluation process is much simpler [6].

Many research studies have been conducted in evaluating
and comparing performance of several parallel and
compute-intensive benchmarks in OpenCL targeting FPGA,
GPU, and CPU. In [17], the authors optimized and ported a
subset of the Rodinia benchmark suite to a Stratix® V FPGA
using Intel FPGA SDK for OpenCL, and they compared the
performance and energy efficiency between an Intel
E5-2670 CPU and NVIDIA* K20c GPU. Their evaluation
showed that in most benchmarks, only the energy efficiency
was superior to the GPU, whereas both the performance and
energy efficiency were better than those of the CPU. In [6],
the authors use the OpenDwarfs benchmark suite, a suite of
architecture-agnostic OpenCL kernels that capture common
computation and communication patterns across a wide
spectrum of scientific and engineering applications to study
and compare the performance of OpenCL programming
model on FPGAs. Certain optimization techniques were
applied on GPU-based kernel for targeting Stratix V FPGAs.
Itis shown that FPGAs can result in a highly efficient pipeline
achieving 91% of theoretical throughput for the structured
grids dwarf.f

Pipe execution semantic is a feature in OpenCL 2.0
supporting concurrent kernel execution for improving
throughput and latency. Due to their reconfigurability, FPGAs
are well suited for OpenCL pipe execution because they allow
multiple kernels to be executed in parallel over changing
streams of data for streaming applications [8]. The authors in
[8] have used the OpenCL pipe on Intel FPGA SDK for OpenCL
for accelerating 2-dimensional (2D) vision algorithms to
benefit pipe-based execution. They observed a 2.8X increase
in throughput for tuned pipelined kernels, as compared to
sequential execution.t

As an extension to the OpenCL pipe feature, a new feature
called Host Pipe has been added to the Intel FPGA SDK

for OpenCL to transfer data directly between host CPU to
OpenCL kernels on FPGA [16]. The authors have developed
a prototype with the Intel Arria 10 FPGA Development

Kit. Results show high throughput, achieving up to 75% of
PCle Gen3x8 bandwidth for loopback kernel and up to 40X
reduction in latency for an OpenCL Gzip application while
maintaining 3 Gbps compression.f

In this work, we are using the Host Pipe interface for OpenCL
kernel development on a Nallatech 385A acceleration card
with an Intel Arria 10 FPGA. Using this low-latency interface,
we have developed an inline FPGA accelerator with a CPU
and benchmarked our results against a stand-alone CPU for
streaming analytics applications.
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Inline FPGA Acceleration

Due to the inherent characteristics of the FPGA architecture,
it can perform massively parallel, real-time processing.

Inline FPGA accelerators can be leveraged to handle
streaming processing tasks such as early stage processing
including initial filtering, transformations, data cleaning,

and enrichments. The FPGA inline accelerators reside
between the network interface card (NIC) and the CPU. These
accelerators intercept the incoming packets going from the
NIC to the CPU. With incoming streaming data into the FPGAs,
the data typically gets split up to be processed in parallel.
Depending on the application, the data can feed into different
functions for pre-processing and/or reduction in real time.
This may include transformations, pattern detectors, filters,
encryption/decryption, and compression/decompression
functions. These processing functions on the streaming data
can provide real-time invaluable insights in data analytics,
along with reducing the data volumes before passing through
many layers of software stacks associated with big data
frameworks. This can also significantly reduce the workload
sent downstream, hence offloading the CPU.

The key advantage of the FPGA is the capability to directly
ingest the data, while performing inline processing and/or
data reduction. The FPGA can provide low-latency interface
for data ingestion and inline processing capabilities before
actual data movement to storage systems. This capability
can significantly decrease processing latency thatis a
requirement for mission-critical applications.

In addition, the FPGA-based accelerators approach is
deterministic regardless of data rate or data formats. This
simplifies the system by eliminating the need for complex
flow control and load balance management [19]. Figure 2
shows the inline accelerator data flow block diagram using
FPGA accelerators.

Traffic Inline FPGA Device-Host
Generator Acceleration Data Transfer
Bl NiCinterface APv
e %
----------------------- ) SCAN e—
X %ﬁ i Buffer
Enneied = N Management
=
PCI=>
EXPRESS

Figure 2. Inline Acceleration Data Flow Block Diagram

Hardware Implementation and Methodology

The design demonstrates low-latency ingestion of data using
the FPGA, along with pre-processing operation. The data
ingestion is done using 10GbE interface and UDP protocol.
The Intel FPGA accelerator is based on Nallatech 385A

card and includes an Intel Arria 10 FPGA. The card contains
dual cage for enhanced small form factor pluggable (SFP+)
interface, which is populated with 10G SFP+ SR optical
module. The data arrives over optical link and is received

by the FPGA. The FPGA accelerator is implemented using
the Intel FPGA SDK for OpenCL framework, and the data

is provided to the OpenCL kernels directly using pipes
capability of OpenCL. The FPGA processing kernel system
implements the fast Fourier transform (FFT) pre-processing
and detection as an example of typical workload on input
data. After inline processing is completed, the application
transfers the results to the CPU host for further downstream
processing.

Traffic Generator

10Gb Network Interface Card

. @

10G-SR Fiber Optics

FPGA Accelerator

Figure 3. Hardware System Components

Traffic Generator

The traffic generator client code is built in C on a Linux*
platform using the network programming model. The UDP
sockets are not connection oriented. Hence, on the UDP
client, it does not connect to a server. The program flow can
be simplified as:

socket() -> sendto()

To improve the traffic data rate and maximize the
throughput, the multithread programming model is used with
POSIX thread (pthread) libraries. This allows spawning of
multiple concurrent processes on the multiprocessor system,
gaining speed through parallel processing. The UDP frames
are transmitted using an NIC, Intel 82559 chipset, over 10GbE
connection to the FPGA accelerator card.
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FPGA Accelerator

The FPGA accelerator is implemented using the Nallatech
385A Intel Arria 10 FPGA card using Intel FPGA SDK for
OpenCL for FPGA flow. This flow uses the board support
package (BSP) with T0GbE interfaces and host pipes enabled.
Figure 4 shows the block diagram of the FPGA accelerator
implementation.

s

1/O Pipe

k_kstream2fft k_stream2host

dev_to_host pipe
——» Kernel-to-Kernel Pipe

Figure 4. FPGA Accelerator Block Diagram Implemented
Using OpenCL

The BSP provides the raw frame received over 10GbE
interface to the OpenCL framework using 1/O pipes. The

first two kernels implement the network interface logic.

The k_data_readerO kernel extracts the UDP payload after
pre-filtering the data based on the IP header information.
The k_udp_read kernels reformats the data into single
precision floating-point numbers before sending them
through the kernel-to-kernel channels for downstream
processing. The kernel-to-kernel channels are efficient in
streaming data from one block to the next within the FPGA
without involving the host or data transfer to/from external
memory. The FFT accelerator consists of two OpenCL
kernels. The k_stream2FFT kernel temporarily stores the
streaming data and reorders the sequence for the actual FFT
engine. The k_fft1d kernel implements the FFT engine using
a parallel architecture. The final k_stream2host kernel sends
the FFT results back to the host using the streaming host
pipes. The streaming pipes are implemented similar to FIFOs
or queues to allow streaming of results to the host from the
FPGA kernel via PCle, without involving data transfers using
external memory.

Implementation Results

The performance of the system is measured using two
separate metrics—latency and sustainable data rate. The
benchmark compares the FPGA inline acceleration versus an
all software implementation on the CPU, without a hardware
accelerator. The FPGA setup uses the Intel Arria 10 FPGA. The
CPU setup uses the Intel i7-7700K CPU at 4.2 GHz with eight
logical cores. In both setup, the same traffic generator is used
to generate the UDP packet data stream.

Latency

The latency measurement starts from the point when the
UDP packets are sent out from the traffic generator and ends
when the FFT results are received back on the host. Figure

5 shows the setup for latency measurements for the FPGA
inline acceleration.

° Setup and launch
kernels

Send first UDP i

packet

Run kernels

}

CPU
(buffer_id)

(output buffer) TX: client

L RX: HOST

o Timestamps

Figure 5. FPGA Inline Acceleration Setup for Latency
Measurement
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Figure 6 shows the setup for latency measurements for all
the software implementation running on the CPU, without a
hardware accelerator. UDP packets are transmitted via the
NIC on a primary port and loops back to the secondary port
on the same NIC via an optical link. The server uses the Data
Plane Development Kit (DPDK) networking framework for
fast packet processing that is optimized for Intel devices. The
software implementation uses the FFT interfaces supported
by the Intel Math Kernel Library (Intel MKL), which provides
highly optimized and extensively threaded routines. The
setup uses the Intel 64 architecture, 64 bit interface layer,
and the OpenMP* threading layer.

Receive UDP packet

and extract payload

Send first UDP
packet l

Form FFT input frame

l CPU

Run Intel” MKL

l TX: client

RX: HOST
° Timestamps °

Figure 6. CPU Setup for Latency Measurement

The latency in traditional NIC->CPU->MKL processing
pipeline is up to 22X longer compared to the data ingestion
and inline processing in FPGA while the data is in motion.t
Figure 7 shows the comparison of the latency for both setups
running FFT inline acceleration.

Latency Based on 9 Gbps Input Data

Intel® FPGA

Latency (ms)

—&— Without Hardware
Accelerator

I
'\ﬂ\

0 500 1000 1500 2000 2500

Number of FFT Frames

Figure 7. Comparison of Latency Measurement for FFT Inline
Acceleration

Sustainable Data Rate

In the FPGA inline acceleration setup, the drop packet rate
(DPR) is close to O based on the traffic generator data rate

of 9 Gbps. The DPR is calculated based on the number of
packets received where data ingestion is running in parallel
with the inline processing of FFT. Without the FPGA hardware
accelerator, the DPR reached >80% as the traffic generator
data rate approaches 9 Gbps. This is a result of compute
power starvation on a given CPU while executing traffic
generation, networking stack management, and Intel MKL
processing. By offloading the FFT transform inline processing
to FPGA, the system is balanced and can keep up with
incoming data and processing requirements. Figure 8 shows
the DPR without the FPGA inline accelerator.

Drop Packet Rate (DPR)

100.0
1) & = i ;:."."‘
80.0 o W Te—e - _
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& 600 i
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Data Rate (Gbps)

Figure 8. Drop Packet Rate Without Inline Acceleration

Summary

The FPGA inline accelerator provides a complementary
approach to the existing streaming analytics ecosystems.
FPGA can perform data ingestion in streaming analytics and
inline processing in parallel to handle streaming processing
tasks, such as filtering, transformation, data cleaning, and
enrichment in real time. This can significantly reduce the
workload and volume of data sent downstream, hence
offloading the CPU. The FPGA inline accelerator offers
multiple key advantages including low-latency interface.
This is critical to data analysis applications that detect
anomaly conditions and in return generate timely alerts. The
benchmark results show that the FPGA inline accelerator has
22X lower end-to-end latency while sustaining a data rate of
9 Gbps with no drop packets compared to a system without a
hardware accelerator.
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