
Abstract
This paper presents a method to implement FPGA inline acceleration for streaming 
analytics. The accelerator that is implemented on the FPGA fabric using the 
OpenCL™ approach with streaming pipes, processes data packets directly from the 
network via a 10 Gbps Ethernet (10GbE) interface and applies inline processing 
on the streaming data to monitor the signature waveforms in real time. The FPGA 
inline accelerator that acts as a co-processor to the CPU in streaming analytics 
platforms provides a scalable solution that can handle data as it grows in volume, 
velocity, and complexity.

The FPGA inline accelerator enables a hardware parallel platform that can handle 
analytics workloads of real-time data very efficiently. The capability to ingest data 
while performing inline processing for data conditioning can provide  
real-time insights from the streaming data. This approach offers a solution to 
extract information that resides in the data stream to generate rapid real-time 
decisions before the data becomes stale. In addition, the FPGA inline accelerator 
has multiple key advantages including low-latency interface, data locality, and 
modularity in input and deterministic response regardless of data rate or data 
format.

This paper provides the benchmark results for comparing the performance of 
inline acceleration that is implemented in an FPGA versus a system without a 
hardware accelerator in terms of latency and sustainable data  rate. Results from 
the benchmark show that the FPGA inline accelerator has 22X lower end-to-end 
latency while maintaining data rate of 9 Gbps without dropped packets.†

Introduction
Streaming analytics is the ability to continuously analyze image processing and 
real-time data to extract meaningful information from it on the fly. The analysis 
can be in the form of mathematical calculations, statistical packet inspection [1]. 
Streaming analytics connects to various external data sources and sends certain 
data to downstream applications. This enables applications to integrate certain 
data into the application flow, or to update an external database with processed 
information [2]. The data can originate from the Internet of Things (IoT), mobile 
phones, and mobile devices, such as iPads, market data, social media, sensors, 
Web clickstream, and financial transactions [3]. Streaming analytics enables 
analysis of data as soon as it becomes available allowing the ability to analyze risks 
before they occur.
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The data in streaming analytics environment is processed 
before being stored in a storage database as opposed 
to traditional data analytics technologies that use batch 
processing techniques by storing data for a certain period 
before doing the analysis. This technology supports 
much faster decision making than possible. Furthermore, 
conventional approaches to streaming analytics involve 
downstream software tools running on CPU, that inspect 
and analyze data before forwarding it further downstream 
to systems and applications for consumption by end users. 
However, the ability for these tools to perform real-time 
analysis and generate alerts is limited by the performance of 
today’s solutions used to Extract, Transform, and Load (ETL) 
data into downstream systems due to the latency they add 
between data collection and data analysis [4].

Mitigating these issues requires placing the beginning of the 
analytic pipeline as close to the point of ingress as possible 
and leveraging hardware acceleration for initial data analysis 
[4]. In this paper, we focus on our efforts to design and 
implement an FPGA-based hardware accelerator at the point 
of ingress such that it can process data at inline rate. The 
FPGA-based accelerator uses an Intel Arria® 10 FPGA and 
the Intel FPGA SDK for OpenCL with a Host Pipes application 
programming interface (API) to stream data into a kernel 
directly from a streaming I/O interface such as 10GbE. Our 
application applies transformation to the streaming data to 
monitor the signature waveforms in real time.

The paper first discusses the advantages of using FPGAs as 
a hardware accelerator for streaming analytics applications. 
Intel FPGAs support the OpenCL framework, which is an 
effective tool flow for heterogeneous computing. This 
framework supports OpenCL pipe semantics and 'Host 
Pipes' which is an efficient streaming interface integrated 
in the Intel FPGA OpenCL flow for low-latency streaming 
applications. Section III presents the related work. Section IV 
discusses the key advantages and data flow for using FPGA 
for inline acceleration. We discuss our design implementation 
and methodology in Section V. Section VI provides results 
for improvements in latency and sustainable data rates with 
FPGA as compared to a setup without a hardware accelerator. 
Section VII summarizes the paper.

Streaming Analytics Using FPGAs
FPGAs have high throughput and higher performance per 
watt efficiency as compared to general-purpose processors. 
Due to this, FPGAs have become an attractive and effective 
means of accelerating high-performance computing and 
data-centric applications as well as handling streaming 
analytics applications [5-8]. Some of these applications 
include information filtering [5] and social media, packet 
processing in network routers and firewalls [6], network 
intrusion prevention [9] and threat detection systems, video 
compression [10], low-latency market data feed arbitration 
for financial trading [11], photonic device simulation for 
scientific computation [12], and database analytics [13].

Streaming analytics require high-performance and low-
latency processing of data streams. General purpose CPU 
may not be sufficient for real-time analytics. Intel FPGAs 
accelerate and aid in compute and connectivity required to 
collect and process the massive quantities of information by 
controlling the datapath. In addition to FPGAs being used as 
an accelerator, they can also directly receive data and process 
it inline before going through the CPU host system. This frees 
the processor to manage other system events and provide 
higher real-time system performance [14]. FPGAs’ flexibility 
enables them to deliver deterministic low latency and high 
bandwidth. Some of the other factors for suitability of FPGAs 
for streaming analytics are:

•	 Lower latency: FPGAs can be connected closer to the 
streaming media, which means complete data processed 
with no extra transfer and load, eliminating the need for 
flow control

•	 Data locality: The processing element is close to the 
abundant internal memory bandwidth of an FPGA

•	 Energy efficiency

•	 Flexibility in handling various data rates and granularities 
due to built-in I/O interface and protocols

Intel FPGAs provide state-of-the-art solutions to enable 
designers to use FPGAs for hardware acceleration of 
streaming applications. The core components to enable this 
are a streaming interface and an OpenCL tool flow for FPGA.

High-Level Design Using OpenCL

FPGAs were traditionally programmed using hardware 
description languages (HDL) that are synthesizable, such 
as Verilog and VHDL. These languages include complex 
constructs for describing parallel simulations and timing 
delays that requires specialized skills. Recent improvements 
in tool flows have enabled development of OpenCL 
heterogeneous parallel programing framework for Intel 
FPGAs. The OpenCL standard naturally matches the highly 
parallel nature of FPGAs [15]. OpenCL allows the programmer 
to explicitly specify and control the thread-level parallelism, 
while developing in C-like programming language. This 
enables good match for FPGA development as it offers very 
high level of parallelism.

Unlike CPUs and graphics processing units (GPUs), where 
parallel threads can be executed on different cores, 
FPGAs offer a different approach. Kernel functions can be 
transformed into dedicated and deeply pipelined hardware 
circuits that are inherently multithreaded using the concept 
of pipeline parallelism. Each of these pipelines can be 
replicated many times to provide even more parallelism than 
is possible with a single pipeline. The Intel FPGA SDK for 
OpenCL compiler translates an OpenCL kernel to hardware 
by creating a circuit that implements each operation. These 
circuits are wired together to mimic the flow of data in the 
kernel. A CPU host program has access to standard OpenCL 
APIs that allow data to be transferred to the FPGA, invoking 
the kernel on the FPGA and returning the resulting data. This 
function to be accelerated is referred to as an OpenCL kernel. 
The FPGA’s reconfigurability allows loading and unloading of 
different dedicated acceleration kernels that were designed 
for a particular type of workload [15].
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Host Pipes

The OpenCL programming model allows software developers 
to easily tap into the computational power of hardware 
accelerator devices. To maximize throughput, in OpenCL, 
all data must be completely written to either the host or 
the device before it can be accessed. This sacrifices the 
latency [15] [16]. In OpenCL, the primary way to transfer data 
between host and accelerator has been via global memory. 
This results in an inherent trade-off between throughput 
and latency. One of the solutions is ‘Streaming Pipes’, 
which enable software developers to make use of OpenCL 
accelerators for low-latency streaming applications. To 
mitigate this issue, Intel has developed a streaming interface, 
called ‘Host Pipes’, for Intel FPGA SDK for OpenCL supporting 
Intel FPGAs. This interface is a vendor extension to the 
existing Intel FPGA OpenCL flow.

Host Pipe is a direct streaming interface from host CPU to 
OpenCL kernels that eliminates the latency overhead of 
waiting for data transfer through external global memory to 
complete before execution can start on the head of that data 
[16]. There are three components in this system— 
FPGA-side FIFO buffer created using on-chip memory,  
software-side FIFO buffer pinned in host memory, and direct 
memory access (DMA). Figure 1 shows the FIFOs in the host 
memory and the FPGA that continuously stream data from 
the CPU and OpenCL kernel respectively. The DMA transfers 
data between the two FIFOs in blocks to utilize full PCI 
Express* (PCIe*) bandwidth.

Figure 1. Host Pipe Prototype Architecture
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Related Work
One of the main issues with FPGAs is the complexity of 
programmability and design flow in low-level HDL. Intel has 
developed the Intel FPGA SDK for OpenCL for much better 
programmability and to bring the benefits of FPGA hardware 
platforms to software programmers. Intel FPGA SDK for 
OpenCL targets OpenCL at Intel FPGAs to make application 
development easier. The advantage of working with OpenCL 
is that the same code can be easily targeted to different 
platforms, such as FPGA, GPU, and CPU for performance 
comparisons. Although the implementation still needs to 
be optimized and adapted to each platform to gain optimal 
performance, the evaluation process is much simpler [6].

Many research studies have been conducted in evaluating 
and comparing performance of several parallel and  
compute-intensive benchmarks in OpenCL targeting FPGA, 
GPU, and CPU. In [17], the authors optimized and ported a 
subset of the Rodinia benchmark suite to a Stratix® V FPGA 
using Intel FPGA SDK for OpenCL, and they compared the 
performance and energy efficiency between an Intel  
E5-2670 CPU and NVIDIA* K20c GPU. Their evaluation 
showed that in most benchmarks, only the energy efficiency 
was superior to the GPU, whereas both the performance and 
energy efficiency were better than those of the CPU. In [6], 
the authors use the OpenDwarfs benchmark suite, a suite of 
architecture-agnostic OpenCL kernels that capture common 
computation and communication patterns across a wide 
spectrum of scientific and engineering applications to study 
and compare the performance of OpenCL programming 
model on FPGAs. Certain optimization techniques were 
applied on GPU-based kernel for targeting Stratix V FPGAs. 
It is shown that FPGAs can result in a highly efficient pipeline 
achieving 91% of theoretical throughput for the structured 
grids dwarf.† 

Pipe execution semantic is a feature in OpenCL 2.0 
supporting concurrent kernel execution for improving 
throughput and latency. Due to their reconfigurability, FPGAs 
are well suited for OpenCL pipe execution because they allow 
multiple kernels to be executed in parallel over changing 
streams of data for streaming applications [8]. The authors in 
[8] have used the OpenCL pipe on Intel FPGA SDK for OpenCL 
for accelerating 2-dimensional (2D) vision algorithms to 
benefit pipe-based execution. They observed a 2.8X increase 
in throughput for tuned pipelined kernels, as compared to 
sequential execution.†

As an extension to the OpenCL pipe feature, a new feature 
called Host Pipe has been added to the Intel FPGA SDK 
for OpenCL to transfer data directly between host CPU to 
OpenCL kernels on FPGA [16]. The authors have developed 
a prototype with the Intel Arria 10 FPGA Development 
Kit. Results show high throughput, achieving up to 75% of 
PCIe Gen3x8 bandwidth for loopback kernel and up to 40X 
reduction in latency for an OpenCL Gzip application while 
maintaining 3 Gbps compression.†

In this work, we are using the Host Pipe interface for OpenCL 
kernel development on a Nallatech 385A acceleration card 
with an Intel Arria 10 FPGA. Using this low-latency interface, 
we have developed an inline FPGA accelerator with a CPU 
and benchmarked our results against a stand-alone CPU for 
streaming analytics applications.
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Inline FPGA Acceleration
Due to the inherent characteristics of the FPGA architecture, 
it can perform massively parallel, real-time processing. 
Inline FPGA accelerators can be leveraged to handle 
streaming processing tasks such as early stage processing 
including initial filtering, transformations, data cleaning, 
and enrichments. The FPGA inline accelerators reside 
between the network interface card (NIC) and the CPU. These 
accelerators intercept the incoming packets going from the 
NIC to the CPU. With incoming streaming data into the FPGAs, 
the data typically gets split up to be processed in parallel. 
Depending on the application, the data can feed into different 
functions for pre-processing and/or reduction in real time. 
This may include transformations, pattern detectors, filters, 
encryption/decryption, and compression/decompression 
functions. These processing functions on the streaming data 
can provide real-time invaluable insights in data analytics, 
along with reducing the data volumes before passing through 
many layers of software stacks associated with big data 
frameworks. This can also significantly reduce the workload 
sent downstream, hence offloading the CPU.

The key advantage of the FPGA is the capability to directly 
ingest the data, while performing inline processing and/or 
data reduction. The FPGA can provide low-latency interface 
for data ingestion and inline processing capabilities before 
actual data movement to storage systems. This capability 
can significantly decrease processing latency that is a 
requirement for mission-critical applications.

In addition, the FPGA-based accelerators approach is 
deterministic regardless of data rate or data formats. This 
simplifies the system by eliminating the need for complex 
flow control and load balance management [19]. Figure 2 
shows the inline accelerator data flow block diagram using 
FPGA accelerators.

Hardware Implementation and Methodology
The design demonstrates low-latency ingestion of data using 
the FPGA, along with pre-processing operation. The data 
ingestion is done using 10GbE interface and UDP protocol. 
The Intel FPGA accelerator is based on Nallatech 385A 
card and includes an Intel Arria 10 FPGA. The card contains 
dual cage for enhanced small form factor pluggable (SFP+) 
interface, which is populated with 10G SFP+ SR optical 
module. The data arrives over optical link and is received 
by the FPGA. The FPGA accelerator is implemented using 
the Intel FPGA SDK for OpenCL framework, and the data 
is provided to the OpenCL  kernels directly using pipes 
capability of OpenCL. The FPGA processing kernel system 
implements the fast Fourier transform (FFT) pre-processing 
and detection as an example of typical workload on input 
data. After inline processing is completed, the application 
transfers the results to the CPU host for further downstream 
processing.
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Figure 2. Inline Acceleration Data Flow Block Diagram

Figure 3. Hardware System Components
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The traffic generator client code is built in C on a Linux* 
platform using the network programming model. The UDP 
sockets are not connection oriented. Hence, on the UDP 
client, it does not connect to a server. The program flow can 
be simplified as:

socket() -> sendto()

To improve the traffic data rate and maximize the 
throughput, the multithread programming model is used with 
POSIX thread (pthread) libraries. This allows spawning of 
multiple concurrent processes on the multiprocessor system, 
gaining speed through parallel processing. The UDP frames 
are transmitted using an NIC, Intel 82559 chipset, over 10GbE 
connection to the FPGA accelerator card.
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FPGA Accelerator

The FPGA accelerator is implemented using the Nallatech 
385A Intel Arria 10 FPGA card using Intel FPGA SDK for 
OpenCL for FPGA flow. This flow uses the board support 
package (BSP) with 10GbE interfaces and host pipes enabled. 
Figure 4 shows the block diagram of the FPGA accelerator 
implementation.

The BSP provides the raw frame received over 10GbE 
interface to the OpenCL framework using I/O pipes. The 
first two kernels implement the network interface logic. 
The k_data_reader0 kernel extracts the UDP payload after 
pre-filtering the data based on the IP header information. 
The k_udp_read kernels reformats the data into single 
precision floating-point numbers before sending them 
through the kernel-to-kernel channels for downstream 
processing. The kernel-to-kernel channels are efficient in 
streaming data from one block to the next within the FPGA 
without involving the host or data transfer to/from external 
memory. The FFT accelerator consists of two OpenCL 
kernels. The k_stream2FFT kernel temporarily stores the 
streaming data and reorders the sequence for the actual FFT 
engine. The k_fft1d kernel implements the FFT engine using 
a parallel architecture. The final k_stream2host kernel sends 
the FFT results back to the host using the streaming host 
pipes. The streaming pipes are implemented similar to FIFOs 
or queues to allow streaming of results to the host from the 
FPGA kernel via PCIe, without involving data transfers using 
external memory.
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Figure 4. 	FPGA Accelerator Block Diagram Implemented 		
	 Using OpenCL

Figure 5. 	FPGA Inline Acceleration Setup for Latency 		
	 Measurement
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Implementation Results
The performance of the system is measured using two 
separate metrics—latency and sustainable data rate. The 
benchmark compares the FPGA inline acceleration versus an 
all software implementation on the CPU, without a hardware 
accelerator. The FPGA setup uses the Intel Arria 10 FPGA. The 
CPU setup uses the Intel i7-7700K CPU at 4.2 GHz with eight 
logical cores. In both setup, the same traffic generator is used 
to generate the UDP packet data stream.

Latency

The latency measurement starts from the point when the 
UDP packets are sent out from the traffic generator and ends 
when the FFT results are received back on the host. Figure 
5 shows the setup for latency measurements for the FPGA 
inline acceleration.
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Sustainable Data Rate

In the FPGA inline acceleration setup, the drop packet rate 
(DPR) is close to 0 based on the traffic generator data rate 
of 9 Gbps. The DPR is calculated based on the number of 
packets received where data ingestion is running in parallel 
with the inline processing of FFT. Without the FPGA hardware 
accelerator, the DPR reached >80% as the traffic generator 
data rate approaches 9 Gbps. This is a result of compute 
power starvation on a given CPU while executing traffic 
generation, networking stack management, and Intel MKL 
processing. By offloading the FFT transform inline processing 
to FPGA, the system is balanced and can keep up with 
incoming data and processing requirements. Figure 8 shows 
the DPR without the FPGA inline accelerator.

Summary
The FPGA inline accelerator provides a complementary 
approach to the existing streaming analytics ecosystems. 
FPGA can perform data ingestion in streaming analytics and 
inline processing in parallel to handle streaming processing 
tasks, such as filtering, transformation, data cleaning, and 
enrichment in real time. This can significantly reduce the 
workload and volume of data sent downstream, hence 
offloading the CPU. The FPGA inline accelerator offers 
multiple key advantages including low-latency interface. 
This is critical to data analysis applications that detect 
anomaly conditions and in return generate timely alerts. The 
benchmark results show that the FPGA inline accelerator has 
22X lower end-to-end latency while sustaining a data rate of 
9 Gbps with no drop packets compared to a system without a 
hardware accelerator.†
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Figure 8. 	Drop Packet Rate Without Inline Acceleration
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Figure 6 shows the setup for latency measurements for all 
the software implementation running on the CPU, without a 
hardware accelerator. UDP packets are transmitted via the 
NIC on a primary port and loops back to the secondary port 
on the same NIC via an optical link. The server uses the Data 
Plane Development Kit (DPDK) networking framework for 
fast packet processing that is optimized for Intel devices. The 
software implementation uses the FFT interfaces supported 
by the Intel Math Kernel Library (Intel MKL), which provides 
highly optimized and extensively threaded routines. The 
setup uses the Intel 64 architecture, 64 bit interface layer,  
and the OpenMP* threading layer.

The latency in traditional NIC->CPU->MKL processing 
pipeline is up to 22X longer compared to the data ingestion 
and inline processing in FPGA while the data is in motion.† 
Figure 7 shows the comparison of the latency for both setups 
running FFT inline acceleration.

Figure 6. 	CPU Setup for Latency Measurement

Figure 7. 	 Comparison of Latency Measurement for FFT Inline 	
	 Acceleration
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