
Abstract
Deep learning has become a key workload in the data center and the edge, leading 
to a race for dominance in this space. FPGAs have shown they can compete 
by combining deterministic low latency with high throughput and flexibility. In 
particular, FPGAs bit-level programmability can efficiently implement arbitrary 
precisions and numeric data types critical in the fast evolving field of deep learning.

In this paper, we explore FPGA minifloat implementations (floating-point 
representations with non-standard exponent and mantissa sizes), and show the 
use of a block-floating-point implementation that shares the exponent across 
many numbers, reducing the logic required to perform floating-point operations. 
The paper shows this technique can significantly improve FPGA performance with 
no impact to accuracy, reduce logic utilization by 3X, and memory bandwidth and 
capacity required by more than 40%.†

Introduction
Deep neural networks have proven to be a powerful means to solve some of the 
most difficult computer vision and natural language processing problems since 
their successful introduction to the ImageNet competition in 2012 [14]. This has 
led to an explosion of workloads  based on deep neural networks in the data center 
and the edge [2].

One of the key challenges with deep neural networks is their inherent 
computational complexity, where many deep nets require billions of operations 
to perform a single inference. To mitigate the computational burden of deep nets 
three methods are often used:

1. 	Skipping redundant operations (e.g., multiply by 0) and modifying training 
algorithms or post-processing weights to lead to sparse connectivity in the 
network [9], [16].

2.	Removing redundancy in the deep net by either trimming layers or connections 
[12-13].

3.	Reducing the complexity of each operation by reducing their precision and bit 
width [4], [7-8], [10-11].

Because of their flexibility, FPGAs are perfect candidates to take advantage of all of 
these approaches. In this work, we will explore the third approach in detail.

Specifically, we show how you can efficiently map minifloat operations onto 
the FPGA fabric leading to a significant reduction in resource utilization with 
negligible degradation in accuracy on GoogLeNet, a common network used in 
image classification. Additionally, we will show how using a block-floating-point 
based approach can significantly increase the number of operations that can fit 
on a single FPGA, reducing the memory bandwidth and footprint required to store 
intermediate data and filter weights.

Finally, we show how our block floating-point implementation on Intel® Arria® 10 
FPGAs has low overhead compared to fixed-point equivalent operations, and can 
be trivially converted to fixed-point operations if necessary.

Table of Contents
Abstract . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1
Introduction . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1
Deep Learning Accelerator. .  .  .  .  .  .  .  .  .  2 
	 Compute Precision and Minifloat. .  .  .  .  .  .  .  .  .  .  .  2 
	 Block Floating Point and Memory Impact . .  .  .  2	
	 Block Floating Point vs Fixed Point . .  .  .  .  .  .  .  .  .  3

Conclusion. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3
References. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4

Harnessing Numerical Flexibility for 
Deep Learning on FPGAs

FPGA Inline Acceleration 

Authors
Andrew C. Ling

andrew.ling@intel.com

Mohamed S. Abdelfattah
mohamed.abdelfattah@intel.com

Andrew Bitar
andrew.bitar@intel.com

David Han
david.han@intel.com

Roberto Dicecco
roberto.dicecco@intel.com

Suchit Subhaschandra
suchit.subhaschandra@intel.com

Chris N Johnson
chris.n.johnson@intel.com

Dmitry Denisenko
dmitry.denisenko@intel.com

Josh Fender
josh.fender@intel.com

Gordon R. Chiu
gordon.chiu@intel.com

Intel® Corporation 
Programmable Solutions Group 

white paper

mailto: andrew.ling@intel.com
mailto: mohamed.abdelfattah@intel.com
mailto: andrew.bitar@intel.com
mailto: david.han@intel.com
mailto: roberto.dicecco@intel.com
mailto: suchit.subhaschandra@intel.com
mailto: chris.n.johnson@intel.com
mailto: dmitry.denisenko@intel.com
mailto: josh.fender@intel.com
mailto: gordon.chiu@intel.com


2

White Paper | Harnessing Numerical Flexibility for Deep Learning on FPGAs

Deep Learning Accelerator
We implemented a highly efficient deep learning inference 
engine [1], where a convolutional core, consisting of an array 
of processing elements, reads input image and filter data 
from external memory (DDR), and stores the data in caches 
built from on-chip block RAMs. The processing elements 
consist of highly efficient dot product kernels executing in 
parallel: one of the key operations in deep neural nets. We 
will explore how minifloat implementations can significantly 
reduce both logic utilization and memory bandwidth usage.

Compute Precision and Minifloat

Deep learning applications often have large memory and 
compute requirements, leading to exploration in reducing 
precision and complexity of each individual operation. 
Fixed-point representation has been employed by NVIDIA* 
[6], Xilinx* [8], and Google’s TPU* [17] for convolutional 
neural network (CNN) and recurrent neural network (RNN) 
acceleration, while Microsoft* has recently announced the 
use of a reduced-precision floating-point on Intel® Stratix® 10 
FPGAs in their acceleration of gated recurrent units (GRUs) 
[5].

We explore an approach similar to Microsoft's, taking 
advantage of minifloat representations that reduce the 
mantissa and exponent from IEEE 754 fp32. In our approach, 
we explore different mantissa sizes from 2 to 5 bits, 
which we refer to as fp8 to fp11 respectively. For all of our 
representations, we keep one bit for the sign value and five 
bits for the exponent.

Table 1 shows the relative impact of reducing the precision 
against fp32. Here we show that peak tera floating-point 
operations per second (TFLOPS) can increase up to 8X by 
moving to lower minifloat representations.†

Block Floating Point and Memory Impact

Although Intel FPGAs support fp32 natively in hard DSP 
blocks, variable precision minifloating-point operations 
cannot be fully implemented in hard DSP bocks, and take a 
significant amount of resources to implement each multiply 
and add in soft logic [15]. However, in [3], we illustrated 
how we can implement the majority of dot products in 
block-floating-point form, where a group of operations are 
clustered to form a “block” of operations and the exponent is 
shared across all numbers in the block. An illustration of this 
is shown in Figure 1, for a conversion of fp11 (1-bit sign, 5-bit 
exponent, 5-bit mantissa) to block fp11 with a block size of 
four.

The ability to take advantage of mixed precision networks 
makes FPGAs particularly attractive for deep networks that 
have different layers and operations with varying influence 
on the final accuracy of the results. Table 2 compares the 
accuracy of fp11 against fp32 for GoogLeNet using two 
approaches: changing the precision to fp11 for the dot 
product only in the Convolutional and InnerProduct layers 
and changing the entire design to fp11 for all operations in all 
layers. As Table 2 shows, changing all operations to fp11 has 
a significant degradation to overall accuracy, while changing 
only the dot product operations has little to no impact. 
The benefit is, since over 80% of the FPGA resources are 
dedicated to dot products, lowering only the dot products 
precision yields the majority of the logic reduction and most 
of the performance benefits.

Table 1. 	Relative TFLOP Increase of Minifloat Precisions 
When Compared Against fp32 on the Intel®  
Stratix® 10 FPGA

Figure 1. 	 Illustration of Block-Floating-Point for fp11 with  
a Block Size of 4 (s=sign bits, e=exponent bits, 
m=mantissa bits).

Table 2. 	Accuracy Impact of Reducing All Operations to fp11 
vs. Dot Product Operations Only.

FP32 FP16 FP11 FP9

Relative TFLOPS 1.0X 2.0X 3.8X 8.0X

ALL DOT PRODUCT ONLY

Top-1 Accuracy Drop 2.31% 0.04%

Top-5 Accuracy Drop 1.22% 0.20%
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Within each block, the mantissa is shifted such that all 
numbers in the block will have the same exponent and can 
be factored out. Any resulting multiplies or adds can then 
be applied directly on the resulting mantissas, which are 
equivalent to fixed-point operations in terms of cost on the 
FPGA. This can lead to over 3X reduction in required logic to 
implement when a block size of 8 is used, as described in [1]. 
In general, the larger the block size, the more resources can 
be saved; however, this leads to reduced accuracy, since as 
more numbers are shifted to align to a single exponent value, 
more bits may be shifted off in the mantissas found within 
the block. In practice, we find that a block size of 8 or 16 
provide a good tradeoff between accuracy and resources [3]. 
However, in the event  that  accuracy is impacted,  previous 
work has shown that top up training can successfully recover 
the accuracy loss incurred by large block sizes and lower 
precisions [4].

In addition to implementing dot products in  
block-floating-point form, we can store the data in  
block-floating-point form. This can lead to a significant 
reduction in both memory bandwidth to fetch data, and 
memory capacity to store the data either on or off chip. To 
illustrate this, Table 3 shows the compression ratio (lower is 
better) achieved by storing fp9, fp11, and fp16 in  
block-floating-point form, with a block size of 2 to 32 versus 
no blocking (i.e., block size of 1).
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Table 3. 	Compression Ratio of Different Block Size Storage 
Requirements. Block size vs. No Blocking Used to 
Store Weights and Intermediate Data Feature Maps.

Figure 2. 	DSP Packing Technique of fp16 and fp11 Block-Floating-Point Multiplications into 18x18 Integer Multiplier DSP Block.

BLOCK SIZE 2 4 8 16 32

fp16 0.84 0.77 0.73 0.71 0.70

fp11 0.77 0.66 0.60 0.57 0.56

fp9 0.72 0.58 0.51 0.48 0.46

Block Floating Point vs Fixed Point

When implementing operations in block-floating-point, 
the majority of the operations are applied directly to 
the mantissas, which effectively converts floating-point 
operations into fixed-point operations leading to an 
implementation that is as efficient as fixed-point. For 
example, in fp11, the mantissa plus sign is 6 bits in width. This 
allows us to map two fp11 multiplies as two INT6 operations 
in the native 18x18 multiplier as illustrated in Figure 2.

In the event that fixed-point operation is desired, the  
block-floating-point dot products in our architecture can 
be trivially converted to fixed-point operations simply by 
removing the exponent and shifts required to convert to the 
block-floating-point format. 

Once converted to naive fixed-point,  scaling and  
quantization of weights would be required to account for 
the loss in dynamic range by moving to true fixed-point 
operations.
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CONCLUSION
In this work we have demonstrated how using minifloat 
representations can have a significant impact to the  
over-all performance of the FPGA  for deep learning 
inference applications. Using block-floating-point, we 
show how we can both reduce the logic utilization and 
memory footprint of the design. Additionally, we describe 
how block-floating-point efficiency is similar to fixed-point 
implementations with little overhead over fixed-point 
designs.
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