
Abstract
Deep learning has become a key workload in the data center and the edge, leading
to a race for dominance in this space. FPGAs have shown they can compete
by combining deterministic low latency with high throughput and flexibility. In
particular, FPGAs bit-level programmability can efficiently implement arbitrary
precisions and numeric data types critical in the fast evolving field of deep learning.

In this paper, we explore FPGA minifloat implementations (floating-point
representations with non-standard exponent and mantissa sizes), and show the
use of a block-floating-point implementation that shares the exponent across
many numbers, reducing the logic required to perform floating-point operations.
The paper shows this technique can significantly improve FPGA performance with
no impact to accuracy, reduce logic utilization by 3X, and memory bandwidth and
capacity required by more than 40%.†

Introduction
Deep neural networks have proven to be a powerful means to solve some of the
most difficult computer vision and natural language processing problems since
their successful introduction to the ImageNet competition in 2012 [14]. This has
led to an explosion of workloads based on deep neural networks in the data center
and the edge [2].

One of the key challenges with deep neural networks is their inherent
computational complexity, where many deep nets require billions of operations
to perform a single inference. To mitigate the computational burden of deep nets
three methods are often used:

1. 	Skipping redundant operations (e.g., multiply by 0) and modifying training
algorithms or post-processing weights to lead to sparse connectivity in the
network [9], [16].

2.	Removing redundancy in the deep net by either trimming layers or connections
[12-13].

3.	Reducing the complexity of each operation by reducing their precision and bit
width [4], [7-8], [10-11].

Because of their flexibility, FPGAs are perfect candidates to take advantage of all of
these approaches. In this work, we will explore the third approach in detail.

Specifically, we show how you can efficiently map minifloat operations onto
the FPGA fabric leading to a significant reduction in resource utilization with
negligible degradation in accuracy on GoogLeNet, a common network used in
image classification. Additionally, we will show how using a block-floating-point
based approach can significantly increase the number of operations that can fit
on a single FPGA, reducing the memory bandwidth and footprint required to store
intermediate data and filter weights.

Finally, we show how our block floating-point implementation on Intel® Arria® 10
FPGAs has low overhead compared to fixed-point equivalent operations, and can
be trivially converted to fixed-point operations if necessary.

Table of Contents
Abstract . . 1
Introduction . . 1
Deep Learning Accelerator. 2
	 Compute Precision and Minifloat. 2
	 Block Floating Point and Memory Impact 2	
	 Block Floating Point vs Fixed Point 3

Conclusion. . 3
References. . 4

Harnessing Numerical Flexibility for
Deep Learning on FPGAs

FPGA Inline Acceleration

Authors
Andrew C. Ling

andrew.ling@intel.com

Mohamed S. Abdelfattah
mohamed.abdelfattah@intel.com

Andrew Bitar
andrew.bitar@intel.com

David Han
david.han@intel.com

Roberto Dicecco
roberto.dicecco@intel.com

Suchit Subhaschandra
suchit.subhaschandra@intel.com

Chris N Johnson
chris.n.johnson@intel.com

Dmitry Denisenko
dmitry.denisenko@intel.com

Josh Fender
josh.fender@intel.com

Gordon R. Chiu
gordon.chiu@intel.com

Intel® Corporation
Programmable Solutions Group

white paper

mailto: andrew.ling@intel.com
mailto: mohamed.abdelfattah@intel.com
mailto: andrew.bitar@intel.com
mailto: david.han@intel.com
mailto: roberto.dicecco@intel.com
mailto: suchit.subhaschandra@intel.com
mailto: chris.n.johnson@intel.com
mailto: dmitry.denisenko@intel.com
mailto: josh.fender@intel.com
mailto: gordon.chiu@intel.com

2

White Paper | Harnessing Numerical Flexibility for Deep Learning on FPGAs

Deep Learning Accelerator
We implemented a highly efficient deep learning inference
engine [1], where a convolutional core, consisting of an array
of processing elements, reads input image and filter data
from external memory (DDR), and stores the data in caches
built from on-chip block RAMs. The processing elements
consist of highly efficient dot product kernels executing in
parallel: one of the key operations in deep neural nets. We
will explore how minifloat implementations can significantly
reduce both logic utilization and memory bandwidth usage.

Compute Precision and Minifloat

Deep learning applications often have large memory and
compute requirements, leading to exploration in reducing
precision and complexity of each individual operation.
Fixed-point representation has been employed by NVIDIA*
[6], Xilinx* [8], and Google’s TPU* [17] for convolutional
neural network (CNN) and recurrent neural network (RNN)
acceleration, while Microsoft* has recently announced the
use of a reduced-precision floating-point on Intel® Stratix® 10
FPGAs in their acceleration of gated recurrent units (GRUs)
[5].

We explore an approach similar to Microsoft's, taking
advantage of minifloat representations that reduce the
mantissa and exponent from IEEE 754 fp32. In our approach,
we explore different mantissa sizes from 2 to 5 bits,
which we refer to as fp8 to fp11 respectively. For all of our
representations, we keep one bit for the sign value and five
bits for the exponent.

Table 1 shows the relative impact of reducing the precision
against fp32. Here we show that peak tera floating-point
operations per second (TFLOPS) can increase up to 8X by
moving to lower minifloat representations.†

Block Floating Point and Memory Impact

Although Intel FPGAs support fp32 natively in hard DSP
blocks, variable precision minifloating-point operations
cannot be fully implemented in hard DSP bocks, and take a
significant amount of resources to implement each multiply
and add in soft logic [15]. However, in [3], we illustrated
how we can implement the majority of dot products in
block-floating-point form, where a group of operations are
clustered to form a “block” of operations and the exponent is
shared across all numbers in the block. An illustration of this
is shown in Figure 1, for a conversion of fp11 (1-bit sign, 5-bit
exponent, 5-bit mantissa) to block fp11 with a block size of
four.

The ability to take advantage of mixed precision networks
makes FPGAs particularly attractive for deep networks that
have different layers and operations with varying influence
on the final accuracy of the results. Table 2 compares the
accuracy of fp11 against fp32 for GoogLeNet using two
approaches: changing the precision to fp11 for the dot
product only in the Convolutional and InnerProduct layers
and changing the entire design to fp11 for all operations in all
layers. As Table 2 shows, changing all operations to fp11 has
a significant degradation to overall accuracy, while changing
only the dot product operations has little to no impact.
The benefit is, since over 80% of the FPGA resources are
dedicated to dot products, lowering only the dot products
precision yields the majority of the logic reduction and most
of the performance benefits.

Table 1. 	Relative TFLOP Increase of Minifloat Precisions
When Compared Against fp32 on the Intel®
Stratix® 10 FPGA

Figure 1. 	 Illustration of Block-Floating-Point for fp11 with
a Block Size of 4 (s=sign bits, e=exponent bits,
m=mantissa bits).

Table 2. 	Accuracy Impact of Reducing All Operations to fp11
vs. Dot Product Operations Only.

FP32 FP16 FP11 FP9

Relative TFLOPS 1.0X 2.0X 3.8X 8.0X

ALL DOT PRODUCT ONLY

Top-1 Accuracy Drop 2.31% 0.04%

Top-5 Accuracy Drop 1.22% 0.20%

s e e e e e m m m m m

s e e e e e m m m m m

s e e e e e m m m m m

s e e e e e m m m m m

s m m m m m

s m m m m m

s m m m m m

s m m m m m

e e e e e

3

Within each block, the mantissa is shifted such that all
numbers in the block will have the same exponent and can
be factored out. Any resulting multiplies or adds can then
be applied directly on the resulting mantissas, which are
equivalent to fixed-point operations in terms of cost on the
FPGA. This can lead to over 3X reduction in required logic to
implement when a block size of 8 is used, as described in [1].
In general, the larger the block size, the more resources can
be saved; however, this leads to reduced accuracy, since as
more numbers are shifted to align to a single exponent value,
more bits may be shifted off in the mantissas found within
the block. In practice, we find that a block size of 8 or 16
provide a good tradeoff between accuracy and resources [3].
However, in the event that accuracy is impacted, previous
work has shown that top up training can successfully recover
the accuracy loss incurred by large block sizes and lower
precisions [4].

In addition to implementing dot products in
block-floating-point form, we can store the data in
block-floating-point form. This can lead to a significant
reduction in both memory bandwidth to fetch data, and
memory capacity to store the data either on or off chip. To
illustrate this, Table 3 shows the compression ratio (lower is
better) achieved by storing fp9, fp11, and fp16 in
block-floating-point form, with a block size of 2 to 32 versus
no blocking (i.e., block size of 1).

White Paper | Harnessing Numerical Flexibility for Deep Learning on FPGAs

Table 3. 	Compression Ratio of Different Block Size Storage
Requirements. Block size vs. No Blocking Used to
Store Weights and Intermediate Data Feature Maps.

Figure 2. 	DSP Packing Technique of fp16 and fp11 Block-Floating-Point Multiplications into 18x18 Integer Multiplier DSP Block.

BLOCK SIZE 2 4 8 16 32

fp16 0.84 0.77 0.73 0.71 0.70

fp11 0.77 0.66 0.60 0.57 0.56

fp9 0.72 0.58 0.51 0.48 0.46

Block Floating Point vs Fixed Point

When implementing operations in block-floating-point,
the majority of the operations are applied directly to
the mantissas, which effectively converts floating-point
operations into fixed-point operations leading to an
implementation that is as efficient as fixed-point. For
example, in fp11, the mantissa plus sign is 6 bits in width. This
allows us to map two fp11 multiplies as two INT6 operations
in the native 18x18 multiplier as illustrated in Figure 2.

In the event that fixed-point operation is desired, the
block-floating-point dot products in our architecture can
be trivially converted to fixed-point operations simply by
removing the exponent and shifts required to convert to the
block-floating-point format.

Once converted to naive fixed-point, scaling and
quantization of weights would be required to account for
the loss in dynamic range by moving to true fixed-point
operations.

FP16 DSP

FP11 DSP

DSP Input A
(Filter)

DSP Input B
(Feature)

0 0 0 0 0 0

0 0 0 0 0 0

a a a a a a a a a a a a

b b b b b b b b b b b b

0 A

X

=

DSP Input A

DSP Input B 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0a a a a a a

cccccc

bbbbbb

A A A A A A A A A A A A B B B B B B B B B B B B

X

=

Filter 1 Filter 2

Feature

CONCLUSION
In this work we have demonstrated how using minifloat
representations can have a significant impact to the
over-all performance of the FPGA for deep learning
inference applications. Using block-floating-point, we
show how we can both reduce the logic utilization and
memory footprint of the design. Additionally, we describe
how block-floating-point efficiency is similar to fixed-point
implementations with little overhead over fixed-point
designs.

References
[1] 	 Utku Aydonat, Shane O’Connell, Davor Capalija,

Andrew C. Ling, and Gordon R. Chiu. An OpenCLTM
Deep Learning Accelerator on Arria 10. In Proceedings
of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, New York, NY,
USA, 55–64.

[2] 	 Diane Bryant. Keynote, Intel Developer Forum 2016,
San Francisco.

[3] 	 Gordon R. Chiu, Andrew C. Ling, Davor Capalija, Andrew
Bitar, and Mohamed S. Abdelfattah. Flexibility: FPGAs
and CAD in Deep Learning Acceleration. In Proceedings
of the 2018 International Symposium on Physical
Design. ACM, New York, NY, USA, 34–41.
https://doi.org/10.1145/3177540.3177561

[4] 	 Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael
Papamichael, Adrian Caulfield, Todd Massengill, Ming
Liu, Mahdi Ghandi, Daniel Lo, Steve Reinhardt, Shlomi
Alkalay, Hari Angepat, Derek Chiou, Alessandro Forin,
Doug Burger, Lisa Woods, Gabriel Weisz, Michael
Haselman, and Dan Zhang. 2018. Serving DNNs in
Real Time at Datacenter Scale with Project Brainwave.
https://www.microsoft.com/en-us/research/
publication/serving-dnns-real-time-datacenter-scale-
project-brainwave/

[5] 	 Eric Chung et al. 2017. Accelerating Persistent Neural
Networks at Datacenter Scale. Hot Chips.

[6] 	 NVIDIA Corporation. 2017. NVIDIA TensorRT. [7]
Philippe Coussy, Cyrille Chavet, Hugues Nono Wouafo,
and Laura Conde-Canencia. 2015. Fully Binary Neural
Network Model and Optimized Hardware Architectures
for Associative Memories. J. Emerg. Technol. Comput.
Syst. 11, 4, Article 35, 23 pages.
https://doi.org/10.1145/2629510

[8] 	 Yao Fu et al. 2016. Deep Learning with INT8
Optimization on Xilinx Devices. Xilinx white paper

  Please Recycle

[9] 	 Chang Gao, Daniel Neil, Enea Coelini, Shih-Chii Liu,
and Tobi Delbruck. 2018.
DeltaRNN: A Power-efficient Recurrent Neural Network
Accelerator. In Proceedings of t he 2018 ACM/SIGDA
International Symposium on Field-Programmable Gate
Arrays. ACM, New York, NY,USA, 21–30.
https://doi.org/10.1145/3174243.3174261

[10]	 Philipp Gysel. 2016. Ristretto: Hardware- Oriented
Approximation of Convolutional Neural Networks.
CoRR abs/1605.06402 arXiv:1605.06402
http://arxiv.org/abs/1605.06402

[11] 	 Philipp Gysel, Mohammad Motamedi, and Soheil
Ghiasi. 2016. Hardware-oriented Approximation of
Convolutional Neural Networks. CoRR abs/1604.03168.
arXiv:1604.03168 http://arxiv.org/abs/1604.03168

[12] 	 Song Han, Junlong Kang,Huizi Mao,Yiming Hu, Xin
Li, Yubin Li, Dongliang Xie, Hong Luo, Song Yao, Yu
Wang, Huazhong Yang, and William J, Dally. 2017. ESE:
Efficicient Speech Recognition Engine with Sparse
LSTM on FPGA. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate
Arrays (FPGA’17). ACM, New York, NY, USA, 75–84.
https://doi.org/10.1145/3020078.3021745

[13] 	 Forrest N. Iandola et al. 2016. SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and
<0.5 MB model size. arXiv:1602.07360.

[14] 	 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
2012. ImageNet Classification with Deep Convolutional
Neural Networks. In Advances in Neural Information
Processing Systems. 1097–1105.

[15] 	 Amulya Vishwanath et al. 2016. Enabling
High-Performance Floating-Point Designs. Intel white
paper

[16] 	 Shuo Wang, Zhe Li, Caiwen Ding, Bo Yuan, Qinru
Qiu, Yanzhi Wang, and Yun Liang. C-LSTM: Enabling
Efficient LSTM Using Structured Compression
Techniques on FPGAs. In Proceedings of the 2018
ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ACM, New York, NY,
USA, 11-20. https://doi.org/10.1145/3174243.3174253

[17] 	 Yonghui Wu et al. 2016. Google’s Neural Machine
Translation System: Bridging the Gap between Human
and Machine Translation. arXiv:1609.08144

White Paper | Harnessing Numerical Flexibility for Deep Learning on FPGAs

† 		Tests measure performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of
information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.
© Intel Corporation. All rights reserved. Intel, the Intel logo, the Intel Inside mark and logo, Altera, Arria and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the
U.S. and/or other countries. Intel reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the applica-
tion or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications
before relying on any published information and before placing orders for products or services. Other marks and brands may be claimed as the property of others.

WP-01281-1.0

https://www.microsoft.com/en-us/research/publication/serving-dnns-real-time-datacenter-scale-project-brainwave/
https://www.microsoft.com/en-us/research/publication/serving-dnns-real-time-datacenter-scale-project-brainwave/
https://www.microsoft.com/en-us/research/publication/serving-dnns-real-time-datacenter-scale-project-brainwave/

