Key Features

- Single and Dual-Port QSFP28
- PCI Express (PCIe) 4.0 x16
- Ethernet Port Configuration Tool (EPCT)

- Application Device Queues (ADQ)
- Dynamic Device Personalization (DDP)
- Supports both RDMA iWARP and RoCEv2

Improve application efficiency and network performance with innovative and versatile capabilities that optimize high-performance server workloads such as NFV, storage, HPC-AI, and hybrid cloud.

Performance for Cloud Applications

Delivers the bandwidth and increased application throughput required for demanding cloud workloads including edge services, web servers, database applications, caching servers, and storage targets.

- Application Device Queues (ADQ) improves application response time predictability using advanced traffic-steering technology
- Dynamic Device Personalization (DDP) enhances packet classification capabilities, to deliver up to 3x throughput improvement² for some cloud workloads
- Supports both RDMA iWARP and RoCEv2 for high-speed, low-latency connectivity to storage targets

Optimizations for Communications Workloads

Provides packet classification and sorting optimizations for high-bandwidth network and communications workloads, including mobile core, 5G RAN, and network appliances.

- Dynamic Device Personalization (DDP) supports existing and new communications-specific protocols improving packet-processing efficiency up to 3x for some Network Functions Virtualization (NFV) workloads
- IEEE 1588 Precision Time Protocol (PTP) v2 enables precise clock synchronization across the 5G RAN deployments
- Enhanced Data Plane Development Kit (DPDK) support increases packet-processing speeds

Versatile Port Configurations with EPCT

E810-CQDA1 and -CQDA2 adapters support a wide range of system configurations to meet customer needs and workload requirements. The many port and speed combinations available simplify validation and deployment. Using EPCT, these adapters can be programmed to act as many different physical network adapters, with a maximum throughput of 100Gbps.

Connect to a wide range of switch speeds and media types

<table>
<thead>
<tr>
<th>Port Configuration</th>
<th>E810-CQDA1</th>
<th>E810-CQDA2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x100Gb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1x100Gb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x50Gb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4x25Gb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4x25Gb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x2x25Gb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8x10Gb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
All 800 Series products include these technologies

Greater Predictability at Scale

As modern data centers scale, a key challenge is to provide scalable, predictable application-level performance. Application Device Queues (ADQ) technology improves performance scalability and predictability by dedicating queues to key workloads, delivering predictable high performance through dramatically reduced jitter.

Increasing the predictability of application response times by lowering jitter enables more compute servers to be assigned to a task and can allow more users to access the system, providing a better end-user experience. Even applications that are not large scale can benefit from higher consistency, enabling them to meet service-level agreements (SLAs) more easily.

ADQ enables application-specific data steering, signaling, and rate limiting using an optimized application thread to device data path. This ability to dedicate queues and shape network traffic not only increases performance, it reduces latency and improves throughput.

Increase Throughput and Lower Latency

Remote Direct Memory Access (RDMA) provides high throughput and low-latency performance for modern high-speed Ethernet by eliminating three major sources of networking overhead: TCP/IP stack process, memory copies, and application context switches. Intel Ethernet 800 Series Network Adapters support all Ethernet-based storage transport, including iWARP, RoCEv2, and NVMe over Fabric.

RoCE (RDMA over Converged Ethernet): RoCEv2 substitutes the InfiniBand physical layer and data link layer with Ethernet, operates on top of UDP/IP, and is routable over IP networks.

iWARP, IETF standard protocols based: Delivers RDMA on top of the pervasive TCP/IP protocol. iWARP RDMA runs over standard network and transport layers and works with all Ethernet network infrastructure. TCP provides flow control and congestion management and does not require a lossless Ethernet network. iWARP is a highly routable and scalable RDMA implementation.

Improve Packet Processing Efficiency

Dynamic Device Personalization (DDP) customizable packet filtering, along with enhanced DPDK, supports advanced packet forwarding and highly-efficient packet processing for both Cloud and NFV workloads.

The 800 Series firmware loads an enhanced DDP profile with many workload-specific protocols at driver initialization for greater flexibility. When multiple 800 Series adapters are present in a system, the pipeline on each adapter can be programmed independently with a different DDP profile.

Increase Timing Accuracy

Intel Ethernet 800 Series supports both IEEE 1588 PTP v1 and v2 with two-step option. The products provide increased accuracy at single-digit nanosecond level, and can report the reception time for every packet. This level of timing accuracy can help ensure tight synchronization across network deployments ranging from 5G RAN to financial services, industrial automation, and energy monitoring.

Protect, Detect, and Recover

Zero Trust is a security design strategy centered on the belief that organizations, by default, should not automatically trust any request for system access. This includes requests coming from outside, as well as inside its perimeters. Zero Trust demands that every access request be verified before granting access.

The 800 Series implements a design philosophy of platform resiliency with 3 attributes compliant with the NIST Cybersecurity Framework, including NIST 800-193 Platform Firmware Resiliency Guidelines: Protect, Detect and Recover. By design, the Hardware Root of Trust in the 800 Series protects the firmware and critical device settings with authentication for every access. Signed firmware updates and the Hardware Root of Trust protects and verifies critical device settings with built-in corruption detection and automated device recovery. Together these features ensure the device safely returns to its originally programmed state.

For more information about Intel® Ethernet Technologies, including videos and resource libraries, visit intel.com/ethernet
Intel® Ethernet 800 Series Network Adapters are designed with Intel® Ethernet Controller E810 and include these features².

Host Interface
- Compliance with PCIe 4.0
- Concurrency for 256 non-posted requests

Software Interface
- Base mode VF compatibility with Intel® Adaptive Virtual Functions Specification
- Tx/Rx Queues
 - 2048 Tx queues and 2048 Rx queues
 - Dynamic allocation of queues to functions and VSIs
- Interrupts
 - 2048 interrupts vectors, allocated in a flexible manner to queues and other causes
 - Multiple interrupt moderation schemes
 - 20M interrupts/sec
- Control Queues (a.k.a. Admin Queues)
 - Mailbox Queues for PF-VF and driver-driver
 - Admin Queues for Software-Firmware control flows
 - Sideband Queues for Software to access IPs inside the E810
- 256 Tx Doorbell (DB) Queues
- 512 Tx Completion Queues
- Quanta Descriptor (QD) Queue per Tx queue. Quanta information is also embedded in the Tx doorbell
- Programmable Rx descriptor fields

Packet Processing
- Enhanced Data Plane Development Kit (DPDK)
- General
 - Stages of parsing, switching, ACLs, classification, packet modification
 - Programmable packet processing pipeline
 - Profile based
 - Programmable actions
 - Propagation of priorities between stages
- Parser
 - Parses up to 504B from packet header
 - Parse Graph based
 - Session-based parsing
 - Programmable parse engine
- Binary Classifier (VEB Switch)
 - 768 switch ports (VSIs)
 - Programmable forwarding rules
 - Storm Control
- ACLs
 - 8K programmable TCAM entries
 - Tiling capability to n*40b width
- Classification Filters
 - Hash-based statistical distribution
 - Intel® Ethernet Flow Director (Intel® Ethernet FD) flow-based classification
 - Flow-based identification of iWARP and RoCE flows
 - Programmable rules
- Modifier
 - Insert (Tx), remove (Rx), and modify of packet VLANs
 - L3 and L4 checksums and CRC

Virtualization
- Host virtualization via VMDQ and SR-IOV
- Up to 256 SR-IOV Virtual Functions
- Stateless offloads for tunneled packets (network virtualization support)
- Malicious VF protection
- Virtual machine load balancing (VMLB)
- Advanced packet filtering
- VLAN support with VLAN tag insertion, stripping and packet filtering for up to 4096 VLAN tags
- VxLAN, GENEVE, NVGRE, MPLS, VxLAN-GPE with Network Service Headers (NSH)
- Intel® Ethernet Adaptive Virtual Function drivers

RDMA
- iWARP and RoCEv2
- 256K Queue Pairs (QPs)
- Send Queue Push Mode
 Note: RDMA is not supported when the E810 is configured for >4-port operation.

QoS
- WFQ Transmit scheduler with nine programmable layers
- Pipeline sharing and starvation avoidance
- QoS via 802.1p PCP or Differentiated Services Code Point (DSCP) value
- Packet shaping

Manageability
- SMBus operating at up to 1Mb/s
- DMTF-compliant NC-SI 1.1 Interface at 100Mb/s
- MCTP over PCIe and SMBus
- Enterprise-level management schemes via local BMC
- SNMP and RMON statistic counters
- Watchdog timer
- PLDM over MCTP; PLDM Monitoring; PLDM firmware update; PLDM for RDE
- Firmware Management Protocol support

Power Management
- Supports PCI power management states D0, D3hot, D3cold

Time Synchronization
- Time stamp with each Rx packet
- Selective time stamps for Tx packets
- IEEE 1588 PTP v1 and v2 support
- Time synchronization signaling with other local platform ingredients

Pre-Boot
- Signed UEFI option ROM compatible with HTTPS boot

Security
- Hardware-based Root of Trust
- Authentication on NVM Read and Power On
- Built-in detection of firmware/critical setting corruption with automated device recovery
Supported Physical Layer Interfaces

<table>
<thead>
<tr>
<th>100Gbps</th>
<th>50Gbps</th>
<th>25Gbps</th>
<th>10Gbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>DACs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optics and AOCs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAUI-4</td>
<td>IEEE 50GAUI-1</td>
<td>25GBASE-SR/LR</td>
<td>10GBASE-SR/LR</td>
</tr>
<tr>
<td>100GAUI-2</td>
<td>IEEE 50GAUI-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100GAUI-4</td>
<td>IEEE LAUI-2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Technical Specifications

Airflow
- Commercial Temp DAC
 - Dual Port 100 LFM @ 25 °C ambient
 - Dual Port 200 LFM @ 45 °C ambient
 - Dual Port 350 LFM @ 55 °C ambient
- Commercial Temp Optics (3.5 W)
 - Dual Port 200 LFM @ 25 °C ambient
 - Dual Port 250 LFM @ 35 °C ambient
 - Dual Port 500 LFM @ 45 °C ambient
- Extended Temp* Optics (3.5 W)
 - Dual Port 100 LFM @ 25 °C ambient
 - Dual Port 250 LFM @ 45 °C ambient
 - Dual Port 400 LFM @ 55 °C ambient
*85 °C max case

Storage Humidity
- Maximum: 90% non-condensing relative humidity at 35 °C

Storage Temperature
- -40 °C to 70 °C (-40 °F to 158 °F)

Operating Temperature
- -5 °C to 55 °C (23 °F to 131 °F)

LED Indicators
- ACTIVITY (blinking) NO ACTIVITY (off)
- LINK SPEED (green = 100GbE; amber = less than 100GbE; off = no link)

Supported Operating Systems

For a complete list of supported network operating systems for Intel® Ethernet 800 Series Network Adapters visit: intel.com/support/EthernetOS

Intel® Ethernet Optics

Combine high-density Ethernet connections with Intel® Ethernet 800 Series Network Adapters for dependable interoperability and consistent performance across the network. Intel Ethernet Optics have been extensively tested for compatibility with Intel Ethernet Network Adapters. Learn more at intel.com/ethernetproducts
Warranty
Intel limited lifetime hardware warranty, 90-day money-back guarantee (US and Canada) and worldwide support.

Customer Support
For customer support options in North America visit: intel.com/content/www/us/en/support/contact-support.html

Product Information
For information about Intel® Ethernet Products and technologies visit: intel.com/ethernet

1. Dynamic Device Personalization (DDP) enables protocol-specific traffic acceleration, to deliver throughput improvement and latency reduction for some cloud workloads
2. See the Intel® Ethernet Controller E810 Datasheet for the full list of product features.
3. Edge Power Consumption on dual-port adapters, using power class 4 optics drawing the maximum allowed power of 3.5 W each has been shown to exceed the 25 W limit dictated by PCIe CEM specification for products that do not request/configure for high power at the 75 W level. Intel® drivers do not currently support this configuration request. As such the card is not in compliance with the PCI Express Card Electromechanical Specification Revision 4.0, Version 1.0 as written.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors which may cause deviations from published specifications.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.