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Executive Summary 
This paper provides an overview of common error detection and 

notification capabilities found in Intel® Architecture (IA)-based systems 

and how they can be used to implement a number of platform-level error 

handling schemes. 

The Intel® Embedded Design Center provides qualified developers with 

web-based access to technical resources. Access Intel Confidential design 

materials, step-by step guidance, application reference solutions, training, 

Intel’s tool loaner program, and connect with an e-help desk and the 

embedded community. Design Fast. Design Smart. Get started today. 

www.intel.com/embedded/edc.  
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Introduction 
Fault tolerant systems have always been in high demand. What was once the 
realm of high-end servers and High Performance Computing (HPC) machines 
are now the norm for all types of applications. Customers who are producing 
Embedded or Communications products expect high system up-times and 
demand ease of management/repair in the event of correctable and 
uncorrectable errors. Chip manufacturing technologies continue to use 
smaller and smaller transistors and employ lower and lower voltages as they 
chase higher performance via power per watt metrics. This comes with the 
unintended consequence of systems that are more susceptible to soft errors 
caused by manufacturing variation, Alpha particles, neutrons, and electro-
magnetic forces. 

Given a sufficiently large sample size or time scale, errors will occur and data 
will be corrupted somewhere in the system. If there isn’t a robust set of 
detection mechanisms or alerts to handle a full range of system problems, 
the performance of the system may degrade to the point of full system 
shutdown or reset. Many systems “go down” unexpectedly and it is often 
puzzling when they do so without warning or explanation (e.g., Blue screen). 

For systems that are expected run continuously, an error condition that can 
take it offline would be unacceptable. Modern systems employ various 
techniques to make the platform more reliable and serviceable. This helps 
keep downtime to a minimum. New platforms must have a way to identify 
errors and have a set of strategies for gracefully dealing with the aftermath. 

Modern Intel® processors and chipsets provide two major error-handling 
paradigms to help accomplish this goal across all elements in the system: 

1. Machine Check Architecture (MCA), for Core and Uncore modules. 
2. Advanced Error Reporting (AER), for PCI Express* devices and Integrated 

IO modules. 

While some errors are corrected automatically by the hardware (e.g., single-
bit ECC error in memory), others require outside hardware or software 
intervention (e.g., graphics device gets poisoned data over PCI Express 
interface). MCA and AER in parallel give system architects the ability to 
classify errors and give fine-grained control over how to respond to such 
problems.   

Both MCA and AER offer flexibility in how they respond to any given error 
condition:  

 How to classify this event? 
 Which system component should be notified? 
 Are there special operating modes for error handling available in the 

CPU/chipset? 
 Can I change the configuration during system operation? 
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These questions need to be answered early in the project timeline because 
some of the features of MCA and AER require specific hardware connections if 
they are to be available for use by software. If you do not explicitly plan and 
design for particular MCA or AER features during the hardware design phase, 
then your future software options may be limited. This can restrict your 
ability to meet certain RAS requirements. Given the rich feature-set and 
configuration options for both of these paradigms, do not leave these 
important decisions to chance when develop a comprehensive platform-level 
error handling strategy.  

While we will leave the register-level details to the relevant Intel Product 
Datasheets, the Intel® Software Developers Manual, and the appropriate PCI 
Express Specifications, this document will describe some of the major 
elements of MCA and AER configuration so that a system architect, in 
conjunction with their test/diagnostics/BIOS engineers, will be able to design 
a system that efficiently and reasonably responds to error conditions and 
other run-time anomalies. 

Note: If you were familiar with past generations of MCA and AER, we would 
encourage you to revisit them in the context of their implementation in the 
latest generation of CPUs and chipsets; both paradigms have been expanded 
to provide a much larger set of features to handle a wider variety of 
exceptions.    

Document Structure 
The Introduction section provides motivation for the discussion of system-
level error handling options in IA-based platforms. 

The Component-Level Error Reporting and Alerting section will provide an 
overview of the system-level error logging, reporting, and alerting features 
generally found in IA-based platforms.  

The Platform-Level Error Handling Strategies on Intel® Platforms section will 
take these features a step further and present common error handling 
strategies utilizing the aforementioned system-level error logging, reporting, 
and alerting features. 

Note: This paper does not describe the details of stand-alone RAS features, like 
Memory Mirroring or Rank Sparing.  For these, please see the Datasheet, 
External Design Specification, or BIOS Writer’s Guide for the particular 
component of interest; this document only focuses on the platform-level 
response and the “flow” of error handling.   
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Component-Level Error Reporting 
and Alerting 

An IA-based platform typically includes an Intel® processor, an Intel® 
chipset, and a set of peripheral components (e.g., Ethernet NICs). Before we 
can talk about designing a platform-level error propagation strategy, it is 
prudent to understand the general capabilities inherent in each component of 
the system.  

While most of the error logging, reporting, and alerting features mentioned in 
this document are found on most recent Intel® processors and chipsets, not 
all of them are. Consult the Intel® Software Developers Manuals and the 
appropriate Intel® Datasheet for each component to make sure that the ones 
that you would like to make use of are implemented and available.  

Note:  This document uses the Intel® Xeon® C5500/C3500 series processors and 
associated chipsets in its examples, but the concepts apply to many other 
Intel® platform components. 

Error Reporting Options for Intel® Processors 
The Intel® P5 Architecture introduced a standard methodology of error 
detection and reporting for the Core known as Machine Check Architecture 
(MCA). Since that first generation of the technology, the MCA has been 
enhanced and improved as successive processors have integrated memory 
controllers and other peripherals into its domain. The latest generations of 
processors use MCA to log and report errors in both the Core (CPU, caches, 
etc.) and the Uncore (e.g., QPI bus interconnect, integrated memory 
controllers, Intel® Virtualization Technology logic, etc.).  

While the MCA is described fully in the IA32/64 Software Developer’s Manual 
Volume 3A, the short version is that the MCA includes a number of well-
defined registers that allow a system designer to decide which error 
conditions should be logged in real time and how the system should be 
alerted when they occur. The alert options range from a simple, well-known 
(i.e., hardcoded) software interrupt vector (i.e., “INT18”) to the assertion of a 
dedicated hardware pin called Catastrophic Error (i.e., the CATERR# or 
CAT_ERR_N signal).  

Processors that implement integrated I/O devices, like the integrated PCI 
Express controllers in the Intel® Xeon® C5500/C3500 series processors, will 
have, in addition to MCA, logic for Advanced Error Reporting as defined by 
the PCI Express specification. When an error is logged thorough the AER 
system, the system can be alerted via a number of methods. These include 
by MSI, by a common software interrupt vector, or by the assertion of 
external hardware pins (i.e., the ERR[2:0] or SYS_ERR[2:0] signals). Many 
processors that support AER also support a separate global error unit that will 
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collect all AER-generated error messages/indicators in the system into a 
compact set of registers at the top-level of the bus hierarchy. This unit helps 
to streamline the error handling process by collecting the error status of each 
and every PCI or PCI Express device in the system and presenting this 
information within a small set of registers. If you want to root-cause why a 
certain AER error occurred, you would start with these global error registers, 
then follow the error register hierarchy all the way down to the PCI and PCI 
Express-based configuration/status registers inside the problem device. 

Note: As of this writing, the global error unit only aggregates errors in the AER 
domain and not those errors that are handled via the MCA.  

Intel® processors all implement a version of MCA and some –those with 
integrated I/O devices – will implement AER features in parallel.  When an 
error occurs, the system can be alerted via different types of interrupts or via 
a dedicated set of hardware pins. These options are all configurable with 
software.  If you want to rely on hardware pins to communicate system-error 
situations to external devices (e.g., a BMC), then these connections must be 
accounted for during the board design phase.  

Error Reporting Options for Intel® Chipsets 
Intel® chipsets have typically contained a PCI hierarchy with a bus starting at 
zero and associated internal controllers (e.g., USB controller, SATA controller, 
PCI Express root ports, etc.) implemented with all the typical configuration 
registers per the relevant PCI specification. Most modern Intel® chipsets 
include one or more integrated devices (ex. PCI Express controllers) that 
support various aforementioned AER capabilities. Such devices might contain 
special register sets to detect/report error conditions defined only for its 
particular interface (e.g., PxSERR registers for SATA, or USB2.0_STS for USB, 
etc.), beyond any defined by the normal PCI specification such as PCISTS.  
Some Intel® chipsets, like certain processors described in the previous 
section, also support a global error unit to provide a central place for error 
logging and reporting.  

When the chipset encounters an error, the system can be alerted via 
hardware or software methods. On the software side, Intel® chipsets contain 
one or more legacy 8259 and IOxAPIC interrupt controllers (which 
traditionally were the central interrupt collectors for the system) that can be 
configured to assert an SMI/NMI or any regular software-based interrupt.  
With the advent of PCI Express and modern operating systems, interrupts are 
no longer limited to the physical wires in the system as provided by the 8259 
or IOxAPIC interrupt controllers and can be delivered directly to the CPU 
virtually via MSI messages on any of the Intel® QPI or PCI Express busses 
within the system. This new option has an advantage in that MSI’s bypass the 
legacy interrupt controller logic in the chipset and directs internal error 
messages straight to the local APIC of a particular logical CPU for immediate 
action.   
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On the hardware side, there are many pins that can be used to signal that an 
error has occurred. Some of these pins are dedicated to specific error 
conditions (e.g., the PERR#, SERR#, SERIRQ, and PIRQ[H:A] signals), but 
there is usually a large set of GPIO pins in the chipset that can be configured 
to assert when other types of errors occur. 

The devices integrated in the Intel® chipset will implement the normal PCI or 
PCI Express error logging registers inside an overall AER infrastructure. Once 
an error condition is encountered, the system can be alerted through 
software interrupts (MSIs usually being the best choice, if there are no legacy 
considerations) or hardware pins.  

An example of this would be an Intel® Xeon® C5500/C3500 Processor and 
Intel® 3420 Chipset Platform.  

To support our descriptions of the “potential” error-handling features that you 
may find in an IA-based platform, let’s look at the specific features of a 
platform containing the Intel® Xeon® C5500/C3500 Processor and the 
Intel® 3420 chipset. Figure 1 shows how a typical two-processor system is 
connected to memory and various I/O components. 

Figure 1 Block Diagram for an Intel® Xeon® C5500/C3500 Processor and 
Intel® 3420 Chipset-based Platform 

 

In this system, the two Intel® Xeon® C5500/C3500 Processors consist of up 
to four execution units, each supporting SMT (i.e., four physical cores, with 
up to eight logical cores with private caches), a large shared 8MB Last Level 
Cache (LLC), three integrated DDR3 Memory controllers, and an Integrated 
IO (IIO) unit. 
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The IIO unit includes: 

 One x16 PCI Express Gen2 external interface - split across four 
independent controllers, if desired 

 DMI interface - similar to a x4 PCI Express Gen1 root complex 

 Crystal Beach DMA engine - up to eight independent channels 

 Intel® QPI interface between processors 

 Intel® VT-d features such as virtual-to-physical address remapping and 
interrupt remapping 

 Other miscellaneous functions such as a GPIO controller 

Figure 2 Internal Functional Block for Intel® Xeon® C5500/C3500 Processor 

Processor	Core/Uncore

Processor	Integrated	IO	
(IIO)	unit	

 

Besides the DMI connection to the processor, the Intel® 3420 Chipset 
provides a number of interfaces for common system peripherals like legacy 
PCI devices, USB devices, SATA hard drives, SPI flash devices, GigE devices, 
LPC devices, and PCI Express Gen1 devices (two x4s, with several 
configurations available). 
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Figure 3 Internal Functional Block for Intel® 3420 Chipset 

 

The MCA error domain maps to the Processor Core/Uncore functional blocks 
and the AER error domain maps to the Processor Integrated IO Unit and all 
devices in the chipset.  

The MCA error domain in the Intel® Xeon® C5500/C3500 Processor acts as 
described in the Intel® Software Developer’s Manual Vol. 3A for all the 
functional blocks mentioned above, noting that model-specific error codes of 
the IA32_MCi_STATUS MSR’s can be found in the Nehalem BIOS Writer’s 
Guide. The processor implements the usual OOB error signal, the CATERR# 
pin, which is pulsed for 16 BCLK’s for all but the most catastrophic problems 
(in which case it goes low until reset). This pin should be connected to a GPIO 
on the Intel® 3420 chipset or to a BMC that is programmed to respond to 
MCE’s. For more information, see the section titled Platform-Level Error 
Handling Strategies on Intel® Platforms.  

The AER error domain runs across both the Intel® Xeon® C5500/C3500 
processors and the Intel® 3420, but there two differences to note: 

1. As a benefit for those writing system error handling code, the Intel® 
Xeon® C5500/C3500 processor provides an integrated central error 
control/collection point (Device 8 / Function 2). The main function of this 
device is to provide the central control of error detection and reporting for 
the entire Processor IIO unit. The Intel® 3420 chipset has no such global 
error collector. You can set up the system to route all system errors, even 
those of the chipset, to the processor and use its global error collector for 
error handling. 

2. The processor has dedicated error pins that are specifically mapped to 
each of the three error severities defined in the AER spec. The processor 
documentation calls these pins SYS_ERR_STAT[2:0] or Error[2:0]. The 
chipset does not have these same dedicated error pins, but it can be 
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configured to assert GPIOs when a given error occurs. Either set of pins 
can be hooked up to a BMC for OOB error handling. 
 
Please consult the documentation for both the Intel® Xeon® 
C5500/C3500 processor and the Intel® 3420 chipset for a full description 
of all of the error handling features mentioned in this section. 

Platform-Level Error Handling 
Strategies on Intel® Platforms 

The previous chapter discussed the error reporting and logging mechanisms 
that are typically found in modern IA processors and chipsets. IA-based 
platforms provide the flexibility to handle system problems through a variety 
of hardware or software mechanisms. This chapter will explore the most 
common and useful of these options, noting that you may mix-and-match 
any of these techniques to meet the specific requirements of your platform. 

Once done with this paper, we encourage system architects to look at RAS, 
MCA, and AER features of the Intel components in your particular design and 
use this information to create a flow-chart that details how each error (or 
class or errors) should be handled, and “who” – this is, which component – in 
the system will be responsible for handling it. 

Centralized IO Error Reporting 
Errors occurring within the CPU itself (or to devices connected to the CPU 
directly, such as memory or peripherals) will be logged and reported via the 
MCA and AER mechanisms mentioned earlier. What do we do about the 
PCI/PCIe-type errors happening on devices inside of or attached to an ICH or 
PCH connected to the CPU?  

As a general rule, it is best to have all IO errors routed to the CPU so that the 
system can decide to handle the problem there (via various types of error 
handlers available within the processor) or send it to an external board 
management controller (via special error pins on the processor). Intel® 
chipsets can be configured to operate in “Server Error Reporting Mode” 
(SERM). Any error in the chipset will be forwarded to the CPU via internal 
messages on the DMI interface. 
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Figure 4 Generic diagram for SERM enabling logic 

 

SERM can be enabled by setting a bit in the General Control and Status 
Register (GCS) found in all modern Intel® chipsets. In this mode, if the 
chipset detects any type of PCI/PCIe error, fatal, non-fatal, or correctable, it 
will propagate the internal error message to the CPU, which will treat it like 
any other IIO error.  When any of these error messages arrive at the CPU 
(shown as ERR_CORR, ERR_NONFATAL, and ERR_FATAL in Figure 4), the 
information contained within the message will be populated in the local DMI 
interface registers and the Global Error Registers.   

Note: Even if the chipset is set for SERM, a particular error might not show up at the 
CPU because it was masked or disabled somewhere else in the chipset. This 
document assumes that each PCI/PCIe device in the system is programmed 
correctly to record and generate error messages regardless of being in SERM 
or not. Setting the SERM bit is simply the last step in the process to say that 
system error messages should also be sent up to the CPU even as the details 
are recorded in the chipset. 
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Figure 5 Local Error Registers Feeding Into the Global Error Registers 

 

There is a hierarchy of error reporting that starts at the device (i.e., the local 
error reporting PCI registers). Each device can be configured to send such 
error reports to the interrupt controller (usually the APIC), which generates 
an interrupt (IRQ or MSI – your choice). The best place for an overview of the 
interrupt hierarchy is Chapter 10 of the IA32 Software Developers Manual 
(SDM) Vol 3A – for APIC operation. 
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Figure 6 Error Propagation from the Local Unit to the Global Unit 

 

With SERM enabled in the chipset, the Global Error Register set of the CPU is 
a hub for normal system errors. In the case of errors in the chipset (or 
devices attached to it), these registers will indicate that the problem is in 
“DMI port 0”. This set of registers will indicate which internal operating unit 
generated (or, at least, received) the error. For example, besides DMI port 0, 
the issue could be in one of the integrated PCIe ports, the VT-d logic, etc. 
This points the error handler to the PCI error registers of that specific unit for 
more information.   

At start-up time, software will configure the Global Error register set (which 
shows up as its own B/F/D in PCI space of the processor) with information on 
how the system should react to various types of errors. 

For example, when a certain correctable error occurs, the system may want 
to be alerted via a simple software interrupt or via the assertion of an 
external pin into a BMC implemented on the board. 

While the details might change slightly depending on the processor family, 
this configuration involves a few registers in both the end device and in the 
root ports themselves. In the Intel® Xeon® C3500/C5500 Processor Family, 
these are the registers that control if/how errors will propagate from a device 
in the chipset, up to the processor, and on the chipset:  
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 GCS, bit 9 – to enable SERM 
 NMI_SC, bit 2 – enable for NMI generation, if using NMI to signal 

errors 
 PCICMD, bit 8 – to enable SERR generation by an individual PCIe 

device 
 BCTRL, bit 1 – to forward error messages received by the device to 

the backbone 
 DCTL, bits 0-2 – to enable reporting of error messages to the root 

control register 
 RCTL, bits 0-2 – to enable reporting of errors in the root port for 

devices below it 
 UEM, all bits – for masking various uncorrectable errors on the device 
 UEV, all bits – for assigning a severity to uncorrectable errors for the 

device 
 CEM, all bits – for masking various correctable errors on the device 
 On the processor: 

 MISCCTRLSTS – bits 33 -35, to override system error enables for 
individual devices 

 DEVCON, bits 0-2 – to enable reporting of error messages upwards 
in the hierarchy 

 ROOTCON, bits 0-2 – to enable reporting of errors in the root port 
for devices below it 

 PCICMD, bit 8 – to enable SERR generation by an individual PCIe 
device 

 DEVCTRL, bits 0-2 – to enable reporting of errors received to the 
root control register 

 UNCERRMSK, all bits – for masking various uncorrectable errors on 
the device 

 UNCERRSEV, all bits – for assigning a severity to uncorrectable 
errors for the device 

 CORERRMSK, all bits – for masking various correctable errors on 
the device 

 RPERRCMD, bits 0-2 – to enable MSI generation for errors events, 
if desired 

 ERRPINCTL, bits 0-5 – to control the behavior or the ERR[2:0] pins 
(i.e., to assert them or not) when an error occurs anywhere in the 
system 

Software (e.g., a software-based error handler) can use the ERRPINDAT 
register to assert any of the ERR[2:0] pins at will. 

Remember that AER (and all PCIe constructs) works as a hierarchy of 
devices. Associated events and a BIOS/diagnostics engineer need to make 
sure that all the mask and enable bits for each one of these registers are set 
correctly at each level of the system (e.g., at the end-device, at the root port, 
at the chipset control, etc.), for both external and internal devices.   
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Using a Board Management Controller 
Catastrophic errors may be handled by an independent Board Management 
Controller (BMC) connected to the processor and/or chipset via a set of pins 
dedicated to error reporting. With such a setup, the platform is more likely to 
recover from a wider range of problems because the system does not rely on 
code running on the CPU. 

Figure 7 All BMC Solution for Error Handling 

 

 

In previous generations of IA processors, the MCA used two different pins to 
indicate a problem. The first, MCERR, would indicate a “fatal” error occurred, 
and the second, IERR, would indicate that a “catastrophic” error occurred. 
The definition of which errors are “fatal” and which errors are “catastrophic” 
was generally defined for a family of processors.  In the Intel® Xeon® 
C5500/C3500 series generation of processors, the CPU simply uses a single 
pin (the CATERR# pin) for either situation.  

 If an “MCERR class” error occurs, CATERR# is asserted for 16 BCLKs. 
 If an “IERR class” error occurs, CATERR# remains asserted until warm 

or cold reset. 
The notion of fatal and catastrophic errors is still with us; a BMC can figure 
out which error occurred by counting the number of clocks CATERR# asserted 
and proceed accordingly with its analysis/handling of the error condition.  

In the IIO, the processor will use three pins, called “ERROR_N[2:0]” or 
“ERR[2:0]” to indicate various severities of errors to an external agent.  

 ERR[0]# = Hardware correctable error (no software action necessary) 
 ERR[1]# = Non-fatal error (OS or firmware action required to contain 

and recover) 
 ERR[2]# = Fatal error (system reset likely required to recover) 
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The ERRPINCTL register in the processor defines if and how the AER logic 
asserts these three pins if any type of IO error occurs on the platform. For 
example, this register can tell the AER logic to assert ERR[2]# to a BMC if a 
fatal error occurs, but not bother asserting ERR[1]# or ERR[0]# for non-fatal 
or corrected errors, respectively (because they will be handled via other, 
software-controlled mechanisms). The ERRPINDAT register can be used to 
assert any one of these pins at any time via software. For example, a 
software error handler may be called for every non-fatal error, but this code 
may determine that the BMC should handle a certain subset of these after 
doing some initial triage of the problem. In this case, the software could 
assert the ERR[1]# pin when it wants to signal the BMC.   

When a BMC sees that a CATERR# or any of the three ERR[2:0]# pins are 
asserted, the BMC knows that there is a problem, but it is up to the system 
architect / BMC programmer to determine how exactly to respond. In some 
systems, the appropriate response to any type of error would be logging a 
MCE or IO error and then resetting the system. This approach does not 
distinguish among the many different instances of each type of error, but 
may work for some. More likely, the BMC will run a routine to query the state 
of the CPU and/or chipset and decide to take one of many actions based on 
what it finds.   

How does the BMC communicate with these other components and read 
debug data and registers? The answer depends on the interfaces available to 
the BMC (and which interfaces are supported by the BMC itself). Each 
processor and chipset contain several different interfaces (PECI, SMBus, and 
PCIe) and each bus will allow an outside entity, like a BMC, different types of 
permissions/access to its registers. It is up to the system architect to decide 
which bus(es) or interface(s) will be used to connect the BMC to the rest of 
the platform components.  

Commonly, though, PECI is the interface used by BMCs for this purpose, but 
note that different chips will provide different amounts of system access via 
this bus. For example, the Intel® Xeon® C5500/C3500 Processor mentioned 
in the previous section allows access to many MSRs related to error handling 
as well as to various portions of PCI configuration space, but previous 
generations typically limit access only to the latter resources.  If your 
hardware-based error-handling paradigm requires access to certain 
information in the processor or chipset, be sure that the interface connecting 
the component allows the BMC access to it. If the PECI bus doesn’t allow the 
BMC the view into the system that is required of the BMC software, use 
another one, like SMBus or PCIe, instead.  
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Interrupt-based Error Handling 
Some systems may not implement a BMC at all, or may choose to handle 
certain classes of errors via software (most likely, those that are non-fatal).  
In these cases, a system architect or diagnostics engineer may use some of 
the various interrupt-based error reporting and handling schemes that are 
supported by IA® processors and chipsets.  

Types of Interrupts 

On IA-based platforms, various interrupts have a given set of behaviors, 
norms, and typical usage patterns. Beyond the general software interrupts 
enabled by legacy 8259 logic and various local APIC’s and IOAPIC’s (see 
Section 6 in Volume 3A of the Intel® 64 and IA-32 Architectures Software 
Developer’s Manual for more information about these general interrupts) 
there are several types that are specifically designed to assist in the 
processing of serious system errors.  

With MCA, interrupt 18 in the Interrupt Descriptor Table (IDT), is 
architecturally assigned to assert any time a Machine Check Error occurs.  
The vector at this IDT location could point to a software handler that 
performs one or more of the following actions: 

 Determine the scope of the problem and try to recover the system to 
a normal operating state, by reloading or resetting only the 
software/hardware that is affected, 

 Collect as much information as possible, given the current state of the 
system, and store this for later analysis (i.e., by BIOS or other system 
management software), 

 Set up the system so that another entity continues the error handling 
process “up the chain”. In this case, the MCE interrupt handler does 
triage and determines that another component in the system (e.g. a 
BMC) would be better to return the system to a normal state. 

In a similar fashion, interrupt 2 in the IDT will assert whenever a non-
maskable interrupt (NMI) occurs. The NMI vector would perform exactly the 
same set of actions as described for an MCE (i.e., interrupt 18).   

The Corrected Machine Check Interrupt (CMCI) is a relatively new type of 
interrupt that is part of the MCA and is used to alert system software that a 
certain number (user-configurable) of correctable errors have occurred. It is 
signaled like normal software interrupt and its descriptor will point to a 
particular vector in the IDT.  

With AER, Message Signaled Interrupts (MSIs) are the most common type of 
interrupt.  They will be applied to most of the IO error conditions that a 
system normally encounters. The AER logic of a processor (if it contains IIO) 
or a chipset generally allows any PCIe device to send an MSI regardless of 
the action (e.g., one of the ERR[n]# pins are asserted). If all the enable or 
mask bits for an error are programmed so they fully propagate through the 
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AER hierarchy (per the list in Section 3.1), then a MSI is asserted (and a 
software handler called), these additional registers need to be set: 

 MSICTRL, bit 0 – to enable MSI messages for the device 
 MSIAR, all bits – to specify how the MSI should be routed in the 

system 
 MSRDR, all bits – to specify the interrupt vector for a particular device 
 MSIMSK, bits 0-1 – to mask particular MSI messages for a device 

Figure 8 Example of PCI Express AER Flow, focused on MSI support 

 

 

Note: This document does not discuss legacy PCI interrupts; it is assumed that they 
are covered sufficiently by other sources.   
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but have since been internalized). These can be mapped to any one of the 
PIRQs in the system. This mapping is done on a function-by-function basis via 
the Device X Interrupt Pin Registers, located at offsets 0x3000-0x316F in the 
memory-mapped space of Chipset Configuration Registers (i.e. the registers 
accessed using the Root Complex Base Address – RCBA – register of the PCI-
to-LPC bridge).   

Note: Internal sources of PIRQs, including SCI and TCO interrupts, cause the 
associated external PIRQ pin to be asserted. 

Once the INTx to PIRQ mapping is done for internal PCI devices that require 
it, the next step is to map PIRQs to IRQs on either the legacy 8250 interrupt 
controller or the IOxAPIC.  

In 8259 mode, software can map the PIRQs to any one of the following IRQs 
on the 8259 PIC:  3–7, 9–12, 14 or 15, all other IRQs are reserved for other 
purposes. The assignment is done through the PIRQx Route Control registers, 
located at 0x60–0x63 and 0x68–0x6B in Device 31: Function 0. If desired, 
one or more PIRQ lines can be routed to the same IRQ input on the 8259.  

In APIC mode, the PIRQs are connected to the internal IOxAPIC in the 
following fashion (and is not configurable): PIRQA# is connected to IRQ16, 
PIRQB# to IRQ17, PIRQC# to IRQ18, PIRQD# to IRQ19, PIRQE# is 
connected to IRQ20, PIRQF# to IRQ21, PIRQG# to IRQ22, and PIRQH# to 
IRQ23. 
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Table 1 IRQ routing Table for Intel 3420 Chipset in APIC mode 
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Routing SYS_ERR to NMI/SMI 
The Intel® Xeon® C5500/C3500 series processors contain an IIO unit that 
supports a global error reporting and alerting hierarchy (AER) that can assert 
hardware pins when different types of errors occur (i.e. SYS_ERR[2:0]#).  
The most robust error handling solutions will connect these pins to one or 
more components in the platform. If an error is so severe that it makes the 
processor unreliable, it may still be handled by the system in a known and 
graceful manner.   

Figure 9 shows an example of routing of SYS_ERR[2:0]# pins to both the 
chipset and to an independent BMC. The BMC could be programmed to 
respond to the assertion of these pins. The BMC would start by reading the 
global error registers in the processor and then work its way through the 
error reporting hierarchy to figure out what went wrong. Alternatively, the 
SYS_ERR pins could be routed to a set of GPIOs in the chipset that have 
special logic that will cause either an NMI or SMI to occur. From there, the 
NMI or SMI interrupt handlers running on the processor would try to figure 
out what’s going on. 

Figure 9 Processor SYS_ERR pins connected to both the PCH and a BMC 

  

On the Intel® 3420 chipset, there are 16 GPIOs which can be programmed to 
assert a NMI or SMI as their input goes high. By default, the behavior is for 
them to do nothing, but this can be changed via the GPIO_ROUT register. 
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Figure 9 GPIO Routing Control Register Descriptions 

 

Most Intel® chipsets have a similar feature, but consult the specific datasheet 
for the chipset that you are using in your project to ensure that its GPIO 
signals support routing to an NMI or SMI. You will generally find the GPIO 
routing register in the Power Management set of registers in the LPC 
interface.  
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Summary 
Comprehensive system-level error handling has never been higher, 
customers require high levels of fault tolerance, ease of management, and 
robust security. Given the fast pace of change in the architecture of systems 
(via the integration of previously-separate devices), it may be unclear to new 
system architects and engineers what features to look for in modern 
processors and chipsets to help them implement these requirements.  

On Intel-based platforms, the two over-arching error handling paradigms are 
the Machine Check Architecture – which generally handles those problems of 
the processor, cache, and memory subsystems – and Advanced Error 
Reporting, which handles everything else connected to the PCI Express 
hierarchy (both on the processor and the chipset and on the devices 
connected to these system components). At this point, these systems are 
orthogonal to each other and a comprehensive error-handling strategy must 
take both into account.  

MCA and AER both provide methods to handle errors through hardware or 
software methods. For the most robust system, review the design ideas that 
are outlined in this paper, with an eye towards situations that would 
compromise system security or would otherwise diminish the ability of the 
system to fulfill its central duties:  

 Overview of MCA and AER Error Domains 
 Centralized I/O Error Reporting 
 Using a Board Management Controller 
 Routing PIRQ Inputs to Specific IRQs 
 Routing SYS_ERR to NMI/SMI 

Discuss these options with both your hardware and software design teams as 
early as possible during the design phase. Some of the discussed methods 
require particular hardware hook-ups to fully implement.   
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The Intel® Embedded Design Center provides qualified developers with web-based 
access to technical resources. Access Intel Confidential design materials, step-by step 
guidance, application reference solutions, training, Intel’s tool loaner program, and 
connect with an e-help desk and the embedded community. Design Fast. Design 
Smart. Get started today. http://intel.com/embedded/edc.  
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