

325486

Platform-Level
Error Handling
Strategies for Intel
Systems

 May 2011

White Paper

Ai Bee Lim
Eric D Heaton
Senior Platform
Application Engineer
Embedded
Communications Group
Communications
Infrastructure Division
Intel Corporation

Platform-Level Error Handling Strategies for Intel Systems

2

Executive Summary
This paper provides an overview of common error detection and

notification capabilities found in Intel® Architecture (IA)-based systems

and how they can be used to implement a number of platform-level error

handling schemes.

The Intel® Embedded Design Center provides qualified developers with

web-based access to technical resources. Access Intel Confidential design

materials, step-by step guidance, application reference solutions, training,

Intel’s tool loaner program, and connect with an e-help desk and the

embedded community. Design Fast. Design Smart. Get started today.

www.intel.com/embedded/edc.

Platform-Level Error Handling Strategies for Intel Systems

 3

Contents
Introduction ... 4

Document Structure .. 5

Component-Level Error Reporting and Alerting .. 6
Error Reporting Options for Intel® Processors ... 6
Error Reporting Options for Intel® Chipsets .. 7

Platform-Level Error Handling Strategies on Intel® Platforms 11
Centralized IO Error Reporting .. 11
Using a Board Management Controller .. 16
Interrupt-based Error Handling ... 18

Types of Interrupts .. 18
Routing PIRQ Inputs to Specific IRQs ... 19
Routing SYS_ERR to NMI/SMI ... 22

Platform-Level Error Handling Strategies for Intel Systems

4

Introduction
Fault tolerant systems have always been in high demand. What was once the
realm of high-end servers and High Performance Computing (HPC) machines
are now the norm for all types of applications. Customers who are producing
Embedded or Communications products expect high system up-times and
demand ease of management/repair in the event of correctable and
uncorrectable errors. Chip manufacturing technologies continue to use
smaller and smaller transistors and employ lower and lower voltages as they
chase higher performance via power per watt metrics. This comes with the
unintended consequence of systems that are more susceptible to soft errors
caused by manufacturing variation, Alpha particles, neutrons, and electro-
magnetic forces.

Given a sufficiently large sample size or time scale, errors will occur and data
will be corrupted somewhere in the system. If there isn’t a robust set of
detection mechanisms or alerts to handle a full range of system problems,
the performance of the system may degrade to the point of full system
shutdown or reset. Many systems “go down” unexpectedly and it is often
puzzling when they do so without warning or explanation (e.g., Blue screen).

For systems that are expected run continuously, an error condition that can
take it offline would be unacceptable. Modern systems employ various
techniques to make the platform more reliable and serviceable. This helps
keep downtime to a minimum. New platforms must have a way to identify
errors and have a set of strategies for gracefully dealing with the aftermath.

Modern Intel® processors and chipsets provide two major error-handling
paradigms to help accomplish this goal across all elements in the system:

1. Machine Check Architecture (MCA), for Core and Uncore modules.
2. Advanced Error Reporting (AER), for PCI Express* devices and Integrated

IO modules.

While some errors are corrected automatically by the hardware (e.g., single-
bit ECC error in memory), others require outside hardware or software
intervention (e.g., graphics device gets poisoned data over PCI Express
interface). MCA and AER in parallel give system architects the ability to
classify errors and give fine-grained control over how to respond to such
problems.

Both MCA and AER offer flexibility in how they respond to any given error
condition:

 How to classify this event?
 Which system component should be notified?
 Are there special operating modes for error handling available in the

CPU/chipset?
 Can I change the configuration during system operation?

Platform-Level Error Handling Strategies for Intel Systems

 5

These questions need to be answered early in the project timeline because
some of the features of MCA and AER require specific hardware connections if
they are to be available for use by software. If you do not explicitly plan and
design for particular MCA or AER features during the hardware design phase,
then your future software options may be limited. This can restrict your
ability to meet certain RAS requirements. Given the rich feature-set and
configuration options for both of these paradigms, do not leave these
important decisions to chance when develop a comprehensive platform-level
error handling strategy.

While we will leave the register-level details to the relevant Intel Product
Datasheets, the Intel® Software Developers Manual, and the appropriate PCI
Express Specifications, this document will describe some of the major
elements of MCA and AER configuration so that a system architect, in
conjunction with their test/diagnostics/BIOS engineers, will be able to design
a system that efficiently and reasonably responds to error conditions and
other run-time anomalies.

Note: If you were familiar with past generations of MCA and AER, we would
encourage you to revisit them in the context of their implementation in the
latest generation of CPUs and chipsets; both paradigms have been expanded
to provide a much larger set of features to handle a wider variety of
exceptions.

Document Structure
The Introduction section provides motivation for the discussion of system-
level error handling options in IA-based platforms.

The Component-Level Error Reporting and Alerting section will provide an
overview of the system-level error logging, reporting, and alerting features
generally found in IA-based platforms.

The Platform-Level Error Handling Strategies on Intel® Platforms section will
take these features a step further and present common error handling
strategies utilizing the aforementioned system-level error logging, reporting,
and alerting features.

Note: This paper does not describe the details of stand-alone RAS features, like
Memory Mirroring or Rank Sparing. For these, please see the Datasheet,
External Design Specification, or BIOS Writer’s Guide for the particular
component of interest; this document only focuses on the platform-level
response and the “flow” of error handling.

Platform-Level Error Handling Strategies for Intel Systems

6

Component-Level Error Reporting
and Alerting

An IA-based platform typically includes an Intel® processor, an Intel®
chipset, and a set of peripheral components (e.g., Ethernet NICs). Before we
can talk about designing a platform-level error propagation strategy, it is
prudent to understand the general capabilities inherent in each component of
the system.

While most of the error logging, reporting, and alerting features mentioned in
this document are found on most recent Intel® processors and chipsets, not
all of them are. Consult the Intel® Software Developers Manuals and the
appropriate Intel® Datasheet for each component to make sure that the ones
that you would like to make use of are implemented and available.

Note: This document uses the Intel® Xeon® C5500/C3500 series processors and
associated chipsets in its examples, but the concepts apply to many other
Intel® platform components.

Error Reporting Options for Intel® Processors
The Intel® P5 Architecture introduced a standard methodology of error
detection and reporting for the Core known as Machine Check Architecture
(MCA). Since that first generation of the technology, the MCA has been
enhanced and improved as successive processors have integrated memory
controllers and other peripherals into its domain. The latest generations of
processors use MCA to log and report errors in both the Core (CPU, caches,
etc.) and the Uncore (e.g., QPI bus interconnect, integrated memory
controllers, Intel® Virtualization Technology logic, etc.).

While the MCA is described fully in the IA32/64 Software Developer’s Manual
Volume 3A, the short version is that the MCA includes a number of well-
defined registers that allow a system designer to decide which error
conditions should be logged in real time and how the system should be
alerted when they occur. The alert options range from a simple, well-known
(i.e., hardcoded) software interrupt vector (i.e., “INT18”) to the assertion of a
dedicated hardware pin called Catastrophic Error (i.e., the CATERR# or
CAT_ERR_N signal).

Processors that implement integrated I/O devices, like the integrated PCI
Express controllers in the Intel® Xeon® C5500/C3500 series processors, will
have, in addition to MCA, logic for Advanced Error Reporting as defined by
the PCI Express specification. When an error is logged thorough the AER
system, the system can be alerted via a number of methods. These include
by MSI, by a common software interrupt vector, or by the assertion of
external hardware pins (i.e., the ERR[2:0] or SYS_ERR[2:0] signals). Many
processors that support AER also support a separate global error unit that will

Platform-Level Error Handling Strategies for Intel Systems

 7

collect all AER-generated error messages/indicators in the system into a
compact set of registers at the top-level of the bus hierarchy. This unit helps
to streamline the error handling process by collecting the error status of each
and every PCI or PCI Express device in the system and presenting this
information within a small set of registers. If you want to root-cause why a
certain AER error occurred, you would start with these global error registers,
then follow the error register hierarchy all the way down to the PCI and PCI
Express-based configuration/status registers inside the problem device.

Note: As of this writing, the global error unit only aggregates errors in the AER
domain and not those errors that are handled via the MCA.

Intel® processors all implement a version of MCA and some –those with
integrated I/O devices – will implement AER features in parallel. When an
error occurs, the system can be alerted via different types of interrupts or via
a dedicated set of hardware pins. These options are all configurable with
software. If you want to rely on hardware pins to communicate system-error
situations to external devices (e.g., a BMC), then these connections must be
accounted for during the board design phase.

Error Reporting Options for Intel® Chipsets
Intel® chipsets have typically contained a PCI hierarchy with a bus starting at
zero and associated internal controllers (e.g., USB controller, SATA controller,
PCI Express root ports, etc.) implemented with all the typical configuration
registers per the relevant PCI specification. Most modern Intel® chipsets
include one or more integrated devices (ex. PCI Express controllers) that
support various aforementioned AER capabilities. Such devices might contain
special register sets to detect/report error conditions defined only for its
particular interface (e.g., PxSERR registers for SATA, or USB2.0_STS for USB,
etc.), beyond any defined by the normal PCI specification such as PCISTS.
Some Intel® chipsets, like certain processors described in the previous
section, also support a global error unit to provide a central place for error
logging and reporting.

When the chipset encounters an error, the system can be alerted via
hardware or software methods. On the software side, Intel® chipsets contain
one or more legacy 8259 and IOxAPIC interrupt controllers (which
traditionally were the central interrupt collectors for the system) that can be
configured to assert an SMI/NMI or any regular software-based interrupt.
With the advent of PCI Express and modern operating systems, interrupts are
no longer limited to the physical wires in the system as provided by the 8259
or IOxAPIC interrupt controllers and can be delivered directly to the CPU
virtually via MSI messages on any of the Intel® QPI or PCI Express busses
within the system. This new option has an advantage in that MSI’s bypass the
legacy interrupt controller logic in the chipset and directs internal error
messages straight to the local APIC of a particular logical CPU for immediate
action.

Platform-Level Error Handling Strategies for Intel Systems

8

On the hardware side, there are many pins that can be used to signal that an
error has occurred. Some of these pins are dedicated to specific error
conditions (e.g., the PERR#, SERR#, SERIRQ, and PIRQ[H:A] signals), but
there is usually a large set of GPIO pins in the chipset that can be configured
to assert when other types of errors occur.

The devices integrated in the Intel® chipset will implement the normal PCI or
PCI Express error logging registers inside an overall AER infrastructure. Once
an error condition is encountered, the system can be alerted through
software interrupts (MSIs usually being the best choice, if there are no legacy
considerations) or hardware pins.

An example of this would be an Intel® Xeon® C5500/C3500 Processor and
Intel® 3420 Chipset Platform.

To support our descriptions of the “potential” error-handling features that you
may find in an IA-based platform, let’s look at the specific features of a
platform containing the Intel® Xeon® C5500/C3500 Processor and the
Intel® 3420 chipset. Figure 1 shows how a typical two-processor system is
connected to memory and various I/O components.

Figure 1 Block Diagram for an Intel® Xeon® C5500/C3500 Processor and
Intel® 3420 Chipset-based Platform

In this system, the two Intel® Xeon® C5500/C3500 Processors consist of up
to four execution units, each supporting SMT (i.e., four physical cores, with
up to eight logical cores with private caches), a large shared 8MB Last Level
Cache (LLC), three integrated DDR3 Memory controllers, and an Integrated
IO (IIO) unit.

Platform-Level Error Handling Strategies for Intel Systems

 9

The IIO unit includes:

 One x16 PCI Express Gen2 external interface - split across four
independent controllers, if desired

 DMI interface - similar to a x4 PCI Express Gen1 root complex

 Crystal Beach DMA engine - up to eight independent channels

 Intel® QPI interface between processors

 Intel® VT-d features such as virtual-to-physical address remapping and
interrupt remapping

 Other miscellaneous functions such as a GPIO controller

Figure 2 Internal Functional Block for Intel® Xeon® C5500/C3500 Processor

Processor	Core/Uncore

Processor	Integrated	IO	
(IIO)	unit	

Besides the DMI connection to the processor, the Intel® 3420 Chipset
provides a number of interfaces for common system peripherals like legacy
PCI devices, USB devices, SATA hard drives, SPI flash devices, GigE devices,
LPC devices, and PCI Express Gen1 devices (two x4s, with several
configurations available).

Platform-Level Error Handling Strategies for Intel Systems

10

Figure 3 Internal Functional Block for Intel® 3420 Chipset

The MCA error domain maps to the Processor Core/Uncore functional blocks
and the AER error domain maps to the Processor Integrated IO Unit and all
devices in the chipset.

The MCA error domain in the Intel® Xeon® C5500/C3500 Processor acts as
described in the Intel® Software Developer’s Manual Vol. 3A for all the
functional blocks mentioned above, noting that model-specific error codes of
the IA32_MCi_STATUS MSR’s can be found in the Nehalem BIOS Writer’s
Guide. The processor implements the usual OOB error signal, the CATERR#
pin, which is pulsed for 16 BCLK’s for all but the most catastrophic problems
(in which case it goes low until reset). This pin should be connected to a GPIO
on the Intel® 3420 chipset or to a BMC that is programmed to respond to
MCE’s. For more information, see the section titled Platform-Level Error
Handling Strategies on Intel® Platforms.

The AER error domain runs across both the Intel® Xeon® C5500/C3500
processors and the Intel® 3420, but there two differences to note:

1. As a benefit for those writing system error handling code, the Intel®
Xeon® C5500/C3500 processor provides an integrated central error
control/collection point (Device 8 / Function 2). The main function of this
device is to provide the central control of error detection and reporting for
the entire Processor IIO unit. The Intel® 3420 chipset has no such global
error collector. You can set up the system to route all system errors, even
those of the chipset, to the processor and use its global error collector for
error handling.

2. The processor has dedicated error pins that are specifically mapped to
each of the three error severities defined in the AER spec. The processor
documentation calls these pins SYS_ERR_STAT[2:0] or Error[2:0]. The
chipset does not have these same dedicated error pins, but it can be

Platform-Level Error Handling Strategies for Intel Systems

 11

configured to assert GPIOs when a given error occurs. Either set of pins
can be hooked up to a BMC for OOB error handling.

Please consult the documentation for both the Intel® Xeon®
C5500/C3500 processor and the Intel® 3420 chipset for a full description
of all of the error handling features mentioned in this section.

Platform-Level Error Handling
Strategies on Intel® Platforms

The previous chapter discussed the error reporting and logging mechanisms
that are typically found in modern IA processors and chipsets. IA-based
platforms provide the flexibility to handle system problems through a variety
of hardware or software mechanisms. This chapter will explore the most
common and useful of these options, noting that you may mix-and-match
any of these techniques to meet the specific requirements of your platform.

Once done with this paper, we encourage system architects to look at RAS,
MCA, and AER features of the Intel components in your particular design and
use this information to create a flow-chart that details how each error (or
class or errors) should be handled, and “who” – this is, which component – in
the system will be responsible for handling it.

Centralized IO Error Reporting
Errors occurring within the CPU itself (or to devices connected to the CPU
directly, such as memory or peripherals) will be logged and reported via the
MCA and AER mechanisms mentioned earlier. What do we do about the
PCI/PCIe-type errors happening on devices inside of or attached to an ICH or
PCH connected to the CPU?

As a general rule, it is best to have all IO errors routed to the CPU so that the
system can decide to handle the problem there (via various types of error
handlers available within the processor) or send it to an external board
management controller (via special error pins on the processor). Intel®
chipsets can be configured to operate in “Server Error Reporting Mode”
(SERM). Any error in the chipset will be forwarded to the CPU via internal
messages on the DMI interface.

Platform-Level Error Handling Strategies for Intel Systems

12

Figure 4 Generic diagram for SERM enabling logic

SERM can be enabled by setting a bit in the General Control and Status
Register (GCS) found in all modern Intel® chipsets. In this mode, if the
chipset detects any type of PCI/PCIe error, fatal, non-fatal, or correctable, it
will propagate the internal error message to the CPU, which will treat it like
any other IIO error. When any of these error messages arrive at the CPU
(shown as ERR_CORR, ERR_NONFATAL, and ERR_FATAL in Figure 4), the
information contained within the message will be populated in the local DMI
interface registers and the Global Error Registers.

Note: Even if the chipset is set for SERM, a particular error might not show up at the
CPU because it was masked or disabled somewhere else in the chipset. This
document assumes that each PCI/PCIe device in the system is programmed
correctly to record and generate error messages regardless of being in SERM
or not. Setting the SERM bit is simply the last step in the process to say that
system error messages should also be sent up to the CPU even as the details
are recorded in the chipset.

Platform-Level Error Handling Strategies for Intel Systems

 13

Figure 5 Local Error Registers Feeding Into the Global Error Registers

There is a hierarchy of error reporting that starts at the device (i.e., the local
error reporting PCI registers). Each device can be configured to send such
error reports to the interrupt controller (usually the APIC), which generates
an interrupt (IRQ or MSI – your choice). The best place for an overview of the
interrupt hierarchy is Chapter 10 of the IA32 Software Developers Manual
(SDM) Vol 3A – for APIC operation.

Platform-Level Error Handling Strategies for Intel Systems

14

Figure 6 Error Propagation from the Local Unit to the Global Unit

With SERM enabled in the chipset, the Global Error Register set of the CPU is
a hub for normal system errors. In the case of errors in the chipset (or
devices attached to it), these registers will indicate that the problem is in
“DMI port 0”. This set of registers will indicate which internal operating unit
generated (or, at least, received) the error. For example, besides DMI port 0,
the issue could be in one of the integrated PCIe ports, the VT-d logic, etc.
This points the error handler to the PCI error registers of that specific unit for
more information.

At start-up time, software will configure the Global Error register set (which
shows up as its own B/F/D in PCI space of the processor) with information on
how the system should react to various types of errors.

For example, when a certain correctable error occurs, the system may want
to be alerted via a simple software interrupt or via the assertion of an
external pin into a BMC implemented on the board.

While the details might change slightly depending on the processor family,
this configuration involves a few registers in both the end device and in the
root ports themselves. In the Intel® Xeon® C3500/C5500 Processor Family,
these are the registers that control if/how errors will propagate from a device
in the chipset, up to the processor, and on the chipset:

Platform-Level Error Handling Strategies for Intel Systems

 15

 GCS, bit 9 – to enable SERM
 NMI_SC, bit 2 – enable for NMI generation, if using NMI to signal

errors
 PCICMD, bit 8 – to enable SERR generation by an individual PCIe

device
 BCTRL, bit 1 – to forward error messages received by the device to

the backbone
 DCTL, bits 0-2 – to enable reporting of error messages to the root

control register
 RCTL, bits 0-2 – to enable reporting of errors in the root port for

devices below it
 UEM, all bits – for masking various uncorrectable errors on the device
 UEV, all bits – for assigning a severity to uncorrectable errors for the

device
 CEM, all bits – for masking various correctable errors on the device
 On the processor:

 MISCCTRLSTS – bits 33 -35, to override system error enables for
individual devices

 DEVCON, bits 0-2 – to enable reporting of error messages upwards
in the hierarchy

 ROOTCON, bits 0-2 – to enable reporting of errors in the root port
for devices below it

 PCICMD, bit 8 – to enable SERR generation by an individual PCIe
device

 DEVCTRL, bits 0-2 – to enable reporting of errors received to the
root control register

 UNCERRMSK, all bits – for masking various uncorrectable errors on
the device

 UNCERRSEV, all bits – for assigning a severity to uncorrectable
errors for the device

 CORERRMSK, all bits – for masking various correctable errors on
the device

 RPERRCMD, bits 0-2 – to enable MSI generation for errors events,
if desired

 ERRPINCTL, bits 0-5 – to control the behavior or the ERR[2:0] pins
(i.e., to assert them or not) when an error occurs anywhere in the
system

Software (e.g., a software-based error handler) can use the ERRPINDAT
register to assert any of the ERR[2:0] pins at will.

Remember that AER (and all PCIe constructs) works as a hierarchy of
devices. Associated events and a BIOS/diagnostics engineer need to make
sure that all the mask and enable bits for each one of these registers are set
correctly at each level of the system (e.g., at the end-device, at the root port,
at the chipset control, etc.), for both external and internal devices.

Platform-Level Error Handling Strategies for Intel Systems

16

Using a Board Management Controller
Catastrophic errors may be handled by an independent Board Management
Controller (BMC) connected to the processor and/or chipset via a set of pins
dedicated to error reporting. With such a setup, the platform is more likely to
recover from a wider range of problems because the system does not rely on
code running on the CPU.

Figure 7 All BMC Solution for Error Handling

In previous generations of IA processors, the MCA used two different pins to
indicate a problem. The first, MCERR, would indicate a “fatal” error occurred,
and the second, IERR, would indicate that a “catastrophic” error occurred.
The definition of which errors are “fatal” and which errors are “catastrophic”
was generally defined for a family of processors. In the Intel® Xeon®
C5500/C3500 series generation of processors, the CPU simply uses a single
pin (the CATERR# pin) for either situation.

 If an “MCERR class” error occurs, CATERR# is asserted for 16 BCLKs.
 If an “IERR class” error occurs, CATERR# remains asserted until warm

or cold reset.
The notion of fatal and catastrophic errors is still with us; a BMC can figure
out which error occurred by counting the number of clocks CATERR# asserted
and proceed accordingly with its analysis/handling of the error condition.

In the IIO, the processor will use three pins, called “ERROR_N[2:0]” or
“ERR[2:0]” to indicate various severities of errors to an external agent.

 ERR[0]# = Hardware correctable error (no software action necessary)
 ERR[1]# = Non-fatal error (OS or firmware action required to contain

and recover)
 ERR[2]# = Fatal error (system reset likely required to recover)

Platform-Level Error Handling Strategies for Intel Systems

 17

The ERRPINCTL register in the processor defines if and how the AER logic
asserts these three pins if any type of IO error occurs on the platform. For
example, this register can tell the AER logic to assert ERR[2]# to a BMC if a
fatal error occurs, but not bother asserting ERR[1]# or ERR[0]# for non-fatal
or corrected errors, respectively (because they will be handled via other,
software-controlled mechanisms). The ERRPINDAT register can be used to
assert any one of these pins at any time via software. For example, a
software error handler may be called for every non-fatal error, but this code
may determine that the BMC should handle a certain subset of these after
doing some initial triage of the problem. In this case, the software could
assert the ERR[1]# pin when it wants to signal the BMC.

When a BMC sees that a CATERR# or any of the three ERR[2:0]# pins are
asserted, the BMC knows that there is a problem, but it is up to the system
architect / BMC programmer to determine how exactly to respond. In some
systems, the appropriate response to any type of error would be logging a
MCE or IO error and then resetting the system. This approach does not
distinguish among the many different instances of each type of error, but
may work for some. More likely, the BMC will run a routine to query the state
of the CPU and/or chipset and decide to take one of many actions based on
what it finds.

How does the BMC communicate with these other components and read
debug data and registers? The answer depends on the interfaces available to
the BMC (and which interfaces are supported by the BMC itself). Each
processor and chipset contain several different interfaces (PECI, SMBus, and
PCIe) and each bus will allow an outside entity, like a BMC, different types of
permissions/access to its registers. It is up to the system architect to decide
which bus(es) or interface(s) will be used to connect the BMC to the rest of
the platform components.

Commonly, though, PECI is the interface used by BMCs for this purpose, but
note that different chips will provide different amounts of system access via
this bus. For example, the Intel® Xeon® C5500/C3500 Processor mentioned
in the previous section allows access to many MSRs related to error handling
as well as to various portions of PCI configuration space, but previous
generations typically limit access only to the latter resources. If your
hardware-based error-handling paradigm requires access to certain
information in the processor or chipset, be sure that the interface connecting
the component allows the BMC access to it. If the PECI bus doesn’t allow the
BMC the view into the system that is required of the BMC software, use
another one, like SMBus or PCIe, instead.

Platform-Level Error Handling Strategies for Intel Systems

18

Interrupt-based Error Handling
Some systems may not implement a BMC at all, or may choose to handle
certain classes of errors via software (most likely, those that are non-fatal).
In these cases, a system architect or diagnostics engineer may use some of
the various interrupt-based error reporting and handling schemes that are
supported by IA® processors and chipsets.

Types of Interrupts

On IA-based platforms, various interrupts have a given set of behaviors,
norms, and typical usage patterns. Beyond the general software interrupts
enabled by legacy 8259 logic and various local APIC’s and IOAPIC’s (see
Section 6 in Volume 3A of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual for more information about these general interrupts)
there are several types that are specifically designed to assist in the
processing of serious system errors.

With MCA, interrupt 18 in the Interrupt Descriptor Table (IDT), is
architecturally assigned to assert any time a Machine Check Error occurs.
The vector at this IDT location could point to a software handler that
performs one or more of the following actions:

 Determine the scope of the problem and try to recover the system to
a normal operating state, by reloading or resetting only the
software/hardware that is affected,

 Collect as much information as possible, given the current state of the
system, and store this for later analysis (i.e., by BIOS or other system
management software),

 Set up the system so that another entity continues the error handling
process “up the chain”. In this case, the MCE interrupt handler does
triage and determines that another component in the system (e.g. a
BMC) would be better to return the system to a normal state.

In a similar fashion, interrupt 2 in the IDT will assert whenever a non-
maskable interrupt (NMI) occurs. The NMI vector would perform exactly the
same set of actions as described for an MCE (i.e., interrupt 18).

The Corrected Machine Check Interrupt (CMCI) is a relatively new type of
interrupt that is part of the MCA and is used to alert system software that a
certain number (user-configurable) of correctable errors have occurred. It is
signaled like normal software interrupt and its descriptor will point to a
particular vector in the IDT.

With AER, Message Signaled Interrupts (MSIs) are the most common type of
interrupt. They will be applied to most of the IO error conditions that a
system normally encounters. The AER logic of a processor (if it contains IIO)
or a chipset generally allows any PCIe device to send an MSI regardless of
the action (e.g., one of the ERR[n]# pins are asserted). If all the enable or
mask bits for an error are programmed so they fully propagate through the

Platform-Level Error Handling Strategies for Intel Systems

 19

AER hierarchy (per the list in Section 3.1), then a MSI is asserted (and a
software handler called), these additional registers need to be set:

 MSICTRL, bit 0 – to enable MSI messages for the device
 MSIAR, all bits – to specify how the MSI should be routed in the

system
 MSRDR, all bits – to specify the interrupt vector for a particular device
 MSIMSK, bits 0-1 – to mask particular MSI messages for a device

Figure 8 Example of PCI Express AER Flow, focused on MSI support

Note: This document does not discuss legacy PCI interrupts; it is assumed that they
are covered sufficiently by other sources.

Routing PIRQ Inputs to Specific IRQs
To support legacy PCI devices, a BIOS or an operating system will route PCI
interrupts (PIRQs) to interrupt requests (IRQs) inside the chipset. PIRQs can
be asserted by physical devices connected to these pins on the board or by
some of the PCI devices integrated inside the chipset itself. For the latter
case, the chipset allows software to choose which PIRQ is used by each
integrated PCI device. A PCI function internal to the PCH and capable of
driving an interrupt can be configured to drive any one of the INTA#, INTB#,
INTC#, INTD# pins (originally, these were physical pins on an Intel® chipset,

To MSI
Generation

Logic

XPGLBERRPTR
(B:D:F:0x232)

Non fatal

Corr

Non Fatal

XPGLBERRSTS
(B:D:F:0x230)

SERRE_En (bit 8)

PCICMD (B:D:F:0x04)

System Error (bit 14)

PCISTS (B:D:F:0x06)

DEVCTRL (B:D:F:0x98)

FERE (bit 2) NERE (bit 1) CERE (bit 0)

RPERRSTS
(B:D:F:0x178)

Reserved
(15:3) 000

C
O

R
R

(bit 2)
N

o
n Fa

tal
(bit 1

)
F

ata
l

(b
it 0

)
R

ese
rved

(15
:3)

PCIERRSV
(B:5:2:0x90)

Pseudo Logic (Demux)

01001
Reserved

(31:6)
0

From All the
PCI Express* Ports

(11 Input Oring)

Nonfatal Error Messages Received (5)

Multiple Fatal/Nonfatal Error Message Received (3)

Fatal Error Messages Received (6)

First Uncorrectable (Fatal) Error Message Received (4)

First Fatal/Nonfatal Error Message Received (2)

Multiple Correctable Error Message Received (1)

First Correctable Error Message Received (0) 0
0

0
0

0
0

0
R

eserved
(2

6:7)

From
PCI Express*

AER
Flow (1 of 2)

Fatal

To Global Error
Flow Logic

MISCCTRLSTS (B:D:F:0x188) ROOTCON
(B:D:F:0xAC)

FERE (bit 35) NERE (bit 34) CERE (bit 33)
FERE
(bit 2)

NERE
(bit 1)

CERE
(bit 0)

Note: All the Register settings are shown with default values

00

01

10

00

01

10

00

01

10

F
ro

m
 P

C
I

E
x

p
res

s*
L

o
ca

l
A

d
d

itio
n

a
l

E
rro

r F
lo

w

From All the
PCI Express* Ports

(11 Input Oring)

From All the
PCI Express* Ports

(11 Input Oring)

Platform-Level Error Handling Strategies for Intel Systems

20

but have since been internalized). These can be mapped to any one of the
PIRQs in the system. This mapping is done on a function-by-function basis via
the Device X Interrupt Pin Registers, located at offsets 0x3000-0x316F in the
memory-mapped space of Chipset Configuration Registers (i.e. the registers
accessed using the Root Complex Base Address – RCBA – register of the PCI-
to-LPC bridge).

Note: Internal sources of PIRQs, including SCI and TCO interrupts, cause the
associated external PIRQ pin to be asserted.

Once the INTx to PIRQ mapping is done for internal PCI devices that require
it, the next step is to map PIRQs to IRQs on either the legacy 8250 interrupt
controller or the IOxAPIC.

In 8259 mode, software can map the PIRQs to any one of the following IRQs
on the 8259 PIC: 3–7, 9–12, 14 or 15, all other IRQs are reserved for other
purposes. The assignment is done through the PIRQx Route Control registers,
located at 0x60–0x63 and 0x68–0x6B in Device 31: Function 0. If desired,
one or more PIRQ lines can be routed to the same IRQ input on the 8259.

In APIC mode, the PIRQs are connected to the internal IOxAPIC in the
following fashion (and is not configurable): PIRQA# is connected to IRQ16,
PIRQB# to IRQ17, PIRQC# to IRQ18, PIRQD# to IRQ19, PIRQE# is
connected to IRQ20, PIRQF# to IRQ21, PIRQG# to IRQ22, and PIRQH# to
IRQ23.

Platform-Level Error Handling Strategies for Intel Systems

 21

Table 1 IRQ routing Table for Intel 3420 Chipset in APIC mode

Platform-Level Error Handling Strategies for Intel Systems

22

Routing SYS_ERR to NMI/SMI
The Intel® Xeon® C5500/C3500 series processors contain an IIO unit that
supports a global error reporting and alerting hierarchy (AER) that can assert
hardware pins when different types of errors occur (i.e. SYS_ERR[2:0]#).
The most robust error handling solutions will connect these pins to one or
more components in the platform. If an error is so severe that it makes the
processor unreliable, it may still be handled by the system in a known and
graceful manner.

Figure 9 shows an example of routing of SYS_ERR[2:0]# pins to both the
chipset and to an independent BMC. The BMC could be programmed to
respond to the assertion of these pins. The BMC would start by reading the
global error registers in the processor and then work its way through the
error reporting hierarchy to figure out what went wrong. Alternatively, the
SYS_ERR pins could be routed to a set of GPIOs in the chipset that have
special logic that will cause either an NMI or SMI to occur. From there, the
NMI or SMI interrupt handlers running on the processor would try to figure
out what’s going on.

Figure 9 Processor SYS_ERR pins connected to both the PCH and a BMC

On the Intel® 3420 chipset, there are 16 GPIOs which can be programmed to
assert a NMI or SMI as their input goes high. By default, the behavior is for
them to do nothing, but this can be changed via the GPIO_ROUT register.

Platform-Level Error Handling Strategies for Intel Systems

 23

Figure 9 GPIO Routing Control Register Descriptions

Most Intel® chipsets have a similar feature, but consult the specific datasheet
for the chipset that you are using in your project to ensure that its GPIO
signals support routing to an NMI or SMI. You will generally find the GPIO
routing register in the Power Management set of registers in the LPC
interface.

ahaeems
Line

Platform-Level Error Handling Strategies for Intel Systems

24

Summary
Comprehensive system-level error handling has never been higher,
customers require high levels of fault tolerance, ease of management, and
robust security. Given the fast pace of change in the architecture of systems
(via the integration of previously-separate devices), it may be unclear to new
system architects and engineers what features to look for in modern
processors and chipsets to help them implement these requirements.

On Intel-based platforms, the two over-arching error handling paradigms are
the Machine Check Architecture – which generally handles those problems of
the processor, cache, and memory subsystems – and Advanced Error
Reporting, which handles everything else connected to the PCI Express
hierarchy (both on the processor and the chipset and on the devices
connected to these system components). At this point, these systems are
orthogonal to each other and a comprehensive error-handling strategy must
take both into account.

MCA and AER both provide methods to handle errors through hardware or
software methods. For the most robust system, review the design ideas that
are outlined in this paper, with an eye towards situations that would
compromise system security or would otherwise diminish the ability of the
system to fulfill its central duties:

 Overview of MCA and AER Error Domains
 Centralized I/O Error Reporting
 Using a Board Management Controller
 Routing PIRQ Inputs to Specific IRQs
 Routing SYS_ERR to NMI/SMI

Discuss these options with both your hardware and software design teams as
early as possible during the design phase. Some of the discussed methods
require particular hardware hook-ups to fully implement.

Platform-Level Error Handling Strategies for Intel Systems

 25

The Intel® Embedded Design Center provides qualified developers with web-based
access to technical resources. Access Intel Confidential design materials, step-by step
guidance, application reference solutions, training, Intel’s tool loaner program, and
connect with an e-help desk and the embedded community. Design Fast. Design
Smart. Get started today. http://intel.com/embedded/edc.

Authors
Ai Bee Lim is a Senior Platform Application Engineer with the
Embedded Communications Group at Intel Corporation.

Eric Heaton is a Senior Platform Application Engineer with the
Embedded Communications Group at Intel Corporation.

Platform-Level Error Handling Strategies for Intel Systems

26

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN
WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION
WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.

This paper is for informational purposes only. THIS DOCUMENT IS PROVIDED "AS IS" WITH NO
WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE
ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including
liability for infringement of any proprietary rights, relating to use of information in this specification.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted
herein.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Core Inside, i960, Intel, the Intel
logo, Intel AppUp, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, the Intel Inside logo, Intel
NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel Sponsors of
Tomorrow, the Intel Sponsors of Tomorrow. Intel, the Intel logo, Intel StrataFlash, Intel Viiv, Intel
vPro, Intel XScale, InTru, the InTru logo, InTru soundmark, Itanium, Itanium Inside, MCS, MMX,
Moblin, Pentium, Pentium Inside, skoool, the skoool logo, Sound Mark, The Journey Inside, vPro
Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel Corporation in the U.S. and other
countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2011 Intel Corporation. All rights reserved.

§

