

Document Number: 329687-011US

Intel® Quark™ SoC X1000 Board Support

Package (BSP)

Build and Software User Guide

May 2017

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

2 Document Number: 329687-011US

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products

described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject

matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product

specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published

specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by

visiting: http://www.intel.com/design/literature.htm

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation.

Learn more at http://www.intel.com/ or from the OEM or retailer.

No computer system can be absolutely secure.

Intel, Quark, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2017, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 3

Contents

1.0 About this Document ... 6

Part 1 of 2 – Building the BSP Software ... 7

2.0 Before You Begin ... 8

3.0 Downloading Software .. 9

4.0 Building the EDKII Software ... 10
4.1 Dependencies .. 10
4.2 Pre-build Setup .. 11
4.3 Building all the EDKII Firmware Validated Build Configurations [Linux build

environment only] ... 12
4.4 Building a Single EDKII Firmware Build Configuration .. 13
4.5 EDKII Firmware Build Standalone Output Files .. 15

5.0 Building the GRUB OS Loader [Linux* Build Environment Only] .. 17

6.0 Creating a File System and Building the Kernel Using Yocto Project* 19
6.1 Build a Full-featured Linux for SD card, USB stick or eMMC 20
6.2 Build a Small Linux for SPI Flash... 21
6.3 Build a fast boot Linux for SD card or eMMC ... 23
6.4 Applying a Custom Patch to the Linux kernel Using Yocto Project (optional).. 26

7.0 Building the Linux* Cross Compile Toolchain Using Yocto Project* [Linux Build

Environment Only] ... 28

7.1 Creating a cross toolchain in the current build directory .. 28
7.2 Creating a cross toolchain installer .. 28

8.0 Creating a Flash Image for the Board [Linux* build environment only] 31

8.1 Using the SPI Flash Tools ... 31

9.0 Platform Data Tool ... 33
10.0 Programming Flash on the Board Using Serial Interface .. 36

10.1 Programming Flash to Release 1.2.1... 36
10.2 Programming flash using UEFI shell ... 38
10.3 Programming Flash Using Linux* Run-time System .. 41

11.0 Programming Flash on the Board Using DediProg .. 42
12.0 Booting the Board From SD Card .. 43

Part 2 of 2 – Using the BSP Software ..45

13.0 Capsule Update ... 46

14.0 Capsule Recovery ... 47

15.0 Signing Files (Secure SKU only) [Linux* build environment only] .. 48

15.1 To Program Secure SPI Flash ... 48
15.2 To Create a Secure Boot SD/eMMC ... 49

16.0 Enabling the OpenOCD Debugger .. 51

Appendix A .. Related

Documents ...52

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

4 Document Number: 329687-011US

Appendix B ... SPI Flash

Tools ...53

Figures

Figure 1. Updating Process from Release 1.0.x to Release 1.2.1 .. 37

Tables

Table 1. Related Documents ... 52

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 5

Revision History

Date Revision Description

May 2017 011 Updated section 8.0

February 2016 010 Updated for Fast boot. Updated Chapters 6,9, and 15

October 2015 009 Updated Sections 4, 6, 7, 10, 13, and 14.

January 2015 008  Updated Sections 4 and 9

 Added Appendix B

16 June 2014 007 General updates to coincide with the EDKII Update 1.0.2 release
including:

 Updated Section 4, Building the EDKII Firmware (added Windows*

build environment).

22 May 2014 006 General updates for software release 1.0.1 including:

 Updated Section 4, Building the EDKII Firmware (added TPM).

 Added Section 6.1 Build a Full-featured Linux for SD card or USB Stick

 Updated Section 9 Platform Data Tool (corrected platform-

data.ini filename).

 Updated Section 14, Capsule Recovery (added DediProg information).

 Updated with trademarked term: Intel® Quark™ SoC.

04 March 2014 005 General updates for software release 1.0.0 including:

 Added Section 13 Capsule Update.

 Added Section 14, Capsule Recovery.

20 January 2014 004 General updates for software release 0.9.0 including:

 Added Section 4, Building the EDKII Firmware.

 Added Section 10.3, Programming Flash Using Linux* Run-time

System.

 Updated Section 15, Signing Files (Secure SKU only).

 Removed OpenOCD details because patch is now open source.

 Added Appendix A Related Documents.

15 November 2013 003 Added CapsuleApp.efi to Section 3, Downloading Software.

07 November 2013 002 General updates for software release 0.8.0 including:

 Added supported boards to list of hardware.

 Section 8: Changed SPI Flash tools path from clanton_peak_EDK2

to Quark_EDKII

 Moved Signing Files (Secure SKU only) section to later in the

document.

15 October 2013 001 First release with software version 0.7.5.

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

6 Document Number: 329687-011US

1.0 About this Document

This document, the Intel® Quark™ SoC X1000 Board Support Package (BSP) Build and

Software User Guide, is divided into two major sections:

 Part 1 of 2 - Building the BSP Software contains instructions for installing and

configuring the Intel® Quark™ SoC X1000 Board Support Package sources.

 Part 2 of 2 - Using the BSP Software provides information on BSP software features

and functionality.

Use this document to create an image to boot on your Quark-based board, and to learn

more about BSP software features.

The intended audience for this document are hardware/software engineers with

experience in developing embedded applications.

This software release supports the following software and hardware:

 Board Support Package Sources for Intel® Quark™ SoC X1000 v1.2.1

 Intel® Galileo Customer Reference Board (CRB) (Fab D with blue PCB)

 Intel® Galileo Gen 2 Customer Reference Board (CRB)

 Intel® Quark™ SoC X1000 Industrial/Energy Reference Design (Cross Hill)

 Intel® Quark™ SoC X1000 Transportation Reference Design (Clanton Hill)

 Intel® Quark™ SoC X1000 Air Quality Management Solution Reference Design

(Reliance Creek)

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 7

Part 1 of 2 – Building the BSP Software

This section contains the following chapters:

2.0 Before You Begin ... 8
3.0 Downloading Software .. 9

4.0 Building the EDKII Software ... 10

5.0 Building the GRUB OS Loader [Linux* Build Environment Only] .. 17

6.0 Creating a File System and Building the Kernel Using Yocto Project* 19
7.0 Building the Linux* Cross Compile Toolchain Using Yocto Project* [Linux Build

Environment Only] ... 28

8.0 Creating a Flash Image for the Board [Linux* build environment only] 31

9.0 Platform Data Tool ... 33
10.0 Programming Flash on the Board Using Serial Interface .. 36

11.0 Programming Flash on the Board Using DediProg .. 42

12.0 Booting the Board From SD Card .. 43

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

8 Document Number: 329687-011US

2.0 Before You Begin

Before you begin:

 You need a host PC running either:

 Linux*; Intel recommends a 64-bit Linux system

 Microsoft* Windows* 7, x64

 You need an internet connection to download third party sources.

 The build process may require as much as 30 GB of free disk space.

 To program the board you can use:

 A serial interface using the UEFI shell or Linux* run-time (see Section 10)

 A DediProg* SF100 SPI Flash Programmer (or equivalent) and the associated

flashing software (see Section 11)

 An Intel® Galileo IDE (Intel® Galileo Gen 2 board only; refer to Appendix A for

User Guide details)

Note: Remove all previous versions of the software before installing the current version.

Individual components require very different environments (compiler options and

others). To avoid cross-pollution, the commands in each section that follows must

be run in a new command line window every time.

Note: If the commands fail or timeout, it may be due to your proxy settings. Contact your
network administrator. You may find answers here:
https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

This release has been tested with Windows* 7, 64-bit and Debian* Linux* 7.0 (Wheezy),

but will work with most other Linux distributions.

Linux builds have been validated on 64-bit Linux systems and may need additional

steps for operation on 32-bit systems.

§

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 9

3.0 Downloading Software

Download the BSP sources zip file from the following location:

https://downloadcenter.intel.com/download/23197/Intel-Quark-BSP

Note: If you are using an Intel® Quark™ Reference Design board, see your Intel representative
for the appropriate software download URL.

This release is comprised of:

 Board Support Package (BSP) sources:

 Board_Support_Package_Sources_for_Intel_Quark_v1.2.1.7z

For customers using the Clanton Hill FFRD, additional CAN software must be

downloaded from Intel Business Link (IBL). See your Intel representative for the URL.

The CAN package comprises:

 Fujitsu CAN Firmware:

 CAN_Firmware_for_Intel_Quark_v1.2.1.zip (36 kB)

If building on a Debian host PC, use the Debian-provided meta package called build-

essential that installs a number of compiler tools and libraries. Install the meta package

and the other packages listed in the command below before continuing:

sudo apt-get install build-essential gcc-multilib vim-common

§

https://downloadcenter.intel.com/download/23197/Intel-Quark-BSP

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

10 Document Number: 329687-011US

4.0 Building the EDKII Software

You need to build the open source EDKII firmware for the Intel® Quark™ SoC. Additional

details may be found here:

 www.tianocore.sourceforge.net

 https://github.com/tianocore/tianocore.github.io/wiki/Getting-Started-with-EDK-II

4.1 Dependencies

Linux* build environment dependencies:

 Python 2.6 or 2.7 (Python 3.x not supported)

 GCC and G++ (tested with GCC 4.3 and GCC 4.6)

 subversion client

 uuid-dev

 nasm

 iasl (https://www.acpica.org/downloads/linux)

Note: An ACPI5.0 compatible version is required.

Windows* build environment dependencies:

 Python 2.6 or 2.7 (Python 3.x not supported)

 Microsoft* Visual Studio* 2008 Professional.

 The Intel® Quark™ SoC EDKII build is validated with the Win7 x64 / VS2008x86

option shown in: https://github.com/tianocore/tianocore.github.io/wiki/Windows-

systems- ToolChain-Matrix

In addition, the quarkbuild.bat below enforces the x86 postfix onto the Visual Studio*

option for building under x64 Windows.

 TortoiseSVN (1.4.2.8580 or later) installed with optional SVN command line tools.

 iASL Windows binaries (https://www.acpica.org/downloads/binary-tools)

Note: An ACPI5.0 compatible version is required and they should be extracted to a
C:\ASL directory.

file:///C:/Users/coconnel/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/9NZ36EPF/www.tianocore.sourceforge.net
https://github.com/tianocore/tianocore.github.io/wiki/Getting-Started-with-EDK-II
https://www.acpica.org/downloads/linux
https://github.com/tianocore/tianocore.github.io/wiki/Windows-systems-%20ToolChain-Matrix
https://github.com/tianocore/tianocore.github.io/wiki/Windows-systems-%20ToolChain-Matrix
https://www.acpica.org/downloads/binary-tools

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 11

4.2 Pre-build Setup

The following steps are performed one time to prepare the EDKII workspace directory

with the required source code before commencing the actual firmware build.

1. Create the EDKII workspace directory and extract the contents of the Intel® Quark™

SoC EDKII BSP into this directory.

The file will have the name Quark_EDKII_<version>.tar.gz. After the

contents have been extracted the files quarkbuild.sh and quarkbuild.bat

should be in the root of the created workspace directory.

2. Fetch the upstream core EDKII packages using svn_setup.py and the SVN

command line tool.

3. Optionally, if OpenSSL is required by the build configuration in Section 4.3 or

Section 4.4 following, then perform the steps in the

CryptoPkg/Library/OpensslLib/Patch-HOWTO.txt file.

4.2.1 Performing pre-build Steps in a Linux/gcc Build Environment

Open a new terminal session and enter the following commands:

sudo apt-get install build-essential uuid-dev iasl subversion

nasm

tar -xvf Quark_EDKII_*.tar.gz

cd Quark_EDKII*

./svn_setup.py

svn update

4.2.2 Performing pre-build Steps in a Windows Build Environment

Use a preferred tool to extract the Quark_EDKII_*.tar.gz to a user created EDKII

Workspace directory and run the cmd.exe Windows command. Then, issue the

following commands:

>cd %USER_SELECTED_EDKII_WORKSPACE_DIR%

>.\svn_setup.py

>svn update

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

12 Document Number: 329687-011US

Note: The svn update command can take a few minutes to complete depending on the speed
of your internet connection.

Note: If these commands fail, it may be due to your proxy settings. Contact your network
administrator. You may find answers about proxy settings here:
https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

Note: The examples above do not show the optional OpenSSL pre build step described in the
CryptoPkg/Library/OpensslLib/Patch-HOWTO.txt file.

4.3 Building all the EDKII Firmware Validated Build
Configurations [Linux build environment only]

This section is only supported in Linux Build environments. The

buildallconfigs.sh file is used to build all the validated EDKII build configurations.

Open a terminal window and cd to the Quark_EDKII* directory created in Section 4.2.1,

“Performing pre-build Steps in a Linux/gcc Build Environment”.

The script has the following options:

buildallconfigs.sh [GCC44 | GCC45 | GCC46 | GCC47 | GCC48 | GCC49] [GCC Path]

[PlatformName]

 GCC4x

GCC flags used for this build. Set to the version of GCC you have installed.

Note: Tested on GCC46. GCC43 is not supported from release 1.2 onwards.

 GCC Path

Location where the GCC is installed. GCC Path is not needed for release 1.1 and

earlier.

 [PlatformName]

Name of the platform package you want to build.

Example usage:

Create a build for an Intel® Quark™ SoC platform based on GCC version 4.6: For release

1.2 onwards:

./buildallconfigs.sh GCC46 /usr/bin/ QuarkPlatform

For release 1.1 and earlier:

./buildallconfigs.sh GCC46 QuarkPlatform

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 13

Note: Ensure the selected version of GCC matches the one installed on the system by running
the gcc --version command.

The build output can be found in the following directories:

 Build/QuarkPlatform/<Config>/<Target>_<Tools>/FV/FlashModules/

Contains EDKII binary modules

 Build/QuarkPlatform/<Config>/<Target>_<Tools>/FV/Applications/

Contains UEFI shell applications, including CapsuleApp.efi

Where:

 <Config> = PLAIN | SECURE

 <Target> = DEBUG | RELEASE

 <Tools> = GCC44 | GCC45 | GCC46 | GCC47 | GCC48 | GCC49

In Section 8, you will run a script that creates a symbolic link to the directory where the

EDK binaries are placed.

4.4 Building a Single EDKII Firmware Build Configuration

This section is supported in Linux and Windows build environments. Use

quarkbuild.sh in a Linux terminal window or quarkbuild.bat in a Windows

command prompt (created by running cmd.exe) and the cd command to change

directory to the root of the EDKII workspace directory created in Section 4.2.

Build usage:
quarkbuild [-r32 | -d32 | -clean]

[GCC44 | GCC45 | GCC46 | GCC47 | GCC48 | GCC49 | subst drive

letter] [GCC Path [PlatformName] [-DSECURE_LD (optional)] [-

DTPM_SUPPORT (optional)]

[-DSECURE_BOOT_ENABLE=TRUE (optional)]

The following is the list of options for the quarkbuild.sh and quarkbuild.bat

build commands:

 -clean

Delete the build files/folders

 -d32

Create a DEBUG build

 -r32

Create a RELEASE build

 GCC4x

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

14 Document Number: 329687-011US

LINUX ONLY: GCC flags used for this build. Set to the version of GCC you have

installed.

Note: Validated and tested on GCC46. GCC43 is not supported from Release 1.2
onwards.

 subst drive letter

WINDOWS ONLY: quarkbuild.bat uses the letter specified here with the

Windows subst command to associate a drive letter with the EDKII workspace

directory path. Associating a drive letter with the EDKII workspace directory

reduces flash space requirements for debug executables.

 [PlatformName]

Name of the Platform package you want to build

 [-DSECURE_LD]

Create a Secure Lockdown build (optional).

Note: The policy decisions taken during EDKII boot for this boot option are automatically
taken on secure SKU Quark SoC hardware even if SECURE_LD build option is not
specified.

 [-DTPM_SUPPORT]

Create an EDKII build with TPM support (optional)

 [-DSECURE_BOOT_ENABLE=TRUE]

Create an EDKII build with UEFI Secure Boot support (optional)

Note: The TPM and UEFI Secure Boot build options require the one-time prerequisite
described in the CryptoPkg\Library\OpensslLib\Patch-HOWTO.txt file. For more
details on TPM (Trusted Platform Module) and UEFI Secure Boot, refer to the Intel®
Quark™ SoC X1000 UEFI Firmware Writer’s Guide.

Linux example usage:

Create a RELEASE build with UEFI Secure Boot and TPM support for an Intel® Quark™

SoC platform based on GCC version 4.6:

For release 1.2 onwards:
./quarkbuild.sh -r32 GCC46 /usr/bin/ QuarkPlatform -

DSECURE_BOOT_ENABLE=TRUE -DTPM_SUPPORT

For release 1.1 and earlier:
./quarkbuild.sh -r32 GCC46 QuarkPlatform -

DSECURE_BOOT_ENABLE=TRUE - DTPM_SUPPORT

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 15

Windows example usage:

Create a DEBUG build for a Quark platform. After executing quarkbuild.bat, a virtual

drive S: is created which is rooted to EDKII workspace directory:
>.\quarkbuild.bat --d32 S QuarkPlatform

The built binaries are used in conjunction with Section 8 to create Spi Flash binaries for

development / manufacture, capsules for firmware update and recovery files for

firmware recovery.

Note: A CAPSULE_FLAGS option can be used with the make utility in Section 8, this option is
UEFI specific and will override the default UEFI capsule flags used by the make utility,
example > ../../spi-flash-tools*/Makefile CAPSULE_FLAGS=0x00050000. See Create an
Update Capsule in Intel® Quark™ SoC X1000 UEFI Firmware Writer’s Guide for
information on UEFI capsule flags.

4.5 EDKII Firmware Build Standalone Output Files

Section 8 Creating a Flash Image for the Board [Linux* build environment only] is not

required if the user only requires EDKII firmware in the SPI Flash on Intel® Quark™ SoC

Open SKU silicon. Sections 4.3 and 4.4 create the following EDKII standalone output

files:

 .\Build\....\FV\FlashModules\Flash-EDKII-missingPDAT.bin

Full 8 MB image for manufacture with just the EDKII SPI flash images. The user is

still expected to use Section 9 following to create the final image for the board.

The platform data python script referenced in the Section 9 can be used in Linux*

or Windows* build environments.

 .\Build\....\FV\RemediationModules\Flash-EDKII.cap

Capsule with just EDKII flash images that can be used instead of the capsule file

referenced in Section 10. Applying this file only updates the EDKII components of

the SPI flash (as provided in the capsule). All other SPI flash assets remain intact.

Note: If programming Flash-EDKII.cap on a board, it is required that the SPI Flash version
of the target board is at production level V1.0.0 or later. (Provided by the Flash.cap
or Flash+PlatformData.bin files referenced in the sections that follow.)

 .\Build\....\FV\RemediationModules\CapsuleApp.efi

UEFI application referenced in Section 10.2.

 .\Build\....\FV\RemediationModules\FVMAIN.fv

Recovery file that can be used is included in Section 14. This version of the file only

has the EDKII SPI flash images.

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

16 Document Number: 329687-011US

Note: To change the default UEFI Capsule flags for the EDKII standalone builds the
quarkbuild.bat or quarkbuild.sh files must be changed.

§

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 17

5.0 Building the GRUB OS Loader [Linux* Build

Environment Only]

If you will run Yocto, skip this section and use the file output by Yocto in this directory:
yocto_build/tmp/deploy/images/quark/grub.efi

If you are only interested in building a Flash image without Linux* and not in using

Yocto, then proceed through this section.

Note: GRUB is provided in two places: inside the meta-quark Yocto BSP or independently.

Tip: If you want to build a Flash image without a Yocto Linux system (for example,

because you plan to boot a larger Yocto Linux system from an SD card or USB stick),

you should modify the appropriate layout.conf file and delete the sections for bzImage

and core-image-minimal-initramfs-quark.cpio.gz.

Dependencies:

 GCC (tested with version 4.3.4 and 4.6.3, and libc6-dev-i386)

 gnu-efi-3.0u library (tested with version >= 3.0)

 GNU Make

 Autotools (autoconf, automake, and libtool)

 Python 2.6 or higher

 git

 gcc-multilib

 texinfo

This GRUB build requires the 32 bit gnu-efi library which is included with many Linux

distributions. Alternatively, you can download the latest version from:

http://sourceforge.net/projects/gnu-efi/files

Unpack and compile the gnu-efi library using the commands:

tar -xvf gnu-efi*

cd gnu-efi*/gnuefi

make ARCH="ia32"

cd -

To build GRUB, first open a new terminal session, extract the grub package, and run

the gitsetup.py script. The script downloads all the upstream code required for grub

and applies the patch.

http://sourceforge.net/projects/gnu-efi/files

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

18 Document Number: 329687-011US

Note: If you are not using Debian and had to manually install gnu-efi in a non-system
location, then you must point GNUEFI_LIBDIR at the location where gnu-efi was
compiled or installed.

Run the following commands:

sudo apt-get install git autoconf

tar -xvf grub-legacy_*.tar.gz

cd grub-legacy_*

./gitsetup.py

cd work

autoreconf --install

export CC4GRUB='gcc -m32 -march=i586 -fno-stack-protector'

export GNUEFI_LIBDIR=/full/path/to/gnu-efi-3.0/gnuefi/

CC="${CC4GRUB}" ./configure-quark.sh

make

cd -

Note: If these commands fail, it may be due to your proxy settings. Contact your network
administrator. You may find answers about proxy settings here:
https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

The required output from this build process is the work/efi/grub.efi file.

§

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 19

6.0 Creating a File System and Building the Kernel

Using Yocto Project*

Dependencies:

 git

 diffstat

 texinfo

 gawk

 chrpath

 lzop

 file

Note: Before running git, install patchutils so that the system can patch all external
sources that are required when running setup.sh.

git requires proxy configuration. If these commands fail, it may be due to your proxy

settings. Contact your network administrator. You may also find answers and tips about

proxy settings here:

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

Yocto Project* can be used to create a root file system and kernel which boots from an

SD card, USB key or SPI flash. Do not run any of the commands in this section as root.

Note: See Section 7 to build development tools (gcc) for the Linux* operating system.

To avoid a known issue unzipping packages with long file paths, extract the meta-

quark tarball into a directory with a short path, for example /tmp.

First, open a new terminal session, extract the Yocto Project layer, and run the

setup.sh script to download the external sources required for the Yocto Project build:

tar -xvf meta-quark*.tar.gz

cd meta-quark*

./setup.sh

Note: The setup.sh script takes no parameters.

When this scripts runs successfully, it will add additional folders such as bitbake, meta-

yocto, repo-ext, etc.

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

20 Document Number: 329687-011US

Next, source the oe-init-build-env command to initialize the Yocto Project build

environment. This command takes the build directory name as its parameter:

source ./oe-init-build-env yocto_build

After this command runs, the current directory will now be the directory specified in the

parameter (yocto_build in this case). From this directory, run bitbake <target> to

build the root file system and kernel.

The SoC-specific <target> commands described below will determine whether the

resulting components are built for SPI flash or for SD/USB/eMMC (memory media). The

output is different for each target.

Note: Starting from Intel® Quark™ v1.1 release, it is possible to perform both (memory media
and SPI) build methods from the same directory. However, the user should take note of
the DISTRO setting in conf/local.conf file. For the memory media image, please make
sure DISTRO ?=”iot-devkit-multilibc” is uncommented only. For SPI image, please make
sure DISTRO ?= “iot-devkit-spi” is uncommented only. The output of the memory
media image is under yocto_build/tmp and the output of SPI image is under
yocto_build/tmp-spi.

6.1 Build a Full-featured Linux for SD card, USB stick or eMMC

Note: A Yocto Project build can take several hours to complete, depending on your internet
connection speed and your machine’s specifications.

To build an image suitable for running on memory media, set the bitbake target to

image-full:

bitbake image-full

When the image build completes, the following output files are found in the

./tmp/deploy/images/quark/ directory. Copy these files to the media device.

Rename the files according to the following instructions (resulting paths are relative to

the media’s root path):

 image-full-quark-YYYYMMDDhhmmss.rootfs.ext3

(Rename this file to image-full-quark.ext3 because the initramfs will look for the file

in that name, unless the configuration is updated).

 core-image-minimal-initramfs-quark-

YYYYMMDDhhmmss.rootfs.cpio.gz

(Optional: rename this file to core-image-minimal-initramfs- quark.cpio.gz)

 bzImage--3.14-r0-quark-YYYYMMDDhhmmss.bin

(Optional: rename this file to bzImage.bin)

 grub.efi

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 21

 boot (directory)

The grub.conf file must be located in the /boot/grub/ directory of the media

device. Update the filenames in the grub.conf file after renaming.

If build error happens, install ACPICA manually from

https://www.acpica.org/downloads.

6.2 Build a Small Linux for SPI Flash

An image capable of running in SPI flash must not exceed 8Mb in size and is therefore,

a smaller, less featured image than the media image.

Before building out a SPI image we first need to edit a configuration file. From the build

directory (yocto_build in our case), edit the conf/local.conf file and change the

DISTRO variable. This can be done easily by commenting out (using the hash symbol #)

the default value at line 115 and uncommenting the value used for SPI flash images at

line 114:

DISTRO ?= "iot-devkit-spi"

#DISTRO ?= "iot-devkit-multilibc"

Before:

102 # Default policy config

103 #

104 # The distribution setting controls which policy settings are

used as defaults.

105 # The default value is fine for general Yocto project use, at

least initially.

106 # Ultimately when creating custom policy, people will likely

end up subclassing

107 # these defaults.

108 #

109 # Notes:

110 # (1) If you wish to build an image for the Galileo's on-

board SPI flash you

https://www.acpica.org/downloads

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

22 Document Number: 329687-011US

111 # need to set DISTRO to one of the iot-devkit-spi value

listed below.

112 # (2) If you wish to build an image (Linux kernel, grub and

root file-system) that

113 # is stored on SD card, you need to set DISTRO to iot-

devkit-multilibc

114 #DISTRO ?= "iot-devkit-spi"

115 DISTRO ?= "iot-devkit-multilibc"

After:

102 # Default policy config

103 #

104 # The distribution setting controls which policy settings are

used as defaults.

105 # The default value is fine for general Yocto project use, at

least initially.

106 # Ultimately when creating custom policy, people will likely

end up subclassing

107 # these defaults.

108 #

109 # Notes:

110 # (1) If you wish to build an image for the Galileo's on-

board SPI flash you

111 # need to set DISTRO to one of the iot-devkit-spi value

listed below.

112 # (2) If you wish to build an image (Linux kernel, grub and

root file-system) that

113 # is stored on SD card, you need to set DISTRO to iot-

devkit-multilibc

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 23

114 DISTRO ?= "iot-devkit-spi"

115 #DISTRO ?= "iot-devkit-multilibc"

The bitbake target for a SPI image is image-spi:

bitbake image-spi

Note: Because the SPI image is smaller than the full image, it completes quicker but may still
take over an hour depending on network speed and machine specifications.

For the Intel® Galileo board, output files are found in ./tmp-

spi/deploy/images/quark and include the following components:

 image-spi-quark.cpio.gz

 image-spi-quark.cpio.lzma

 bzImage

 grub.efi

Intel® Quark™ Linux on the SPI image uses uclibc, which is a C library optimized for

embedded systems. This enables a very small Linux footprint that can fit into 8Mb SPI

flash together with the UEFI bootloader and Grub OS loader.

These components now need to be loaded into SPI flash memory. The processes for

doing this are covered in Sections 8, 9, 10, and 11.

6.3 Build a fast boot Linux for SD card or eMMC

The fast boot image is capable of boot up from off state to Linux prompt within a few

seconds, it has the same feature configuration as the SPI flash image, and boots directly

from SD card or eMMC.

Similarly as building out a SPI image, we first need to edit the configuration files to

enable fast boot. From the build directory (yocto_build in this case), edit the

conf/local.conf file and change the DISTRO variable to “quark-fast”.

#DISTRO ?= "iot-devkit-spi"

#DISTRO ?= "iot-devkit-multilibc"

DISTRO ?= "quark-fast"

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

24 Document Number: 329687-011US

Before:

109 # Notes:

110 # (1) If you wish to build an image for the Galileo's on-

board SPI flash you

111 # need to set DISTRO to one of the iot-devkit-spi value

listed below.

112 # (2) If you wish to build an image (Linux kernel, grub and

root file-system) that

113 # is stored on SD card, you need to set DISTRO to iot-

devkit-multilibc

114 #DISTRO ?= "iot-devkit-spi"

115 DISTRO ?= "iot-devkit-multilibc"

After:

109 # Notes:

110 # (1) If you wish to build an image for the Galileo's on-

board SPI flash you

111 # need to set DISTRO to one of the iot-devkit-spi value

listed below.

112 # (2) If you wish to build an image (Linux kernel, grub and

root file-system) that

113 # is stored on SD card, you need to set DISTRO to iot-

devkit-multilibc

114 #DISTRO ?= "iot-devkit-spi"

115 #DISTRO ?= "iot-devkit-multilibc"

116 DISTRO ?= "quark-fast"

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 25

Next we need to include “meta-intel-quark-fast” to the BBLAYERS setting in

conf/bblayer.conf as the example shown in "meta-intel-quark-

fast/conf/bblayer.conf.sample". e.g.

9 BBLAYERS ?= " \

12 ${BBPATH}/../meta-intel-iot-devkit \

13 ${BBPATH}/../meta-intel-quark-fast \

The bitbake target for image-fast is:

bitbake image-fast

The output files are found in ./tmp-fast/deploy/images/quark and include the

following components:

 image-fast-quark.ext3

 image-fast-quark.hddimg

 image-fast-quark.manifest

 modules-quark.tgz

The fast boot image has the following limitations:

 The fast boot is targeted only for non-secure X1000 platforms

 The fast boot does not provide support for all Quark iot-devkit/makers specific

services

 The fast boot uses glibc instead of uclibc

 The fast boot image enables all the auto-load driver modules during Linux boot

time as configured in the flash image-spi

The fast boot solution uses the OpenEmbedded Image Creator tool wic (available in the

"scripts" directory) to create the partitioned boot disk is capable of direct boot from SD

card or eMMC (USB is not supported).

To create a bootable partition image using wic:
wic create ../meta-intel-quark-fast/mkefidisk.wks \

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

26 Document Number: 329687-011US

 -e image-fast -o ./fast_boot_image

To create the fast boot image on SD card or eMMC using dd command (assume we are

still in yocto_build directory):

WARNING: The following step will erase all the existing contents on the SD card or

eMMC.

cd ./fast_boot_image/build

sudo dd if=mkefidisk-<date-time>-mmcblk0.direct

of=/dev/mmcblk0; sync

TIP: Always run "sync" after "dd" command to make sure the operating systems file

cache is flushed to SD card/eMMC.

Now the fast boot partition is successfully created on the SD card or eMMC, it should be

able to boot directly on your Intel® Quark™ X1000 platform.

Note: The default size of fast boot partition is 64Mb, it can be configured through the “--size”
parameter defined in meta-intel-quark-fast/mkefidisk.wks file.

6.4 Applying a Custom Patch to the Linux kernel Using Yocto
Project (optional)

If you need any customization of your kernel (such as additional debug statements or

custom driver behavior), then you may need to patch the Linux kernel. This optional

step must be done before you run the bitbake command.

1. For customization of Yocto Project source code, extract the updates to a patch from

git using the git diff or git format-patch commands.

2. Copy the patch to the location as follows:

$ cp mypatch.patch /PATH/TO/MY_BSP/meta-quark-bsp/recipes-

kernel/linux/files/

3. Locate the bitbake recipe file:

/PATH/TO/MY_BSP/meta-intel-quark/recipes-kernel/linux/linux-

yocto- quark_3.14.bb

4. Append the following line:

SRC_URI += "file://mypatch.patch"

For example:

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 27

printf '%s\n' 'SRC_URI += "file://mypatch.patch"' >> linux-

yocto- quark_3.14.bb

5. Return to Section 6.0 and run the bitbake command to get new images.

More information can be found here:

 http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#var-

SRC_URI

 http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#platdev-

appdev-devshell

§

http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html%23var-%20SRC_URI
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html%23var-%20SRC_URI
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html%23platdev-%20appdev-devshell
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html%23platdev-%20appdev-devshell

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

28 Document Number: 329687-011US

7.0 Building the Linux* Cross Compile Toolchain

Using Yocto Project* [Linux Build Environment

Only]

To develop applications for the target architecture, a toolchain that allows cross

compilation is required. There are a number of different methods for building out a

cross toolchain. Section 3 of the Yocto Project* Application Developer’s Guide at the

link below provides a detailed description of each method.

http://www.yoctoproject.org/docs/1.7/adt-manual/adt-manual.html#adt-prepare

There are options for creating a toolchain in the current build directory and for creating

toolchain installer scripts which will allow the toolchain to be installed on other (SDK)

machines different to the build machine.

When building out a cross toolchain, a matching target sysroot is also needed because

it contains metadata, libs and headers used to build the appropriate cross toolchain.

7.1 Creating a cross toolchain in the current build directory

The easiest method for creating a toolchain, assuming the file system and kernel have

already been built in Section 6.0, is to use the following bitbake command:

bitbake meta-ide-support

This command will create an environment setup file suitable for the target machine

defined by the MACHINE variable in the local.conf file:

(excerpt)

Machine Selection

MACHINE ??= "quark"

The resulting environment setup file will be located in /tmp and will contain

"environment-setup" string in the name. For example, “environment-setup-

i586- poky-linux”. This method assumes that the build machine and the SDK

machine are the same and that the sysroot is in the current build directory.

7.2 Creating a cross toolchain installer

In order to build a cross toolchain capable of being installed on a different machine or

in a different area to the current build directory, a cross toolchain installer is required.

http://www.yoctoproject.org/docs/1.7/adt-manual/adt-manual.html#adt-prepare

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 29

If building for a different SDK machine, ensure that the SDKMACHINE variable in

local.conf describes this architecture:

(excerpt)

This variable specifies the architecture to build SDK/ADT items

for and means

you can build the SDK packages for architectures other than the

machine you are

running the build on (i.e. building i686 packages on an x86_64

host).

Supported values are i686 and x86_64

#SDKMACHINE ?= "i686"

You must source the oe-init-build-env yocto_build every time you use a new

terminal. To build the toolchain installer to match the target root filesystem already

built, open a new terminal session and use the bitbake command as follows:

bitbake image-full -c populate_sdk

The output of the build process is a script that installs the toolchain on another system:
iot-devkit-glibc-x86_64-image-full-i586-toolchain-1.7.2.sh

The script is located in ./tmp/deploy/sdk. Run the script and extract the cross

toolchain to a target directory (default: /opt/iot-devkit/1.7.2). This will extract

the cross toolchain along with the sysroot to the target directory.

Note: The environment setup script may change your environment significantly, thus
breaking other, non-Yocto Project tools you might be using (including anything which
uses Python). You must open a new terminal session to source the Yocto Project
environment and run make, and run all your other commands in other terminal
sessions.

When you are ready to compile your application, first run the source command below

to define default values for CC, CONFIGURE_FLAGS, and other environment variables,

then you can compile:

source /opt/iot-devkit/1.7.2/environment-setup-i586-poky-linux

${CC} myfile.c -o myfile

For general details, see the Yocto Project Application Development Toolkit (ADT)

information: https://www.yoctoproject.org/tools-resources/projects/application-

development-toolkit-adt.

Instructions about adding a package to the Linux* build are found in Section 5.2 of the

Yocto Project Development Manual:

http://www.yoctoproject.org/docs/1.7/dev-manual/dev-manual.html#usingpoky-

extend-customimage

https://www.yoctoproject.org/tools-resources/projects/application-%20development-toolkit-adt
https://www.yoctoproject.org/tools-resources/projects/application-%20development-toolkit-adt
http://www.yoctoproject.org/docs/1.7/dev-manual/dev-manual.html%23usingpoky-%20extend-customimage
http://www.yoctoproject.org/docs/1.7/dev-manual/dev-manual.html%23usingpoky-%20extend-customimage

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

30 Document Number: 329687-011US

If you do not have any size constraints, you can change the C library (using the TCLIBC

variable) to a more fully featured C library. Detailed instructions are found in Section

5.10 of the Yocto Project Quick Start:

http://www.yoctoproject.org/docs/1.7/mega-manual/mega-manual.html

It is also possible to write a Yocto Project custom recipe which can be built using the

bitbake command. One advantage of this is that the application can be automatically

added to the target root file system.

See Section 5.3 of the Yocto Project Development Manual for more detail on writing a

new recipe:

http://www.yoctoproject.org/docs/1.7/dev-manual/dev-manual.html#new-recipe-

writing-a-new-recipe

§

http://www.yoctoproject.org/docs/1.7/mega-manual/mega-manual.html
http://www.yoctoproject.org/docs/1.7/dev-manual/dev-manual.html%23new-recipe-%20writing-a-new-recipe
http://www.yoctoproject.org/docs/1.7/dev-manual/dev-manual.html%23new-recipe-%20writing-a-new-recipe

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 31

8.0 Creating a Flash Image for the Board [Linux*

build environment only]

Dependencies:

 GCC

 GNU Make

 EDKII Firmware Volume Tools (base tools)

 OpenSSL 1.0.2j

 libssl-dev

8.1 Using the SPI Flash Tools

The SPI Flash Tools, along with the metadata and flash image configuration in the

sysimage archive, are used to create a binary file that can be installed on the board and

booted.

Open a new terminal session and extract the contents of the sysimage archive:
 # tar -xvf sysimage_*.tar.gz

Extract and install SPI Flash Tools:
 # tar -xvf spi-flash-tools*.tar.gz

Note: Extract all files to a directory that does not include the original tar files.

The sysimage* directory contains the following preconfigured layout.conf files:

 release build base SKU (non-secure)

 debug build base SKU (non-secure)

 release build secure SKU

 debug build secure SKU

Depending on what kind of image you want to build, you must be in either the

sysimage.CP-8M-debug or the sysimage.CP-8M-release directory.

The layout.conf file defines how the various components will be inserted into the

final binary file to be flashed onto the board. The layout.conf consists of a number

of [sections] with associated address offsets, file names, and parameters. Each

section must reference a valid file, so it is necessary to update the paths or create

symbolic links to the valid files.

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

32 Document Number: 329687-011US

Note: For more information, refer to Appendix B SPI Flash Tools.

A script is provided that creates symbolic links. Run the script with the command from

/PATH/TO/BSP/ directory:
 # ./sysimage/create-symlinks.sh

Ensure there is no whitespace around the values defined in the layout.conf file.

Once a valid layout.conf has been created, run the SPI Flash Tools makefile with the

command:
 # ../../spi-flash-tools*/Makefile

The output of this build is located in either the sysimage.CP-8M-debug or the

sysimage.CP-8M-release directory (depending on what kind of image was

selected).

The output of this build includes:

 Flash.cap - standard capsule file.

Use this file to program your board using the serial interface by following the

Programming the Flash instructions in Section 10.

 Flash-missingPDAT.bin - flash file with no platform data.

Use this file to program your board with the platform data tool and a Dediprog*, as

described in Section 9 and then Section 11.

 FVMAIN.fv – board-specific recovery file.

See Section 14 for an overview of capsule recovery. If you are using the Intel®

Galileo board, refer to the Intel® Galileo Board User Guide for details. For other

boards, contact your Intel representative for details.

The capsule file contains a BIOS, bootloader, and compressed Linux* run-time system

to allow a Quark-based board to boot. Use the capsule update mechanism described in

Section 10 to program the SPI flash on your board.

Note: The same build process and same image files are used for both secure and non-secure
board SKUs, however, secure SKUs have certain restrictions on where a capsule update
can be performed. If you have a secure SKU board (Industrial/Energy or Transportation
Reference Design), you must update your board using the Linux run-time system
(Section 10.3).

For experienced users, you can build all sysimages configuration in just one command

by running the following command at the top-level directory of the sysimage package:
 ../spi-flash-tools/Makefile [-j] sysimages

Note: Be aware of the plural sysimages in the command. The -j option builds concurrently,
which completes in a shorter time, however the output may be harder to read.

§

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 33

9.0 Platform Data Tool

The platform data file provides platform personality values such as platform type and

board personality values such as Ethernet MAC addresses that must be patched into

the previously mentioned Flash-missingPDAT.bin and Flash-EDKII-missingPDAT.bin

files. This section is required for users who wish to update flash contents using flash

programmers, for example, during a manufacturing process. This section can also be

used just to generate a .pdat file that can be used as one of the capsule images placed

in the firmware update .cap files or recovery FVMAIN.fv files (see Section 4.0 and

Section 8.0).

Platform data is part-specific, unique data placed in SPI flash. Every binary image

flashed to the board must be patched individually to use platform data. A data patching

script is provided in this release.

Note: The Intel® Quark™ SoC X1000 UEFI Firmware Writer’s Guide contains information on
common platform data items.

The platform data patching script (platform-data-patch.py) is stored in the

platform-data directory within the spi-flash-tools tarball in the Intel® Quark™ SoC

BSP. The following text is written as if the user is executing the script on a Linux* build

machine, but the script may also be run on a Windows* build machine which has

Python 2.6 or Python 2.7 installed.

Before running the platform-data-patch.py script, open a new terminal session

and copy and edit the spi-flash-tools/platform-data/sample-platform-

data.ini file to include platform-specific data such as MAC address, platform type,

and MRC parameters.

On reference platforms, the MAC address to be programmed is printed on the product

label.

Note: The Intel® Quark™ SoC X1000 contains two MACs and each must be configured with
one address in the platform-data.ini file, even on boards (such as Intel® Galileo
board) that have only one Ethernet port.
For the Intel® Galileo board, MAC 0 is the only MAC wired out. The default MAC 0
address value in the platform-data.ini file is invalid and must be set to the value
allocated to your system, typically this is identified on a sticker.
MAC 1 must also have a valid UNICAST MAC address and the platform-data.ini file
contains a dummy but valid address for MAC 1.
If you do not set a valid MAC address, system will halt during boot.

In the following UEFI Secure boot Crosshill example, recommended values are shown

in bold text:

[Platform Type]

id=1

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

34 Document Number: 329687-011US

desc=PlatformID

data.type=hex.uint16

data.value=4

Examples: KipsBay 3, CrossHill 4, ClantonHill 5, Galileo 6,

GalileoGen2 8, RelianceCreek 9, RelianceCreekSPU A

Note: In the [Mrc Params] section below, the MRC data.value MUST correspond to the
platform data.value used above.

[Mrc Params]

id=6

ver=1

desc=MrcParams

data.type=file

Examples:

KipsBay

data.value=MRC/kipsbay.v1.bin

CrossHill

data.value=MRC/crosshill.v1.bin

ClantonHill

data.value=MRC/clantonhill.v1.bin

Galileo

data.value=MRC/kipsbay-fabD.v1.bin

GalileoGen2

data.value=MRC/GalileoGen2.bin

RelianceCreek

data.value=MRC/RelianceCreek.bin

RelianceCreekSPU

data.value=MRC/RelianceCreekSPU.bin

[MAC address 0] id=3

desc=1st MAC

data.type=hex.string

data.value=001320FDF4F2 #replace with MAC address from sticker

on board

[MAC address 1] id=4

desc=2nd MAC

data.type=hex.string

data.value=02FFFFFFFF01 #replace with MAC address from sticker

on board

Next, run the script as follows:

cd spi-flash-tools/platform-data/

./platform-data-patch.py -p sample-platform-data.ini \

-i ../../sysimage_*/sysimage.CP-8M-release/Flash-missingPDAT.bin

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 35

cd -

This creates a Flash+PlatformData.bin file to be programmed on the board, as

well as a sample-platform-data.pdat file containing the same data that was

inserted in the Flash image.

To program your board using Dediprog, skip to Section 11.0.

Note: If creating Flash+PlatformData.bin and the sample-platform-data.ini
placed UEFI Secure boot certificates in the patched binary file then the generated
sample- platform-data.pdat must be used as one of the capsule images placed
in the recovery FVMAIN.fv file (see Section 8.0), to allow the UEFI Secure boot system to
be recovered.

By default EDKII firmware will not update the MAC address in the platform data area if

programming an EDKII capsule (refer to the Intel® Quark™ SoC X1000 UEFI Firmware

Writer’s Guide).

§

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

36 Document Number: 329687-011US

10.0 Programming Flash on the Board Using Serial

Interface

Dependencies: CapsuleApp.efi (built in Section 4.0, located in

Build/QuarkPlatform/<Config>/<Target>_<Tools>/FV/Applications/)

The BSP provides a mechanism to update SPI flash contents based on EDKII capsules.

These capsules contain a BIOS, bootloader, and compressed Linux* run-time system

sufficient to boot a Quark-based board, such as the Intel® Galileo board.

The capsule update mechanism can be triggered from an EDKII shell (Section 10.1.1) or

from a Linux run-time system (Section 10.1.2). In both situations, you must have root

privileges on the system.

If you have a secure SKU board (Industrial/Energy or Transportation Reference Design),

you must update your board using the Linux run-time system (Section 10.1.2).

10.1 Programming Flash to Release 1.2.1

The layout and size of Stage 1 EDKII firmware volume have changed since release1.1.

The SPI flash layout is incompatible with previous releases before the release 1.2.0,

therefore, the user needs to do the following:

If you are updating from release 1.2.0, please refer section 10.1.1 and 10.1.2 for direct

update to release 1.2.1

If you are updating from an earlier release than release 1.2.0:

1. Update firmware to 1.1 (if applicable)

2. Update the 1.1 firmware to 1.1 interim

3. Update from 1.1 interim to release 1.2.1

The interim version firmware is release 1.1 version firmware with FlashMap.h and

SMIFlashDxe.c files replaced with those of release 1.2.1. Updating to the interim version

is required to update the flash mapping of EDKII and capsule update code.

Note: Update release 1.0.x and older to release 1.1 so that the files are suitable for update.

10.1.1 Requirements to Update to Release 1.2.1

To update to release 1.2.1, download the following EDKII source codes from

https://downloadcenter.intel.com/search?keyword=Intel%c2%ae+Quark%e2%84%a2

+SoC:

https://downloadcenter.intel.com/search?keyword=Intel%c2%ae+Quark%e2%84%a2+SoC
https://downloadcenter.intel.com/search?keyword=Intel%c2%ae+Quark%e2%84%a2+SoC

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 37

1. Quark EDKII of Quark BSP Release 1.1

2. Quark EDKII of Quark BSP Release 1.2.1

Figure 1 shows the updating process from release 1.0.x to release 1.2.1.

Figure 1. Updating Process from Release 1.0.x to Release 1.2.1

10.1.2 Steps to Update to Release 1.2.1

The following are the steps to update the system firmware to release 1.2.1:

1. Download and build the Quark EDKII release 1.1 as described in Section 4.0.

a. If you have an older release, e.g. release 1.0.x, update to release 1.1 firmware.

Note: The GCC path is not needed as a parameter in build commands for release 1.1 and
earlier versions. Refer to Section 4.3 for changes.

2. Download and extract Quark EDKII release 1.2.1.

3. Create and update to the interim firmware of release 1.1:

a. To create the interim firmware, replace the Flashmap.h and SMIFlashDxe.c files

of release 1.1 with those of release 1.2.1. The files can be found at following

locations, respectively:

 QuarkPlatformPkg/Include/FlashMap.h

 QuarkPlatformPkg/Platform/DxeSmm/SMIFlashDxe/SMIFlashDxe.c

b. Rebuild the EDKII with changes in step 3a. The release 1.1 commands to build

the EDKII can be found in

https://downloadcenter.intel.com/download/23823/Intel-Quark-BSP-

Release-Archive.

c. Generate the interim release 1.1 capsule files, Flash.cap with steps described

in Section 8.0.

Note: The layout.conf and tools (spi-flash-tools, sysimage) used are based on Release
1.1.

d. Update the system firmware to this interim firmware with the Flash.cap

capsule file generated in step 3b.

e. The system is now updated with the interim firmware of release 1.1.

4. The user can now update to release 1.2.1 EDKII firmware using the release 1.2.1

capsule file, Flash.cap.

https://downloadcenter.intel.com/download/23823/Intel-Quark-BSP-%20Release-Archive
https://downloadcenter.intel.com/download/23823/Intel-Quark-BSP-%20Release-Archive

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

38 Document Number: 329687-011US

Note: Firmware downgrade from release 1.2.1 to an older release does not require any
special steps, only the upgrade process requires additional attention.

10.2 Programming flash using UEFI shell

This procedure cannot be used for a secure SKU board (Industrial/Energy or

Transportation Reference Design) because the UEFI shell is not available on secure SKU

boards. Follow the Section Error! Reference source not found. procedure instead.

Perform the steps that follow:

1. Use the files created in Section 8.0.

2. Copy CapsuleApp.efi and Flash.cap to a microSD card (or USB stick) and

insert it into the slot on the board.

3. Connect the serial cable between the computer and the board. Set up a serial

console session (for example, PuTTY) and connect to the board’s COM port at

115200 baud rate.

4. Configure the serial console session to recognize special characters. For example, if

you are using PuTTY, you must explicitly enable special characters. In the PuTTY

Configuration options, go to the Terminal > Keyboard category and set the

Function keys and Keypad option to SCO. You may also set Backspace to the

Control-H key.

5. Power on the board. Enter the EFI shell before grub starts by pressing F7.

6. The serial console displays a boot device selection box (below).

Select UEFI Internal Shell.

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 39

You will see a display similar to this:

7. You will see a print out, the top line of which looks like this:

fs0 :HardDisk - Alias hd7b blk0

This is your SD card. To mount it, type: fs0:

8. Verify you are using the correct version of CapsuleApp.efi by using the –v

option. You must use version 1.01 or later.

9. Enter the following command:

CapsuleApp.efi Flash.cap

Note: You must enter the full filename of the Flash.cap file.

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

40 Document Number: 329687-011US

You will see a display similar to this:

The CapsuleApp will update your SPI flash image. This process takes about 5

minutes.

Warning: DO NOT remove power or try to exit during this process. Wait for the prompt

to return, otherwise your board will become non-functional.

10. When the update completes, the board will automatically reboot. You will see a

display similar to this:

11. Updating to release 1.2.1 requires additional steps in Section 10.1.

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 41

10.3 Programming Flash Using Linux* Run-time System

If you are updating from an earlier release of the BSP software (0.7.5 and 0.8.0), you

need a release-specific kernel module. Note that a 0.7.5 kernel module cannot be

loaded on a 0.8.0 BSP and vice-versa.

Open a new terminal session and perform the following steps:

1. Use the files created in Section 8.0.

2. Copy Flash.cap from the sysimage directory onto an SD card (or USB stick) and

insert it into the board.

3. Release 0.9.0, Release 1.0.0, and later:

Run the command:
modprobe efi_capsule_update

4. Release 1.1.0 to Release 1.2.1:

Require additional steps in Section 10.1.

Continue with step 5 to update the flash.

5. All releases:

Run the following commands:
modprobe sdhci-pci

modprobe mmc-block

modprobe efi_capsule_update

mkdir /lib/firmware

cd /media/mmcblk0p1/

cp Flash.cap /lib/firmware/Flash.cap

echo -n Flash.cap >

 /sys/firmware/efi_capsule/capsule_path

echo 1 > /sys/firmware/efi_capsule/capsule_update

reboot

Note: Make sure you use the reboot command; removing/reinserting the power cable will
not work.

Warning: It is critical to ensure that the older sysfs entries used by release 0.7.5 and

release 0.8.0 are not used due to known issues:
 /sys/firmware/efi/capsule_update

 /sys/firmware/efi/capsule_path

The capsule update method for release 0.9.0 and later uses the following corrected

entries:
 /sys/firmware/efi_capsule/capsule_update

 /sys/firmware/efi_capsule/capsule_path

§

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

42 Document Number: 329687-011US

11.0 Programming Flash on the Board Using

DediProg

You can use a DediProg* SF100 SPI Flash Programmer and the associated flashing

software to program your board.

Note: These steps require the Flash+PlatformData.bin file that was created in Section 9.
Once the software has been installed and the programmer is connected to the board,
open a new terminal session, and run the DediProg Engineering application.

Use the following steps to flash the board:

1. Select the memory type if prompted when the application starts.

2. Select the File icon and choose the *.bin file you wish to flash.

3. Optionally select the Erase button to erase the contents of the SPI flash.

4. Select raw file format.

5. Select the Prog icon to flash the image onto the board.

6. Optionally select the Verify icon to verify that the image flashed correctly.

Note: Intel recommends that you disconnect the programmer before booting the system.

§

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 43

12.0 Booting the Board From SD Card

To boot your board from an SD card and enable persistent rootfs, follow these steps.

You can also use this procedure to boot your board from a USB stick or eMMC.

If you are using an Intel® Galileo board, this setup allows you to save your Arduino*

sketch to the board, so it will be able to repeat sketches after board power-down. This

also enables a persistent /sketch folder and rootfs.

Dependencies:

 You ran the command bitbake image-full in Section 6

 Your SD card must meet the following requirements:

 SD card must be formatted as FAT or FAT32.

 SD card size must be 32GB (or smaller) and SDHC format. SDXC format is not

supported.

1. The output of the build process in Section 6 is found in

./tmp/deploy/images/quark/

Copy the following kernel and root file system files to an SD card:

 boot (directory)

 bzImage

 core-image-minimal-initramfs-quark.cpio.gz

 image-full-quark.ext3

Be sure to set up your SD card with the files and structure shown as follows.

2. Insert the SD card, then power on the board.

Note: The first time you boot the board may take several minutes. This is expected
behavior due to the SSH component creating cryptographic keys on the first boot.

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

44 Document Number: 329687-011US

Troubleshooting tips:

To boot from SD/USB/eMMC, the grub instance embedded in the SPI flash is

hardcoded to search for a boot/grub/grub.conf file in partition 1 on the media

device. This is compatible with the factory formatting of most SD/USB devices. By

default, the UEFI firmware does not try to boot from SD or USB, it is handled by grub.

If you use an SD or USB device that has been reformatted after manufacturing, you

might experience problems booting from it. First, try to boot with a different memory

device and see if the problem goes away. If you isolate the problem to a specific SD

card, you can restore the factory formatting using this tool from the SD association:

https://www.sdcard.org/downloads/formatter_4/

It is not recommended to use normal operating system tools to format flash memory

devices.

§

https://www.sdcard.org/downloads/formatter_4/

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 45

Part 2 of 2 – Using the BSP Software

This section contains the following chapters:

13.0 Capsule Update ... 46
14.0 Capsule Recovery ... 47

15.0 Signing Files (Secure SKU only) [Linux* build environment only] .. 48

16.0 Enabling the OpenOCD Debugger .. 51

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

46 Document Number: 329687-011US

13.0 Capsule Update

The BSP software provides a mechanism to update SPI flash contents based on EDKII

capsules. These capsules contain a BIOS, bootloader, and compressed Linux* run- time

system sufficient to boot a Quark-based board, such as the Intel® Galileo board.

Capsule update is comprised of the following high-level steps:

 Building a Flash.cap capsule file

 Connecting a USB key or SD card that contains this file to the board

 Running the capsule update mechanism as described in Section 10.2 or Section

10.3.

 If updating to release 1.2.1, additional steps in Section 10.1 must be executed.

Note: If you have a secure SKU board (Industrial/Energy or Transportation Reference Design),
you must update your board using the Linux run-time system (Section 10.3).

§

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 47

14.0 Capsule Recovery

The BSP software provides a mechanism for the SPI flash contents to be recovered if

the board will not boot. For example, if power was lost during a normal SPI flash

update, the board would be unbootable.

Capsule recovery is comprised of the following high-level steps:

 building a FVMAIN.fv recovery file

 connecting a USB key with this file to the board

 booting the board in recovery mode

Note: If you are using the Intel® Galileo board, refer to the Intel® Galileo Board User Guide
for details. For other boards, contact your Intel representative for details on how to
boot in recovery mode.

 waiting for the recovery firmware to update the SPI flash and reboot the board

 Capsule recovery is expected to recover from the same version of recovery file in

the system.

Booting in recovery mode is board specific. Please refer to the board user guide for

details.

Alternatively, the SPI flash contents can be recovered using a DediProg* SF100 SPI

Flash Programmer and the associated flashing software to program your board as

described in Section 11.0.

§

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

48 Document Number: 329687-011US

15.0 Signing Files (Secure SKU only) [Linux* build

environment only]

This step is optional for most users; it is only needed for booting on a secure SKU.

The SPI Flash Tools package includes the Asset Signing Toolset, an application used for

signing assets for secure boot. Follow the steps below to compile the signing tool, then

sign assets.

For complete details on the Asset Signing Toolset, including all of the command line

options, refer to the Intel® Quark™ SoC X1000 Secure Boot Programmer’s Reference

Manual (see Appendix A).

Note: For convenience during development, the software release includes a default Private
Key key.pem file. During development, all assets are signed with the default key that is
stored in the config directory. The default key cannot be used in a production system;
it is not secure due to its inclusion in the release package. Contact your Intel
representative for details.

Note: Please contact your intel representative for a production Signed Key Module if
necessary

Dependencies: libssl-dev

15.1 To Program Secure SPI Flash

Copy SignedKeyModule.bin and private_key.pem to:

<Path to BSP>/sysimage*/sysimage.CP-8M-release-secure/config/

In <Path to BSP>/sysimage*/sysimage.CP-8M-release-secure/layout.conf edit the file to

point to this signed key module just copied.

I.e.

[signed-key-module]

…..

Item_file=config/<name of signed key module>.bin

From here create a spi flash image as per chapter 8.0 and program the board using a

dediprog as per chapter 11.0.

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 49

15.2 To Create a Secure Boot SD/eMMC

Use files in <Path to BSP/meta-clanton/yocto_build/tmp/deploy/images/quark/ files

located by grub require signature files for verification. This includes kernel,

grub.conf, bzImage, and core-image-minimal-initramfs-quark.cpio.gz.

Open a new terminal session and use the following commands:
cd spi-flash-tools

make asset-signing-tool/sign

After compiling the signing tool, you can sign assets as shown in the following example:
path/to/spi-flash-tools/asset-signing-tool/sign --i <input

file>

-s <svn> -x <svn index> -k <key file> -c

The output for this example is a signed binary file called <input file>.signed in

the same directory as the <input file> but adding the –c command creates a

signature file, .csbh file.

<Key file> here can point to customer private_key.pem

<svn> and <svn index> can be set to “0” in this instance.

Pass the –c command line option which creates <input file>.csbh as output in the

same directory as the <input file>.

To get a full list of command line options, run the signing tool with no option.

The signature files can be copied onto the boot media and must comply with the

following requirements:

 Each .csbh file must be in the same directory as the corresponding non-signed

file.

 grub.conf must be located in the /boot/grub/ directory.

 Other files can be placed anywhere as long as grub.conf is configured with their

location.

The screenshots below show an example SD card with signature files:

 Copy signature files core-image-minimal-initramfs-quark.cpio.gz.csbh

and bzImage.csbh to the root directory.

 Copy grub.cbsh to the /boot/grub/ directory.

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

50 Document Number: 329687-011US

§

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 51

16.0 Enabling the OpenOCD Debugger

Complete instructions for using the OpenOCD debugger can be found in the Source

Level Debug using OpenOCD/GDB/Eclipse on Intel® Quark™ SoC X1000 Application

Note, refer to Appendix A.

§

Related Documents

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

52 Document Number: 329687-011US

Appendix A Related Documents

The documents in the following table provide more information about the software in

this release.

Table 1. Related Documents

Document Name Number

Intel® Quark™ SoC X1000 Board Support Package (BSP) Build and Software User
Guide (this document)

329687

Intel® Quark™ SoC X1000 Software Release Notes 330232

Intel® Quark™ SoC X1000 Secure Boot Programmer’s Reference Manual 330234

Intel® Quark™ SoC X1000 Linux* Programmer’s Reference Manual 330235

Intel® Quark™ SoC X1000 UEFI Firmware Writer’s Guide 330236

EDKII Update for Intel® Quark™ SoC X1000 Software Release Notes 330729

Source Level Debug using OpenOCD/GDB/Eclipse on Intel® Quark™ SoC X1000
Application Note

https://communities.intel.com/docs/DOC-22203

330015

Intel® Quark™ SoC X1000 Datasheet

https://communities.intel.com/docs/DOC-21828

329676

Intel® Quark™ SoC X1000 Core Developer’s Manual

https://communities.intel.com/docs/DOC-21826

329679

Intel® Quark™ SoC X1000 Core Hardware Reference Manual

https://communities.intel.com/docs/DOC-21825

329678

Intel® Galileo Board User Guide

https://communities.intel.com/docs/DOC-22475

330237

6LoWPAN Support on Intel® Galileo Gen 2 559445

§

https://communities.intel.com/docs/DOC-22203
https://communities.intel.com/docs/DOC-21828
https://communities.intel.com/docs/DOC-21826
https://communities.intel.com/docs/DOC-21825
https://communities.intel.com/docs/DOC-22475

SPI Flash Tools

 Intel® Quark™ SoC X1000 Board Support Package (BSP)

May 2017 Build and Software User Guide

Document Number: 329687-011US 53

Appendix B SPI Flash Tools

You do not need Appendixes unless necessary.

The main functionality of the SPI flash tools is provided by a Make file. By default the

Make file should be called from within a directory with a valid layout.conf and will

output a flash binary and capsule.

Example of usage is in Section 6.2, “Build a Small Linux for SPI Flash”.

The Make file provides a number of targets which can be used to change the behavior

or output of the tool:

 all (default) - creates the flash binary, capsule and recovery image

 raw - create only the flash binary

 capsule - create only the capsule

 recovery - creates a recovery image

 clean - delete all intermediate files in the current directory

 sysimages - Search all subdirectories for a layout.conf file and if found build the

images

 sysimages-clean - as above but calls clean

 sysimages-install - as above but copies all of the output files into an "installs"

directory

There are also a number of variables which can be prefixed to the Makefile call on the

command line to modify the behavior of the tool:

 KEYFILE - can be used to select an encryption key to use if assets are being signed

 LAYOUTFILE - specify the name of a layout file if it has a non-standard name

 PDAT_IN_CAPSULE - include the platform data in the capsule

 true ==> include the platform data in the capsule

 false ==> do not include the platform data in the capsule (default false)

 CAPSULE_FLAGS:

 0x00010000 ==> do NOT update MAC addresses

 0x00010001 ==> update the MAC addresses (default: 0x00010000)

 CAPSULE_SVN - update CAPSULE_SVN when changing KEYS for UEFI Secure Boot

Systems (default = 0)

Example: KEYFILE=/path/to/key.pem ../spi-flash-tools/Makefile

SPI Flash Tools

Intel® Quark™ SoC X1000 Board Support Package (BSP)

Build and Software User Guide May 2017

54 Document Number: 329687-011US

 PDAT_INI ==> name of test system pdata .ini file (defaults to platform-data.ini if not

given)

§

	1.0 About this Document
	Part 1 of 2 – Building the BSP Software
	2.0 Before You Begin
	3.0 Downloading Software
	4.0 Building the EDKII Software
	4.1 Dependencies
	4.2 Pre-build Setup
	4.2.1 Performing pre-build Steps in a Linux/gcc Build Environment
	4.2.2 Performing pre-build Steps in a Windows Build Environment

	4.3 Building all the EDKII Firmware Validated Build Configurations [Linux build environment only]
	4.4 Building a Single EDKII Firmware Build Configuration
	4.5 EDKII Firmware Build Standalone Output Files

	5.0 Building the GRUB OS Loader [Linux* Build Environment Only]
	6.0 Creating a File System and Building the Kernel Using Yocto Project*
	6.1 Build a Full-featured Linux for SD card, USB stick or eMMC
	6.2 Build a Small Linux for SPI Flash
	6.3 Build a fast boot Linux for SD card or eMMC
	6.4 Applying a Custom Patch to the Linux kernel Using Yocto Project (optional)

	7.0 Building the Linux* Cross Compile Toolchain Using Yocto Project* [Linux Build Environment Only]
	7.1 Creating a cross toolchain in the current build directory
	7.2 Creating a cross toolchain installer

	8.0 Creating a Flash Image for the Board [Linux* build environment only]
	8.1 Using the SPI Flash Tools

	9.0 Platform Data Tool
	10.0 Programming Flash on the Board Using Serial Interface
	10.1 Programming Flash to Release 1.2.1
	10.1.1 Requirements to Update to Release 1.2.1
	10.1.2 Steps to Update to Release 1.2.1

	10.2 Programming flash using UEFI shell
	10.3 Programming Flash Using Linux* Run-time System

	11.0 Programming Flash on the Board Using DediProg
	12.0 Booting the Board From SD Card

	Part 2 of 2 – Using the BSP Software
	13.0 Capsule Update
	14.0 Capsule Recovery
	15.0 Signing Files (Secure SKU only) [Linux* build environment only]
	15.1 To Program Secure SPI Flash
	15.2 To Create a Secure Boot SD/eMMC

	16.0 Enabling the OpenOCD Debugger

	Appendix A Related Documents
	Appendix B SPI Flash Tools

